FEDERAL EXPRESS

Ms. Blanca Bayó
Director, Records and Reporting
Florida Public Service Commission
2540 Shumard Oak Boulevard
Tallahassee, Florida 32399-0850

In re: Petition by MCI Telecommunications Corporation for arbitration with United Telephone Company of Florida and Central Telephone Company of Florida concerning interconnection rates, terms and conditions, pursuant to the Federal Telecommunications Act of 1996. Docket No. 961230-TP.

Dear Ms. Bayó:
Enclosed for filing on behalf of MCI Telecommunications Corporation and MCImetro Access Transmission Services, Inc. are the original and fifteen copies of the late-filed deposition exhibits of Don J. Wood which were marked as a composite exhibit at the hearing in the above-referenced case .

By copy of this letter, I am serving counsel for the Commission and Sprint with copies of the enclosed exhibit.

If you have any questions regarding the filing, please do not hesitate to contact me at (404) 267-6375.

LATE-FILED EXHIBITS TO DEPOSITION OF DON J. WOOD DOCKET NO. 961230-TP

Exhibit No. 1: (Late-filed) 1993 New Hampshire incremental cost study that is referenced in attachment RAM 3.

Response: The reference in the Input Summary - RAM3 document is incorrect. The network operations factor of 30% is a conservative adjustment to information provided by Pacific Bell in the testimony of R.L. Scholl.

Exhibit No. 2: (Late-filed) Original Pacific Bell end-office traffic sensitive fraction.
Response: The traffic-sensitive fraction of switching investment is based on common industry knowledge. Any adjustments to specific data have consisted solely of rounding to the generally accepted 70/30 ratio of investment.

Exhibit No. 3: (Late-filed) Information obtained from switch manufacturers.
Response: The investment data for larger switches have been obtained by discussions between HAI personnel and contractors and switch vendors. The switch manufacturers have provided this information but have asked not to be cited directly.

Exhibit No. 4: (Late-filed) Any instances for Sprint Florida in which Hatfield modeled a second switch.

Response: No second switches were added to central offices due to processor exhaust in the run of the Hatfield Model for Sprint-United Florida.

Exhibit No. 5: (Late-filed) Companies and/or industries in second regression analysis.
Response: The airline and automotive industries were considered in the study that produced a corporate overhead estimate of 6% revenues.

Exhibit No. 6: (Late-filed) AT\&T capacity cost study.
Response: A copy of this report is being obtained and will be provided.
Exhibit No. 7: (Late-filed) Quote from a manufacturer or manufacturers for 15 thousand dollars for equipment and installation.

Response: The assumed investment in regenerators is based on conversations between the Hatfield Model outside plant expert, John Donovan, and vendors. These vendors have asked not to be cited directly.

LATE-FILED EXHIBITS TO DEPOSITION OF DON J. WOOD DOCKET NO. 961230-TP

Exhibit No. 8: (Late-filed) Mix of cable gauges that underlies the cost values on pages 29, et cetera.

Response: The cable prices in the Hatfield Model are based on 24 gauge cable. 26 gauge cable is not included in the cable investment assumptions.

Exhibit No. 9: (Late filed) Where in the model and/or RAM-3 one will find the investment and expenses for load coils and loop extenders.

Response: No investment for load coils or loop extenders are explicitly included in the model. In those areas studied in which long loops are necessary, sufficient investment dollars are nevertheless provided by the model to provide this equipment.

Exhibit No. 10: (Late-filed) Number of CBGs in which the Hatfield model costs out multiple duct runs.

Response: No multiple conduit runs are explicitly assumed in the Hatfield Model. In those areas studied in which large diameter cables are necessary, sufficient investment dollars are nevertheless provided by the model to provide these facilities.

Exhibit No. 11: (Late-filed) Amended Exhibit DJW-2
Response: A corrected version of the User Inputs spreadsheet is attached.
Exhibit No. 12: (Late-filed) Identification of corrected cells in worksheet F1_wf_sp.xls.
Response: No correction is necessary. Mr. Wood and representatives from DeloitteTouche have confirmed that the working cells in the Model contain the correct values.

