BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DIRECT TESTIMONY OF

FRANCIS P. GAFFNEY

ON BEHALF OF

PANDA MIDWAY POWER PARTNERS, L. P.

April 24, 2000

> DOCUMENT NUMBER-DATE
> OSO46 APR 248 FPSC-RECOROS/REPORTING

BEFORE 'THE FLORIDA PUBLIC SERVICE COMMISSION
 IN RE: PETITION FOR DETERMINATION OF NEED FOR AN ELECTRICAL POWER PLANT IN ST. LUCIE COUNTY BY PANDA MIDWAY POWER PARTNERS, L.P. FPSC DOCKET NO. 000289-EU

DIRECT TESTIMONY OF FRANCIS P. GAFFNEY

Q: Please state your name and business address.

A: My name is Francis P. Gaffney, and my business address is 800 North Magnolia Ave., Suite 300, Orlando, FL 32803-3274.

Q: What is your occupation?
A: I am employed by R. W. Beck, Inc. as a Principal Engineer in Transmission Planning and Analysis.

Q: Please describe your duties with R. W. Beck, Inc. as applicable to the subject of your testimony.

A: I am responsible for transmission planning and operations studies for clients of R. W. Beck. These studies include generation interconnection studies, and interface limit studies involving load flow, short circuit and stability analyses.

Q: Please summarize your educational background and experience.
A: I have a Bachelor of Science, Magna Cum Laude, from Northeastern University in Electrical Engineering with a specialization in Electric Power Engineering. I have a Master of Engineering from Rensselaer Polytechnic Institute, in Electric Power Engineering. I have also completed all course work towards a Master of Science in

Management frons Lesley College. I am a member of the Eta Kappa Nu (Electrical Engineering) and Tau Beta Pi (Engineering) National Honor Societies.

I have more than fourteen years of engineering work experience. I worked for more than ten years with Boston Edison Company. For five of those years I was assigned to the transmission planning organization, and for two years, I managed the organization. For the past four years, I have worked for R. W. Beck and a subsidiary, TAVA/R. W. Beck, Inc., with continuing responsibilities in transmission planning. I have performed load flow studies, stability analyses, short circuit studies, electromagnetic switching studies, hamnonics studies, and other transmission related analyses, using varied software programs (e.g., PTI's PSS/E, GE's PSLF, EPRI's EMTP). These studies include generator interconnection studies, regional export/import studies, critical clearing time studies, rail electrification interconnection studies (harmonics), annual reliability assessment studies, short circuit mitigation studies, and others. Each of these studies examines the impact on the system or particular facilities. In addition to my extensive technical analysis experience, I was also a member of the New England Power Pool's Stability Task Force and several NEPOOL working groups.

For more information, my Curriculum Vitae is Exhibit FPG-1.

Q: Have you previously testified before regulatory authorities and courts?

A: Yes, I have testified at the Federal Energy Regulatory Commission ("FERC") on transmission related issues.

Q: What is the purpose of your testimony?

A: I am testifying on behalf of Panda Midway in support of Panda Midway's proposal to construct and operate the Panda Midway Generating Project ("Project"). My testimony demonstrates that the Project can be interconnected to the Florida Power and Light ("FPL") system and deliver power to peninsular Florida utilities with no significant adverse impact on transmission reliability.

Please summarize your testimony.
A: The Panda Midway Project is proposed to interconnect to the existing Midway 500 kV substation. I will discuss the methodology and data used to conduct the study. I will also discuss the results of the study that show that the proposed Project. along with some transmission system upgrades, has no significant adverse impact on the reliability of the peninsular Florida transmission system.

Q: Are you sponsoring any exhibits?
A: Yes. I am sponsoring the following exhibits:
FPG-1. Qualifications of Francis P. Gaffney
FPG-2. FRCC Generation Interconnection Load Flow Study Report

Q: Please describe R. W. Beck, Inc. and its business.

A: R. W. Beck, Inc. is a corporation of engineers and consultants founded in 1942 for the purpose of rendering professional engineering and consulting services in planning, financing, operating and designing facilities for utilities and energy users. Exhibit PAA-1 provides information about the firm's experience and qualifications.

Q: With what similar projects has R. W. Beck been involved, and in what capacity?
A: R. W. Beck has performed numerous studies for generator interconnection, including merchant power plants. Our role has included: Fatal Flaw Studies, System Impact Studies, reviews of System Impact Studies, and testimony on behalf of our clients.

Q: What are your responsibilities with respect to the Project that is the subject of these proceedings?

A: R. W. Beck has been retained to perform load flow and stability studies to evaluate the impacts on the transmission system of the proposed Project as a merchant plant selling wholesale power to other utilities in peninsular Florida. I have the primary responsibility for conducting these studies and evaluating the impact on the transmission system.

TRANSMISSION INTERCONNECTION FOR THE PANDA MIDWAY POWER STATION

Q: Please describe the transmission facilities by which the Panda Midway Plant will be connected to the Florida transmission grid.

A: Panda Midway is proposed to have a nine breaker Project 500 kV substation. The six turbines will be separately connected by their own Generator Step-up Units ("GSU's") to the Project 500 kV substation. Two new 500 kV lines will interconnect the Project 500 kV substation with the existing Midway 500 kV substation and appropriate breakers and associated equipment installed at the Midway substation.

Also, as part of the Project's interconnection, it is proposed to reconductor the Midway to Citrus and Citrus to Hartman 138 kV lines, or to install a series reactor to limit loading on these same two lines. Other alternatives to this proposal will also be considered.

TRANSMISSION SYSTEM IMPACT STUDY DATA AND METHODOLOGY

Q: How did you evaluate the impact of the proposed Project on the transmission system?

A: We evaluated the transmission system impacts of the Project by conducting load flow studies (also known as power flow studies or thermal analyses) in which we simulated the incremental impact of the Project on the power system. We are also performing stability analyses and are calculating three phase fault currents at buses in close proximity to the Project.

LOAD FLOW ANALYSIS

Q: Please briefly explain the purpose of load flow analyses.
A. Electrical systems consist of physical equipment, which is used to generate power, stepup power to a higher voltage and deliver power to customer loads through a series of lines and transformers. The characteristics of the transmission system's physical components can be modeled mathematically as impedances. When this impedance model is coupled with specific load levels, generation dispatch, voltage schedules, VAR inputs and area interchange schedules (for a multi-control area model), a load flow model of the system is defined for a single "snapshot" in time. When the load flow case
is solved, the load flow program will use mathematical methods to simulate flows and voltages on the modeled system based on the impedance of the system and the load flow inputs.

When examining the impact on the transmission system of a new generator, the system is first evaluated without the proposed project, the Base Case, and then evaluated with the Project, the Alternate Case. Electric utilities compile information about their power systems in load flow models and file these models at FERC as part of the FERC 715 filing. This is typically a good starting point for creating a Base Case -a case that represents the condition of the system before the change to the system being studied. An Alternate Case is then created to represent the system change being studied (e.g., adding a generator) and results of the load flow analysis of the Alternate Case are compared to results from the Base Case to examine the incremental impact of the system change.

Q: How did you conduct the load flow analysis?

A: We created three Base Cases without the Project: 1) Peak Load or 100% load level, 2) "Shoulder" Load or 60% load level, and 3) Light Load or 40% load level. Three different load levels were evaluated to reflect the varied conditions on the transmission system. Peak load is used for planning purposes to demonstrate that the resource's ability to serve load at the time the resource is most needed. Light load can represent a "worst case" for the transmission system in the immediate vicinity of the project as loads are reduced in the area requiring more exports from the region. The light load snapshot is used only for planning purposes since it does not always reflect that many units will be off-line or close to their minimum load dispatch levels. It is the purpose of the market price study as discussed by Mr. Davis to determine when the resource will
be dispatched on an economic basis. "Shoulder" load, or mid-load levels, can be the "worst case" for regions importing or exporting power. We evaluated the performance of the three Base Cases by testing a comprehensive set of contingencies to create a baseline performance for the existing power system.

We then modified the three Base Cases to include the Project and tested these three Alternate Cases using the same set of contingencies. The results of the Alternate Cases were compared with the Base Cases to evaluate the incremental impact of the Project on the performance of the power system.

This approach is common practice and is valuable because criteria violations in the existing system (if any) can be identified and any new criteria violations caused by the incremental impact of the project can be separately identified.

Q: How did you develop the peak load Base Case?

A: We obtained the 2004 FERC 715 filed summer peak load flow case from the FERC's web-site. We reviewed the ten-year site plans for each of the peninsular Florida utilities, the ten-year site plan of the Florida Reliability Coordinating Council ("FRCC"), and the Florida Public Service Commission's ("FPSC") review of the ten-year site plan. From these site plans, we included the generating projects and transmission reinforcements scheduled to be in service by 2004. We also included other Merchant Generator Projects that were publicly announced and have petitioned for a Certificate of Need (e.g., Duke New Smyrna and PG\&E Okeechobee). After adding the new generation resources, we made adjustments to other generating plants within peninsular Florida (generally turning off peaking units based on FERC Form 1 data on capacity factor, heat rate and operating costs) to maintain the same level of Florida Import as in the filed FERC 715 load flow case (approximately $2,350 \mathrm{MW}$).

Q: How did you develop the shoulder load and light load Base Cases?
A: Using the peak load case above, we scaled the load down within peninsular Florida to the 60% and 40% load levels. We maintained the $2,350 \mathrm{MW}$ Florida Import level at the 60% load level and reduced Florida Import to about $1,000 \mathrm{MW}$ at the 40% load level. We then adjusted generation within Florida to match load and losses, subtracting out the Florida Import. We adjusted the generation using the following guidelines:

1. Generation was turned off and reduced in the following order: (i) gas turbines and diesels, (ii) oil and gas fired steam units, (iii) repowered and green-field combined cycle plants, and (iv) coal plants. We did not turn off any nuclear units, large coal units, or cogeneration facilities except as noted below.
2. When deciding among generators with the same technology guideline we considered FERC Form 1 data for capacity factor, heat rate and costs (or forecasted heat rate and cost information for new units).
3. A general preference was given to keeping plants in close proximity to the Project in service. This results in a conservative study by increasing area export conditions and stressing the transmission system. In converse, plants far away from the Project will have little effect on the regional impacts of the Project.
4. A general preference was given to turning off generation in south Florida to enhance north to south flow through Florida.

At the 40% load level, we assumed that one nuclear unit would be out of service for maintenance: and/or refueling because 40% load level would likely be a fall or spring minimum load. For conservatism, we chose Turkey Point because it is distant from the proposed plant site, and, by taking this south of Miami unit out of service, it increases north to south flows.

Q: How were the Alternate Cases created?

A: Each of the three Base Cases was modified by including the Project at peak output (projected to be $1,040 \mathrm{MW}$) and adjusting generation within peninsular Florida using the same factors as previously mentioned.

Q: In the load flow analysis, did you study the combined effects of Panda Midway and Panda Leesburg?

A: Yes. The Base Cases excluded in the Panda Midway and Panda Leesburg projects (defined collectively as "Projects") and the Alternate Cases included the Projects. Because of the distance between the Projects, the impacts of each are easily separated and identifiable from each other.

Q: Did you evaluate the Project's capability to deliver power outside of Florida?

A: No. I understand from Panda Midway that their intent is to sell wholesale power within peninsular Florida, and accordingly R. W. Beck was not asked to evaluate sales outside of peninsular Florida.

Q: What steady state voltage and rating criteria were used in your study?

A: The transmission planning criteria used in the study are in accordance with "FRCC Planning Principles and Guides", and in accordance with FPL Planning Criteria as published with FPL's FERC 715 filing. The FRCC guides are not specific regarding quantitative criteria. The guides define probable contingencies as single contingencies (e.g., loss of any one element), and state, "Transmission systems should be capable of
delivering generator unit output to meet projected customer demands during normal and probable contingencies."

FPL Plarining Criteria as published with FPL's FERC 715 filing are as follows: "FPL has adopted transmission planning criteria that are consistent with the planning criteria established by the Florida Reliability Coordinating Council (FRCC) in its Principles and Guides for Planning Reliable Bulk Electric Systems. FPL has applied these planning criteria in a manner consistent with prudent utility practice. These criteria are included as part of the attachments to this response. There may have been isolated cases for which FPL may have determined it prudent to deviate from these criteria. The overall customers involved, the probability of an outage occurring, as well as other factors may have influenced this decision.

The criteria are used for planning purposes and not for operating the system. Some operating parameters such as time limited Emergency Ratings may be factored into the planning process provided there is sufficient time for operator actions without jeopardizing the safety and reliability of the transmission system ..."

FPL does use Emergency Ratings according to their criteria, when there is sufficient time for operator response. If an overload is caused by the Project, a potential response would be to reduce the output of the Project post-contingency to alleviate overload concerns. Therefore, for the purposes of the study performed, it is assumed that Emergency Ratings can be used.

The transmission planning criteria used in the study are in accordance with "FRCC Planning Principles and Guides". Because neither the FRCC guides nor the FPL criteria are specific, we used the following planning criteria, which are used by Florida Power Corporation ("FPC"):

- Voltage should be between 95% and 105% of nominal voltage for both normal conditions and contingencies.
- Loading on transmission lines and transformers should be under the Normal Rating (Rating 1) under normal conditions (Contingency 0).
- Under contingency conditions, the loading should be under the Emergency Rating (Rating 2).

Q: What areas were monitored in your analysis?

A: All of the peninsular Florida areas were monitored down to the 69 kV level.

Q: Please define contingency.

A: The Florida Reliability Coordinating Council defines a contingency as an "unexpected loss of a system element". Generally, a contingency is loss of any one transmission element, such as a transmission line, transformer or generator. The loss of the element could be due to any number of reasons such as lightring, birds, equipment failure, human error, etc. Although many failures are temporary and will be restored in less than fifteen seconds, for the purposes of the load flow study, the contingency is assumed to be long term (minutes to hours). The significance of a contingency is that while a transmission element is out of service, other transmission elements share in transmitting the power formerly being transmitted by the element that was lost, thereby increasing the non-outaged elements' loadings, potentially causing an overload situation or a voltage violation. In a load flow study, many different contingencies are tested.

Q: How did you select the contingencies used in your steady state analysis?
A: The "FRCC Planning Principles and Guides" define a "Probable Contingency" as "the loss of any single element (generating unit, transmission line or transformer." In accordance with these principles and guides, we tested, one at a time, every line and transformer contingency from 69 kV and up within the vicinity of the Project to assess the impact of the Project on the regional transmission system. We also tested, one at a time, every line and transformer contingency from 230 kV and up within peninsular Florida. In addition, we tested, one at a time, every generator contingency from 100 MW and up within peninsular Florida.

STABILITY ANALYSIS

Q: Were you able to complete your stability analysis?

No. The Florida Reliability Coordinating Council (FRCC) was asked to provide a stability case for the study, but, a case was not made available. The stability case is not available from the FERC 715 filing either. Therefore, the dynamic stability data were obtained from the Mid-Atlantic Area Council ("MAAC") System Dynamics Database Working Group ("SDDWG") database representing the entire eastern U.S. interconnection for the year 2003 summer peak. This data is publicly available from the MAAC web-site, which is accessible via the Pennsylvania - New Jersey - Maryland ("PJM") web-site (www.pim.com). However, due to the complexity of this very large (over $30,000 \mathrm{bus}$) model, we are still in the process of performing the study. Results will be made available shortly.

Q: How are you conducting the stability analysis?

A: In a similar fashion to the load flow analysis, a Base, peak load case was created and the performance of the power system was benchmarked with this Base Case. Then, the new plant was added and generation adjusted to create an Alternate Case. The results of the Alternate Case will be compared with the results of the Base Case to assess the incremental impact of the Project.

Q: How did you develop the contingency list used for your stability analysis?
A: We will simulate three-phase faults at either end of all 500 kV lines within Florida, and partially into Georgia. We will also study faults on 230 kV lines in close proximity to the Project.

Q: In the stability analysis, will you study the combined effects of Panda Midway and Panda Leesburg?

A: Yes. The Base Cases excluded the Projects, and there are two Alternate Cases, one that includes only Panda Leesburg, and another that includes both Panda Leesburg and Panda Midway.

Q: What were the results of the load flow study?

A: Exhibit FPG-3 shows the results of the load flow study. When analyzing the results we take several factors into consideration. These factors are:

1. Is the element overloaded in the Base Case? If the element is overloaded in the Base Case, then the overload is a Pre-Existing condition and it is likely that the Project would not be responsible for upgrades required to solve the overload concern. This also holds true if the results of the study indicate the same element is overloaded for other contingencies.
2. Does the overload exceed the Emergency Rating for a contingency (Rating 2)? If the loading cloes not exceed the element's Emergency Rating (Rating 2), then the line is able to carry the loading under contingency conditions.
3. Does the overload exceed 15% of the Normal Rating if the Normal Rating (Rating 1) equals the Emergency Rating (Rating 2)? Frequently, in the FERC 715 filed case, Rating 2 is published as the same as Rating 1. This can be due to several reasons. The filing entity may not have calculated an Emergency Rating for that element and, therefore, published the Normal Rating as the Emergency Rating. Typically, an Emergency Rating of a line is about 15\% greater than the Normal Rating. Tampa Electric Company ("TECO") uses this 115% of Normal Rating in their planning criteria (as published in their FERC 715 filing). The Normal and Emergency Ratings may also be equal due to other reasons, such as the line may be "sag" restricted, (e.g., restricted by clearance to ground of the conductor). Usually, this can be easily fixed by re-tensioning the line and possibly making minor modifications to some transmission structures. In addition, there might be minor equipment that limits the line, such as a disconnect switch.
4. Is the difference between the Base Case and the Alternate Case significant (e.g., greater than a 5% increase)? If the difference between the loading in the Base Case and the Alternate Case is insignificant, then the Project does not contribute significantly to the concern.
5. Is the location of the overloaded line distant from the Project? If the location of the overloaded element is distant from the project, then the cause of the overload is likely something other than the Project.
6. Is the overload insignificant? If the overload is very small (e.g., 101% to 103%), then the overload is within the error tolerances of the study, and/or it may be that the situation can be resolved through an operating measure, such as reducing the output of the Project, to eliminate the overload.

Q: Are there any potential concerns for integrating the Project into the Florida transmission grid.

A: There are two potential concerns:

- There is potential concern for the Hartman $138 \mathrm{kV} / 69 \mathrm{kV}$ transformers.
- There is concern for the Midway to Citrus and Citrus to Hartman 138 kV lines.

Q: Would you explain the potential concern for the Hartman $138 \mathrm{kV} / 69 \mathrm{kV}$ transformers?

A: There is a 69 kV system underlying the 230 and 138 kV system on the east coast of Florida in the Fort Pierce and Vero Beach area. There are several feeds from the 138 kV system into the 69 kV system, and, on loss of one of those feeds into the 69 kV system, other feeds into the 69 kV system become heavily loaded. In the peak load Base Case, the loss of the Emerson to Fv-Ctyln 138 kV line (one of the feeds into the 69 kV system) causes the Hartman $138 \mathrm{kV} / 69 \mathrm{kV}$ transformers to be loaded to $83 \%-84 \%$ of Rating 1, without the Project. Note that, as published in the FERC 715 loadflow database, Rating 1 equals Rating 2 (50 MVA) for these transformers.

