

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In Re: Petition for Determination of Need for an Electrical Power Plant in St. Lucie County by Panda Midway Power Partners, L.P.

DOCKET NO. 000289-EU

DIRECT TESTIMONY OF

FRANCIS P. GAFFNEY

ON BEHALF OF

PANDA MIDWAY POWER PARTNERS, L. P.

April 24, 2000

DOCUMENT NUMBER-DATE 05046 APR 248 FPSC-RECORDS/REPORTING

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

IN RE: PETITION FOR DETERMINATION OF NEED FOR AN ELECTRICAL POWER PLANT IN ST. LUCIE COUNTY BY PANDA MIDWAY POWER PARTNERS, L.P. FPSC DOCKET NO. 000289-EU

DIRECT TESTIMONY OF FRANCIS P. GAFFNEY

1		
2	Q:	Please state your name and business address.
3	A:	My name is Francis P. Gaffney, and my business address is 800 North Magnolia Ave.,
4		Suite 300, Orlando, FL 32803-3274.
5		
6	Q:	What is your occupation?
7	A:	I am employed by R. W. Beck, Inc. as a Principal Engineer in Transmission Planning
8		and Analysis.
9		
10	Q:	Please describe your duties with R. W. Beck, Inc. as applicable to the subject of
11		your testimony.
12	A:	I am responsible for transmission planning and operations studies for clients of
13		R. W. Beck. These studies include generation interconnection studies, and interface
14		limit studies involving load flow, short circuit and stability analyses.
15		
16	Q:	Please summarize your educational background and experience.
17	A :	I have a Bachelor of Science, Magna Cum Laude, from Northeastern University in
18		Electrical Engineering with a specialization in Electric Power Engineering. I have a
19		Master of Engineering from Rensselaer Polytechnic Institute, in Electric Power
20		Engineering. I have also completed all course work towards a Master of Science in
		·

2

Management from Lesley College. I am a member of the Eta Kappa Nu (Electrical Engineering) and Tau Beta Pi (Engineering) National Honor Societies.

I have more than fourteen years of engineering work experience. I worked for 3 4 more than ten years with Boston Edison Company. For five of those years I was assigned to the transmission planning organization, and for two years, I managed the 5 organization. For the past four years, I have worked for R. W. Beck and a subsidiary, 6 7 TAVA/R. W. Beck, Inc., with continuing responsibilities in transmission planning. I 8 have performed load flow studies, stability analyses, short circuit studies, electromagnetic switching studies, harmonics studies, and other transmission related analyses, 9 using varied software programs (e.g., PTI's PSS/E, GE's PSLF, EPRI's EMTP). These 10 studies include generator interconnection studies, regional export/import studies, critical 11 12clearing time studies, rail electrification interconnection studies (harmonics), annual reliability assessment studies, short circuit mitigation studies, and others. Each of these 13 studies examines the impact on the system or particular facilities. In addition to my 14 15 extensive technical analysis experience, I was also a member of the New England Power Pool's Stability Task Force and several NEPOOL working groups. 16

For more information, my Curriculum Vitae is Exhibit FPG-1.

18

17

19 Q: Have you previously testified before regulatory authorities and courts?

- A: Yes, I have testified at the Federal Energy Regulatory Commission ("FERC") on
 transmission related issues.
- $\mathbf{22}$

SUMMARY OF PURPOSE OF TESTIMONY

2 Q: What is the purpose of your testimony? I am testifying on behalf of Panda Midway in support of Panda Midway's proposal to 3 A: construct and operate the Panda Midway Generating Project ("Project"). My testimony 4 demonstrates that the Project can be interconnected to the Florida Power and Light 5 ("FPL") system and deliver power to peninsular Florida utilities with no significant 6 adverse impact on transmission reliability. $\overline{7}$ 8 9 0: Please summarize your testimony. The Panda Midway Project is proposed to interconnect to the existing Midway 500 kV 10 **A**: substation. I will discuss the methodology and data used to conduct the study. I will 11 12 also discuss the results of the study that show that the proposed Project, along with some transmission system upgrades, has no significant adverse impact on the reliability 13 14 of the peninsular Florida transmission system. 15 16 Q: Are you sponsoring any exhibits? Yes. I am sponsoring the following exhibits: 17 A: 18 FPG-1. Qualifications of Francis P. Gaffney 19 FPG-2. FRCC Generation Interconnection Load Flow Study Report 20 Please describe R. W. Beck, Inc. and its business. 21 0: R. W. Beck, Inc. is a corporation of engineers and consultants founded in 1942 for the 22 A: 23 purpose of rendering professional engineering and consulting services in planning, financing, operating and designing facilities for utilities and energy users. 24 25 Exhibit PAA-1 provides information about the firm's experience and qualifications.

1 With what similar projects has R. W. Beck been involved, and in what capacity? 2 **Q**: 3 A: R. W. Beck has performed numerous studies for generator interconnection, including merchant power plants. Our role has included: Fatal Flaw Studies, System Impact 4 Studies, reviews of System Impact Studies, and testimony on behalf of our clients. 5 6 What are your responsibilities with respect to the Project that is the subject of $\mathbf{7}$ Q: 8 these proceedings? R. W. Beck has been retained to perform load flow and stability studies to evaluate the 9 A: impacts on the transmission system of the proposed Project as a merchant plant selling 10 wholesale power to other utilities in peninsular Florida. I have the primary 11 responsibility for conducting these studies and evaluating the impact on the 12 13 transmission system. 14 15 TRANSMISSION INTERCONNECTION FOR THE PANDA MIDWAY POWER 16 STATION 17 18 **Q**: Please describe the transmission facilities by which the Panda Midway Plant will 19 be connected to the Florida transmission grid. 20A: Panda Midway is proposed to have a nine breaker Project 500 kV substation. The six 21 turbines will be separately connected by their own Generator Step-up Units ("GSU's") 22 to the Project 500 kV substation. Two new 500 kV lines will interconnect the Project 23 500 kV substation with the existing Midway 500 kV substation and appropriate 24 breakers and associated equipment installed at the Midway substation.

1		Also, as part of the Project's interconnection, it is proposed to reconductor the
2		Midway to Citrus and Citrus to Hartman 138 kV lines, or to install a series reactor to
3		limit loading on these same two lines. Other alternatives to this proposal will also be
4		considered.
5		
6		TRANSMISSION SYSTEM IMPACT STUDY DATA AND METHODOLOGY
7		
8	Q:	How did you evaluate the impact of the proposed Project on the transmission
9		system?
10	A:	We evaluated the transmission system impacts of the Project by conducting load flow
11		studies (also known as power flow studies or thermal analyses) in which we simulated
12		the incremental impact of the Project on the power system. We are also performing
13		stability analyses and are calculating three phase fault currents at buses in close
14		proximity to the Project.
15		
16		LOAD FLOW ANALYSIS
17	Q:	Please briefly explain the purpose of load flow analyses.
18	Α.	Electrical systems consist of physical equipment, which is used to generate power, step-
19		up power to a higher voltage and deliver power to customer loads through a series of
20		lines and transformers. The characteristics of the transmission system's physica
21		components can be modeled mathematically as impedances. When this impedance
22		model is coupled with specific load levels, generation dispatch, voltage schedules, VAR
23		inputs and area interchange schedules (for a multi-control area model), a load flow
24		model of the system is defined for a single "snapshot" in time. When the load flow case

is solved, the load flow program will use mathematical methods to simulate flows and voltages on the modeled system based on the impedance of the system and the load flow inputs.

4 When examining the impact on the transmission system of a new generator, the 5 system is first evaluated without the proposed project, the Base Case, and then 6 evaluated with the Project, the Alternate Case. Electric utilities compile information 7 about their power systems in load flow models and file these models at FERC as part of 8 the FERC 715 filing. This is typically a good starting point for creating a Base Case - a 9 case that represents the condition of the system before the change to the system being 10 studied. An Alternate Case is then created to represent the system change being studied 11 (e.g., adding a generator) and results of the load flow analysis of the Alternate Case are 12compared to results from the Base Case to examine the incremental impact of the 13 system change.

14

15

1

2

3

Q: How did you conduct the load flow analysis?

16 A: We created three Base Cases without the Project: 1) Peak Load or 100% load level, 17 2) "Shoulder" Load or 60% load level, and 3) Light Load or 40% load level. Three 18 different load levels were evaluated to reflect the varied conditions on the transmission 19 system. Peak load is used for planning purposes to demonstrate that the resource's 20 ability to serve load at the time the resource is most needed. Light load can represent a 21 "worst case" for the transmission system in the immediate vicinity of the project as 22 loads are reduced in the area requiring more exports from the region. The light load 23 snapshot is used only for planning purposes since it does not always reflect that many 24 units will be off-line or close to their minimum load dispatch levels. It is the purpose of 25 the market price study as discussed by Mr. Davis to determine when the resource will

be dispatched on an economic basis. "Shoulder" load, or mid-load levels, can be the
"worst case" for regions importing or exporting power. We evaluated the performance
of the three Base Cases by testing a comprehensive set of contingencies to create a
baseline performance for the existing power system.

5 We then modified the three Base Cases to include the Project and tested these 6 three Alternate Cases using the same set of contingencies. The results of the Alternate 7 Cases were compared with the Base Cases to evaluate the incremental impact of the 8 Project on the performance of the power system.

9 This approach is common practice and is valuable because criteria violations in 10 the existing system (if any) can be identified and any new criteria violations caused by 11 the incremental impact of the project can be separately identified.

12

13 Q: How did you develop the peak load Base Case?

We obtained the 2004 FERC 715 filed summer peak load flow case from the FERC's 14 A: web-site. We reviewed the ten-year site plans for each of the peninsular Florida utilities, 15 16 the ten-year site plan of the Florida Reliability Coordinating Council ("FRCC"), and the Florida Public Service Commission's ("FPSC") review of the ten-year site plan. From 17 these site plans, we included the generating projects and transmission reinforcements 18 scheduled to be in service by 2004. We also included other Merchant Generator 19 Projects that were publicly announced and have petitioned for a Certificate of Need 20 (e.g., Duke New Smyrna and PG&E Okeechobee). After adding the new generation 21resources, we made adjustments to other generating plants within peninsular Florida 22 (generally turning off peaking units based on FERC Form 1 data on capacity factor, 23 24 heat rate and operating costs) to maintain the same level of Florida Import as in the filed FERC 715 load flow case (approximately 2,350 MW). 25

1 $\mathbf{2}$ **O**: How did you develop the shoulder load and light load Base Cases? Using the peak load case above, we scaled the load down within peninsular Florida to 3 A: 4 the 60% and 40% load levels. We maintained the 2,350 MW Florida Import level at the 5 60% load level and reduced Florida Import to about 1,000 MW at the 40% load level. 6 We then adjusted generation within Florida to match load and losses, subtracting out the 7 Florida Import. We adjusted the generation using the following guidelines: 8 1. Generation was turned off and reduced in the following order: (i) gas turbines and 9 diesels, (ii) oil and gas fired steam units, (iii) repowered and green-field combined 10 cycle plants, and (iv) coal plants. We did not turn off any nuclear units, large coal 11 units, or cogeneration facilities except as noted below. 12 2. When deciding among generators with the same technology guideline we 13 considered FERC Form 1 data for capacity factor, heat rate and costs (or forecasted 14 heat rate and cost information for new units). 15 3. A general preference was given to keeping plants in close proximity to the Project 16 in service. This results in a conservative study by increasing area export conditions 17 and stressing the transmission system. In converse, plants far away from the Project will have little effect on the regional impacts of the Project. 18 19 4. A general preference was given to turning off generation in south Florida to 20 enhance north to south flow through Florida. 21 At the 40% load level, we assumed that one nuclear unit would be out of service for 22 maintenance and/or refueling because 40% load level would likely be a fall or 23 spring minimum load. For conservatism, we chose Turkey Point because it is 24 distant from the proposed plant site, and, by taking this south of Miami unit out of 25 service, it increases north to south flows.

2

Q: How were the Alternate Cases created?

A: Each of the three Base Cases was modified by including the Project at peak output
(projected to be 1,040 MW) and adjusting generation within peninsular Florida using
the same factors as previously mentioned.

- 6
- 7

8

Q: In the load flow analysis, did you study the combined effects of Panda Midway and Panda Leesburg?

9 A: Yes. The Base Cases excluded in the Panda Midway and Panda Leesburg projects
10 (defined collectively as "Projects") and the Alternate Cases included the Projects.
11 Because of the distance between the Projects, the impacts of each are easily separated
12 and identifiable from each other.

13

14 Q: Did you evaluate the Project's capability to deliver power outside of Florida?

A: No. I understand from Panda Midway that their intent is to sell wholesale power within
peninsular Florida, and accordingly R. W. Beck was not asked to evaluate sales outside
of peninsular Florida.

18

19 Q: What steady state voltage and rating criteria were used in your study?

A: The transmission planning criteria used in the study are in accordance with "FRCC
Planning Principles and Guides", and in accordance with FPL Planning Criteria as
published with FPL's FERC 715 filing. The FRCC guides are not specific regarding
quantitative criteria. The guides define probable contingencies as single contingencies
(e.g., loss of any one element), and state, "Transmission systems should be capable of

delivering generator unit output to meet projected customer demands during normal and probable contingencies."

1

2

FPL Planning Criteria as published with FPL's FERC 715 filing are as follows: 3 "FPL has adopted transmission planning criteria that are consistent with the planning 4 criteria established by the Florida Reliability Coordinating Council (FRCC) in its 5 6 Principles and Guides for Planning Reliable Bulk Electric Systems. FPL has applied these planning criteria in a manner consistent with prudent utility practice. These 7 criteria are included as part of the attachments to this response. There may have been 8 9 isolated cases for which FPL may have determined it prudent to deviate from these criteria. The overall customers involved, the probability of an outage occurring, as well 10 11 as other factors may have influenced this decision.

12 The criteria are used for planning purposes and not for operating the system. 13 Some operating parameters such as time limited Emergency Ratings may be factored 14 into the planning process provided there is sufficient time for operator actions without 15 jeopardizing the safety and reliability of the transmission system ..."

FPL does use Emergency Ratings according to their criteria, when there is sufficient time for operator response. If an overload is caused by the Project, a potential response would be to reduce the output of the Project post-contingency to alleviate overload concerns. Therefore, for the purposes of the study performed, it is assumed that Emergency Ratings can be used.

The transmission planning criteria used in the study are in accordance with *"FRCC Planning Principles and Guides"*. Because neither the FRCC guides nor the FPL criteria are specific, we used the following planning criteria, which are used by Florida Power Corporation ("FPC"):

Page 10

1 Voltage should be between 95% and 105% of nominal voltage for both normal ٠ 2 conditions and contingencies. 3 Loading on transmission lines and transformers should be under the Normal ٠ 4 Rating (Rating 1) under normal conditions (Contingency 0). 5 Under contingency conditions, the loading should be under the Emergency 6 Rating (Rating 2). 7 8 Q: What areas were monitored in your analysis? 9 **A**: All of the peninsular Florida areas were monitored down to the 69 kV level. 10 11 Q: Please define contingency. 12 **A**: The Florida Reliability Coordinating Council defines a contingency as an "unexpected 13 loss of a system element". Generally, a contingency is loss of any one transmission 14 element, such as a transmission line, transformer or generator. The loss of the element 15 could be due to any number of reasons such as lightning, birds, equipment failure, 16 human error, etc. Although many failures are temporary and will be restored in less than 17 fifteen seconds, for the purposes of the load flow study, the contingency is assumed to 18 be long term (minutes to hours). The significance of a contingency is that while a 19 transmission element is out of service, other transmission elements share in transmitting 20the power formerly being transmitted by the element that was lost, thereby increasing the non-outaged elements' loadings, potentially causing an overload situation or a 21 22 voltage violation. In a load flow study, many different contingencies are tested. 23

Q: How did you select the contingencies used in your steady state analysis?

The "FRCC Planning Principles and Guides" define a "Probable Contingency" as "the $\mathbf{2}$ A: loss of any single element (generating unit, transmission line or transformer." In 3 accordance with these principles and guides, we tested, one at a time, every line and 4 transformer contingency from 69 kV and up within the vicinity of the Project to assess 5 the impact of the Project on the regional transmission system. We also tested, one at a 6 time, every line and transformer contingency from 230 kV and up within peninsular $\mathbf{7}$ Florida. In addition, we tested, one at a time, every generator contingency from 100 8 MW and up within peninsular Florida. 9

STABILITY ANALYSIS

11

10

12 Q: Were you able to complete your stability analysis?

No. The Florida Reliability Coordinating Council (FRCC) was asked to provide a 13 A: stability case for the study, but, a case was not made available. The stability case is not 14 available from the FERC 715 filing either. Therefore, the dynamic stability data were 15 obtained from the Mid-Atlantic Area Council ("MAAC") System Dynamics Database 16 Working Group ("SDDWG") database representing the entire eastern U.S. 1718 interconnection for the year 2003 summer peak. This data is publicly available from the MAAC web-site, which is accessible via the Pennsylvania - New Jersey - Maryland 19 ("PJM") web-site (www.pim.com). However, due to the complexity of this very large 20 (over 30,000 bus) model, we are still in the process of performing the study. Results 21 22 will be made available shortly.

2

3

4

5

6

7

Q: How are you conducting the stability analysis?

A: In a similar fashion to the load flow analysis, a Base, peak load case was created and the performance of the power system was benchmarked with this Base Case. Then, the new plant was added and generation adjusted to create an Alternate Case. The results of the Alternate Case will be compared with the results of the Base Case to assess the incremental impact of the Project.

- 8 Q: How did you develop the contingency list used for your stability analysis?
- 9 A: We will simulate three-phase faults at either end of all 500 kV lines within Florida, and
 10 partially into Georgia. We will also study faults on 230 kV lines in close proximity to
 11 the Project.
- 12

18

- Q: In the stability analysis, will you study the combined effects of Panda Midway and
 Panda Leesburg?
- A: Yes. The Base Cases excluded the Projects, and there are two Alternate Cases, one that
 includes only Panda Leesburg, and another that includes both Panda Leesburg and
 Panda Midway.
- 19 SYSTEM IMPACT STUDY RESULTS

- 21 Q: What were the results of the load flow study?
- A: Exhibit FPG-3 shows the results of the load flow study. When analyzing the results we
 take several factors into consideration. These factors are:

- Is the element overloaded in the Base Case? If the element is overloaded in the
 Base Case, then the overload is a Pre-Existing condition and it is likely that the
 Project would not be responsible for upgrades required to solve the overload
 concern. This also holds true if the results of the study indicate the same element is
 overloaded for other contingencies.
 - 6 7

- 2. Does the overload exceed the Emergency Rating for a contingency (Rating 2)? If the loading does not exceed the element's Emergency Rating (Rating 2), then the line is able to carry the loading under contingency conditions.
- 3. Does the overload exceed 15% of the Normal Rating if the Normal Rating (Rating 9 1) equals the Emergency Rating (Rating 2)? Frequently, in the FERC 715 filed 10 case, Rating 2 is published as the same as Rating 1. This can be due to several 11 reasons. The filing entity may not have calculated an Emergency Rating for that 12 element and, therefore, published the Normal Rating as the Emergency Rating. 13 Typically, an Emergency Rating of a line is about 15% greater than the Normal 14 Rating. Tampa Electric Company ("TECO") uses this 115% of Normal Rating in 15 their planning criteria (as published in their FERC 715 filing). The Normal and 16 Emergency Ratings may also be equal due to other reasons, such as the line may be 17 "sag" restricted, (e.g., restricted by clearance to ground of the conductor). Usually, 18 this can be easily fixed by re-tensioning the line and possibly making minor 19 modifications to some transmission structures. In addition, there might be minor 20 equipment that limits the line, such as a disconnect switch. 21
 - 4. Is the difference between the Base Case and the Alternate Case significant (e.g., greater than a 5% increase)? If the difference between the loading in the Base Case
 and the Alternate Case is insignificant, then the Project does not contribute
 significantly to the concern.

	1		5. Is the location of the overloaded line distant from the Project? If the location of the
	2		overloaded element is distant from the project, then the cause of the overload is
	3		likely something other than the Project.
	4		6. Is the overload insignificant? If the overload is very small (e.g., 101% to 103%),
	5		then the overload is within the error tolerances of the study, and/or it may be that
	6		the situation can be resolved through an operating measure, such as reducing the
	7		output of the Project, to eliminate the overload.
	8		
	9 (Q:	Are there any potential concerns for integrating the Project into the Florida
	10		transmission grid.
	11 4	4 :	There are two potential concerns:
	12		• There is potential concern for the Hartman 138 kV/69 kV transformers.
	13		• There is concern for the Midway to Citrus and Citrus to Hartman 138 kV lines.
	14		
	15 0	Q:	Would you explain the potential concern for the Hartman 138 kV / 69 kV
	16		transformers?
	17	4:	There is a 69 kV system underlying the 230 and 138 kV system on the east coast of
	18		Florida in the Fort Pierce and Vero Beach area. There are several feeds from the 138 kV
	19		system into the 69 kV system, and, on loss of one of those feeds into the 69 kV system,
:	20		other feeds into the 69 kV system become heavily loaded. In the peak load Base Case,
, •	21		the loss of the Emerson to Fv-Ctyln 138 kV line (one of the feeds into the 69 kV
Ş	22		system) causes the Hartman 138 kV / 69 kV transformers to be loaded to 83% - 84% of
1	23		Rating 1, without the Project. Note that, as published in the FERC 715 loadflow
:	24		database, Rating 1 equals Rating 2 (50 MVA) for these transformers.

~

<u>_</u>.

The Project causes Hartman to be a stronger source to the 69 kV system, 1 increasing the loading of the transformers to a contingency loading of 120% - 122% of 2 Rating 1 for the same contingency. This is of potential concern because it exceeds the 3 115% of Rating 1 that is typical of an Emergency Rating. However, transformers, 4 because they are oil filled, take longer to heat up than overhead transmission lines. 5 Therefore, the Emergency Ratings of transformers are often greater than 115% of 6 Rating 1, and, since the loading exceeds Rating 1 by only 120%-122%, it is likely that $\mathbf{7}$ the overload is within an Emergency Rating for the transformer. 8

For example, the American National Standards Institute ("ANSI") Standard 9 10 C57.92-1981 lists a two hour Emergency Rating for a typical transformer (65 degrees Celsius rise, Forced-Air-Cooled Transformer rated over 133% of self-cooled rating with 11 12 an equivalent load of 70% of maximum nameplate rating pre-contingency, 30 degrees Celsius ambient temperature) as 129% of Normal Rating with no loss of life. A one-13 hour rating under the same conditions is 145% of Normal Rating. So, if the 14 15 transformers comply with the ANSI standards, the transformers should be able to carry 16 this contingency loading.

