ORIGINAL

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

REBUTTAL TESTIMONY OF

RICHARD J. WALSH

ON BEHALF OF

AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC.

Docket No. 971140-TP

February 20, 1998

REBUTTAL TESTIMONY OF
RICHARD J. WALSH
ON BEHALF OF
AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC. DOCKET NO. 971140-TP

Q. PLEASE STATE YOUR NAME, BUSINESS ADDRESS, AND
EMPLOYMENT.
A. My name is Richard J. Walsh and my business address is 33 Francis Drive, Belle
Mead, New Jersey, 08502. I am a consultant to AT\&T as a Technical Analyst in
the Local Connectivity Costing and Pricing District of AT\&T's Local Services
Division.

Q. HAVE YOU PREVIOUSLY TESTIFIED BEFORE THIS COMMISSION?

A. No. AT\&T has requested that I file Rebuttal Testimony concerning Issue 8 and adopt the Direct Testimony filed by John P. Lynott on behalf of AT\&T.

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of my testimony is to rebut the Direct Testimonies of BellSouth witnesses D. Daonne Caldwell and Eno Landry and help this Commission establish appropriate non-recurring cost (NRCs) rates for local market entry when a CLEC requests a 'Migration' of an existing BellSouth customer to service provided by the CLEC via unbundled network elements.

Q. PLEASE STATE YOUR EDUCATIONAL AND EMPLOYMENT BACKGROUND.

Abstract

A. I have attended classes at Roger William's College with an emphasis in Business Management, and in Economics; however, I have not completed a degree program. I have completed numerous technical and management training seminars and curricula during my employment with New England Telephone, NYNEX \& Bellcore.

I began my telecommunications career in 1970 with New England Telephone in the Central Office Equipment Installation Department. In 1975, I transferred to the Customer Services Outside Plant Department, receiving assignments as Facilities Assigner, Completions Clerk to the Installation Control Centers, and Electronic Switching Systems (ESS) Conversions Facilities Assigner.

In November 1978, I accepted an assignment as a Technical Support Staff Manager for ESS Conversions. In that position, I supervised and directed nonmanagement craft and semi-craft personnel in ESS conversion activities, and provided technical support to organizations that were responsible for records conversion and mechanization. Additionally, I was responsible for technical matters associated with the dial for dial (electromechanical to electronic \& digital) switch conversions. I was also instrumental in helping New England Telephone develop alternative plans for converting manual plant records to mechanized systems by defining system requirements and analyzing vendor software systems.

In 1984, I interned at Bellcore (Bell Communications Research), developing system and training requirements for its Facility Assignment and Control System ("FACS") product line. I returned to New England Telephone as a Staff Manager supporting its FACS conversion activities. I was responsible for systems training, methods and procedures development, and the staffing of a company-wide FACS system hotline.

In 1986, I accepted a position of Mechanized Loop Assignment Center Manager, Rhode Island. I supervised personnel that managed the day to day operations of a Facility Assignment Center. This included service order provisioning, field assistance, engineering work order preparation and support, as well as FACS database maintenance.

In 1989, I accepted a position at New England Telephone (which subsequently became NYNEX) as Outside Plant Engineer. My work included the design and preparation of work prints for toll, exchange feeder, and distribution cable jobs. Additionally, I had the responsibility for work order cost analysis, work order quality assurance, and construction activities.

In 1993, I accepted a rotational assignment with Bellcore in its Software Assurance Division. At Bellcore, I provided systems integration beta testing support for the FACS product line. In 1995, I transferred to the Professional Services Division as Lead/Senior Consultant in the Telecommunications Business Process Consulting group. During this time, I provided consulting to major telecommunications firms in areas concerning Telecommunication Reform, Local

Number Portability, Telecommunications Network Management (TMN) Systems Architecture, and Non-Recurring Costs. In 1997, I retired from Bellcore to start my own telecommunications consulting company.

Q. PLEASE EXPLAIN YOUR EXPERIENCE WITH NON-RECURRING COSTS.

A. During my telecommunications career, I have spent much time in customer services and provisioning departments. Both of these departments provided services properly characterized, in appropriate circumstances, as non-recurring. I have personally been involved with the service ordering and provisioning of residential, business, complex, and special circuits. I interfaced with virtually every department in the provisioning process while at New England Telephone. Some of the activities included providing advice on service order formats, data structure (USOCs and FIDs) and development of system and service order requirements for new products and services. Additionally, I have supervised field assistance personnel in their day-to-day interactions with Central Office (CO) technicians, Installation \& Maintenance (I\&M) technicians, Special Service Installation \& Maintenance (SSIM) technicians, and others, as they connected, disconnected and rearranged equipment and services. Their problems included service orders problems, such as missing or incorrectly formatted customer requests and facility problems, including the rearrangement of existing customer lines. In addition, I have supervised receipt of data pertaining to clearance of customer troubles and service order completion data required for billing.