The Project causes Hartman to be a stronger source to the 69 kV system, increasing the loading of the transformers to a contingency loading of $120 \%-122 \%$ of Rating 1 for the same contingency. This is of potential concern because it exceeds the 115% of Rating 1 that is typical of an Emergency Rating. However, transformers, because they are oil filled, take longer to heat up than overhead transmission lines. Therefore, the Emergency Ratings of transformers are often greater than 115% of Rating 1, and, since the loading exceeds Rating 1 by only $120 \%-122 \%$, it is likely that the overload is within an Emergency Rating for the transformer.

For example, the American National Standards Institute ("ANSI") Standard C57.92-1981 lisis a two hour Emergency Rating for a typical transformer (65 degrees Celsius rise, Forced-Air-Cooled Transformer rated over 133\% of self-cooled rating with an equivalent load of 70% of maximum nameplate rating pre-contingency, 30 degrees Celsius ambient temperature) as 129% of Nommal Rating with no loss of life. A onehour rating under the same conditions is 145% of Normal Rating. So, if the transformers cornply with the ANSI standards, the transformers should be able to carry this contingency loading.

My conclusion is that any significant adverse impact caused by the Project to these transformers can be eliminated through calculating an Emergency Rating and/or through operating measures to reduce the output of the Project post-contingency.

Q: Would you explain the potential concern for the 138 kV lines from Midway to Citrus and from Citrus to Hartman?

A: Similar to the above situation, there are several feeds into the 138 kV system from the 230 kV system in the Fort Pierce and Vero Beach area. In the Base Case, without the Project, if the Emerson 230 kV to 138 kV transformer is lost, the 115 kV lines fed from
the 230 kV at Midway (Midway to Citrus to Hartman) become heavily loaded to 87% of Rating 1. Note that, as published in the FERC 715 loadflow database, Rating 1 equals Rating 2 (272 MVA) for these lines.

The Project does cause Midway to be a stronger source to the 138 kV system, increasing the loading of the lines to a contingency loading of 133% of Rating 1 for the same contingency. This is of potential concern because it exceeds the 115% of Rating 1 that is typical of an Emergency Rating.

There are a couple of options for addressing the overloads of this 138 kV corridor:

- Upgrade the Midway to Citrus and Citrus to Hartman lines (estimated cost of $\$ 1.5$ to $\$ 2$ million).
- Install a series reactor to limit flow on this line (estimated cost of about $\$ 500,000$).

Preliminary analysis on the effectiveness of the series reactor was performed. This preliminary analysis indicated that the reactor effectively eliminates the overloads on this 138 kV corridor while not causing adverse conditions to other parallel lines.

The cost-effective solution appears to be a series reactor with an estimated cost of $\$ 500,000$.

My conclusion is that any significant adverse impact caused by the Project to these 138 kV lines can be eliminated either through reconductoring / upgrading the lines, or through installation of a series reactor.

Q: Did you perform sensitivities to Florida Interface import levels?

A: No. The location of the Panda Midway Project is sufficiently distant from the Florida Interface that the Project will have negligible impact from a load flow perspective on
the capability to import power into Florida, and vice versa. The study was performed at a conservative level of a Florida Import near its maximum firm capability.

Q: Did you study voltage stability?
A: No. Generally, voltage instability (e.g., voltage collapse) is caused by transferring large amounts of power over large distances (e.g., from Georgia to South Florida) without sufficient active voltage regulation. The addition of Panda Midway will not adversely impact active voltage regulation, and, in fact, should improve the voltage stability of Georgia to South Florida transfers by providing mid-point active voltage regulation.

SHORT CIRCUIT AND STABILITY RESULTS

Q: Are you able to make any observations regarding the results of the stability analysis or short circuit calculations?

A: Theoretically, a large, active source near the center of the east coast of Florida should not have an adverse impact on stability limits from Georgia to Florida. I expect study results to confirm that the Project will have no significant adverse impact on the system from a stability perspective. I have no observations concerning short circuit calculations yet.

CONCLUSIONS

3 Q: What is the overall conclusion of your analysis?
$4 \mathrm{~A}: \quad$ Based on results to date, with the interconnection scheme and the proposed 5 transmission upgrades and the operating schemes discussed, the Panda Midway project 6 has no significant adverse impact on the peninsular Florida transmission system.

8 Q: Does this conclude your direct testimony?
9 A: Yes

FRANCIS P. GAFFNEY

Rensselaer Polytechnic Inst.: Master of Engineering in Electric Power Engineering, GPA 4/4
Northeastern University: B.S. in Electrical Engineering, Power Systems, GPA 3.6/4

Since 1982, Mr. Gaffney has developed a diverse expertise in most aspects of the electric utility business, especially the electric power delivery business. During his career, he has been employed as:

- Transmission Planning Manager, expert in transmission planning studies and generator interconnection studies.
- National Director of Operations of a Y2k Consulting Firm, successfully operated $\$ 15 \mathrm{M}$ company.
- Manager of Delivery System Design, all aspects: transmission, substation, distribution and protective relaying.
■ Power Quality / Technology Expert.
- Project / Program Manager for many, varying projects.
- Marketing and Sales Manager.
- Strategic Planning / Change Management.

Transmission Planning

Managed the Transmission Planning group of Boston Edison. Principal Engineer with R. W. beck specializing in transmission planning studies.

- Former member of several NEPOOL Committees, including the Stability Task Force, the Southeast Mass. and Rhode Island (SEMA/RI) export study, and the Hydro-Quebec Phase II export study.
- Performed numerous load-flow, stability, short circuit and electro-magnetic transient studies. Some major categories of studies are listed below:
- Import Studies (e.g., Boston Import) (loadflow)
- Major load interconnection studies (e.g., bulk substations, Amtrak rail electrification) (loadflow, short circuit)
- Export Studies (e.g., SEMA/RI Export) (loadflow, stability)
- Critical Clearing Time studies (stability)
- Control System Contingency Studies (stability)
- Capacitor switching studies (electro-magnetic transient)
- Performed several interface limit studies, including Southeast Mass / Rhode Island Export, Hydro-Quebec Phase II export and involvement with the New York to New England interface and Maine to New Brunswick interface, both loadflow and stability analyses
- Performed numerous generator interconnection studies in various regions of the country, including NEPOOL, WSCC, SERC and FRCC (e.g., Fatal Flaw Studies,

System Impact Studies, Facilities Studies, Minimum Interconnection Studies, etc.), load flow, short circuit and stability analyses.

- Due diligence expert review for several merchant generator interconnections.
- Testified at FERC and local courts on transmission related subjects.
- Experienced with several different programs, including GE PSLF, PTI PSS/E, and EPRI EMTP.

Delivery System Design

Managed Delivery System Design for R. W. Beck, all aspects, including: transmission design (overhead and underground), substation, distribution and protective relaying. Managed Distribution Design, Senior Substation and Protective Relay Engineer for Boston Edison. Prepared numerous specifications, drawings, etc. for complete design packages. Performed numerous protective relay coordination studies. Performed several due diligence asset evaluations.

Operations Management

National Director of Operations for a start-up, limited duration, Year 2000 consulting firm. Developed work processes, developed employee reference manuals, conducted training, developed project manager tools, successfully managed the company's first project, helping the company achieve in the black operations within 6 months of start-up. Developed work management tools, metrics, backlog report, operations forecast pro-forma and other operations management tools to successfully operate the $\$ 15 \mathrm{M}$ company. Developed Exit Plan to successfully manage overhead costs while meeting commitments to clients and breaking even during the last 4 months of operation.

With Boston Edison, major contributor in numerous projects to improve operations, including: work process redesign, core business system requirements / replacement, change management efforts, etc. Major contributor to a Customer Response Program - evaluated adequacy and integration alternatives of existing IT "back-office" infrastructure, including: customer care system, work management system, materials management system, energy management system and AM/FM GIS System. Facilitated a culture change program (Pacific Institute's Investment in Excellence).

With R. W. Beck, performed several management audits of utility operations.

Power Quality / Technology

Power Quality expert. While at Boston Edison, consulted to numerous commercial and industrial customers. Helped develop a profitable Power Quality consulting business by developing work processes, standard cost estimates, marketing material and training the sales team. Proposed and participated in market research of residential, commercial and industrial customers of many sizes for power quality services. Taught seminars on power quality, Initiated a project to install power quality meters throughout the distribution system to measure the quality of power being delivered to customers. Power quality / reliability metrics expert.

With Boston Edison, company's expert on new technologies such as fuel cells, power electronics, superconducting, renewable energy sources, flywheels, etc. Performed cost benefit analyses, due diligence on start-up firms. Conducted training.

Project / Program Management

Managed several Y2k Remediation Programs successfully - on schedule, under budget. High quality delivery, such that clients expanded the scope to triple and quadruple the size of the projects. High client satisfaction, thank you letters received for a job well done. Design projects managed on schedule on budget.

Strategic Planning / Change Management

With Boston Edison. Managed a project studying the convergence of delivery utilities (e.g., electric, communications, water, gas). Principle contributor for entrepreneurial project to develop a power systern for a high bandwidth communication system for a Regional Bell Operating Company. Project Manger for a Distribution Business Pilot, a program to isolate a section of the distribution system, treat it as its own P\&L center, and evaluate modifications in technology and operations on P\&L. Facilitated a culture change program (Pacific Institute's Investment in Excellence). Developed a business plan to transition the engineering group into an engineering consulting group.

With R. W. Beck. Major contributor to develop a business plan for a schedule coordinator business. Major contributor to develop a model for the revenue cycle services marketplace that would allow revenue cycle services to be open to competition. Major contributor to develop a business plan for non-utility entities to enter the energy services business sector.

Honors

- Honorable Mention, Young Outstanding Electrical Engineer from the Eta Kappa Nu National Honor Society, 1991.
- Member of the Tau Beta Pi National Honor Society for Engineers
- Eta Kappa Nu National Honor Society for Electrical Engineers

Memberships and Continuing Education

- Completed course work for BS in Management, Lesley College, Cambridge, MA, 1995, GPA 3.8/4
- Leadership Development Program, University of Maryland \& Center for Creative Leadership, 1995.
- Industrial Power System Engineering, Power Technologies, Inc., Schenectady, NY (2.7 C.E.U's)
- Member for the Institute of Electrical and Electronics Engineers (IEEE)

FPSC DOCKET NO. 000289-EU Exhibit FPG-2
Page 1 of 37

FRCC GENERATION INTERCONNECTION LOAD FLOW AND STABILITY STUDY VOLUME 1: LOAD FLOW STUDY

MIDWAY SITE

PANDA MIDWAY POWER PARTNERS, L.P.

APRIL 24, 2000
INTRODUCTION 1
THE PROPOSED "PEOJECT" 1
LOAD FLOW STUDY METHODOLOGY 1
MODELING / STUDY ASSUMPTIONS 2
Case Developmen?. 3
DISPATCH ASSUMPTIONS 4
CONTINGENCIES 4
MONITORED INFORMATION 5
EVALUATION CRITERIA 5
FRCC SPECIFIC CRITERA 5
Regional Utilties;' Specific Criteria 6
TECO Single Contingency Planning Criteria 6
Florida Power Corporation Planning Criteria 6
Florida Power and Light Planning Criteria 6
CRITERIA USED FOR THIS STUDY7
RESULTS 8
ANALYSIS 10
The Hartman 138 KV to 69 KV Transformers 10
The Hartman to Citrus to Midway 138 kV Lines 10
APPENDIX A: LOAD FLOW RESULS. 1
100\% LOAD LEVEL 1
60\% LoAD Level 10
40% LOAD LEVEL 12
APPENDIX B: CONTINGENCY LIST 1

This report has been prepared for the use of the client for the specific purposes identified in the report. The conclusions, observations and recommendations contained herein attributed to RW. Beck, Inc. constinte the opinions of R. W. Beck, Inc. To the extent that statements, information and opinions provided by the client or others have been used in the preparation of this report, R,W. Beck, Inc. has relied upon the same to be accurate, and for which no assurances are intended and no representations or warranties are made. RW. Beck, Inc. makes no certification and gives no assurances except as explicitly set forth in this report.

Copyright 2000, R. W. Beck, Inc.
All rights reserved.

FRCC Generation Interconnection
 Load Flow and Stability Study

INTRODUCTION

In accordance with your request, this report summarizes the results of our load flow and stability study to examine the technical aspects of interconnecting a proposed 1000 MW plant addition to the Florida transmission grid.

THE PROPOSED "PROJECT"

The Proposed Project is two, two-on-one F-Series 500 MW combined cycle units. The proposed Project site near the Midway substation. The proposed plant will be referred to as the Project throughout the remainder of the report. The output of the proposed plant would be sold within Florida.
The proposed interconnection for the project will be to the existing Midway 500 kV substation via two new 500 kV lines.

LOAD FLOW STUDY METHODOLOGY

The goal of the Load Flow Analysis is to perform an evaluation of the incremental impact of the Project on the loading of the regional transmission system. To achieve this goal, R. W. Beck uses the following process:

1. A Base Case is developed to establish a baseline performance of the system before the Project.
2. Alternative Case(s) are then developed which include the Project.
3. Single contingency analysis is then performed on all of the cases.
4. Results from the Alternative Case(s) are compared to the results from the Base Case to evaluate the incremental impact of the Project on the loading of the transmission system.
5. The results are analyzed and presented.
R. W. Beck uses General Electric's PSLF program to run the load flow cases.

The purpose of the technical evaluation is to determine if upgrades to the existing transmission system are likely to be required to integrate the Project to
the transmission grid. This study does not determine when and if the proposed Project would be dispatched. It instead evaluates the impact of the proposed generation on the planned transmission system, i.e., the Base Case configuration. The transmission loadings are evaluated against the applicable line or transformer capability ratings to determine whether it is likely that particular system components will require upgrade, replacement or additional protection as a condition for interconnecting the proposed Project. This study is not purported to represent a comprehensive review or analysis of physical interconnection alternatives, operational conditions, right-of-way or permitting from a cost or technical standpoint.

When studying generation export conditions, worst case conditions are often at lighter load levels. Near minimum (approx. 40-50\%) load levels sometimes result in worst case conditions on the transmission system in close proximity to the Project, and "shoulder" load levels (approx. 60-70\%) sometimes result in worst case conditions for multiple generating plants exporting from a region. Therefore, analysis was also performed at these lighter load levels.

MODELING / STUDY ASSUMPTIONS

As with all load flow analyses, the results of the study are driven by the assumptions used in developing the load flow models. To minimize the impact of these assumptions, R. W. Beck starts the process with a FERC 715 load flow case model, and then details the changes made to the model in evaluating the resource addition. The most significant assumptions impacting the identified necessary improvements include:

- The "Merchant" (or other planned) Generation added to the Base Case load flow model.
- The re-dispatch of existing units used to offset the new projects, Including the Client's project.

This section discusses these assumptions, and others made in performing the study, such as contingencies evaluated and information monitored.
R. W. Beck reviewed the Ten-Year Site Plans for the FRCC and Florida utilities to determine what transmission system improvements and generator additions are planned to be added to the system, as well as other announced regional generation additions.

Table 1
New Generation in Region Included in Base Case

Developer	Type	Plant / Location	MW	ISD	Comments
Florida Power Corp.	CT	Intercession City	329	2001	Planned
Florida Power Corp	CC	Hines Energy Complex	470	2000	Already in FERC 715 2004 Case
FPL	CC	Fort Myers Repowering	926	2002	Already in FERC 715 2004 Case
FPL	CC	Sanford Repowering	2,280	2003	Already in FERC 715 2004 Case
Gainesville	CC	Kelly Unit 8 Repowering	110	2001	Planned
JEA	CT	Brandy Branch	149	2001	Planned
JEA	CFB	Northside	276	2002	Planned
FMPA	CC	Cane Island	240	2001	Already in FERC 715 2004 Case
Lakeland	CC	MacIntosh 5	337	2002	Already in FERC 715 2004 Case
SECl	CC	Paynes Creek	488	2002	Already in FERC 715 2004 Case
TECo	CC	Gannon Repowering	1,475	2004	Planned
Reliant	CT	Holopaw	460	2002	Planned
Duke Energy Power	CC	New Smyrna Beach	460	2001	Planned
PG\&E Generating	CC	Okeechobee Co.	560	2003	Planned
IPS/Avon Park	CT	Hardee Co.	460	2001	Planned
Panda Midway	CC	Midway	1,000	2003	Not included in Base Case, included in Alternate Case

Case Development

The 2004 summer peak load flow model filed at the Federal Energy Regulatory Commission ("FERC") by the FRCC was used as a starting point to create the cases for the study. The utilities in the State file load flow cases at FERC annually. The load flow cases submitted include projections for several different years. Each load flow case for a future year includes projected loads and the planned generation additions and dispatch, and transmission improvements to meet those loads. Each load flow case must have an equal amount of generation and load. R. W. Beck relies upon these load flow models but does not independently verify all of the data in the models.

The FERC 715 case is modified to incorporate the Announced Regional Generation (see Table 1) to create a 100% Base Case. The load was scaled to a 60% load level and a 40% load level and generation redispatched within peninsular Florida to create a 60% Base Case and a 40% Base Case, respectively. The method used to redispatch the generation is described in the following section: Dispatch Assumptions.
The Base Cases were then further modified to create the Alternate Cases by including the Project (and the Panda Midway project).
A total of six (6) cases were developed:

1. 100% Load Level Base Case
2. 60% Load Level Base Case
3. 40% Load Level Base Case
4. 100% Load Level Alternate Case
5. 60\% Load Level Alternate Case
6. 40\% Load Level Alternate Case

The essential difference between the Base Cases and the Alternate Cases is that the Base Case do not include Panda Midway nor Panda Midway, while the Alternate Cases do.

Dispatch Assuniptions

As discussed in the previous section, generation is adjusted from the FERC 715 case to accommodate the Announced Regional Generation assumed in the study (see Table 1) to create the Base Cases. Generation is further adjusted to accommodate the proposed plant to create the Alternative Case(s). Generation is adjusted considering the following factors:

- Turned off and reduced generation in the following order: (i) gas turbines and diesels, (ii) oil and gas fired steam units, (iii) repowered and greenfield combined cycle plants, (iv) coal plants.
- FERC Forrn 1 data for capacity factor, heat rate and costs (or forecasted heat rate and cost information for new units), when deciding among generators in the same technology.
- A general preference was given to keep plants in close proximity to the Project in service for a conservative study by increasing area export conditions and stressing the transmission system. And visa versa, plants far away from the Project will have little effect on the regional impacts of the Project.
- A general preference was given to enhance north to south flow through Florida (e.g., turning off generation in south Florida) further stressing the system
At the 40% load level, we assumed that one nuclear unit would be out of service for maintenance and/or refueling because 40% load level would likely be a fall or spring minimum load. For conservatism, we chose Turkey Point because it is distant from the proposed Project, and, by taking this south of Miami unit out of service it increases north to south flows.