My conclusion is that any significant adverse impact caused by the Project to
these transformers can be eliminated through calculating an Emergency Rating and/or
through operating measures to reduce the output of the Project post-contingency.

20

Q: Would you explain the potential concern for the 138 kV lines from Midway to
Citrus and from Citrus to Hartman?

A: Similar to the above situation, there are several feeds into the 138 kV system from the
230 kV system in the Fort Pierce and Vero Beach area. In the Base Case, without the
Project, if the Emerson 230 kV to 138 kV transformer is lost, the 115 kV lines fed from

1		the 230 kV at Midway (Midway to Citrus to Hartman) become heavily loaded to 87%
2		of Rating 1. Note that, as published in the FERC 715 loadflow database, Rating 1
3		equals Rating 2 (272 MVA) for these lines.
4		The Project does cause Midway to be a stronger source to the 138 kV system,
5		increasing the loading of the lines to a contingency loading of 133% of Rating 1 for the
6		same contingency. This is of potential concern because it exceeds the 115% of Rating 1
7		that is typical of an Emergency Rating.
8		There are a couple of options for addressing the overloads of this 138 kV
9		corridor:
10		• Upgrade the Midway to Citrus and Citrus to Hartman lines (estimated cost of
11		\$1.5 to \$2 million).
12		• Install a series reactor to limit flow on this line (estimated cost of about
13		\$500,000).
14		Preliminary analysis on the effectiveness of the series reactor was performed. This
15		preliminary analysis indicated that the reactor effectively eliminates the overloads on
16		this 138 kV corridor while not causing adverse conditions to other parallel lines.
17		The cost-effective solution appears to be a series reactor with an estimated cost of
18		\$500,000.
19		My conclusion is that any significant adverse impact caused by the Project to
20		these 138 kV lines can be eliminated either through reconductoring / upgrading the
21		lines, or through installation of a series reactor.
22		
23	Q:	Did you perform sensitivities to Florida Interface import levels?
24	A:	No. The location of the Panda Midway Project is sufficiently distant from the Florida
25		Interface that the Project will have negligible impact from a load flow perspective on

ĸ,

. مر

٨

<u>ي</u>

۴

يحتم

Page 17

- the capability to import power into Florida, and vice versa. The study was performed at a conservative level of a Florida Import near its maximum firm capability.

2

3

4

5

6

Did you study voltage stability? Q:

No. Generally, voltage instability (e.g., voltage collapse) is caused by transferring large A: amounts of power over large distances (e.g., from Georgia to South Florida) without sufficient active voltage regulation. The addition of Panda Midway will not adversely $\mathbf{7}$ impact active voltage regulation, and, in fact, should improve the voltage stability of 8 9 Georgia to South Florida transfers by providing mid-point active voltage regulation.

10

11

12

SHORT CIRCUIT AND STABILITY RESULTS

13 **Q**: Are you able to make any observations regarding the results of the stability 14 analysis or short circuit calculations?

15 A: Theoretically, a large, active source near the center of the east coast of Florida should 16 not have an adverse impact on stability limits from Georgia to Florida. I expect study 17results to confirm that the Project will have no significant adverse impact on the system 18 from a stability perspective. I have no observations concerning short circuit calculations 19 yet.

1		CONCLUSIONS
2		
2		
3	Q:	What is the overall conclusion of your analysis?
4	A:	Based on results to date, with the interconnection scheme and the proposed
5		transmission upgrades and the operating schemes discussed, the Panda Midway project
6		has no significant adverse impact on the peninsular Florida transmission system.
7		
8	Q:	Does this conclude your direct testimony?
9	A:	Yes

FRANCIS P. GAFFNEY

Rensselaer Polytechnic Inst.: Master of Engineering in Electric Power Engineering, GPA 4/4

Northeastern University: B.S. in Electrical Engineering, Power Systems, GPA 3.6 / 4

Since 1982, Mr. Gaffney has developed a diverse expertise in most aspects of the electric utility business, especially the electric power delivery business. During his career, he has been employed as:

- Transmission Planning Manager, expert in transmission planning studies and generator interconnection studies.
- National Director of Operations of a Y2k Consulting Firm, successfully operated \$15M company.
- Manager of Delivery System Design, all aspects: transmission, substation, distribution and protective relaying.
- Power Quality / Technology Expert.
- Project / Program Manager for many, varying projects.
- Marketing and Sales Manager.
- Strategic Planning / Change Management.

Transmission Planning

Managed the Transmission Planning group of Boston Edison. Principal Engineer with R. W. beck specializing in transmission planning studies.

- Former member of several NEPOOL Committees, including the Stability Task Force, the Southeast Mass. and Rhode Island (SEMA/RI) export study, and the Hydro-Quebec Phase II export study.
- Performed numerous load-flow, stability, short circuit and electro-magnetic transient studies. Some major categories of studies are listed below:
 - Import Studies (e.g., Boston Import) (loadflow)
 - Major load interconnection studies (e.g., bulk substations, Amtrak rail electrification) (loadflow, short circuit)
 - Export Studies (e.g., SEMA/RI Export) (loadflow, stability)
 - Critical Clearing Time studies (stability)
 - Control System Contingency Studies (stability)
 - Capacitor switching studies (electro-magnetic transient)
 - Performed several interface limit studies, including Southeast Mass / Rhode Island Export, Hydro-Quebec Phase II export and involvement with the New York to New England interface and Maine to New Brunswick interface, both loadflow and stability analyses
 - Performed numerous generator interconnection studies in various regions of the country, including NEPOOL, WSCC, SERC and FRCC (e.g., Fatal Flaw Studies,

FPSC Docket No. 000289-EU
Panda Midway: Gaffeny
Exhibit (FPG-1))
Page 2 of 3

System Impact Studies, Facilities Studies, Minimum Interconnection Studies, etc.), load flow, short circuit and stability analyses.

- Due diligence expert review for several merchant generator interconnections.
- Testified at FERC and local courts on transmission related subjects.
- Experienced with several different programs, including GE PSLF, PTI PSS/E, and EPRI EMTP.

Delivery System Design

Managed Delivery System Design for R. W. Beck, all aspects, including: transmission design (overhead and underground), substation, distribution and protective relaying. Managed Distribution Design, Senior Substation and Protective Relay Engineer for Boston Edison. Prepared numerous specifications, drawings, etc. for complete design packages. Performed numerous protective relay coordination studies. Performed several due diligence asset evaluations.

Operations Management

National Director of Operations for a start-up, limited duration, Year 2000 consulting firm. Developed work processes, developed employee reference manuals, conducted training, developed project manager tools, successfully managed the company's first project, helping the company achieve in the black operations within 6 months of start-up. Developed work management tools, metrics, backlog report, operations forecast pro-forma and other operations management tools to successfully operate the \$15M company. Developed Exit Plan to successfully manage overhead costs while meeting commitments to clients and breaking even during the last 4 months of operation.

With Boston Edison, major contributor in numerous projects to improve operations, including: work process redesign, core business system requirements / replacement, change management efforts, etc. Major contributor to a Customer Response Program - evaluated adequacy and integration alternatives of existing IT "back-office" infrastructure, including: customer care system, work management system, materials management system, energy management system and AM/FM GIS System. Facilitated a culture change program (Pacific Institute's Investment in Excellence).

With R. W. Beck, performed several management audits of utility operations.

Power Quality / Technology

Power Quality expert. While at Boston Edison, consulted to numerous commercial and industrial customers. Helped develop a profitable Power Quality consulting business by developing work processes, standard cost estimates, marketing material and training the sales team. Proposed and participated in market research of residential, commercial and industrial customers of many sizes for power quality services. Taught seminars on power quality. Initiated a project to install power quality meters throughout the distribution system to measure the quality of power being delivered to customers. Power quality / reliability metrics expert.

FPSC Docket No. 000289-EU Panda Midway: Gaffney Exhibit (FPG-1) Page 3 of 3

With Boston Edison, company's expert on new technologies such as fuel cells, power electronics, superconducting, renewable energy sources, flywheels, etc. Performed cost benefit analyses, due diligence on start-up firms. Conducted training.

Project / Program Management

Managed several Y2k Remediation Programs successfully – on schedule, under budget. High quality delivery, such that clients expanded the scope to triple and quadruple the size of the projects. High client satisfaction, thank you letters received for a job well done. Design projects managed on schedule on budget.

Strategic Planning / Change Management

With Boston Edison. Managed a project studying the convergence of delivery utilities (e.g., electric, communications, water, gas). Principle contributor for entrepreneurial project to develop a power system for a high bandwidth communication system for a Regional Bell Operating Company. Project Manger for a Distribution Business Pilot, a program to isolate a section of the distribution system, treat it as its own P&L center, and evaluate modifications in technology and operations on P&L. Facilitated a culture change program (Pacific Institute's Investment in Excellence). Developed a business plan to transition the engineering group into an engineering consulting group.

With R. W. Beck. Major contributor to develop a business plan for a schedule coordinator business. Major contributor to develop a model for the revenue cycle services marketplace that would allow revenue cycle services to be open to competition. Major contributor to develop a business plan for non-utility entities to enter the energy services business sector.

Honors

- Honorable Mention, Young Outstanding Electrical Engineer from the Eta Kappa Nu National Honor Society, 1991.
- Member of the Tau Beta Pi National Honor Society for Engineers
- Eta Kappa Nu National Honor Society for Electrical Engineers

Memberships and Continuing Education

- Completed course work for BS in Management, Lesley College, Cambridge, MA, 1995, GPA 3.8/4
- Leadership Development Program, University of Maryland & Center for Creative Leadership, 1995.
- Industrial Power System Engineering, Power Technologies, Inc., Schenectady, NY (2.7 C.E.U's)
- Member for the Institute of Electrical and Electronics Engineers (IEEE)

FPSC DOCKET NO. 000289-EU Exhibit FPG-2 Page 1 of 37

FRCC GENERATION INTERCONNECTION LOAD FLOW AND STABILITY STUDY VOLUME 1: LOAD FLOW STUDY

MIDWAY SITE

PANDA MIDWAY POWER PARTNERS, L.P.

APRIL 24, 2000

GENERATION INTERCONNECTION LOAD FLOW AND STABILITY STUDY TABLE OF CONTENTS

INTRODUCTION
THE PROPOSED "PROJECT"
LOAD FLOW STUDY METHODOLOGY1
MODELING / STUDY ASSUMPTIONS2
CASE DEVELOPMENT
DISPATCH ASSUMPTIONS
CONTINGENCIES
MONITORED INFORMATION
EVALUATION CRITERIA
FRCC SPECIFIC CRITERIA
REGIONAL UTILITIES' SPECIFIC CRITERIA
TECO Single Contingency Planning Criteria6
Florida Power Corporation Planning Criteria
Florida Power and Light Planning Criteria
CRITERIA USED FOR THIS STUDY
RESULTS
ANALYSIS
THE HARTMAN 138 KV TO 69 KV TRANSFORMERS
THE HARTMAN TO CITRUS TO MIDWAY 138 KV LINES
APPENDIX A: LOAD FLOW RESULS
100% LOAD LEVEL
60% LOAD LEVEL
40% LOAD LEVEL
APPENDIX B: CONTINGENCY LIST1

This report has been prepared for the use of the client for the specific purposes identified in the report. The conclusions, observations and recommendations contained herein attributed to RW. Beck, Inc. constitute the opinions of R. W. Beck, Inc. To the extent that statements, information and opinions provided by the client or others have been used in the preparation of this report, R.W. Beck, Inc. has relied upon the same to be accurate, and for which no assurances are intended and no representations or warranties are made. RW. Beck, Inc. makes no certification and gives no assurances except as explicitly set forth in this report.

Copyright 2000, R. W. Beck, Inc. All rights reserved.

N:\005551\032789\Testimony\FPG-2-Midway 4-19.doc

PANDA MIDWAY FRCC GENERATION INTERCONNECTION LOAD FLOW AND STABILITY STUDY

INTRODUCTION

In accordance with your request, this report summarizes the results of our load flow and stability study to examine the technical aspects of interconnecting a proposed 1000 MW plant addition to the Florida transmission grid.

THE PROPOSED "PROJECT"

The Proposed Project is two, two-on-one F-Series 500 MW combined cycle units. The proposed Project site near the Midway substation. The proposed plant will be referred to as the Project throughout the remainder of the report. The output of the proposed plant would be sold within Florida.

The proposed interconnection for the project will be to the existing Midway 500 kV substation via two new 500 kV lines.

LOAD FLOW STUDY METHODOLOGY

The goal of the Load Flow Analysis is to perform an evaluation of the incremental impact of the Project on the loading of the regional transmission system. To achieve this goal, R. W. Beck uses the following process:

- 1. A Base Case is developed to establish a baseline performance of the system before the Project.
- 2. Alternative Case(s) are then developed which include the Project.
- 3. Single contingency analysis is then performed on all of the cases.
- 4. Results from the Alternative Case(s) are compared to the results from the Base Case to evaluate the incremental impact of the Project on the loading of the transmission system.
- 5. The results are analyzed and presented.
- R. W. Beck uses General Electric's PSLF program to run the load flow cases.

The purpose of the technical evaluation is to determine if upgrades to the existing transmission system are likely to be required to integrate the Project to

4/20/00

the transmission grid. This study does not determine when and if the proposed Project would be dispatched. It instead evaluates the impact of the proposed generation on the planned transmission system, i.e., the Base Case configuration. The transmission loadings are evaluated against the applicable line or transformer capability ratings to determine whether it is likely that particular system components will require upgrade, replacement or additional protection as a condition for interconnecting the proposed Project. This study is not purported to represent a comprehensive review or analysis of physical interconnection alternatives, operational conditions, right-of-way or permitting from a cost or technical standpoint.

When studying generation export conditions, worst case conditions are often at lighter load levels. Near minimum (approx. 40-50%) load levels sometimes result in worst case conditions on the transmission system in close proximity to the Project, and "shoulder" load levels (approx. 60-70%) sometimes result in worst case conditions for multiple generating plants exporting from a region. Therefore, analysis was also performed at these lighter load levels.

MODELING / STUDY ASSUMPTIONS

As with all load flow analyses, the results of the study are driven by the assumptions used in developing the load flow models. To minimize the impact of these assumptions, R. W. Beck starts the process with a FERC 715 load flow case model, and then details the changes made to the model in evaluating the resource addition. The most significant assumptions impacting the identified necessary improvements include:

- The "Merchant" (or other planned) Generation added to the Base Case load flow model.
- The re-dispatch of existing units used to offset the new projects, including the Client's project.

This section discusses these assumptions, and others made in performing the study, such as contingencies evaluated and information monitored.

R. W. Beck reviewed the Ten-Year Site Plans for the FRCC and Florida utilities to determine what transmission system improvements and generator additions are planned to be added to the system, as well as other announced regional generation additions.

TABLE 1

Developer	Туре	Plant / Location	MW	ISD	Comments
Florida Power Corp.	СТ	Intercession City	329	2001	Planned
Florida Power Corp	CC	Hines Energy Complex	470	2000	Already in FERC 715 2004 Case
FPL	CC	Fort Myers Repowering	926	2002	Already in FERC 715 2004 Case
FPL	CC	Sanford Repowering	2,280	2003	Already in FERC 715 2004 Case
Gainesville	CC	Kelly Unit 8 Repowering	110	2001	Planned
JEA	CT	Brandy Branch	149	2001	Planned
JEA	CFB	Northside	276	2002	Planned
FMPA	CC	Cane Island	240	2001	Already in FERC 715 2004 Case
Lakeland	CC	MacIntosh 5	337	2002	Already in FERC 715 2004 Case
SECI	CC	Paynes Creek	488	2002	Already in FERC 715 2004 Case
TECo	CC	Gannon Repowering	1,475	2004	Planned
Reliant	CT	Holopaw	460	2002	Planned
Duke Energy Power	CC	New Smyrna Beach	460	2001	Planned
PG&E Generating	CC	Okeechobee Co.	560	2003	Planned
IPS/Avon Park	CT	Hardee Co.	460	2001	Planned
Panda Midway	CC	Midway	1,000	2003	Not included in Base Case, included in Alternate Case

New Generation in Region Included in Base Case

CASE DEVELOPMENT

The 2004 summer peak load flow model filed at the Federal Energy Regulatory Commission ("FERC") by the FRCC was used as a starting point to create the cases for the study. The utilities in the State file load flow cases at FERC annually. The load flow cases submitted include projections for several different years. Each load flow case for a future year includes projected loads and the planned generation additions and dispatch, and transmission improvements to meet those loads. Each load flow case must have an equal amount of generation and load. R. W. Beck relies upon these load flow models but does not independently verify all of the data in the models.

The FERC 715 case is modified to incorporate the Announced Regional Generation (see Table 1) to create a 100% Base Case. The load was scaled to a 60% load level and a 40% load level and generation redispatched within peninsular Florida to create a 60% Base Case and a 40% Base Case, respectively. The method used to redispatch the generation is described in the following section: Dispatch Assumptions.

The Base Cases were then further modified to create the Alternate Cases by including the Project (and the Panda Midway project).

A total of six (6) cases were developed:

- 1. 100% Load Level Base Case
- 2. 60% Load Level Base Case
- 3. 40% Load Level Base Case

- 4. 100% Load Level Alternate Case
- 5. 60% Load Level Alternate Case
- 6. 40% Load Level Alternate Case

The essential difference between the Base Cases and the Alternate Cases is that the Base Case do not include Panda Midway nor Panda Midway, while the Alternate Cases do.

DISPATCH ASSUMPTIONS

As discussed in the previous section, generation is adjusted from the FERC 715 case to accommodate the Announced Regional Generation assumed in the study (see Table 1) to create the Base Cases. Generation is further adjusted to accommodate the proposed plant to create the Alternative Case(s). Generation is adjusted considering the following factors:

- Turned off and reduced generation in the following order: (i) gas turbines and diesels, (ii) oil and gas fired steam units, (iii) repowered and greenfield combined cycle plants, (iv) coal plants.
- FERC Form 1 data for capacity factor, heat rate and costs (or forecasted heat rate and cost information for new units), when deciding among generators in the same technology.
- A general preference was given to keep plants in close proximity to the Project in service for a conservative study by increasing area export conditions and stressing the transmission system. And visa versa, plants far away from the Project will have little effect on the regional impacts of the Project.
- A general preference was given to enhance north to south flow through Florida (e.g., turning off generation in south Florida) further stressing the system.

At the 40% load level, we assumed that one nuclear unit would be out of service for maintenance and/or refueling because 40% load level would likely be a fall or spring minimum load. For conservatism, we chose Turkey Point because it is distant from the proposed Project, and, by taking this south of Miami unit out of service it increases north to south flows.

CONTINGENCIES

A single contingency analysis was performed, in other words, one line or transformer is taken out of service at a time. To perform the contingency analyses, R. W. Beck created a contingency list containing all 230 kV and above transmission lines and transformers within peninsular Florida, all 69 kV to 138 kV lines and transformers in the region of the Project, and all generators larger than

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

100 MW within peninsular Florida. Appendix B is a list of the contingencies studied.

MONITORED INFORMATION

For the Contingency analyses, R. W. Beck monitored voltages and flows on lines and transformers 69 kV and higher within peninsular Florida to assess any violations outside of the planning criteria described in the following sections.

EVALUATION CRITERIA

Criteria are necessary to evaluate the performance of the transmission system within this analysis. This section describes 1) the coordinating council reliability criteria, 2) the regional utilities' reliability criteria, and 3) the criteria used for evaluation in this analysis.

FRCC SPECIFIC CRITERIA

FRCC has established Planning Principal and Guides, including criteria for reliability in system planning. While the FRCC states that this reliability criteria is not mandated by the FRCC, its purpose is to promote maximum coordination of planning, construction and utilization of generation and transmission facilities involved in interconnected operations. FRCC recognizes that the reliability of power supply in local areas is the responsibility of the individual FRCC members and each member has internal criteria for planning and reliability. The current FRCC Planning Principals and Guides, as posted at the FRCC Web site, were adopted on September 25, 1996.

FRCC lists several guidelines pertaining to transmission adequacy, security, coordination, and protection systems. The guidelines define probable contingencies as single contingencies (e.g., loss of any one element), and states that: "Transmission systems should be capable of delivering generator unit output to meet projected customer demands during normal and probable contingencies." In general, the guidelines reflect typical transmission planning criteria, but are rather broad and offer few specific parameters. For example, the FRCC guidelines include no numerical targets for line and transformer loading or voltage specifications for either normal (Rating 1) or contingency conditions (Rating 2).

R. W. Beck has assumed that the two ratings provided in the load flow models correspond to the normal and emergency ratings when the two ratings are different.

- Rating 1 Normal Rating
- Rating 2 Emergency Rating

REGIONAL UTILITIES' SPECIFIC CRITERIA

TECO SINGLE CONTINGENCY PLANNING CRITERIA

Excerpted from TECO's 1998 FERC 715 Filing, Part 4.

TRANSMISSION SYSTEM LOADING LIMITS						
Transmission System Conditions	Acceptable Loading Limit for Transmission Lines and Transformers					
Single Contingency, pre-switching	115% or less					
Single Contingency, after all switching	100% or less					
Bus Outages. pre-switching	115% or less					
Bus Outages. after all switching	100% or less					

FLORIDA POWER CORPORATION PLANNING CRITERIA

The Florida Power Corp. (FPC) Planning Criteria as published with FPC's FERC 715 filing is as follows:

- Voltage should be between 95% and 105% of nominal voltage for both normal conditions and contingencies.
- Loading on transmission lines and transformers should be under the Normal Rating under normal conditions.
- Under contingency conditions, the loading should be under the Emergency Rating.

FLORIDA POWER AND LIGHT PLANNING CRITERIA

The Florida Power and Light (FPL) Planning Criteria as published with FPL's FERC 715 filing is as follows:

"FPL has adopted transmission planning criteria that are consistent with the planning criteria established by the Florida Reliability Coordinating Council (FRCC) in its *Principles and Guides for Planning Reliable Bulk Electric Systems*. FPL has applied these planning criteria in a manner consistent with prudent utility practice. These criteria are included as part of the attachments to this response. There may have been isolated cases for which FPL may have determined it prudent to deviate from these criteria. The overall customers involved, the probability of an outage occurring, as well as other factors may have influenced this decision.

The criteria are used for planning purposes and not for operating the system. Some operating parameters such as time limited emergency ratings may be factored into the planning process provided there is sufficient time for operator

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

actions without jeopardizing the safety and reliability of the transmission system."

FPL does use emergency ratings according to their criteria, when there is sufficient time for operator response. If an overload is caused by the project, a potential response would be to reduce the output of the Project post-contingency to alleviate overload concerns. Therefore, for the purposes of this study, it is assumed that emergency ratings can be used.

