BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DIRECT TESTIMONY

OF

KENT W. DICKERSON
Q. Please state your name, business address, employer and current position.
A. My name is Kent w. Dickerson. My business address is 4210 Shawnee Mission Parkway, Fairway, Kansas 66205. I am employed as Director - Cost Support for Sprint/United Management Company.
Q. Could you please summarize your qualifications and work experience?
A. My qualifications and work experience are summarized in Exhibit KWD - 1 .
Q. What is the purpose of your Testimony?
A. To respond to the following Phase I Issues in this docket:
$1(a), 1(c), 1(d), 1(e), 1(g)$, and $3(a)-(d)$. DOCUMFMTMETAT?OATE
09570 RUE II ${ }^{\text {m }}$

My responses will be from a perspective of how the underlying costs of various UNEs and UNE combinations relate to specific issues raised in this docket. Sprint"s witness Mr. Sichter will provide testimony regarding the deaveraged pricing implications that follow from the cost analysis.

Phase I Issues

1. Deaveraging of ONEs:
(a) Which UNEs, excluding combinations should be deaveraged?
Q. Must certain tUNEs, excluding combinations, be deaveraged?
A. Yes. As discussed more fully in Mr. Sichter's testimony, the FCC pricing rules require ONEs be priced on a deaveraged basis. The fundamental purpose of the FCC deaveraging requirement is to better match the price of tUNEs with the cost on a geographically deaveraged basis (FCC Order 96-325 paragraph 764). Sprint's experience and analysis of the cost of ONEs indicates, however, that the cost of UNEs are driven
by differing factors and the cost of certain unes do not vary significantly based on geography. For example, Sprint's cost analysis of UNEs indicates the costs of Local Loop, Local Switching, and Interoffice Transmission Facilities (Transport) vary significantly at differing geographic points in Sprint's Florida serving area. Conversely, when provisioning a single or aggregated point in the network for UNEs such as Tandem Switching, Signalling, Call Related Databases, Service Management Systems, Operations Support Systems and Operator Services, the result is costs that are not significantly affected by the location of the purchasing customer or Competitive Local Exchange Carrier (CLEC).
Q. Could you please detail which UNEs provided by SprintFlorida differ in cost depending on the geographic location?
A. From my analysis, the following unEs differ in cos: depending on the location of the UNE.

FCC Rule 51.319 (a) defines Unbundled Local Loop ás "... as a transmission facility between a distribution frame (or its equivalent) in an incumbent LEC central office and an end user customer premise."

The cost of unbundled local loops varies more on a geographic basis than any other UNE defined by the FCC's 96-325 Order. Under the broad category of physical geography, numerous factors affect the cost of providing loops to a specific customer location. These Eactors are:

1. Customer Density - Customer density is the single largest factor impacting the cost of local loops. Customer density is commonly expressed in terms of customers or access lines per square mile. Customer density impacts loop cost in an inverse manner: the higher the customer density, the lower the cost of the local loop. This relationship is linked to a few fundamentai factors. The first being that a trench, conduit or aerial pole route which is required regardless of whether a 25 pair or 2400 pair cable is
placed. From this it is obvious that the greater the customer density, the more customers that can be served along a feeder or distribution cable route. Therefore, customer density ultimately determines how many customers or loops there are over which to spread the cost of digging the trench, and or placing conduit or placing aerial pole lines.

Customer density also drives the unit cost of other equipment components associated with loops. Loop components such as SAIs or Serving Area Interfaces (the point of interconnection between feeder and distribution cables), Digital Loop Carrier (DLC) devices and Drop Terminals are all similarly impacted by customer density and exhibit lower per unit costs as customer density increases.
2. Distance - The distance of a given customer location from the central office directly increases loop costs as the distance increases. This relationship results from the obvious need to place more cable, trenches, conduit and/or aerial pole lines as the distance or length of
the loop increases. Additionally, as distance increases, generally the need for and overall cost of maintenance increases. Assuming constant customer density, longer cables have more splice points and resulting exposure to risk. A greater number of splice points means there are more areas for possible failure due to lightning, water, rodents, vandalism, and accidents.
3. Terrain - The type of terrain in which cable is placed impacts both the cost of the initial cable placement and the maintenance of the cable. The cost of below ground cable construction increases as the presence and hardness of rock increases. Terrain factors such as the water table, trees ard mountains all affect both the initial construction cost of loops and subsequent máintenance expense.
4. Weather - The extremes of weather affect the cost of maintaining cable and therefore figure significantly into the type of cable placed (buried, aerial or underground). The cost of maintaining aerial plant in geographic areas which frequently experience ice storms or

Abstract

tropical hurricanes is certainly greater than those areas that seldom encounter these conditions.

5. Local Market Conditions - Issues such as local zoning laws requiring below ground plant, screening and landscaping around SAI and DLC sites, construction permits and restrictions, heavy presence of concrete and asphalt, traffic flows, and local labor costs, all impact the construction and maintenance costs of loop plant and will vary between locations.

Presented in Exhibit KWD-2 to this testimony are loop costs calculated using the BCPM 3.1 model for the Florida wire centers served by Sprint. (All cost analyses provided with the testimony are intended for illustrative purposes only, and are subject to potential changes prior to filing in Phase II of this docket.) This list demonstrates the degree of loop cost variability when the above factors are properly reflected at a wire center level. Exhibit KWD-3 provides an illustrative comparison of the eigh= individual wire center loop costs for Tallahassee to the exchange level average for Tallahassee and $=$

Sprint"s statewide average. The comparison demonstrates that even an exchange level of loop cost has very material deviations when comparing the statewide average cost and the eight individual wire center costs. Mr. Sichter discusses in his testimony the resulting deaveraged pricing implications of this analysis.