CONTINGENCIES

A single contingency analysis was performed, in other words, one line or transformer is taken out of service at a time. To perform the contingency analyses, R. W. Beck created a contingency list containing all 230 kV and above transmission lines and transformers within peninsular Florida, all 69 kV to 138 kV lines and transformers in the region of the Project, and all generators larger than

100 MW within peninsular Florida. Appendix B is a list of the contingencies studied.

Monitored Information

For the Contingericy analyses, R. W. Beck monitored voltages and flows on lines and transformers 69 kV and higher within peninsular Florida to assess any violations outside of the planning criteria described in the following sections.

EVALUATION CRITERIA

Criteria are necessary to evaluate the performance of the transmission system within this analysis. This section describes 1) the coordinating council reliability criteria, 2) the regional utilities' reliability criteria, and 3) the criteria used for evaluation in this analysis.

FRCC Specific Criteria

FRCC has established Planning Principal and Guides, including criteria for reliability in system planning. While the FRCC states that this reliability criteria is not mandated by the FRCC, its purpose is to promote maximum coordination of planning, construction and utilization of generation and transmission facilities involved in interconnected operations. FRCC recognizes that the reliability of power supply in local areas is the responsibility of the individual FRCC members and each member has internal criteria for planning and reliability. The current FRCC Planning F'rincipals and Guides, as posted at the FRCC Web site, were adopted on September 25, 1996.
FRCC lists several guidelines pertaining to transmission adequacy, security, coordination, and protection systems. The guidelines define probable contingencies as single contingencies (e.g., loss of any one element), and states that: "Transmission systems should be capable of delivering generator unit output to meet projected customer dernands during normal and probable contingencies." In general, the guidelines reflect typical transmission planning criteria, but are rather broad and offer few specific parameters. For example, the FRCC guidelines include no numerical targets for line and transformer loading or voltage specifications for either normal (Rating 1) or contingency conditions (Rating 2).
R. W. Beck has assumed that the two ratings provided in the load flow models correspond to the normal and emergency ratings when the two ratings are different.

- Rating 1 - Normal Rating
- Rating 2 - Emergency Rating

Regional Utilities' Specific Criteria

TECO SINGLE CONTINGENCY PLANNING CRITERIA

Excerpted from TECO's 1998 FERC 715 Filing, Part 4.

TRANSMISSION SYSTEM LOADING LIMITS	
Transmission System Conditions	Acceptable Loading Limit for Transmission Lines and Transformers
Single Contingency, pre-switching	115% or less
Single Contingency, after all switching	100% or less
Bus Outages pre-switching	115% or less
Bus Outages after all switching	100% or less

FLORIDA POWER CORPORATION PLANNING CRITERIA

The Florida Power Corp. (FPC) Planning Criteria as published with FPC's FERC 715 filing is as follows:

- Voltage should be between 95% and 105% of nominal voltage for both normal conditions and contingencies.
- Loading on transmission lines and transformers should be under the Normal Rating under normal conditions.
- Under contingency conditions, the loading should be under the Emergency Rating.

FLORIDA POWER AND LIGHT PLANNING CRITERIA

The Florida Power and Light (FPL) Planning Criteria as published with FPL's FERC 715 filing is as follows:
"FPL has adopted transmission planning criteria that are consistent with the planning criteria established by the Florida Reliability Coordinating Council (FRCC) in its Principles and Guides for Planning Reliable Bulk Electric Systems. FPL has applied these planning criteria in a manner consistent with prudent utility practice. These criteria are included as part of the attachments to this response. There may have been isolated cases for which FPL may have determined it prudent to deviate from these criteria. The overall customers involved, the probability of an outage occurring, as well as other factors may have influenced this decision.

The criteria are used for planning purposes and not for operating the system. Some operating parameters such as time limited emergency ratings may be factored into the planning process provided there is sufficient time for operator
actions without jeopardizing the safety and reliability of the transmission system."
FPL does use emergency ratings according to their criteria, when there is sufficient time for operator response. If an overload is caused by the project, a potential response would be to reduce the output of the Project post-contingency to alleviate overload concerns. Therefore, for the purposes of this study, it is assumed that emergency ratings can be used.

CRITERIA Used for this Study

The transmission planning criteria used in the study are in accordance with "FRCC Planning Principles and Guides". Because neither the FRCC guides nor the FPL criteria are specific, we used the following planning criteria, which is somewhat standard and is used by FPC:

- Voltage should be between 95% and 105% of nominal voltage for both normal conditions and contingencies.
- Loading on transmission lines and transformers should be under the Normal Rating (Rating 1) under normal conditions (Contingency 0).
- Under contingency conditions, the loading should be under the Emergency Rating (Rating 2).
The results of the contingency analyses for the Alternate Cases are compared with the Base Case loadings for the same contingency to determine if the new facilities were responsible for any new overloads. The Results section details the overloads in the Alternative Cases, both with and without contingencies. The overloads are compared to the Base Case results to make an assessment of the severity of the overload, specifically, the incremental impact on the overloaded facility of integration of the Project. The following table lists guidelines used by R. W. Beck to evaluate the incremental impact of the Project.
- Is the element overloaded in the Base Case? If the element is overloaded in the Base Case, then, the overload is a Pre-Existing condition and it is likely that the Project would not be responsible for any upgrades required to solve the overload concern. This also holds true if the results of the study indicate the same element is overloaded for other contingencies.
- Does the overload exceed the Emergency Rating for a contingency (Rating 2)? If the lcading does not exceed the element's Emergency Rating (Rating 2), then, the line is able to carry the loading under contingency conditions.
- Does the overload exceed 15% of the Normal Rating if the Normal Rating (Rating 1) equals the Emergency Rating (Rating 2)? Frequently, in the FERC 715 filed case, Rating 2 is published as the same as Rating 1. This can be due to several reasons. The filing entity may not have calculated an emergency rating for that element and. therefore, published the Normal Rating as the Emergency Rating. The line may be "sag" restricted, e.g.,
restricted by clearance to ground of the conductor. Often, this can be easily fixed by re-tensioning the line and possibly minor modifications to some transmission structures. Or there may be minor equipment that limits the line, such as a disconnect switch. Typically, emergency ratings are about 15% greater than normal ratings (for example, TECO's planning criteria described above specifically mentions 15%). Therefore, for purposes of the analysis, if Rating 1 equals Rating 2, then the line is not reported as a new overload unless the overload exceed 115% of Rating 1 . Note that if the line is sag limited, or otherwise limited, some corrective action may be necessary to achieve this emergency rating.
- Is the difference between the Base Case and the Alternate Case significant (e.g., greater than a 5% increase)? If the difference between the loading in the Base Case and the Alternate Case is insignificant, then the Project does not contribute significantly to the concern.
- Is the location of the overloaded line distant from the Project? If the location of the overloaded element is distant from the project, then, the cause of the overload is likely something other than the Project.
- Is the overload insignificant? If the overload is very small (e.g., 101% to 103%), then, the overload is within error tolerances of the study, and/or it may be that the situation can be resolved through an operating measure, such as reducing the output of the Project, to eliminate the overload.

RESULTS

Appendix A consists of a series of tables listing all of the cases where Rating 1 was exceeded for both normal conditions (Contingency Number 0) and contingency conditions (preceded by a contingency number). Each line loading is listed in MW, MVAR and MVA for both the Base Case and Alternate Case, for the same contingency at the same load level. The rating is also reported as Rating 1 / Rating 2 , and the percentage of the rating is reported for both the Base Case and the Alternate Case for each load level.

The tables are organized by Load Level (e.g., 100% or Peak, 60% or Shoulder, and 40% or Light), and by the following categories (see discussion in the Evaluation Criteria section):

Potential Concerns	These are lines and transformers that are of potential concern to integrating the project into the transmission grid.
Overloaded for Another Contingency in the Base Case	These are lines that are overloaded for another contingency, and possibly another load level, in one of the base cases
Less that a 5\% Increase from the Base Case	These are lines where the loading increased only marginally
Distant from the Prolect	These are overloads distant from the Project.
Minor Overload	The overload is minor (e.g, 101\% to 103\%).
Does not Exceed Rating 2 for a Contingency	These lines are actually not overioaded since Rating 2 is not exceeded
Does not Exceed 115\% of Rating 1 for a Contingency if Rating 1 Equals Rating 2	115\% of Rating 1 is a typical value for an emergency rating, but, the emergency rating is either not published. or, is limited by another factor, often a minor factor (e.g., sag limited)
Pre-Existing Violations	These are lines overloaded in the Base Case for the same contingency.

Below is a table summarizing the results that are of potential concern to integrating the project into the interconnected peninsular Florida system. Note that the highest loading is shown in the table and the line may be overioaded for other load levels.

Potential Concerns

All under peak load conditions:

| Overload | | Outage | | Base
 Case
 Ldg
 MVA | Alt.
 Case
 Ldg
 MVA | Base Case
 (\% of
 Rating
 MVA | Alt. Case
 (\% of
 (\%ating 1) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Rating 1) | | | | | | | |$|$

Abstract

ANALYSIS The results discussed in the previous section caused potential concerns in two areas:

1. The Hartman 1.38 kV to 69 kV transformers
2. The Hartman to Citrus to Midway 138 kV lines.

The Hartman 138 kV to 69 kV Transformers

There is a 69 kV system underlying the 230 and 138 kV system on the east coast of Florida in the Fort Pierce and Vero Beach area. There are several feeds from the 138 kV system into the 69 kV system, and, on loss of one of those feeds into the 69 kV system, other feeds into the 69 kV system become heavily loaded. In the peak load Base Case, the loss of the Emerson to Fv-Ctyln 138 kV line (one of the feeds into the 69 kV system) causes the Hartman $138 \mathrm{kV} / 69 \mathrm{kV}$ transformers to be loaded to $83-84 \%$ of Rating, without the Project. Note that, as published in the FERC 715 load flow database. Rating 1 equals Rating 2 (50 MVA) for these transformers.

The Project does cause Hartman to be a stronger source to the 69 kV system, increasing the loading of the transformers to a contingency loading of $120-122 \%$ of Rating 1 for the same contingency. This is of potential concern because it does exceed the 115% of Rating 1 that is typical of an emergency rating. However, transformers, because they are oil filled, take longer to heat up than overhead transmission lines. Therefore, the emergency ratings of transformers are often greater than 115% of Rating 1, and, since the loading exceeds Rating 1 by only $120 \%-122 \%$, it is likely that the overload is within an emergency rating for the transformer.

For example, the American National Standards Institute (ANSI) Standard C57.921981 lists an two (2) hour emergency rating for a typical transformer (65 degrees C rise, Forced-Air-Cooled Transformer rated over 133% of self-cooled rating with an equivalent load of 70% of maximum nameplate rating pre-contingency, 30 degrees C ambient temperature) as 129% of normal rating with no loss of life. An one (1) hour rating under the same conditions is 145% of normal rating. So, if the transformers comply with the ANSI standards, the transformers should be able to carry this contingency loading.
The cost effective solution appears to be to calculate long term and short term emergency ratings for the transformers and to back down the Project output post-contingency to bring the transformer loading to within the appropriate rating.

The Hartman to Citrus to Midway 138 kV Lines

Similar to the above situation, there are several feeds into the 138 kV system from the 230 kV system. In the Base Case, without the Project, if the Emerson 230 kV to

138 kV transformer is lost, the 115 kV lines fed from the 230 kV at Midway (Midway to Citrus to Hartman) becomes heavily loaded to 87% of Rating 1. Note that, as published in the FERC 715 load flow database, Rating 1 equals Rating 2 (272 MVA) for these lines.

The Project does cause Midway to be a stronger source to the 138 kV system, increasing the loading of the lines to a contingency loading of 133% of Rating 1 for the same contingency. This is of potential concern because it does exceed the 115% of Rating 1 that is typical of an emergency rating.

There are a few options for addressing the overloads of this 138 kV corridor.

1. Upgrade the Midway to Citrus and Citrus to Hartman lines (estimated cost of $\$ 1.5$ to $\$ 2 \mathrm{M}$).
2. Install a series reactor to limit flow on this line (estimated cost of about $\$ 500,000$).

Preliminary analysis on the effectiveness of the series reactor was performed. This preliminary analysis indicated that the reactor effectively eliminates the overloads on this 138 kV corridor while not causing adverse conditions to other parallel lines.

The cost-effective solution appears to be a series reactor with an estimated cost of $\$ 500,000$.

APPENDIX A: LOAD FLOW RESULS

100% Load Level

Potential Concerns

No. Overload						Area	Outage			Base Case Ldg			Alt. Case Ldg				Base Case		Alt. Case	
										MW	MVar	MVA	MW	MVar	MVA	MVA	Rtg1	Rtg2	Kigl	$\underline{\mathbf{R}} \mathbf{t g} \bar{z}$
4	Xfrir	Hart-Fmp		Hartman	38/69kv	FTP	Emerson	to	Fv-Ctyin 138kv	41	9	42	61	7	61	50/ 50	84\%	84\%	122\%	122\%
4	Xfmr	Hart-Fmp	to	Hartman	138/69kv \#2	FTP	Emerson	to	Fv.Ctyln 138kv	41	9	41	60	7	60	50/50	83\%	83\%	120\%	120\%
90	Line C	Citrus	to	Hartman	138kv	FPL	Emerson	to	Emerson 138/230kv	236	25	238	359	46	362	272/272	87\%	87\%	133\%	133\%
	Line	Citrus	to	Midway	138kv	FPL	Emerson	to	Emerson 138/230kv	-236	-25	238	-359	-46	362	272/272	87\%	87\%	133\%	133\%

Distant from the Project

No. Overload					Area Outage				Base Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
									MW	MVar	MVA	MW	MVar	MVA		Rtg1	Rtg2	Rtgl	$\mathbf{k t g} 2$
143	Line	Enola	10	Umatilla 69kv	FPC	Hainesck	to	Sorrento 230kv	122	-9	122	161	-15	161	126/138	94\%	88\%	125\%	117\%
228	Line	Martin W	to	Reddick (1) 69ky	FPC	Archer	to	Pkrd 230kw	33	4	33	40	0	40	32/38	102\%	88\%	121\%	104\%
234	Line	Bell Tp	to	Trentor (2) 69kv	FPC	Fi Wht S	to	Newberry 230 kv	-33	10	34	-41	13	43	32/38	107\%	90\%	136\%	114\%
234	Line	Martin W	to	Reddick (1) 69ky	FPC	Ft Wht S	to	Newberry 230kv	35	3	35	39	0	39	32/38	106\%	92\%	120\%	103\%
237	Line	Inglis	to	Lebaron (3) 69kv	FPC	Newberry	to	Wilcox 230kv	38	-2	38	40	-3	49	32/ 38	115\%	99\%	123\%	106\%
267	Line	Homsitp2		Villa Tp (4) 115kv	FPC	Brkridge	to	Cryst Rv 500kv	-121	58	135	-131	6.1	145	$137 / 137$	98\%	98\%	105\%	105\%
267	Line	Martin W	to	Reddick (1) 69 kv	FPC	Brkridge	to	Cryst Rv 500kv	35	3	35	39	1	39	32/38	106\%	92\%	118\%	102\%

Less than a 5\% Increase from the Base Case

No. Overlead					Area	Outage			Base Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
									MW	MVar	MVA	MW	MVar	MVA		Rtgl	Rtg2	Rtg1	Rtg2
62	Line	Midway	to	Turnpike 230 kv	FPL	Indn Twn	to	Bridge 230 kv	636	190	664	652	191	679	647/647	99\%	99\%	101\%	101\%
181	Line	Dade Cty	to	DcNotap 69kv	TEC	Lk Tapn	ta	Brkridge 500kv	63	5	63	66	4	66	63/63	98\%	98\%	103\%	103\%
181	Line	Dc Notap	to	Ft King 69kv	TEC	Lk Tarpn	to	Brkridge 500kv	63	5	63	66	4	66	$63 / 63$	98\%	98\%	103\%	103\%
181	Line	Hudson	to	Hudsontp 115kv	FPC	Lk Tarpn	to	Brksidge 500kv	287	82	298	296	84	307	246/302	119\%	99\%	122\%	102\%

Does not Exceed Rating 2 for a Contingency

No. Overload

X	Ximr Emerson	to Emerson 138/230kv	FPL	Citrus		- Hartman 138kv
X	Xfmr Emerson	Emerson 138/230kv	FPL	Citrus	to	- Midway 138kv
$90 \times$	Xfmr Midway	to Midway 138/230kv \#2	FPL	Emerson	to	Emerson 138/230k
144	Line Curry Fd	to Stanton 230kv	FPC	Hainesck	to	Cent Fla 230kv
144 X	Xfrr Dallas	to Dallas 69/230kv	FPC	Hainesck	to	Cent Fla 230kv
144 L	Line Leesbg E	to Midway 69kv	FPC	Hainesck	to	Cent Fla 230kv
$155 \times$	Xfmr Clmt Est	to Clmt Est $69 / 230 \mathrm{kv}$	FPC	Clmt Est	to	Winderme 230kv
170 L	Line Hudson	to Hudsontp 115kv	FPC	Lk Tarpn		Hudson 230kv
177 L	Line Higgins	to Griffin 115kv	FPC	Griftin	to	Kathleen 230kv
178 L	Line Avon Pkn	to Frostprf 69kv	FPC	Griffin	to	West 230kv
178 L	Line Juneau-W	to Gannon 138kv	TEC	Griftin	to	West 230kv
178 L	Line So Gib	to B Bend 230ky	TEC	Grilin	to	West 230kv
180 L	Line Hudson	to Hudsontp 115kv	FPC	Lk Tatpn	to	Lkt-Dum2 500k
181 L	Line Higgins	Griffin 115kv	FPC	LkTarpn	to	Brksidge 500 kv
181 L	Line Disston	N East B 115kv	FPC	Lk Tarpn	to	Brkridge 500 kv
181 X	Xfmr River-S	to River-S $69 / 230 \mathrm{kv}$	TEC	Lk Tarpn	10	Brkridge 500kv
181 L	Line Jlth Ave	to So Gib 230kv	TEC	Lk Tarpn	to	Brkridge 500kv
181	Xlmor Hkrs Pt	to Hkrspt-S $138 / 69 \mathrm{kv}$	TEC	Lk Tarpn	10	Brksidge 500 kv
189 L	Line Curry Fd	to Stanton 230kv	FP	Deland		Silvi Sp 230kv

Base Case Ldg			Alt. Case Ldg			Rating	Base Case		Alt. Case	
MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtgl	Rtg2	1	Rtg2
-276		279	-412	-21	413	$400 / 577$	70\%	49\%	104\%	72\%
-276	-38	279	-412	-21	413	400/577	70\%	49\%	104\%	2\%
-170	-11	170	-225	-29	226	2244286	7\%	60\%	103\%	79\%
-404	0	404	-459	. 25	460	444/553	88\%	73\%	109\%	3\%
-140	-52	150	-145	-49	153	$150 / 280$	102\%	53\%	104\%	55\%
-78	23	81	-136	34	141	126/143	63\%	56\%	109\%	98\%
-178	-22	179	-253	-17	254	$250 / 280$	73\%	64\%	103\%	91\%
250	68	259	258	68	266	246/302	103\%	86\%	106\%	88\%
-137	59	149	-117	47	126	142/168	104\%	89\%	88\%	75\%
78	-4	78	76	3	76	75i 82	102\%	95\%	100\%	3\%
-305	-18	305	-294	-18	295	300/300	102\%	102\%	98\%	8\%
-656	-174	679	-613	. 170	636	634/634	103\%	103\%	96\%	69
238	72	249	243	69	252	246/302	99\%	83\%	100\%	84\%
- 156	51	164	-151	48	158	142/ 168	118\%	98\%	113\%	94\%
-124	-72	143	-124	-79	147	144/183	98\%	79\%	101\%	80\%
-214	-42	218	-210	-43	214	224/232	100\%	94\%	98\%	92\%
-599	-214	636	-577	-212	615	634/634	102\%	102\%	98\%	98\%
175	50	182	174	50	181	168/187	108\%	98\%	108\%	97\%
-395	1	395	-465	-26	465	444553	86\%	71\%	101\%	84\%

