ORIGINAL

Florida

Power
James A. McGee semion counsel

April 24, 1998
Ms. Blanca S. Bay6, Director
Division of Records and Reporting
Florida Public Service Commission 2540 Shumard Oak Blvd.
Tallahassee, Florida 32399-0850
RE: Docket No. 971570-EI
Dear Ms. Bay6:

Enclosed for filing in the-subject docket are an original and fifteen copies of Florida Power Corporation's response to the request for additional information contained in Ms. Patricia S. Lee's letter dated March 19, 1998.

Please acknowledge your receipt of the above filing on the enclosed copy of this letter and return to the undersigned. Thank you for your assistance in this matter.
CMU — JAM/kp

LEG 1
LIN
OPC \qquad
RCH
SEC 1
WAS \qquad

FLORIDA POWER CORPORATION'S RESPONSE TO FPSC STAFF INITIAL REVIEW) $\% 1(G \mid N A L$ DOCKET NO. 971570-EI

GENERAL QUESTION/COMMENT

1. Multiple dates appear in the filing for the transition from actual to projected data. Page 1 mentions "seven month of actuals for 1996". Page 13 states "The historical data was gathered from our continuing property records through December, 1996". Please explain where actuals for year end 1996, and estimates for year end 1996 were used in your study.
A. In order to develop 1997 projected balances, the Company started with actual August 1996 historical balances and developed forecasts for September - December 1996 and January - December 1997 for inclusion in the corporate budget. All 1997 data in the study was projected utilizing information de sloped in the 1997 corporate budget preparation (developed in September 1996).
2. The plant investment balances for end of year 1996, shown on pages $24-26$ of the study do not match the end of year balances provided on pages 91-318 of the study or the annual status report titled "Summary of Plant Transactions - Accounts 101 and 106° for the period ending December 31, 1996. Is this variance representative of using seven months of actual balances for 1996 as indicated on page 1 of the study?
A. The variance is the result of utilizing budget data (eight months actual, four months budget) for the schedules on pages $24-26$ and actual balances for the schedules on pages 91-318.
3. The plant reserve 1996 balances, shown on pages 27-29 of the study, do not match the end of year balances provided on the annual status report titled "Summary of Reserve Transactions - Retail Methodology" for the period ending December 31, 1996. Is this variance representative of using seven months of actual balances for 1996 as indicated on page 1 of the study?
A. The variance is the result of utilizing budget data (eight months actual, four months budget) for the schedules on pages $27-29$ and actual balances for the annual status report.
4. In the Boiler Plant Equipment Account 312, in both the Crystal River Steam Plants I and 2, on page 93 of the study, and Plants 4 and 5, on page 99 of the study, the plant balances for the years 1993, 1994, and 1996 do not match the annual status report. The depreciation reserve balances, for these same locations, for the years 1993-1996 do not match the status report except for 1993 at Plants 1 and 2. The difference in each case

Docket No. 971570-EI
April 24, 1998
appears to be the inclusion of the Initial Coal Pile Amortization. Further, the "Annual Depreciation Reserve Transactions" for these two locations, pages 216 and 223, do not appear to include coal amortization. Please explain the inclusion in the study in some areas and not in others.
A. Pages 93 and 99 of the study are footnoted to indicate that the plant balance includes coal base amounts. Since the plant balances include the coal base, the reserve balance also include the coal base amount so as not to distort the reserve ratio. The Company's annual status reports list the coal base asset and reserve amounts as separate line items. The Company should have presented the coal pile data consistently throughout the study.
5. In the Turbo generator Unit Account 314 for Crystal River Steam Plants 1 and 2, on page 94 of the study, the depreciation eserve balance for 1993 does not match the status report. Please explain the variano:
A. On page 94, the December 1993 reserve balance for Crystal River Plant 1 and 2 includes $\$ 1,029,450$ for the coal pile in error.
6. For the Bartow-Anclote Pipeline, a plant balance for the end of year 1996 in the amount of $\$ 16,201,922$ is shown on page 115. That balance agrees with the amount shown on the annual status report for 1996. However, the 1996 balance used on page 24 of the study is $\$ 13,525,809$. To this amount an addition of $\$ 2,681,113$ is shown, bringing the 1997 balance to $\$ 16,206,922$. Please explain the apparent discrepancy in these entries.
A. The actual December 1996 plant balance for the Bartow - Anclote Pipeline shown on page 115 of the study is $\$ 16,206,922$. The estimated December 1996 balance shown on page 24 of the study had a timing difference in timing between budget and actual for an addition.
7. The Turner Peakers plant balance for 1993, page 137 of the study, does not match the annual status report. Please explain the variance.
A. The 1993 plant balance for Turner Peakers shown on page 137 of the study should be $\$ 18,389,125$ The study amount was in error.
8. The Intercession City (New) plant balances for 1995, page 138, does not match the annual status report. Please explain the variance.
A. The 1995 plant balance for the Intercession City (New) on page 138 should be \$96,375,753.

Docket No. 971570-EI
April 24, 1998
9. The Intercession City, Gas Conversion, page 141 of the study, shows a $\$ 0$ plant balance for 1995. The annual status report shows $\$ 2,178,580$. The Summary of Reserve Transactions portion of the annual status report shows an amount of $\$ 96,856.17$; however, the study identifies Depreciation Reserve as $\$ 0$ for 1995. Please explain the variance.
A. The 1995 plant balance for the Intercession City Gas Conversion should be $\$ 2,178,580$, the retail reserve balance should be $\$ 96,856$, resulting in a reserve ratio of 4.45% for 1995.
10. The following accounts show Plant and Reserve balances on the annual status report and pages 26 and 29 of the study, but do not appear to be included in the study data on pages 294-306 or pages 810-832:

391 Office Equipment
393 Stores Equipment
394 Tools, Shop and Garage Equipment
395 Laboratory Equipment
398 Miscellaneous Equipment

A. The pre-1988 undepreciated investment balance in the above listed accounts was amortized over a seven year period beginning in November, 1990. All of the investment balances were fully recovered and retired by December 31; 1997 therefore they were not included in the study.
11. The Distribution Energy Conservation Account 370.1 , page 189 of the study, shows a depreciation reserve balance of $\$ 1,088,031$ for 1993. This does not agree with the annual status report for December 31, 1994; however, page 317 of the study reflects the same reserve balance and transactions as the status report. The December 31, 1995 reserve balance shown on the December 31, 1995 status report does not match the December 31, 1995 reserve balance shown on the December 31, 1996 status report. There appears to be a discrepancy in the 1996 depreciation accruals between the status report and page 317 of the study which then brings the December 31, 1996 reserve balances in agreement. Please explain these differences.
A. The beginning retail reserve balance for primary account 370.1 on the 1994 annual status report was adjusted for a 1993 entry that was not posted to the retail ledger (\$498.17).