CRITERIA USED FOR THIS STUDY

The transmission planning criteria used in the study are in accordance with "FRCC Planning Principles and Guides". Because neither the FRCC guides nor the FPL criteria are specific, we used the following planning criteria, which is somewhat standard and is used by FPC:

- Voltage should be between 95% and 105% of nominal voltage for both normal conditions and contingencies.
- Loading on transmission lines and transformers should be under the Normal Rating (Rating 1) under normal conditions (Contingency 0).
- Under contingency conditions, the loading should be under the Emergency Rating (Rating 2).

The results of the contingency analyses for the Alternate Cases are compared with the Base Case loadings for the same contingency to determine if the new facilities were responsible for any new overloads. The Results section details the overloads in the Alternative Cases, both with and without contingencies. The overloads are compared to the Base Case results to make an assessment of the severity of the overload, specifically, the incremental impact on the overloaded facility of integration of the Project. The following table lists guidelines used by R. W. Beck to evaluate the incremental impact of the Project.

- Is the element overloaded in the Base Case? If the element is overloaded in the Base Case, then, the overload is a Pre-Existing condition and it is likely that the Project would not be responsible for any upgrades required to solve the overload concern. This also holds true if the results of the study indicate the same element is overloaded for other contingencies.
- Does the overload exceed the Emergency Rating for a contingency (Rating 2)? If the loading does not exceed the element's Emergency Rating (Rating 2), then, the line is able to carry the loading under contingency conditions.
- Does the overload exceed 15% of the Normal Rating if the Normal Rating (Rating 1) equals the Emergency Rating (Rating 2)? Frequently, in the FERC 715 filed case, Rating 2 is published as the same as Rating 1. This can be due to several reasons. The filing entity may not have calculated an emergency rating for that element and, therefore, published the Normal Rating as the Emergency Rating. The line may be "sag" restricted, e.g.,

N:\005551\032789\Testimony\FIPG-2- Midway 4-19.doc

restricted by clearance to ground of the conductor. Often, this can be easily fixed by re-tensioning the line and possibly minor modifications to some transmission structures. Or there may be minor equipment that limits the line, such as a disconnect switch. Typically, emergency ratings are about 15% greater than normal ratings (for example, TECO's planning criteria described above specifically mentions 15%). Therefore, for purposes of the analysis, if Rating 1 equals Rating 2, then the line is not reported as a new overload unless the overload exceed 115% of Rating 1. Note that if the line is sag limited, or otherwise limited, some corrective action may be necessary to achieve this emergency rating.

- Is the difference between the Base Case and the Alternate Case significant (e.g., greater than a 5% increase)? If the difference between the loading in the Base Case and the Alternate Case is insignificant, then the Project does not contribute significantly to the concern.
- Is the location of the overloaded line distant from the Project? If the location of the overloaded element is distant from the project, then, the cause of the overload is likely something other than the Project.
- Is the overload insignificant? If the overload is very small (e.g., 101% to 103%), then, the overload is within error tolerances of the study, and/or it may be that the situation can be resolved through an operating measure, such as reducing the output of the Project, to eliminate the overload.

RESULTS

Appendix A consists of a series of tables listing all of the cases where Rating 1 was exceeded for both normal conditions (Contingency Number 0) and contingency conditions (preceded by a contingency number). Each line loading is listed in MW, MVAR and MVA for both the Base Case and Alternate Case, for the same contingency at the same load level. The rating is also reported as Rating 1 / Rating 2, and the percentage of the rating is reported for both the Base Case and the Alternate Case for each load level.

The tables are organized by Load Level (e.g., 100% or Peak, 60% or Shoulder, and 40% or Light), and by the following categories (see discussion in the Evaluation Criteria section):

Potential Concerns	These are lines and transformers that are of potential concern to integrating the project into the transmission grid.
Overloaded for Another Contingency in the Base Case	These are lines that are overloaded for another contingency, and possibly another load level, in one of the base cases
Less that a 5% Increase from the Base Case	These are lines where the loading increased only marginally
Distant from the Project	These are overloads distant from the Project.
Minor Overload	The overload is minor (e.g., 101% to 103%).
Does not Exceed Rating 2 for a Contingency	These lines are actually not overloaded since Rating 2 is not exceeded
Does not Exceed 115% of Rating 1 for a Contingency if Rating 1 Equals Rating 2	115% of Rating 1 is a typical value for an emergency rating, but, the emergency rating is either not published, or, is limited by another factor, often a minor factor (e.g., sag limited)
Pre-Existing Violations	These are lines overloaded in the Base Case for the same contingency.

Below is a table summarizing the results that are of potential concern to integrating the project into the interconnected peninsular Florida system. Note that the highest loading is shown in the table and the line may be overloaded for other load levels.

POTENTIAL CONCERNS

All under peak load conditions:

Overload				Outage		Base Case Ldg MVA	Alt. Case Ldg MVA	Rating MVA	Base Case (% of Rating 1)	Alt. Case (% of Rating 1)
Xfmr	Hart- Fmp	Hartman 69kv	138/	Emerson	Fv-Ctyln 138kv	42	61	50/ 50	84%	122%
Xfmr	Hart- Fmp	Hartman 69kv #2	138/	Emerson	Fv-Ctyln 138kv	41	60	50/ 50	83%	120%
Line	Citrus	Hartman	138kv	Emerson	Emerson 138/230kv	238	362	272/ 272	87%	133%
Line	Citrus	Midway	138kv	Emerson	Emerson 138/230kv	238	362	272/ 272	87%	133%

ANALYSIS

The results discussed in the previous section caused potential concerns in two areas:

- 1. The Hartman 138 kV to 69 kV transformers
- 2. The Hartman to Citrus to Midway 138 kV lines.

THE HARTMAN 138 KV TO 69 KV TRANSFORMERS

There is a 69 kV system underlying the 230 and 138 kV system on the east coast of Florida in the Fort Pierce and Vero Beach area. There are several feeds from the 138 kV system into the 69 kV system, and, on loss of one of those feeds into the 69 kV system, other feeds into the 69 kV system become heavily loaded. In the peak load Base Case, the loss of the Emerson to Fv-Ctyln 138 kV line (one of the feeds into the 69 kV system) causes the Hartman 138 kV / 69 kV transformers to be loaded to 83-84% of Rating, without the Project. Note that, as published in the FERC 715 load flow database, Rating 1 equals Rating 2 (50 MVA) for these transformers.

The Project does cause Hartman to be a stronger source to the 69 kV system, increasing the loading of the transformers to a contingency loading of 120-122% of Rating 1 for the same contingency. This is of potential concern because it does exceed the 115% of Rating 1 that is typical of an emergency rating. However, transformers, because they are oil filled, take longer to heat up than overhead transmission lines. Therefore, the emergency ratings of transformers are often greater than 115% of Rating 1, and, since the loading exceeds Rating 1 by only 120%-122%, it is likely that the overload is within an emergency rating for the transformer.

For example, the American National Standards Institute (ANSI) Standard C57.92-1981 lists an two (2) hour emergency rating for a typical transformer (65 degrees C rise, Forced-Air-Cooled Transformer rated over 133% of self-cooled rating with an equivalent load of 70% of maximum nameplate rating pre-contingency, 30 degrees C ambient temperature) as 129% of normal rating with no loss of life. An one (1) hour rating under the same conditions is 145% of normal rating. So, if the transformers comply with the ANSI standards, the transformers should be able to carry this contingency loading.

The cost effective solution appears to be to calculate long term and short term emergency ratings for the transformers and to back down the Project output post-contingency to bring the transformer loading to within the appropriate rating.

THE HARTMAN TO CITRUS TO MIDWAY 138 KV LINES

Similar to the above situation, there are several feeds into the 138 kV system from the 230 kV system. In the Base Case, without the Project, if the Emerson 230 kV to

138 kV transformer is lost, the 115 kV lines fed from the 230 kV at Midway (Midway to Citrus to Hartman) becomes heavily loaded to 87% of Rating 1. Note that, as published in the FERC 715 load flow database, Rating 1 equals Rating 2 (272 MVA) for these lines.

The Project does cause Midway to be a stronger source to the 138 kV system, increasing the loading of the lines to a contingency loading of 133% of Rating 1 for the same contingency. This is of potential concern because it does exceed the 115% of Rating 1 that is typical of an emergency rating.

There are a few options for addressing the overloads of this 138 kV corridor.

- Upgrade the Midway to Citrus and Citrus to Hartman lines (estimated cost of \$1.5 to \$2M).
- 2. Install a series reactor to limit flow on this line (estimated cost of about \$500,000).

Preliminary analysis on the effectiveness of the series reactor was performed. This preliminary analysis indicated that the reactor effectively eliminates the overloads on this 138 kV corridor while not causing adverse conditions to other parallel lines.

The cost-effective solution appears to be a series reactor with an estimated cost of \$500,000.

APPENDIX A: LOAD FLOW RESULS

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

.

4/20/00

ţ

100% LOAD LEVEL

J

POTENTIAL CONCERNS

No	. Overload				Агеа	Outage			Bas	e Case	Ldg	Al	t. Case }	Ldg	Rating	Base	Case	Alt	Case
									MW	MVar	MVA	MW	MVar	MVA	MVA	Rtg1	RtgZ	Rtg1	R tg Z
4	Xímr Hart-Fmp	to	Hartman	138/ 69kv	FTP	Emerson	to	Fv-Ctyin 138kv	41	9	42	61	7	61	50/ 50	84%	84%	122%	122%
4	Xímr Hart-Fmp	to	Hartman	138/69kv #2	FTP	Emerson	to	Fv-Ctyln 138kv	41	9	41	60	7	60	50/ 50	83%	83%	120%	12 0%
90	Line Citrus	to	Hartman	138kv	FPL	Emerson	to	Emerson 138/230kv	236	25	238	359	46	362	272/ 272	87%	87%	133%	133%
90	Line Citrus	to	Midway	138kv	FPL	Emerson	to	Emerson 138/230kv	-236	-25	238	-359	-46	362	272/ 272	87%	87%	133%	133%

DISTANT FROM THE PROJECT

No. Overload	Area Outage	Base Case	Ldg	Alt. Case	Ldg	Rating	Base C	ase	Alt. Case
		MW MVar	MVA	MW MVar	MVA	MVA	Rtg1	Rtg2	Rtg1 Rtg2
143 Line Enola to Umatilla 69kv	FPC Hainesck to Sorrento 230kv	122 -9	122	161 -15	161	126/ 138	94%	88%	125% 117%
228 Line Martin W to Reddick (1) 69kv	FPC Archer to Pkrd 230kv	33 4	33	40 0	40	32/ 38	102%	88%	121% 104%
234 Line Bell Tp to Trenton (2) 69kv	FPC Ft Wht S to Newberry 230kv	-33 10	34	-41 13	43	32/ 38	107%	90%	136% 114%
234 Line Martin W to Reddick (1) 69kv	FPC Ft Wht S to Newberry 230kv	35 3	35	39 0	39	32/ 38	106%	92%	120% 103%
237 Line Inglis to Lebanon (3) 69kv	FPC Newberry to Wilcox 230kv	38 -2	38	40 -3	40	32/ 38	115%	99%	123% 106%
267 Line Homsatp2 to Villa Tp (4) 115kv	FPC Brkridge to Cryst Rv 500kv	-121 58	135	-131 61	145	137/ 137	98%	98%	105% 105%
267 Line Martin W to Reddick (1) 69kv	FPC Brkridge to Cryst Ry 500kv	35 3	35	39 1	39	32/ 38	106%	92%	118% 102%

١

LESS THAN A 5% INCREASE FROM THE BASE CASE

1

No. Overload	Area Outage	Base Case Ldg	Alt. Case Ldg	Rating	Base Case	Alt. Case
		MW MVar MVA	MW MVar MVA	MVA	Rtg1 Rtg2	Rtgi Rtg2
62 Line Midway to Turnpike 230kv	FPL Indn Twn to Bridge 230kv	636 190 664	652 191 679	647/ 647	99% 99%	101% 101%
181 Line Dade Cty to Dc Notap 69kv	TEC Lk Tarpn to Brkridge 500kv	63 5 63	66 4 66	63/ 63	98% 98%	103% 10 3 %
181 Line Dc Notap to Ft King 69kv	TEC Lk Tarpn to Brkridge 500kv	63 5 63	66 4 66	63/ 63	98% 98%	103% 103%
181 Line Hudson to Hudsontp 115kv	FPC Lk Tarpn to Brkridge 500kv	287 82 298	296 84 307	246/ 302	119% 99%	122% 10 2 %

DOES NOT EXCEED RATING 2 FOR A CONTINGENCY

No	. Overload		Area	Outage			Bas	e Case	Ldg	Alt.	Case I	.dg	Rating	Base	Case	Alt.	Case
							MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtgl	Rtg2	Rig1	Rtg2
6	Xímr Emerson	to Emerson 138/230kv	FPL	Citrus	to H	artman 138kv	-276		279	-412	-21	413	400/ 577	70%	49%	104%	72%
7	Xfmr Emerson	to Emerson 138/230kv	FPL	Citrus	to M	iidway 138kv	-276	-38	279	-412	-21	413	400/ 577	70%	49%	104%	72%
90	Xfmr Midway	to Midway 138/230kv #	2 FPL	Emerson	to E	merson 138/230kv	-170	-11	170	-225	-29	226	224/ 286	77%	60%	103%	79%
144	Line Curry Fd	to Stanton 230kv	FPC	Hainesck	to C	ent Fla 230kv	404	0	404	-459	-25	460	444/ 553	88%	73%	100%	83%
144	Xfmr Dallas	to Dallas 69/230kv	FPC	Hainesck	to C	ent Fla 230kv	-140	-52	150	-145	-49	153	150/ 280	102%	53%	104%	55%
144	Line Leesbg E	to Midway 69kv	FPC	Hainesck	to C	ent Fla 230kv	-78	23	81	-136	34	141	126/ 143	63%	56%	109%	98%
155	Xfmr Clmt Est	to Clmt Est 69/230kv	FPC	Clmt Est	to W	'inderme 230kv	-178	-22	179	-253	-17	254	250/ 280	73%	64%	103%	91%
170	Line Hudson	to Hudsontp 115kv	FPC	Lk Tarpn	to H	udson 230kv	250	68	259	258	68	266	246/ 302	103%	86%	106%	88%
177	Line Higgins	to Griffin 115kv	FPC	Griffin	to K	athleen 230kv	-137	59	149	-117	47	126	142/168	104%	89%	88%	75%
178	Line Avon Pkn	to Frostprf 69kv	FPC	Griffin	to W	est 230kv	78	-4	78	76	-3	76	75/82	102%	95%	100%	93%
178	Line Juneau-W	to Gannon 138kv	TEC	Griffin	to W	est 230kv	-305	-18	305	-294	-18	295	300/ 300	102%	102%	98%	98%
178	Line So Gib	to B Bend 230kv	TEC	Griffin	to V	est 230kv	-656	-174	679	-613	-170	636	634/ 634	103%	103%	96%	96%
180	Line Hudson	to Hudsontp 115kv	FPC	Lk Tarpn	to L	ct-Dum2 500kv	238	72	249	243	69	252	246/ 302	99%	83%	100%	84%
181	Line Higgins	to Griffin 115kv	FPC	Lk Tarpn	to B	kridge 500kv	-156	51	164	-151	48	158	142/168	118%	98%	113%	94%
181	Line Disston	to N East B 115kv	FPC	Lk Tarpn	to B	kridge 500kv	-124	-72	143	-124	-79	147	144/ 183	98 %	79%	101%	80%
181	Xfmr River-S	to River-S 69/230kv	TEC	Lk Tarpn	to B	kridge 500kv	-214	-42	218	-210	-43	214	224/ 232	100%	94%	98%	92%
181	Line 11th Ave	to So Gib 230kv	TEC	Lk Tarpn	to B	kridge 500kv	-599	-214	636	-577	-212	615	634/ 634	102%	102%	98%	98%
181	Xfmr Hkrs Pt	to Hkrspt-S 138/ 69kv	TEC	Lk Tarpn	to B	kridge 500k∨	175	50	182	174	50	181	168/187	108%	98 %	108%	97%
189	Line Curry Fd	to Stanton 230kv	FPC	Deland W	to Si	lvr Sp 230kv	-395	1	395	-465	-26	46 5	444/ 553	86%	71%	101%	84%

1 1 1 1

No. Overload	Area	Outage			Bas	e Case	Ldg	Alt.	Case I	.dg	Rating	Base	Case	Alt.	Case
					MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtgl	Rtg2	Rtg1	Rtg2
195 Line Curry Fd to Stanton 230kv	FPC	N Longwd	to	Wir Spgs 230kv	-401	-15	402	-459	-47	461	444/ 553	87%	72%	101%	83%
198 Xfmr Stc East to Stc East 230/ 69kv	OUC	Taylr Ck	to	Holopaw 230kv	147	15	147	154	18	155	150/ 168	98%	88%	103%	92%
198 Line Stc East to Stc Nth 69kv	OUC	Taylr Ck	to	Holopaw 230kv	127	-5	127	133	-4	134	116/ 144	109%	88%	115%	93%
199 Line Curry Fd to Stanton 230kv	FPC	Wtr Pk E	to	Wtr Spgs 230kv	-490	-27	491	-495	-36	496	444/ 553	107%	89%	108%	90%
204 Line Babspiktp to Indiketp 69kv	FPC	Avon Pk	to	Ft Meade 230kv	-64	36	73	-59	34	68	75/82	101%	89%	94%	83%
204 Line Frostprf to Indiketp 69kv	FPC	Avon Pk	to	Ft Meade 230kv	66	-31	73	61	-29	67	75/82	101%	89%	94%	82%
207 Line Avon Pkn to Frostprf 69kv	FPC	Barcola	to	West 230kv	77	-4	77	76	-3	76	75/ 82	102%	94%	101%	93%
216 Line Union Hi to Dadect T 69kv	FPC	Kathleen	to	Zephyr N 230kv	125	29	128	128	28	131	126/150	99%	85%	102%	87%
216 Xfmr River-S to River-S 69/230kv	TEC	Kathleen	to	Zephyr N 230kv	-226	-26	227	-221	-26	223	224/ 232	103%	98%	101%	96%
217 Line Avon Pkn to Frostprf 69kv	FPC	N Bartow	to	Pebb 230kv	79	-3	79	78	-3	78	75/82	104%	96%	104%	96%
218 Line Avon Pkn to Frostprf 69kv	FPC	N Bartow	to	Selose T 230kv	79	-3	79	79	-4	79	75/82	104%	96%	104%	96%
223 Line Avon Pkn to Frostprf 69kv	FPC	Wik Wale	to	Selose T 230kv	77	-4	78	77	-3	77	75/82	102%	94%	102%	94%
227 Line Montshtp to Reddick 69kv	FPC	Archer	to	Martin W 230kv	-25	6	26	-33	10	34	32/ 38	81%	68%	107%	90%
232 Line BellTp to Trenton 69kv	FPC	Ft Wht N	to	Ft Wht S 230kv	-29	10	31	-35	11	37	32/ 38	97%	81%	116%	97%
232 Line Jasper to Wghtchpl 115kv	FPC	Ft Wht N	to	Ft Wht S 230kv	-8	30	31	-7	34	35	35/43	9 5%	74%	103%	80%
234 Line Bell Tp to Neals Tp 69kv	FPC	Ft Wht S	to	Newberry 230kv	23	-13	26	31	-17	35	32/ 38	82%	69%	111%	93%
207 Line Barcola to Pebb 230kv	FPC	Barcola	to	West 230kv	574	-16	574	529	-9	529	492/ 542	112%	106%	103%	98%
208 Line Avon Pkn to Frostprf 69kv	FPC	Barcola	to	Pebb 230kv	81	-4	81	7 9	-3	80	75/82	106%	98%	105%	97%
359 Xfmr River-N to River-N 230/69kv	TEC	11th Ave	to	So Gib 230kv	222	70	233	215	66	225	224/ 234	104%	100%	100%	96%
370 Xfmr River-N to River-N 230/69kv	TEC	So Gib	to	B Bend 230kv	223	68	233	216	65	226	224/ 234	104%	100%	101%	96%
378 Line Barcola to Pebb 230kv	FPC	Polkplnt	to	Hardesub 230kv	543	-27	544	517	-21	517	492/ 542	106%	100%	101%	95%
237 Line Lebanon to Ottroktp 69kv	FPC	Newberry	to	Wilcox 230kv	33	-6	33	35	-7	36	32/ 38	105%	88%	113%	9 5%
238 Line Ottroktp to Usher Tp 69kv	FPC	Newberry	to	Cr Plant 230kv	16	-21	26	21	-25	32	32/ 38	84%	69%	103%	85%
242 Line Jasper to Wghtchpl 115kv	FPC	Suwannee	to	Sterling 230kv	-19	35	40	-18	34	38	35/ 43	117%	93%	111%	88%
245 Xfmr Dallas to Dallas 69/230kv	FPC	Andersen	to	Hoider 230kv	-142	-50	150	-144	-49	152	150/ 280	103%	54%	104%	54%
246 Line Brkridge to Brksvl W 115kv	FPC	Brkridge	to	Brksvwtp 230kv	246	-10	246	254	-15	255	246/ 302	98%	81%	101%	84%
246 Line Hudson to Hudsontp 115kv	FPC	Brkridge	to	Brksvwtp 230kv	246	72	256	250	67	259	246/ 302	102%	85%	103%	86%
249 Line Sprghltp to Heritgtp 115kv	FPC	Brkridge	to	Hudson 230kv	121	-53	133	129	-56	141	136/169	96%	7 8 %	102%	83%
251 Line Hudson to Hudsontp 115kv	FPC	Brksvwtp	to	Gulfpine 230kv	260	66	268	267	64	274	246/ 302	107%	89 %	109%	91%
256 Line Jasper to Wghtchpl 115kv	FPC	Cr Plant	to	Cryst R4 230kv	-15	38	41	-14	37	39	35/43	120%	95%	115%	91%
256 Xfmr Dallas to Dallas 69/230kv	FPC	Cr Plant	to	Cryst R4 230kv	-142	-48	150	-145	-46	152	150/ 280	102%	53%	104%	54%
				-											