Local Switching

FCC Rule 51.319 (c) defines Unbundled Local Switching as " (A) line-side facilities, which include, but are not limited to, the connection between a loop termination at a main distribution frame and a switch line card; (B) trunk-side facilities, which include, but are not limited to, the connection between trunk termination at a trunk-side cross-connect panel and a switch trunk card; and (C) all features, functions, and capabilities of the switch,... "

Exhibit KWD-3 to this testimony presents the local switching cost per Minute of Use (MOU) and switch port for Class 5 switches in Sprint's Florida network. Due primarily to differences in the number of customers served and the nature (interoffice or intraoffice),
volume, time of day and duration of calls made by those customers, this analysis shows a significant degree of variation in the local switching cost per MOU. For the six Tallahassee Sprint switches studied, the absolute value deviation of these wire center MOU costs zo Sprint's statewide average cost, ranges from 18.58名 to 47.22 (See Exhibit KWD-5). Four of the six Tallahassee switches also show significant cost variance to the average switch cost for the overall Tallahassee exchange. Mr. Sichter's testimony discusses the price deaveraging implications of these cost variances.

The costs provided in KWD-4 and KWD-5 do not include the costs of switch vertical features. Cost for these features are separately determined and are generally composed of the following three components: feature software, switch processor costs driven by feature usage and where applicable, the cost of hardware items necessary for some features. Sprint's cost analysis of features indicates that although the volume of customers purchasing a feature will vary by market and switch, the total cost of the actual feature on a per unit basis does not vary materially.

Interoffice Transmission Facilities

FCC Rule 51.319 (d) defines unbundled Interoffice Transmission Facilities "... as incumbent LEC transmission facilities dedicated to a particular customer or carrier, that provide telecommunications betweer wire centers owned by incumbent LECs or requesting telecommunications carriers, or between switches owned by incumbent LECs or requesting teleconmunications carriers."

The unbundled Interoffice Transmission Facilities element, or simply "transport", is composed of the two basic network components: terminals and fiber cable. Terminals are the equipment housed at the central office locations which serve as entry and exit points for telecommunications traffic to be moved between interofifice points in the network. In the majority of today's transport networks and certainly in a forwardlooking network, these interoffice terminals will be opticanly capable. Additionally, the fiber transport routes in a forward-looking network are constructed in ring design which provides diverse routing capability in the event of a fiber cable cut or terminal node failure. This forward-looking transport network design
is conmonly referred to as survivable SONET ring technology.

Effects of Traffic Volumes on Transport Unit Costs

The largest single determinant in the unit cost of a DSO, DS1, or DS3 transport circuit, is the volume of telecomunications traffic transmitted over a specific transport route. This volume of traffic, or demand, determines both the appropriate capacity sizing of the terminal equipment and fiber cable. Additionally, it defines the units over which these costs are spread. In cost determination, this basic principle is referred to as utilization. As volumes of traffic vary across specific transport routes, so does the sizing and utilization of terminals and fiber cable, and ultimately the resulting unit costs. This concept is illustrated in a series of Exhibits to this testimony. Looking first at Exhibit KWD-6, it shows the decrease in DSl unit costs as larger terminals are deployed. This analysis indicates that as traffic volumes or demand increases, larger terminals with increased capaciry are used. Use of larger terminals associated with increased traffic volumes results in greater economies and lower unit costs. This same relationship
of increased demand driving down unit costs is also illustrated in Exhibit KWD-7, which shows the decreases in DS1 unit costs as demand, and therefore terminal utilization, increases.

A basic characteristic of fiber cable is that the volume of traffic that can be carried over fiber is a function of the optic terminal capacity placed on the fiber ring. From this basic principle, it follows that the same traffic volume that drives the unit cost of the terminals is also a major determinant in the transport unit cost of the fiber. The same relationship exists for fiber as terminals, in that the more traffic that a specific transport route carries, the lower the unit cost of DS0, DS1, or DS3 on that route.

Effects of Distance on Transport Unit Costs

It is perhaps intuitively obvious that as the distance around a transport ring increases, more fiber cable must be placed, thereby increasing the cost of bandwidth on that ring. The impact of increasing distance on DS1 unit cost is illustrated on Exhibit KWD-8. Related to the impacts of distance on transpert
unit costs is the fact that as distance increases the Likelihood for needing multiple survivable SONET rings to connect the two network end points increases. Exhibit KWD-9 illustrates the increases in unit cost that result from using multiple rings to transport traffic between two points. The potential use of multiple rings to transport traffic between certain end offices is unavoidable due to ultimate capacity constraints of terminal equipment and the need to construct fiber rings that link the predominant communities which originate and terminate the largest volumes of traffic on any given ring. Two communities with a relatively smaller need (i.e. volume) for transporting traffic between themselves would normally not exist on the same ring. Therefore, in order to transport the relatively lower volumes of traffic between these two communities, multiple ring connections are required.

Transport Cost Summary

In summary, unbundled transport unit costs vary between specific geographic points due to the underlying variances in the traffic volumes, distances and ring designs that commonly occur in the network.

1

2

3

4

In order to properly estimate the geographic-specific forward-looking cost of unbundled transport facilities, the impact of these geographic-specific factors must be considered. Mr. Sichter discusses in his testimony the deaveraged pricing implications that flow from these market specific cost realities.
Q. Are there UNEs whose cost does not vary depending on the location of the UNE?
A. Yes.

Network Interface Device (NID)

FCC Rule 51.319 (b) defines NID as "... a cross-connect device used to connect loop facilities to inside wiring."

