ORIGINAL

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

REBUTTAL TESTIMONY OF

CATHERINE E. PETZINGER

ON BEHALF OF
 AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC.

REDACTED VERSION

Filed: December 9, 1997

REBUTTAL TESTIMONY OF

CATHERINE E. PETZINGER

ON BEHALF OF

AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC.
DOCKET NOs: $960833-T P / 960846-T P / 971140-T \mathrm{P} / 960757-\mathrm{TP} / 960916-\mathrm{TP}$

1.0 INTRODUCTION

Q. PLEASE STATE YOUR NAME, PRESENT POSITION AND BUSINESS ADDRESS

A. My name is Catherine E. Petzinger. I am a District Manager with AT\&T Corp. in Regulatory and Legislative Affairs, 295 North Maple Avenue, Basking Ridge, New Jersey.

Q. PLEASE DESCRIBE YOUR WORK EXPERIENCE AND EDUCATIONAL BACKGROUND

A. I have an MBA from Rutgers University, New Jersey, and have thirteen years of experience in the telecommunication industry building, and subsequently leading, a group that developed switching cost models, including the Switching Costs Information System ("SCIS"). My experience includes extensive consultation on the use of cost models in various cost studies in the United States and abroad.

At Bellcore for 13 years, I was one of three individuals who designed the SCIS/ N^{1} model and implemented new incremental costing methodology into the program. I also was the lead subject matter expert on feature costing in general as well as a subject matter expert on 1ESS, 1A ESS and 5ESS switches. When I was
promoted to lead the SCIS group of approximately 20 people, I had responsibility for the technical development, production, documentation, customer care and cost study consultation or the SCIS family of models. I also had responsibility for marketing the Bellcore cost models in Europe and Asia/Pacific.

Q. HAVE YOU PREVIOUSLY TESTIFIED IN REGARD TO LEC COST MODELS IN GENERAL, AND THE SWITCHING COST INFORMATION (SCIS) IN PARTICULAR?

A. Yes, I have presented expert testimony in numerous State proceedings dealing with local switching unbundled element cost studies.

2.0 PURPOSE AND SUMMARY OF TESTIMONY

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?
A. The purpose of my testimony is to report my findings regarding BellSouth's switching investment studies ${ }^{2}$ and recommend new switching investments that serve as the foundation for the 4 -wire port switching unbundled element rate sponsored by Mr. Ellison.

Q. PLEASE SUMMARIZE THE MAIN POINTS OF YOUR TESTIMONY

A. BellSouth's costs for a 4 -wire port is flawed in the following major respects:

1. BellSouth began its entire switching cost process with incorrect switching prices. BellSouth entered the wrong discount to customize the SCIS/MO ${ }^{3}$ switching vendor list prices to reflect the "actual prices" paid by BellSouth. This incorrect discount causes all of BellSouth's switching elements to be significantly overstated. In addition to comparing

BellSouth/vendor contracts to the switch prices used by BellSouth in this study, I present publicly available information regarding switching prices paid by Southwestern Bell, Pacific Bell, and U.S. West that provide comparative price points. This publicly available information demonstrates that BellSouth's SCIS switch price estimates are substantially inflated.
2. The costs that BellSouth has identified for the limited numbers of features that were included are overstated because of double counting, input errors, and inappropriate costing methodology.

When BellSouth's switching cost study for the 4 -wire port is corrected, using BellSouth's own cost models, to reflect switch prices in BellSouth's vendor contracts and remove double counting of feature investments, the resulting 4 -wire port investment with features is less than BellSouth's port without features.

3.0 BELLSOUTH'S SWITCHING COST STUDY OVERVIEW

Q. WHAT ARE THE SCIS MODELS?
A. The SCIS programs were originally developed by Bellcore to identify the investments associated with features and services provided from central office switching machines. The SCIS/MO program determines the investments for various functions that a switch performs and the SCIS/IN model calculates the investments for vertical features.
Q. HOW DID BELLSOUTH USE THE SCIS MODELS?