1 1 1 1 1 1 1 1 1 1

1

No. Overload	Area	Outage			Base	Case I	Ldg	Alt.	Case L	dg	Rating	Base (Case	Alt. C	ase
				м	(W 🗌	Mvar	MVA	MW	Mvar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
256 Line Juneau-W to Ga	non 138kv TEC	Cr Plant	to	Cryst R4 230kv -	303	-19	304	-297	-19	297	300/ 300	101%	101%	99%	99%
259 Xfmr Dallas to Da	las 69/230kv FPC	Dailas	to	Silvr Sp 230kv -	121	-52	132	-145	-47	153	150/280	90%	47%	104%	54%
260 Xfmr Dallas to Da	las 69/230kv FPC	Martin W	to	Silv Spn 230kv -	143	-50	151	-147	-48	155	150/ 28 0	104%	54%	106%	55%
266 Xfmr Dailas to Da	las 69/230kv FPC	Brdg-Dum	to	Brkridge 500kv -	138	-52	148	-141	-49	149	150/ 280	101%	53%	102%	53%
267 Xfmr Dallas to Da	las 69/230kv FPC	Brkridge	to	Cryst Rv 500kv -	145	-45	152	-149	-47	157	150/ 280	104%	55%	107%	56%
267 Line Disston to NI	ast B 115kv FPC	Brkridge	to	Cryst Rv 500kv -	123	-97	157	-123	-97	156	144/ 183	111%	88%	107%	8 5%
267 Line Zephyr N to Zep	hyrhl 69kv FPC	Brkridge	to	Cryst Rv 500kv	141	13	141	143	9	143	126/150	109%	94%	111%	95%
267 Line Hudson to Hu	isontp 115kv FPC	Brkridge	to	Cryst Rv 500kv	237	91	254	241	87	256	246/ 302	104%	85%	103%	85%
267 Line Tri-City to Ulr	ierton 115kv FPC	Brkridge	to	Cryst Rv 500kv	1	-118	118	-2	-126	126	125/ 137	97%	88%	101%	92%
267 Line River-N to Gia	Coll 69kv TEC	Brkridge	to	Cryst Rv 500kv	138	38	143	135	37	140	143/ 143	102%	102%	99%	99%
267 Xîmr River-S to Riv	er-S 69/230kv TEC	Brkridge	to	Cryst Rv 500kv	221	-45	226	-217	-45	222	224/ 232	104%	98%	1 0 2%	95%
267 Line Chapman to Ga	non 230kv TEC	Brkridge	to	Cryst Rv 500kv -	523	-130	539	-504	-126	520	550/ 550	104%	104%	99%	99%
267 Xfmr Hkrs Pt to Hk	spt-S 138/ 69kv TEC	Brkridge	to	Cryst Rv 500kv	176	51	163	175	50	182	168/187	1 09 %	99%	109%	98%
267 Line Pt Suttri to Bay	met T 69kv TEC	Brkridge	to	Cryst Rv 500kv	-67	-21	71	-66	-19	68	72/ 121	102%	59%	98%	57%
271 Line Jasper to Wg	htchpl 115kv FPC	Cryst Rv	to	Cryst R5 500kv	-13	36	38	-12	35	37	35/43	113%	89%	109%	87%
271 Line Juneau-W to Ga	non 138kv TEC	Cryst Rv	ю	Cryst R5 500kv	304	-21	305	-297	-19	298	300/ 300	1 02 %	102%	99 %	99%
281 Line Hudson to Hu	isontp 115kv FPC	Anclote	ю	Seven Sp 230kv	253	70	263	258	73	268	246/ 302	105%	87%	106%	89 %
283 Line Hudson to Hu	isontp 115kv FPC	Gulfpine	to	Seven Sp 230kv	260	66	268	267	65	274	246/ 302	107%	89%	109 %	91%
336 Xfmr Ocala I to Oca	la-1 230/69kv FPC	Ocala 2	to	Silv Spn 230kv	145	5 9	157	145	59	157	150/ 165	104%	94%	104%	95%
336 Xfmr Ocala I to Oc	la-1 230/69kv #2 FPC	Ocala 2	ιo	Silv Spn 230kv	145	5 9	157	145	59	157	150/165	105%	95%	105%	95%
347 Line Avon Pkn to Fro	aprf 69kv FPC	Osceola	to	Lkagnes 230kv	79	-3	79	78	-3	78	75/82	103%	95%	103%	95%
349 Xfmr Hkrs Pt to Hk	spt-S 138/ 69kv TEC	Sheld	to	Jaxsn230 230kv	175	47	181	174	47	180	168/ 187	108%	97%	107%	96%
351 Line Juneau-W to Ga	non 138kv TEC	Dimbry-W	to	Dimbry-E 230kv	301	-22	302	-294	-22	294	300/ 300	101%	101%	98%	98%
351 Xfmr Hkrs Pt to Hk	spt-S 138/ 69kv TEC	Dimbry-W	to	Dimbry-E 230kv	176	49	182	174	48	181	168/ 187	109%	98%	108%	97%
351 Line So Gib to BB	end 230kv TEC	Dlmbry-W	to	Dimbry-E 230kv -	647	-184	673	-616	-182	643	634/ 634	102%	102%	97%	97%
352 Xfmr Hkrs Pt to Hk	spt-S 138/ 69kv TEC	Dimbry-E	to	Chapman 230kv	177	51	184	176	49	183	168/187	110%	98%	109%	98%
354 Line Hydepk-N to Hy	lepk-S 69kv TEC	Ohio-N	to	11th Ave 230kv -	144	-14	145	-136	-14	137	143/ 143	105%	102%	99%	96%
354 Line Hydepk-N to Ma	z-N T 69kv TEC	Ohio-N	to	11th Ave 230kv	120	6	121	112	6	113	120/ 120	104%	104%	97%	97%
354 Line River-N to Gte	Coll 69kv TEC	Ohio-N r	to	11th Ave 230kv	143	31	146	138	31	141	143/ 143	101%	101%	97%	97%
354 Xfmr River-S to Riv	er-S 69/230kv TEC	Ohio-N i	to	11th Ave 230kv -	218	-31	221	-213	-31	215	224/ 232	101%	95%	98 %	93%
366 Xfmr Hamptn to Ha	nptn 230/69kv TEC	Sr60-N	to	Sr60-N T 230kv	216	60	224	215	60	223	224/ 242	100%	93%	99%	92%

N	io. C)verload					Area	Outage				Base	e Case	Ldg	Alt.	Case 1	.dg	Rating	Base	Case	Alt. C	Case
												MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
36	6 L	ine SoG	ib	to	B Bend 230	kv	TEC	Sr60-N	to	Sr60-N T	230kv	-648	-184	674	-621	-183	647	634/ 634	102%	102%	98%	98%
36	17 X	fmr Rive	r-S	to	River-S 69/2	30kv	TEC	Sr60-S	to	Sr60-S T 2	230kv	-219	-29	221	-215	-30	217	224/ 232	101%	95%	99%	93%
36	17 Li	ine - So Gi	ib	to	B Bend 230	kv	TEC	Sr60-S	to	Sr60-S T 2	230kv	-641	-180	665	-614	-178	640	634/ 634	101%	101%	97%	97%
37	'0 Li	ine Higg	jins	to	Griffin 115k	v	FPC	So Gib	to	B Bend	230kv	-133	51	142	-124	47	133	142/ 168	101%	85%	93%	7 9 %
37	0 L	ine Cool	dg	to	Juneau-W 13	8kv	TEC	So Gib	to	B Bend	230kv	-242	25	243	-234	23	235	249/ 249	101%	101%	97%	97%
37	io X	fmr Sr60-	N	to	Sr60-N 230/	69kv	TEC	So Gib	to	B Bend	230kv	192	60	201	189	58	198	196/ 208	103%	97%	101%	95%
37	O Li	ine Rusk	cint2	to	Delweb 69	ĸv	TEC	So Gib	10	B Bend	230kv	81	16	83	79	15	81	82/82	101%	101%	98%	38%
37	'I Li	ine So G	ib	to	B Bend 230	kv	TEC	Ruskin T	to	B Bend	230kv	-652	-172	674	-625	-171	648	634/ 634	102%	102%	98%	98%
38	8 X	fmr Dalla	às	to	Dallas 69/2	30kv	FPC	Brdg-Dum	to	Brkridge	500/230kv	-138	-52	148	-141	-49	149	150/ 280	101%	53%	10 2 %	53%
35	6 Li	ine June	au-W	to	Gannon 138	3kv	TEC	River-N	to	Sr60-S T 2	230kv	-303	-19	303	-296	-19	297	300/ 300	101%	101%	99%	99%
35	6 X	fmr Hkrs	i Pt	to	Hkrspt-S 138	/ 69kv	TEC	River-N	to	Sr60-S T 2	230kv	175	47	182	174	46	180	168/187	108%	97%	107%	96%
35	9 Li	ine Higg	gins	to	Griffin 115kv	v	FPC	11th Ave	to	So Gib 2	30kv	-134	51	143	-125	48	133	142/168	101%	86%	94%	7 9%
35	9 Li	ine Cool	dg	to	Juneau-W 13	8kv	TEC	11th Ave	to	So Gib 2	30kv	-248	22	249	-238	20	239	249/ 249	104%	104%	99%	99%
35	9 Li	ine Carg	jill	to	Baymet T 69)kv	TEC	11th Ave	to	So Gib 2	30kv	94	26	97	89	24	92	93/93	105%	105%	99%	99%
35	9 X	fmr Sr60-	N	to	Sr60-N 230/	69kv	TEC	11th Ave	to	So Gib 2	30kv	188	59	197	184	57	193	196/ 208	100%	95%	98%	93%
35	i9 Li	ine Nitrn	n T	to	Pt Suttri 69k	v	TEC	11th Ave	to	So Gib 2	30kv	-80	-17	82	-76	-15	77	72/120	116%	68%	109%	64%
35	i9 Li	ine Pt Su	ittn	to	Baymet T 69	lkv	TEC	11th Ave	to	So Gib 2	30kv	-93	-21	95	-88	-19	90	72/ 121	135%	79%	128%	75%
36	0 X	fmr River	r-S	to	River-S 69/2	30kv	TEC	Hamptn	to	Hamptn	T 230kv	-225	-34	227	-220	-35	223	224/ 232	104%	98 %	102%	96%
36	0 X:	fmr Hkrs	Pt	to	Hkrspt-S 138	/ 69kv	TEC	Hamptn	to	Hamptn'	T 230kv	178	49	185	177	48	183	168/ 187	110%	99%	109%	98%
36	0 L	ine Mult	o-S	to	Sandhl-W 69) kv	TEC	Hamptn	to	Hamptn	T 230kv	-143	-16	144	-137	-17	138	143/ 143	103%	103%	98 %	98%
36	4 X	fmr Hkrs	Pt	to	Hkrspt-S 138	√69kv	TEC	Gannon	to	Sr60-N T	230kv	177	46	183	175	46	181	168/ 187	109%	98%	1 08 %	97%
36	6 LI	ine June:	au-W	to	Gannon 138	škv	TEC	Sr60-N	to	Sr60-N T	230kv	-300	-21	300	-293	-21	294	300/ 300	100%	100%	98%	98 %

1

1 1 1

1

ł

OVERLOAD DOES NOT EXCEED 115% OF RATING 1 IF RATING 1 EQUALS RATING 2

No. Overload	Area Outage		Bas	e Case L	.dg	Alt	. Case i	Ĺdg	Rating	Base	Case	Alt.	Case
			MW	MVar N	MVA	MW	MVar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
90 Line Hartman to FPierce 138kv	FPL Emerson	to Emerson 138/230kv	165	39	169	263	39	266	241/241	71%	71%	112%	112%
139 Xfmr Hart-Fmp to Hartman 138/69kv #	2 FTP Hartmar	to Hart-Fmp 69/138kv	38	-10	40	49	-11	50	50/ 50	81%	81%	102%	102%
140 Xfmr Hart-Fmp to Hartman 138/69kv	FTP Hartmar	to Hart Fmp 69/138kv #2	39	-10	40	49	-!1	50	50/ 50	82%	82%	103%	103%
181 Xfmr Brkridge to Brdg-Dum 230/500kv	FPC Lk Tarpr	to Brkridge 500kv	-676	-146	691	-710	-146	725	750/750	96%	96%	101%	101%

PRE-EXISTING VIOLATIONS - OVERLOADED IN THE BASE CASE WITHOUT THE PROJECT

No	o. Overload		Area O	lutage		Base	e Case	Ldg	Alt	. Case }	Ldg	Rating	Base	Case	Alt. C	Case
						МW	MVar	MVA	MW	MVar	MVA	MVA	Rtgl	Rtg2	Rtg1	Rtg2
0	Line Howey Tp	to Howeymtr 69kv	FPC No) Outage		32	11	33	32	11	33	32/ 38	102%	87%	103%	88%
0	Line Howeymtr	to Howey 69kv	FPC No) Outage		32	10	33	32	11	33	31/ 37	106%	89 %	107%	90%
0	Line Dlarpttp	to Dalasmet 69kv	FPC No	Outage		-59	-29	66	-54	-30	62	50/ 62	132%	106%	125%	100%
0	Line Dlarpttp	to Belvew 69kv	FPC No) Outage		67	29	73	67	29	73	52/ 52	}41%	141%	142%	142%
0	Line Dalasmet	to Dallas 69kv	FPC No	Outage		-59	-29	66	-55	-30	62	50/ 62	132%	106%	125%	101%
Q	Xfmr Dallas	to Dallas 69/230kv	FPC No	o Outage		-137	-50	146	-140	-49	148	150/ 280	100%	52%	101%	53%
0	Line Martin W	to Reddick 69kv	FPC No	Outage		33	4	33	36	2	36	32/ 38	100%	86%	110%	95%
0	Line Brt St T	to Lee 138kv	FPL No	Outage		-221	-78	234	-221	-78	234	173/ 173	137%	137%	137%	13 7%
0	Line Corbett	to Lee 138kv	FPL No	Outage		-171	-58	181	-171	-58	181	173/ 173	103%	1 0 3%	103%	103%
0	Xîmr Miccosk	to Miccosk 115/69kv	FPC No	Outage		28	11	30	28	11	30	20/ 20	152%	152%	152%	152%
0	Line Hudson	to Sea P Tp 115kv	FPC No	Outage		126	50	135	126	50	135	114/114	118%	118%	118%	118%
0	Xfmr Juneau-E	to Juneau-E 138/ 69kv	TEC No	Outage		184	27	186	181	27	183	168/ 183	111%	102%	109%	100%
0	Xfmr Hkrs Pt	to Hkrspt-S 138/ 69kv	TEC No	Outage		173	46	179	172	45	178	168/ 187	107%	96%	106%	95%
18	Line Britgoab	to Morris 69kv	FPL Ok	kechobe	to Morris 69kv	-54	-87	103	-54	-87	103	44/44	235%	235%	235%	235%
57	Line Midway	to Wh Ctytp 138kv	FPL Sar	npiper	to Turnpike 230kv	252	93	268	252	93	268	241/241	110%	110%	110%	110%
95	Xfmr Sherman	to Sherman 69/230kv	FPL She	erman	to Sherman 69/230kv #2	-58	-6	58	-58	-6	58	50/ 50	120%	120%	120%	120%
113	Line Midway	to Wh Ctytp 138kv	FPL San	npiper	to Sanpiper 138/230kv	252	93	268	252	93	268	243/241	110%	110%	!10%	110%
131	Xfmr Hart-Fmp	to Hartman 138/69kv	FTP Ftp	p-Ga C	to Fv-Ctyln 138kv	58	1	58	58	5	58	50/ 50	115%	115%	116%	116%

N:\005551\032789\TestImony\FPG-2-Midway 4-19.doc

1

No.	Overload			Area	Outage			Base	e Case I	Ldg	Alt	. Case I	Ldg	Rating	Base (ase	Alt. (Case
								MW	MVar	MVA	MW	MVar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
131	Xfmr Hart-Fmp	to	Hartman 138/ 69kv #2	FTP	Ftp-Ga C	to	Fv-Ctyln 138kv	57	1	57	57	4	57	50/ 50	113%	113%	113%	113%
141	Xfmr Hart-Fmp	to	Hartman 138/69kv	FTP	Garden C	to	Ftp-Ga C 69/138kv	58	1	58	58	5	58	50/ 50	115%	115%	116%	116%
141	Xfmr Hart-Fmp	to	Hartman 138/69kv #2	FTP	Garden C	to	Ftp-Ga C 69/138kv	57	1	57	57	4	57	50/ 50	113%	113%	113%	113%
151	Xfmr Altamont	to	Altamont 69/230kv	FPC	Spg Lake	ło	Altamont 230kv	-231	-45	236	-213	-69	224	200/ 224	122%	105%	117%	100%
177	Xfmr Juneau-E	to	Juneau-£ 138/ 69kv	TEC	Griffin	to	Kathleen 230kv	187	27	188	182	27	184	168/ 183	112%	103%	109%	100%
178	Xfmr Juneau-E	to	Juneau-E 138/ 69kv	TEC	Griffin	to	West 230kv	190	27	192	184	27	186	168/ 183	114%	105%	111%	102%
181	Xfmr Juneau-E	to	Juneau-E 138/69kv	TEC	Lk Tarpn	to	Brkridge 500kv	191	37	194	188	37	192	168/ 183	116%	106%	114%	105%
181	Line Juneau-W	to	Gannon 138kv	TEC	Lk Tarpn	to	Brkridge 500kv	-310	-35	312	-305	-36	308	300/ 300	107%	107%	105%	105%
181	Line So Gib	to	B Bend 230kv	TEC	Lk Tarpn	to	Brkridge 500kv	-710	-293	768	-689	-286	746	634/ 634	117%	117%	114%	114%
189	Line Dlarpttp	to	Dalasmet 69kv	FPC	Deland W	to	Silv r Sp 230kv	-60	-28	66	-58	-29	64	50/ 62	134%	107%	130%	104%
189	Line Dalasmet	to	Dallas 69kv	FPC	Deland W	to	Silvr Sp 230kv	-60	-28	66	-58	-29	65	50/ 62	134%	107%	130%	104%
201	Xfmr Juneau-E	to	Juneau-E 138/ 69kv	TEC	Loughman	to	Intercsn 230kv	186	27	188	183	27	185	168/ 183	112%	103%	110%	101%
202	Xfmr Juneau-E	to	Juneau-E 138/ 69kv	TEC	Loughman	to	Wlk Wale 230kv	186	27	188	183	27	185	168/183	112%	103%	110%	101%
204	Line Avon Pkn	to	Frostprf 69kv	FPC	Avon Pk	to	Ft Meade 230kv	101	-6	101	95	-6	95	75/82	135%	123%	128%	116%
214	Line Avon Pkn	to	Frostprf 69kv	FPC	Ft Meade	to	Wik Wale 230kv	88	-4	88	88	-4	88	75/82	115%	106%	116%	107%
214	Line Barcoia	to	Pebb 230kv	FPC	Ft Meade	to	Wlk Wale 230kv	582	-13	58 2	574	-4	574	492/ 542	114%	107%	112%	106%
216	Xfmr Juneau-E	to	juneau-E 138/ 69kv	TEC	Kathleen	to	Zephyr N 230kv	189	28	191	186	2 9	188	168/ 183	114%	105%	112%	103%
227	Line Martin W	to	Reddick 69kv	FPC	Archer	to	Martin W 230kv	42	1	42	50	-3	50	32/ 38	127%	109%	152%	131%
238	Line Inglis	to	Lebanon 69kv	FPC	Newberry	to	Cr Plant 230kv	43	-8	43	49	-9	50		132%	114%	152%	132%
238	Line Lebanon	to	Ottrektp 69kv	FPC	Newberry	to	Cr Plant 230kv	38	-12	39	44	-14	46		123%	103%	143%	120%
238	Line Martin W	to	Reddick 69kv	FPC	Newberry	to	Cr Plant 230kv	38	2	38	43	-1	43	32/ 38	116%	100%	130%	
245	Line Dlarpttp	to	Dalasmet 69kv	FPC	Andersen	to	Holder 230kv	-68	-27	73	-62	-29	68	50/ 62	148%	118%	138%	
245	Line Dalasmet	to	Dallas 69kv	FPC	Andersen	to	Holder 230kv	-68	-27	74	-62	-29	69	50/ 62	148%	118%	138%	
255	Xfmr Juneau-E	to	Juneau-E 138/69kv	TEC	Cr Plant	to	Cryst Re 230kv	185	31	188	182	30	185	168/183	112%	103%	110%	
256	Line So Gib	to	B Bend 230kv	TEC	Cr Piant	to	Cryst R4 230kv	-668	-175	690	-640	-172	663	634/ 634	105%	105%	101%	
256	Line Dlarpttp	ŧo	Dalasmet 69kv	FPC	Cr Plant	to	Cryst R4 230kv	-70	-24	74	-65	-26	70	50/ 62	149%	119%	142%	
256	Line Dalasmet	to	Dallas 69kv	FPC	Cr Plant	to	Cryst R4 230kv	-70	-24	74	-65	-26	70	50/ 62	149%	120%	142%	
256	Xfmr Juneau-E	to	Juneau-E 138/ 69kv	TEC	Cr Plant	to	Cryst R4 230kv	188	28	190	185	27	187	168/ 183	113%	104%	111%	
264	Xfmr Oc R-Oak	to	Oc R-Oak 230/ 69kv	FPC	Ocala I	to	Ocala 1 230kv	147	74	165	147	74		150/ 165	110%	100%	110%	
267	Line Juneau-W	to	Gannon 138kv	TEC	Brkridge	to	Cryst Rv 500kv	-319	-37	322	-316	-36	318	300/ 300	113%	113%	110%	
267	Line Higgins	to	Griffin 115kv	FPC	Brkridge	to	Cryst Rv 500kv	-190	56	198	-183	61	193	142/ 168	146%	119%	141%	115%