No.	Overioad			Area	Outage				Case			Case L		Rating	Base	ase	lt	
								MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtgl	Rtg2	Rtgl	Rtg2
195	Line Curry Fd	to	Stanton 230kv	FPC	N Longwd	to	Wir Spgs 230kv	-401	-15	402	-459	-47	461	444/553	87\%	72\%	101\%	83\%
198	Xfmr Stc East	to	Stc East 230/69kv	OUC	Tayls Ck	to	Holopaw 230kv	147	15	147	154	18	155	150\% 168	98\%	88\%	103\%	92\%
198	Line Stc East	to	Stc Nth 69kv	OUC	Taylr Ck	to	Holopaw 230kv	127	-5	127	133	-4	134	116/144	109\%	88\%	115\%	93\%
199	Line Curry Fd	to	Stanton 230kv	FPC	Wtr PkE	to	Wtr Spgs 230kv	-490	-27	491	-495	-36	496	444/553	107\%	89\%	108\%	90\%
204	Line Babspktp	to	Indlketp 69kv	FPC	Avon Pk	to	Ft Meade 230kv	-64	36	73	-59	34	68	75/82	101\%	89\%	94\%	83\%
204	Line Frostprf	to	lndiketp 69kv	FPC	Avon Pk	to	Ft Meade 230kv	66	-31	73	61	-29	67	75/82	101\%	89\%	94\%	82\%
207	Line Avon Pkn	10	Frostprt 69kv	HPC	Barcoia	to	West zūukv	77	-4	77	76	-3	76	73/ \mathbf{c}^{2}	102\%	94\%	10:\%	33\%
216	Line Union Hl	$t o$	Dadect T 69kv	FPC	Kathleen	to	Zephyt N 230kv	125	29	128	128	28	131	126/ 150	99\%	85\%	102\%	87\%
216	Xfmr River-S	to	River-S 69/230kv	TEC	Kathleen	10	Zephyr N 230ky	226	-26	227	-221	-26	223	$224 / 232$	103\%	98\%	101\%	96\%
217	Line Avon Pkn	to	Frostprf 69ky	FPC	N Bartow	to	Pebb 230kv	79	-3	79	78	-3	78	75/ 82	104\%	96\%	104\%	96\%
218	Line Avon Pkn	to	Frostprf 69kv	FPC	N Bartow	to	Selose T 230ky	79	-3	79	79	-4	79	75: 82	104\%	96\%	104\%	96\%
223	Line Avon Pkn	to	Frostprit 69kv	FPC	Wik Wale	10	Selose T 230ky	77	-4	78	77	-3	77	75/82	102\%	54\%	102\%	94\%
227	Line Mentshtp	to	Rectick 69kv	FPC	Archer	to	Martin W 230kv	-25	6	26	-33	10	34	32/ 38	81\%	68\%	107\%	90\%
232 I	Line Bell T p	to	Trenton 69kv	FPC	Ft Wht N	to	Ft Wht S 230 kv	-29	10	31	.35	11	37	32/38	97\%	81\%	116\%	97\%
232 L	Line Jasper	to	Wghtchpl 115kv	FPC	Ft Wht N	to	Ft Wht S 230kv	-8	31	31	.7	34	35	35/ 43	95\%	74\%	103\%	80\%
234 L	Line Bell Tp	to	Neals Tp 69kv	FPC	Ft Wht S	to	Newberry 230kv	23	-13	26	31	-17	35	32/38	82\%	69\%	111\%	93\%
207 L	Line Barcola	to	Pebb 230ky	FPC	Barcola	to	West 230kv	574	-16	574	529	-9	529	$492 / 542$	112\%	106\%	103\%	98\%
208	Line Avon Pkn	to	Frostprf 69kv	FPC	Barcola	10	Pebb 230ky	81	-4	81	79	-3	80	75/82	106\%	98\%	105\%	97\%
359	Xftrr River-N	to	River-N $230 / 69 \mathrm{kv}$	TEC	11th Ave	10	So Gib 230kv	222	70	233	215	66	225	224/234	104\%	100\%	100\%	96\%
370	Xftrr River-N	to	River-N $230 / 69 \mathrm{kv}$	TEC	So Gib	to	B Bend 23fky	223	68	233	216	65	226	224/234	104\%	100\%	101\%	96\%
378 L	Line Barcola	to	Pebb 230kv	FPC	Polkplnt	to	Hardesub 230ky	543	-27	544	517	-21	517	492/542	106\%	100\%	101\%	95\%
2371	Line Lebanon	to	Ottrcktp 69kv	FPC	Newberry	to	Wilcox 230kv	33	-6	33	35	-7	36	$32 / 38$	105\%	88\%	113\%	95\%
2381	Line Ottrcktp	to	Usher Tp 69ky	FPC	Newberry	to	Cr Plant 230kv	16	-21	26	21	-25	32	32/38	84\%	69\%	103\%	85\%
242 L	Line Jasper	to	Wghtchpl 115ky	FPC	Suwannee	to	Sterling 230kv	-19	35	40	-18	34	38	35/ 43	117\%	93\%	111\%	88\%
245	Xfmer Dallas	to	Datias 69/230kv	FPC	Andersen	to	Hoider 230kv	-142	-50	150	-144	-48	152	$150 / 280$	103\%	54%	104\%	54\%
246 L	Line Brkridge	to	Brkswl W 115kv	FPC	Brkridge	10	Brkswwtp 230kv	246	-10	246	254	-15	255	246/302	98\%	81\%	101\%	84\%
246 L	Line Hudson	to	Hudsontp 115kv	FPC	Brkridge	to	Brksvwtp 230kv	246	72	256	250	67	259	246/ 302	102\%	85\%	103\%	86\%
249 L	Line Sprghltp	to	Heritgtp 115kv	FPC	Brkridge	to	Hudsan 230kv	121	-53	133	129	-56	141	136/ 169	96\%	78\%	102\%	83\%
251	Line Hudson	to	Hudsontp 115kv	FPC	Bresuwtp	to	Gulfpine 230kv	260	66	268	267	64	274	246/302	107\%	89\%	109\%	91\%
256	Line Jasper	to	Wghtchpl 115kv	FPC	Cr Plant	to	Cryst R4 230kv	-15	38	41	-14	37	39	35/ 43	120\%	95\%	115\%	91\%
256	Ximo Dallas	to	Dallas 69/230kv	FFC	Cr Plant	to	Cryst R4230kv	- 142	-48	150	-145	-46	152	150/280	102\%	53%	104\%	54\%

No. Overload

Base Case Ldg			Alt. Case Ldg			Rating	Base Case		Alt. Case	
MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
-303	-19	304	-297	-19	297	3001300	101\%	101\%	99\%	99\%
-121	-52	132	-145	-47	153	150/280	90\%	47\%	104\%	54\%
-143	-50	151	-147	-48	155	1501280	104\%	54\%	106\%	55\%
-138	-52	148	-141	-49	149	150/280	101\%	53\%	102\%	53\%
-145	-45	152	-149	-47	157	150128	04\%	55\%	107\%	56\%
-123	-97	157	-123	-97	156	$144 / 1$	11\%	88\%	107\%	85\%
141	13	141	143	9	143	126/150	109\%	94\%	111%	95\%
237	91	254	241	87	256	246/302	104\%	85\%	103\%	85\%
1	-118	118	2	-126	126	125/137	97\%	88\%	101\%	92\%
138	38	143	135	37	140	143/143	102\%	107\%	99\%	99\%
-221	. 45	226	-217	-45	222	224/232	104\%	98\%	102\%	95\%
-523	. 130	539	. 504	-126	520	550/550	104\%	104\%	99\%	99\%
176	51	183	175	50	182	168/187	109\%	99\%	109\%	98\%
-67	-21	71	-66	-19	68	72121	102\%	59%	98\%	57\%
-13	36	38	-12	35	37	35/ 43	113\%	89\%	109\%	87\%
-304	-21	305	-297	-19	298	3001300	102\%	102\%	99\%	99\%
253	70	263	258	73	268	246/3	105\%	87\%	106\%	89\%
260	66	268	267	65	274	246/30	107\%	89\%	109\%	91\%
145	59	157	145	59	157	$150 / 15$	104\%	94\%	104\%	95\%
145	59	157	145	59	157	150/165	105\%	95\%	105\%	95\%
79	-3	79	78	-3	78	75i 82	103\%	95\%	103\%	95\%
175	17	181	174	47	180	168/187	108\%	97\%	107\%	96\%
- 301	-22	302	-294	-22	294	300/300	101\%	101\%	98\%	98\%
176	49	182	174	48	181	$168 / 187$	109\%	18\%	108\%	97\%
647	-184	673	616	-182	643	634/634	102\%	102\%	97\%	97\%
177	51	184	176	49	183	168/187	110\%	98\%	109\%	98\%
-144	-14	145	-136	-14	137	143/143	105\%	102\%	99\%	96\%
120	6	121	112	6	113	120/120	104\%	104\%	97\%	97\%
143	31	146	138	31	141	143/143	101\%	101\%	97\%	97\%
-218	-31	221	-213	-31	215	224/232	101\%	95\%	98\%	93\%
216	60	224	215	60	223	224/242	100\%	93\%	99\%	92\%

No. Overload

366 Line So Gib 367 Xfmr River-S 367 Line SoGib 370 Line Higgins 370 Line Cooldg 370 Xfme Sr60-N 370 Line Ruskint 2 371 Line SoGib 388 Xfinr Dallas 356 Line Juneau-w 356 Xfror Hkrs Pt 359 Line Higgins 359 Line Cooldg 359 Line Cargill 359 Xfrnr Sr60-N 359 Line Nitrm T 359 Line Pi Suttn 360 Xfmr River-S 360 Xfme Hers Pt 360 Line Mulb-S 364 Xfmr Hkrs Pt 366 Line Juneau-W

10 10	B Bend 230ky River-\$ 69/230ky
to	B Bend 230kv
to	Griffin 115kv
to	Juneau-W 138ky
to	Scrin-N 230/69kv
to	Delweb 69kv
to	B Bend 230kv
to	Dallas 69/230kv
to	Gannon 138kv
to	Hkispt-S 138/69kv
to	Griffin 115kv
to	Juneau-W i38kv
to	Baymet T 69kv
to	Srfiol N 230\% 69 kv
to	Pt Suttn 69kv
to	Baymet T 69kv
to	River-\$ 69/230kv
to	Hkrspt-S 138/69kv
to	Sandhl-W 69kv
to	Hkrspt-S 138/69kv
to	Gannon 138kv

to B Bend 230kv
to River-\$ $69 / 230 \mathrm{ky}$
to B Bend 230kv
to Griffin 115kv
to Juneau-W 138kv
3 r60-N 23069 kv
to Delweb 69ky
B Bend 230 kv
to Gannon 138kv
to Hkrspt-S 138/69kv
to Baymet T 69kv
o Sr60-N 230/69kv
-
to River-\$ $69 / 230 \mathrm{kv}$
to Sandhl-W 69kv
torsis
to Gannon 138ky

Area Outage

 TEC Srbo-S TEC Sr60-S FPC So Gib TEC SoGib TEC SoGib TEC So Gio TEC Ruskin T FPC Brdg-Dtum TEC River-N TEC River-N FPC 11th Ave TEC Hamptr TEC Hamptn TEC Hamptr TEC Gannon TEC $5 r 60-\mathrm{N}$to $\operatorname{Sr} 60-\mathrm{N} T 230 \mathrm{kv}$
to Sr60-S T 230 kv
to Sr60-S T 230kv
to B Bend 230kv
to B Bend 230kv
to B Bend 230 ky
to BBend 230 ky
to B Bend 230 kv
to Brkridge $500 / 230 \mathrm{kv}$
to Sr60-S T 230kv
to Sr60-\$ T 230 kv
to So Gib 230kv
to So Gib 230kv
to So Gib 230 kv
to SoGib 230 kv
to So Gib 230kv
to So Gib 230 kv
to Hamptn T 230kv
to Hamptn T 230 kv
to Hamptn T 230ky
to Sr60.N T 230ky
to Sr60-N T 230kv

Base Case Ldg			Alt. Case Ldg			Rating MVA	Rase Case		Alt. Case	
MW	Mvar	MVA	MW	Mvar	MVA		Rtg1	Rtg2	Rtg1	Rtg2
-648	-184	674	-621	-183	647	634/634	102\%	102\%	98\%	98\%
-219	-29	224	-215	-30	217	224/232	101\%	95\%	99\%	93\%
-641	-180	665	-614	-178	640	634/634	101\%	101\%	97\%	97\%
-133	51	142	-124	47	133	142/ 168	101\%	85\%	93\%	79\%
-242	25	243	-234	23	235	249/249	101\%	101\%	97\%	97\%
192	60	201	189	58	198	196/208	103\%	97\%	101\%	95\%
$\overline{6} \mathbf{i}$	16	83	79	15	81	82' 62	161\%	101\%	780\%	98\%
-652	-172	674	-625	-171	648	634/634	102\%	102\%	98\%	98\%
-138	-52	148	-141	-49	149	150/280	101\%	53\%	102\%	53\%
-303	-19	303	-296	-19	297	3000300	101\%	101\%	99\%	99\%
175	47	182	174	46	180	168/187	108\%	97\%	107\%	96\%
-134	51	143	-125	48	133	142'168	101\%	86\%	94\%	79\%
-248	22	249	-238	20	239	249/249	104\%	104\%	99\%	99\%
94	26	97	89	24	92	93/ 93	105\%	105\%	99\%	99\%
188	59	197	184	57	193	196/208	100\%	95\%	98\%	93\%
-80	-17	82	-76	-15	77	72120	116\%	68\%	109\%	64\%
-93	-21	95	-88	-19	90	72/121	135\%	79\%	128\%	75\%
-225	-34	227	-220	-35	223	224/232	104\%	48\%	102\%	96\%
178	49	185	177	48	183	168/187	110\%	99\%	103\%	98\%
-143	-16	144	-137	-17	138	143/143	103\%	103\%	98\%	98\%
177	46	183	175	46	181	$168 / 187$	109\%	98\%	108\%	97\%
-300	-21	300	-293	-21	294	$30 / 300$	100\%	100\%	98\%	98\%

Overload Does not Exceed 115\% of Rating 1 if Rating 1 Equals Rating 2

No. Overlond					Area Outage				Buse Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
									MW	MVar	MVA	MW	MVar	MVA		Rugl	Rtg2	Rtg1	Rtg 2
90	line	Hartman	to	F Pierce 138kv	FPL	Emerson	to	Emerson 138/230ky	165	39	169	263	39	266	241/241	71\%	71\%	112\%	112%
139	Xfmr	Hart-Fmp	to	Hartman 138/69kv \#2	FTP	Hartman	to	Hart-Fmp 69/138kv	38	-10	40	49	- 41	50	50/ 50	81\%	81\%	102\%	102\%
140	Xfinit	I	to		ETP	Hartmax	t	Hart Fmp 60/1396y \#?	39	-10	40	49	-! !	50	$50 / 50$	82\%	82\%	103\%	103\%
181	Xfror	Brkrjdge	to	Brdg-Dum 230\%00k	FPC	Lk Tarpn	to	Brkridge 500kv	-676	-146	691	-710	-146	725	750/ 750	96\%	96\%	101\%	101\%

Pre-Existing Violations - Overloaded in the Base Case without the Proiect

No. Overload					Area	Outage			Base Case Ldg			Alt. Case Ldg			Rating	Base Case		Alt. Case	
									MW	MVar	MVA	MW	MVar	MVA	MVA	Rtgl	Rtg2	Rtgl	Rtg2
0	Line	Howey Tp	to	Howeymtr 69kv	FPC	No Outage			32	11	33	32	11	33	32/38	102\%	87\%	103\%	88\%
0	Line	Howeymar	to	Howey 69 kv	FPC	Na Outage			32	10	33	32	$!1$	33	31/ 37	106\%	89\%	107\%	90\%
0	Line	Dlarpttp	to	Dalasmet 69kv	FPC	No Outage			-59	-29	66	-54	-30	62	50/62	132\%	106\%	125\%	100\%
0	Line	Dlarpttp	to	Belvew 69kv	FPC	No Outage			67	29	73	67	29	73	52/ 52	141\%	141\%	142\%	142\%
0	Line	Dalasmet	10	Dallas 69kv	FPC	No Dutage			-59	-29	66	-55	-30	62	50/62	132\%	106\%	125\%	101\%
0	Xfmr	Dallas	to	Dallas 69/230kv	FPC	No Dutage			-137	-50	146	-140	-49	148	150/280	100\%	52\%	101\%	53\%
0	Line	Martin W	to	Reddick 69kv	FPC	No Outage			33	4	33	36	2	36	32/38	100\%	86\%	110\%	95\%
0	Line	BrtSt T	to	Lee 138kv	FPL	No Outage			.221	-78	234	-221	-78	234	173/173	137\%	137\%	137\%	137\%
0	Lire	Corbett	to	Lee 138 kv	FPL	No Outage			-171	-58	181	-171	-58	181	173/173	103\%	103\%	103\%	103\%
0	Xfmr	Miccosk	to	Miccosk 115/69kv	FPC	No Cutage			28	11	30	28	11	30	20. 20	152\%	152\%	152\%	152\%
0	Line	Hudson	to	Sea P Tp 115kv	FPC	No Outage			126	50	135	126	50	135	114/114	118\%	118\%	118\%	118\%
0	Xfmr	Juneau-E	to	Juneau-E 138/69kv	TEC	No Outage			184	27	186	181	27	183	168/183	111\%	102\%	109\%	100\%
0	Xfmr	Hkrs Pt	to	Hkrspt-S 138/69ky	TEC	No Outage			173	46	179	172	45	178	168/187	107\%	96%	106\%	95\%
18	Line	Britgoab	to	Morris 69kv	FPL	Okechobe	to	Morris 69kv	. 54	-87	103	. 54	. 87	103	44/44	235\%	235\%	235\%	235\%
57	Line	Midway	to	Wh Ctytp 138kv	FPL	Sanpiper	to	Turnpike 230kv	252	93	268	252	93	268	241/241	110\%	110\%	110\%	110\%
95	Xfrme	Sherman	to	Sherman 69/230kv	FPL	Sherman	to	Sherman 69/230ky \#2	-58	-6	58	-58	-6	58	50/ 50	120\%	120\%	120\%	120\%
113	Line	Midway	to	Wh Ctytp 138kv	FPL	Sampiper	to	Sampiper 138/230kv	252	93	268	252	93	268	241/241	110\%	110\%	110\%	110\%
131	Xfmr	Hart-Fmp	to	Hartman 138/69kv	FTP	Ftp-Ga C	to	Fv-Ctyln 138kv	58	1	58	58	5	58	50/ 50	115\%	115\%	116\%	116\%