Abstract

A. BellSouth used the SCIS/MO program from Bellcore to calculate investments for the 4 -wire analog port. Specifically, they used a subset of the output called Minimum Investment per Line. The Minimum Investment per Line is a melded average of standard analog lines and lines served on integrated digital loop carrier. BellSouth used a special report in SCIS to identify only those costs associated with an analog line.

The SCIS/IN model utilizes the Unit Investment results from the SCIS/MO program to develop the investment for services and features. BellSouth apparently did not actually use the SCIS/IN program, but copied SCIS/IN algorithms and program data inputs into multiple SCIS/IN-like spreadsheets to calculate investments for the features. Thus, whatever reported integrity between SCIS/MO and SCIS/IN is supposed to exist cannot be assured in the BellSouth study.

Switching investments were then processed in BellSouth's TELRIC models to include additional loadings, such as land and building; convert the investment to an annual cash flow; and add expenses to generate the costs of switching unbundled elements.

4.0 BELLSOUTH'S ACTUAL SWITCH PRICES ARE LOWER THAN THE PRICES USED IN THE COST STUDY
 Q. DOES THE SCIS/MO CALCULATE THE ACTUAL PRICES PAID BY BELLSOUTH FOR SWITCHES?

Abstract

A. No. The SCIS/MO model contains vendor list prices and requires the user to enter a discount to customize the switching investments to reflect the "actual prices" paid by the local telephone company, according to locally negotiated contracts and/or agreements.

The discount factors utilized for each switch type are of critical importance in the evaluation of any SCIS study since these discounts affect every SCIS output (i.e., a discount factor of 50% generates SCIS outputs that are half the values produced using the list price). Therefore, if the discount factors do not reflect the actual price in BellSouth's negotiated agreements with switching vendors, the results produced by SCIS will misstate all of BellSouth's switching investments, including those used as the basis for the 4 -wire port.

Q. WHAT ARE THE SWITCH PRICES PER LINE IN BELLSOUTH'S VENDOR SWITCHING CONTRACTS?

A. BellSouth recently made its switch vendor contracts available to AT\&T in response to a data request. The accessibility to these contracts was limited, because BellSouth would not allow copies to be made and AT\&T had to review these voluminous contracts on BellSouth's premises. The Nortel contract indicated that BellSouth receives a \qquad discount plus up to a \qquad
\qquad discount ${ }^{4}$. The contract also references the existence of additional discounts, but these were not specified.

The Lucent 5 E switches are covered via three contracts - one general contract crafted in 1992; ${ }^{5}$ an additional agreement that is more current, ${ }^{6}$ providing prices
for specific switch replacements throughout the BellSouth States, and a separate agreement just for switch purchases in Tennessee.' The two recent contracts indicate that BellSouth pays \qquad per line ${ }^{8}$ for 5 E switches. It is important to note that these prices per \qquad
\qquad
\qquad .

It is also interesting to note that BellSouth has an existing contract (1992-1999) and a subsequent Letter of Authorization ${ }^{9}$ with Siemens Stromberg-Carlson for switches with prices even lower than the \qquad switches, ${ }^{10}$ but these switches have been excluded from BellSouth's studies.

Q. WHAT IS THE DIFFERENCE ON A PER LINE BASIS BETWEEN THE NORTEL AND LUCENT CONTRACTS?

A. The Nortel contract discounts were used by BellSouth as direct inputs to SCIS/MO, which generates a DMS price per line of $\$ 210^{11}$ and the Lucent contract explicitly states the price per line is \qquad (including significant amounts of additional equipment for features).

Q. WHAT EXPLANATIONS COULD THERE BE FOR THIS DISPARITY BETWEEN THE VENDORS?

A. The fact that BellSouth has included Nortel prices that are more than \qquad
\qquad than Lucent prices may indicate that:

- The Nortel contract could be a "baseline" contract, equivalent to the older Lucent contract which is also still in effect.
- There may be additional Nortel agreements that were not provided, that could specify prices competitive with Lucent.
- BellSouth simply may not have plans to place Nortel switches in the near future and has not initiated aggressive negotiations for \qquad switching prices as they have done with Lucent.