1

ļ

No. Overload	Area Outage		Base	e Case I	Ldg	Alt	. Case l	Ldg	Rating	Base	Case	Alt. (Case
			MW	MVar	MVA	MW	MVar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
267 Line Dlarpttp to Dalasmet 69kv	FPC Brkridge	to Cryst Rv 500kv	-63	-27	69	-59	-29	66	50/ 62	139%	111%	132%	106%
267 Line Dalasmet to Dallas 69kv	FPC Brkridge	to Cryst Rv 500kv	-63	-27	69	-59	-29	66	50/ 62	139%	111%	132%	106%
267 Line 11th Ave to So Gib 230kv	TEC Brkridge	to Cryst Rv 500kv	-658	-240	701	-637	-226	676	634/ 634	114%	114%	10 9 %	109%
267 Line So Gib to B Bend 230kv	TEC Brkridge	to Cryst Rv 500kv	-768	-337	838	-748	-315	812	634/ 634	130%	130%	125%	125%
267 Line Dade Cty to Dc Notap 69kv	TEC Brkridge	to Cryst Rv 500kv	64	10	65	66	7	66	63/ 63	100%	100%	103%	103%
267 Line DcNotap to FtKing 69kv	TEC Brkridge	to Cryst Rv 500kv	64	10	65	66	7	66	63/63	100%	100%	103%	103%
271 Line Diarpttp to Dalasmet 69kv	FPC Cryst Rv	to Cryst R5 500kv	-65	-26	70	-60	-28	66	50/ 62	141%	113%	134%	107%
271 Line Dalasmet to Dallas 69kv	FPC Cryst Rv	to Cryst R5 500kv	-65	-26	70	-60	-28	66	50/ 62	141%	113%	134%	107%
271 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Cryst Rv	to Cryst R5 500kv	189	28	191	186	27	188	168/ 183	114%	105%	112%	103%
267 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Brkridge	to Cryst Rv 500kv	195	39	199	193	38	197	168/ 183	118%	110%	117%	108%
349 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Sheid	to Jaxsn230 230kv	188	28	191	186	28	188	168/ 183	113%	104%	112%	103%
350 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Sheld	to Ohio-S 230kv	210	37	213	201	36	204	168/ 183	127%	116%	122%	112%
352 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Dimbry-E	to Chapman 230kv	190	30	192	186	30	188	168/183	114%	105%	112%	103%
354 Xfmr 11th Ave to Eleven-E 230/69kv	TEC Ohio-N	to 11th Ave 230kv	254	71	263	247	67	256	224/ 246	118%	107%	114%	104%
356 Xfmr Juneau-E to Juneau-E 138/69kv	TEC River-N	to Sr60-S T 230kv	191	29	193	187	29	190	168/ 183	115%	106%	113%	104%
357 Xfmr Juneau-E to Juneau-E 138/69kv	TEC River-S	to BBend 230kv	188	31	191	185	31	187	168/ 183	113%	104%	112%	102%
358 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Chapman	to Gannon 230kv	216	39	220	211	39	215	168/ 183	131%	120%	128%	117%
358 Xfmr Hkrs Pt to Hkrspt-S 138/69kv	TEC Chapman	to Gannon 230kv	181	52	188	179	51	186	168/ 187	112%	101%	111%	100%
363 Xfmr Juneau-E to Juneau-E 138/69kv	TEC Gannon	to Sr60-S T 230kv	192	30	195	189	30	191	168/ 183	116%	106%	114%	105%
363 Xfmr Hkrs Pt to Hkrspt-S 138/ 69kv	TEC Gannon	to Sr60-S T 230kv	191	52	198	190	51	197	168/ 187	118%	106%	117%	105%
366 Xfmr Hkrs Pt to Hkrspt-S 138/69kv	TEC Sr60-N	to Sr60-N T 230kv	181	51	188	180	50	186	168/ 187	112%	100%	111%	100%
367 Xfmr Hkrs Pt to Hkrspt-S 138/ 69kv	TEC Sr60-S	to Sr60-S T 230kv	194	54	202	193	53	200	168/ 187	120%	108%	119%	107%
370 Xfmr River-S to River-S 69/230kv	TEC So Gib	to B Bend 230kv	-252	-35	254	-245	-34	247	224/ 232	116%	110%	113%	107%
370 Xfmr Hkrs Pt to Hkrspt-S 138/ 69kv	TEC So Gib	to B Bend 230kv	191	58	199	189	57	198	168/ 187	119%	107%	118%	106%
370 Xfmr Belcrk to Belcrk 230/69kv	TEC So Gib	to B Bend 230kv	246	58	252	240	56	246	224/ 247	113%	103%	110%	100%
370 Xfmr Ruskin T to Ruskin 230/69kv	TEC So Gib	to B Bend 230kv	173	49	179	169	45	175	168/175	107%	103%	104%	100%
271 Line So Gib to B Bend 230kv	TEC Cryst Rv	to Cryst R5 500kv	-673	-179	696	-645	-172	668	634/634	106%	106%	101%	101%
299 Line Putnam to Tocoi 230kv	FPL Greenind	to Swtzrlnd 230kv	391	165	424	392	164	425	402/ 402	102%	102%	103%	103%
309 Line Osceola to Studio 69kv	TEC Can Isl	to Ouccitpi 230kv	154	9	155	159	11	160	143/143	106%	106%	110%	110%
310 Line Osceola to Studio 69kv	TEC Can Isl	to Ouccitp2 230kv	151	3	151	159	8	159	143/143	104%	104%	111%	111%
319 Line Osceola to Studio 69kv	TEC Taft	to Ouccitp1 230kv	154	9	155	159	n	160	143/143	106%	106%	110%	110%

ļ

R. W. Beck

A8

No. Overload		Area Outage		Base	e Case L	.dg	Alt	. Case I	Ldg	Rating	Base	Case	Alt. Q	Case
				MW	MVar J	MVA	MW	MVar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
323 Line Osceola	to Studio 69kv	TEC Ouccitp2	to Osceola 230kv	151	3	151	159	8	159	143/143	104%	104%	111%	111%
352 Line Juneau-W	to Gannon 138kv	TEC Dimbry-E	to Chapman 230kv	-313	-26	314	-305	-25	306	300/ 300	105%	105%	102%	102%
352 Xfmr Chapman	to Chapman 230/69kv	TEC Dlmbry-E	to Chapman 230kv	232	60	240	222	59	230	224/ 224	107%	107%	103%	103%
352 Line So Gib	to B Bend 230kv	TEC Dlmbry-E	to Chapman 230kv	-670	-194	697	-639	-190	667	634/ 634	106%	106%	101%	101%
353 Xfmr Juneau-E	to Juneau-E 138/69kv	TEC Ohio-N	to Ohio-S 230kv	195	29	197	190	29	193	168/ 183	117%	108%	115%	105%
354 Line Cooldg	to Ohio 138kv	TEC Ohio-N	to 11th Ave 230kv	191	-41	195	180	-38	184	186/ 186	107%	107%	100%	100%
354 Line Juneau-W	to Gannon 138kv	TEC Ohio-N	to 11th Ave 230kv	-328	-29	329	-319	-31	320	300/ 300	112%	112%	108%	108%
370 Line Cooldg	to Ohio 138kv	TEC So Gib	to BBend 230kv	194	-45	19 9	186	-44	191	186/ 186	111%	111%	106%	106%
370 Line Juneau-W	to Gannon 138kv	TEC So Gib	to B Bend 230kv	-332	-26	333	-324	-27	325	300/ 300	115%	115%	111%	111%
370 Line Seven8-T	to Twelfth 69kv	TEC So Gib	to B Bend 230kv	103	13	104	98	11	99	93/ 93	115%	115%	108%	108%
357 Line Gannon	to Sr60-S T 230kv	TEC River-S	to B Bend 230kv	477	127	494	468	127	485	402/ 402	118%	118%	115%	115%
357 Line So Gib	to B Bend 230kv	TEC River-S	to BBend 230kv	-665	-181	689	-639	-180	664	634/ 634	105%	105%	101%	101%
358 Line River-N	to Gte-Coll 69kv	TEC Chapman	to Gannon 230kv	156	33	160	151	33	154	143/143	111%	111%	107%	107%
358 Xfmr River-S	to River-S 69/230kv	TEC Chapman	to Gannon 230kv	-247	-36	250	-240	-36	242	224/ 232	114%	108%	111%	104%
358 Line Fort6 T	to Gte-Coll 69kv	TEC Chapman	to Gannon 230kv	-133	-16	134	-128	-17	129	128/ 128	108%	108%	104%	104%
358 Line Juneau-W	to Gannon 138kv	TEC Chapman	to Gannon 230kv	-332	-30	333	-323	-30	325	300/ 300	113%	113%	110%	110%
358 Line Gannon	to Sr60-S T 230kv	TEC Chapman	to Gannon 230kv	452	111	465	436	106	449	402/ 402	110%	110%	107%	107%
358 Line So Gib	to BBend 230kv	TEC Chapman	to Gannon 230kv	-717	-225	751	-682	-216	716	634/ 634	114%	114%	109%	109%
359 Line Cooldg	to Ohio 138kv	TEC 11th Ave	to SoGib 230kv	200	-42	204	191	-40	195	186/ 186	114%	114%	108%	108%
359 Xfmr River-S	to River-S 69/230kv	TEC 11th Ave	ta SoGib 230kv	-250	-36	2 52	-243	-36	245	224/ 232	11 6%	109%	112%	106%
359 Line Juneau-W	to Gannon 138kv	TEC 11th Ave	to SoGib 230kv	-336	-29	337	-328	-30	329	300/ 300	116%	116%	113%	113%
359 Xfmr Hkrs Pt	to Hkrspt-S 138/ 69kv	TEC 11th Ave	to So Gib 230kv	181	55	189	179	54	187	168/ 187	112%	101%	112%	100%
359 Line Seven8-T	to Twelfth 69kv	TEC 11th Ave	to So Gib 230kv	97	13	98	92	12	9 3	93/ 93	108%	108%	102%	102%
363 Line Juneau-W	to Gannon 138kv	TEC Gannon	to Sr60-S T 230kv	-309	-20	309	-302	-21	303	300/ 300	103%	103%	101%	101%

I.

60% LOAD LEVEL

1

DISTANT FROM THE PROJECT

No. Overload	Area	Outage		Base	Case I	dg	Alt,	Case L	dg	Rating	Base	Case	Alt. (Case
				MW	MVar	MVA	MW	MVar	MVA	MVA	Rigi	Rigž	Rtg1	Rtg2
181 Line Dade Cty to Dc No	otap 69kv TEC L	.k Tarpn to	Brkridge 500kv	64	-8	64	74	-9	75	63/ 63	99%	99%	116%	116%
181 Line Dc Notap to Ft Kin	ng 69kv TEC L	.k Tarpn to	Brkridge 500kv	64	-8	64	74	-9	75	63/ 63	99%	99%	116%	116%
267 Line Brkridge to Brk98	Tp 115kv FPC B	Brkridge to	Cryst Rv 500kv	-117	102	155	-139	122	185	137/ 137	112%	112%	132%	132%
267 Line Brk98 Tp to Hamr	ncktp 115kv FPC B	B rkridge to	Cryst Rv 500kv	-128	94	159	-151	112	188	137/137	114%	114%	135%	135%
385 Xfmr Lk Tarpn to Lkt-D	um2 230/500kv FPC L	kt-Dum1 to	Lk Tarpn 500/230kv	-768	55	770	-874	87	878	750/ 750	103%	10 3 %	117%	117%
386 Xfmr Lk Tarpn to Lkt-D	um1 230/500kv FPC L	.kt-Dum2 to	Lk Tarpn 500/230kv	-760	55	762	-865	87	870	750/ 750	102%	102%	116%	116%
143 Line Enola to Umati	illa 69kv 🛛 🖓 FPC 🖓	Hainesck to	Sorrento 230kv	114	-20	116	141	-21	142	126/138	90%	84%	110%	103%
249 Line Sprghltp to Herits	gtp 115kv FPC B	Brkridge to	Hudson 230kv	139	-56	150	158	-64	171	136/ 169	107%	88%	123%	101%
248 Line Homsatp2 to Villa?	fp (1) 115kv FPC B	Brkridge to	Cryst Re 230kv	-132	59	145	-151	69	166	137/ 137	104%	104%	119%	119%

DOES NOT EXCEED RATING 2 FOR A CONTINGENCY

No. Overload		Area Outage		Base	Case L	dg	Alt, C	Case Lo	dg	Rating	Base (Case	Alt. (Case
				MW	MVar	MVA	MW I	MVar	MVA	MVA	Rtg1	Rtg2	Rtg1	Rtg2
170 Line Hudson	to Hudsontp 115kv	FPC Lk Tarpn to	Hudson 230kv	237	52	243	255	53	261	246/ 302	96%	80%	103%	86%
181 Line Higgins	to Griffin 115kv	FPC Lk Tarpn to	Brkridge 500kv	-137	60	149	-143	64	157	142/ 168	104%	89%	109%	93%
181 Line Sprghltp	to Heritgtp 115kv	FPC Lk Tarpn to	Brkridge 500kv	108	-48	119	128	-58	140	136/ 1 6 9	86%	70%	101%	83%
181 Line Brkridge	to Brksvwtp 230kv	FPC Lk Tarpn to	Brkridge 500kv	655	68	659	722	84	727	677/812	97%	80%	109%	90%
181 Line Brkridge	to Hudson 230kv	FPC Lk Tarpn to	Brkridge 500kv	613	40	615	686	61	689	677/ 812	91%	75%	103%	85%
181 Line Hudson	to Hudsontp 115kv	FPC Lk Tarpn to	Brkridge 500kv	259	51	264	280	52	285	246/ 302	105%	88%	113%	94%
227 Line Martin W	to Reddick 69kv	FPC Archer to	Martin W 230kv	21	4	22	37	-2	37	32/ 38	66%	57%	112%	97%
234 Line Bell Tp	to Trenton 69kv	FPC Ft Wht S to	Newberry 230kv	-26	8	27	-33	14	36	32/ 38	85%	72%	110%	94%
238 Line Inglis	to Lebanon 69kv	FPC Newberry to	Cr Plant 230kv	28	-8	29	33	-9	34	32/ 38	87%	75%	103%	90%
247 Line Cr Plant	to Cryst Re 230kv	FPC Brkridge to	Cr Plant 230kv	671	106	679	717	121	727	677/ 812	96%	84%	103%	90%
249 Line Heritgtp	to Hudson 115kv	FPC Brkridge to	Hudson 230kv	120	-69	139	140	-79	160	136/169	99 %	82%	115%	95%

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

No. Overload		Area Outage	Base Case Ldg	Alt. Case Ldg	Rating	Base Case	Alt. Case
			MW MVar MVA	MW MVar MVA	MVA	Rigi Rig2	Rtg1 Rtg2
251 Line Hudson	to Hudsontp 115kv	FPC Brksvwtp to Guifpine 230kv	250 50 255	266 50 271	246/ 302	101% 84%	107% 90%
267 Line Cryst Rs	to Villa Tp 115kv	FPC Brkridge to Cryst Rv 500kv	171 -65 183	197 -77 212	173/215	103% 85%	120% 99%
267 Line Cr Plant	to Cryst Re 230kv	FPC Brkridge to Cryst Rv 500kv	674 153 691	733 192 757	677/ 812	98% 85%	107% 93%
267 Line Zephyr N	to Zephyrhl 69kv	FPC Brkridge to Cryst Rv 500kv	118 -11 119	133 -9 133	126/ 150	92% 79%	103% 89%
283 Line Hudson	to Hudsontp 115kv	FPC Gulfpine to Seven Sp 230kv	250 50 255	266 50 274	246/ 302	101% 85%	107% 90%
371 Line Manatee	to B Bend 230kv	FPL Ruskin T to BBend 230kv	-937 157 950	-856 130 865	900/ 900	101% 101%	92% 92%
371 Line Ruskmtr8	to BBend 230kv	TEC Ruskin T to B Bend 230kv	-506 7 506	-465 10 465	478/ 478	101% 101%	93% 93%

OVERLOAD DOES NOT EXCEED 15% GREATER THAN RATING 1 IF RATING 1 EQUALS RATING 2

No.	Over	load			Area	Outage			Base	Case	Ldg	Alt	. Case	Ldg	Rating	Base	Case	Alt. (Case
									MW	MVar	MVA	MW	MVar	MVA	MVA	Rtgl	Rtg2	Rtg1	Rtg2
181	Xfmr	Brkridge	to	Brdg-Dum 230/500kv	FPC	Lk Tarpn	to	Brkridge 500kv	-710	-71	713	-789	-89	794	750/750	98%	98%	109%	109%
247	Line	Brkridge	to	Brk98 Tp 115kv	FPC	Brkridge	to	Cr Plant 230kv	-90	81	121	-107	92	141	137/137	87%	87%	101%	101%
247	Line	Brk98 Tp	to	Hammektp 115kv	FPC	Brkridge	to	Cr Plant 230kv	-99	75	124	-117	85	144	137/137	89%	89%	104%	104%
247	Line	Hammektp	to	Tc Ranch 115kv	FPC	Brkridge	to	Cr Plant 230kv	-105	72	127	-122	81	147	137/137	92%	9 2%	106%	106%
247	Line	Homsatp2	to	Tc Ranch 115kv	FPC	Brkridge	to	Cr Plant 230kv	117	-64	133	136	-72	153	137/137	95%	95%	110%	110%
247	Line	Homsatp2	to	Villa Tp 115kv	FPC	Brkridge	to	Cr Plant 230kv	-127	58	140	-146	66	160	137/ 137	101%	101%	115%	115%
248	Line	Brkridge	to	Brk98 Tp 115kv	FPC	Brkridge	to	Cryst Re 230kv	-95	82	125	-111	95	146	137/ 137	90%	90%	105%	105%
248	Line	Brk98 Tp	to	Hammcktp 115kv	FPC	Brkridge	to	Cryst Re 230kv	-104	76	129	-121	88	150	137/ 137	93%	93%	108%	108%
248	Line	Hammektp	to	Te Ranch 115kv	FPC	Brkridge	ŧo	Cryst Re 230kv	-109	73	132	-127	84	153	137/137	95%	95%	110%	110%
248	Line	Homsatp2	ło	Te Ranch 115kv	FPC	Brkridge	to	Cryst Re 230kv	122	-65	138	140	-74	159	137/137	9 9%	99%	114%	114%
267	Line	Dade Cty	to	De Notap 69kv	TEC	Brkridge	to	Cryst Rv 500kv	62	-7	62	72	-8	72	63/ 63	9 6%	9 6%	112%	112%
267	Line	Dc Notap	to	Ft King 69kv	TEC	Brkridge	to	Cryst Rv 500kv	62	-7	62	72	-8	72	63/ 63	96%	96%	112%	112%

J.

PRE-EXISTING VIOLATIONS - OVERLOADED IN THE BASE CASE WITHOUT THE PROJECT

No. Overload	Area Outage	Base Case Ldg	Alt. Case Ldg	Rating	Base Case	Alt. Case
		MW MVar MVA	MW MVar MVA	MVA I	Rtg1 Rtg2	Rtg1 Rtg2
18 Line Britgoab to Morris 69kv	FPL Okechobe to Morris 69kv	-53 -88 102	-53 -88 102	44/44 Z	235% 235%	235% 235%
20 Line Plumosus to Oakes 138kv	FPL Bee Line to Plumosus 138kv #99	220 -54 226	221 -53 227	221/ 221 1	01% 101%	101% 101%
179 Xfmr Lk Tarpn to Lkt-Dum2 230/500kv	FPC Lk Tarpn to Lkt-Dum1 500kv	-768 55 770	-874 87 878	750/750 1	03% 103%	117% 117%
180 Xfmr Lk Tarpn to 1.kt-Dum1 230/500kv	FPC Lk Tarpn to Lkt-Dum2 500kv	-760 55 762	-865 87 870	750/ 750 1	02% 102%	116% 116%
267 Line Hammektp to Tc Ranch 115kv	FPC Bikridge to Cryst Rv 500kv	-134 91 161	-157 108 190	137/137 1	16% 116%	137% 137%
267 Line Homsatp2 to Tc Ranch 115kv	FPC Brkridge to Cryst Rv 500kv	148 -80 168	173 -94 197	137/137 1	20% 120%	141% 141%
267 Line Homsatp2 to Villa Tp 115kv	FPC Brkridge to Cryst Rv 500kv	-158 74 175	-183 88 203	137/137 1	25% 125%	146% 146%
267 Line Higgins to Griffin 115kv	FPC Brkridge to Cryst Rv 500kv	-167 78 184	-174 86 194	142/168 1	28% 110%	135% 115%
346 Line Havana to Quincy 115kv	FPC Sub 20 to S Bainbr 230kv	-89 55 105	-89 55 105	83/103 1	29% 102%	128% 101%
346 Line Woodruff to Scholz 2 115kv	FPC Sub 20 to S Bainbr 230kv	-131 24 133	-131 24 133	119/124 1	13% 107%	113% 107%

40% LOAD LEVEL

Ł

DISTANT FROM THE PROJECT

No. Overload	Area Outage		Base (Case I	Ldg	Alt	Case I	Ldg	Rating	Base	Case	Alt, (Case
			MW N	/Var	MVA	MW	MVar	MVA	MVA	Rigl	Rtg2	Rtg1	Rtg2
267 Line Brkridge to Brk98 Tp 115kv	FPC Brkridge to	> Cryst Rv 500kv	-114	92	146	-127	107	166	137/ 137	105%	105%	119%	119%
267 Line Brk98 Tp to Hammcktp 115kv	FPC Brkridge to	o Cryst Rv 500kv	-122	85	148	-136	98	168	137/ 1 37	107%	107%	120%	120%
143 Line Enola to Umatilla 69kv	FPC Hainesck to	Sorrento 230kv	110	-24	113	137	-27	140	126/ 138	87%	82%	108%	101%
227 Line Montshtp to Reddick 69kv	FPC Archer to	Martin W 230kv	-32	12	34	-36	14	39	32/ 38	106%	90%	120%	101%
248 Line Homsatp2 to Villa Tp (1) 115kv	FPC Brkridge to) Cryst Re 230kv	-122	56	134	-129	60	142	137/ 137	96%	96 %	102%	102%
267 Line Hammcktp to Tc Ranch (2) 115kv	FPC Brkridge to	Cryst Rv 500kv	-126	81	150	-140	95	169	137/ 137	108%	108%	122%	122%
267 Line Homsatp2 to Tc Ranch (3) 115kv	FPC Brkridge to	Cryst Rv 500kv	136	-72	154	152	-83	173	137/ 137	110%	110%	124%	124%
267 Line Homsøtp? to Villa Tp(i)115kv	FPC Brkridge to	O Cryst Rv 500kv	-143	66	157	-159	77	177	137/ 137	113%	113%	127%	127%

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

1

DOES NOT EXCEED RATING 2 FOR A CONTINGENCY

ł.