Docket No. 971570-EI
April 24, 1998
12. The Summary of Plant Transactions - Accounts 101 and 106 for the following accounts as of December 31, 1995 do not track from the annual status report for December 31,1995 to the annual status report for December 31,1996;

Ascouns Describtion
1995 Repors
1996 erent
Difforence
391.1
391.3
391.5

$\$ 901,341$
$70,874,019$
$2,422,014$
$574,197,382$

$\begin{array}{r}\$ 393,178 \\ 71,368,227 \\ 7,435,977 \\ \hline 574,197,382\end{array}$
574,197,382
13.963

The study appears to use the Decembe: 31, 1995 balances from the December 31, 1996 status report. Please provide the a propriate additions, retirements, transfers, and adjustments supporting these figures.
A. The 1996 annual status report had the beginning balance (1995) corrected for transactions that had been posted to the wrong sub-account. The beginning balances from the 1996 annual status report are the corrected balances.
13. The reserve balance for account 398.1 General Energy Conservation, for $12 / 31 / 95$ does not track from the December 31,1995 annual status report to the December 31, 1996 annual status report. The study on page 318 appears to use the December 31, 1995 balance from the 1995 status report and the December 31, 1996 balance from the 1996 status report. The difference appears to be in the 1996 depreciation accruals. Please explain this difference.
A. The 1996 annual status report had the beginning reserve balance for primary account 398.1 corrected for a 1995 entry that was not posted to the retail reserve ledger (\$197.42).
14. Your salvage study indicates a breakdown of gross salvage between abnormal salvage and normal salvage. Please provide a discussion of what is meant by abnormal salvage and normal salvage and what type of activities are included in each. Specifically, we would like to know if reuse salvage is considered abnormal or normal salvage and why. Further, how are reimbursements, relocations, reconductoring, and terminal salvage considered?

Docket No. 971570-EI
April 24, 1998
A. Normal salvage and terminal salvage are the same. This is the salvage received when the asset is disposed of and sold/scrapped.

Abnormal salvage is accounting generated salvage such as insurance proceeds, reimbursements/relocations and re-use. This type of salvage is considered abnormal because it is difficult to estimate both from a dollar perspective as well as the volume of activity.

STEAM PRODUCTION

15. FPC proposes a recovery schedule for the Suwannee River Steam Production units over four years, beginning January 1, 1998. A scheduled retirement date of December 1998 is shown on page 35 of the study.
a. Please describe the changes in plans for the Suwannee site, since the last study, that now mandate retirement by year end 1998. In conjunction with this information, when was the last instance when these units were dispatched to supply power to the grid?
A. Other than the ceasing of steam plant operations, no other changes at the Suwannee site are planned. The scheduled retirement date of December 1998 was submitted in the depreciation study as a targeted planned retirement date. Florida Powers' plans are to operate the units as long as they can be done so in an economical and safe manner. An assessment of the units' physical conditions and overall economic benefits will precede the final decision for plant retirement. The last instance these units were dispatched was April 22, 1998.
b. Please provide support for the company's conclusion that four years is the appropriate period over which to recover the remaining net investment for these retiring units.
A. First, in the prior depreciation study, the scheduled retirement date was planned for the year 2007. Recovering the remaining net investment, previously scheduled for a ten year period, over four years is consistent with the Commissions' practices of amortization for Florida Power's Turner and Higgins steam units. Second, Florida Power's current budget plans for continued operation of these steam units through 1999, as long as a major failure does not occur. Environmental regulations would require additional capital expenditures to keep the plant running after December 31, 1999. The units will not be closed because of a calendar date that has been reached. The decision to retire the units will be based on financial and operational criteria. These units are very near the end of tife.

Docket No. 971570-EI
April 24, 1998
c. For any equipment installed at the Suwannee site that is jointly used with other steam producing plants or peaking plants, please provide the associated investment and reserves as of January 1, 1998, by account.
A. A detailed, asset by asset, analysis of jointly used equipment will be performed when the Suwannee steam units are retired. The Company's Fossil Financial Planning and Forecasting Department estimates that approximately two percent of the total investment could be utilized at the Suwannee Peaking Site and none of the assets could be reused at other steam sites. These assets would primarily be roadways, fencing, waste water system, etc.
d. Does your proposed recovery schedule for the retiring Suwannee site include the retirement of any jointly used equipment?
A. The proposed recovery includes all (the assets at the Suwannee Steam site.
e. Please provide the investme.a and reserve, by account, for any jointly used equipment not planned for retirement with the Suwannee site. To which sites and accounts will these investments and reserves be transferred?
A. Please see the response to part " c " of this question.
16. With regard to Higgins and Turner Oil fired Steam Plants, Order No. PSC-94-1331-FOFEI recognized the recovery schedule addressing the assets not considered viable for reuse during the repowering of Higgins and Turner. The order stated, "If the situation changes and substantially more plant will be retired in connection with repowering or more plant will be reused, the Company shall advise the Commission so appropriate recovery revisions can be made. The annual status report summary of plant transactions Accounts 101 and 106 for the period ending December 31, 1994 shows transfers and adjustments reducing the plant balance to $\$ 0$ for both Higgins and Turner. The annual status report summary of reserve transactions - Retail Methodology for the same period shows a December 31, 1994 balance of $\$ 12,252,175.43$ for Higgins and $\$ 8,017,356.56$ for Turner. Through December 31, 1995 period the plant balances remain at $\$ 0$ while the reserve balances show $\$ 12,200,789.22$ for Higgins and $\$ 9,246,462.75$ for Turner. For the period ending December 31, 1996 the Higgins plant balance reflects a negative addition leaving it with a plant balance of $(\$ 6,221)$ while Turner remains at $\$ 0$. The reserve balance is brought to $\$ 0$ for both locations primarily through retirements. Staff is unable to follow the logic of these transactions. Please explain.
A. In 1994 the plant balances for the Higgins and Turner were transferred to accounts 105