Q. HOW SHOULD THIS DISPARITY BE TREATED IN THE COST STUDIES?

A. The cost studies should use switch prices per line for both technologies that are comparable and reflect forward-looking, least-cost technology. Lucent and Nortel are aggressively competing in all areas of the switching market, as evidenced by the recent Nortel/US WEST contract described below, these prices should be comparable to the prices in the Lucent/BellSouth contract. It would likewise be anticipated that in any head to head competition for BellSouth's business, bids among the various switch providers would be similarly competitive. AT\&T's restated switching element investments for the 4 -wire port assume that the average Lucent price per line for switching also applies to the Nortel switches. Corroborating statements made by Southwestern Bell and Pacific Bell indicate that the same price is paid for switching regardless of vendor. ${ }^{12}$ If BellSouth is going to place Nortel switches, then it should be expected that BellSouth would negotiate prices that are competitive with Lucent.

5.0 HOW DO THE PRICES IN BELLSOUTH'S COST STUDY COMPARE TO SWTICHING PRICES IN THE INDUSTRY?

Q. WHAT ARE THE AVERAGE SWITCH PRICES PER LINE IN THE INDUSTRY?
A. The Northern Business Information (NBI) study, "U. S. Central Office Equipment Market", states that the average price for RBOC digital switches per line shipped in 1995 was $\$ 102$, and $\$ 99$ in 1996. The study also indicates that per line prices are expected to continue to decline slightly through the remainder of the decade. Both Lucent and Nortel have referenced this document's marketing data estimates, which lends credibility to NBI's expertise in the central office equipment market. ${ }^{13}$

Q. DO THE SWITCH PRICES REPORTED FOR PACIFIC BELL SUPPORT BELLSOUTH'S PRICING?

A. No. Four years ago, Pacific Bell negotiated a major contract for approximately $\$ 110$ per line. ${ }^{14}$ According to the NBI study, the price per line for switching has been declining and is expected to continue to decline. The four-year old data for Pacific Bell, when brought down to current switch prices with a .97 factor per year ${ }^{15}$ would result in $\$ 97$ per line. ${ }^{16}$ There were no separate prices quoted for different size switches, so the deflated $\$ 97$ per line either applies to all line size switches or is an average; and the $\$ 97$ per line provides a comparative price point to evaluate the BellSouth switching prices.

Q. DO THE SWITCH PRICES REPORTED BY SPRINT SUPPORT BELLSOUTH'S PRICING?

A. No. The January, 1997, BCPM ${ }^{17}$ proxy model contained switching prices using a fixed cost of $\$ 261,871$ and variable per line amount of $\$ 225^{18}$ that were the results
of a survey, based on telephone company inputs to SCIS. Sprint later retracted these switching prices, stating that "there exists a fundamental disagreement concerning the costs of switching." ${ }^{19}$ Sprint submitted new BCPM inputs for switching prices of $\$ 150,000$ fixed/startup and $\$ 110$ per line. ${ }^{20}$ Sprint said "the current BCPM values [the new lower values] more closely approximate Sprint's current costs of switching" ${ }^{21}$ For a 15,000 -line switch, allocating the $\$ 150,000$ fixed cost to the lines would result in an overall average price of switching of $\$ 120$ per line. While AT\&T does not propose that this is the correct price, it provides a comparative price point to evaluate the BellSouth switching prices.