No. Overload		Area Outage		Bas	e Case	Ldg	Al	. Case	Ldg	Rating	Base	Case	Alt. (Case
				MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtg1	Rtg2	Rigi	Rtg2
224 Line Union HI	to Dadect T 69kv	FPC Kath-Dun	to Kathleen 500kv	117	-11	118	130	-11	130	126/150	91%	78%	101%	87%
225 Line Union Hl	to Dadect T 69kv	FPC Kathleen	to Cent Fla 500kv	117	-11	118	130	-11	130	126/ 150	91%	78%	101%	87%
227 Line Cara Tp	to Mentshtp 69kv	FPC Archer	to Martin W 230kv	-27	16	31	-31	18	36	32/ 38	98%	83%	112%	94%
227 Line Cara Tp	to Willistn 69kv	FPC Archer	to Martin W 230kv	24	-18	30	28	-21	35	32/ 38	94%	79%	108%	91%
232 Line Bell Tp	to Neals Tp 69kv	FPC Ft Wht N	to Ft Wht S 230kv	<u>32</u>	-16	36	33	-16	36	32/ 38	112%	95%	112%	95%
232 Line High Spg	to Neals Tp 69kv	FPC Ft Wht N	to Ft Wht \$ 230kv	-28	20	35	-28	20	35	32/ 38	108%	91%	108%	92%
238 Line Inglis	to Lebanon 69kv	FPC Newberry	to Cr Plant 230kv	36	-10	37	35	-10	36	32/ 38	113%	97%	111%	96%
238 Line Lebanon	to Ottrektp 69kv	FPC Newberry	to Cr Plant 230kv	33	-13	36	32	-13	35	32/ 38	110%	93 %	109%	92%
249 Line Sprghltp	to Heritgtp 115kv	FPC Brkridge	to Hudson 230kv	131	-49	140	141	-54	152	136/169	101%	83%	109%	90%
249 Line Heritgtp	to Hudson 115kv	FPC Brkridge	to Hudson 230kv	119	-62	134	129	-68	145	136/169	96%	79%	104%	86%
267 Line Cryst Rs	to Villa Tp 115kv	FPC Brkridge	to Cryst Rv 500kv	152	-57	162	168	-68	182	173/215	92%	76%	102%	84%
387 Line Union Hl	to Dadect T 69kv	FPC Kath-Dun	to Kathieen 500/230kv	117	-11	118	130	-11	130	126/ 150	91%	78%	101%	87%

OVERLOAD DOES NOT EXCEED 15% GREATER THAN RATING 1 IF RATING 1 EQUALS RATING 2

No. Overload	Ar	ea Outage		Base	Case I	dg	Alt.	Case I	dg	Rating	Base	Case	Alt.	Case
				MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rtg1	RtgZ	Rig1	Rtg2
177 Line Dade Cty	to Dc Notap 69kv TE	C Griffin	to Kathleen 230kv	58	-12	60	69	-13	70	63/ 63	92%	92%	108%	108%
177 Line Dc Notap	to Ft King 69kv TE	C Griffin	to Kathleen 230kv	58	-12	60	69	-13	70	63/ 63	92%	92%	108%	108%
178 Line Dade Cty	to Dc Notap 69kv TE	C Griffin	to West 230kv	5 6	-12	57	65	-13	67	63/ 63	88%	88%	103%	103%
178 Line Dc Notap	to Ft King 69kv TE	C Griffin	to West 230kv	56	-12	57	65	-13	67	63/63	88%	88%	103%	103%
179 Xfmr Lk Tarpn	to Lkt-Dum2 230/500kv FP	C Lk Tarpn	to Lkt-Dum1 500kv	-730	60	733	-811	83	815	750/ 750	98%	98%	109%	109%
180 Xfmr Lk Tarpn	to Lkt-Duml 230/500kv FP	C Lik Tarpn	to Lkt-Dum2 500kv	-723	60	726	-804	82	808	750/ 750	97%	97%	108%	108%
181 Line Dade Cty	to Dc Notap 69kv TE	C Lk Tarpn	to Brkridge 500kv	62	-12	64	68	-13	70	63/ 63	98%	98%	108%	108%
181 Line Dc Notap	to Ft King 69kv TE	C Lk Tarpn	to Brkridge 500kv	62	-12	64	68	-13	70	63/ 63	98 %	98%	108%	108%

No. Overload	Area Outage		Base	Case	Ldg	Alt	Case	Ldg	Rating	Base	Case	Alt.	Case
			MW	Mvar	MVA	MW	Mvar	MVA	MVA	Rigi	RtgZ	Rtg1	Rig2
267 Xfmr Kathleen to Kath-Dum 230/500kv	FPC Brkridge	to Cryst Rv 500kv	-590	54	592	-776	81	780	750/ 750	79 %	79%	104%	104%
267 Line Dade Cty to Dc Notap 69k	v TEC Brkridge	to Cryst Rv 500kv	60	-11	61	66	-12	67	63/ 63	95%	95%	104%	104%
267 Line Dc Notap to Ft King 69kv	TEC Brkridge	to Cryst Rv 500kv	60	-11	61	66	-12	67	63/ 63	9 5%	95%	104%	104%
385 Xfmr Lk Tarpn to Lkt-Dum2 230	/500kv FPC Lkt-Dum	l to Lk Tarpn 500/230kv	-730	60	733	-811	83	815	750/ 750	98%	98 %	109%	109%
386 Xfmr Lk Tarpn to Lkt-Duml 230	/500kv FPC Lkt-Dum	2 to Lk Tarpn 500/230kv	-723	60	726	-804	82	808	750/ 75 0	97%	97%	108%	108%

1 7 1 P 7 3 5 3 5 3 5 1 3 P 1 5 P 5 3 5 1

PRE-EXISTING VIOLATIONS - OVERLOADED IN THE BASE CASE WITHOUT THE PROJECT

No. Overload	Area Outage	Base Case Ldg	Alt. Case Ldg	Rating	Base Case	Alt. Case
		MW MVar MVA	MW MVar MVA	MVA	Rtg1 Rtg2	Rtgl Rtg2
18 Line Britgoab to Morris 69kv	FPL Okechobe to Morris 69kv	-53 -88 102	-53 -88 102	44/44	235% 235%	235% 235%
65 Line Martin to Sherman 230kv	FPL Midway to Sherman 230kv	-512 132 529	-512 132 529	502/ 502	101% 101%	101% 101%
227 Line Martin W to Reddick 69kv	FPC Archer to Martin W 230kv	39 -5 40	44 -7 44	32/ 38	121% 105%	134% 116%
232 Line Bell Tp to Trenton 69kv	FPC Ft Wht N to Ft Wht S 230kv	-36 13 38	-36 13 39	32/ 38	119% 101%	1 2 0% 102%
234 Line Bell Tp to Neals Tp 69kv	FPC Ft Wht S to Newberry 230kv	38 -20 43	37 -19 42	32/ 38	134% 114%	129% 110%
234 Line Bell Tp to Trenton 69kv	FPC Ft Wht S to Newberry 230kv	-42 17 46	-41 16 44	32/ 38	141% 120%	136% 116%
234 Line High Spg to Neals Tp 69kv	FPC Ft Wht S to Newberry 230kv	-34 25 42	-32 24 41	32/ 38	130% 111%	125% 107%

÷

APPENDIX B: CONTINGENCY LIST

C- 1	Line	123 EMERSON	230kV	to	266	MIDWAY	230kV	Ckt	1
C- 2	Line	122 EMERSON	138kV	to	441	F PIERCE	1 38 kV	Ckt	99
C- 3	Line	122 EMERSON	1 38kV	to	449	OSLO	138kV	Çkt	1
C- 4	Line	122 EMERSON	138kV	to	9383	FV-CTYLN	138kV	Ckt	1
C- 5	Line	123 EMERSON	230kV	to	464	MALABAR	230kV	Ckt	99
C- 6	Line	191 CITRUS	138kV	to	229	HARTMAN	1 38kV	Ckt	1
C- 7	Line	191 CITRUS	138kV	to	240	MIDWAY	138kV	Ckt	1
C- B	Line	197 WARFIELD	230kV	to	263	INDN TWN	230kV	Ckt	1
C- 9	Line	197 WARFIELD	230kV	to	265	MARTIN	230kV	Ckt	1
C- 10	Line	201 BL GLADE	69kV	to	210	PAHOKEE	69kV	Ckt	99
C- 11	Line	201 BL GLADE	69kV	to	214	SO BAY	69kV	Ckt	1
C- 12	Line	201 BL GLADE	69kV	to	214	SO BAY	69kV	Ckt	2
C-13	L ne	203 W PM BCH	69kV	to	204	DATURA	69kV	Ckt	1
C-14	Line	203 W PM BCH	69kV	to	204	DATURA	69kV	Ckt	2
C- 15	Line	205 MARTIN	69kV	to	277	BRYANT	69kV	Ckt	99
C- 16	Line	208 OKECHOBE	69kV	to	213	SHERMAN	69kV	Ckt	2
C- 17	Line	208 OKECHOBE	69kV	to	213	SHERMAN	69kV	Ckt	99
C- 18	Line	208 OKECHOBE	69kV	to	6781	MORRIS	69kV	Ckt	1
C- 19	Line	210 PAHOKEE	69kV	to	277	BRYANT	69kV	Ckt	1
C- 20	Line	218 BEE LINE	138kV	to	245	PLUMOSUS	138kV	Çkt	99
C- 21	Line	218 BEE LINE	138kV	to	250	RIVIERA	1 38kV	Ckt	1
C- 22	Line	222 BOYNTON	138kV	to	223	CEDAR	138kV	Ckt	1
C- 23	Line	222 BOYNTON	138kV	to	578	QUANTUM	1 38kV	Ckt	1
C- 24	Line	223 CEDAR	138kV	to	249	RANCH	138kV	Ckt	99
C- 25	Line	223 CEDAR	138kV	to	257	YAMATO	1 38 kV	Ckt	99
C- 26	Line	223 CEDAR	138kV	to	596	HYPOLUXO	138kV	Ckt	1
C- 27	Line	229 HARTMAN	138kV	to	441	F PIERCE	138kV	Ckt	1
C- 28	Liпe	229 HARTMAN	138kV	to	4001	HART-FMP	138kV	Ckt	1
C- 29	Line	232 HOBE	138kV	to	245	PLUMOSUS	138kV	Ckt	98
C- 30	Line	232 HOBE	138kV	to	245	PLUMOSUS	138kV	Ckt	99
C- 31	Line	232 HOBE	138kV	to	247	PT SEWEL	138kV	Ckt	1
C- 32	Line	232 HOBE	138kV	to	247	PT SEWEL	138kV	Ckt	99
C- 33	Line	237 LANTANA	138kV	to	578	QUANTUM	1 38kV	Ckt	1
C- 34	Line	237 LANTANA	138kV	to	596	HYPOLUXO	138kV	Ckt	1
C- 35	Line	240 MIDWAY	136kV	to	796	WH CTYTP	138kV	Ckt	1
C- 36	Line	245 PLUMOSUS	138kV	to	539	OAKES	138kV	Ckt	1
C- 37	Line	247 PT SEWEL	138kV	to	685	MONTEREY	138kV	Ckt	1
C- 38	Line	249 RANCH	138kV	to	250	RIVIERA	138kV	Ckt	98
C- 39	Line	249 RANCH	138kV	to	250	RIVIERA	138kV	Ckt	99
C- 40	Line	249 RANCH	138kV	to	253	W PM BCH	138kV	Ckt	1
C- 41	Line	249 RANCH	138kV	to	253	W PM BCH	138kV	Ckt	99
C- 42	Line	249 RANCH	138kV	to	547	OSCEOLA	138kV	Ckt	99
C- 43	Line	250 RIVIERA	138kV	to	253	W PM BCH	138kV	Ckt	99
C- 44	Line	250 RIVIERA	138kV	to	539	OAKES	138kV	Ckt	99
C- 45	Line	250 RIVIERA	138kV	to	600	RECWAY	138kV	Ckt	1
C- 46	Line	251 SO BAY	138kV	to		OSCEOLA	13BkV	Ckt	1
C- 47	Line	251 SO BAY	138kV	to	549	OKEELNTA	138kV	Ckt	1

4/20/00

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

R. W. Beck B-1

_

C- 48	Line	255 WEST	138kV	to	449 OSLO	138kV	Ckt	1
C- 49	Line	255 WEST	138kV	to	457 WABASSO	138kV	Ckt	1
C- 50	Line	255 WEST	138kV	to	9381 WEST-FMP	138kV	Ckt	1
C- 51	Line	256 WH CITY	138kV	to	441 F PIERCE	138kV	Ckt	1
C- 52	Lne	256 WH CITY	138kV	to	796 WH CTYTP	138kV	Çkt	1
C- 53	Line	257 YAMATO	138kV	to	990 DEERFDTP	138kV	Ckt	99
C- 54	Line	258 CEDAR	230kV	to	268 RANCH	230kV	Ckt	1
C- 55	Line	258 CEDAR	230kV	to	273 YAMATO	230kV	Ckt	99
C- 56	Line	258 CEDAR	230kV	to	535 CORBETT	230kV	Ckt	99
C- 57	Line	259 SANPIPER	230kV	to	532 TURNPIKE	230kV	Ckt	1
C- 58	Line	261 HOBE	230kV	to	582 BRIDGE	230kV	Ckt	1
C- 59	Line	263 INDN TWN	230kV	to	265 MARTIN	230kV	Ckt	99
C- 60	Line	263 INDN TWN	230kV	to	266 MIDWAY	230kV	Ckt	1
C- 61	Line	263 INDN TWN	230kV	to	268 RANCH	230kV	Ckt	99
C- 62	Line	263 INDN TWN	230kV	to	582 BRIDGE	230kV	Ckt	1
C- 63	Line	265 MARTIN	230kV	to	270 SHERMAN	230kV	Ckt	1
C- 64	Line	266 MIDWAY	230kV	to	268 RANCH	230kV	Ckt	99
C- 65	Line	266 MIDWAY	230kV	to	270 SHERMAN	230kV	Ckt	1
C- 66	Line	266 MIDWAY	230kV	to	272 ST LUCIE	230kV	Ckt	1
C- 67	Line	266 MIDWAY	230kV	to	272 ST LUCIE	230kV	Ckt	2
C- 68	Line	266 MIDWAY	230kV	to	272 ST LUCIE	230kV	Ckt	3
C- 69	Line	266 MIDWAY	230kV	to	532 TURNPIKE	230kV	Ckt	1
C- 70	Line	268 RANCH	230kV	to	535 CORBETT	230kV	Ckt	1
C- 71	Line	268 RANCH	230kV	to	535 CORBETT	230kV	Ckt	99
C- 72	Line	274 CORBETT	500kV	to	275 MARTIN	500kV	Ckt	1
C- 73	Line	274 CORBETT	500kV	to	275 MARTIN	500kV	Ckt	2
C- 74	Line	274 CORBETT	500kV	to	276 MIDWAY	500kV	Ckt	1
C- 75	Line	274 CORBETT	500kV	to	666 CONSRVTN	500kV	Ckt	1
C- 76	Line	275 MARTIN	500kV	to	276 MIDWAY	500kV	Ckt	1
C- 77	Line	275 MARTIN	500kV	to	476 POINSETT	500kV	Ckt	1
C- 78	Line	276 MIDWAY	500kV	to	476 POINSETT	500kV	Ckt	1
C- 79	Line	479 CLEWSTN9	138kV	to	637 HEND-FPL	138kV	Ckt	1
C- 80	Line	479 CLEWSTN9	138kV	to	864 MONT-FPL	138kV	Ckt	1
C- 81	Line	479 CLEWSTN9	13BkV	to	6783 S CLEWIS	138kV	Ckt	1
C- 82	Line	530 SANPIPER	138kV	to	685 MONTEREY	138kV	Ckt	99
C- 83	Line	530 SANPIPER	138kV	to	796 WH CTYTP	138kV	Ckt	99
C- 84	Line	532 TURNPIKE	230kV	to	582 BRIDGE	230kV	Ckt	99
C-85	Line	549 OKEELNTA	138kV	to	637 HEND-FPL	138kV	Ckt	1
C- 86	Line	582 BRIDGE	230kV	to	601 PLUMOSUS	230kV	Ckt	99
C- 87	Line	596 HYPOLUXO	138kV	to	5451 HYPO-FMP	13BkV	Ckt	1
C- 88	Line	637 HEND-FPL	138kV	to	6601 HEND-FMP	13BkV	Ckt	1
Ç- 89	Line	864 MONT-FPL	138kV	to	6769 MONTURA	13BkV	Ckt	1
Ç- 90	Transformer	122 EMERSON	138kV	to	123 EMERSON	230kV	Ckt	1
C- 91	Transformer	203 W PM BCH	69kV	to	253 W PM BCH	138kV	Ckt	1
C- 92	Transformer	203 W PM BCH	69kV	to	253 W PM BCH	138kV	Ckt	2
C- 93	Transformer	205 MARTIN	69kV	to	265 MARTIN	230kV	Ckt	1
C- 94	Transformer	213 SHERMAN	69kV	to	270 SHERMAN	230kV	Ckt	1
C- 95	Transformer	213 SHERMAN	69kV	to	270 SHERMAN	230kV	Ckt	2
C- 96	Transformer	214 SO BAY	69kV	to	251 SO BAY	13BkV	Ckt	1
C- 97	Transformer	214 SO BAY	69kV	to	251 SO BAY	138kV	Ckt	2
C- 98	Transformer	223 CEDAR	138kV	to	258 CEDAR	230kV	Ckt	1

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

جر ا

٨

C- 99	Transformer	223 CEDAR	138kV	to	258 CEDAR	230kV	Ckt	2
C-100	Transformer	232 HOBE	138kV	to	261 HOBE	230kV	Ckt	1
C-101	Transformer	240 MIDWAY	138kV	to	266 MIDWAY	230kV	Ckt	1
C-102	Transformer	240 MIDWAY	138kV	to	266 MIDWAY	230kV	Ckt	2
C-103	Transformer	245 PLUMOSUS	138kV	to	601 PLUMOSUS	230kV	Ckt	1
C-104	Transformer	249 RANCH	138kV	to	268 RANCH	230kV	Ckt	1
C-105	Transformer	249 RANCH	138kV	to	268 RANCH	230kV	Ckt	2
C-106	Transformer	250 RIVIERA	138kV	to	212 RIVIERA	69kV	Ckt	1
C-107	Transformer	250 RIVIERA	138kV	to	212 RIVIERA	69kV	Ckt	2
C-108	Transformer	257 YAMATO	138kV	to	273 YAMATO	230kV	Ckt	1
C-109	Transformer	273 YAMATO	230kV	to	257 YAMATO	138kV	Ckt	2
C-110	Transformer	274 CORBETT	500kV	to	535 CORBETT	230kV	Ckt	1
C-111	Transformer	275 MARTIN	500kV	to	265 MARTIN	230kV	Ckt	1
C-112	Transformer	276 MIDWAY	500kV	to	266 MIDWAY	230kV	Ckt	1
C-113	Transformer	530 SANPIPER	1 38kV	to	259 SANPIPER	230kV	Ckt	1
C-114	Line	9382 VER-SOUT	138kV	to	9383 FV-CTYLN	138kV	Ckt	1
C-115	Line	9396 DOWNTN5	69kV	to	9397 VB SUB7	69kV	Ckt	1
C-116	Line	9396 DOWNTN5	69kV	to	9404 VB SUB1	69kV	Ckt	1
C-117	Line	9397 VB SUB7	69kV	to	9398 VB SUB6	69kV	Ckt	1
C-118	Line	9397 VB SUB7	69kV	to	9403 VB SUB8	69kV	Ckt	٦
C-119	Line	9398 VB SUB6	69kV	to	9399 VBSUB12	69kV	Ckt	1
C-120	Line	9398 VB SUB6	69kV	to	9400 VB SUB9	69kV	Ckt	1
C-121	Line	9399 VBSUB12	69kV	to	9400 VB SUB9	69kV	Ckt	1
C-122	Line	9399 VBSUB12	69kV	to	9404 VB SUB1	69kV	Ckt	1
C-123	Line	9400 VB SUB9	69kV	to	9401 VB SUB1	69kV	Ckt	1
C-124	Line	9401 VB SUB1	69kV	to	9402 VBSUB11	69kV	Ckt	1
C-125	Line	9401 VB SUB1	69kV	to	9404 VB SUB1	69kV	Ckt	1
C-126	Line	9402 VBSUB11	69kV	to	9403 VB SUB8	69kV	Ckt	1
C-127	Line	9403 VB SUB8	69kV	to	9404 VB SUB1	69kV	Ckt	1
C-12B	Transformer	9397 VB SUB7	69kV	ta	9381 WEST-FMP	138kV	Ckt	1
C-129	Transformer	9397 VB SUB7	69kV	to	9381 WEST-FMP	138kV	Ckt	2
C-130	Transformer	9403 VB SUB8	69kV	to	9382 VER-SOUT	138kV	Ckt	1
C-131	Line	4002 FTP-GA C	138KV	to	9383 FV-CTYLN	138kV	Ckt	1
C-132	Line	4011 HARTMAN	69kV	to	4012 SAVANNAH	69kV	Ckt	1
C-133	Line	4011 HARTMAN	69kV	to	4014 LAWNWOO	D 69kV	Ckt	1
C-134	Line	4012 SAVANNAH	69kV	to	4013 HD KING	69kV	Ckt	1
C-135	Line	4013 HD KING	69kV	to	4016 KING GEN	69kV	Ckt	1
C-136	Line	4014 LAWNWOOD		to	4015 GARDEN C	69kV	Ckt	1
C-137	Line	4015 GARDEN C	69kV	to	4016 KING GEN	69kV	Ckt	1
C-138	Line	4015 KING GEN	69kV	to	4017 CAUSEWAY	69kV	Ckt	1
C-139	Transformer	4011 HARTMAN	69kV	to	4001 HART-FMP	138kV	Ckt	1
C-140	Transformer	4011 HARTMAN	69kV	to	4001 HART-FMP	138kV	Ckt	2
C-141	Transformer	4015 GARDEN C	69kV	to	4002 FTP-GA C	138kV	Ckt	1
C-142	Line	266 MIDWAY	230kV	to	464 MALABAR	230kV	Ckt	99
C-143	Line	2068 HAINESCK	230kV	to	2072 SORRENTO	230kV	Ckt	1
C-144	Line	2068 HAINESCK	230kV	to	3521 CENT FLA	230kV	Ckt	1
C-145	Line	2069 LOCKHART	230kV	to	2073 SPG LAKE	230kV	Ckt	1
C-146	Line	2069 LOCKHART	230kV	to	2168 WOODSME		Ckt	٦
C-147	Line	2070 PIEDMONT	230kV	to	2071 WELCH RD	230kV	Ckt	1
C-14B	Line	2070 PIEDMONT	230kV	to	2074 WEKIVA	230kV	Ckt	1
C-149	Line	2070 PIEDMONT	230kV	to	2168 WOODSME	R 230kV	Ckt	1