A NID is a device contained in plastic housing measuring approximately 5 by 7 inches, generally mounted on the side of customer's house. It serves the dual functions of providing grounding and electrical surge protection as well as providing a demarcation point for conducting tests to determine whether a source of trouble on the line lies within the
customers premise wiring or the Telephone Company's network. Other than some potential for relatively immaterial difference in travel times, the cost of a NID does not vary between customers purchasing similar services or the geography of those customers.

Tandem Switching

The function of a tandem switch is to aggregate interoffice calls from class 5 local switches so that those calls can be carried or transported to a switch at the terminating end of the call. The aggregating nature and limited number of tandem switches significantly lessens the degree of cost variances among tandem switches within Sprint's network when compared with the cost variances among Class 5 Local switches.

Signaling Network and Service Management Systems

These UNEs are collectively referred to as Signaling System 7 or SS7 network elements, and include the unss of signaling links and signaling transfer poirts (STPS). The function of the $5 S 7$ network is to provide out-of-band signaling which controls call set-up ene
provides economies in trunking facilities by avoiding the use of trunks during call set-up and tear-down. The signaling link component of the $S S 7$ network is either a 56 kilobit or DSl circuit connection between the Class 5 switch and the STP packet switch. While this circuit connection could logically be argued to exhibit the same cost variances seen in UNE transport facilities, the practical need to deaverage this UNE can certainly be questioned. Generally, only two signaling links are required per class 5 switch location and the cost of these two circuits are then relative to the entire call volumes routing through that class 5 switch location for a given ILEC or CLEC. Therefore, the practical need to calculate a deaveraged cost for a low cost network element that is shared across a very large customer base is slight.

Signaling Transfer Points (STPs) are packet switches which switch out-of-band signaling information to other points in the network in order to more efficiently setup and tear down calls. STPs are also used as needed to route queries to call completion databases (e.g. to access databases such as LIDB, 800, Calling name, and LNP). To ensure network reliability, STPs are deployed in mated pairs; Sprint's Florida
network: contains two sets of STP mated pairs. SS7 signaling from all points in Sprint's Florida network are then routed to one of these two STP pair locations. Using a common STP switch across a wide geographic area results in $S T P$ costs that do not vary based on the location of the call.

Call Related Databases

Call Related Databases are computer databases which house information used in routing calls such as LIDB, 800, LNP, and Calling Name. Sprint utilizes common databases located in Johnson City and Bristol, Tennessee. Similar to the STP discussion above, the cost of the various unbundled network databases do not vary based on the location of the CLEC, nor the call utilizing the database.

Service Management Systems

FCC rule 51.319 (e)(3) defines Service Management System "... as a computer database or system not part of the public switched network that, among other things:
(1) interconnects to the service control point and sends to that service control point the information

Operator Service and Directory Assistance

Sprint provides toll and directory assistance operator services from common operator centers within Florida. All calls requiring operator services are routed to the operator center location. Once again, the cost of the operator service function does not vary based on the caller's geography because all service functions are provided from a common operator center.
(b) Which UNE combinations, if any, should be deaveraged?
Q. Are there UNE combinations whose costs vary depending on the location of the UNE?
A. Yes. Following from the discussion above, any and all UNE combinations which include any of the three UNEs of local loop, local switching and transport will exhibit geographic cost variances based on the same underlying cost characteristics of the UNEs that make up the combination. Therefore, as discussed by Mr. Sichter, any and all UNE combinations making use of a local loop, local switching and/or transport UNE should be deaveraged.
(d) Should the degree of deaveraging be uniform for a.ll UNEs?
Q. Do you believe that the degree of cost variations is uniform for all UNEs?
A. No, the degree of cost variation is not uniform across all UNEs. As discussed in response to Issue 1 (a) above, the cost of unbundled loops, local switching and transport varies greatly depending on the location of the UNE and all of the associated cost factors that come into play. This contrasts with other UNEs whose costs do not vary materially due to the location of the CLEC, UNE or calling party, as discussed more fully in response to Issue $1(a)$ above.
(e) Should the degree of deaveraging be uniform for all affected ILECs for which deaveraged rates are appropriate?
Q. Do you believe that the degree of cost variation is uniform for all ILECs?
A. As discussed in Mr. Sichter's testimony, the cost related criteria for deaveraging UNEs should be
uniform across all ILECs. However, to the extent that ILECs serve different areas of the state, it is possible for one ILEC to experience a wider range of costs for a given UNE than another ILEC serving a different area of the state.

(g) What supporting data or documentation should an II.EC provide with its deaveraging filing?

Q. What level of cost support should an ILEC provide with its price deaveraging filing?
A. An ILEC's deaveraging filing should include the deaveraged results of the $T E L R I C$ studies, the models used, model inputs and supporting documentation, narrative descriptions and testimony. The filing should disclose the detailed deaveraged UNE costs (Sprint recommends wire center level costs be required for loops, local switching and transport), and describe how they relate to the deaveraged price proposal put forward.
3. Cost Studies:
(a) What guidelines and specific requirements should be imposed on recurring and nonrecurring cost studies, if any, required to be filed in this proceeding?
Q. Do you believe that there are guidelines and specific requirements that should be imposed on recurring and nonrecurring cost studies?
A. Yes. The FCC pricing rule 51.505 remains in effect and defines the principles for determining the forwardlooking economic cost of UNEs. The FCC rules contain no language allowing for a differing application betweer recurring and nonrecurring cost studies, so presumably the rules define the principles for both. As discussed in my response to Issue 1 (a) above, Sprint suggests that the deaveraged cost of UNE local loops and local switching be calculated at least down to a wire center level. This will enable a proper evaluation of the relationship between deaveraged cost and deaveraged price proposals. Sprint also recommends the cost of transport be calculated on a deaveraged basis to ensure that deaveraged prices reflect market specific traffic volumes and ring distances and
designs. Discussed in l.(g) above are Sprint's suggested filing requirements.
(b) For which UNEs should the ILECs submit cost studies sufficient to deaverage those UNEs iclentified in Issues 1 (a) and $1(b) ?$
Q. Do you believe that ILECs should submit cost studies for all UNEs, even those which Sprint's cost analysis suggests do not need to be deaveraged?
A. Yes. As I discussed in my response to Issue 3 (a), ILECs should submit cost studies for all UNEs.
(c) To the extent not included in Issue $\mathbf{3}(\mathrm{b})$, should IIECs be required to file recurring cost studies for any remaining UNEs, and combinations thereof, iclentified by the FCC in its forthcoming order on the Rule 51.319 remand?
(d) To the extent not inoluded in Issue 3 (b), should the ILECs be required to file non-recurring cost studies for any remaining UNEs, and combinations thereof, identified by the FCC in its forthcoming order on the Rule 51.319 remand?