Q. DOES SOUTHWESTERN BELL'S SWITCH PRICE PER LINE 1996 SUPPORT BELLSOUTH'S PRICING?

A. No. Mr. Hugh Raley stated in 1996 testimony that for Southwestern Bell Telephone, "the Engineered, Furnished and Installed"(EF\&I) price was \$85/line" ${ }^{22}$ for switching. Mr. Raley stated that $\$ 85$ includes "everything that is required to make the switch work,". . . "the trunks, the fabric, the processors - the total price from a vendor standpoint divided by the number of lines on the switch." He also indicated that this figure represents recent bids both from Lucent and Nortel and that this price was the average and not the lowest bid price. Mr. Raley included in his testimony an Attachment ${ }^{23}$, which revealed the following:

	$1-15,000$ lines	$15-40,000$ lines	$40-80,000$ lines
EF\&I Inv. Per Line	$\$ 140$	$\$ 115$	$\$ 85$

Q. DOES BELLSOUTH'S MODEL TAKE INTO ACCOUNT THE MOST CURRENT INFORMATION REGARDING THE PRICE OF SWITCHES?
A. No. The most current information comes from Nortel's Internet web page ${ }^{24}$ announcing that a contract has been signed with US WEST "in excess of \$US 100 million" for 2.2 million DMS-100 lines. This implies switch prices as low as $\$ 45$ per line. Even allowing for the in excess to be an incredible additional 50% of the contract, for a total of $\$ 150$ million, $\$ 150$ million divided by 2.2 million lines would yield a price per line of only $\$ 68 .{ }^{25}$ Nortel also indicated that this upgrade of US WEST's network will provide advanced digital features, such as ISDN, network business services and advanced display services. In addition, Nortel stated that "Nortel will keep US WEST's network ready for new services, such as Local Number Portability and for Advanced Intelligent Network AIN features...."

These prices are similar to the \qquad contract prices for BellSouth.

Q. WHAT SWITCH PRICES HAS BELLSOUTH USED AND WHY ARE THEY INCORRECT?

A. BellSouth's average price per line for $5 E$ switches is ___ and ___ for
the DMS-100, ${ }^{26}$ resulting in a melded price of ___ line. In addition to
BellSouth not accurately reflecting their own switch vendor contract prices, a
comparison of the prices from other RBOCs with BellSouth's prices demonstrates
that BellSouth's prices are significantly overstated by all accounts.

Source	Price Per
Line	

Q. WHAT SCIS/MO DISCOUNT INPUTS DOES AT\&T PROPOSE AND HOW DID YOU ARRIVE AT THESE DISCOUNTS?

A. Using BellSouth's Lucent contract, AT\&T has calculated a SCIS/MO discount of
\qquad . As stated above, SCIS begins with vendor list prices in its investments tables and requires the local telephone company to enter a discount in order to reflect actual prices paid by that company. Each vendor begins with different list price levels and therefore the discounts that the vendors offer will be different to generate approximately the same total switch prices. ${ }^{27}$

In order to determine the correct discount that BellSouth should enter into SCIS/MO, the discount necessary for each switch technology to approximately equal the actual contract price of \qquad per line was calculated using SCIS results. BellSouth accumulated all of the switches for a given technology into a
"study" in SCIS/MO. We used the two studies with BellSouth's input data, but varied the discount input. The program was run iteratively until we matched the total switching investments calculated from the contract.
Q. WHAT IMPACT WOULD THIS DISCOUNT INPUT CHANGE HAVE ON OUTPUTS?
A. I have rerun the port investment study using BellSouth's models with BellSouth's data, but substituted the discounts shown above. These revised investments are compared to BellSouth's original values below:

	BellSouth 28 SE Inv.	Revised 5E Inv.	BellSouth DMS Inv.	Revised DMS Inv.
4-wire Port				

Note that this is just the switching port investment. Additional investments for converting the 4 -wire to 2 -wire signaling is added subsequently and is reflected in the prices proposed by Mr. Ellison.

6.0 DESIGNATING SEPARATE COSTS FOR INDIVIDUAL FEATURES IS INAPPROPRIATE
 Q. SHOULD FEATURES AVAILABLE IN THE SWITCH BE COSTED SEPARATELY?