R. W. Beck B-3

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

C-150	Line	2071 WELCH RD	230kV	to	2072 SORRENTO	230kV	Ckt	1
C-151	Line	2073 SPG LAKE	230kV	to	2580 ALTAMONT	230kV	Ckt	1
C-152	Line	2074 WEKIVA	230kV	to	2584 MYRTLLK	230kV	Ckt	1
C-153	Line	2163 CAMP LK	230kV	to	2167 WINDERME	230kV	Ckt	1
C-154	Line	2163 CAMP LK	230kV	to	3521 CENT FLA	230kV	Ckt	1
C-155	Line	2164 CLMT EST	230kV	to	2167 WINDERME	230kV	Ckt	1
C-156	Line	2164 CLMT EST	230kV	to	3521 CENT FLA	230kV	Ckt	1
C-157	Line	2165 INTERNAT	230kV	to	2166 LK BRYAN	230kV	Ckt	1
C-158	Line	2165 INTERNAT	230kV	to	2167 WINDERME	230kV	Ckt	1
C-159	Line	2166 LK BRYAN	230kV	to	2167 WINDERME	230kV	Ckt	2
C-160	Line	2166 LK BRYAN	230kV	to	2883 INTERCSN	230kV	Ckt	1
C-161	Line	2166 LK BRYAN	230kV	to	2883 INTERCSN	230kV	Ckt	2
C-162	Line	2167 WINDERME	230kV	to	2168 WOODSMER	230kV	Ckt	1
C-163	Line	2167 WINDERME	230kV	to	5701 SO WOOD	230kV	Ckt	1
C-164	Line	2168 WOODSMER	230kV	to	5700 PINEHILL	230kV	Ckt	1
C-165	Line	2267 E CLRWTR	230kV	to	2269 LK TARPN	230kV	Ckt	Ŧ
C-166	Line	2267 E CLRWTR	230kV	to	3834 ANCLOTE	230kV	Ckt	1
C-167	Line	2267 E CLRWTR	230kV	to	3932 ULMERTON	230kV	Ckt	1
C-168	Line	2268 HIGGINS	230kV	to	2269 LK TARPN	230kV	Ckt	1
C-169	Line	2269 LK TARPN	230kV	to	2270 PALM HBR	230kV	Ckt	1
C-170	Line	2269 LK TARPN	230kV	to	3836 HUDSON	230kV	Ckt	1
C-171	Line	2269 LK TARPN	230kV	to	3837 SEVEN SP	230kV	Ckt	1
C-172	Line	2269 LK TARPN	230kV	to	3932 ULMERTON	230kV	Ckt	1
C-173	Line	2269 LK TARPN	230kV	to	8000 SHELD	230kV	Ckt	1
C-174	Line	2269 LK TARPN	230kV	to	8000 SHELD	230kV	Ckt	2
C-175	Line	2269 LK TARPN	230kV	to	8000 SHELD	230kV	Ckt	3
C-176	Line	2270 PALM HBR	230kV	to	3930 LARGO	230kV	Ckt	1
C-177	Line	2271 GRIFFIN	230kV	to	2884 KATHLEEN	230kV	Ckt	1
C-178	Line	2271 GRIFFIN	230kV	to	6102 WEST	230kV	Ckt	1
C-179	Line	2288 LK TARPN	500kV	to	2289 LKT-DUM1	500kV	Ckt	1
C-180	Line	2288 LK TARPN	500kV	to	2290 LKT-DUM2	500kV	Ckt	1
C-181	Lìne	2288 LK TARPN	500kV	to	3550 BRKRIDGE	500kV	Ckt	1
C-182	Line	2437 DEBARY	230kV	to	2439 DUMMY 1	230kV	Ckt	1
C-183	Line	2437 DEBARY	230kV	to	2440 DUMMY 2	230kV	Ckt	1
C-184	Line	2437 DEBARY	230kV	to	2441 DUMMY 3	230kV	Ckt	1
C-185	Line	2437 DEBARY	230kV	to	2442 ORANGE C	230kV	Ckt	1
C-186	Line	2437 DEBARY	230kV	to	2582 LK EMMA	230kV	Ckt	1
C-187	Line	2437 DEBARY	230kV	to	2585 N LONGWD	230kV	Ckt	1
C-188	Line	2438 DELAND W	230kV	to	2442 ORANGE C	230kV	Ckt	1
C-189	Line	2438 DELAND W	230kV	to	3529 SILVR SP	230kV	Ckt	1
C-190	Line	2581 ECON	230kV	to	2586 RIO PINR	230kV	Ckt	1
C-191	Line	2581 ECON	230kV	to	2589 WTR PK E	230kV	Ckt	1
C-192	Line	2582 LK EMMA	230kV	to	2590 WTR SPGS	230kV	Ckt	1
C-193	Line	2583 MEADWD S	230kV	to	5704 TAFT	230kV	Ckt	1
C-194	Line	2584 MYRTL LK	230kV	to	2585 N LONGWD	230kV	Ckt	1
C-195	Line	2585 N LONGWD	230kV	to	2590 WTR 5PGS	230kV	Ckt	1
C-196	Line	2586 RIO PINR	230kV	to	2591 CURRY FD	230kV	Ckt	1
C-197	Line	2587 SKY LAKE	230kV	to	5701 SO WOOD	230kV	Ckt	1
C-198	Line	258B TAYLR CK	230kV	to	2882 HOLOPAW	230kV	Ckt	1
	Line	2589 WTR PK E	230kV	to	2590 WTR SPGS	230kV	Ckt	1
C-200	Line	2591 CURRY FD	230kV	to	5705 STANTON	230kV	Ckt	1

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

2

.

C-201	Line	2876 LOUGHMAN	230kV	to	2883 INTERCSN	230kV	Ckt	1
C-202	Line	2876 LOUGHMAN	230kV	to	2891 WLK WALE	230kV	Ckt	1
C-203	Line	2877 AVON PK	230kV	to	2880 FISH CRK	230kV	Ckt	1
C-204	Line	2877 AVON PK	230kV	to	2881 FT MEADE	230kV	Ckt	1
C-205	Line	2878 BARCOLA	230kV	to	2887 HINES	230kV	Ckt	1
C-206	Line	2878 BARCOLA	230kV	to	2887 HINES	230kV	Ckt	2
C-207	Line	2878 BARCOLA	230kV	to	6102 WEST	230kV	Ckt	1
C-208	Line	2878 BARCOLA	230kV	to	9050 PEBB	230kV	Ckt	1
C-209	Line	2879 CANOE CK	230kV	to	2882 HOLOPAW	230kV	Ckt	٦
C-210	Line	2879 CANOE CK	230kV	to	2891 WLK WALE	230kV	Ckt	1
C-211	Line	2881 FT MEADE	230kV	to	2887 HINES	230kV	Ckt	1
C-212	Line	2881 FT MEADE	230kV	to	2889 TIGERBAY	230kV	Ckt	1
C-213	Line	2881 FT MEADE	230kV	to	2890 VANDOLAH	230kV	Ckt	1
C-214	Line	2881 FT MEADE	230kV	to	2891 WLK WALE	230kV	Ckt	1
C-215	Line	2882 HOLOPAW	230kV	to	7431 STC EAST	230kV	Ckt	1
C-216	Line	2884 KATHLEEN	230kV	to	3530 ZEPHYR N	230kV	Ckt	1
C-217	Line	2885 N BARTOW	230kV	to	9050 PEBB	230kV	Ckt	1
C-218	Line	2885 N BARTOW	230kV	to	9130 SELOSE T	230kV	Ckt	1
C-219	Line	2887 HINES	230kV	to	2889 TIGERBAY	230kV	Ckt	1
C-220	Line	2888 TIGER PL	230kV	to	2889 TIGERBAY	230kV	Ckt	1
C-221	Line	2888 TIGER PL	230kV	to	2889 TIGERBAY	230kV	Ckt	2
C-222	Line	2890 VANDOLAH	230kV	to	7121 CC PLANT	230kV	Ckt	1
C-223	Line	2891 WLK WALE	230kV	to	9130 SELOSE T	230kV	Ckt	1
C-224	Line	2911 KATH-DUM	500kV	to	2913 KATHLEEN	500kV	Ckt	1
C-225	Line	2913 KATHLEEN	500kV	to	3551 CENT FLA	500kV	Ckt	1
C-226	Line	3159 ARCHER	230kV	to	3171 HAILE	230kV	Ckt	1
C-227	Line	3159 ARCHER	230kV	to	3528 MARTIN W	230kV	Ckt	1
C-228	Line	3159 ARCHER	230kV	to	4102 PKRD	230kV	Ckt	1
C-229	Line	3160 CRAWFDVL	230kV	to	3164 GUM 8AY	230kV	Ckt	1
C-230	Line	3160 CRAWFDVL	230kV	to	3167 PERRY	230kV	Ckt	1
C-231	Line	3160 CRAWFDVL	230kV	to	7600 HOPKINS	230kV	Ckt	1
C-232	Line	3162 FT WHT N	230kV	to	3163 FT WHT S	230kV	Ckt	1
C-233	Line	3162 FT WHT N	230kV	to	3169 SUWANNEE	230kV	Ckt	1
C-234	Line	3163 FT WHT S	230kV	to	3165 NEWBERRY	230kV	Ckt	1
C-235	Line	3163 FT WHT S	230kV	to	3171 HAILE	230kV	Ckt	1
C-236	Line	3164 GUM BAY	230kV	to	3166 P ST JOE	230kV	Ckt	1
C-237	Line	3165 NEWBERRY	230kV	to	3170 WILCOX	230kV	Ckt	1
C-238	Line	3165 NEWBERRY	230kV	to	3522 CR PLANT	230kV	Ckt	1
C-239	Line	3166 P ST JOE	230kV	to	17860 CALLAWAY	230kV	Ckt	1
C-240	Line	3167 PERRY	230kV	to	3169 SUWANNEE	230kV	Ckt	1
C-241	Line	3168 SUWAN PK	230kV	to	3169 SUWANNEE	230kV	Ckt	1
C-242	Line	3169 SUWANNEE	230kV	to	11870 STERLING	230kV	Ckt	1
C-243	Line	3171 HAILE	230kV	to	6736 HAIL MIL	230kV	Ckt	1
C-244	Line	3515 ANDERSEN	230kV	to	3521 CENT FLA	230kV	Ckt	1
C-245	Line	3515 ANDERSEN	230kV	to	3527 HOLDER	230kV	Ckt	1
C-246	Line	3518 BRKRIDGE	230kV	to	3520 BRKSVWTP	230kV	Ckt	1
C-247	Line	3518 BRKRIDGE	230kV	to	3522 CR PLANT	230kV	Ckt	1
C-248	Line	3518 BRKRIDGE	230kV	to	3523 CRYST RE	230kV	Ckt	1
C-249	Line	3518 BRKRIDGE	230kV	to	3836 HUDSON	230kV	Ckt	1
C-250	Line	3519 BRKSVL W	230kV	to	3520 BRKSVWTP	230kV	Ckt	1
C-251	Line	3520 BRKSVWTP	230kV	to	3835 GULFPINE	230kV	Ckt	1