During my tenure with NYNEX, I also was a part of numerous quality field exercises, evaluating technicians as they performed installation and maintenance tasks. This documentation was used in conducting root cause analysis for problems and provided the foundation for improving methods and procedures and overall service quality. While at Bellcore, I was part of several teams that prepared process flow diagrams, depicting steps that technicians took during provisioning of service, both inside (Central Office) and outside (Outside Plant). Those analyses of process flows helped Bellcore's customers understand where savings could be gained through software enhancements and through the use of existing methods and procedures.

Q. HAVE YOU PREVIOUSLY TESTIFIED IN OTHER JURISDICTIONS?

A. Yes. I have previously testified in Massachusetts, Louisiana, Alabama, Georgia, Tennessee, South Carolina and North Carolina.

Q. HAS BELLSOUTH FILED A STUDY THAT ADDRESSES THE NON RECURRING MIGRATION ACTIVITIES FOR COMBINATIONS OF NETWOK ELEMENTS AS DEFINED BY THE COMMISSION ORDER?

A. No. BellSouth ignored the Commission's Issue and instead interpreted that unbundled network elements will be provisioned separately, even if received on the same order, with the elements being combined by the CLEC using collocated facilities. The studies BellSouth has filed reflect gross inefficiencies and do not even represent how BellSouth provisions service for itself. They clearly do not represent the costs BellSouth would incur to migrate a customer to a CLEC. As such, the studies and resulting prices proposed by BellSouth should be rejected.

Q. WHAT ARE THE INEFFICIENCIES INHERENT IN BELLSOUTH'S PROPOSAL?

A. If an end-user customer is currently being served by BellSouth, then the facilities and all functionality of that customer's service (e.g., loop and port) have been properly inventoried in BellSouth's operational support systems (OSS). This committed inventory practice is known as Dedicated Inside Plant ("DIP") and Dedicated Outside Plant ("DOP"). BellSouth's modeled non-recurring activities provide a chance for service failure or degraded service to the end-user customer. BellSouth has modeled physical disconnection and re-installation of service. The DIP and DOP processes allow for rapid activation or deactivation of services at an end user location without the need for physical disruption of the facility.

BellSouth also includes disconnect costs which have already been recovered by BellSouth through its retail service offering. In fact, with DIP and DOP, physical connections remain in place and only a command at a computer from the OSS to the network element is necessary to activate or de-activate the service. BellSouth's current disconnect policy, like all efficient ILECs', adheres to this practice of DIP and DOP in order to provide immediate service activation to the next customer at that premise. If a new entrant chooses to have service deactivated using only software commands, disconnection NRCs become almost non-existent.

BellSouth's cost studies erroneously assume that the CLEC is required to combine individual unbundled elements using collocated facilities. That's approximately 193 central offices where each CLEC would have to utilize collocated facilities in
order to utilize BellSouth's existing dedicated plant to serve customers. Collocation costs are substantial and unnecessary for a migration activity. In the case of a simple customer change request (e.g., "as is"', Total Service Resale, Unbundled Network Element Platform, Soft Dial Tone ${ }^{2}$), the CLEC service request does not need to access any down-stream facility assignment OSSs because all facilities are already in place. Thus, the only cost associated with this activity is processor time to reflect the change in who is serving the customer, and to activate different billing systems to reflect the use of unbundled network elements by the CLEC. Migrating or re-routing a customer's existing service via collocated facilities is not only inefficient, but clearly not required. The task, as requested by the CLEC, can be accomplished electronically by OSS, whether accessed by BellSouth or directly by the CLEC.

BellSouth fails to recognize the efficiencies of its own existing ('Legacy') OSSs. BellSouth failed to consider the automated systems that are currently available to support and replace manual activities/functions performed by their respective work centers. BellSouth's non-recurring cost worksheets provide work center activity but no description of the activities performed by these work centers. Having spent several years dealing with service provisioning in an ILEC, worktimes and work groups indicated by BellSouth are overstated or unnecessary due to the many advances in operational support systems. The only non-recurring cost that should be modeled is the potential 'fallout' of an order in the provisioning process that would require manual assistance by BellSouth's RCMAG. An efficient OSS should have less than $2 \%^{3}$ fallout necessitating manual work to deliver recent change translation information to the switch.