Note: Anything in inalice in the two colnmas containing values is a calculated value.
Dont chang any of theee menueth
12/2/90 19:45
You may change any of the input values (highlighted in blue) directly in this sheot
However, il you subsequently use one of the dlalogs to set values, any values enterec there will overide any changea you make menually here.

Misc Experse Factor:

Distribution Structure Inputs

Aovial Fraction	
$0-5$	0.5
$5-200$	0.5
$200-850$	0.5

650-850
850-2550
25504
Buried Fraction
$0-5$
5-200
200-650
850-850
850-2550
2550+
Underground Fraction
0.5
5-200
200-650
650-850
850-2550
2550+
Buried Installedionitoot
0.5
5-200
200-650
650-250
850-2550
2550*
Condut instalation/foor
0.5
5-200
200-850
650-850
850-2550
2550+
Pole specing, fett
Pole investment
Conduat investment per fook
Manhole investment, per mernole
Burled cable amoring multiplier

Aertel fraction				
0.5		0.5	0.5	cuteedmental 1
5-200		0.5	0.5	cuftectaentel2
200-850		0.5	0.5	cufeedearian
650-850		0.4	0.4	cufeederial
850-25.50		0.1	0.1	cufoederints
2550+		0.05	0.05	cufinedeerials
Buried Fraction				
0.5		0.45	0.45	Cutwedturl
5-200		0.45	0.45	cuteectur 2
200-850		0.45	0.45	cutaedturs
650-850		0.4	0.4	cufeedibur 4
850-2550		0.1	0.1	cufteedburs
2550*		0.05	0.05	crioedmen
Underground Fraction				
0.5		0.05	0.05	cuibedry 1
5-200		0.05	0.05	cutenctup 2
200-650		0.05	0.05	cufeeckigs
650-850		0.2	0.2	curieotyg
850-2550		0.8	0.8	cufrectus
2550+		0.9	0.9	culveatug
Butiod instarationfoot				
0-5	\$	2.00	\$2.00	crimedountivi
5-200	3	2.00	\$2.00	cufeecturimiz
200-050	\$	2.00	\$2.00	afiediourins
650-850	3	3.00	\$3.00	autedburinm
850-2550	*	3.00	\$3.00	cufeedberins
2550+	*	25.00	\$25.00	cufeerburiva
Conctut instatiation/hoor				
0.5	\$	25.00	\$25.00	cufeedcondirvot
5-200	*	25.00	\$25.00	cuatedonalim2
200-650	5	25.00	\$25.00	cuteedcondirus
650-050	\$	25.00	\$25.00	cufeedcondinv4
850-2550	\$	45.00	\$45.00	cufeedcondinv5
2550*	\$	75.00	\$75.00	cufinedcrixdirva
Menhow Spacing, 俍.				
$0-5$		800	800	cufeediman 1
5-200		800	800	cufteedrinen2
200.050		800	800	cafoedman3
650-850		800	800	cufeedram 4

Convergence Convergence	Inputs	C84
Convergence Convergence	inputs	C65
Convergence Corvergence	inputs	C88
Convergence Convergence	Inputa	C87
Convergence Corwergence	Inputs	C6a
Convergence Comwergence	Inputs	C69
Convergence Convergence	Inputs	D04
Convergence Convergence	Inputs	D85
Convergence Converyence	inpets	Des
Corvergency Corverpence	inputs	D87
Convergence Convergence	Inputs	D88
Convergence Combergence	Inputa	D89
Corvergence Cavculated	inputs	E64
Convergence Celcutated	Inputs	E05
Convergence Cabcutated	Inputs	E6*
Convergence Cavcuitued	inputs	E87
Convergence Celcukated	inputs	E68
Convergence Calcutated	Inputs	E89
Corwergence Comvergence	Inputa	G84
Convergence Convergence	inputa	G85
Convergence Convergence	Inputs	Ge6
Corwergence Convergence	Inputs	G67
Convergence Corvergence	Inputs	G88
Convergence Convergence	Inputas	G69
Convergence Corwergence	Inputs	H84
Convirgence Converpence	Inputs	H85
Converpence Convtryence	Inputs	He8
Convergence Convergence	Inputis	H87
Convergence Convergence	Inputs	He8
Corwergence Convergence	Inputt	1469
Convergence Convergence	Irputs	F64
Convergence Corvergence	Inputs	F65
Convergence Convergence	Inputs	F88
Convergence Convergence	Inputs	F87

