Landers & Parsons, P.A.

ATTORNEYS AT LAW

DAVID S. DEE DIANE K. KIESLING JOSEPH W. LANDERS, JR. JOHN T. LAVIA. III FRED A. McCORMACK PHILIP S. PARSONS LESLIE J. PAUGH ROBERT SCHEFFEL WRIGHT

SENIOR CONSULTANT

MAILING ADDRESS: POST OFFICE BOX 27; TALLAHASSEE, FL 32302-0271 310 WEST COLLEGE AVENUE TALLAHASSEE, FL 32301 TELEPHONE (850) 681-0311

April 3, 2000

TELEPHONE (850) 681-0311 TELECOPY (850) 224-5595 www.landersandparsons.com

VIA HAND DELIVERY

Blanca S. Bayo, Director Division of Records and Reporting Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: Ten-Year Site Plan for Oleander Power Project, Limited Partnership

ORGMAL

Dear Ms. Bayo:

AFA AP:2 CAF

CMU

As required by Commission Rule 25-22.071(1), F.A.C., enclosed for filing are twenty-five (25) copies of the 2000-2009 Ten-Year Site Plan of Oleander Power Project, Limted Partnership. I will appreciate your confirming receipt of these materials by stamping the attached filing copy.

As always, thanks to you and your Staff for your considerate and professional assistance.

If you have any questions, please do not hesitate to give me a call.

Cordially you

John T. LaVia, III

et et EAG ∽--JTL/jp FO ----- Enclosures MAS OPC ____ SEC TT **RECREMENCE OFFICER** WAW C-BUREAU OF AGON PER OTH

DOCUMENT NUMBER-DATE

FPSC-RECORDS/REPORTING

ORIGINAL

OLEANDER POWER PROJECT, LIMITED PARTNERSHIP

TEN-YEAR SITE PLAN, 2000-2009

April 2000

04060 APR-38

FPSC-RECORDS/REPORTING

OLEANDER POWER PROJECT, LIMITED PARTNERSHIP

TEN-YEAR SITE PLAN FOR ELECTRICAL GENERATING FACILITY, 2000-2009

Submitted to:

STATE OF FLORIDA PUBLIC SERVICE COMMISSION

April 2000

TABLE OF CONTENTS

EXECUTIVE	SUMMARY
Chapter 1	OLEANDER POWER PROJECT, LIMITED PARTNERSHIP 4
Chapter 2	DESCRIPTION OF EXISTING FACILITIES 5
Chapter 3	FORECAST OF ELECTRIC POWER DEMAND AND ENERGY 6
Chapter 4	FORECASTING METHODS AND PROCEDURES 8
Chapter 5	FORECAST OF FACILITIES REQUIREMENTS
	The Oleander Power Project
	Directly Associated Transmission Facilities 11
	Fuel Supply Arrangements and Facilities 12
	Status of Permits
Chapter 6	ENVIRONMENTAL AND LAND USE INFORMATION 14
	Site Description
	Land and Environmental Features
	Water Supply
	Air Emissions
	Noise Emissions

i

LIST OF SCHEDULES

1	Existing Generating Facilities as of December 31, 1999 .	18
2.1	History and Forecast of Energy Consumption and Number of Customers by Customer Class	19
2.2	History and Forecast of Energy Consumption and Number of Customers by Customer Class	20
2.3	History and Forecast of Energy Consumption and Number of Customers by Customer Class	21
3.1	History and Forecast of Summer Peak Demand	22
3.2	History and Forecast of Winter Peak Demand	23
3.3	History and Forecast of Annual Net Energy for Load	24
4	Previous Year and 2-Year Forecast of Retail Peak Demand and Net Energy for Load by Month	25
5	Fuel Requirements	26
6.1	Energy Sources (Units)	27
6.2	Energy Sources (Percent)	28
7.1	Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Summer Peak	29
7.2	Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Winter Peak	30
8	Planned and Prospective Generating Facility Additions and Changes	31
9	Status Report and Specifications of Proposed Generating Facilities (Units 1-5)	36
10	Status Report and Specification of Proposed Directly Associated Transmission Lines	37

LIST OF FIGURES

Figure 1	L:	Project One Line Diagram
Figure 2	2:	Regional Transmission Map
Figure 3	3:	Oleander Power Project Site Plan 40
Figure 4	l :	Oleander Power Project Site Location and Topographic Map

LIST OF TABLES

Table 1: Estimated Plant Performance and Emissions Data . . . 42

EXECUTIVE SUMMARY

Oleander Power Project, Limited Partnership ("Oleander"), pursuant to Section 186.801, Florida Statutes, and Rule 25-22.071, Florida Administrative Code, hereby submits its Ten-Year Site Plan for an Electrical Generating Facility, 2000-2009.

Oleander will own and operate the Oleander Power Project (the "Project"), an approximately 850 MW (average ambient conditions) natural gas-fired simple cycle combustion turbine generating facility that will be located in Brevard County, Florida. Expected to achieve commercial in-service status in June 2002, the Project will supply peaking capacity and energy for sale at wholesale to other utilities in Peninsular Florida.

The Project will include five advanced technology General Electric 7FA combustion turbine generators in simple cycle configuration. Each combustion turbine will be fueled by natural gas with low-sulfur distillate fuel oil as a back-up fuel. Each combustion turbine generator will have a heat rate (based upon the Lower Heating Values of the respective fuels) of 9,528 Btu per kWh when fueled by natural gas and 10,215 Btu per kWh when fueled by distillate fuel oil. The Project will satisfy all applicable environmental requirements. Most of the Project's process water will be reclaimed wastewater and stormwater supplied by the City of

Cocoa. Any additional water requirements will also be supplied by the City of Cocoa.

The Project is designed to serve the peak load requirements of Peninsular Florida. Oleander's current projections indicate that the Project will operate approximately 800 hours per year with projected generation of approximately 680,000 MWH per year, all of which will be sold at wholesale to other utilities.

The Project is designed to be interconnected to the Peninsular Florida transmission grid at the Florida Power & Light Company ("FPL") Brevard Substation. Natural gas for the Project will be purchased from a variety of suppliers and delivered to the site by Florida Gas Transmission Company. Distillate fuel oil for the Project will be purchased from nearby suppliers and delivered to on-site storage facilities by truck.