Q. In your: opinion how should ILECs respond to the ECC's forthcoming order on the Rule 51.319 remand?
A. ILECs should be required to file recurring and

10 Q. Does this conclude your testimony?

12 A. Yes.

KENT W. DICKERSON QUALIFICATIONS

I received a Bachelor of Science degree from the University of Missouri - Kansas City in 1981 with a major in Accounting. In 1984, I passed the national exam and am a Certified Public Accountant in the State of Missouri.

From 1981 to 1983, Il was employed as a Corporate Income Tax Auditor II for the Missouri Department of Revenue. From 1983 to 1985, I worked for Kansas Power and Light (now Western Resources) in the Tax and Internal Audit areas. I joined United Telephone Midwest Group in September, 1985 as a staff accountant in the Carrier Access Billing area. Thereafter, I moved through a progression of positions within the Toll Administration and General Accounting areas of the Finance Department.

In 1987, I was promoted into the Carrier and Regulatory Services group as a Separations/ Settlement Administrator performing Federal and Intrastate access/toll pool settlement, reporting and revenue budgeting functions. I was promoted to Manager - Pricing in June, 1989 where I performed FCC regulatory reporting and filing functions related to the United Telephone - Midwest Group Interstate Access revenue streams.

In 1991, I was promoted to Senior Manager - Revenue Planning for United Telephone - Midwest Group. While serving in this position my responsibilities consisted of numerous FCC regulatory reporting and costing functions. In 1994, I accepted a position within the Intrastate Regulatory operations of Sprint/United Telephone Company of Missouri where my responsibilities included regulatory
compliance, tariff filings, and earnings analysis for the Missouri company's intrastate operations.

Since December 1994, I have set-up and directed a work group which performs cost of service studies for retail services, wholesale unbundled network elements cost studies, and state and federal Universal Service Fund cost studies. Over the last 4.5 years I have been charged with developing and implementing cost study methods which conform with Total Service Long Run Incremental Cost ("TSLRIC") and Total Element Long Run Incremental Cost ("TELRIC") methodologies. I am responsible for written and oral testimony, serving on industry work groups, and participating in technical conferences related to TSLRIC/TELRIC costing methodology, filing of studies within individual 18 states that comprise Sprint's Local Telephone Division (LTD) and providing cost expertise to Sprint's participation in regulatory cost dockets outside of the LTD territories. I have testified in Florida, Nevada, North Carolina, Texas, Kansas, Georgia, and Wyoming regarding TSLRIC/TELRIC cost matters.

SPRINT
Docket 990649-TP
Exhibit KWD - 2
Sprint - Florida
TELRIC Loop Cost by Wire Center
Page 1 of 3