Docket No. 971570-EI
April 24, 1998
and 182. The retail reserve balance relating to the portion of the plant balance that was transferred to account 105 remained in account 108. In 1996, after it was determined that Turner and Higgins would not be repowered the assets in account 105 were retired, (with the resulting undepreciated balance being written-off to account 407) resulting in a zero balance in account 108. The negative $\mathbf{\$ 6 , 2 2 1}$ balance at Higgins was an accounting error that was subsequently corrected.
17. As part of the last depreciation represcription, a recovery period of one year, beginning January, 1995, was provided for the Avon Park generating facility, which had been in extended cold storage. The piant was to be completely dismantled by year end, 1995. Please update staff as to the completion of this work, and bring the annual plant and reserve activity forward to December, 1996.
A. The dismantlement of the Avon Park ger rating facility is complete. The December, 1996 plant balance is $\$ 0$, reserve balance is $\$ 1$), and the fossil dismantlement reserve balance is $\$ 4,844,085.48$. The December 199 fossil dismantlement reserve balance does not reflect all of the dismantlement expenses.
18. Crystal River 1 and 2, Account 314, page 410, of the study shows a negative addition of $\$ 24,064,751$ for 1994. Please explain.
A. In 1993 the Helper Cooling Towers were temporarily closed to Crystal River 1 and 2, primary account 314, FERC account 106 (Completed Construction not Classified). In 1994 when the final closing was made the amount of the prior year closing transferred out of primary account 314 to other primary accounts was greater than the balance of 1994 additions to primary 314 by $\$ 24,064,751$.
19. The Bartow Anclote Pipeline Account 315, page 438 of the study, shows a plant balance of $\$ 0$ for the years 1995 and 1996. This is not in agreement with the annual status report and does not appear to be supported by retirements or transfers and adjustments. Please explain.
A. The Bartow - Anclote Pipeline, primary account 315, page 438 of the study should reflect 1995 and 1996 ending plant balances of $\$ 1,320,430$.
20. If any major overhaul or repowering is planned during the next five years (1998-2001), please provide a description of the overhaul or repowering including the work planned to be performed, any retirement units expected to be replaced as a direct result, and in what year(s) each overhaul or repowering is planned to take place. Please provide the January 1, 1998 estimated investment and reserve associated with the equipment currently

Docket No. 971570-EI
April 24, 1998
planned for replacement during each overhaul or repowering.
A. The Company has no major overhaul or repowering planned during the next five year period.

OTHER PRODUCTION

21. Bartow Peakers, page 455 of the study, indicates a negative retirement of $\$ 154,739$ for 1994. Please explain.
A. The 1994 negative retirement of $\$ 154,739$ at the Bartow Peakers is a correction of an over-retirement in the previous year (1993).

TRANSMISSION:

22. Account 353.2, Energy Control C_{t} Iter:
a. On page 510, Volume II, activity for this account is shown for 1980-1996. In fact, the addition made in 1880 marked the beginning of the investment in this account. On page 519, however, the distribution shows survivors from the 1978 and 1979 vintages. How is this possible when the initial placement vintage was 1980?
A. The Energy Control Center was placed into service in 1980, however 1978 and 1979 vintage assets were placed in service to support the Energy Control Center station equipment. The building which houses the Energy Control Center was built in 1978.
b. About 68% of the account's investment was placed in 1991 with very few retirements occurring in the 1991-1996 period. Recognizing that the 1991 additions represent the new control center installation, please provide a description of the $\$ 8.9$ million investment added during the 1992-1996 period.
A. Please see the attached report. (Attachment \#1)

DISTRIBUTION:

23. Account 362, Station Equipment: The narrative for this account states that the company expects to realize 25% to 30% gross salvage from the reuse of retiring station equipment. While the study data indicates that FPC has realized about 40% salvage from reuse in the past, we note that this type of reuse pattern is not common to other Florida electric companies. In order to gain a better understanding of FPC's salvage practices, please

Docket No. 971570-EI
April 24, 1998
provide a description of what particular equipment is subject to reuse and a discussion of your reuse practices.
A. When station equipment is removed from service it is returned to stores providing the condition of the equipment warrants re-use. Small items are returned to stores at current average unit cost and large items are returned to stores at original cost.
24. Account 364, Poles, Towers, and Fixtures:
a. The account narrative states that the company expects a 20% reuse upon retirement of this equipment. Please provide a discussion of the items subject to reuse.
A. Items subject to reuse for this account ure anchors, guys, and poles. All items are candidates for re-use.
b. An average service life of 28 years is being proposed resulting from use of the SPR model. The selection of curves using SPR is based upon the closeness of the match between actual and simulated annual amounts (Index of Variation). The Index of Variation measure is based upon the sum of squared differences between simulated and actual annual amounts. The highest ranked curves are those with the lowest IVS. A low IV indicates that the simulated balances are, on the whole, close to the actual balances. Bauhan stated that the IV should be no more that 20 in order for a life determination to be considered entirely satisfactory. Generally, the Index of Variation of the various SPR runs for this account shows a poor to fair fit. This is indicative that the assumptions of the SPR model are not being met and therefore the model should not be used for this account.
A. The Company feels that while the IV for this account is high, the curve type and ASL of R1, 28 years is the proper recommendation for this account. These are the current approved curve type and ASL for this account and the Company saw no indication that these parameters should be changed.
25. Account 365, Overhead Conductors and Devices:
a. The narrative states that SPR was used to determine the life characteristics for this account and the results lend support to a 25 year to a 32 year average service life. Based on the SPR runs submitted, please explain how FPC arrived at its R1, 27 year life proposal as being the most appropriate.
A. The current approved curve type and ASL for this account is R1, 28. The Company expects the ASL for this account to remain static or decrease slightly.

Docket No. 971570-EI
April 24, 1998
b. The SPR run showing the best Index of Variation is the run with 10 test points shown on page 649. As clarification, does this equate to a test band of 1986 to 1996?
A. Yes.
c. In the salvage analysis for this account, staff notes that there has been a substantial increase in removal costs during the period 1994-1996. There has also been a substantial increase in abnormal salvage in 1995 and 1996. What has been the causes for these increases in removal costs and abnormal salvage?
A. No single cause can be identified to e-plain the increase in removal cost for the 19941996 period. The Company has exp aded it's efforts to re-use material instead of disposing of the old material. This red ices the Company's purchases of new equipment. This would explain the increase in abnormal salvage. Added labor may be necessary for the removal of equipment for re-use.
d. Tre account narrative states that future reuse is expected to range between 35\% to 40% with reimbursements expected to average 20% to 25%. What specific plant items are subject to being reused once retired and taken down? Additionally, what are the sources of the expected reimbursements and why does FPC expect these reimbursements will exist in the future?
A. Examples of reuse items are; reclosers, sectionalizers and switches. The Line Department returns all removed units of property to the storeroom for determination of reuse or scrap. Returned units of property may be refurbished as a charge to O \& M expense and returned to stores at average unit cost. Reimbursements are the result of line relocations (Florida Department of Transportation, customers, etc.), capacity increases and public accidents and are expected to continue.
24. Account 369.2, Underground Services:
a. The company proposes an R2.5, 40 year life for this account based on SPR results. While the SPR results indicates the company proposal to be a relatively good fit, the narrative states that retirements are priced using FIFO which tends to overstate the average service life. This being the case, are there any other reasons why the company believes an R2.5, 40 year life is appropriate?
A. The current approved curve type and ASL for this account is R2.5, 40. The Company saw no indications that these parameters should be changed.