The Project will be located on Townsend Road in Brevard County, north and east of the intersection of Interstate Highway 95 and State Road 520. The site consists of approximately 38 acres immediately adjacent to and south of the FPL Brevard Substation.

The Project's direct construction cost, including all engineering, procurement, and construction functions, is expected to be approximately \$200 million, reflecting a cost of approximately \$235 per kW of installed capacity. The cost of interconnection to the Peninsular Florida transmission grid,

payable by Oleander, will be determined by FPL pursuant to its transmission tariffs.

OLEANDER POWER PROJECT, LIMITED PARTNERSHIP

Oleander Power Project, Limited Partnership will be the owner of, and will have operational responsibility for, the Oleander Power Project. Oleander Power Project, Limited Partnership is a Florida limited partnership and a wholly-owned indirect affiliate of Constellation Power, Inc., a Maryland corporation.

During the year 2000, Oleander expects to file with the Federal Energy Regulatory Commission for market-based rate authority pursuant to Section 201 of the Federal Power Act (16 USCA §824(b)(1)&(e)(1994)) and for certification as an Exempt Wholesale Generator pursuant to the Public Utility Holding Company Act of 1935 (15 USCA §§79 et seq.).

DESCRIPTION OF EXISTING FACILITIES

Oleander has no existing electric generation or transmission facilities in Florida. (See Schedule 1.)

FORECAST OF ELECTRIC POWER DEMAND AND ENERGY

Over the planning horizon covered in this Ten-Year Site Plan, the Oleander Power Project is projected to operate approximately 800 hours per year, with total generation of approximately 680,000 MWH per year, reflecting an estimated total capacity factor of 9.1 percent and an estimated load factor of 8.5 percent (based upon an annual peak demand of 910 MW).

As noted elsewhere in this Ten-Year Site Plan, all of the Project's sales will be made at wholesale to other utilities. Thus, Schedules 2.1 and 2.2, which require data for retail power sales, are not applicable. Schedule 2.3 presents the forecasted number of wholesale customers and sales for resale. Schedules 3.1, 3.2, and 3.3 present forecasted summer peak demand, winter peak demand, and net energy for load for the Project. Because of the high demand for capacity during peak use periods and the Project's relatively low-cost position among all peaking plants available to serve Peninsular Florida, Oleander projects that the Project's sales at the times of the summer and winter peaks (both the system peak experienced by Oleander and the Peninsular Florida coincident system peak) will be at the Project's full rated output, i.e., 777 MW at the time of the summer peak and 910 MW at the time of the winter peak.

Schedule 4 is not applicable to Oleander because it calls for retail sales and peak demand data.

Schedules 5, 6.1, and 6.2 present information regarding fuel requirements and energy sources for Oleander.

FORECASTING METHODS AND PROCEDURES

Based upon studies performed by Oleander, Oleander is confident that demand for peaking capacity in Peninsular Florida will be strong during the life of the Project, so that the market price for peaking capacity will be high enough to cover fixed costs and provide a reasonable return on investment in the Project. These studies include projections of peak demands and energy requirements for Peninsular Florida and estimations of when the Oleander Project would be economically dispatched within the Peninsular Florida power supply grid. Oleander is also confident that, based upon an analysis of fuel prices and heat rates for existing and planned generation in Peninsular Florida, utilities purchasing Oleander's capacity will require the Project to run approximately 800 full load hours per year. Energy payments during those 800 hours will cover all the estimated variable costs for operating the Project.

Oleander's long-term planning approach is to construct the Oleander Power Project and to operate it as efficiently as possible, in order to be a long-term participant in the Peninsular Florida wholesale power market. Oleander generally assumes that other Peninsular Florida utilities will construct and acquire generation and transmission resources in accordance with their

stated plans. The analyses are based on appropriate assumptions regarding existing and future fuel costs, new generating capacity costs, and projected additions and retirements from the generation and transmission systems. Oleander plans to operate the Project reliably and cost-effectively and to make mutually cost-effective sales to other Peninsular Florida utilities.

FORECAST OF FACILITIES REQUIREMENTS

Oleander Power Project, Limited Partnership anticipates making wholesale sales (sales for resale) to other electric utilities in Peninsular Florida. Oleander plans to construct the Project in order to deliver firm contract capacity and energy and to make other wholesale power sales to other Peninsular Florida electric utilities. As described above, Oleander needs the project to make its projected wholesale energy sales of approximately 680,000 MWH per year and to make peak capacity sales of approximately 777 MW (summer) and 910 MW (winter).

Schedules 7.1 and 7.2 present information regarding forecasts of capacity, demand, and scheduled maintenance at the time of summer and winter peaks. Because of its relatively low-cost position within the available peaking generation resources in Peninsular Florida, Oleander expects that in both summer and winter peak conditions, all of the Project's capacity will be committed on a firm basis to other Peninsular Florida utilities, even if only on a day-ahead or hourly basis. Accordingly, Oleander projects that its firm summer and winter peak demands will in fact be the full rated output of the Project for each respective season. Oleander believes that this information will be representative of Oleander's peak demands both at the time that peak seasonal demands are

imposed on Oleander and also at the time of the Peninsular Florida summer and winter coincident peaks. Schedule 8 presents information regarding planned and prospective generating facility additions and changes.

The Oleander Power Project

The Oleander Power Project will be a dual-fuel, simple cycle combustion turbine electrical power plant. The Project will consist of five GE 7FA Model 7431 advanced technology combustion turbine generators ("CTGs"). The total electrical output of the plant will be 850 MW at average temperature and humidity conditions. Additional information regarding the Project's characteristics and specifications is presented in Schedule 9.

Directly Associated Transmission Facilities

It is expected that there will be no new transmission lines directly associated with the Project. The Project is designed to be interconnected to the Peninsular Florida transmission grid via two 230 kV connections to FPL's Brevard Substation located on the boundary side of the Project site. Figure 1 is an electrical oneline diagram for the Project, and Figure 2 is a regional transmission map for the Project. Additional information concerning transmission facilities is contained in Schedule 10.