Row	Wire Center	TELRICMonthly CostPer Loop		Wire Center Loop Cost to Statewide Avg	Total Lines Served	Cumulative Total Lines	Cumulative \% Total Lines
1	Maitland XA	\$	4.38	-79\%	13,325	13,325	0.68\%
2	Maitland TC	\$	4.49	-78\%	1,819	15,144	0.77\%
3	Tallahassee - Calhoun	\$	5.65	-72\%	65,229	80,373	4.07\%
4	Tallahassee - FSU	\$	9.03	-56\%	10,847	91,220	4.62\%
5	Destin	\$	9.57	-53\%	19,207	110,427	5.60\%
6	South Fort Meyers	\$	10.11	-50\%	40,541	150,968	7.65\%
7	Boca Grande	\$	10.50	-48\%	2,613	153,581	7.78\%
8	Murdock	\$	11.13	-45\%	5,029	158,610	8.04\%
-	Fort Myers	\$	11.33	-44\%	23,432	182,042	9.23\%
10	Winter Park	\$	11.37	-44\%	52,129	234,171	11.87\%
11	Fort Myers Beach	\$	11.39	-44\%	12,129	246,300	12.48\%
12	Lake Brantley	\$	11.53	-43\%	49,229	295,529	14.88\%
13	North Naples	\$	11.74	-42\%	47,947	343,476	17.41\%
14	Naples Moorings	\$	11.82	-42\%	60,797	404,273	20.49\%
15	Marco Island	\$	12.02	-41\%	21,633	425,906	21.58\%
16	Altamonte Springs	\$	12.20	-40\%	60,621	486,527	24.66\%
17	Iona	\$	12.35	-39\%	14,928	501,455	25.41\%
18	Goldenrod	\$	13.21	-35\%	48,810	550,265	27.89\%
19	Fort Walton Beach XB	\$	13.37	-34\%	19,594	569,859	28.88\%
20	Fort Walton Beach XA	\$	13.49	-34\%	20,172	590,031	29.90\%
21	Buenaventura Lakes	\$	13.53	-34\%	12,841	602,872	30.55\%
22	Tallahassee - Willis	\$	13.62	-33\%	22,979	625,851	31.72\%
23	Shalimar	\$	13.92	-32\%	9,260	635,111	32.19\%
24	Cypress Lake XA	\$	13.97	-31\%	39,074	674,185	34.17\%
25	Casselberry	\$	14.17	-30\%	20,427	694,612	35.20\%
26	Fort Walton Beach XC	\$	14.52	-29\%	4,397	699,009	35.43\%
27	Cypress Lake XB	\$	15.00	-26\%	11,462	710,471	36.01\%
28	Orange Cily	\$	15.16	-26\%	12,508	722,979	36.64\%
29	Ocala XJ	\$	15.32	-25\%	4,280	727,259	36.86\%
30	North Fort Myers XA	\$	15.77	-23\%	17,510	744,769	37.74\%
31	Cape Coral	\$	15.80	-22\%	32,017	776,786	39.37\%
32	Bonita Springs	\$	15.95	-22\%	37,053	813,839	41.24\%
33	Sanibel-Captiva Islands	\$	16.46	-19\%	11,985	825,824	41.85\%
34	West Kissimmee	\$	16.81	-17\%	21,921	847,745	42.96\%
35	Kissimmee	\$	16.91	-17\%	45,194	892,939	45.25\%
36	Windermere	\$	17.18	-16\%	8,366	901,305	45.68\%
37	Ocala - Highlands	\$	17.19	-16\%	6.079	907,384	45.99\%
38	Tallahassee - Perkins	\$	17.24	-15\%	9,988	917,372	46.49\%
39	Eustis	\$	17.36	-15\%	19,222	936,594	47.47\%
40	San Caros Park	\$	17.72	-13\%	11,117	947,711	48.03\%
41	North Cape Coral	\$	18.32	-10\%	26,879	974,590	49.39\%
42	Tallahassee-Blairstone	\$	18.57	-9\%	38,740	1,013,330	51.35\%
43	Port Charlotte	\$	18.70	-8\%	49,436	1,062,766	53.86\%
44	Golden Gate	\$	18.77	-8\%	27,808	1,090,574	55.27\%
45	Tavares	\$	18.83	-8\%	14,890	1,105,464	56.02\%
46	Apopka	\$	18.91	-7\%	32,934	1,138,398	57.69\%
47	Westville	\$	19.16	-6\%	881	1,139,279	57.74\%
48	Ocala XA	\$	19.20	-6\%	57,133	1,196,412	60.63\%

Row	Wire Center	T'ELRIC Monthly Cost Per Loop		Wire Center Loop Cost to Statewide Avg	Total Lines Served	Cumulative Total Lines	Cumulative \% Total Lines
49	Tallahassee - Mabry	\$	19.46	-4\%	24.780	1,221,192	61.89\%
50	North Fort Myers XB	\$	19.62	-4\%	17.413	1,238,605	62.77\%
51	Naples South East	\$	19.80	-3\%	34,521	1,273,126	64.52\%
52	Winter Garden	\$	19.96	-2\%	22.139	1,295,265	65.64\%
53	Leesburg	\$	20.20	-1\%	33,763	1,329,028	67.35\%
54	Lady Lake	\$	20.23	-1\%	17,477	1,346,505	68.24\%
55	Deltona Lakes	\$	20.44	0\%	13,559	1,360,064	68.93\%
56	Sebring	\$	20.68	2\%	28,424	1,388,488	70.37\%
57	Ocala - Shady Road	\$	21.85	7\%	28,400	1,416,888	71.81\%
58	Silver Springs Shores	\$	22.03	8\%	6,722	1,423,610	72.15\%
59	Clermont	\$	22.34	10\%	16,061	1,439,671	72.96\%
60	Tallahassee - Thomasville	\$	22.63	11\%	22,464	1,462,135	74.10\%
61	Lehigh Acres	\$	22.64	11\%	16,323	1,478,458	74.93\%
62	East Fort Meyers	\$	23.00	13\%	15,222	1,493,680	75.70\%
63	Montverde	\$	23.46	15\%	1,600	1,495,280	75.78\%
64	Valparaiso	\$	23.96	18\%	12,454	1,507,734	76.41\%
65	Beverly Hills	\$	24.15	19\%	12,776	1,520,510	77.06\%
66	Cape Haze	\$	24.29	19\%	10,729	1,531,239	77.60\%
67	Dade City	\$	24.87	22\%	12,577	1,543,816	78.24\%
68	Punta Gorda	\$	25.28	24\%	26,012	1,569,828	79.56\%
69	Mount Dora	\$	25.37	25\%	15,807	1,585,635	80.36\%
70	Crestview	\$	25.57	26\%	15,527	1,601,162	81.15\%
71	Crystal River	\$	25.75	26\%	15,203	1,616,365	81.92\%
72	Lake Helen	\$	26.69	31\%	1,974	1,618,339	82.02\%
73	Clewiston	\$	27.05	33\%	9,056	1,627,395	82.48\%
74	Sea Grove Beach	\$	27.46	35\%	4,551	1,631,946	82.71\%
75	St. Cloud	\$	27.69	36\%	20,097	1,652,043	83.72\%
76	Homosassa Spgs	\$	27.93	37\%	10,268	1,662,311	84.24\%
77	Inverness	\$	28.06	38\%	28,038	1,690,349	85.67\%
78	Oklawaha	\$	28.73	41\%	4,026	1,694,375	85.87\%
79	Madison	\$	29.02	42\%	4,624	1,698,999	86.10\%
80	Pine Island	\$	29.05	43\%	8,750	1,707,749	86.55\%
81	Avon Park	\$	29.23	44\%	11,541	1,719,290	87.13\%
82	Silver Springs	\$	29.40	44\%	5,433	1,724,723	87.41\%
83	Belleview	\$	30.56	50\%	20,368	1,745,091	88.44\%
84	Chassohowitza	\$	30.73	51\%	3,876	1,748,967	88.64\%
85	Immokalee	\$	31.42	54\%	6,512	1,755,479	88.97\%
86	Wildwood	\$	32.97	62\%	8,202	1,763,681	89.38\%
87	Moore Heaven	\$	33.43	64\%	2,710	1,766,391	89.52\%
88	Arcadia	\$	34.01	67\%	14,436	1,780,827	90.25\%
89	Marianna	\$	34.58	70\%	10,197	1,791,024	90.77\%
90	Lake Placid	\$	35.20	73\%	12,613	1,803,637	91.41\%
91	Okeechobee	\$	35.86	76\%	22,897	1,826,534	92.57\%
92	Bushnell	\$	36.33	78\%	11,726	1,838,260	93.16\%
93	Santa Rosa Beach		36.51	79\%	4.379	1,842,639	93.38\%
94	Alva	\$	36.88	81\%	1,560	1,844,199	93.46\%
95	Tallahassee - Woodville	\$	37.73	85\%	4,458	1,848,657	93.69\%
96	Astor	\$	39.49	94\%	1,440	1,850,097	93.76\%