A. No, this is inappropriate for several reasons. While BellSouth has costed a small subset of vertical features as if they are each a unique separate element, vertical services and features are an integral part of the switch. This becomes clearer if
you think of BellSouth's switch as a personal computer that is delivered by the manufacturer with a suite of software applications. ${ }^{.9}$ Now, whether the owner of the computer utilizes a word processing or spreadsheet program daily or only once a year, the owner does not incur a cost each time he utilizes the program. Instead, these costs are incurred at the outset as a part of the acquisition of the computer.

In contrast, BellSouth's switching studies are based on the incorrect assumption that each time a feature is used, there is a corresponding cost in the switch. This incorrect assumption that features are usage sensitive has been based on logic contained in the SCIS models.

Q. WHY DOES SCIS MAKE THIS ASSUMPTION?

A. SCIS assumes that the processing capacity of a switch is the ultimate limiting factor for a switch and that every call or feature that uses this processing capacity should pay its "fair share". In the past, as reviewed in Mr. Garfield's direct testimony, switch vendors struggled to keep processing capacities on par with the demand for new services and features. It was appropriate under those circumstances to determine how much of the switch's capacity specific features and calls were using and assign an allocated portion of the cost to those features and calls.

Q. WHY IS THIS ASSUMPTION INCORRECT?

A. It is simply no longer true that switches, in general, are limited by processing capacity; instead, they are primarily limited by the numbers of lines and trunks that can be served. ${ }^{30}$ This is validated by BellSouth's own inputs to the SCIS
model that indicate they are currently utilizing only 27% of the processing capacities in switches in Florida. Today's switches provide call processing capacities that far exceed the traffic that is expected over the entire lifetime of these switches, especially given that much of the intelligence of call processing is being moved from the end office switches to the Advanced Intelligent Network. ${ }^{31}$ Indeed, the newer, marginal version of SCIS identifies these costs as a fixed upfront investment, depending on the processor utilization inputs, rather than always assuming these costs are sensitive to the processing capacity.

Q. WHAT OTHER PROBLEMS EXIST WITH BELLSOUTH'S FEATURE COSTING METHODOLOGY?
 A. BellSouth's complicated methodology of determining individual investments for each feature requires large numbers of inputs and assumptions, many of which are not "measurable" and amount to nothing more than unsubstantiated "estimates" by BellSouth. SCIS was developed at a time when overestimating the costs of features to be sold to subscribers carried no penalty; but that is not the case here. By misallocating costs on a feature-usage basis coupled with the requirement that the feature usage may be mis-estimated by BellSouth, new entrants are seeing excessive costs for features that are entirely inappropriate in a unbundled switch element environment.

7.0 BELLSOUTH HAS INAPPROPRIATELY ASSIGNED ALL OF THE GETTING STARTED INVESTMENTS TO TRAFFIC SENSITIVE SWITCHING UNBUNDLED ELEMENTS

Q. WHAT IS THE SCIS/MO GETTING STARTED INVESTMENT?

A. SCIS computes a Getting Started Investment for each switch that includes the initial investment for:

- Central processor and related equipment;
- Maintenance and test equipment;
- Spare components;
- Miscellaneous equipment; and
- Investment for underutilized equipment, termed "Breakage".
Q. HOW ARE THESE GETTING STARTED INVESTMENTS RECOVERED IN SCIS?
A. SCIS automatically assigns these getting started investments to a traffic sensitive category, called Getting Started Investment per Millisecond, when SCIS/MO is run in "average" mode (which is the way BellSouth ran the model for its cost studies) based on the assumption that switch replacement occurs due to processor exhaust, as discussed above. SCIS/MO inputs ask for processor utilization at three time periods: (1) at initial installation of the switch, (2) at year 5, and (3) at switch replacement. BellSouth's inputs indicate that utilization at time of switch replacement is projected to be 28%. As correctly modeled in the SCIS/MO marginal mode, the processor investments in BellSouth's study should not be considered traffic sensitive if they are never expected to exhaust. It is simply a fixed cost required to make the switch operational over its life.