Power Technologies Inc. of Schenectady, New York performed a proprietary load flow study for the Project. The study concluded

that loads up to 1000 MW could be inserted into the FPL Brevard Substation with no line overloads and no transformer overloads. Generator step-up transformers were not included in the load flow study. The study used expected summer peak load for 1999 from the 1994/95 FCG data and 1996 SERC data. The study did not identify specific delivery points but only the insertion of the power into the system.

Fuel Supply Arrangements and Facilities

Natural gas supply to the Project is expected to be accomplished by constructing a lateral pipeline consisting of approximately 1200 feet of ten inch pipe in order to connect the Project to the Florida Gas Transmission ("FGT") main line. Gas transportation will be provided through a combination of interruptible service directly from FGT and both firm and interruptible service on the FGT system purchased from others who own capacity on that system. Commodity gas will be purchased through a combination of short- and long-term arrangements; some of these purchase arrangements may include transportation to the site.

Distillate fuel oil will be purchased from a nearby wholesaler and delivered by truck to the Project site. This backup fuel will be stored in a 5.6 million gallon on-site storage facility sufficient to operate the Project for three days solely on distillate fuel oil.

Status of Permits

Oleander has received or entered into, as applicable, the following environmental and land use permits, approvals, and agreements necessary to construct and operate the Project.

FAA Notice of Proposed Construction or Alteration FDEP Application to Operate/Construct Air Pollution Sources USACOE Dredge and Fill Nationwide Permit City of Cocoa Reclaimed/Stormwater Supply Contract City of Cocoa Potable Water Supply Contract City of Cocoa Annexation (Wastewater Service) Agreement Brevard County Concurrency Review

Oleander has applied for the following environmental and land use permits, approvals, and agreements necessary to construct and operate the Project and expects to receive them by the dates indicated.

FDEP Environmental Resource Permit (expected 4/15/00) NPDES Notice of Intent (Notice to be submitted 48 hours prior to construction commencement) FDEP General Permit for Potable Water Connection (6/1/00) FDEP General Permit for Wastewater Connection (6/1/00) FDOT Special Road Use Permit (7 days prior to transport of overweight/overdimensional loads) SJRWMD Secondary Water Use Agreement (3/31/00) Brevard County Site Plan and Wetland Impacts to Commercial and Industrial Land Development (5/31/00)

ENVIRONMENTAL AND LAND USE INFORMATION

This chapter provides a brief description of the Project to be developed by Oleander and discussions of land and environmental features of the site, water supply for the Project, and projected air and noise emissions from the Project.

Site Description

The Oleander Power Project will be located on a 38 acre tract near the City of Cocoa in eastern Brevard County. The site consists of approximately 38 acres situated northeast of the intersection of State Road 520 and Interstate Highway 95, as shown in Figure 3. Approximately 17 acres of the 38 acre parcel will be developed. The site is zoned for industrial use, and it is surrounded primarily by land of similar zoning. The majority of the surrounding land is undeveloped or used for commercial or industrial purposes. (See Figure 4.) Adjacent to the site is the FPL Brevard Substation, an industrial facility, and vacant land zoned as Planned Industrial Park. Townsend Road runs along the south side of the Project site, and additional land south of Townsend Road will be set aside for a conservation easement. Also to the south is vacant land zoned Transient Tourist Commercial. There is a small industrial facility located to the southeast of the site. To the east lies vacant land zoned for light and heavy

industrial use and additional properties occupied by various types of industrial and commercial businesses fronting on Cox Road. The FPL Brevard Substation occupies property immediately to the north of the site and is zoned for light industrial use.

Land and Environmental Features

The 38 acre site is comprised of several different land uses and covers, including pine flatwoods, which is the predominant vegetation community in the west-central portion of the site. The east-central portion of the site is occupied by a commercial business and maintained lawn. Several existing FPL transmission lines occupy the westernmost portion of the site and the easternmost portion of the site is comprised of disturbed marsh that is proposed to be enhanced as a component of the development of the Project.

A ditch and disturbed marsh will be impacted by the layout of the site. Enhancement of the easternmost marsh and preservation of a small marsh in the southwest corner of the site will mitigate the on-site impacts. No threatened or endangered species were observed during the listed species surveys of the site.

The nearest residential dwellings are located approximately 1,400 feet to the west of the site perimeter on the west side of Interstate 95, i.e., across Interstate 95 from the Project site. This area will be buffered by significant setbacks and landscape

buffers. Existing and future development to the south and east of the site will be buffered from the proposed facility by significant on-site landscape buffers and wildlife habitat under conservation easements.

<u>Water Supply</u>

Most of the Project's water requirements will be supplied by reclaimed wastewater and stormwater provided by the City of Cocoa. The City of Cocoa will provide potable water and any additional water necessary if the reclaimed water supply is insufficient when facility operation is required. It is anticipated that potable water and reclaimed water pipelines will be constructed by Oleander and deeded to the City of Cocoa. Relatively small amounts of water will be used for domestic purposes (drinking, cleaning, sanitation and the like). The remainder of the Project's water supply will be used for NO_x control when firing oil and other processes. The maximum daily water use when firing oil will be 950,000 gallons per day and the maximum daily water use when firing natural gas will be 122,000 gallons per day. On an annual average basis, the facility will use approximately 201,000 gallons per day of water.

<u>Air Emissions</u>

The Project will use natural gas as its primary fuel. When natural gas is not available, the Project will use low-sulfur (0.05% sulfur) distillate fuel oil. When operating with natural

gas, the Project will use state-of-the-art dry low-nitrogen oxide (NO_x) combustion technology to control emissions of NO_x . When using distillate fuel oil, NO_x will be controlled by water injection. Low-sulfur distillate fuel oil will be used to control sulfur dioxide (SO_2) emissions when the Project is operating on fuel oil. Good combustion practices and clean fuels will minimize potential emissions of particulate matter, carbon monoxide, volatile organic compounds, and other potential pollutants such as trace metals. At its projected output level of 680,000 MWH per year, the Project is expected to have the emissions profile set forth in Table 1.

<u>Noise Emissions</u>

A noise impact analysis was performed in order to determine the effect the Project would have upon ambient conditions and its ability to meet applicable noise standards. Ambient noise levels at the site are relatively high due to vehicular traffic on Interstate 95 and State Road 520 and other nearby activities. The Project will cause small increases in ambient noise levels at the property lines, but the levels will be well within EPA guidelines. By agreement with Brevard County, Oleander will limit noise levels at the Project site property lines to 65 dBA (L_{eq}).