	o. Overload		Area	Outage		
131 X	1 Xfror Hart-Fmp	to Hartman 138/69ky \# 2	FTP	Ftp-GaC	to	Fv-Ctyln 138kv
141 X	1 Xfmr Hart-Frnp	to Hertman 138/69kv	FTP	Garden C	to	Ftp-GaC 69/138kv
141 X	1 Xfmr Hart-Frop	to Hartman 138/69kv \#2	FTP	Garden C	to	Ftp-GaC 69/138kv
151 X	1 Xfmr Altamont	to Altamont $69 / 230 \mathrm{kv}$	FPC	Spg Lake	to	Altamont 230kv
177 Xf	7 Xfmr Juneau-E	to Juneaute 138/69kv	TEC	Griffin	to	Kathleen 230kv
178 Xf	Xfmr Juneau-E	to Juneau-E 138\% 69kv	TEC	Griffin	to	West 230kv
181 Xf	1 Xfmr Juneau-E	to Juneau-E 138/69kv	TEC	Lk Tarpn	to	Brkridge 500kv
181 Li	1 Line Juneau-W	to Gannon 138ky	TEC	Lk Tappn	to	Brkridge 500kv
181 Li	1 Line So Gib	to B Bend 230kv	TEC	Lk Tarpn	to	Brkridge 500kv
189 Li	9 Line Dlarpttp	Dalasmet 69kv	FPC	Deland W	to	Silvr Sp 230kv
189 Li	9 Line Dalasmet	to Dallas 69kv	FPC	Deland W	to	Silvr Sp 230kv
201 X	1 Xfmr Juneau-E	to Juneau-E $138 / 69 \mathrm{kv}$	TEC	Loughman	to	Intercsn 230kv
$202 \times$	2 Xfmr Juneau-E	to Juneau-E $138 / 69 \mathrm{kv}$	TEC	Loughman	to	WIk Wale 230kv
204 Li	4 Line Avon Pkn	to Frostprf 69ky	FPC	Avon Pk	to	Ft Meade 230kr
214 Li	4 Line Avon Fkn	to Frostprf 69ky	FPC	Ft Meade	to	Whk Wale 230kv
214 Li	4 Line Barcoia	to Pebt 230kv	FPC	Ft Meade	to	Wlk Wale 230kr
216 X	6 Xfmr Juneau-E	to Juneau-E 138 69kv	TEC	Kathleen	to	Zephyr N 230kv
227 Li	7 Line Martin W	to Reddick 69kv	FPC	Archer	to	Martin W 230kv
238 Li	8 Line Inglis	Lebanon 69kv	FPC	Newberry	to	Cr Plant 230kv
238 Li	8 Line Lebanon	to Ottrektp 69kv	FPC	Newberry	to	Cr Plant 230kv
238 Li	8 Line Martin W	to Reddick 69kv	FPC	Newberry	to	Cr Plant 230kv
245 Li	Line Dlarptp	to Dalasmet 69kv	FPC	Andersen	to	Holder 230kv
245 Li	5 Line Dalasmet	to Dallas 69kv	FPC	Andersen	to	Holder 230kv
255 X	5 Xfrur Juneau-E	to Juneau-E $938 / 69 \mathrm{kv}$	TEC	Cr Plant	to	Cryst Re 230kv
256 L	6 Line So Gib	to B Bend 230kr	TEC	Cr Plant	to	Cryst R4 230kv
256 L	6 Line Dlarpttp	Dalasmet 69kv	FPC	Cr Plant	10	Cryst R4 230kv
256 L	6 Line Dalasmet	to Dallas 69kv	FPC	Cr Plant	10	Cryst R4 230kv
$256 \times$	6 Xfrrir Juneau-E	to Juneau-E 138/69kv	TEC	Cr Plant	10	Cryst R4 230kv
264 X	4 Xfmr OcR-Oak	to OcR-Oak 230/69kv	FPC	Ocala 1	to	Ocala 1 230kv
267 Li	7 Line Juneau-W	to Gannon 138kv	TEC	Brkrdge	to	Cryst Rv 500kv
267 Li	7 Line Higgins	to Griffin 115 kv	FPC	Brkridge	to	Cryst Rv 500kv

Base Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
MW	MVas	MVA	MW	MVar	MVA		Rtg1	Rtg2	Rtg1	Rtg2
57	1	57	57	4	57	50/50	113\%	113\%	113\%	113\%
58	1	58	58	5	58	50/ 50	115\%	115%	116\%	116\%
57	1	57	57	4	57	50/50	113\%	113\%	113\%	113\%
-231	-45	236	-213	-69	224	201/224	122\%	105\%	117%	100\%
187	27	188	182	27	184	168/183	112\%	103\%	109\%	100\%
190	27	192	184	27	186	168/183	114\%	105\%	111\%	102\%
191	37	194	188	37	192	$168 / 183$	116\%	106\%	114\%	10゙5\%
-310	-35	312	-305	-36	308	300/300	107\%	107\%	105\%	105\%
-710	. 293	768	-689	-286	746	634/634	117\%	117\%	114\%	114\%
-60	. 28	66	-58	-29	64	50/62	134\%	107\%	130\%	104\%
-60	-28	66	-58	-29	65	50/62	134\%	107\%	130\%	104\%
186	27	188	183	27	185	168/183	112\%	103\%	110\%	101\%
186	27	188	183	27	185	168/183	112\%	103\%	110\%	101\%
101	-6	101	95	-6	95	75/82	135\%	123\%	128\%	116\%
88	-4	88	88	-4	88	75/82	115\%	106\%	116\%	107\%
582	-13	582	574	-4	574	492/542	114\%	107\%	112\%	106\%
189	28	191	186	29	188	168/183	114\%	105\%	112\%	103\%
42	1	42	50	-3	50	32/ 38	127\%	109\%	152\%	131\%
43	. 8	43	49	-9	50	32/ 38	132\%	114\%	152\%	132\%
38	-12	39	44	-14	46	32/38	123\%	103\%	143\%	120\%
38	2	38	43	-1	43	32/ 38	116\%	100\%	130\%	112\%
-68	-27	73	-62	-29	68	50/62	148\%	118\%	138\%	110\%
-68	. 27	74	-62	-29	69	$50 / 62$	148\%	118\%	138\%	111\%
185	31	188	182	30	185	168/183	112\%	103\%	110\%	101\%
-668	-175	690	-640	-172	663	634/634	105\%	105\%	101\%	101\%
-70	-24	74	-65	-26	70	50/62	149\%	119\%	142\%	113\%
-70	-24	74	-65	-26	70	50/62	149\%	120\%	142\%	114\%
188	28	190	185	27	187	168/183	113\%	104\%	111\%	102\%
147	74	165	147	74	165	150/165	510\%	100\%	110\%	100\%
-319	.37	322	-316	-36	318	300/300	113\%	113\%	f10\%	110\%
-190	56	198	-183	61	193	142/168	146\%	119\%	141\%	115\%

No. Overload

L	Line Dlarpte	to Da
67	Line Dalasmet	to Dallas 69kr
267 L	Line 11th Ave	to So Cib 230ky
L	Line SoGib	to B Bend 230kv
267 L	Line Dade Cty	to De Notap 69kv
267	Line DcNotap	to Ft King 69ky
271	Line Diarpttp	lasmet 69k
271 L	Line Dalasnet	to Dallas 69kv
X	reau	to Juneau-E 138/69k
X	eau-E	to Juneau-E 138/69kv
X	Heau-E	to Juneau-E 138/69kv
350 X	Xfrnr Juneau-E	to Juneau-E 138/69kv
352 X	Xfmr Juneau-E	to Juneau-E 138/69kv
354 X	Xfmr 11th Ave	to Elever-E 230/69kv
356 X	eau-E	to Juneau-E $138 / 69 \mathrm{kv}$
$357 \times$	eau-E	to Juneau-E 138/69kv
$358 \times$	eau-	ea
358 X	rs Pt	to Hkssp
63 X	neau-E	sea
363 X	Xfmr Hkrs Pt	Hkrspt-S 138
366 X	krs Pt	to Hkrspt-S $138 / 6$
X	XImr Hkrs Pt	to Hkrspt-S 138/69
370 X	Xfmr River-S	to River-S 69/230kv
370 X	Xfmr Hers Pt	to Hkrspt-S 138 69kv
370 X	mr Belcrk	to Belcrk 230/69kv
370 X	Xfmr Ruskin T	to Ruskin 230/69k
271 Li	Line SoGib	B Bend 230ky
299 Li	Line Putnam	Tocoi 230kv
309 Li	Line Osceola	Studio 69kv
310 Li	Line Osceola	to Studio 69k
319 Li	Line Osceola	to Studio 69kv

Area	Outage	
FPC	Brkridge	to Cryst Rv 500 kv
FPC	Brkridge	to Cryst Rv 500kv
TEC	Brkridge	to Cryst Rv 500kv
TEC	Brkridge	to Cryst Rv 500ky
TEC	Brkridge	to Cryst Rv 500kv
TEC	Brkridge	to Cryst Rv 500kv
FPC	Crystrv	to Cryst R 500 kv
FPC	Cryst Rv	to Cryst R5 500kv
TEC	Crystrv	to Cryst R5 500kv
TEC	Brkridge	to Cryst Rv 500kv
TEC	Sheid	to Jaxsn230 230kv
TEC	Sheld	to Ohio-S 230kv
TEC	Dimbry-E	to Chapman 230kv
TEC	Ohio-N	to 11th Ave 230kv
TEC	River-N	to Sr60-S T 230kv
TEC	River-S	to B Bend 230 kv
TEC	Chapman	to Gannon 230kv
TEC	Chapman	to Gannon 230kv
TEC	Gannon	to Srf0-S T 230kv
TEC	Gannon	to Sr60-S T 230ky
TEC	Scrio-N	to Sri0-N T 230 kv
TEC	Sr60-S	to Sr6i-S T 230 kv
TEC	So Gib	to B Bend 230kv
TEC	So Gib	to B Bend 230kv
TEC	So Gib	to B Bend 230kv
TEC	So Gib	to B Bend 230kv
TEC	Cryst Rv	to Cryst R 5000 kv
FPL	Greenind	to Swtzrind 230kv
TEC	Can Ist	to Ouccitpl 230ky
TEC	Can Isl	to Ouctip2 230kv
TEC	Taft	to Ouccitel 230 kv

Base Case Lag Alt Case Ldg Rating Base Case Alt. Case MW MVar MVA MW MVar MVA MVA Rtg1 Rtg2 Rtgl Rtg2

-63	-27	69	-59	-29	66	50/ 62	139\%	111\%	132\%	106\%
-63	-27	69	-59	-29	66	$50 / 62$	139\%	111\%	132\%	106\%
-658	-240	701	-637	-226	676	634/634	114\%	114\%	109\%	109\%
-768	-337	838	. 748	-315	812	634/634	130\%	130\%	125\%	125\%
64	10	65	66	7	65	63/63	109\%	100\%	103\%	103\%
64	10	65	66	7	66	63/63	100\%	100\%	103\%	103\%
-65	-26	70	-60	-28	66	$50 / 62$	141\%	113\%	134\%	1 107%
-65	-26	70	-60	-28	66	50162	141\%	113\%	134\%	107\%
189	28	191	186	27	188	1688/183	114\%	105\%	112\%	103\%
195	39	199	193	38	197	168/183	118\%	110\%	117\%	108\%
188	28	191	186	28	188	168/183	113\%	104\%	112\%	103\%
210	37	213	201	36	204	168/183	127\%	116\%	122\%	112\%
190	30	192	186	30	188	$168 / 183$	114\%	105\%	112\%	103\%
254	71	263	247	67	256	224/246	118\%	107\%	114\%	104\%
191	29	193	187	29	190	$168 / 183$	115\%	106\%	113\%	104\%
188	31	191	185	31	187	168/183	113\%	104\%	112\%	102\%
216	39	220	211	39	215	I68/ 183	131\%	120\%	128\%	117\%
181	52	188	179	51	186	168/187	112\%	101\%	111\%	100\%
192	30	195	189	30	191	$168 / 183$	116\%	106\%	114\%	105\%
191	52	198	190	51	197	168/ 187	118\%	106\%	117\%	105\%
181	51	188	180	50	186	168/187	112\%	100\%	111\%	100\%
194	54	202	193	53	200	$168 / 187$	120\%	108\%	119\%	107\%
-252	-35	254	-245	-34	247	$224 / 232$	116\%	110\%	113\%	107\%
191	58	199	189	57	198	168/187	119\%	107\%	118\%	106\%
245	58	252	240	56	246	224/247	113\%	103\%	110\%	100\%
173	49	179	169	45	175	168/175	107\%	103\%	104\%	100\%
. 673	-179	696	-645	-172	668	634/634	106\%	106\%	101\%	101\%
391	165	424	392	164	425	402/402	102\%	102\%	103\%	103\%
154	9	155	159	11	160	143/143	106\%	106\%	110\%	110\%
151	3	151	159	8	159	143/143	164\%	104\%	111\%	111\%
154	9	155	159	$1]$	160	143/143	1069	106\%	110\%	110\%

No. Overtoad

323	Line Osceola	to Studio 69kv	TEC	Ouccitp2	to	Osceola 230kv
352	Line Juneau-W	to Gannon 138kv	TEC	Dimbry-E	to	Chapman 230 kv
352	Xfmr Chapman	to Chapman 230/69kv	TEC	Dimbry-E	to	Chapman 230kv
352	Line SoGib	to B Bend 230 kv	TEC	Dlmbry-E	to	Chapman 230kv
353	Xfmr Juneau-E	to Jtineau-E 138/69kv	TEC	Ohio-N	to	Ohio-S 230ky
354	Line Cooldg	to Ohio 138ky	TEC	Ohio-N	to	11th Ave 230kv
354	Line Juneau-W	to Gannon 138ky	TEC	Ohio-N	to	11 th Ave 230kv
370	Line Cooldg	to Ohio 138kv	TEC	So Gib	to	B Bend 230ky
370	Line Juneau-W	to Ganton 138kv	TEC	So Gib	to	B Bend 230ky
370	Line Sevens-T	to Twelfth 69kv	TEC	So Gib	to	B Bend 230kv
357	Line Gannon	to ST60-S T 230kv	TEC	River-S	to	B Bend 230kv
357	Line So Gib	to B Bend 230kv	TEC	River-S	to	B Bend 230kv
358	Line River-N	to Cte-Coll 69 kv	TEC	Chapman	to	Gannon 230kv
358	Xfrme River-S	to River-S 69/230ky	TEC	Chapman	to	Gannon 230kv
358	Line Fort6 $\mathrm{T}^{\text {d }}$	to Gre-Coll 69kv	TEC	Chapman	to	Gannon 230kv
358	line Juneau-W	to Ganпon 138kv	TEC	Chapman	to	Gannon 230kv
358	Line Gannon	to Sr60-S T 230kv	TEC	Chapman	to	Gannon 230kv
358	Line SoGib	to B Bend 230kv	TEC	Chapman	to	Gannon 230kv
359	Line Cooldg	to Ohio 138 kv	TEC	11th Ave	to	Sa Gib 230kv
359	Xfror River-S	to River-S $69 / 230 \mathrm{kv}$	TEC	11th Ave	to	So Gib 230 kv
359	Line Juneau-W	to Gannon 138kv	TEC	11th Ave	to	SoGib 230kv
359	Xfmr Hkrs Pt	to Hkrspt-S 138/69kv	TEC	1lth Ave	to	So Gib 230kv
359	Line Sevens-T	to Twelfth 69kv	TEC	IIth Ave	to	So Gib 230 kv
363	Line Juneatr-W	to Gannon 138kv	TEC	Gannon	to	Sif0-S T 230ky

Base Case Ldg Alt. Case Ldg Rating Base Case Alt. Case MW MVar MVA MW MVar MVA MVA Rtg1 Rtg2 Rtg1 Rtg2

| 151 | 3 | 151 | 159 | 8 | 159 | $143 / 143$ | 104% | 104% | 111% | 111% |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| -313 | -26 | 314 | -305 | -25 | 306 | $300 / 300$ | 105% | 105% | 102% | 102% |
| 232 | 60 | 240 | 222 | 59 | 230 | $224 / 224$ | 107% | 107% | 103% | 103% |
| -670 | -194 | 697 | -639 | -190 | 667 | $634 / 634$ | 106% | 106% | 101% | 101% |
| 195 | 29 | 197 | 190 | 29 | 193 | $168 / 183$ | 117% | 108% | 115% | 105% |
| 191 | -41 | 195 | 180 | -38 | 184 | $186 / 186$ | 107% | 107% | 100% | 100% |
| -328 | -29 | 329 | -319 | -31 | 320 | $300 / 300$ | 112% | 112% | 108% | 108% |
| 194 | -45 | 199 | 186 | -44 | 191 | $186 / 186$ | 111% | 111% | 106% | 106% |
| -332 | -26 | 333 | -324 | -27 | 325 | $300 / 300$ | 115% | 115% | 111% | 111% |
| 103 | 13 | 104 | 98 | 11 | 99 | $93 / 93$ | 115% | 115% | 108% | 108% |
| 477 | 127 | 494 | 468 | 127 | 485 | $402 / 402$ | 118% | 118% | 115% | 115% |
| -665 | -181 | 689 | -639 | -180 | 664 | $634 / 634$ | 105% | 105% | 101% | 101% |
| 156 | 33 | 160 | 151 | 33 | 154 | $143 / 143$ | 111% | 111% | 107% | 107% |
| -247 | -36 | 250 | -240 | -36 | 242 | $224 / 232$ | 114% | 108% | 111% | 104% |
| -133 | -16 | 134 | -128 | -17 | 129 | $128 / 128$ | 108% | 108% | 104% | 104% |
| -332 | -30 | 333 | -323 | -30 | 325 | $300 / 300$ | 113% | 113% | 110% | 110% |
| 452 | 111 | 465 | 436 | 106 | 449 | $402 / 402$ | 110% | 110% | 107% | 107% |
| -717 | -225 | 751 | -682 | -216 | 716 | $634 / 634$ | 114% | 114% | 109% | 109% |
| 200 | -42 | 204 | 191 | -40 | 195 | $186 / 186$ | 114% | 114% | 108% | 108% |
| -250 | -36 | 252 | -243 | -36 | 245 | $224 / 232$ | 116% | 109% | 112% | 106% |
| -336 | -29 | 337 | -328 | -30 | 329 | $300 / 300$ | 116% | 116% | 113% | 113% |
| 181 | 55 | 189 | 179 | 54 | 187 | $168 / 187$ | 112% | 101% | 112% | 100% |
| 97 | 13 | 98 | 92 | 12 | 93 | $93 / 93$ | 108% | 108% | 102% | 102% |
| -309 | -20 | 309 | -302 | -21 | 303 | $300 / 300$ | 103% | 103% | 101% | 101% |