In addition to the processor, there are numerous other items in the SCIS/MO Getting Started Investment, which are one-time fixed investments incurred as a
first cost. BellSouth, however, has assumed that the entire Getting Started Investment for every switch is traffic sensitive. This is inappropriate because it does not follow the basic TELRIC principle of reflecting costs based on causation. The non-traffic sensitive getting started investment should be assigned to the nontraffic sensitive port elements.

Q. HOW DOES ALLOCATING THE GETTING STARTED INVESTMENT

 TO THE PORT INVESTMENT CHANGE THE PORT INVESTMENTS?A. Allocating the entire Getting Started investment from SCIS/MO over the total lines increases the port investment. This Getting Started allocation was added to the investments that AT\&T calculated using the corrected discounts to arrive at new 2-wire analog port investments as shown below:

	Line Inv. Per line	GS Additive	Port Investment
SESS			$\$ 45.39$
DMS			$\$ 50.70$
Weighted			$\$ 47.03$

8.0 GETTING STARTED INVESTMENT TREATMENT FUNDAMENTALLY AFFECTS BELLSOUTH'S ENTIRE COST METHODOLOGY
 Q. WHAT IS THE RELATIONSHIP BETWEEN GETTING STARTED INVESTMENT AND FEATURE INVESTMENT?
 A. The Bellcore switching models were originally designed to distinguish investments for vertical features and services from POTS. Most feature

functionality is provided through the computer processor in the switch. The SCIS models, therefore, distinguish among various features and call types primarily by the amount of processor milliseconds that are used by each feature. ${ }^{32}$ BellSouth, using SCIS/MO, has allocated the Getting Started Investment over the number of milliseconds available for call processing (and then inflated it by utilization factors averaging $27 \%^{33}$).
Q. HOW DOES AT\&T'S REVISED TREATMENT OF GETTING STARTED INVESTMENT AFFECT FEATURE COSTING?
A. As stated previously, in the vast majority of features, the only investments assigned to features is the allocated ${ }^{34}$ Getting Started Investment. AT\&T proposes that the entire Getting Started Investment be allocated to, and recovered by, the ports as a non-traffic sensitive investment. In this approach, there are no Getting Started Investments that can be assigned to features without double counting and, therefore, the complicated task of separately identifying feature investments through detailed processor millisecond calculations is not necessary. As shown below, when BellSouth's cost study is corrected for the incorrect discounts, the inclusion of features (via allocating the entire Getting Started Investment to the ports) results in a port investment that is still lower than BellSouth's port investment without features.

	BellSouth Port without Features	Corrected BellSouth Port with Features
Port Investment	$\$ 57.37$	$\$ 47.03$

Abstract

Q. WHAT INPUTS AND ASSUMPTIONS ARE CRITICAL TO BELLSOUTH'S TREATMENT OF FEATURE INVESTMENTS? A. BellSouth's SCIS/IN-like spreadsheets require busy hour feature utilization inputs in order to calculate feature investments. These inputs usually have a one-to-one relationship with the output. If the busy hour utilization input is estimated at double the actual usage, the feature investment will also be double. Many of these inputs are difficult to obtain because they must be explicitly measured in a special study and many more simply are not measurable at all. Marketing/Product managers are often asked to provide this data, but it is very difficult to estimate how often subscribers use a particular feature. It is even more difficult to express this estimate in terms of busy hour usage.

In addition, these estimates must average subscribers who frequently use features with subscribers who purchase features, but seldom use them. This difficulty is especially acute when features are bundled or packaged, as in ESSX offerings or residential custom calling packages.

Q. HOW SHOULD BELLSOUTH RECOVER THE COSTS FOR FEATURES THAT REQUIRE SPECIAL HARDWARE?

A. A very small number of features use special hardware; the bulk of this equipment is conference circuits. The Lucent contract includes conference circuits, as well as some voice messaging equipment in the \qquad ; and are therefore included in the port and other basic switching investments. BellSouth's study, however, also adds these conference circuits into the cost of the features; thereby double counting these investments.