$\begin{aligned} & 850-2550 \\ & 2550+ \end{aligned}$		600
		400
Pole specing, fleat		150
Pole investinment	\$	450
Condul investrnent per foot	\$	1.00
Manhole inweatmerk, per mentiole	5	3,000
Buried cabio ammoring mukiplor		1.1

Flber Foeder structure inputs

Aerda Fraction				
$0-5$		0.35	0.35	fitheodserial 1
5-200		0.35	0.35	fibreedeeriel2
200-680		0.35	0.35	fibfoedsartal3
050-050		0.2	0.2	Ibfectumitil
850-2550		0.1	0.1	Abfeedamtats
2560*		0.05	0.05	
Buted Fraction				
0.5		0.6	0.6	fibteediturl
5-200		0.6	0.0	fibfeedbur
200-680		0.6	0.6	fibfeedbur 3
650-850		0.6	0.6	fibfoedibur
850-2550		0.1	0.1	fibfoedturs
$2550+$		0.05	0.05	fibfoedturt
Undepround Fraction				
0.5		0.05	0.05	fibloectig 1
5-200		0.05	0.05	fibfeeclug2
200-650		0.05	0.05	fibleeckis
650-050		0.2	0.2	fibreecteg4
850-2550		0.8	0.8	fibleecugs
25504		0.9	0.9	Fibfeedug6
Buried installetionfoet				
$0-5$	\$	2.00	\$2.00	flibecthrinv1
5-200	\$	2.00	$\$ 2.00$	fibfoedburinv2
200-650	\$	2.00	\$2.00	fibfeedbuinv3
650-850	3	3.00	\$3.00	fibieectourinu4
850-2550	\$	3.00	\$3.00	fibfeectourivos
25504	\$	20.00	\$20.00	fibfencturitro
Conctit installation/ioct				
0-5	\$	25.00	\$25.00	fibfeedcondiruv1
5-200	\$	25.00	\$25.00	fibleedcondinve
200-650	\$	25.00	\$25.00	fibfeedcondinv3
650-850	\$	25.00	\$25.00	fibfeedeondinva
850-2550	\$	45.00	\$45.00	fibleedeondinvs
25504	\$	70.00	\$70.00	fibfeedcondive
Mentove Specing, fr.				
$0-5$		2,000	2,000	fibreedminent
5-200		2,000	2,000	fibluedmert
$200-650$		2,000	2,000	fibfoedmars
650-850		2,000	2,000	frbfeedrimen
850-2550		2,000	2,000	fibseedmans
25504		2,000	2,000	fibleedruan
Buried eable armoring per fook, fiber	\$	0.20	50.20	beedermormu

Misc Loop Invettinent Inputs

Drop investmert perline	8	10.00	340.00	dropinw
NID investment per fore	\$	30.00	\$30.00	NIDimy
Terminal and aplice pear lae	*	35.00	\$35.00	Splicutry
Avertee mias per buainees locmion		4	4	Businestoc
Feeder structure fraction shamed wi hriored		0.25	0.25	FeedShare
Distribution structer \% asajoned to miphhone				
merrel		0.33	0.33	Airbiertal
bured		0.33	0.33	BurDiexTel
underground		0.33	0.33	UgDtaxTelf
Feector structure \% 4 esagiod to minphome				
amid		0.33	0.33	AirfeedTal
buried		0.33	0.33	BurfeedTal
uncierground		0.33	0.33	UgFeedTal
SAI invertment, matplied Distritution cablo aize copper feeder				
0	\$	500.00	\$500.00	cusalt
100	5	700.00	\$700.00	cusal2
200		900.00	\$900.00	cuSAl3
400		1,100.00	\$1,100.00	cusala
600	\$	1,300.00	\$1,300.00	CUSAIS
900	\$	1,500.00	\$1,500.00	CuSAIS
1200		1,700.00	\$1,700.00	cusal7
1800	5	1,900.00	\$1,000.00	cusala