60\% LoAD LeVEL

Distant from the Proiect

No. 0	Overload		Area	Outage	
181 Li	Line Dade Cty	to Dc Notap 69kv	TEC 1	LkTarpn to	Brkridge 500kv
181 Li	Line Dc Notap	to Ft King 69kw	TEC	Lk Tarpn to	Brkridge fukikv
267 Li	Line Brkridge	to Brk98 Tp :15kv	FPC	Brkridge	Cryst Rv 500kv
267 Li	Line Brk98Tp	to Hammektp 115ky	FPC	Brkridge	Cryst Rv 500kv
385 X	Xfmr Lk Tarpn	to Lkt-Dum2 230500ky	FPC	Lkt-Duml to	L.k Tarpn $500 / 230 \mathrm{kv}$
386 X	Xfrmi Lk Tarpn	to Lkt-Dumi 230\%50kkv	FPC	Lkt-Dum2 to	Lk Tarpn 560/230kv
143 Li	Line Enola	to Umatilla 69kv	FPC	Hainesck	Sorento 230kv
249 L	Line Sprghltp	to Heritgep 115kv	FPC	Brkridge	Hudson 230 kv
248 Li	Line Homsatp2	to Villa $\mathrm{T}_{\mathrm{p}}(1) 115 \mathrm{kv}$	FPC	Brkridge to	Cryst Re 230kv

Base Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
MW	MVar	MVA	Mw	MVar	MVA		Rtg1	Rtgz	Rtg1	Rtg2
64	-8	64	74	-9	75	$63 / 63$	99\%	99\%	116\%	116\%
64	- $\stackrel{\text { ¢ }}{ }$	64	74	-3	75	63/63	95\%	3\%\%	116\%	116\%
- 117	102	155	-139	122	185	137/137	112\%	112\%	132\%	132\%
-128	94	159	-151	112	188	137/137	134\%	114\%	135\%	135\%
.768	55	770	-874	87	878	750/750	103\%	103\%	117\%	117\%
.760	55	762	-865	87	870	$750 / 750$	102\%	102\%	116\%	116\%
114	-20	116	141	-21	142	126/138	90\%	84\%	110\%	103\%
139	-56	150	158	-64	171	136/169	107\%	88\%	123\%	101\%
-132	59	145	-151	69	166	137/137	104\%	104\%	119\%	119\%

Does not Exceed Rating 2 for a Contingency

Area	Oulage	
FPC	Brkswwtp to	Guifpine 230kv
FPC	Brkridge to	Cryst Re 500kv
FPC	Brixidge to	Cryst Rv 500kv
FPC	Brkridge to	Cryst Rv 500ky
FPC	Gulfpine to	Seven Sp 230kv
FPL	Ruskin T to	B Bend 230kv
TEC	Ruskin T to	B Bend 230 kv

Base Case Ldg			Alt Case Ldg			Rating MVA	Base Case		Alt. Case	
MW	MVar	MVA	MW	MVar	MVA		Regi	Rig2	Rtgl	Rtg2
250	50	255	266	50	271	246/302	101\%	84\%	107\%	90\%
171	-65	183	197	-77	212	173/215	103\%	85\%	120\%	99\%
674	153	691	733	192	757	$677 / 812$	98\%	85\%	107\%	93\%
118	-11	119	133	.9	133	126/150	92\%	79\%	103\%	89\%
250	50	255	266	50	274	246/302	101\%	85\%	107\%	50\%
-937	157	950	-856	130	865	900/900	101\%	101\%	92\%	92\%
-506	7	59	-465	10	465	47808476	ifi\%	:01\%	93\%	33\%

Overload Does not Exceed 15\% Greater than Rating 1 if Rating 1 Equals Rating 2

No. Overload					Area	Outage			Base Case Ldg			Alt. Case Ldg			Raling MVA	Base Case		Alt. Case	
									MW	MVar	MVA	MW	MVar	MVA		Rtgl	Rtg2	Rtg1	Htg2
181	Xfrme	Brkridge	to	Brdg-Dum 230/500kv	FPC	Lk Tarpn	to	Brknidge 500kv	. 710	-71	713	-789	-89	794	750/750	98\%	98\%	109\%	109\%
247	Line	Brksidge	to	Brk98 Tp 115kv	FPC	Brkridge	to	Cr Plant 230kv	-90	81	121	-107	92	141	137/137	87\%	87\%	101\%	101%
247	Line	Brk98 Tp	to	Hammektp 115kv	FPC	Brkridge	to	Cr Plant 230kv	-99	75	124	-117	85	144	137/137	89\%	89\%	104\%	104\%
247	Line	Hammektp	to	Tc Ranch 115kv	FPC	Brkridge	to	Cr Plant 230kv	-105	72	127	-122	81	147	137/137	92\%	92\%	106\%	106\%
247	Line	Homsatp2	to	Tc Ranch 115kv	FPC	Brkridge	to	Cr Plant 230ky	117	-64	133	136	.72	153	137/137	95\%	95\%	110\%	110\%
247	Line	Homsatp2	to	Villa Tp 115 kv	FPC	Brkindge	to	Cr Plant 230ky	-127	58	140	-146	66	160	$137 / 137$	101\%	101\%	115\%	115\%
248	Line	Brkridge	to	Brk98 Tp 115kv	FPC	Brkridge	to	Cryst Re 230kv	-95	82	125	-111	95	146	137/137	90\%	90\%	105\%	105\%
248	Line	Brk98 Tp	to	Hammaktp 115kv	FPC	Brkidge	to	Cryst Re 230kv	-104	76	129	-121	88	150	137/137	93\%	93\%	108\%	108\%
248	Line	Hammektp	to	Te Ranch 115 kv	FPC	Brkridge	to	Cryst Re 230kv	-109	73	132	-127	84	153	137/137	95\%	95\%	110\%	110\%
248	Line	Homsatp2	10	Tc Ranch 115kv	FPC	Brkridge	to	Cryst Re 230kv	122	-65	138	140	-74	159	137/137	99\%	99\%	114\%	114\%
267	Line	Dade Cty	to	De Notap 69kv	TEC	Brkridge	to	Cryst Ry 500ky	62	-7	62	72	-8	72	63/63	96\%	96\%	112\%	112\%
267	Line	De Notap	to	Ft King 69kv	TEC	Brkridge	to	Gryst Rv 500kv	62	-7	62	72	-8	72	63/63	96\%	96\%	112\%	112\%

Pre-Existing Violations - Overloaded in the Base Case without the Proiect

Base Case Ldg									Alt. Case Ldg				Rating	Base Case		Alt. Case	
MW MVar	MVA	MW	MVar	MVA	MVA	Rtg1	Rug2	Rig1	Rtg2								
-53	-88	102	-53	-88	102	$44 / 44$	235%	235%	235%	235%							
220	-54	226	221	-53	227	$221 / 221$	101%	101%	101%	101%							
-768	55	770	-874	87	878	$750 / 750$	183%	103%	117%	117%							
-760	55	762	-865	87	870	$750 / 750$	102%	102%	116%	116%							
-134	91	161	-157	108	190	$137 / 137$	116%	116%	137%	137%							
148	-80	168	173	-94	197	$137 / 137$	126%	120%	141%	141%							
-158	74	175	-183	88	203	$137 / 137$	125%	125%	146%	146%							
-167	78	184	-174	86	194	$142 / 168$	128%	110%	135%	115%							
-89	55	105	-89	55	105	$83 / 103$	129%	102%	128%	101%							
-131	24	133	-131	24	133	$119 / 124$	113%	107%	113%	107%							

40\% Load Level

Distant from the Project

Base Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
Mw	Mvar	mVA	MW	MVar	MVA		Rigl	Rtg2	Rtg1	Rtg2
-114	92	146	-127	107	166	$137 / 137$	105\%	105\%	119\%	119\%
-122	85	148	-136	98	168	1371137	107\%	107\%	120\%	120\%
110	-24	113	137	. 27	140	126/ 138	87\%	82\%	168\%	101\%
. 32	12	34	-36	14	39	$32 / 38$	106\%	90\%	120\%	101\%
-122	56	134	-129	60	142	137/137	96\%	96\%	102\%	102\%
-126	81	159	-140	95	169	137/137	108\%	108\%	122\%	122\%
136	. 72	154	152	. 83	173	137/137	110\%	110\%	124\%	124\%
143	66	157	-159	77	177	137/137	113\%	113\%	127\%	127\%

Does not Exceed Rating 2 for a Contingency

No. Overload					Area	Outage			Base Case Ldg			Alt. Case Ldg			Rating MVA	Rase Case		Alt. Case	
									MW	Mvar	MVA	MW	Mvar	MVA		Rtgl	Rtg 2	Etg1	Rtg2
224	Line	Union Hl	10	Dadect T 69kv	FPC	Kath-Dum	to	Katheen 500kv	117	-11	118	130	-11	130	126/150	91\%	78\%	101\%	87\%
225	Line	Union HI	to	Dadect T 69kv	FPC	Kathleen	to	Cent Fla 500kv	117	-11	118	130	-11	130	126/150	91\%	78\%	101\%	87\%
227	Line	Cara Tp	to	Mentshtp 69kv	FPC	Archer	to	Martin W 230kv	-27	16	31	-31	18	36	$32 / 38$	98\%	83\%	112\%	94\%
227	Line	Cara Tp	to	Willistn 69kv	FPC	Archer	to	Martin W 230kv	24	-18	30	28	-21	35	32/38	94\%	79\%	108\%	91\%
232	Line	Bell Tp	to	Neals Tp G9ky	FPC	Fi Wht N	to	Ft Wht $\$ 230 \mathrm{Cr}$	32	-16	36	33	. 16	36	32/38	112\%	95\%	112\%	95\%
232	Line	High Spg	to	Neals Tp 69ky	FPC	Fi Wht N	to	Ft Wht $\$ 230 \mathrm{kv}$	-28	20	35	-28	20	35	32/38	108\%	91\%	108\%	92\%
238	Line	Inglis	to	Lebanon 69kv	FPC	Newberry	to	Cr Plant 230kv	36	-10	37	35	-10	36	32/38	113\%	97\%	111\%	96\%
238	Line	Lebanon	to	Ottrektj 69kv	FPC	Newberry	to	Cr Plant 230kv	33	-13	36	32	-13	35	32/38	110\%	93\%	109\%	92\%
249	Line	Sprghltp	to	Herilgtp 115kv	FPC	Brkridge	to	Hudson 230ky	131	-49	140	141	-54	152	136/169	101\%	83\%	109\%	90\%
249	Line	Heritgtp	to	Hudson t15ky	FPC	Brkridge	to	Hudson 230ky	119	-62	134	129	-68	145	136/169	96\%	79\%	104\%	86\%
267	Line	Cryst Rs	to	Villa Tp 115kv	FPC	Brkridge	to	Cryst Rv 500kv	152	-57	162	168	-68	182	173/215	92\%	76\%	102\%	84\%
387	Line	Union HI	to	Dadect T 69ky	FPC	Kath-Dums	to	Kathieen $500 / 230 \mathrm{kv}$	117	-11	118	130	-11	130	126/150	91\%	78\%	101\%	87\%

Overload Does not Exceed 15\% Greater than Rating 1 if Rating 1 Equals Rating 2

No. Overload			Area	Outage			Base Case Ldg			Alt. Case Ldg			Rating MVA	Base Case		Alt. Case	
							Mw	Mvar	MVA	MW	Mvar	MVA		Rtg1	Rtg 2	Rig1	Rtg2
177 Line Dade Cty	to	Dc Notap 69kv	TEC	Griffir	to	Kathleen 230kv	58	-12	60	69	-13	70	63.63	92\%	92\%	108\%	108\%
177 Line Dc Notap	to	Ft King 69kv	TEC	Griffin	to	Kathleen 230kv	58	-12	60	69	-13	70	63/63	92\%	92\%	108\%	108\%
178 Line Dade Cty	to	De Notap 69kv	TEC	Griffin	to	West 230 kv	56	-12	57	65	-13	67	631 63	88\%	88\%	103\%	103\%
178 Line Dc Notap	to	FtKing 69kv	TEC	Griffin	to	West 230 kv	56	-12	57	65	-13	67	$63 / 63$	88\%	88\%	103\%	103\%
179 Xfmr Lk Tarpr	to	Lkt-Dum2 230/500kv	FPC	Lk Tarpn	to	Lkt-Dumi 500kv	-730	60	733	-811	83	815	$750 / 750$	98\%	98\%	109\%	109\%
180 Xfmr Lk Tarpn	to	Lkt-Dumi 230/500kv	FPC	Lik Tarpn	to	Lkt-Dum2 500kv	-723	60	726	-804	82	808	750/ 750	97\%	97\%	108\%	108\%
181 Line Dade Cty	to	Dc Notap 69kv	TEC	LkTarpn	to	Brkridge 500ky	62	-12	64	68	. 13	70	$63 / 63$	98\%	98\%	108\%	108\%
181 Line De Notap	to	Ft King 69kv	TEC	Lk Tarpn	to	Brkridge 500ky	62	-12	64	68	-13	70	$63 / 63$	98\%	98\%	108\%	108\%

Pre-Existing Violations - Overloaded in the Base Case without the Proiect

No. Overioad					Area	Outage			Base Case Ldg			Alt. Case Ldg			Rating	Base Case		Alt Case	
									MW	MVar	MVA	MW	MVar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
18	Line	Britgoab	to	Morris 69ky	FPL	Okechobe	to	Morris 69kv	-53	-88	102	-53	.88	102	44/ 44	235\%	235\%	235\%	235\%
65	Line	Martin	to	Sherman 230 kv	FPL	Midway	to	Sherman 230kv	-512	132	529	-512	132	529	502/502	101\%	101\%	101\%	101\%
227	Line	Martin W	to	Reddick 69kv	FPC	Archer	to	Martin W 230ky	39	-5	40	44	-7	44	32/ 38	121\%	105\%	134\%	116\%
232	Line	Bell Tp	to	Trenton 69kv	FPC	Ft Wht N	to	Ft Wht S 230 kv	-36	13	38	-36	13	39	32/38	119\%	101\%	120\%	102\%
234	Line	Bell Tp	to	Neals Tp 69kv	FPC	Ft Whts	to	Newberry 230kv	38	-20	43	37	-19	42	321 38	134\%	114\%	129\%	110\%
234	Line	Bell Tp	to	Trenton 69kv	FPC	Ft WhtS	to	Newberry 230kv	-42	17	46	-41	16	44	32/38	141\%	120\%	136\%	116\%
234	Line	High Spg	to	Neals Tp 69kv	FPC	Ft WhtS	to	Newberry 230kv	-34	25	42	-32	24	41	32/38	130\%	111\%	125\%	107\%

APPENDIX B: CONTINGENCY LIST

C- 1	Line	123 EMERSON	230kV	to	266 MIDWAY	230 kV	Ckt	1
C. 2	Line	122 EMERSON	138 kV	to	441 F PIERCE	138kV	Ckt	99
C. 3	Line	122 EMERSON	138 kV	to	449 OSLO	138 kV	Ckt	1
C. 4	Line	122 EMERSON	138 kV	to	9383 FV-CTYLN	138 kV	Ckt	1
c. 5	Line	123 EMERSON	230 kV	to	464 MALABAR	230 kV	CkI	99
c. 6	Line	191 CITRUS	138 kV	to	229 HARTMAN	138kV	Ckt	1
c. 7	Line	191 citrus	13 EkV	to	240 MIDWAY	138kV	Ckt	1
c. 8	Line	197 WARFIELD	230 kV	to	263 INDN TWN	230kV	Ckt	1
C. 9	Line	197 WARFIELD	230 kV	to	265 MARTIN	230kV	Ckt	1
C. 10	Line	201 BL GLADE	69kV	to	210 PAHOKEE	69kV	Ckt	99
C. 11	Lime	201 BL GLADE	69kV	10	214 SO bay	69kV	Ckt	1
C. 12	Lne	201 BL GLADE	69kV	to	214 SO bay	69kV	Ckt	2
C. 13	Lne	203 W PM BCH	69kV	to	204 DATURA	69kV	Ckt	1
C. 14	Line	203 W PM BCH	69kV	to	204 Datura	69kV	Ckt	2
C. 15	Line	205 MARTIN	69kV	to	277 BRYANT	69 kV	Ckt	99
C. 16	Line	208 OKECHOBE	69kV	to	213 SHERMAN	69kV	Ckt	2
C. 17	Line	208 OKECHOBE	69 kV	to	213 SHERMAN	69kV	Ckt	99
C-18	Line	208 OKECHOBE	69kV	to	6781 MORRIS	69kV	Ckt	1
C. 19	Line	210 PAHOKEE	69kV	to	277 BRYANT	69kV	Ckt	1
C-20	Line	278 bee LINE	139kV	$t 0$	245 PLUMOSUS	138 kV	Ckt	99
C. 21	Line	218 BEE LINE	138 kV	to	250 RIVIERA	138 kV	Ckt	1
C. 22	Line	222 BOYNTON	138 kV	to	223 CEDAR	138 kV	Ckt	1
C. 23	Line	222 BOYNTON	138 kV	to	578 QUANTUM	138kV	Ckt	1
C. 24	Line	223 CEDAR	138 kV	to	249 RANCH	138kV	Ckt	99
C. 25	Line	223 CEDAR	138 kV	to	257 Yamato	138kV	Ckt	99
C. 26	Line	223 CEDAR	138 kV	to	596 HYPOLLXO	138kV	Ckt	\dagger
C. 27	Line	229 HARIMAN	138kV	to	441 FPiERCE	138kV	Cks	1
C. 28	Line	229 HARTMAN	138kV	to	4001 HART-FMP	138 kV	Ckt	1
C-29	Line	232 HOBE	138kV	to	245 PLUMOSUS	138kV	Ckt	98
C- 30	Line	232 HOBE	138kV	to	245 PLJMMOSUS	138kV	Ckt	99
C-31	Line	232 HOBE	138kV	to	247 PT SEWEL	138 kV	Ckt	1
C. 32	Line	232 HOBE	138kV	to	247 PT SEWEL	738 kV	CkI	99
C. 33	Line	237 LANTANA	13 EkV	to	578 QUANTUM	138kV	Ckt	1
C. 34	Line	237 LANTANA	13EkV	to	596 HYPOLUXO	139kV	Ckt	1
C- 35	Line	240 MIDWAY	138 kV	to	796 WH CIYTP	138 kV	Ckt	1
C- 36	Line	245 PLUMOSUS	138kV	to	539 OAKES	138kV	Ckt	1
C. 37	tine	247 PT SEWEL	138kV	10	685 MONTEREY	138 kV	Ckt	1
C. 38	Line	249 RANCH	138 kV	to	250 RIVIERA	138 kV	Ckt	98
C- 39	Line	249 RANCH	13 kV	to	250 RIVIERA	138 kV	Ckt	99
C- 40	Line	249 RANCH	138 kV	to	253 W PM BCH	138 kV	Ckt	1
C. 41	Line	249 RANCH	138*V	to	253 W PM BCH	138 kV	Ckt	99
C. 42	L.ine	249 RANCH	138 kV	to	547 OSCEOLA	138 kV	Ckt	99
C. 43	Line	250 RIVIERA	138 kV	to	253 W PM BCH	138 kV	Ckt	99
C. 44	Line	250 RIVIERA	138 kV	to	539 OAKES	138 kV	Ckt	99
C. 45	Line	250 RIVEERA	138kV	to	600 RECWAY	138kV	Cks	1
C- 48	t.ine	251 SO BAY	138 kV	to	547 OSCEOLA	138 kV	Ckt	1
C. 47	Line	25150 BAY	138 kV	to	549 OKEELNTA	138 kV	Ckt	1
42000								
Shestimony	HFPG-2-	19.doc			R.	. Beck		-1