	Oleander Power Project, Limited Partnership Schedule 1 Existing Generating Facilities As of December 31, 1999												
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
Plant Name	Unit <u>No.</u>	Location	Unit <u>Type</u>	Fuel <u>Pri</u>	Alt	Fuel Tr <u>Pri</u>	ansport <u>Alt</u>	Alt. Fuel Days <u>Use</u>	Commercial In-Service <u>Month/Year</u>	Expected Retirement <u>Month/Year</u>	Gen. Max. Nameplate <u>KW</u>	Net Car Summer <u>MW</u>	oability Winter <u>MW</u>
None													

		Oleander	Powe	r Project, Schedu	Limited Parille 2.1	tnershi	p	
		Number	of Cu	stomers b	ergy Consur y Customer	Class	and	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	_	Rural and	l Resider	ntial			Commercia	l
<u>Year</u>	Population	Members Per Household	<u>GWH</u>	Average No. of <u>Customers</u>	Agerage KWH Consumption Per Customer	<u>GWH</u>	Average Number of Customers	Average KWH Consumption Per Customer
Not App	licable							

The state of the s

)

ł

)

T

Ŧ

I

I

)

1

1

1

1

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		Industrial		_	Street &	Other Sales	Total Sales
		Average	Average KWH	Railroads	Highway	to Public	to Ultimate
		Number of	Consumption	and Railways	Lighting	Authorities	Consumers
<u>Year</u>	<u>GWH</u>	Customers	Per Customer	<u>GWH</u>	<u>GWH</u>	<u>GWH</u>	<u>GWH</u>

Not Applicable

ł

1

Ì

}

1

ł

Oleander Power Project, Limited Partnership Schedule 2.3 History and Forecast of Energy Consumption and Number of Customers by Customer Class

)

J

]

J

J

}

1

1

1

Ł

(1)	(2)	(3)	(4)	(5)	(6)
	Sales For	Utility Use	Net Energy	Wholesale	Total
	Resale	& Losses	For Load	Customers	Number Of
<u>Year</u>	<u>GWH</u>	<u>GWH</u>	<u>GWH</u>	(Average No.)	Customers
2002	397		397	3	3
2003	680		680	4	4
2004	680		680	4	4
2005	680		680	5	5
2006	680		680	5	5
2007	680		680	5	5
2008	680		680	5	5
2009	680		680	5	5

21

1

ł

}

	-						-										
	1		1	1	1	1	1	1	1	1	1	1	1	1	1	•	1
1	J	,			1	J	1	J	1	1	1	1	1	1	+	1	
													-			-	

I

Oleander Power Project, Limited Partnership Schedule 3.1 History and Forecast of Summer Peak Demand in MW

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
<u>Year</u>	<u>Total</u>	<u>Whoiesale</u>	<u>Retail</u>	Interruptible	Residential Load <u>Management</u>	Residential Conservation	Comm./ind. Load Management	Comm./Ind. Conservation	Net Firm <u>Demand</u>
2002	777	777	0						777
2003	777	777	0						777
2004	777	777	0						777
2005	777	777	0						777
2006	777	777	0						777
2007	777	777	0						777
2008	777	777	0						777
2009	777	777	0						777

		Olean	ider Power	Project, Lir Schedule (mited Partn 3.2	ership							
History and Forecast of Winter Peak Demand in MW													
(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)					
				Residential	Desidential	Comm./Ind.	O (t)						
Total	Wholesale	Dotail	Interruptible	LOBO	Consolution	Load	Comm./Ind.	Net Firm					
Total	THOICSAIC	retail	menuplible	manayemeni	CONSCIVATION	Management	COnservation	Demand					
910	910	0						910					
910	910	0						910					
910	910	0						910					
910	910	0						910					
910	910	0						910					
910	910	0						910					
910	910	0						910					
910	910	0						910					
	(2) <u>Total</u> 910 910 910 910 910 910 910 910	His (2) (3) <u>Total Wholesale</u> 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910 910	Olean History an (2) (3) (4) <u>Total Wholesale Retail</u> 910 910 0 910 910 0	Oleander Power History and Forecast (2) (3) (4) (5) Total Wholesale Retail Interruptible 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0 910 910 0	Oleander Power Project, Lit Schedule 3 History and Forecast of Winter (2) (3) (4) (5) (6) Residential Load Total Wholesale Retail Interruptible Management 910 910 0 910	Oleander Power Project, Limited Partn Schedule 3.2History and Forecast of Winter Peak Dema(2)(3)(4)(5)(6)(7)Residential LoadTotalWholesaleRetailInterruptibleManagementConservation910910091091009109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100	Oleander Power Project, Limited Partnership Schedule 3.2History and Forecast of Winter Peak Demand in MW(2)(3)(4)(5)(6)(7)(8)Residential LoadComm./Ind. LoadTotalWholesaleRetailInterruptibleManagementConservationManagement91091000910 <t< td=""><td>Oleander Power Project, Limited Partnership Schedule 3.2History and Forecast of Winter Peak Demand in MW(2)(3)(4)(5)(6)(7)(8)(9)Residential LoadComm./Ind. LoadTotalWholesaleRetail InterruptibleInterruptibleManagementConservation9109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100</td></t<>	Oleander Power Project, Limited Partnership Schedule 3.2History and Forecast of Winter Peak Demand in MW(2)(3)(4)(5)(6)(7)(8)(9)Residential LoadComm./Ind. LoadTotalWholesaleRetail InterruptibleInterruptibleManagementConservation9109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100910910091091009109100					

Oleander Power Project, Limited Partnership
Schedule 3.3
History and Forecast of Annual Net Energy for Load - GWH

1

)

ł

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		Residential	Comm./Ind.			Utility Use	Net Energy	Load *
Year	<u>Total</u>	Conservation	Conservation	<u>Retail</u>	Wholesale	& Losses	for Load	Factor %
2002	397				397		397	5.0
2003	680				680		680	8.5
2004	680				680		680	8.5
2005	680				680		680	8.5
2006	680				680		680	8.5
2007	680				680		680	8.5
2008	680				680		680	8.5
2009	680				680		680	8.5

24

)

)

* Load factor calculations are based on projected annual peak demand of 910 MW.