800	cufeedmans	Corvergence Convergence	Inputs	F88
400	cufeedmant	Convergence Convergence	Inputa	F89
150	ufeedpolespec	Corwargence Corvergence	Inputs	C71
3450	cufeectpoieliny	Convergence Corvergence	Inputa	672
\$1.00	cutendcondinv	Corvargence Corvergence	Inputs	C73
\$3,000	cuteedmanhinv	Convergence Convergence	Inputa	C74
1.1	ufeedmanormul	Convergence Convergence	Inputs	675

Convergence Convergence	Inputs	C81
Convergence Convergence	Inputs	C82
Convergence Convergence	Inputa	C83
Convergence Corvergence	input	C84
Convergence Corvergence	inputa	C85
Comvergence Convergenca	Inputit	C80
Convergence Convergence	inputs	D81
Convergence Convergence	inputa	082
Convergence Corvergence	Inputs	D83
Convergence Convergence	inputa	D84
Convergence Contergence	inputs	D85
Convergence Convergence	Inputs	Des
Convergence Cateulated	Inputs	E81
Convergence Calculated	Inputs	E82
Convergence Calulated	Inputs	E83
Convergence Calculated	Inputs	E84
Corwergence Calculated	Inputa	E85
Convergence Calculated	Inputa	E88
Convergence Corvergence	Inputs	681
Convergence Corverpence	Inputs	G82
Convergence Corvergence	Inputs	G83
Convergence Convergerice	Inputs	G84
Convergence Convergence	Inputs	G85
Convergence Corvergence	Inputs	G88
Corwergence Corwergence	Inputs	H81
Corvergence Corvergence	inputs	H82
Convergence Corvergence	inputi	H83
Corvergence Corvergence	inpute	H84
Convergence Corvergence	Inputs	H85
Comvergence Comverpence	Inputs	H83
Convergence Corvergence	Inputs	F81
Convergence Corvergence	inputs	F82
Convergence Convergence	Inputs	F83
Convergence Convergence	Inputs	F84
Convwrence Corvergence	Inputs	F85
Convergence Convergence	Inputs	786
Convergence Convergence	inputs	C88

Convergence Corvergence	Inputis	J3
Convergence Corvergmice	Inputs	14
Corvergence Corvergence	Inputs	J5
Convergence Corvergence Corwergence	Inputs	16
Convergence Expense	Inputs	F59
Corverpence Expense	inputs	H59
Convergence Expense	Inputa	G59
Convergence Expense	Inputs	Feo
Convergence Experte	Inputs	H80
Convergence Expense	Inputs	G60

Dighat Loop Carrier Inputs

SLC (TR-303)	
sita, housing, and power per remote termi $\$$	3,000.00
mapimum linea	672
remote terminal fill factor	0.9
common equipmert investment \$	42,000.00
chernel unit investment per line \$	75.00
DS-0s per fiem	2,016
Fibers per remote terminal	4
AFC	
sita, housing, and power per remote temis	2,500.00
maximum inmes	100
remote temminul fill factor	0.9
commen equipment investment \$	10,000.00
channel unit inveatment per line \$	150.00
DS-0as per fiber	2,016
Fibers per remote terminal	4
Fiber feeder distence threshold, it. fieeder	9,000

Signaling Parameters

STP Link Cempecity		720
STP Maximum Firim		0.8
STP Investment, per pair, tuly equipped	5	5,000,000,00
STP common equipment livettmert, per	\$	1,000,000.00
Link Termination, Doth ends	\$	900.00
Signaling Link Bix Rete		56,000
Link Occupmecy		0.4
C Link Cross-Section		24
ISUP messages per interonice SHCA		6
ISUP measage length, byted		25
TCAP masages per trensection		2
TCAP measage length, bytex		100
Fraction of BHCA requiring TCAP		0.1
SCP invetiment per trensaction per seco)	20,000.00

$\begin{array}{r} 720 \\ 0.8 \end{array}$	STPcep STPA
\$5,000,000.00	STPinv
\$1,000,000.00	STPeormm
\$900.00	Linktem
58000	LinkRete
0.4	LinkOce
24	LinkCrose
6	ISUPmags
25	IStupien
2	TCAPmage
100	TCAPien
0.1	TCAPFrac
\$20,000.00	SCPIm