Docket No. 971570-EI
April 24, 1998
b. The narrative states that the majority of salvage to this account is due to reimbursements due to the relocation or conversion of service at the customer's request and public accidents. Further, many of the relocations of service are a result of swimming pool construction where the cable is not abandoned.
(1) When a service is relocated at the customer's request, who pays for the relocation?
A. The customer pays for the relocations done for the customer's convenience.
(2) What all is involved with relocating a service?
A. When a service is relocated the old service is removed, retired units are either scrapped or returned to stores, and the new service is installed.
(3) In a relocation, is the $s:$ vivice retired and then reused?
A. Generally the old cable is scrapped and new cable is installed.
(4) What percent of relocations is the result of swimming pool construction?
A. Service relocations account for the majority of the abnormal salvag: received for this account. The remainder is the result of public accidents and cable cuts. The percentage of relocations resulting from swimming pool construction cannot be determined from our accounting records.
25. Account 370, Meter Equipment:
a. Please explain the nature and cause for the abnormal gross salvage realized in 1994.
A. The abnormal salvage received in 1994 was the result of the Company retro-fitting one type of meter to another. The salvage resulted from the re-use of parts.
b. In FPC's last study, the company stated that a research and development project to investigate the possibility of using fiber optics electronic meter reading was in its early stages. The project was anticipated to be completed by year end 1995 and, if the technology was proven feasible and economically sound, the life of existing meters could be impacted. When was this project completed and what were the results?
A. The initial project was completed but the results were inconclusive. An additional,

Docket No. 971570-EI
April 24, 1998
expanded study is currently being evaluated. Preliminary results are not overly optimistic. In the short term, the Company sees no change in the activity for this account.
26. Account 371, Installations on Customers Premises: Based on a review of all the SPR outputs, how did you arrive at an S2, 22 year life as being the most appropriate for this account? It would appear as though the S2, 21 year life would be a good fit also. Further, recognizing that the use of FIFO in pricing retirements has the effect of overstating the service life, it would appear that a life less that 21 years would be appropriate.
A. The Company would have no objection to a shorter average service life. The current approved ASL for this account is 19 years which probably includes the effect of pricing retirements FIFO.
27. Account 373, Street Light and Signal Systems: Based on a review of the SPR outputs provided, please explain how you dsermined that an R1, 14 year life is the most appropriate for this account.
A. Luminaires make up the primary dollar amount in this account. The Distribution Engineering Department advises that the new High Pressure Sodium lights have a shorter expected life than previous lights. Therefore, the Company recommended a R1, 14 year ASL which is one year less than the currently approved R1, 15.

GENERAL PLANT

28. Account 390, Structures and Improvements:
a. FPC states that a review of the salvage and cost of removal history produces a negative 18\% net salvage for this account. However, when staff reviewed the net salvage history provided on page 393, we found a historical net salvage of positive 18%. A closer iook at the data indicates that the 1976-1996 positive salvage is primarily driven by the unusually large salvages realized in 1995 and !996. Please provide information regarding the specific causes for these salvages and why they are considered "normal"?
A. During the 1995-1996 timeframe the Company closed and sold several business offices and operating centers. While the sale of these assets is classified as normal salvage and resulted in a positive net salvage ratio of 18%, the Company feels that this was an isolated occurrence and is not indicative of the future. The Company feels that the currently approved net salvage ratio of negative 15% should be continued.

Docket No. 971570-EI
April 24, 1998
b. According to the study narrative, this account was studied using actuarial techniques analyzing retirement history. Please help us understand how your computer model helped you select an R2, 37 year life as being the most appropriate for this account.
A. The current approved curve type and ASL for this account is R2, 37. The Company saw no indications that these parameters should be changed.
29. Account 392.5 , Trailers: Staff noticed the unusually high salvage realized in the 1993 1996 period. Please explain the nature and cause for these salvage values and why FPC believes this activity is indicative of the future.
A. Trailers reflect a high net salvage percent for several reasons. The Company keeps trailers in service for many years, therefore when a trailer is retired the retirement booked is at old vintage dollars and the salvage received is at current (inflated) dollars. During the service life of a trailer it tray be refurbished several times (new axles, wheels, tires, beds, etc.) and be in relative good condition for its age. This can result in salvage being a high percentage of original cost.
30. Account 392.7, Flight Equipment (New):
a. What is FPC's proposed curve shape for this investment?
A. Square, two assets.
b. Please provide supporting calculations for your proposed remaining life.
A. The Company currently has no plans to dispose of or replace the New Flight Equipment; therefore the Company utilized judgement in determining a 5 year RSL.
c. Staff calculates a 6.4 year average age for this investment as of January 1, 1998. If FPC has no plans in the near term for retiring this aircraft, it would appear that a longer service life should be considered.
A. A longer service life could be used for new aircraft but the high positive net salvage ratio would need to be reduced. The Company has no specific plans of replacing or disposing of these aircraft.
d. On page 20 of the study, plant activity is shown for 1996. For this account, additions of $\$ 27,526$ are shown. However, on page 91, 1996 additions of $\$ 116,994$ for this account are shown. Please reconcile.

Docket No. 971570-EI
April 24, 1998
A. The 1996 additions on page 26 of the study are budget numbers (calculation based on eight months actual and four months projected). The 1996 additions shown on page 891 of the study are actual additions.
31. FPC is proposing to combine the amortizable and depreciable portions of accounts 393 . 394, 395, and 397 and amortize the combined investments of each account.
a. Please describe how the monthly depreciation expense will be calculated when accounts 393.1 and 393.2 are combined.
A. The net undepreciated amount of account 391.3 will be amortized over a seven year period while account 393.2 will run the normal course. Ultimately one sub account will exist for the two or information can be maintained in separate subaccounts.
b. Please describe how retirements, salvage, or cost of removal will be handled.
A. Assets will be retired at the end of thic seven year amortization period. Salvage and cost of removal will be amortized over tie seven year amortization period.
c. What type of equipment are included in the new communication equipment account?