Oleander Power Project, Limited Partnership Schedule 4 Previous Year and 2-Year Forecast of Retail Peak Demand and Net Energy For Load by Month

1

}

))

1

1

)

1

1

1

1

(1)	(2)	(3)	(4)	(5)	(0)	(7)	
	Actual		Foreca	st	Foreca	st	
Month	Peak Demand <u>MW</u>	NEL <u>GWH</u>	Peak Demand <u>MW</u>	NEL <u>GWH</u>	Peak Demand <u>MW</u>	NEL <u>GWH</u>	
January February March April May June July August September October November December	Not Applicable						

1

J

Ì

1

)

}

Ŧ

				Oleand	er Powe F	r Project Sched uel Requ	:, Limite lule 5 iirement	d Partne ts	ership					
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
		Fuel Requiren	nents	Units		Actual	2002	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>
	(1)	Nuclear		Trillion BTU										
	(2)	Coal		1000 Ton										
	(3) (4) (5) (6) (7)	Residual	Total Steam CC CT Diesel	1000 BBL 1000 BBL 1000 BBL 1000 BBL 1000 BBL										
	(8) (9) (10)	Distillate	Total Steam CC	1000 BBL 1000 BBL 1000 BBI	NA	NA	183	313	313	313	313	313	313	313
26	(11) (12)		CT Diesel	1000 BBL 1000 BBL	NA	NA	183	313	313	313	313	313	313	313
	(13) (14) (15)	Natural Gas	Total Steam CC	1000 MCF 1000 MCF 1000 MCF	NA	NA	2,984	5,115	5,115	5,115	5,115	5,115	5,115	5,115
	(16)		СТ	1000 MCF	NA	NA	2,984	5,115	5,115	5,115	5,115	5,115	5,115	5,115
	(17)	Other (Specify	v)	Trillion BTU										

Oleander Power Project, Limited Partnership Schedule 6.1 Energy Sources (Units)

1

ł

1

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Energy Sources		Units	Actual	Actual	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>
(1)	Annual Firm Interchang	le	GWH										
(2)	Nuclear		GWH										
(3) (4) (5) (6) (7)	Residual	Total Steam CC CT Diesel	GWH GWH GWH GWH GWH										
(8) (9) (10)	Distillate	Total Steam CC	GWH GWH GWH	NA	NA	99	170	170	170	170	170	170	170
(11) (12)		CT Diesel	GWH GWH	NA	NA	99	170	170	170	170	170	170	170
(13) (14) (15)	Natural Gas	Total Steam CC	GWH GWH GWH	NA	NA	298	510	510	510	510	510	510	510
(16)		CT	GWH	NA	NA	298	510	510	510	510	510	510	510
(17)	Other (Specify)		GWH										
(18)	Net Energy for Load		GWH	NA	NA	397	680	680	680	680	680	680	680

27

)

}

Oleander Power Project, Limited Partnersh	ip
Schedule 6.2	
Energy Sources (Percent)	

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Energy Sources		Units	Actual	Actual	<u>2002</u>	<u>2003</u>	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>
(1)	Annual Firm Interchang	%											
(2)	Nuclear		%										
(3) (4) (5) (6) (7)	Residual	Total Steam CC CT Diesel	% % %										
(8) (9) (10)	Distillate	Total Steam CC	% % %	NA	NA	24.9	25	25	25	25	25	25	25
(11) (12)		CT Diesel	% %	NA	NA	24.9	25	25	25	25	25	25	25
(13) (14) (15)	Natural Gas	Total Steam CC	% • % %	NA	NA	75.1	75	75	75	75	75	75	75
(16)		СТ	%	NA	NA	75.1	75	75	75	75	75	75	75
(17)	Other (Specify)		%										
(18)	Net Energy for Load		%	NA	NA	100	100	100	100	100	100	100	100

Oleander Power Project, Limited Partnersnip
Schedule 7.1
Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Summer Peak

. . .

1

1

1

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
Maaa	Total Installed Capacity	Firm Capacity Import	Firm Capacity Export	QF	Total Capacity Available	System Firm Summer Peak Demand	Reserved Before M	ve Margin aintenance	Scheduled Maintenance	Reserv after Ma	e Margin intenance
rear	<u></u>	<u></u>	<u></u>	MVV		<u></u>	MVV	% of Peak	MVV	MVV	% of Peak
2002	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2003	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2004	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2005	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2006	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2007	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2008	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2009	777	0	0	0	777	777	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)

29

Notes:

.

1

1

)

1

1

1

)

(1) As a peaking plant, Oleander expects to deliver the full rated output of the Project at the time of summer peak.
(2) Given the relatively low number of operating hours each year, Oleander plans to perform all scheduled maintenance outside of those hours.

Oleander Power Project, Limited Partnership Schedule 7.2 Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Winter Peak

T

ł

j.

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	Total Installed Capacity	Firm Capacity Import	Firm Capacity Export	QF	Total Capacity Available	System Firm Winter Peak Demand	Resen before M	ve Margin aintenance	Scheduled Maintenance	Reserv after Ma	e Margin intenance
Year	<u>MW</u>	<u>MW</u>	<u>MW</u>	_ <u>MW</u>	<u>MW</u>	MW	MW	<u>% of Peak</u>	<u>W</u>	MW	% of Peak
2002	910 910	0	0	0	910 910	910 910	N/A (1) N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2003	910	ŏ	ŏ	Ő	910	910	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2005	910	0	0	0	910	910	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2006	910	0	0	0	910	910	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2007	910	0	0	0	910	910	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2008	910	0	0	0	910	910	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)
2009	910	0	0	0	910	910	N/A (1)	N/A (1)	N/A (2)	N/A (1)	N/A (1)

Notes:

(1) As a peaking plant, Oleander expects to deliver the full rated output of the Project at the time of winter peak.

(2) Given the relatively low number of operating hours each year, Oleander plans to perform all scheduled maintenance outside of those hours.