Docket 990649-TP
 Exhibit KWD - 2
 Page 3 of 3

Row	Wire Center	TELRIC Monthly Cost Per Loop		Wire Center Loop Cost to Statewide Avg	Total Lines Served	Cumulative Total Lines	Cumulative \% Total Lines
97	Spring Lake	\$	39.85	96\%	5,312	1,855,409	94.03\%
98	Wauchula	\$	40.16	97\%	7,190	1,862,599	94.40\%
99	Starke	\$	40.80	100\%	6.733	1,869,332	94.74\%
100	San Antonio	\$	41.29	103\%	3,456	1,872,788	94.91\%
101	Labelle	\$	41.46	104\%	8,849	1,881,637	95.36\%
102	Groveland	\$	41.98	106\%	5,004	1,886,641	95.61\%
103	Bowling Green	\$	42.28	108\%	1,635	1,888,276	95.70\%
104	Fort Meade	\$	43.06	111\%	3,242	1,891,518	95.86\%
105	Howey-In-The-Hills	\$	43.17	112\%	1.612	1,893,130	95.94\%
106	Forest	\$	43.34	113\%	5,760	1,898,890	96.23\%
107	Trilacoochee	\$	46.80	130\%	3,692	1,902,582	96.42\%
108	Crawfordville	\$	46.96	131\%	6,263	1,908,845	96.74\%
109	Everglades	\$	49.17	141\%	1.665	1,910,510	96.82\%
110	Salt Springs	\$	50.86	150\%	1,595	1,912,105	96.90\%
111	DeFuniak Springs	\$	51.15	151\%	8,035	1,920,140	97.31\%
112	Umatilla	\$	51.82	154\%	7,817	1,927,957	97.71\%
113	Sneads	\$	54.44	167\%	1,796	1,929,753	97.80\%
114	Williston	\$	55.75	174\%	5,904	1,935,657	98.10\%
115	Grand Ridge	\$	61.01	200\%	2,102	1,937,759	98.20\%
116	Zolfo Springs	\$	61.93	204\%	2,471	1,940,230	98.33\%
117	Monticello	\$	63.90	214\%	6,389	1,946,619	98.65\%
118	St. Marks	\$	67.19	230\%	589	1,947,208	98.68\%
119	Freeport	\$	67.39	231\%	2,780	1,949,988	98.82\%
120	Bonifay	\$	68.11	234\%	4,663	1,954,651	99.06\%
121	Cottondale	\$	69.48	241\%	1,314	1,955,965	99.13\%
122	Lawtey	\$	75.46	270\%	1,090	1,957,055	99.18\%
123	Panacea	\$	76.90	278\%	989	1,958,044	99.23\%
124	Reynolds Hill	\$	78.30	284\%	1,487	1,959,531	99.31\%
125	Sopchoppy	\$	85.84	321\%	1,049	1,960,580	99.36\%
126	Malone	\$	90.16	343\%	1,265	1,961,845	99.42\%
127	Baker	\$	93.42	359\%	2,484	1,964,329	99.55\%
128	Alford	\$	93.98	361\%	1,510	1,965,839	99.63\%
129	Kingsley Lake	\$	102.09	401\%	343	1,966,182	99.64\%
130	Greenville	\$	102.10	401\%	1,286	1,967,468	99.71\%
131	Ponce de Leon	\$	105.01	416\%	1,177	1,968,645	99.77\%
132	Kenansville	\$	106.98	425\%	696	1,969,341	99.80\%
133	Lee	\$	108.11	431\%	1,002	1,970,343	99.86\%
134	Glendale	\$	109.35	437\%	790	1,971,133	99.90\%
135	Cherry Lake	\$	114.03	460\%	1,240	1,972,373	99.96\%
136	Greenwood	\$	141.35	594\%	818	1,973,191	100.00\%
	State Average	\$	20.37		1,973,191		

```
Sprint - Florida
```