Abstract

Q. DOES FEATURE USAGE CAUSE BELLSOUTH TO INCLR ADDITIONAL SWITCH HARDWARE INVESTMENTS? A. No. BellSouth does not incur any additional investment per feature because the special hardware, such as conference circuits, is already included in the basic switching price. As described previously, features do not cause exhaust of processing capacity of the switch, so there should be no processing capacity allocations (in the form of Getting Started Investment per Millisecond costs) based on feature usage. ${ }^{35}$ BellSouth's feature cost methodology, however, includes processing capacity costs based on feature usage and additives for the already included special hardware.

Q. WHAT CORRECTIONS TO THE FEATURE COSTING METHODOLOGY DOES AT\&T RECOMMEND?

A. First, the investments for separate features must be eliminated to:

- Eliminate the double counting of special feature hardware, such as the conference circuits.
- Eliminate double counting the Getting Started Investment, or first cost, of the switch.
- Eliminate double counting feature software right to use fees.

Second, the BellSouth SCIS input discounts must be revised to accurately reflect the actual forward-looking prices BellSouth pays for switching as stated in the vendor contracts.

AT\&T's restatement of BellSouth's cost study shows that the corrected port investment that includes features (via the assignment of the Getting Started Investment to the ports) is less than BellSouth's port without features. This proves that BellSouth's feature additives are incorrect, include double counting, and result in highly inflated port rates.

9.0 SUMMARY AND CONCLUSION

Q. PLEASE SUMMARIZE YOUR TESTIMONY

A. BellSouth's methodology, inputs and assumptions are not appropriate for developing the cost of the 4 -wire port unbundled network element. The problems include:

1. Incorrect switching prices
2. Double counting the costing of vertical features
3. Various incorrect or inappropriate input data
4.

Q. WHAT ARE YOUR CONCLUSIONS?

For the reasons stated above, the Commission should reject BellSouth's cost studies and resulting rates for the 4 -wire analog port and adopt the rate proposed by Mr. Ellison.
Q. DOES THIS CONCLUDE YOUR TESTIMONY?
A. Yes.

1 SCIS/IN is the feature costing model in the SCIS family of models.
2 There is a technical distinction between "cost" and "investment." In my testimony, investment refers solely to the capital expenditure for the switch. To determine cost, additional capital expenditures for land, building, power, and local telephone company installation are added to the investment. This total is annualized via cost factors into a capital-related cash flow requirement and then expenses are added to determine "cost." I will use the term price to refer to the prices paid by telephone companies to switch vendors.

As explained more fully below, the SCIS/MO program calculates the investment for various functions performed by a switch.

Nortel Agreement PR-6900-A. BellSouth used a \qquad iscount, implying it used a volume discount of \qquad . The maximum volume discount of \qquad would generate an overall discount of \qquad -

Lucent Agreement PR-6700-B.
1/95-12/06.

Special Tennessee Agreement - "Special Order" 12/1/93-12/31/99
Id; the price drops from \qquad when \qquad lines are purchased. Note that the term "price per line" is equivalent to total switching price divided by total number of lines. The price per line is not the same as the port investment.

The Letter of Authorization was crafted to apply only to Tennessee switch purchases, but it is safe to assume that BellSouth could negotiate similar agreements in other states.

Letter of Authorization 5/31/95: "Siemens offers \qquad (EF\&I) per equipped line . .."

Calculated from total DMS switching investment divided by total DMS lines.
This is substantiated by Mr. R. Scholl and Mr. J. Caling in Deposition of R. Scholl p. 46, Is 1-5, and Deposition of J. Caling, p. 93, is 13-18, dated February 12, 1997.