Q. WHAT WOULD BE THE APPROPRIATE NONRECURRING MIGRATION CHARGE THIS COMMISSION SHOULD ADOPT IF THIS COMMISSION WERE TO REQUIRE CLECS TO COMBINE NETWORK ELEMENTS, USING THE RECENT CHANGE PROCESS DESCRIBED BY AT\&T WITNESS FALCONE?

Abstract

A. If this Commission were to determine that a CLEC must do the combining, instead of BellSouth continuing to either combine network elements or not uncombine currently combined network elements, an efficient, non-discriminatory process for migration activity is the "recent change" process as discussed by AT\&T witness Robert Falcone. I have attached Rebuttal Exhibit RJW-1 to reflect necessary adjustments to BellSouth's filed NRC study to conform to the technical assumptions of the "recent change" process.

Under this "recent change" process, when a CLEC sends an electronic order to migrate a BellSouth customer to the CLEC's service, the order triggers a recent change process to de-activate the current service on the switch. The CLEC receives a firm order confirmation from BellSouth. The CLEC then electronically sends an "activate" translation command to restore service on the switch. These 2 translation messages (de-activate and activate) are matched and worked concurrently by the switch in an electronic migration activity. This will reestablish service for the end-user without the need to disconnect the physical facilities.

For BellSouth, therefore, an order could only have fallout once. Clearance of an order's jeopardy condition fixes that error on the entire quantity of loop and port
combinations on the order. This is represented in the Initial Install only for pricing purposes. I have also adjusted the BellSouth Labor rates to the fully assigned rates of the NRCM and added a 10.4% overhead factor to the direct cost to calculate a recommended price. The resulting nonrecurring migration charge with these adjustments would be $\$.2081$ per order. This compares to the recommended nonrecurring migration price if BellSouth performs the combining of $\$.21$. In other words, the price would be the same, since the work required is essentially the same. The only difference is the process used to make the change occur. In the case where BellSouth performs the combining, only one order is sent by the CLEC to initiate the activity necessary to switch the customer. In the case where the CLEC performs the combining, one order is still sent to initiate the activity necessary to switch the customer. In both cases, the recent change process is used to electronically perform the work, however, in the latter case, the CLEC directly provides the recent change activate command to the switch instead of BellSouth.

Q. WHAT IS YOUR RECOMMENDATION TO THIS COMMISSION?

A. BellSouth's cost studies are not modeled to determine the migration activity cost identified by this Commission in this proceeding and should be rejected. In order for a competitive environment to exist, CLECs must have non-discriminatory access to BellSouth's databases and other resources for entering service orders to eliminate the need for costly, intermediate customer service contacts. The price of $\$.21$ produced by the AT\&T/MCI Non-Recurring Cost Model should be adopted by this Commission because it correctly assumes an efficient 'Migration' process consistent with the Interconnection Agreement. The CLECs must only incur costs
equal to those which BellSouth would incur using a forward looking network architecture and efficient OSS or else the CLEC is burdened with a barrier to entry and BellSouth has no incentive to become efficient or promote competition.

Q. DOES THIS CONCLUDE YOUR TESTIMONY?

A. Yes.

Abstract

"As Is" means that the existing customer and their services are in place today and will remain identical.

2 Soft Dial Tone is where the circuit facilities and the switch port are not reassigned, but are left in place even though the premises is vacated.

Low fallout rates currently are achievable. (1) BellSouth Surrebuttal Testimony on 9/8/97 of William N. Stacy before the Georgia PSC in Docket No. 7061-U ("BellSouth has achieved a flow-through rate of approximately 97% in certain exchanges"). (2) Roy Neel, President of USTA, Presentation before the FCC In Re: En Banc on State of Local Competition, 1/29/98, "I mentioned Bell South and I think it's important to point out -- Heather mentioned some of the problems in making OSS systems work for new entrants, but this is a new thing. It takes a lot of work and expense. Not very much of it which is being recovered yet, but you look in BellSouth alone, there's one C-LEC in Bell South and we can get you the details about this, that has achieved a flow through rate of 97 percent over the last few months. That's a real success story and it represents cooperation between the I-LEC and the C-LEC and we expect that will continue." (3) A competitive local environment will necessitate a low fallout rate, as indicated in the requirements RBOCs have supplied to Bellcore. According to Bellcore GR-2869, Issue 2, (Oct. 1996) pg.4-25, section 4.6.2 on Immediate Service Activation, "Activation will occur at the time of assignment" (i.e., immediately). Such requirements will not allow for high levels of fallout.

ASSUMPTIONS:	
2.00\%	FALLOUT
2	RCMAC Pull \& Analyze (min)
15	RCMAC Clear Jeopardy (min)
Electronic	Order with Recent Change Process

ASSUMPTIONS:
2.00%
FALLOUT
2