A: The depreciable portion of primary 397 (subaccount 397.2 - fiber optic) includes fiber optic cable and associated support equipment. The amortizable portion of primary 397 includes all non-fiber optic communication equipment.
d. For the non-fiber portion of the communication equipment account, please provide the January 1, 1998 reserve and explain how this reserve amount was determined.
A. The January 1, 1998 retail reserve for non-fiber communication equipment is $\$ 15,093,310$. This amount was determined by computing a weighted age percentage of the investment for both fiber and non-fiber assets and allocating the January 1, 1998 retail reserve balance by these percentages.
e. The total investment for Account 397.1 is shown on page 71, Volume I, as $\$ 52,259,421$, whereas on page 26 , it is shown as $\$ 51,314,459$. Please reconcile.
A. The $\$ 52,259,421$ balance for account 397.1 shown on page 71 of the study is an actual balance, whereas the $\$ 51,314,459$ shown on page 26 of the study is a budget estimate.
32. Account 397.2, Communication Fiber (Fiber): Please provide a calculation of the January

Docket No. 971570-EI
April 24, 1998
1, 1998 average age of the surviving investment in this account.
A. Please see the attached report. (Attachment \#2)
PAGE 1

FLORIDA POUER CORPORATIOM ECC ASSETS 1992 • 1996 SITE MAME: 1282
FE

ASSET	BOOX
MUNBER	SESV
MUT	

153971561000
853920300200
soor SESV DATE

9610

253920701100 153950830100 153932830700 153950560100 153950540200 153950540300 153950540400 153950540500 153950540600 T53950540700 T53950540800 153950540900 153950541000 $\$ 53950541100$ 153932950100 153940830300 T53940830400 753940830500 153960830600 153960830700 153960830800 153940830900 $+53940831000$ T53941150800 153941150900 \$53961151000 \$53941151100 $\$ 53950830200$ 153961151500 $\$ 53943602500$ T53943602600 T53943650900 T53963651100 T53952665200 $\$ 53950511300$ $\$ 53950511600$ 153970020100 T53960851500 753960851600 T53932771800 T53932772900 R53921110100 M90961150500 T53960600100 \$53960600200 i53930810700 153930810771 $\$ 53930810800$ 153930810900 T53930811000 T539308111100 T53930811200 153930811300 \$53930811400 \$53952630200 T53952630300 153942360100 \$53942360200 $\$ 53942360300$ $\$ 53942360400$ $\$ 53942360500$ 153962360600 153942360700 $\$ 53962360800$ $\$ 53942360900$

9202 9203 9503 9509 9501 9501 9501 9501 9501 9501 9501
9501 9501 9501
9501 9310 9403 9403
9403 9603 9403
9403 9403 9403 9404 9606 9404
9503 9604 9412 9412 9612 9509 9502
9502 9611
9603 9605 9208 9302 9204 9604
9602 9602 9303 9304 9303 9303
9303 9303 9303 9303 9509 9509
9408 9408 9408 9408
9408 9408 94
9408

2UN DATE: $04 / 13 / 90$
BTCMSPEC:LISTSOME
NORE
WUMEER
70450.0220
70500.02042

70500-02054
70500-02147
70500.02187

70500-02201
70500-02201
70500.02201
70500.02201

70500-02201
$70500 \cdot 02201$
70500.02201
$70500 \cdot 02201$
70500-02201
70500-02201
$70500 \cdot 02201$
$70500-02205$
70500-02230
70500.02230
$70500-02230$
70500.02230

70500-02230
$70500-02230$
$70500 \cdot 02230$
70500-02238
70500-02256
70500.02256
$70500 \cdot 02256$
70500.02256
70500.02278
$70500-02291$
$70500 \cdot 02321$
70500-02321
$70500-02352$
$70500-02352$
70500-02369
70500-02376
$70500-02376$
$70500-02396$
70500-02466
70500-02466
70510-07525
70510.07525
$71210-03169$
$71800 \cdot 08340$
74500-05000
$74500-05000$
$74510-03686$
$74510-03686$
$74510-03686$
$74510-03686$
$74510 \cdot 03686$
74510.03686

74510-03686
74510.03686
$74510 \cdot 03686$
74520-05000
74520.05000
74550.03571
74550.03571
74550.03571
74550.03571
74550.03571
76550.03571
74550.03571
74550.03571
76550.03571

DESCRIPTIOM	0006COST
*..........	
ONWI FOR EMS	2,665,554
Q FILE FOR VAX sBio V QUIMM	2,665,327
MP LASER JET ItI 33469A	1,596
ISOLATIOM EQUIPMENT	3,582
DEFRAGMEMTEI FOR EMS	5,026
3000-300 VORESTATIOM	119,480
3000-300 VORESTATION	119,480
3000-300 NOEESTATION	119,480
3000-300 NORESTATION	119,480
3000-300 votrstation	119,480
3000-300 NOEESTATIOH	119,480
3000-800 SERVER	557,463
BA350 STORAQEVORES	37,070
8A350 STORAGENORES	37,070
EA350 STORAGEUORKS	37,070
TZ28 TAPE ORIVER	89,020
DEC 600MB CD-ROM VAX $4000 \cdot 90$. 802
MP LASER JET 6 PRIMTEA	2,846
HP LAS都 dET 4 PRIMTER	2,846
MP LAS T JET 4 PRIMTEK	2,846
HETADESIGM SOFTVARE	1,371
OMAIPI E OCE SOFTUARE	704
HP LASER JET 4 SI PRIMTER	6,917
	12,616
DIEITAL 2 g BYTE DISK USIT	5,236.
OUAL 10 GETTE TAPE UMIT	17,25 ${ }^{\circ}$
DUAL 10 GETTE TAPE UMIT	17,255
600 METTE CO ROM	1,121
600 MEYTE CO ROM	1,121
ISOLATIOM LQUtPMEMT	3,625
GOLD KET TMTEREACE CARD	1,185
DEC STORAGE EMCLOSURE	450
DEC DIEK UMIT	2,537
DELL PC AUTQCAD 6100mx	6,396
DELL PC AUTOCAD 4100MX	6,396
R T U SYSTEMS HN ECC SHOP	9,858
DEC STORAGE ENCLOSURE	521
DEC DISK UIIt	2,112
VIMDOUCOUGER PACEAGE ABE	268, 188
CD ROM EEADER PLEXOR 4PLEX*	3,505
MODEM 288V. 36 PRACTICAL PERI	1,807
SC 32 -CHAMMEL \&T GATEUAT	3,224,697
ATDIII KEYBOARD 4 KBOS 90 FUMC	631,760
Data concentiations	47,768
MOSAIC TILE MAPBOARD	67,313
MODEM 325	778
HED YERSA SO50C COMPUTER	7.534
hichovax $3100 \cdot 80$	22,744
MICROVAX ADD'T COSTS	314
	7,660
	2;189
426Ms 3.50 Oisk, FACT	9,028
T230, \%08 nv3100 30/60/80	3,055
BWh 208 OUAL It SMGL-EWDED	16,701
VAX OIST QuEUE CWi20	512
IMSTAMT SOL V/V concurnemit	1.696
Mitsusishi 210 monitors	5,964
HPM3000 FRT EMD PROCESSOR	57,230
ROUTER 2 LAM CNTAOLLER DEC	41,604
DELL $656 /$ Wx computer	11,054
LAPTOP IBN TMIMEPAD 750C	4,830
LAPTOP ISM TEIMKPAD 750C	4,828
LAPTOP IIM THIMKPAO 750C	6,828
LAPTOP IEN TMIEKPAD 750C	4,828
LAPTOP IBM TMIMKPAD 750C	4.825
VAx 4000 M0. 100A TIMESMAEE	130,216
MULTISTMC SFC 17*MON W/LEIS	1,446