WreCenter Wrtcenter
Wrecenter Wirtcenter
WraCenter WireCenter
MraCenter Wincenter
WreCenter WreCenter
WreCentar WreCenter
WreCentar WreConver
WraCenter WreCenter
WreCentar WirsCenter
Wrecenter Wrecenter
Wrrccenter WraCenter
WreCenter WireCenter
WroCentar WruCenter
WruCenter WreCenter
Wriceenter WiraCenter
trafice and cost inputa trafle and cost inpute trafic and cost inputs tramic and cost inputs traffic and cost inputs tramic and cost inputs trafic and cost inputs tratice and cost inputs tratic and cost inputs traffic and cost inputs trafic and cost inputs trafic and cost inputs trafice and cost inpuls tramic and cost inputs

Convergence	Corvergence	Inputs	D28
Corvergence	Convergence	Inputs	D27
Convergence	Corvirgence	Inputs	D28
Convergence	Convergence	Inputs	D29
Convergence	Convergence	Inputs	D30
	Loopmaster	input	X19
	Loopmastar	Input	Y19
Convergence	Convergence	Inputs	D34
Cornverpence	Convergence	Inputs	D35
Convergence	Corvirgence	inputs	D36
Convergence	Convergence	Inputs	037
Convergence	Converpence	Inputs	D30
	Loopmaster	Input	X20
	Loopmaster	Input	Y20
	Loopmaster	Input	W23

Mise Inputs

Operator position paremeiors Investment per poalion	\$	3,500.00
Mexirnum uilization per position, CCS		27
Operater intervention fector		10
Operctar position remote disterice, mi.		O
Other		
DSCDS1 cressover		24
DS1/DS3 croseover		23

Public Telaphone investonend per atation s $\quad 1,200.00$

Transport inyeatinent

Number of Fibers		24
FOT capacty, DS-3s		12
FOT fim		0.8
FOT, instained	3	43,000.00
Pigtalus	5	60.00
Panel	\$	1,000.00
EFIt, per hour	\$	55.00
EF\%I uniks		32
Medium Investment		
Fraction of structure assigned to talephon		0.33
Fruction of structure shared with feeder		0.25
Distance, mi.		41
Regenerator spacing, mi.		40
Regenerator investorent, installed	\$	15,000.00

$\begin{array}{r} \$ 3,500.00 \\ 27 \\ 10 \\ 0 \end{array}$	opiny opecs opint opdiat
24	DSOcrost
28	DS1cross
\$1,200.00	Pubiry
24	termitib
12	FOTeep
0.8	FOTim
\$43,000,00	FOTinat
\$80.00	piot
\$1,000.00	panel
\$56.00	性
32	EFIU
0.33	teltrue
0.25	faedtrac
41	dist
40	regenap
\$15,000.00	regenim

Wrecenter	trutice and cost inputs	C142
Wrecenter	trafic and cost inputa	C143
WraCenter	traftic and cost inputs	C144
Wrucenter	trafle and cost inputs	C145
Wrecenter	tramic and cost inputs	C146
Wrocerner	trafice and cost inputs	C147
Wricentar	trafilie and cost inputs	C148
Wrocenter	trafice and cost inputs	D148
Wrocenter	trative and cost inputs	C152
Wrecentar	tranic and cost inputs	C153
WreCenter	treffic and cost inputs	C454
WroCenter	trafic and cost inputs	C155
WirsCenter	traffic and cost inputs	C157

2400	\$42.75	\$42.75	Dista24	Loopmaster	Input	Y 68
1800	\$32.25	\$32.25	Dista18	Loopmaster	Input	Y87
1200	\$21.75	\$21.75	Dietal2	Loopmaster	Input	Y88
800	\$18.50	\$16.50	Distag	Loopmaster	Input	Y89
600	\$11.25	\$11.25	Distac	Loopmaster	Input	$\checkmark 70$
400	\$7.75	57.75	Cista4	Loopmaster	Input	V71
200	34.25	\$4.25	Distar	Loopmaster	Input	r72
109	\$2.50	\$2.50	Distal	Loopmastty	Input	r73
50	\$1.63	\$1.03	Distas	Loopmaster	Input	774
25	\$1.19	\$4.19	Distal 25	Loopmaster	Inpuat	Y75