TELRIC Loop Cost by Host Office - Tallahassee Exchange

Row	Host Office	TIELRIC Monthly Cost Per Loop		$\begin{array}{\|c\|} \hline \text { Wire Center } \\ \text { Loop Cost to } \\ \text { Exchange Avg } \\ \hline \end{array}$	Wire Center Loop Cost to Statewide Avg	Total Lines Served
1	Tallahassee - Calhoun	\$	5.65	-60\%	-72\%	65,229
2	Tallahassee - FSU	\$	9.03	-36\%	-56\%	10,847
3	Tallahassee - Willis	\$	13.62	-4\%	-33\%	22,979
4	Tallahassee - Perkins	\$	17.24	22\%	-15\%	9,988
5	Tallahassee - Blairstone	\$	18.57	31\%	-9\%	38,740
6	Tallahassee - Mabry	\$	19.46	37\%	-4\%	24,780
7	Tallahassee - Thomasville	\$	22.63	60\%	11\%	22,464
8	Tallahassee - Woodville	\$	37.73	166\%	85\%	4,458
	Exchange Average	\$	14.19			199,485

State Average $\quad \$ \quad 20.37$

Row	Host Office	Total MOU	Lines	Port Cost	Wire Center Port Cost to Statewide Avg	Orig/Term MOU Cost	Wire Center MOU Cost to Statewide Avg
1	Tallahassee - Caihoun	45,225,729	36,736	\$2.37	-0.9\%	\$0.001830	-47.22\%
2	Tallahassee - Blairstone	57,183,514	27,520	\$2.37	-0.9\%	\$0.001832	-47.15\%
3	Tallahassee - Mabry	44,858,374	24,960	\$2.37	-0.9\%	\$0.002090	-39.72\%
4	Lake Brantiey	68,952,635	50,721	\$2.37	-0.9\%	\$0.002197	-36.64\%
5	Ft. Myars	48,394,457	25,213	\$2.37	-0.9\%	\$0.002235	-35.54\%
6	Altamonte Springs	88,921,873	67,049	\$2.37	-0.9\%	\$0.002307	-33.48\%
7	Tallahassee - Willis	36,053,207	18,560	\$2.37	-0.9\%	\$0.002348	-32.28\%
8	Cypress Lake	62,321,215	41,259	\$2.37	-0.9\%	\$0.002389	-31.10\%
9	Winter Park	69,606,656	45,116	\$2.37	-0.9\%	\$0.002511	-27.58\%
10	Goldenrod	74,178,005	57,292	\$2.37	-0.9\%	\$0.002715	-21.71\%
11	Tallahassee - Thomasville	26,071,058	11,520	\$2.37	-0.9\%	\$0.002823	-18.58\%
12	Ft. Walton Beach	25,207,226	20,480	\$2.37	-0.9\%	\$0.002861	-17.51\%
13	Ocala	89,883,004	90,046	\$2.37	-0.9\%	\$0.002882	-16.89\%
14	Naples Moorings	50,121,484	59,037	\$2.37	-0.9\%	\$0.003511	1.26\%
15	Leesturg	42,300,434	43,478	\$2.37	-0.9\%	\$0.003616	4.28\%
16	Casselbery	29,700,137	41,710	\$2.37	-0.9\%	\$0.003675	5.99\%
17	Apopka	52,740,381	49,199	\$2.37	-0.9\%	\$0.003715	7.13\%
18	Orange City	32,192,327	28,547	\$2.37	-0.9\%	\$0.003767	8.64\%
19	Tavares	18,177,032	22,770	\$2.37	-0.9\%	\$0.003995	15.20\%
20	Defuniak Springs	6,969,598	6,400	\$2.50	4.6\%	\$0.004218	21.65\%
21	North Naples	32,634,968	37,518	\$2.41	0.8\%	\$0.004273	23.21\%
22	Belleview	6,176,343	7,680	\$2.37	-0.9\%	\$0.004334	24.98\%
23	Ocala	1,916,525	1,920	\$2.77	15.7\%	\$0.004376	26.21\%
24	Belleview	25,125,974	31,243	\$2.37	-0.9\%	\$0.004458	28.55\%
25	Dade City	17,321,304	22,253	\$2.37	-0.9\%	\$0.004703	35.63\%
26	West Kissimmee	23,744,962	26,843	\$2.37	-0.9\%	\$0.004741	36.73\%
27	Tallahassee - Porkins	12,854,717	12,800	\$2.37	-0.9\%	\$0.004768	37.51\%
28	Lehigh Acres	16,261,791	19,765	\$2.37	-0.9\%	\$0.004775	37.72\%
29	Naples Moorings	4,346,799	5,120	\$2.52	5.6\%	\$0.004812	38.77\%
30	Leesburg	6,226,661	6,400	\$2.68	12.2\%	\$0.004817	38.92\%
31	Valpraiso	21,903,141	16,640	\$2.43	1.6\%	\$0.004872	40.50\%
32	Monticello	9,655,624	6,016	\$2.52	5.5\%	\$0.004969	43.29\%
33	Tavares	6,137,243	7,688	\$2.54	6.3\%	\$0.004978	43.56\%
34	Labelle	13,642,344	17,010	\$2.37	-0.9\%	\$0.005001	44.22\%
35	Beverly Hills	14,522,421	23,343	\$2.37	-0.9\%	\$0.005027	44.96\%
36	Shady Road	32,825,297	40,543	\$2.37	-0.9\%	\$0.005027	44.96\%
37	Maitland	17,734,410	23,422	\$2.37	-0.9\%	\$0.005065	46.06\%
38	Shalimar	11,173,809	9,600	\$2.39	-0.3\%	\$0.005146	48.42\%
39	Beverly Hills	4,777,972	7,680	\$2.37	-0.9\%	\$0.005322	53.48\%
40	Labelie	7.186,090	8,960	\$2.56	6.9\%	\$0.005362	54.63\%
41	Crawfordville	8,782,718	5,376	\$2.57	7.4\%	\$0.005606	61.68\%
42	Madison	5,349,402	5,120	\$2.59	8.2\%	\$0.005723	65.05\%
43	Clermont	16,570,048	20,841	\$2.37	-0.9\%	\$0.005776	66.57\%
44	North Ft. Myers	13,509,523	19,200	\$2.47	3.3\%	\$0.005911	70.46\%
45	Defuniak Springs	6,272,638	5,760	\$2.82	17.9\%	\$0.005941	71.33\%
46	West Kissimmee	3,396,813	3.840	\$2.45	2.6\%	\$0.006097	75.83\%
47	Dade City	3,985,309	5.120	\$2.74	14.7\%	\$0.006505	87.61\%
48	Sebring	22,316,836	49,687	\$2.37	-0.9\%	\$0.006506	87.62\%
49	Destin	13,641,520	14,077	\$2.37	-0.9\%	\$0.006881	98.43\%
50	Clermont	2,035,378	2,560	\$2.62	9.6\%	\$0,006932	99.90\%
51	Cape Haze	12,145,776	15,144	\$2.37	-0.9\%	\$0.007308	110.75\%
52	Sebring	2,874,550	6,400	\$2.66	11.0\%	\$0.007749	123.48\%
53	Destin	4,713,530	4,864	\$2.64	10.6\%	\$0.008330	140.23\%
54	Madison	3,477.112	3,328	\$3.19	33.4\%	\$0.009076	161.75\%