PAGE 2
floritoa pouer corporation ECC ASSETS 1992 - 1996 SITE NAHE: 1282

FERC $A C C T$	ASSET MUMBER	$\begin{aligned} & \text { BOOK } \\ & \text { SERV } \\ & \text { OATE } \end{aligned}$
353	153942361000	9408
	\$53942361100	
	153962361200	9408
	153962361300	9608
	T53962361400	9608
	153962361500	9408
	153942361600	9408
	\$53942361700	9408
	T53960860500	9403
	153940860600	9603
	153040860700	9403
	153960840800	9403
	T53952630400	9509
	T53952630500	9509
	T53952630600	9509

[^0]RUM OATE: $04 / 13 / 98$ ETCHSPEC:LISTSOME

NORK

 ORDER OTY WUHEER74550.0357 74550.03571 74550.03571 76550.03571 74550.03571 74550.0357 74550.0357 74550.0357 74550.03572 74550.03572 74550.03572 74550.03572
76550.03732 76550.03732
76550.03732
76550.03732 74550.03732
$74550-03732$

TYPE DESCRIPTION VINTAGE AMOUNT AGE AVERAGE AGE

FIBER OPTIC CABLE FIBER OPTIC CABLE

CABLE	1990	5.783	7.5
CABLE	1991	25.510	5
FIBER OPTIC	1990	33,359	7.5
FIBER OPTIC CABLE	1991	129.806	6.5
FIBER OPTIC WIRE - 4,751'	1996	40.287	1.5
FIBER OPTIC WIRE 20900 FT	1995	113.346	2.5
FIBER OPTIC WIRE-24.300'	1995	176.682	2.5
OPTIC FIBER CABLE	1992	3.438	5.5
CABLE	1990	779	7.5
CABLE - 13,200 FT	1994	2,680	5
CABLE - $2,000 \mathrm{FT}$	1994	1.976	3.5
CABLE SYS	1990	2.736	7.5
ELEC ENCLOSURE-FIBER	1997	1.400	0.5
F.O. CABLE TERMINATION EQ	1994	208,977	3.5
F.O. CBLE WIRELESS SYS-200	1997	15.293	0.5
FIBER DISTRIBUTION CENTER	1997	916	0.5
FIBER OPTIC CABLE	1992	290,398	5.5
FIBER OPT S CABLE	1993	32.011	4.5
FIBER OPT CABLE	1994	41,280	3.5
FIBER OPT C CABLE - 10,245 M	1995	145.489	2.5
FIBER OPTIC CABLE - 1447 MT	1990	25,798	1.5
FIBER OPTIC CABLE - 16985 M	1996	280.219	1.5
FIBER OPTIC CABLE - 192643	1988	650,185	9.5
FIBER OPTIC CABLE - 24221 FT	1987	35,378	11
FIBER OPTIC CABLE - $3,125 \mathrm{MT}$	1993	117.655	4.5
FIBER OPTIC CABLE - 3,281 FT	1993	21,385	4.5
FIBER OPTIC CABLE - 3037 FT	1996	192,057	1.5
FIBER OPTIC CABLE - 4.322 MT	1993	71,264	4.5
FIBER OPTIC CABLE - 51000 FT	1993	216,563	4.5
FIBER OPTIC CABLE - 7.802 MT	1995	117,357	2.5
FIBER OPTIC CABLE - 81141'	1993	383,685	4.5
FIBER OPTIC CABLE -34.615 M	1995	545.820	2.5
FIBER OPTIC CABLE- 101940	1990	406,593	7.5
FIBER OPTIC CABLE- 116160	1989	522.205	8.5
FIBER OPTIC CABLE- 189700	1988	669.943	9.5
FIBER OPTIC CABLE- $\mathbf{2 3 , 2 6 3 ~ M}$	1995	651,858	2.5
FIBER OPTIC CABLE- 53282	1900	159.089	7.5
FIBER OPTIC CABLE- 87119	1990	499,892	7.5
FIBER OPTIC CABLE-102.000 F	1993	453.201	4.5
FIBER OPTIC CABLE-14,744 MT	1995	172,092	2.5
FIBER OPTIC CABLE-183,606 F	1994	771,015	3.5
FIBER OPTIC CABLE-192,644 F	1994	844.435	3.5
FIBER OPTIC CABLE-21478 FT	1998	127,783	1.5
FIBER OPTIC CABLE-3500'	1093	148.402	4.5
FIBER OPTIC CABLE-46,548 MT	1994	642.858	3.5
FIBER OPTIC CABLE-51,809 FT	1993	219.430	4.5
FIBER OPTIC CABLE-6300 FT	1996	36,595	1.5
FIBER OPTIC CABLE-73,568 FT	1993	258,123	4.5
FIBER OPTIC CABLE-756 MTRS	1897	19.797	0.5
FIBER OPTIC 258860° CFO-SDW	1991	1,119,554	6.5