		Planned	Ole and F	eande Prospe	r Powe	er Proj Scl Gener	ject, Li hedule ating F	mited 8 Facility	Partnershij Additions	p and Chai	nges			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Unit		Unit	Fu	el	Fuel T	ransport	Const. Start	Commercial In-Service	Expected Retirement	Gen. Max. Nameplate	Net Ca Summer	pability Winter	
Plant Name	No.	Location	Туре	<u>Pri</u>	Alt	<u>Pri</u>	Alt	Date	<u> </u>	<u>Mo/Yr</u>	<u>KW</u>	<u>MW</u>	MW	Status
Oleander	1	Brevard Co.	СТ	NG	FO2	PL	тк	1/2001	6/2002	unknown	190,000	155	182	Planned
Oleander	2	Brevard Co.	СТ	NG	FO2	PL	TK	1/2001	6/2002	unknown	190,000	155	182	Planned
Oleander	3	Brevard Co.	СТ	NG	FO2	PL	TK	1/2001	6/2002	unknown	190,000	155	182	Planned
Oleander	4	Brevard Co.	СТ	NG	FO2	PL	ΤK	1/2001	6/2002	unknown	190,000	155	182	Planned
Oleander	5	Brevard Co.	СТ	NG	FO2	PL	ТК	1/2001	6/2002	unknown	190,000	155	182	Planned

J J J J J J J J J J J J J J J J J J

	Oleander Power	Project, Limited Partnership Schedule 9
	Status Report and Specifications	of Proposed Generating Facilities
(1)	Plant Name and Unit Number	Oleander Power Project #1
(2)	Capacity	
	a. Summer:	155 MW
	D. Willief.	182 MW
(3)	Technology Type:	Combustion Turbine Generator
(4)	Anticipated Construction Timing	
	a. Field construction start - date:	1/2001
	b. Commercial in service - date:	6/2002
(5)	Fuel	
	a. Primary fuel:	Natural Gas
	D. Alternate fuel:	Distillate Oil
(6)	Air Pollution Control Strategy:	Dry Low-NOx Combustor, Low Sulfur Fuel,
		Clean Fuel, Good Combustion Practices,
		Water Injection when firing oil.
(7)	Cooling Method:	N/A
(8)	Total Site Area:	38 acres
(9)	Construction Status:	Planned
(10)	Certification Status:	Not Applicable with Respect to the Power Plant
		Siting Act; air permits have been issued by the FDEP.
(11)	Status With Federal Agencies:	During the year 2000, Oleander expects to file with the Federal
,		Energy Regulatory Commission for Market-Based Rate
		Authority and Exempt Wholesale Generator Status.
(12)	Projected Unit Performance Data	
	Planned Outage Factor (POF):	3.0%
	Forced Outage Factor (FOF):	0.2%
	Equivalent Availability Factor (EAF):	96.8%
	Estimated Capacity Factor (%): Average Net Operating Heat Rate (ANOR):	0.0% 9.700 BTU/kWH /LHW based on 9.528 BTU/kWH when fueled
		by natural gas 75% of running hours and 10,215 BTU/kWH whe fueled by distillate fuel oil 25% of running hours (projected).
(13)	Projected Unit Financial Data	
	Book Life (Years):	30
	Total Installed Cost (In-Service Year \$/kW):	N/A 225/b)A/
	Estimated Direct Construction Cost (\$/KW):	
	AFUDC Amount (\$/k\AA	N/A

		Oleander Power	Project, Limited Partnership
_		Status Report and Specifications	Schedule 9 of Proposed Generating Facilities
-	(1)	Plant Name and Unit Number	Oleander Power Project #2
	(2)	Capacity a. Summer: b. Winter:	155 MW 182 MW
	(3)	Technology Type:	Combustion Turbine Generator
	(4)	Anticipated Construction Timing a. Field construction start - date: b. Commercial in service - date:	1/2001 6/2002
	(5)	Fuel a. Primary fuel: b. Alternate fuel:	Natural Gas Distillate Oil
-	(6)	Air Pollution Control Strategy:	Dry Low-NOx Combustor, Low Sulfur Fuel, Clean Fuel, Good Combustion Practices, Water Injection when firing oil.
	(7)	Cooling Method:	N/A
	(8)	Total Site Area:	38 acres
-	(9)	Construction Status:	Planned
	(10)	Certification Status:	Not Applicable with Respect to the Power Plant Siting Act; air permits have been issued by the FDEP.
-	(11)	Status With Federal Agencies:	During the year 2000, Oleander expects to file with the Federal Energy Regulatory Commission for Market-Based Rate Authority and Exempt Wholesale Generator Status.
-	(12)	Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor (FOF):	3.0% 0.2%
-		Equivalent Availability Factor (EAF): Estimated Capacity Factor (%): Average Net Operating Heat Rate (ANOR):	96.8% 8.5% 9,700 BTU/kWH (LHV) based on 9,528 BTU/kWH when fueled by natural cas 75% of running hours and 10 215 BTI //kWH when
-			fueled by distillate fuel oil 25% of running hours (projected).
-	(13)	Projected Unit Financial Data Book Life (Years): Total Installed Cost (In-Service Year \$/kW):	30 N/A
-		Estimated Direct Construction Cost (\$/kW): AFUDC Amount (\$/kW): Escalation (\$/kW):	235/kW N/A N/A

		Oleander Power	Project, Limited Partnership Schedule 9
_		Status Report and Specifications	of Proposed Generating Facilities
	(1)	Plant Name and Unit Number	Oleander Power Project #3
	(2)	Capacity a. Summer: b. Winter:	155 MW 182 MW
-	(3)	Technology Type:	Combustion Turbine Generator
-	(4)	Anticipated Construction Timing a. Field construction start - date: b. Commercial in service - date:	1/2001 6/2002
-	(5)	Fuel a. Primary fuel: b. Alternate fuel:	Natural Gas Distillate Oil
-	(6)	Air Pollution Control Strategy:	Dry Low-NOx Combustor, Low Sulfur Fuel, Clean Fuel, Good Combustion Practices, Water Injection when firing oil.
-	(7)	Cooling Method:	N/A
	(8)	Total Site Area:	38 acres
-	(9)	Construction Status:	Planned
-	(10)) Certification Status:	Not Applicable with Respect to the Power Plant Siting Act; air permits have been issued by the FDEP.
-	(11)) Status With Federal Agencies:	During the year 2000, Oleander expects to file with the Federal Energy Regulatory Commission for Market-Based Rate Authority and Exempt Wholesale Generator Status.
-	(12)) Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor (FOF):	3.0% 0.2%
-		Equivalent Availability Factor (EAF): Estimated Capacity Factor (%): Average Net Operating Heat Rate (ANOR):	96.8% 8.5% 9,700 BTU/kWH (LHV) based on 9,528 BTU/kWH when fueled by natural gas 75% of running hours and 10,215 BTU/kWH when fueled by distillate fuel oil 25% of running hours (projected).
-	(12)) Projected Linit Financial Data	
-	(13)	Book Life (Years): Total Installed Cost (In-Service Year \$/kW): Estimated Direct Construction Cost (\$/kW):	30 N/A 235/kW
		AFUDC Amount (\$/kW): Escalation (\$/kW):	N/A N/A