C. 48	Line	255 WEST	138 kV	to	449 OSLO	138kV	Ckt	1
C. 49	Line	255 WEST	138 kV	to	457 WABASSO	138kV	Ckt	1
C-50	Line	255 WEST	138kV	to	9387 WEST FMP	138kV	Ckt	1
C- 51	Line	256 WH CITY	13BkV	to	441 F PIERCE	138 kV	Ckl	1
C-52	Lne	256 WH CITY	138kV	10	796 WH CTYTP	138 kV	Ckl	1
C. 53	Line	257 YAMATO	138 kV	10	990 DEERFDTP	138kV	Ckt	99
C. 54	Line	258 CEDAR	230 kV	to	268 RANCH	230kV	Ckt	1
C. 55	Line	258 CEDAR	230kV	to	273 YAMATO	230 kV	Ckt	99
C. 56	Line	258 CEDAR	230 kV	to	535 CORBETT	230 kV	Ckt	99
C- 57	Line	259 SANPIPER	230 kV	to	532 TURNPIKE	230kV	Ckt	1
C. 58	Line	261 HOBE	230 kV	to	582 BRIDGE	230kV	Ckt	1
C. 59	Line	263 INDN TWN	230kV	to	265 MARTIN	230 kV	Ckt	99
C. 60	Line	263 INDN TWN	230kv	to	266 MIDWAY	230 kV	Ckt	7
C. 61	Line	263 INDN TWN	230kv	to	268 RANCH	230 kV	Ckt	99
C. 62	Line	263 INDN TWN	230kV	to	582 BRIDGE	230 kV	Ckt	1
C-63	Line	265 MARTIN	230 kV	to	270 SHERMAN	230 kV	Ckt	1
C-64	Line	266 MIDWAY	230 kV	to	268 RANCH	230 kV	Ckt	99
C-65	Line	266 MIDWAY	230 kV	to	270 SHERMAN	230 kV	Ckt	1
C. 66	Line	266 MIDWAY	230 kV	to	272 ST LUCIE	230 kV	Ckt	1
C-67	Line	266 MIDWAY	$230 k V$	to	272 ST LUCiE	230 kV	CkI	2
C. 68	Line	266 MIDWAY	230 kV	to	272 ST LUCIE	230 kV	Ckt	3
C. 69	Line	266 MIDWAY	230 kV	to	532 TURNPIKE	230 kV	Ckt	1
C-70	Line	268 RANCH	230 kV	10	535 CORBETI	230 kV	Ckt	1
C-71	Line	268 RANCH	230 kV	to	535 CORBETT	230kV	Ckt	99
C-72	Line	274 CORBETT	500 kV	to	275 MARTIN	500kV	Ckt	1
C-73	Line	274 CORBETT	500 kV	10	275 MARTIN	500 kV	Ckt	2
C-74	Line	274 CORBETT	500 kV	10	276 MIDWAY	500 kV	Ckt	1
C. 75	Line	274 CORBETT	500 kV	10	E66 CONSRVTN	500 kV	Ckt	1
C. 76	Line	275 MARTIN	500 kV	to	276 MIDWAY	500 kV	Ckt	1
C. 77	Line	275 MARTIN	500 kV	to	476 POINSETT	500 kV	Ckt	1
C- 78	Line	276 MIDWAY	500 kV	to	476 POINSETT	500 kV	Ckt	1
C- 79	Line	479 CLEWSTN9	$138 k V$	to	637 HEND-FPL	T38kV	Ckt	1
C. 80	Line	479 CLEWSTN9	138kV	to	864 MONT-FPL	138 kV	Ckt	1
C. Bl_{1}	Line	479 CLEWSTN9	13 BkV	to	6783 S CLEWIS	138 kV	Ckt	1
C. 82	Line	530 SANPIPER	738 kV	to	685 MONTEREY	138 kV	Ckt	99
C- 83	Line	530 SANPIPER	138 kV	to	796 WH CTYTP	138 kV	Ckt	99
C. 84	tine	532 TURNPIKE	230 kV	to	582 BRIDGE	230 kV	Ckt	99
C. 85	Line	549 OKEELNTA	138 kV	to	637 HEND-FPL	138 kV	Ckt	1
C. 86	Line	582 BRIDGE	230 kV	to	601 PLUMOSUS	230kV	Ckt	99
C. 87	L.ine	596 HYPOLUXO	138 kV	to	5451 HYPO-FMP	$138 k V$	Ckt	1
C. 88	Line	637 HEND-FPL	138kV	to	6601 HEND-FMP	13 BkV	Ckt	1
C. 89	Line	864 MONT-FPL	138kV	to	6769 MONTURA	13 BkV	Ckt	1
C. 90	Transformer	122 EMERSON	138 kV	to	123 EMERSON	230kV	Ckt	1
C. 91	T'ransformer	203 W PM BCH	69 kV	to	253 W PM BCH	138kV	Ckt	1
C-92	Transformer	203 W PM BCH	69kV	to	253 W PM BCH	138kV	Ckt	2
C. 93	Transformer	205 MARTIN	69 kV	to	265 MARTIN	230 kV	Ckt	1
C. 94	Transformer	213 SHERMAN	69kV	to	270 SHERMAN	230 kV	Ckt	1
C. 95	Tranisformer	213 SHERMAN	69 kV	to	270 SHERMAN	230kV	Ckt	2
C. 96	Transformer	214 SO BAY	69 kV	to	251 SO BAY	13 BkV	Ckt	1
C- 97	Transformer	214 SO BAY	69 kV	to	251 SO BAY	138 kV	Ckt	2
C. 98	Iransformer	223 CEDAR	13EkV	10	258 CEDAR	230 kV	Ckt	1

C-99	Transformer	223 CEDAR	138 kV	to
C. 100	Transformer	232 HOBE	138kV	to
C-101	Transformer	240 MIDWAY	13akV	to
C. 102	Transformer	240 MIDWAY	738 kV	to
C. 103	Transformer	245 PLUMOSUS	138 kV	to
C-104	Transformer	249 RANCH	138 kV	10
C-105	Triansformer	249 RANCH	738kV	to
C- 106	Tramsformer	250 RIVIERA	138 kV	to
C. 107	Transformer	250 RIVIERA	138 kV	to
C. 708	Transformer	257 YAMATO	138 kV	to
C-109	Transformer	273 YAMATO	230 kV	to
C-110	Transformer	274 CORBETT	500 kV	to
C-111	Transformer	275 MARTIN	500 kV	to
C-112	Transformer	276 MIDWAY	500 kV	to
C-113	Transformer	530 SANPIPER	138kV	to
C. 714	Lirle	9382 VER-SOUT	138 kV	to
C-115	Line	9396 DOWNTN5	59kV	to
C-116	Line	9396 DOWNTN5	69 kV	to
C-117	Line	9397 VB SUB7	69kV	to
C-118	Line	9397 VB SUB7	69kV	to
C. 119	Line	9398 VB SUBS	69kV	to
C-120	Line	9398 VB SUB6	69 kV	to
C-121	Line	9399 VBSUB12	69 kV	to
C-122	Line	9399 V85UB12	69 kV	to
C. 123	Line	9400 VB SUP9	69 kV	to
C. 124	Line	9401 VB SUB1	69kV	to
C-125	Line	9401 VB SUB	69 kV	to
C-126	Line	9402 V85UB11	69 kV	to
C-127	Line	9403 VB SUB8	69 kV	to
C. 12 B	Iransformer	9397 VE SUB7	69 kV	to
C-129	Transformer	9397 VB SUP7	69kV	to
C-130	Transformer	9403 VB SUB8	69 kV	to
C-131	Line	4002 FTP-GA C	738 kV	to
C-132	Lins	4011 HARTMAN	69 kV	to
C-133	Lins	$40 \dagger 1$ HARTMAN	69kV	to
C-134	Lins	4012 SAVANNAH	69 kV	to
C-135	Line	4013 HD KING	69 kV	to
C. 136	Linis	4014 LAWNWOOD	68kV	to
C-137	Lime	4015 GARDEN C	69 kV	to
C. 138	Line	4015 KING GEN	69 kV	to
C. 139	Transformer	4011 HARTMAN	69 kV	to
C-140	Transformer	4011 HARTMAN	69kV	to
C. 141	Transformer	4015 GARDEN C	69 kV	to
C. 142	Line	266 MIDWAY	230kV	to
C-143	Line	2068 HAINESCK	230 kV	to
C-144	Line	2068 HAINESCK	230kV	to
C. 145	Line	2069 LOCKHART	230 kV	to
C. 146	Line	2069 LOCKHART	230kV	to
C.747	Line	2070 PIEDMONT	230 kV	to
C. 148	Line	2070 PIEDMONT	230kV	to
C-149	Line	2070 PIEDMONT	230 kV	to

258 CEDAR	230kV	CkI	
261 HOBE	230kV	Ckt	
266 MIDWay	230 kV	Ckt	
266 MIDWay	230 kV	Ckt	2
601 PLLMMOSUS	230 kV	kt	
268 RANCH	230 kV	kt	1
268 RANCH	230kV	Ckt	2
212 RIVIERA	69kV	Ckt	
212 RIVIERA	69kV	Ckt	2
273 Yamato	230 kV	ckt	1
257 Yamato	138 kV	Ckt	2
535 CORBETT	230kV	Ckt	1
265 MARTIN	230kV	Ckt	1
266 MIDWAY	230 kV	Ckt	1
259 SANPIPER	230 kV	Ckt	1
9383 FV-CTYLN	138 kV	Ckt	1
9397 VB SUB7	69 kV	Ckt	1
9404 VB SUB1	69kV	Ckt	1
9398 VB SUB6	69kV	Ckt	1
9403 VB SUBB	69kV	Ckt	1
9399 V8SUB12	69kV	Ckt	1
9400 VB SUBS	69kV	Ckt	1
9400 VB SUB9	69kV	Ckt	1
9404 VB SUB1	69kV	Ckt	1
9401 VB SUB1	69kV	Ckı	+
9402 VBSUB11	69kV	Cks	
9404 VB SUB1	69 kV	Ckt	1
9403 VE SUBB	69kV	Ckt	1
9404 VB SUB1	69 kV	Ckt	1
9381 WEST-FMP	13 EkV	Ckt	1
9381 WEST-FMP	138 kV	Ckt	2
9382 VER-SOUT	138 kV	Ckt	
9383 FV-CTYLN	138kV	Ckt	1
4012 SAVANNAH	69kV	Ckt	\dagger
4014 LAWNWOOD	69kV	Ckt	1
4013 HD KING	69 kV	Ckt	
4016 KiNG GEN	69kV	Ckt	
4015 GARDEN C	69kV	Ckt	1
4016 kING GEN	69kV	Ckt	1
4017 CAUSEWAY	69kV	Ckt	1
4001 HART-FMP	138kV	Ckt	1
4001 HART-FMP	138 kV	Ckt	2
4002 FTP-GA C	138kV	Ckt	1
464 Malabar	230 kV	Ckt	99
2072 SORRENTO	230 kV	Ckt	1
3521 CENT FLA	230 kV	Ckt	1
2073 SPG LAKE	230 kV	Ckt	1
216B WOODSMER	230 kV	Ckt	1
2071 WELCH RD	230 kV	Ckt	1
2074 WEKIVA	230 kV	Ckt	1
158 WOODSMER	230kV	Ckt	

C-150	Line	2071 WELCH RD	230kV	to	2072 SORRENTO	230kV	Ckt
C-151	Line	2073 SPG LAKE	230 kV	to	2580 ALTAMONT	230 kV	Ckt
C. 152	Line	2074 WEKIVA	230 kV	to	2584 MYRTL LK	230 kV	Ckt
C. 753	Line	2163 CAMP LK	230 kV	to	2167 WINDERME	230 kV	Ckt
C-754	Line	2163 CAMP LK	230 kV	to	3521 CENT FLA	230kV	Ckt
C. 155	Line	2164 CLMT EST	230kV	to	2167 WINDERME	230 kV	Ckt
C-156	Line	2164 CLMT EST	230 kV	to	3521 CENT FLA	230 kV	Cat
C-157	Line	2165 NTERNAT	230 kV	to	2166 LK BRYAN	230kV	Ckt
C. 158	Line	2165 INTERNAT	230 kV	to	2167 WINDERME	230 kV	Ckt
C. 159	Line	2166 LK BRYAN	230 kV	to	2167 WINDERME	230 kV	Ckt
C. 760	Lime	2166 LK BRYAN	230 kV	to	2883 INTERCSN	230 kV	Ckt
C-161	Line	2166 LK BRYAN	230kV	to	2883 INTERCSN	230 kV	Ckt
C-162	Line	2167 WINDERME	230 kV	to	2168 WOODSMER	230 kV	Ckt
C. 163	Line	2167 WINDERME	230kV	to	570150 WOOD	230 kV	Ckt
C-164	Line	2168 WOODSMER	230 kV	to	5700 PINEHILL	230kV	Ckt
C-165	Lirie	2267 E CLRWTR	230 kV	to	2269 LK TARPN	230kV	Ckt
C- +66	Lire	2267 E CLRWTR	230 kV	to	3834 ANCLOTE	230 kV	Ckt
C-167	Lirie	2267 E CLRWTR	230 kv	to	3932 ULMERTON	230 kV	Ckt
C-168	Lirie	2268 HIGGINS	230 kV	to	2269 LK TARPN	230 kV	Ckt
C-169	Lirie	2269 LK TARPN	230kV	to	2270 PALM HBR	230 kV	Ckt
C-170	Lirie	2269 LK TARPN	230 kV	to	3836 HUDSON	230kV	Ckt
C-171	Lirie	2269 LK TARPN	230kV	to	3837 SEVEN \$P	230kV	Ckt
C-172	Lirie	2259 LK TARPN	230 kV	to	3932 ULMERTON	230kV	Ckt
C-173	Liree	2269 LK TARPN	230 kV	to	8000 SHELD	230kV	Ckt
C. 974	Lirie	2269 LK TARPN	230kV	to	8000 SHELD	230 kV	Ckt
C. 175	Lirie	2269 LK TARPN	230 kV	to	8000 SHELD	230 kV	Ckt
C. 176	Lime	2270 PALM HBR	230kV	to	3930 LARGO	230 kV	Ckt
C. 177	Lire	2271 GRIFFIN	230 kV	to	2884 KATHLEEN	230 kV	Ckt
C.178	Lire	2271 GRIFFIN	230 kV	to	6102 WEST	230 kV	Ckt
C.779	Line	2288 LK TARPN	500 kV	to	2289 LKT-DUM1	500 kV	Ckt
C.780	Lirle	2288 LK TARPN	500 kV	to	2290 LKT-DUM2	500 kV	Ckt
C.7.81	Line	2288 LK IARPN	500 kV	to	3550 BRKRIDGE	500 kV	Ckt
C.182	Line	2437 DEBARY	230kV	to	2439 DUMMY 1	230 kV	Ckt
C. 183	Line	2437 DEBARY	230kV	to	2440 DUMMY 2	230 kV	Ckt
C. 184	Line	2437 DEBARY	230 kV	to	2441 DUMMY 3	230 kV	ckt
C-185	Lime	2437 DEBARY	230 kV	to	2442 ORANGE C	230 kV	CkI
C-186	Line	2437 DEBARY	230 kV	to	2582 LK EMMA	230 kV	Ckt
C-187	Line	2437 DEBARY	230 kV	to	25B5 N LONGWD	230 kV	Ckt
C. 188	Line	2438 DELAND W	230 kV	to	2442 ORANGEC	230 kV	Cki
C. 189	Line	2438 DELAND W	230 kV	to	3529 SILVR SP	230 kV	Ckt
C. 190	Line	2581 ECON	230 kV	to	2586 RIO PINR	230 kV	Ckt
C. 191	Line	2581 ECON	230 kV	to	2589 WTR PK E	230kV	Ckt
C. 192	Line	2582 LK EMMA	230 kV	to	2590 WTR SPGS	230 kV	Ckt
C-193	Line	2583 MEADWD S	230kV	to	5704 TAFT	230 kV	Cxt
C. 194	Line	2584 MYRTL LK	230 kV	to	2585 N LONGWD	230kV	Ckt
C-195	Line	2585 N LONGWD	230 kV	to	2590 WTR SPGS	230 kV	Ckt
C-796	Line	2586 RIO PINR	230kV	to	2591 CURRY FD	230 kV	Ckt
C-197	Line	2587 SKY LAKE	330 kV	to	5701 SO WOOD	230 kV	Ckt
C.198	Line	2588 TAYLR CK	230 kV	to	2882 HOLOPAW	230 kV	Ckt
C. 199	Line	2589 WTR PK E	230 kV	to	2590 WTR SPG5	230 kV	Ckt
C-200	Line	2591 CURRY FD	330 kV	to	5705 STANTON	230 kV	Ckt

C-201 Lire C-202 Line C-203 Line C-204 Line -205 Line C -207 Line C-208 Line C-209 Line C. 211 Lina 212 Line C. 214 Line C-215 Line C. 216 Line C-218 Line C-219 Line C-220 Line C-221 Line C-222 Line C-223 Line C. 225 Line C. 226 Line C. 227 Line C-228 Line C-229 Line C. 231 Line 232 Line C. 234 Line C-235 Line C-237 Line C-238 Line C -240 tine C-241 Line C-242 Lint C-243 Lint lint C. 246 Line C. 247 Line C.24 C -251 Line