Fiber						
Underground						
Cabie Sla \quad Cow UG						
	216	\$13.10	\$13.10 FiberUG218	Loopmaster	Input	W47
	144	\$9.50	\$9.50 FlberUG144	Loopmater	Input	W48
	68	\$7.10	\$7.10 Fiberuces	Loopmaster	Input	W4s
	72	55.90	\$5.90 FiberUG72	Loopmaster	Input	W50
	60	55.30	\$5.30 FiberUGe0	Loopmaster	Input	W54
	40	$\$ 4.70$	\$4.70 FiberUG48	Loopmatier	Input	W52
	30	\$4.10	\$4.10 FiberUG38	Loopmanter	Input	W53
	24	\$3.50	\$3.50 FiberuG24	Loopmaster	input	W54
	48	\$3.20	\$3.20 FiberUG18	Loopmaster	Input	W55
	12	\$2.90	\$2.90 FiberUG12	Loopmaster	input	WSt
Aeviot						
Cable Size Coat Aerial						
	218	\$13.10	\$13.10 FiberA218	Loopmaster	Input	X47
	14	\$8.50	\$9.50 FiberA144	Loopmester	Input	$\times 48$
	96	\$7.10	\$7.10 Fiberass	Loopmaster	Input	$\times 49$
	72	\$5.90	\$5.90 fibera72	Loopmaster	input	$\times 50$
	60	\$5.30	\$5.30 Fiberaco	Loopmaster	Input	$\times 51$
	48	\$4.70	\$4.70 Fiberdis	Loopmaster	Input	X52
	36	\$4.10	54.10 Fibera38	Loopmaster	input	$\times 53$
	24	\$3.50	53.50 FiberA24	Loopmaster	Input	$\times 54$
	14	\$3.20	\$3.20 Fiberal8	Loopmaster	Input	$\times 55$
	12	\$2.90	\$2.80 FiberA12	Loopmaster	Input	$\times 50$

FIII Fractort
Cable
Cabis
Distribution
$0-5$
$5-200$
$200-650$
$650-850$
$850-2550$
25504

0.50	0.50
0.55	0.55
0.60	0.60
0.65	0.65
0.70	0.70
0.75	0.75

Mechun investmert
Fraction of structure assigned to terephon
Fraction of structure shared with feeder

	24
	12
	0.8
$\$$	$43,000.00$
$\$$	$\mathbf{5 0 . 0 0}$
$\$$	1.000 .00
	55.00
	32

Fraction of structure asaigned to telephon
Fraction of stucture shered with feeder
0.33

Regenerctor specing, mi.	
	Fiber Cable investrnent per fook
	Plackinert
	Splice Spacing, fit
	Splice Cout
	Trencting per foot
	Resurfacing per foot
	Concluit per foot
	Number of tubes
	Manthole in westonant
	Mantrole specing
	Buried instalitition per foot
	Pole inventrout
	Pole specing
	Underground percent
	Buried percent
	Acrial percent

	40
8	15,000.00
\$	2.00
\$	2.00
	20,000
*	15.00
*	45.00
5	10.00
*	4.00
	2
\$	5.000.00
	1,000
*	5.00
	450
	150
	35.00\%
	50.00\%
	15.00\%

24	termit
12	FOTCAP
0.8	FOTfill
\$ $33,000.00$	FOTinst
\$80.00	pigs
\$1.000.00	parel
\$55.00	en
32	EFIU
0.33	teinac
0.25	feedirac
40	regenep
\$15,000.00	regenim
\$2.00	frbirw
\$2.00	fibplace
20000	spliceep
\$ 15.00	splice
\$45.00	trench
\$10.00	reaurf
\$4.00	condit
2	tubes
\$5,000.00	mamhinv
1000	merntap
\$5.00	burinat
450	poleiny
150	polesp
35.00\%	upfac
50.00\%	burtrec
15.00	nitrec

Wre Carter

Conwergence	inputa
Convergence	inputa

0.50
0.60
0.65
0.70
0.75