-			
		Oleander Power	Project, Limited Partnership Schedule 9
		Status Report and Specifications	of Proposed Generating Facilities
	(1)	Plant Name and Unit Number	Oleander Power Project #4
_	(2)	Capacity a. Summer: b. Winter:	155 MW 182 MW
	(3)	Technology Type:	Combustion Turbine Generator
	(4)	Anticipated Construction Timing a. Field construction start - date: b. Commercial in service - date:	1/2001 6/2002
-	(5)	Fuel a. Primary fuel: b. Alternate fuel:	Natural Gas Distillate Oil
-	(6)	Air Pollution Control Strategy:	Dry Low-NOx Combustor, Low Sulfur Fuel, Clean Fuel, Good Combustion Practices, Water Injection when firing oil.
-	(7)	Cooling Method:	N/A
	(8)	Total Site Area:	38 acres
	(9)	Construction Status:	Planned
-	(10) Certification Status:	Not Applicable with Respect to the Power Plant Siting Act; air permits have been issued by the FDEP.
-	(11)) Status With Federal Agencies:	During the year 2000, Oleander expects to file with the Federal Energy Regulatory Commission for Market-Based Rate Authority and Exempt Wholesale Generator Status.
-	(12)) Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor (FOF):	3.0% 0.2%
-		Equivalent Availability Factor (EAF): Estimated Capacity Factor (%): Average Net Operating Heat Rate (ANOR):	96.8% 8.5% 9,700 BTU/kWH (LHV) based on 9,528 BTU/kWH when fueled by natural gas 75% of running hours and 10,215 BTU/kWH when
-			fueled by distillate fuel oil 25% of running hours (projected).
-	(13)) Projected Unit Financial Data Book Life (Years): Total Installed Cost (In-Service Year \$/kW): Estimated Direct Construction Cost (\$/kW):	30 N/A 235/kW
-		AFUDC Amount (\$/kW): Escalation (\$/kW):	N/A N/A

	Oleander Power	Project, Limited Partnership
	Status Report and Specifications	of Proposed Generating Facilities
(1)	Plant Name and Unit Number	Oleander Power Project #5
(2)	Capacity a. Summer: b. Winter:	155 MW 182 MW
(3)	Technology Type:	Combustion Turbine Generator
(4)	Anticipated Construction Timing a. Field construction start - date: b. Commercial in service - date:	1/2001 6/2002
(5)	Fuel a. Primary fuel: b. Alternate fuel:	Natural Gas Distillate Oil
(6)	Air Pollution Control Strategy:	Dry Low-NOx Combustor, Low Sulfur Fuel, Clean Fuel, Good Combustion Practices, Water Injection when firing oil.
(7)	Cooling Method:	N/A
(8)	Total Site Area:	38 acres
(9)	Construction Status:	Planned
(1 0)	Certification Status:	Not Applicable with Respect to the Power Plant Siting Act; air permits have been issued by the FDEP.
(11)	Status With Federal Agencies:	During the year 2000, Oleander expects to file with the Federal Energy Regulatory Commission for Market-Based Rate Authority and Exempt Wholesale Generator Status.
(12)	Projected Unit Performance Data Planned Outage Factor (POF): Forced Outage Factor (FOF): Equivalent Availability Factor (EAF): Estimated Capacity Factor (%): Average Net Operating Heat Rate (ANOR):	3.0% 0.2% 96.8% 8.5% 9,700 BTU/kWH (LHV) based on 9,528 BTU/kWH when fueled by natural gas 75% of running hours and 10,215 BTU/kWH whe fueled by distillate fuel oil 25% of running hours (projected).
(13)	Projected Unit Financial Data Book Life (Years): Total Installed Cost (In-Service Year \$/kW): Estimated Direct Construction Cost (\$/kW): AFUDC Amount (\$/kW): Escalation (\$/kW):	30 N/A 235/kW N/A N/A

Oleander Power Project, Limited Partnership Schedule 10 Status Report and Specifications of Proposed Directly Associated Transmission Lines

- (1) Point of Origin and Termination: Oleander Project Site / Brevard Substation
 - (2) Number of Lines: See notes.
 - (3) Right of Way: See notes.
 - (4) Line Length: See notes.
- (5) Voltage: See notes.
- (6) Anticipated Construction Time: See notes.
- (7) Anticipated Capital Investment: See notes.
- (8) Substations: See notes.
- (9) Participation with Other Utilities: None

Notes:

(1) No additional transmission lines are required to connect the Oleander Power Project to the Peninsular Florida grid.

(2) The actual interconnection will be made to FPL's Brevard Substation prior to the Project's in-service date, with the costs, which will be paid by Oleander, determined in accordance with FPL's transmission tariffs.