FLORIDA POWER CORPORATION

ANALYSIS OF FIBER OPTIC EQUIPMENT

AS OF JANUARY 1,1998

TYPE	DESCRIPTION	VINTAGE	AMOUNT	AGE	AVERAGE AGE
FIBER OPTIC CABLE	GOC-FIBE OPTIC CABLE-1500'	1992	7.495	5.5	
FIBER OPTIC CABLE	TO CORRECT DOI_LARS	1990	125,158	7.5	
FIBER OPTIC CABLE	CABLE - 40,000'	1994	2.016	3.5	
SUBTOTAL			11,787,044		5.08

FIBER RELATED ELECTRONICS FIGER RELATED ELECTRONICS FIBER RELATED ELECTRONICS rIBER RELATED ELECTRONICS FIBER RELATED ELECTRONICS

ADDITIONAL COST 1996
CHANNEL BANK SYSTEM 1990
DATA BRIDGE 1092
DCB-24 CHANNEL BANK SYSTE DIGITAL LINE
MULTIPLEXER SHELF SYSTEM REPEATERS SYSTEM
VIDEOCONFERENCING SYS-BL DIGITAL CHANNEL BANK
DIGITAL MICROWAVE TERIJIN
DIGITAL MULTIPLEXER
VIDEO CONFEI ENCING SYSTE DIGITAL CHANI, EL BANK
DIGITAL MICRCIVAVE TERMIN
DIGITAL MULTIPLEXER
DIGITAL CHANNEL BANK
DIGITAL MICROWAVE TERMIN DIGITAL MULTIPLEXER DIGITAL CHANNEL BANK
DIGITAL MICROWAVE TERMIN
DIGITAL MULTIPLEXER
VIDEO CONFERENCING SYSTE ISDN SWITCH
ISDN TELEPHONE
'18-PORT BRIDGE RACK
ABB SWITCH.
ADDTL CHARGE-TERMINAL SY ATTENDANT WORKSTATION BRIU CARD
BRIUS CARD
CHANNEL BANK
CHANNEL BANK SYS
CHANNEL BANK SYSTEM
CHANNEL BANK TSI 19" SHELF
CIU/SIU FOR REPEATER SYS
CROSS CONNECT MODULE
CROSS CONNECT SYSTEM
CROSS-CONNECT
CROSS-CONNECT FRONT
DATA BRIDGE
DATA BRIDGE - 24 PORT
DDM PLUS
DDM PLUS
DDM PLUS MULTIPLEXER
DDM PLUS WALL TERMINAL DDM-PLUS WALL DIST TERMIN DDM-PLUS, MOD 4085898049 DIGITAL CHANNEL BANK
DIGITAL CROSS CONNECT

200
1.5
$1,743 \quad 7.5$
$1.266 \quad 5.5$
$13,152 \quad 5.5$
$2.927 \quad 5.5$
$26.518 \quad 5.5$
$6.188 \quad 6.5$
199,992 $\quad 3.5$
$3.767 \quad 4.5$
$69.834 \quad 4.5$
$9.233 \quad 4.5$
$4.632 \quad 1.5$
$3.709 \quad 4.5$
68.7524 .5
$9.090 \quad 4.5$
$3.863 \quad 4.5$
$71,175 \quad 4.5$
$9,469 \quad 4.5$
$3,361 \quad 4.5$
$61.900 \quad 4.5$
$8.236 \quad 4.5$
$249.329 \quad 2.5$
160,952 3.5
$9.433 \quad 3.5$
$13,801 \quad 2.5$
$2.521 \quad 4.5$
$5.395 \quad 2.5$
$20,647 \quad 2.5$
18,643 2.5
$80,894 \quad 2.5$
$72.474 \quad 4.5$
$28.656 \quad 7.5$
187,027 3.5
$4.064 \quad 2.5$
$7.175 \quad 2.5$
$4.544 \quad 0.5$
$60,106 \quad: 5$
$1.143 \quad 0.5$
$15,707 \quad 0.5$
$1.768 \quad 7.5$
$5.728 \quad 2.5$
$11.133 \quad 2.5$
$28.571 \quad 1.5$
$5.018 \quad 2.5$
$4.302 \quad 2.5$
$\begin{array}{ll}5.795 & 1.5\end{array}$
$19,085 \quad 1.5$
$20,1424.5$
$15,882 \quad 4.5$

FLORIDA POWER CORPORATION ANALYSIS OF FIBER OPTIC EQUIPMENT AS OF JANUARY 1, 1998

TYPE DESCRIPTION VINTAGE AMOUNT AGE AGE AVERAGE

FIBER RELATED ELECTRONICS FIEER RELATED ELECTRONICS FIBER RELATED EI SCTRONICS FIBER RELATED ELECTRONICS FIEER RELATED ELECTRCNICS FIBER RELATED ELECTRONICS FIBER RELATED ELECTRONICS