Lucent and Nortel October 15, 1996, filings in response to FCC Supplemental Request for Information from Lucent and Nortel, respectively. Cited in FCC 97125, page 24.

Quoted in GTE's Responses to proxy cost model questions in CC Docket 96-45, Federal-State Joint Board on Universal Service Proxy Cost Models, January 7, 1997.

Extrapolated from the NBI yearly prices.
This data substantiates the prices used in Hatfield. The average switch size for Pacific Bell is 27,200 lines. The average switching price on the Hatfield cost curve for a 27,200 line switch is $\$ 90$.

The Benchmark Cost Proxy Model ("BCPM") was, until recently, jointly sponsored as a proxy model by Sprint, US WEST and Pacific Bell. Pacific Bell has withdrawn and has been replaced by BellSouth.

BCPM Methodology (no date), Page 20.
Ex Parte Letter, 3/24/97, from Mr. Warren D. Hannah, Sprint to Mr. William F. Caton, FCC, Attachment A, page 5.

Id., Attachment BCPM National Results Using Sprint Input Values, Page 3.
Id., Attachment A, Page 3. The remainder of the quote dealt with a recommendation to use the higher rates for USF purposes.

Direct Testimony of Hugh W. Raley, 9/6/96, Docket Nos. 16189,16196,16226,16285,16290; p. 7, lines 9-10 and Deposition of Hugh Raley, 9/13/96.

Note, however, that there are other equipment costs added to Mr. Raley's $\$ 85 / \mathrm{line}$ such as taxes. AT\&T agrees that these need to be added, but the relevant cost in this analysis is the actual price paid to the vendor which Mr. Raley calls EF\&I. This compares to the prices used in the Hatfield Model switch curve that also are switch prices paid to the vendor. The Hatfield Model includes costs for the other components shown on Mr. Raley's chart in subsequent calculations. Mr. Raley was claiming that Southwestern Bell Telephone's $\$ 85$ per line was significantly higher than the Hatfield Model's $\$ 59$ per line for an 80,000 line switch. This comparison was flawed for two reasons: [1] Mr. Raley stated that the $\$ 85.00$ per line was based on an average switch size of 53,653 lines; therefore, Mr. Raley's comparison to the Hatfield Model 80,000 line switch is inappropriate; and [2] the

Hatfield Model's $\$ 59$ per line is the price without trunk ports and when these are added back in, the actual price the Hatfield Model calculates for a 53,653 line switch is approximately $\$ 80$ per line. Mr. Raley's $\$ 85.00$ per line is, in actuality, very close to the $\$ 80$ per line that the Hatfield Model calculates.
www.nortel.com/home/press/1997b/6_16_9797219_US_West.html
Thus substantiating that the large switch price of $\$ 75$ per line used in Hatfield is conservative. All switch prices are quoted as prices paid to the vendor just for vendor EF\&I switch equipment and do not include taxes, telephone company installation, etc.

Calculated from BellSouth's SCIS/MO study outputs by taking total switching investment and dividing by total lines.

It is interesting to note that vendors have been consistently raising their list prices over many years, but actual switching prices per line are declining. This phenomenon has two causes - capacities are increasing and vendor discounts have been increasing.

These investments, as well as the DMS investments, were taken from the Input Workpapers for Port Elements in BellSouth's Cost Study

As noted earlier, BellSouth's switching contracts as part of the base price of the switch, and these costs are already included in the port investments.

This was confirmed by a statement by Mr. Scholl, of Pacific Bell, in his February, 1997, deposition that Pacific's switches are overwhelmingly line capacity constrained.

It is expected that vendors' efforts to further increase processing capacities are due to expectations of broadband traffic to provide services such as video, which is not relevant in this proceeding.

There is a tiny subset of features that have special hardware to make them operational. This issue will be addressed in a subsequent section.

This utilization is the average computed by SCIS/MO over the life of the switches, based on BellSouth inputs.. Note that the previous discussion on processor utilization inputs by BellSouth were the utilizations at the end of the switches' lives.