BREAKER AND A HALF BUS ARRANGEMENT

Constellation- Oleander Power Project

1

1

)

Estimated Plant Performance and Emission Data 5 Simple Cycle Combustion Turbines General Electric F Class Combustion Turbine Generators

NATURAL GAS-FIRING

Combustion turbine load (%) Ambient temperature (oF) Relative humidity (%)	100 32 80	100 59 60	100 95 45	75 32 80	75 59 60	75 95 45	50 32 80	50 59 60	50 95 45
Evaporative cooler status/ efficiency (%)	Off	On	On	Off	Off	Off	Off	Off	Off
Net plant power output (KW)	975.8	934.3	844.0	753.3	684.3	596.4	500.6	454.6	396.1
Net CT power output (kW)	195.2	186.9	168.8	150.7	136.9	119.3	100.1	90.9	79.2
Net plant heat rate, LHV basis (Btu/kWh)	9,121	9,214	9,489	9,942	10,266	10,738	11,185	11.624	12.323
Net plant heat rate, HHV basis (Btu/kWh)	10,124	10,228	10,533	10,539	10.882	11.382	12,415	12,903	13.679
Net CTG heat rate, LHV basis (Btu/kWh)	9 121	9 2 1 4	9 489	9 942	10 266	10.738	11 185	11 624	12 323
Net CTG heat rate, HHV basis (Btu/kWh)	10,124	10,228	10,533	10,539	10,882	11,382	12,415	12,903	13,679
CTG fuel flow (ib/h)- total for five CTGs CTG heat input, LHV basis (mmBtu/h)- total for	413,810	400,270	372,360	348,180	326,615	297,730	260,350	245,705	226,915
five CTGs	8,900	8,609	8,009	7,489	7,025	6,404	5,600	5,285	4,881
CTG exhaust gas flow (Ib/h)- total for five CTGs	19,350,000	18,980,000	17,780,000	16,065,000	15,420,000	14,620,000	14,550,000	14,020,000	13,190,000
CTG exhaust gas composition (% by volume) Nitrogen &									
Argon	75.6	75.1	73.8	75.6	75.1	73.8	75.6	75.1	73.8
Oxygen	12.4	12.4	12.1	12.4	12.4	12.1	12.4	12.4	12.1
Carbon dioxide	39	38	37	39	3.8	37	3.9	38	37
Water	8.1	8.7	10.4	8.1	8.7	10.4	8.1	8.7	10.4
NOx as NO2 (lb/h)- total for five stacks	324	313	293	270	255	241	244	232	218
based on ppmvd @ 15% O2	9	9	9	9	9	9	9	9	9
CO (lb/h)- total for five stacks	210	205	190	174	167	156	160	153	135
based on ppmvd @ 15% O2	9.6	9.7	9.6	9.6	9.7	9.6	9.6	9.7	9.6
VOC as CH4 (lb/h)- total for five stacks	30.0	29.5	27.5	24.5	24.0	23.0	22.5	22.0	20.0
based on ppmvd @ 15% O2	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4	2.4
SO2 (lb/h)- total for five stacks	27.5	27.5	25.0	22.5	22.5	20.0	17.5	17.5	15 0
Particulates as PM10 (lb/h)- total for five stacks	45	45	45	45	45	45	45	45	45
CT exit gas velocity (ft/s) based on 22 ft diameter									
stack	113.9	112.5	107.6	98.4	95.5	91.4	82.1	80.1	77.3
CT exit gas temperature (oF)	1,109	1,115	1,138	1,173	1,186	1,190	1,043	1,059	1,087

]

1

1

1

ł

OIL-FIRING									-
Combustion turbine load (%)	100	100	100	75	75	75	50	50	50
Ambient temperature (oF)	32	59	95	32	59	95	32	59	95
Relative humidity (%)	80	60	45	80	60	45	80	60	45
Evaporative cooler status/ efficiency (%)	Off	On	On	Off	Off	Off	Off	Off	Off
Net plant power output (KW)	975.8	975.9	908.6	793.4	723.6	635 4	523.7	477.5	418.6
Net CT power output (kW)	195.2	195.2	181.7	158.7	144.7	127.1	104.7	95.5	83 7
Net plant heat rate, LHV basis (Btu/kWh)	9,875	9,831	10,005	10,541	10,880	11,388	11,905	12,368	13,088
Net plant heat rate, HHV basis (Btu/kWh)	10,468	10,421	9,954	11,173	11,533	12,071	12,619	13,110	13,8/3
Net CTG heat rate, LHV basis (Btu/kWh)	9,875	9,831	10,005	10,541	10,880	11,388	11,905	12,368	13,088
Net CTG heat rate, HHV basis (Btu/kWh)	10,468	10,421	9,954	11,173	11,533	12,071	12,619	13,110	13,873
CTG fuel flow (lb/h)- total for five CTGs CTG heat input, LHV basis (mmBtu/h)- total for	519,210	516,885	489,795	450,610	424,200	389,835	335,880	318,190	295,200
five CTGs	9,636	9,594	9,091	8,364	7,873	7,235	6,234	5,906	5,479
CTG exhaust gas flow (lb/h)- total for five CTGs	19,000,000	19,315,000	18,510,000	15,420,000	15,755,000	14,885,000	15,135,000	14,590,000	13,715,000
CTG exhaust gas composition (% by volume) Nitrogen &									
Argon	72.0	71.8	70. 6	72.0	71.8	70.6	72.0	71.8	70.6
Oxygen	10.6	10.7	10.5	10.6	10.7	10.5	10.6	10.7	10.5
Carbon dioxide	5.7	5.6	5.5	5.5	5.6	5.5	5.7	5.6	5.5
Water	11.8	11.9	13.3	11.8	11.9	13.3	11.8	11.9	13.3
NOx as NO2 (lb/h)- total for five stacks	1,721	1,722	1,639	1,487	1,405	1,318	1,371	1,301	1,215
based on ppmvd @ 15% O2	42	42	42	42	42	42	42	42	42
CO (lb/h)- total for five stacks	330	335	319	286	274	257	264	254	232
based on ppmvd @ 15% O2	13.3	13.4	13.4	13.3	13.4	13.4	13.3	13.4	13.4
VOC as CH4 (lb/h)- total for five stacks	56.5	57.5	55	48.5	46.5	45.0	45.0	43.0	41.0
based on ppmvd @ 15% O2	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
SO2 (lb/h)- total for five stacks	519	517	490	451	424	390	336	318	295
Particulates as PM10 (lb/h)- total for five stacks	85.0	85.0	85.0	85.0	85 0	85.0	85.0	85.0	85.0
CT exit gas velocity (ft/s) based on 22 ft diameter									
stack	112.7	114.4	111.4	100.6	97.5	93.3	83.2	81.2	78.4
CT exit gas temperature (oF)	1,114	1,109	1,123	1,166	1,179	1,190	998	1,014	1,043