DIGITAL CROSS CONNECT RA	1993	62,358	5
DIGITAL HAND-FREE TELEPHO	1997	37,295	0.5
DIGITAL LINE INTERFACE	1995	14,631	2.5
DIGITAL MICROWAVE TERMIN	1993	367,334	4.5
DIGITAL MULTIPLEXER	1993	49,367	4.5
DIGITAL MULTIPLEXER SHELF	1989	8.010	8.5
DISTR REFERENCE TIMING SY	1996	68,902	1.5
DISTRIBUTED TIMING NETWO	1993	1.569	4.5
	1994	21.899	3.5
DISTRIBUTIVE TIMING NETWO	1992	32,690	5.5
DSI UNIT	1995	21,502	2.5
DSINT MAPPER UNIT	1996	29,671	1.5
DSM PLUS OPTICAL MULTIPLE	1995	52,519	2.5
DS1/DSO DIGITAL ACCESS SY	1996	6.579	1.5
FEATURE PACKAGE TEL DAC	1997	17,631	0.5
FIBER DISTRIE TTION CENTER	1995	4,921	2.5
	1996	22,791	1.5
FIBER DISTRIISUTION CENTER	1997	9.826	0.5
FIBER OPTIC CABLE-47,462 FT	1995	276,643	2.5
FIBER OPTIC DISTRIBUTION	1988	1,527	9.5
FIBER OPTIC FUSSION SPLICE	1993	24,403	4.5
FIBER OPTIC PCM ANALYZER	1993	28,982	4.5
FIBER OPTIC REPEATER	1989	148.484	8.5
	1990	15,906	7.5
FIBER OPTIC TERMINAL	1988	296,971	9.5
	1995	382,615	2.5
FIBER OPTIC TERMINAL SYST	1993	824.846	4.5
FIBER OPTIC TEST SET	1993	62,164	4.5
FIBER SOLUTION KIT	1997	1,930	0.5
HP DESKJET PRINTER	1994	1,497	3.5
ISDN ATTENDANT WORKSTATI	1993	52,934	4.5
ISDN LINE UNIT	1994	96,002	3.5
	1995	447,628	2.5
	1996	14.019	1.5
ISDN PHONE	1995	210,472	2.5
	1996	3,896	1.5
ISDN SWITCH	1994	1,033,563	3.5
	1995	333,932	2.5
	1996	65,464	1.5
	1997	243,073	0.5
ISDN SWITCH (BRIU CARD)	1995	148,901	2.5
ISDN SWITCH (DDIU CARD)	1995	69.766	2.5
ISDN SWITCH (IMUX)	1995	14,746	2.5
ISDN SWITCH (QDIU CARD)	1995	134,458	2.5
ISDN SWITCH (SAIU CARD)	1995	44,396	2.5
ISDN SWITCH - ADDTL CHARG	1997	16,405	0.5
ISDN TELEPHONE	1994	38.482	3.5
ISDN TELEPHONE, MOD 3182P	1994	11,302	3.5
ISDN TELEPHONE, MOD 3197V	1994	1,287	3.5
ISDN TELEPHONES	1993	107.132	4.5
ISDN WORKSTATION MONITO	1993	5,497	4.5
JMUX EQUIPMENT	1997	185,442	0.5
JMUX SONET MULTIPLEXER	1997	135,627	0.5
LINE INTERFACE UNIT	1995	5.313	2.5

FLORIDA POWER CORPORATION
TYPE DESCRIPTION VINTAGE AMOUNT AGE AGE AGE

FIBER RELATED ELECTRONICS FIEER RELATED ELECTRONICS FIBER RELATED ELECTRONICS FIBER RELATED ELECTRONICS FIBER RELATED ELECTRONICS FIBER RELATED ELECTRONICS FIEER RELATED ELECTRONICS FIBER RELATED ELECTRONICS

MCU TERMINAL	1995	24.452	2.5
MCU TERMINAL SYSTEM	1995	26.895	2.5
MODULE DS3 PORT I/F SET,RD	1996	30.434	1.5
MODULE, DS3 PORT I/F SET,LI	1996	91,286	1.5
MODULE, HSSI, STM/18	1996	39.632	1.5
MULTIPLEX EQUIPMENT	1987	13.946	11
MULTIPLEX SHELF	1990	692	7.5
MULTIPLEXER	1990	4.208	7.5
	1993	53,527	4.5
	1996	272,574	1.5
MULTIPLEXER - MOD RDI-3104	1994	6.929	3.5
MULTIPLEXER OPTICAL	1993	174,995	4.5
MULTIPLEXER SHELF ASSY	1990	50,728	7.5
MULTIPLEXER SHELF SYSTEM	1994	80,231	3.5
MULTIPLEXER, FMT-150B	1995	36,191	2.5
MULTIPLEXER, MODEL RDI-310	1994	44.396	3.5
MUTLIPLEXER SYSTEM	1993	94.636	4.5
NBRI SOF WARE UPGRADE	1095	73.214	2.5
NCC NET $/ O R K$ PROBE ISDN T	-1997	9.738	0.5
NETHUB 30	1995	21,502	2.5
NETHUB 60/2T	1995	60.826	2.5
NETHUB 602 T	1995	134,342	2.5
NETWORK HUB	1995	166,889	2.5
NETWORK MANAGEMENT STA	1997	103.080	0.5
OC3 EQUIPPED W/1 OPC	1995	57.744	2.5
PBX SWITCH	1996	47.436	1.5
PCM CHANNEL BANK	1987	23.117	11
	1988	10.687	9.5
PIGTAIL MODULE CONNECTOR	1096	3,137	1.5
PINELLAS LOOP DDM PLUS	1993	33.534	4.5
PORTABLE TEST SET	1997	7.532	0.5
RC-28D MULTIPLEXER SHELF	1995	51,005	2.5
REPEATER	1974	106,569	24
REPEATER STATION	1983	12,035	15
REPEATER SYS	1990	51,905	7.5
REPEATER SYSTEM	1994	3,233	3.5
REPEATER SYSTEM ENCLOSU	1993	20,686	4.5
REPEATER SYSTEM(CIU/SIU)	1995	5.138	2.5
SERVICE MONITOR W/TG OPT	1997	31,506	0.5
SHELF-DDM PLUS WALL TERM	1996	9.918	1.5
SHELF, TBM TRANSPORT	1996	37.928	1.5
STM SOFTWARE	1994	13.409	3.5
STM SWITCH	1094	539,303	3.5
	1095	642,029	2.5
SUN WORKSTATION	1094	9,538	3.5
TEL DACS COM EQ 16 PORT	1997	23.253	0.5
TELELINE ISOLATOR-RW CAR	1997	6,488	0.5
TERM SYS-S/DMS TRANSPORT	1995	189.220	2.5
TERMINAL SYS	1990	91,587	7.5
TERMINAL SYSTEM	1994	106.440	3.5
TEST EQUIPMENT	1997	60,503	0.5
TEST SET	1994	10,394	3.5
	1995	10,839	2.5
TEST SET, MODEL ISDN-1000	1994	886	3.5

TYPE	DESCRIPTION	VINTAGE	AMOUNT	AGE	average AGE
D ELECTRONICS	TEST TRANSMITTER	1996	4.242	1.5	
D ELECTRONICS	TI INTERFACE CARDS	1997	150.437	0.5	
D ELECTRONICS	TIMING SHELF WINPUT TRAC	1993	16.750	4.5	
D ELECTRONICS	TITAN DIGITAL CROSS CONN S	1996	100,015	1.5	
D ELECTRONICS	VIDEO SYSTEM	1995	649,189	2.5	
D ELECTRONICS	WALL DISTANT TERMINAL	1993	10.659	4.5	
D ELECTRONICS	ISDN SWITCH	1994	170,735	3.5	
D ELECTRONICS	ISDN TELEPHONE	1994	5,854	3.5	
			12,894,365		3.41
			24,681,409		4.21

[^0]: -TOTAL SFERC_PRI 353