2876 LOUGHMAN	230 kV	to	2883 INTERCSN	230 kV	Ckt	
2876 LOUGHMAN	230kV	to	2891 WLK WALE	230 kV	Ckt	1
2877 AVON PK	230 kV	to	2880 FISH CRK	230 kV	Ckt	1
2877 AVON PK	230kV	to	2881 FT MEADE	230 kV	Ckt	1
2878 barcola	230 kV	to	2887 HINES	230kV	Ckt	1
2878 BARCOLA	230 kV	to	2887 HINES	230 kV	Ckt	2
2878 Barcola	230 kV	to	6102 WEST	230 kV	Cki	1
2878 Barcola	230 kV	to	9050 PEEB	230kV	Ckt	1
2879 CANOE CK	230 kV	to	2882 HOLOPAW	230 kV	Ckt	1
2879 CANOE CK	230 kV	to	2891 WLK WALE	230 kV	Ckt	1
2881 FT MEADE	230 kV	to	2887 HiNES	230 kV	Ckt	1
2881 FT MEADE	230 kV	to	2889 tigerbay	230 kV	Ckt	1
2881 FT MEADE	230 kV	to	2890 VANDOLAH	230kV	Ckt	1
2881 FT MEADE	230 kV	to	2891 WLK WALE	230 kV	Ckt	1
2882 HOLOPAW	230 kV	to	7431 STC EAST	230kV	Ckt	1
2884 KATHLEEN	230 kV	to	3530 ZEPHYR N	230kV	Ckt	1
2885 N BARTOW	230kV	to	9050 PEBB	230kV	Ckt	1
2885 N BARTOW	230 kV	to	9130 SELOSE T	230kV	Ckt	1
2887 HINES	230 kV	to	2889 TIGERBAY	230kV	Ckt	1
2888 TIGER PL	230 kV	to	2889 TIGERBAY	230kV	Ckt	1
2888 tIGER PL	230 kV	$t 0$	2889 tigerbay	230kV	Ckt	2
2890 VANDOLAH	230 kV	to	7121 CC PLANT	230kV	Ckt	1
2891 WLK WALE	230 kV	to	9130 SELOSE T	230kV	Ckt	1
2911 KATH-DUM	500 kV	to	2973 KATHLEEN	500 kV	Ckt	1
2913 KATHLEEN	500 kV	to	3551 CENT FLA	500 kV	Ckt	1
3159 ARCHER	230 kV	to	3171 HAILE	230kV	Ckt	1
3159 ARCHER	230 kV	to	3528 MARTIN W	230kV	ckt	1
3159 ARCHER	230 kV	to	4102 PKRD	230 kV	Ckt	1
3160 CRAWFDVL	230 kV	to	3164 GUM BAY	230kV	Ckt	1
3160 CRAWFDVL	230 kV	to	3167 PERRY	230kV	Ckt	1
3160 CRAWFOVL	230 kV	to	7600 HOPKINS	230kV	Ckt	1
3162 FT WHT N	230 kV	to	3163 FT WHT S	230kV	Ckt	1
3162 FT WHT N	230 kV	to	3169 SUWANNEE	230kV	Ckt	1
3163 FT WHT S	230 kV	to	3165 NEWBERRY	230kV	Ckt	1
3163 FT WHT S	230 kV	to	3171 HAILE	230kV	Ckt	1
3164 GUM BAY	230 kV	to	3166 P ST JOE	230kV	Ckt	1
3165 NEWEERRY	230 kV	to	3170 WILCOX	230kV	Ckt	1
3165 NEWBERRY	230 kV	to	3522 CR PLANT	230kV	Ckt	1
3166 P ST IOE	230 kV	to	17860 CALLAWAY	230kV	Ckt	1
3167 PERRY	230 kV	to	3169 SUWANNEE	230 kV	ckt	1
3168 SUWAN PK	230 kV	to	3169 SUWANNEE	230 kV	Ckt	1
3169 SUWANNEE	230 kV	to	11870 STERLING	230 kV	ckt	1
3171 HAlle	230 kV	to	6736 HAIL MIL	230kV	Ckt	1
3515 ANDERSEN	230 kV	to	3521 CENT FLA	230 kV	Ckt	1
3515 ANDERSEN	230 kV	to	3527 HOLDER	230kV	Ckt	1
3518 BRKRIDGE	230 kV	to	3520 BRKSVWTP	230 kV	Ckt	1
3518 BRKRIDGE	230 kV	to	3522 CR PLANT	230 kV	Ckt	1
3518 BRKRIDGE	230 kV	to	3523 CRYST RE	230kV	Ckt	1
3518 BRKRIDGE	230kV	to	3836 HUDSON	230 kV	Ckt	1
3519 BRKSVL W	230 kV	to	3520 BRKSVWTP	230 kV	ckt	1
3520 BRKSVWTP	230kV	to	3835 GULFPINE	230 kV	Ckt	1

C-252	Line	3521 CENT FLA	230 kV	10	3525 DALLAS	230 kV	Ckt
C. 253	Line	3521 CENT FLA	230 kV	to	3527 HOLDER	230 kV	Ckt
C-254	Line	3521 CENT FLA	230 kV	to	3529 SILVR SP	230 kV	Ckt
C. 255	Line	3522 CR PLANT	230 kV	to	3523 CRYST RE	230 kV	Ckt
C. 256	Line	3522 CR FLANT	230 kV	10	3524 CRYST R4	230 kV	Ckt
C-257	Line	3522 CR PLANT	230 kV	to	3527 HOLDER	230 kV	Ckt
C. 258	Line	3522 CR PLANT	230 kV	to	3527 HOLDER	230 kV	Ckt
C. 259	Line	3525 DALLAS	230 kV	to	3529 SILVR SP	230 kV	Ckt
C-260	Lirie	3528 MARTIN W	230 kV	to	7120 SILV SPN	230 kV	Ckt
C. 261	Lirıe	3529 SILVR SP	230 kV	to	3531 OCALA 1	230 kV	Ckt
C.262	Lire	3529 SILVR SP	230 kV	to	7120 SILV SPN	230 kV	Ckt
C. 263	Lirie	3529 SILVR SP	230kV	to	7120 SILV SPN	230kV	Ckt
C. 264	Lirle	3531 OCALA 1	230 kV	to	6296 OCALA 1	230 kV	Ckt
C-265	Lirie	3534 OCALA 1	230 kV	to	7120 SILV SPN	230 kV	Ckt
C-266	Lire	3548 BRDG-DUM	500 kV	to	3550 BRKRIDGE	500 kv	Ckt
C-267	Lirie	3550 BRKRIDGE	500 kV	to	3555 CRYST RV	500 kV	Ckt
C-268	Lire	3551 CENT FLA	500 kV	to	3552 CENT-DM2	500 kV	Ckt
C-269	Lirle	3551 CENT FLA	500 kV	to	3553 CENT-DUM	500 kV	Ckt
C-270	Lire	3551 CENT FLA	500 kV	to	3555 CRYST RV	500 kV	Ckt
C-271	Lime	3555 CRYST RV	500 kV	to	3556 CRYST R5	500 kV	Ckt
C. 272	Line	3702 40TH ST	230kV	to	3704 NORFHEST	230 kV	Ckt
C-273	Line	3702 40TH \$T	230 kV	to	3705 PASADENA	230 kV	Ckt
C-274	Line	3703 BARTOW	230 kV	to	3704 NORTHEST	230 kV	Ckt
C. 275	Line	3703 GARTOW	230 kV	to	3704 NORTHEST	230 kV	Ckt
C-276	Line	3704 NORTHEST	230 kV	to	3706 PNELRCOV	230 kV	Ckt
C-277	Line	3704 NORTHEST	230 kV	to	3932 ULMERION	230 kV	Ckt
C-278	Line	3704 NORTHEST	230 kV	to	3932 ULMERTON	230 kV	Ckt
C-279	Lime	3705 PASADENA	230kv	to	3931 SEMINOLE	230 kV	Ckt
C-280	Line	3833 ANC COOL	230 kV	to	3834 ANCLOTE	230 kV	Ckt
C-281	Line	3834 ANCLOTE	230 kV	to	3837 SEVEN SP	230 kV	Ckt
C-282	Line	3834 ANCLOTE	230 kV	to	3930 LARGO	230 kV	Ckt
C-283	Line	3835 GULFPINE	230 kV	to	3837 SEVEN SP	230 kV	Ckt
C-284	Lìe	3929 BLCHR RD	230 kV	to	3930 LARGO	230 kV	Ckt
C-285	Line	3929 BLCHR RD	230 kV	to	3932 ULMERTON	230 kV	Ckt
C-286	Line	3930 LARGO	230 kV	to	3931 SEMINOLE	230 kV	Ckt
C. 287	Line	4650 CENTR PK	230 kV	to	4875 NORTHSDE	230 kV	Ckt
C. 288	Line	4650 CENTR PK	230 kV	to	4950 ROBNWOOD	230 kV	Ckt
C-289	Line	4650 CENTR PK	230 kV	to	4960 SJRPP	230 kV	Ckt
C-290	Line	4650 CENTR PK	230 kV	to	4950 SJRPP	230 kV	Ckt
C-291	Line	4650 CENTR PK	230 kV	to	4972 S KERNAN	230 kV	Ckt
C-292	Line	4700 FIRESTNE	230 kV	to	4065 NORMANDY	230 kV	Ckt
C. 293	Lins	4700 FIRESTNE	230 kV	to	6673 BLK CK.	230 kV	Ckt
C. 294	Line	4710 FT CAROL	230 kV	to	4830 MILL CVE	230 kV	Ckt
C. 295	Line	4710 FT CAROL	230 kV	to	4960 SJRPP	230 kV	Ckt
C-296	Linz	4735 GREENLND	230kV	to	4750 HARTLEY	230 kV	Ckt
C. 297	Lin口	4735 GREENLND	230 kV	to	4955 SE IAX	230 kV	Ckt
C-298	Line	4735 GREENLND	230 kV	to	49725 KERNAN	230 kV	Ckt
C. 299	Lina	4735 GREENLND	230 kV	to	4985 SWTZRLND	230 kV	Ckt
C-300	Line	4865 NORMANDY	230 kV	to	4875 NORFHSDE	230 kV	Ckt
C-307	Line	4865 NORMANDY	230 kV	to	4897 PATILLO	230kV	Ckt
C-302	Line	4865 NORMANDY	230kV	to	4960 SJRPP	230 kV	Ckt

C-303	Line	4865 NORMANDY	230kV	to	5005 WEST IAX	230 kV	Ckt	1
C. 304	Line	4875 NORTHSDE	230 kV	to	5005 WEST IAX	230 kV	ckt	1
C-305	Line	4897 Patillo	230 kV	to	4960 SJRPP	230 kV	Ckt	2
C. 306	Line	4950 ROBNWOOO	230kV	to	4955 SE JAX	230kV	Ckt	1
C. 307	Line	5351 KIS MARY	230 kV	to	5704 TAFT	230 kV	Ckt	1
C-308	Line	5352 CAN ISL	230kV	to	5353 KIS CLAY	230kV	Ckt	1
C. 309	Litie	5352 CAN ISL	230kV	10	5800 OUCCITP	230 kV	Ckt	1
C. 310	Line	5352 CAN ISL	230 kV	to	5801 OUCCITP?	230 kV	Ckt	1
C.311	Line	5701 SO WOOD	230 kV	to	5704 TAFT	330 kV	Ckt	1
C. 312	Line	5702 PERSHING	230 kV	to	5705 STANTON	230kV	Ckt	1
C. 313	Line	5702 PERSHING	230 kV	to	5705 STANTON	230 kV	Ckt	2
C. 314	Line	5702 PERSHING	230 kV	to	5708 R -22	230 kV	Ck:	1
C. 315	Line	5703 IND RiV	230 kV	to	5705 STANTON	230 kV	Ckt	1
C-316	Line	5703 IND RIV	230 kV	to	5705 STANTON	230 kV	Ckt	2
C-317	Line	5704 TAFT	230 kV	to	5705 STANTON	230 kV	Ckt	1
C-318	Line	5704 TAFt	230 kV	to	5706 AlP	230 kV	Ckt	1
C-319	Line	5704 TAFT	230 kV	to	5800 OUCCITP1	230 kV	Ckt	1
C-320	Lirse	5706 AlP	230 kV	to	5709 R -23	230 kV	Ckt	1
C-321	Lire	5707 AIRPORT	230kV	to	$5708 \mathrm{R}-22$	230 kV	Ckt	1
C-322	Lirre	5707 AlRPORT	230 kV	to	5709 R-23	230 kV	Ckt	1
C-323	Lire	5801 OUCCITP2	230kV	to	7890 OSCEOLA	230 kV	Ckt	1
C. 324	Lirie	6101 MCINTOSH	230 kV	to	6104 TENOROC	230 kV	Ckt	1
C. 325	Lirle	6101 MCINTOSH	230kV	to	9150 LKAGNES	230 kV	Ckt	1
C-326	Lire	6102 WEST	230 kV	to	6106 I-STATE	230 kV	Ckt	1
C-327	Lire	6103 EATON PK	230 kV	to	6104 TENOROC	230 kV	Ckt	1
C-328	Lire	5103 EATON PK	230kV	to	6105 CREWSLK	230 kV	Ckt	1
C. 329	Lire	6104 TENOROC	230 kV	to	6106 P-STAJE	230 kV	Ckt	1
C. 330	Lire	6104 TENOROC	230 kV	to	6714 MP4-230	230 kV	Ckt	1
C. 331	Lire	6104 TENOROC	230 kV	to	6115 MP5-230	230 kV	Ckt	1
C-332	Lire	6105 CREWSLK	230 kV	to	9050 PEBB	230 kV	Ckt	1
C-333	Line	6105 CREWSLK	230 kV	to	9100 RECKER	230 kV	Ckt	1
C-334	Line	5296 OCALA 1	230 kV	to	6299 OCR-OAK	230 kV	Ckt	1
C. 335	Line	6297 OCALA 2	230 kV	to	6299 OC R-OAK	230 kV	Ckt	1
C. 336	Line	6297 OCALA 2	230 kV	to	7120 SILV SPN	230 kV	Ckl	1
C. 337	Line	6673 BLK CK.	230 kV	to	6694 KEY HTS.	230 kV	Ckl	1
C-338	Line	6682 FLRAHM.	230 kV	to	6694 KEY HJS.	230 kV	Ckt	1
C-339	Line	6682 FLRAHM.	230 kV	to	6707 RIVRVU	230 kV	Ckt	1
C.340	Line	6707 RVVRVU	230 kV	to	7119 SEMINOLE	230kV	Ckt	1
C. 341	Line	7119 SEMINOLE	230 kV	to	7120 SILV SPN	230 kV	Ckt	1
C. 342	Line	7119 SEMINOLE	230 kV	to	7120 SILV SPN	230 kV	Ckt	2
C. 343	Line	7121 CC PLANT	230kV	to	9090 HAROESUB	230kV	Ckt	1
C. 344	Line	7600 HOPKINS	230 kV	10	7620 SUB 20	230 kV	Ckt	1
C. 345	Line	7607 SUB 7	230 kV	to	7620 SUB 20	230 kV	Ckt	1
C-346	Life	7620 SUB 20	230 kV	to	10218 S BAINBR	230kV	Ckt	1
C-347	Line	7890 OSCEOLA	230 kV	to	9150 LKAGNES	230 kV	Cxt	1
C-348	Line	8000 SHELD	230 kV	to	8010 DLMBRY-W	230 kV	Ckt	1
C.349	Line	8000 SHELD	230 kV	to	8100 JAXSN230	230 kV	Ckt	1
C-350	Line	8000 SHELD	230kV	to	8120 OHIO-S	230kV	Ckt	1
C-351	Line	8010 DLMBRY-W	230 kV	to	8020 DLMBRY-E	230 kV	Ckt	?
C. 352	Line	B020 DLMBRY-E	230 kV	to	8400 CHAPMAN	230 kV	Ckt	1
C. 353	Line	8110 OHIO-N	230 kV	to	8120 OHIO-S	230kV	Ckt	1

C. 354	Line	8110 OHIO-N	230kV	to	8500 11TH AVE	230 kV	Ckt	1
C. 355	Lile	8300 RIVER-N	230 kV	to	a310 RIVER-S	230 kV	Ckt	1
C-356	Line	3300 RIVER-N	230 kV	to	8750 SR60-S T	230 kV	Ckt	1
C-357	Line	8310 RIVER-S	230 kV	to	8900 B BEND	230kV	Ckt	1
C. 358	Line	8400 CHAPMAN	230 kV	10	8700 GANNON	230 kV	Ckt	1
C. 359	Line	8500 11TH AVE	230 kV	to	8860 \$O GlB	230 kV	Ckt	1
C-360	Line	8600 HAMPTN	230 kV	to	8610 HAMPTN T	230 kV	Ckt	1
C. 361	Line	8610 HAMPTN T	230 kV	to	8700 GANNON	230kV	Ckt	1
C-362	Line	8610 HAMPTN T	230 kV	to	9050 PEbs	230kV	ckt	1
C-363	Lire	8700 GANNON	230 kV	to	8750 SR60-S T	230kV	Ckt	1
C. 364	Lirle	8700 GANNON	230 kV	to	8760 SR60-N T	230 kV	Ckt	1
C. 365	Line	8700 GANNON	230 kV	to	8850 BELCRK	230 kV	Ckt	1
C-366	Lirle	8730 \$R60-N	230 kV	to	8760 SR60-N T	230 kV	Ckl	7
C-367	Lirie	8740 SR60-S	230 kV	to	8750 SR60-S T	230 kV	Ckt	1
C-368	Lirie	8760 SR60-N T	230 kV	to	B900 E BEND	230 kV	Ckt	1
C-359	Line	8850 BELCRK	230 kV	to	9050 Pebs	230 kV	Ckt	1
C. 370	Lire	8860 \$O GIB	230 kV	to	8900 B BEND	230 kV	Ckt	,
C-371	Line	8870 RUSKIN T	230 kV	to	8900 B BEND	230kV	Ckt	1
C. 372	Line	8880 RUSKMTR8	230 kV	to	8900 B BEND	230 kV	Ckt	1
C. 373	Line	8890 BIGBGT-T	230 kV	to	8900 B BEND	230 kV	Ckt	1
C. 374	Line	8900 B BEND	230 kV	to	9010 MINES W	230 kV	Ckt	1
C-375	Line	9000 POLKPLNT	230 kV	to	9030 BRADLY T	230kV	Ckt	1
C-376	Line	9000 POLKPLNT	230 kV	to	9050 PEBB	230 kV	Ckt	1
C.377	Line	9000 POLKPLNT	230kV	10	9050 PEBB	230kV	Ckt	2
C. 378	Line	9000 POLKPLNT	230 kV	to	9090 HARDESUB	230 kV	Ckt	1
C. 379	Line	9010 MiNES W	230 kV	to	9020 MINES E	230kV	Ckt	1
C-380	Line	9020 MINESE	230 kV	to	9030 Bradty T	230kV	Ckt	1
C-381	Line	9100 RECKER	230 kV	to	9110 ARIANA	230kV	Ckt	7
C-382	Line	9100 RECKER	230 kV	to	9150 LKAGNES	230 kV	Ckt	1
C-383	Line	9100 RECKER	230 kV	to	9160 GAPWAY	230kV	Ckt	1
C-384	Line	9120 SELOSE	230 kV	to	9130 SELOSE \dagger	230kV	Ckt	1
C-385	Transformer	2289 LKT-DUM1	500 kV	to	2269 LK TARPN	230 kV	Ckt	1
C. 386	Transformer	2290 LKT-DUM2	500 kV	to	2269 LK TARPN	230 kV	Ckt	1
C.387	Transformer	2911 KATH-DUM	500 kV	to	2884 KATHLEEN	230kV	Ckt	1
C-388	Transformer	3548 BRDG-DUM	500kV	to	3518 BRKRIDGE	230kV	Ckr	1
C-389	Transformer	3552 CENT-DM2	500 kV	to	3521 CENT FLA	230kV	Ckt	1
c. 390	Transiormer	3553 CENT-DUM	500 kV	to	3521 CENT FLA	230 kV	Ckt	1
C. 397	Lins	2163 CAMP LK	230 kV	to	90000 MIDWAY	230 kV	Ckt	1
C-392	Line	2164 CLMT EST	230 kV	to	90000 MIDWAY	230kV	Ckt	1
C-393	Line	90000 MIDWAY	230 kV	to	3521 CENT FLA	230kV	Ckt	1
C. 394	Line	90000 MIDWAY	230 kV	to	3521 CENT FLA	230kV	Ckt	2