Statewide Average	$\mathbf{1 , 3 7 4 , 2 9 7 , 8 9 4}$	$\mathbf{1 , 2 6 1 , 3 7 4}$	$\$ 2.39$	$\$ 0.003468$

Local Switching TELRIC Cost by Wire Center - Tallahassee Exchange

Row	Wire Center	Total MOU	Lines	Port Cost	Wire Center Port Cost to Statewide Avg	OrigTerm MOU Cost	Wire Center MOU Cost to Exchange Avg	Wire Center MOU Cost to Statewide Avg
1	Tallahassee - Cadhoun	45,225,729	36,736	\$2.37	0.0\%	\$0,001830	-18.80\%	-47.22\%
2	Tallahassee - Blairstone	57,183,514	27,520	\$2.37	0.0\%	\$0.001832	-18.69\%	-47.15\%
3	Tallahassee - Mabry	44,858,374	24,960	\$2.37	0.0\%	\$0.002090	-7.25\%	-39.72\%
	Tallahassee - Willis	36,053,207	18,560	\$2.37	0.0\%	\$0.002348	4.20\%	-32.28\%
5	Tallahassee - Thomasville	26,071,058	11,520	\$2.37	0.0\%	\$0.002823	25.27\%	-18.58\%
6	Tallahassee - Perkins	12,854,717	12,800	\$2.37	0.0\%	\$0.004768	111.56\%	37.51\%

Exchange Average	$\mathbf{2 2 2 , 2 4 6 , 5 9 9}$	$\mathbf{1 3 2 , 0 9 6}$	$\mathbf{\$ 2 . 3 7}$	$\mathbf{\$ 0 . 0 0 2 2 5 4}$
Statewide Average	$1,374,297,894$	$1,261,374$	$\$ 2.39$	$\$ 0.003468$

Sprint - Transport (TELRIC) Cost Model - DS1 Summary Sensitivity Analysis

Ring Name	Type Term	```# of Terminals```	Ring Type	Number of DS1 Terminations	Terminal Utilization Factor	Monthly Single Termination Cost	Total Route Miles	Monthly Total Transit Cost	Single Termination Cost MOU	Transit Cost MOU	$\begin{aligned} & \text { DS1 } \\ & \text { Cost } \end{aligned}$
AAA7-BBB7	48A	3	S	2	30\%		30	\$13.95	0.000179	0.000065	\$91.23
AAA8-BBB8	48A	3	S	2	40\%		30	\$10.47	0.000142	0.000048	\$71.71
AAA9-BBB9	48A	3	S	2	50\%		30	\$8.37	0.000119	0.000039	\$59.97
AAAx-BBBx	48A	3	S	2	60\%		30	\$6.98	0.000105	0.000032	$\mathbf{5 5 2 . 1 6}$
AAAy-BEDY	48A	3	S	2	70\%		30	\$5.38	0.000074	0.000028	\$46.58
AAAz-BBEz	48A	3	S	2	80\%		30	\$5.23	0.000086	0.000024	\$42.39

Fiorida
SPRINT
Sprint - Transport (TELRIC) Cost Model - DS1 Summary

Florida
 Sprint - Transport (TELRIC) Cost Model - DS1 Summary
 Sensitivity Analysis

RIng Name	Type Term	\# of Terminals	Ring Type	$\begin{gathered} \text { Number } \\ \text { of DS1 } \\ \text { Terminations } \end{gathered}$	Terminal Utilization Factor	Monthly Single Termination Cost	Total Route Miles	Monthly Total Translt Cost	Single Termination Cost MOU	Translt Cost MOU	1 Rlng DS1 Cost	2 Ring DS1 Cost	3 RIng DS1 Cost
AAA7-BBB7	48A	3	S	2	30\%		30	\$13.95	0.000179	0.000065	\$91.23	\$182.46	\$273.69
AAA8-BBB8	48A	3	S	2	40\%		30	\$10.47	0.000142	0.000048	\$71.71	\$143.42	\$215.13
AAA9-BBB9	48A	3	S	2	50\%		30	\$8.37	0.000119	0.000039	\$59.97	\$119.94	\$179.91
$A A A x-B B B x$	48A	3	S	2	60\%		30	\$6.98	0.000105	0.000032	\$52.16	\$104.32	\$156.48
AAAy-BBBy	48A	3	S	2	70\%		30	\$5.98	0.000094	0.000028	\$46.58	\$93.16	\$139.74
AAAz-BBBz	48A	3	S	2	80\%		30	\$5.23	0.000086	0.000024	\$42.39	\$84.78	\$127.17