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

دخر

APPENDIX B: CONTINGENCY LIST

C-252 Line 3521 CENT FLA 230kV to 3527 FHOLDER 230kV Ckt 1 C-253 Line 3527 CENT FLA 230kV to 3527 SERVER 230kV Ckt 1 C-255 Line 3522 CR PLANT 230kV to 3523 CRYST RE 230kV Ckt 1 C-255 Line 3522 CR PLANT 230kV to 3527 HOLDER 230kV Ckt 1 C-256 Line 3522 CR PLANT 230kV to 3527 HOLDER 230kV Ckt 1 C-260 Line 3525 SLURS SP 230kV to 3527 SLUSPN 230kV Ckt 1 C-261 Line 3529 SLURS SP 230kV to 7120 SLUSPN 230kV Ckt 1 C-263 Line 3531 OCALA 1 230kV to 7120 SLUSPN 230kV Ckt 1 C-264 Line 3531 OCALA 1 230kV to 7520 SLUSPN 230kV Ckt									
C-254 Line 3521 CENT FLA 230kv to 3529 SILVR SP 230kv Ckt 1 C-255 Line 3522 CR PLANT 230kv to 3524 CRYST R4 230kv Ckt 1 C-256 Line 3522 CR PLANT 230kv to 3527 HOLDER 230kv Ckt 1 C-256 Line 3525 DALLAS 230kv to 3527 HOLDER 230kv Ckt 1 C-260 Line 3525 SILVR SP 230kv to 7120 SILVS SPN 230kv Ckt 1 C-261 Line 3529 SILVR SP 230kv to 7120 SILVS SPN 230kv Ckt 1 C-264 Line 3531 CALA 1 230kv to 7120 SILV SPN 230kv Ckt 1 C-265 Line 3531 CALA 1 230kv to 3555 CRYST RV <td>C-252</td> <td>Line</td> <td>3521 CENT FLA</td> <td>230kV</td> <td>to</td> <td>3525 DALLAS</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-252	Line	3521 CENT FLA	230kV	to	3525 DALLAS	230kV	Ckt	1
C-255 Line 3522 CR PLANT 230kv to 3523 CRYSTRE 230kv Ckt 1 C-256 Line 3522 CR PLANT 230kv to 3524 CRVSTR4 230kv Ckt 1 C-256 Line 3522 CR PLANT 230kv to 3527 HOLDER 230kv Ckt 1 C-256 Line 3522 CR PLANT 230kv to 3527 HOLDER 230kv Ckt 1 C-260 Line 3529 SILVR SP 230kv to 7120 SILV SPN 230kv Ckt 1 C-261 Line 3529 SILVR SP 230kv to 7120 SILV SPN 230kv Ckt 1 C-264 Line 3531 CALA 1 230kv to 7120 SILV SPN 230kv Ckt 1 C-265 Line 3531 CALA 1 230kv to 3552 CRYST RV	C-253	Line	3521 CENT FLA	230kV	to	3527 HOLDER	230kV	Ckt	1
C-256 Line 3522 CR PLANT 230kV to 3524 CRYST R4 230kV Ckt 1 C-257 Line 3522 CR PLANT 230kV to 3527 HOLDER 230kV Ckt 1 C-258 Line 3522 CR PLANT 230kV to 3527 HOLDER 230kV Ckt 1 C-265 Line 3528 DALLAS 230kV to 3531 CALA 1 230kV Ckt 1 C-266 Line 3529 SILV SP 230kV to 7120 SILV SPN 230kV Ckt 1 C-265 Line 3531 CALA 230kV to 7120 SILV SPN 230kV Ckt 1 C-266 Line 3531 CALA 230kV to 7120 SILV SPN 230kV Ckt 1 C-266 Line 3551 CENT FLA 500kV to 3555 CRY	C-254	Line	3521 CENT FLA	230kV	to	3529 SILVR SP	230kV	Ckt	1
C-257 Line 3522 CR PLANT 230kV to 3527 HOLDER 230kV Ckt 1 C-258 Line 3522 CR PLANT 230kV to 3527 HOLDER 230kV Ckt 1 C-256 Line 3528 DALLAS 230kV to 3521 SUKY SP 230kV Ckt 1 C-260 Line 3528 SILVR SP 230kV to 3531 OCALA 1 230kV Ckt 1 C-261 Line 3529 SILVR SP 230kV to 7120 SILV SPN 230kV Ckt 1 C-263 Line 3531 OCALA 1 230kV to 7120 SILV SPN 230kV Ckt 1 C-264 Line 3543 BROG-DUM S00kV to 3555 CRYST RV S00kV Ckt 1 C-265 Line 3551 CENT FLA S00kV to 3553 CENT-DUM <td>C-255</td> <td>Line</td> <td>3522 CR PLANT</td> <td>230kV</td> <td>to</td> <td>3523 CRYST RE</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-255	Line	3522 CR PLANT	230kV	to	3523 CRYST RE	230kV	Ckt	1
C-258 Line 3522 CR PLANT 230KV to 3527 HOLDER 230KV CR 2 C-259 Line 3525 DALLAS 230KV to 3529 SILVR SP 230KV to 3529 SILVR SP 230KV to 7120 SILV SPN 230KV Ckt 1 C-261 Line 3529 SILVR SP 230KV to 7120 SILV SPN 230KV Ckt 1 C-264 Line 3531 OCALA 1 230KV to 7120 SILV SPN 230KV Ckt 1 C-264 Line 3531 OCALA 1 230KV to 7120 SILV SPN 230KV Ckt 1 C-265 Line 3551 CENT FLA 500KV to 3552 CENT DM 500KV Ckt 1 C-270 Line 3551 CENT FLA 500KV to 3555 CRYST RV 500KV Ckt 1	C-256	Line	3522 CR PLANT	230kV	to	3524 CRYST R4	230kV	Ckt	1
C-259 Line 3525 DALLAS 230kV to 3529 SILVR SP 230kV Ckt 1 C-260 Line 3529 SILVR SP 230kV to 3531 OCALA1 230kV Ckt 1 C-261 Line 3529 SILVR SP 230kV to 7120 SILV SPN 230kV Ckt 1 C-262 Line 3529 SILVR SP 230kV to 7120 SILV SPN 230kV Ckt 1 C-263 Line 3531 OCALA1 230kV to 7120 SILV SPN 230kV Ckt 1 C-264 Line 3531 OCALA1 230kV to 3550 BRKRIDGE 500kV to 3552 CNT SDNV Ckt 1 C-265 Line 3551 CENT FLA 500kV to 3552 CRT DNV 500kV Ckt 1 C-270 Line 3502 GENT FLA 500kV <td>C-257</td> <td>Line</td> <td>3522 CR PLANT</td> <td>230kV</td> <td>to</td> <td>3527 HOLDER</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-257	Line	3522 CR PLANT	230kV	to	3527 HOLDER	230kV	Ckt	1
C-260 Line 3528 MARTIN W 230kV to 7120 SILV SPN 230kV Ckt 1 C-261 Line 3529 SILVR SP 230kV to 7120 SILV SPN 230kV Ckt 1 C-263 Line 3529 SILVR SP 230kV to 7120 SILV SPN 230kV Ckt 1 C-264 Line 3531 CALA 1 230kV to 7120 SILV SPN 230kV Ckt 1 C-264 Line 3531 CALA 1 230kV to 7120 SILV SPN 230kV Ckt 1 C-265 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3702 40TH ST 230kV to 3705 MANORTHE	C-258	Line	3522 CR PLANT	230kV	to	3527 HOLDER	230kV	Ckt	2
C-261 Line 3529 SILVR SP 230kv to 3531 OCALA 1 230kv Ckt 1 C-262 Line 3529 SILVR SP 230kv to 7120 SILV SPN 230kv Ckt 1 C-263 Line 3531 OCALA 1 230kv to 7120 SILV SPN 230kv Ckt 1 C-264 Line 3531 OCALA 1 230kv to 7120 SILV SPN 230kv Ckt 1 C-266 Line 3548 BRDG-DUM 500kv to 3555 CRYST RV 500kv Ckt 1 C-266 Line 3551 CENT FLA 500kv to 3555 CENT-DUM 500kv Ckt 1 C-267 Line 3551 CENT FLA 500kv to 3555 CENT-DUM 500kv Ckt 1 C-271 Line 3702 40TH ST 230kv to 3704 <northest< td=""> <t< td=""><td>C-259</td><td>Line</td><td>3525 DALLAS</td><td>230kV</td><td>to</td><td>3529 SILVR SP</td><td>230kV</td><td>Ckt</td><td>1</td></t<></northest<>	C-259	Line	3525 DALLAS	230kV	to	3529 SILVR SP	230kV	Ckt	1
C-262 Line 3529 SILVR SP 230kv to 7120 SILV SPN 230kv Ckt 1 C-263 Line 3529 SILVR SP 230kv to 7120 SILV SPN 230kv Ckt 2 C-264 Line 3531 OCALA1 230kv to 7120 SILV SPN 230kv Ckt 1 C-265 Line 3548 BRDG-DUM 500kv to 3555 CRYST RV 500kv Ckt 1 C-266 Line 3551 CENT FLA 500kv to 3555 CENTST RV 500kv Ckt 1 C-267 Line 3551 CENT FLA 500kv to 3555 CENTST RV 500kv Ckt 1 C-270 Line 3551 CENT FLA 500kv to 3555 CENTST RV 500kv Ckt 1 C-271 Line 3503 BARTOW 230kv to 3704 <northest< td=""></northest<>	C-260	Line	3528 MARTIN W	230kV	to	7120 SILV SPN	230kV	Ckt	1
C-263 Line 3529 SILVR SP 230kV to 7120 SILV SPN 230kV Ckt 2 C-264 Line 3531 OCALA 1 230kV to 6296 OCALA 1 230kV Ckt 1 C-265 Line 3531 OCALA 1 230kV to 7120 SILV SPN 230kV Ckt 1 C-266 Line 3548 BROG-DUM 500kV to 3555 CRYST RV 500kV Ckt 1 C-268 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3551 CENT FLA 500kV to 3555 CRYST RS 500kV Ckt 1 C-271 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-274 Line 3703 BARTOW 230kV to 3704 NORTHEST<	C-261	Line	3529 SILVR SP	230kV	to	3531 OCALA 1	230kV	Ckt	1
C-264 Line 3531 OCALA 1 230kV to 6296 OCALA 1 230kV Ckt 1 C-265 Line 3531 OCALA 1 230kV to 7120 SILV SPN 230kV Ckt 1 C-266 Line 3548 BROG-DUM SookV to 3555 CRYST RV SookV Ckt 1 C-268 Line 3551 CENT FLA SookV to 3555 CENT-DUM SookV Ckt 1 C-270 Line 3551 CENT FLA SookV to 3555 CRYST RV SookV Ckt 1 C-271 Line 3551 CENT FLA SookV to 3555 CRYST RV SookV Ckt 1 C-271 Line 3702 AOTH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-274 Line 3703 BARTOW 230kV to 3932 ULMERTON<	C-262	Line	3529 SILVR SP	230kV	to	7120 SILV SPN	230kV	Ckt	1
C-265 Line 3531 OCALA 1 230kV to 7120 SILV SPN 230kV Ckt 1 C-266 Line 3548 BRRDG-DUM 500kV to 3550 BRKRIDGE 500kV Ckt 1 C-267 Line 3551 CENT FLA 500kV to 3555 CENT-DM2 500kV Ckt 1 C-268 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-270 Line 3551 CENT FLA 500kV to 3555 CRYST RS 500kV Ckt 1 C-271 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-271 Line 3702 A0TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3932 LIMER	C-263	Line	3529 SILVR SP	230kV	to	7120 SILV SPN	230kV	Ckt	2
C-266 Line 3548 BRDG-DUM 500kv to 3550 BRKRIDGE 500kv to C-267 Line 3550 BRKRIDGE 500kv to 3555 CRYST RV 500kv Ckt 1 C-268 Line 3551 CENT FLA 500kv to 3555 CENT-DU 500kv Ckt 1 C-269 Line 3551 CENT FLA 500kv to 3555 CRYST RV 500kv Ckt 1 C-271 Line 3552 CENT FLA 500kv to 3556 CRYST RS 500kv Ckt 1 C-271 Line 3702 40TH ST 230kv to 3704 NORTHEST 230kv Ckt 1 C-274 Line 3703 BARTOW 230kv to 3704 NORTHEST 230kv Ckt 1 C-275 Line 3704 NORTHEST 230kv to 3932 LURERTON 2	C-264	Line	3531 OCALA 1	230kV	to	6296 OCALA 1	230kV	Ckt	1
C-267 Line 3550 BRKRIDGE 500kV to 3555 CRYST RV 500kV Ckt 1 C-268 Line 3551 CENT FLA 500kV to 3552 CENT-DM2 500kV Ckt 1 C-269 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3551 CENT FLA 500kV to 3556 CRYST RV 500kV Ckt 1 C-271 Line 3552 CRYST RV 500kV to 3704 NORTHEST 230kV Ckt 1 C-271 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3704 NORTHEST 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3832 ULMER	C-265	Lirie	3531 OCALA 1	230kV	to	7120 SILV SPN	230kV	Ckt	1
C-268 Line 3551 CENT FLA 500kV to 3552 CENT-DM2 500kV Ckt 1 C-269 Line 3551 CENT FLA 500kV to 3553 CENT-DM2 500kV Ckt 1 C-270 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-274 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3704 NORTHEST 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3932 LIMERTON 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3932 LIMER	C-266	Line	3548 BRDG-DUM	500kV	to	3550 BRKRIDGE	500kV	Ckt	1
C-289 Line 3551 CENT FLA 500kV to 3553 CENT-DUM 500kV Ckt 1 C-270 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3555 CRYST RV 500kV to 3556 CRYST RS 500kV Ckt 1 C-271 Line 3702 40TH ST 230kV to 3705 PASADENA 230kV Ckt 1 C-273 Line 3702 40TH ST 230kV to 3704 <northest< td=""> 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3706 PNELRCOV 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3932 LIMERTON 230kV Ckt 1 C-278 Line 3634 ANCLOTE 230kV to 3837 SEVEN SP <</northest<>	C-267	Line	3550 BRKRIDGE	500kV	to	3555 CRYST RV	500kV	Ckt	1
C-270 Line 3551 CENT FLA 500kV to 3555 CRYST RV 500kV Ckt 1 C-271 Line 3555 CRYST RV 500kV to 3556 CRYST RS 500kV Ckt 1 C-271 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-273 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3704 NORTHEST 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3931 SEMINOLE 230kV Ckt 1 C-278 Line 3334 ANCLOTE 230kV to 3931 SEMINO	C-268	Line	3551 CENT FLA	500kV	to	3552 CENT-DM2	500kV	Ckt	1
C-271 Line 3555 CRYST RV 500kV to 3556 CRYST RS 500kV Ckt 1 C-272 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-273 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-274 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3704 NORTHEST 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3704 NORTHEST 230kV to 3931 SEMIROU 230kV Ckt 1 C-280 Line 3834 ANCLOTE 230kV to 3931 SEMINOLE<	C-269	Line	3551 CENT FLA	500kV	to	3553 CENT-DUM	500kV	Ckt	1
C-272 Line 3702 40TH ST 230kV to 3704 NORTHEST 230kV Ckt 1 C-273 Line 3702 40TH ST 230kV to 3705 PASADENA 230kV Ckt 1 C-274 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3704 NORTHEST 230kV to 3704 NORTHEST 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3834 ANCLOTE 230kV to 3833 SEVEN SP 230kV Ckt 1 C-283 Line 3835 GULPINE 230kV to 3930 LARGO 230kV Ckt	C-270	Line	3551 CENT FLA	500kV	to	3555 CRYST RV	500kV	Ckt	1
C-273 Line 3702 40TH ST 230kV to 3705 PASADENA 230kV Ckt 1 C-274 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3705 PNELRCOV 230kV Ckt 1 C-276 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3705 PASADENA 230kV to 3931 EMINOLE 230kV Ckt 1 C-280 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-281 Line 3836 GL/PINE 230kV to 3831 SEVEN SP <td>C-271</td> <td>Line</td> <td>3555 CRYST RV</td> <td>500kV</td> <td>to</td> <td>3556 CRYST R5</td> <td>500kV</td> <td>Ckt</td> <td>1</td>	C-271	Line	3555 CRYST RV	500kV	to	3556 CRYST R5	500kV	Ckt	1
C-274 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 1 C-275 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 2 C-276 Line 3704 NORTHEST 230kV to 3706 PNELRCOV 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3833 ANCCOCL 230kV to 3837 SEVEN SP 230kV Ckt 1 C-281 Line 3835 GULFPINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-283 Line 3929 BLCH RD 230kV to 3931 SEMINOLE<	C-272	Line	3702 40TH ST	230kV	to	3704 NORTHEST	230kV	Ckt	1
C-275 Line 3703 BARTOW 230kV to 3704 NORTHEST 230kV Ckt 2 C-276 Line 3704 NORTHEST 230kV to 3706 PNELRCOV 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3833 ANCCOOL 230kV to 3837 SEVEN SP 230kV Ckt 1 C-281 Line 3835 GULFPINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3931 SEMINO	C-273	Line	3702 40TH ST	230kV	to	3705 PASADENA	230kV	Ckt	1
C-276 Line 3704 NORTHEST 230kV to 3706 PNELRCOV 230kV Ckt 1 C-277 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3833 ANC COOL 230kV to 3834 ANCLOTE 230kV Ckt 1 C-281 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-283 Line 3836 GULFRINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3931 SEMIN	C-274	Line	3703 BARTOW	230kV	to	3704 NORTHEST	230kV	Ckt	1
C-277 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 1 C-278 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 2 C-278 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3833 ANC COOL 230kV to 3834 ANCLOTE 230kV Ckt 1 C-281 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-282 Line 3835 GULFPINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3931 SEMINOLE 230kV Ckt 1 C-285 Line 4650 CENTR PK 230kV to 3931 SEMIN	C-275	Line	3703 BARTOW	230kV	to	3704 NORTHEST	230kV	Ckt	2
C-278 Line 3704 NORTHEST 230kV to 3932 ULMERTON 230kV Ckt 2 C-279 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3833 ANC COOL 230kV to 3834 ANCLOTE 230kV Ckt 1 C-281 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-282 Line 3835 GULFPINE 230kV to 3930 LARGO 230kV Ckt 1 C-283 Line 3929 BLCHR RD 230kV to 3931 SEMINOLE 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3931 SEMINOLE 230kV Ckt 1 C-285 Line 3930 LARGO 230kV to 3931 SEMINOLE <td>C-276</td> <td>Line</td> <td>3704 NORTHEST</td> <td>230kV</td> <td>to</td> <td>3706 PNELRCOV</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-276	Line	3704 NORTHEST	230kV	to	3706 PNELRCOV	230kV	Ckt	1
C-279 Line 3705 PASADENA 230kV to 3931 SEMINOLE 230kV Ckt 1 C-280 Line 3833 ANC COOL 230kV to 3834 ANCLOTE 230kV Ckt 1 C-281 Line 3834 ANCLOTE 230kV to 3834 ANCLOTE 230kV Ckt 1 C-281 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-282 Line 3835 GULFPINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-283 Line 3929 BLCHR RD 230kV to 3931 SEMINOLE 230kV Ckt 1 C-285 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 4875 NORTHSDE	C-277	Line	3704 NORTHEST	230kV	to	3932 ULMERTON	230kV	Ckt	1
C-280 Line 3833 ANC COOL 230kV to 3834 ANCLOTE 230kV Ckt 1 C-281 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-282 Line 3834 ANCLOTE 230kV to 3930 LARGO 230kV Ckt 1 C-283 Line 3835 GULFPINE 230kV to 3930 LARGO 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3931 LARGO 230kV Ckt 1 C-285 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-286 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4960 SIRPP	C-278	Line	3704 NORTHEST	230kV	to	3932 ULMERTON	230kV	Ckt	2
C-281 Line 3834 ANCLOTE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-282 Line 3834 ANCLOTE 230kV to 3930 LARGO 230kV Ckt 1 C-283 Line 3835 GULFPINE 230kV to 3930 LARGO 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3932 LIMERTON 230kV Ckt 1 C-285 Line 3929 BLCHR RD 230kV to 3931 SEMINOLE 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-287 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK	C-279	Line	3705 PASADENA	230kV	to	3931 SEMINOLE	230kV	Ckt	1
C-282 Line 3834 ANCLOTE 230kV to 3930 LARGO 230kV Ckt 1 C-283 Line 3835 GULFPINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3930 LARGO 230kV Ckt 1 C-285 Line 3929 BLCHR RD 230kV to 3931 SEMINOLE 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-287 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-291 Line 4700 FIRESTNE	C-280	Line	3833 ANC COOL	230kV	to	3834 ANCLOTE	230kV	Ckt	1
C-283 Line 3835 GULFPINE 230kV to 3837 SEVEN SP 230kV Ckt 1 C-284 Line 3929 BLCHR RD 230kV to 3930 LARGO 230kV Ckt 1 C-285 Line 3929 BLCHR RD 230kV to 3932 ULMERTON 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-287 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4965 SIRPP 230kV Ckt 1 C-291 Line 4700 FIRESTNE	C-281	Line	3834 ANCLOTE	230kV	to	3837 SEVEN SP	230kV	Ckt	1
C-284 Line 3929 BLCHR RD 230kV to 3930 LARGO 230kV Ckt 1 C-285 Line 3929 BLCHR RD 230kV to 3932 ULMERTON 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-286 Line 4650 CENTR PK 230kV to 4875 NORTHSDE 230kV Ckt 1 C-287 Line 4650 CENTR PK 230kV to 4875 NORTHSDE 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-289 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4965 NORMANDY 230kV Ckt 1 C-291 Line 4700 FIRESTNE <td>C-282</td> <td>Line</td> <td>3834 ANCLOTE</td> <td>230kV</td> <td>to</td> <td>3930 LARGO</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-282	Line	3834 ANCLOTE	230kV	to	3930 LARGO	230kV	Ckt	1
C-285 Line 3929 BLCHR RD 230kV to 3932 ULMERTON 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-287 Line 4650 CENTR PK 230kV to 4875 NORTHSDE 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-289 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-291 Line 4650 CENTR PK 230kV to 4965 NORMANDY 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4710 FT CAROL <td>C-283</td> <td>Line</td> <td>3835 GULFPINE</td> <td>230kV</td> <td>to</td> <td>3837 SEVEN SP</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-283	Line	3835 GULFPINE	230kV	to	3837 SEVEN SP	230kV	Ckt	1
C-285 Line 3929 BLCHR RD 230kV to 3931 2ULMERTON 230kV Ckt 1 C-286 Line 3930 LARGO 230kV to 3931 SEMINOLE 230kV Ckt 1 C-287 Line 4650 CENTR PK 230kV to 4875 NORTHSDE 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-289 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4960 SIRPP 230kV Ckt 1 C-291 Line 4650 CENTR PK 230kV to 4965 NORMANDY 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4965 NORMANDY 230kV Ckt 1 C-293 Line 4710 FT CAROL </td <td>C-284</td> <td>Line</td> <td>3929 BLCHR RD</td> <td>230kV</td> <td>to</td> <td>3930 LARGO</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-284	Line	3929 BLCHR RD	230kV	to	3930 LARGO	230kV	Ckt	1
C-287 Line 4650 CENTR PK 230kV to 4875 NORTHSDE 230kV Ckt 1 C-288 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-289 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 1 C-291 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4965 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4735 GREENLND <td>C-285</td> <td>Line</td> <td>3929 BLCHR RD</td> <td>230kV</td> <td>to</td> <td>3932 ULMERTON</td> <td>230kV</td> <td></td> <td>1</td>	C-285	Line	3929 BLCHR RD	230kV	to	3932 ULMERTON	230kV		1
C-288 Line 4650 CENTR PK 230kV to 4950 ROBNWOOD 230kV Ckt 1 C-289 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 2 C-291 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4965 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4710 FT CAROL 230kV to 4865 NORMANDY 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-295 Line 4735 GREENLND	C-286	Line	3930 LARGO	230kV	to	3931 SEMINOLE	230kV	Ckt	1
C-289 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 1 C-290 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 2 C-291 Line 4650 CENTR PK 230kV to 4972 S KERNAN 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4965 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4710 FT CAROL 230kV to 6673 BLK CK. 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4860 SJRPP 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND	C-287	Line	4650 CENTR PK	230kV	to	4875 NORTHSDE	230kV	Ckt	1
C-290 Line 4650 CENTR PK 230kV to 4960 SJRPP 230kV Ckt 2 C-291 Line 4650 CENTR PK 230kV to 4972 S KERNAN 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4710 FT CAROL 230kV to 6673 BLK CK. 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-297 Line 4735 GREENLND <td>C-288</td> <td>Line</td> <td>4650 CENTR PK</td> <td>230kV</td> <td>to</td> <td>4950 ROBNWOOD</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-288	Line	4650 CENTR PK	230kV	to	4950 ROBNWOOD	230kV	Ckt	1
C-291 Line 4650 CENTR PK 230kV to 4972 S KERNAN 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 6673 BLK CK. 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND </td <td>C-289</td> <td>Line</td> <td>4650 CENTR PK</td> <td>230kV</td> <td>to</td> <td>4960 SJRPP</td> <td>230kV</td> <td>Ckt</td> <td>1</td>	C-289	Line	4650 CENTR PK	230kV	to	4960 SJRPP	230kV	Ckt	1
C-291 Line 4650 CENTR PK 230kV to 4972 S KERNAN 230kV Ckt 1 C-292 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 6673 BLK CK. 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND	C-290	Line	4650 CENTR PK	230kV	to	4960 SJRPP	230kV	Ckt	2
C-292 Line 4700 FIRESTNE 230kV to 4865 NORMANDY 230kV Ckt 1 C-293 Line 4700 FIRESTNE 230kV to 6673 BLK CK. 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SIRPP 230kV Ckt 1 C-295 Line 4735 GREENLND 230kV to 4960 SIRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-299 Line 4735 GREENLND									1
C-293 Line 4700 FIRESTNE 230kV to 6673 BLK CK. 230kV Ckt 1 C-294 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SIRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4960 SIRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY			4700 FIRESTNE						1
C-294 Line 4710 FT CAROL 230kV to 4830 MILL CVE 230kV Ckt 1 C-295 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY									
C-295 Line 4710 FT CAROL 230kV to 4960 SJRPP 230kV Ckt 1 C-296 Line 4735 GREENLND 230kV to 4750 HARTLEY 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-299 Line 4865 NORMANDY 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY 230kV to 4897 PATILLO									
C-296 Line 4735 GREENLND 230kV to 4750 HARTLEY 230kV Ckt 1 C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4972 S KERNAN 230kV Ckt 1 C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY 230kV to 4897 NORTHSDE 230kV Ckt 1 C-301 Line 4865 NORMANDY 230kV to 4897 PATILLO 230kV Ckt 2									
C-297 Line 4735 GREENLND 230kV to 4955 SE JAX 230kV Ckt 1 C-298 Line 4735 GREENLND 230kV to 4972 5 KERNAN 230kV Ckt 1 C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY 230kV to 4897 NORTHSDE 230kV Ckt 1 C-301 Line 4865 NORMANDY 230kV to 4897 PATILLO 230kV Ckt 1									1
C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY 230kV to 4875 NORTHSDE 230kV Ckt 1 C-301 Line 4865 NORMANDY 230kV to 4897 PATILLO 230kV Ckt 2	C-297	Line	4735 GREENLND	230kV	to	4955 SE JAX	230kV	Ckt	1
C-299 Line 4735 GREENLND 230kV to 4985 SWTZRLND 230kV Ckt 1 C-300 Line 4865 NORMANDY 230kV to 4875 NORTHSDE 230kV Ckt 1 C-301 Line 4865 NORMANDY 230kV to 4897 PATILLO 230kV Ckt 2									
C-300 Line 4865 NORMANDY 230kV to 4875 NORTHSDE 230kV Ckt 1 C-301 Line 4865 NORMANDY 230kV to 4897 PATILLO 230kV Ckt 2									
C-301 Line 4865 NORMANDY 230kV to 4897 PATILLO 230kV Ckt 2									1
C-302 Line 4865 NORMANDY 230kV to 4960 SJRPP 230kV Ckt 1			4865 NORMANDY			4897 PATILLO	230kV	Ckt	2
		Line	4865 NORMANDY			4960 SJRPP			1

4/20/00

N:\005551\032789\Testimony\FPG-2/ Midway 4-19.doc

ھر

~

يعنعو - -

C-303	Line	4865 NORMANDY	230kV	to	5005 WEST JAX	230kV	Ckt	1
C-304	Line	4875 NORTHSDE	230kV	to	5005 WEST JAX	2 30kV	Ckt	1
C-305	Lìne	4897 PATILLO	230kV	to	4960 SJRPP	230kV	Ckt	2
C-306	Line	4950 ROBNWOOD	230kV	to	4955 SE JAX	230kV	Ckt	1
C-307	Line	5351 KIS MARY	230kV	to	5704 TAFT	230kV	Ckt	1
C-308	Line	5352 CAN ISL	230kV	to	5353 KIS CLAY	230kV	Ckt	1
C-309	Line	5352 CAN ISL	230kV	to	5800 OUCCITP1	230kV	Ckt	1
C-310	Line	5352 CAN ISL	230kV	to	5801 OUCCITP2	230kV	Ckt	1
C-311	Line	5701 SO WOOD	230kV	to	5704 TAFT	230kV	Ckt	1
C-312	Line	5702 PERSHING	230kV	to	5705 STANTON	230kV	Ckt	1
C-313	Line	5702 PERSHING	230kV	to	5705 STANTON	230kV	Ckt	2
C-314	Line	5702 PERSHING	230kV	to	5708 R-22	230kV	Ckt	1
C-315	Line	5703 IND RIV	230kV	to	5705 STANTON	230kV	Ckt	1
C-316	Line	5703 IND RIV	230kV	to	5705 STANTON	230kV	Ckt	2
C-317	Line	5704 TAFT	230kV	to	5705 STANTON	230kV	Ckt	1
C-318	Line	5704 TAFT	230kV	to	5706 AIP	230kV	Ckt	1
C-319	Line	5704 TAFT	230kV	to	5800 OUCCITP1	230kV	Ckt	1
C-320	Line	5706 AIP	230kV	to	5709 R-23	230kV	Ckt	1
C-321	Line	5707 AIRPORT	230kV	to	5708 R-22	230kV	Ckt	1
C-322	Line	5707 AIRPORT	230kV	to	5709 R-23	230kV	Ckt	1
C-323	Line	5801 OUCCITP2	230kV	to	7890 OSCEOLA	230kV	Ckt	1
C-324	Line	6101 MCINTOSH	230kV	to	6104 TENOROC	230kV	Ckt	1
C-325	Line	6101 MCINTOSH	230kV	to	9150 LKAGNES	230kV	Ckt	1
C-326	Line	6102 WEST	230kV	to	6106 I-STATE	230kV	Ckt	1
C-327	Line	6103 EATON PK	230kV	to	6104 TENOROC	230kV	Ckt	1
C-328	Line	6103 EATON PK	230kV	to	6105 CREWSLK	230kV	Ckt	1
C-329	Line	6104 TENOROC	230kV	to	6106 I-STATE	230kV	Ckt	1
C-330	Line	6104 TENOROC	230kV	to	6114 MP4-230	230kV	Ckt	1
C-331	Line	6104 TENOROC	230kV	to	6115 MP5-230	230kV	Ckt	1
C-332	Line	6105 CREWSLK	230kV	to	9050 PE8B	230kV	Ckt	1
C-333	Line	6105 CREWSLK	230kV	to	9100 RECKER	230kV	Ckt	1
C-334	Line	6296 OCALA 1	230kV	to	6299 OC R-OAK	230kV	Ckt	1
C-335	Line	6297 OCALA 2	230kV	to	6299 OC R-OAK	230kV	Ckt	1
C-336	Line	6297 OCALA 2	230kV	to	7120 SILV SPN	230kV	Ckt	1
C-337	Line	6673 BLK CK.	230kV	to	6694 KEY HTS.	230kV	Ckt	1
C-338	Line	6682 FLRAHM.	230kV	to	6694 KEY HTS.	230kV	Ckt	1
C-339	Line	6682 FLRAHM.	230kV	to	6707 RIVRVU	230kV	Ckt	1
C-340	Line	6707 RIVRVU	230kV	to	7119 SEMINOLE	230kV	Ckt	1
C-341	Line	7119 SEMINOLE	230kV	to	7120 SILV SPN	230kV	Ckt	1
C-342	Line	7119 SEMINOLE	230kV	to	7120 SILV SPN	230kV	Ckt	2
C-343	Line	7121 CC PLANT	230kV	to	9090 HARDESUB	230kV	Ckt	1
C-344	Line	7600 HOPKINS	230kV	to	7620 SUB 20	230kV	Ckt	1
C-345	Line	7607 SUB 7	230kV	to	7620 SUB 20	230kV	Ckt	1
C-346	Line	7620 SUB 20	230kV	to	10218 S BAINBR	230kV	Ckt	1
C-347	Line	7890 OSCEOLA	230kV	to	9150 LKAGNES	230kV	Ckt	1
C-348	Line	8000 SHELD	230kV	to	8010 DLMBRY-W	230kV	Ckt	1
C-349	Line	8000 SHELD	230kV	to	8100 JAXSN230	230kV	Ckt	1
C-350	Line	8000 SHELD	230kV	to	8120 OHIO-S	230kV	Ckt	1
C-351	Line	8010 DLMBRY-W	230kV	to	8020 DLMBRY-E	230kV	Ckt	1
C-352	Line	8020 DLMBRY-E	230kV	to	8400 CHAPMAN	230kV	Ckt	1
C-353	Line	8110 OHIO-N	230kV	to	8120 OHIO-S	230kV	Ckt	1

N:\005551\032789\Testimony\PPG-2-Midway 4-19.doc

<u>.</u>

C-354	Line	8110 OHIO-N	230kV	to	8500 11TH AVE	230kV	Ckt	1
C-355	Line	8300 RIVER-N	230kV	to	8310 RIVER-S	230kV	Ckt	1
C-356	Line	8300 RIVER-N	230kV	to	8750 SR60-S T	230kV	Ckt	1
C-357	Line	8310 RIVER-S	230kV	to	8900 B BEND	230kV	Ckt	1
C-358	Line	8400 CHAPMAN	230kV	to	8700 GANNON	230kV	Ckt	1
C-359	Line	8500 11TH AVE	230kV	to	8860 SO GIB	230kV	Ckt	1
C-360	Line	B600 HAMPTN	230kV	to	8610 HAMPTN T	230kV	Ckt	1
C-361	Line	8610 HAMPTN T	230kV	to	8700 GANNON	230kV	Ckt	1
C-362	Line	8610 HAMPTN T	230kV	to	9050 PEBB	230kV	Ckt	1
C-363	Line	8700 GANNON	230kV	to	8750 SR60-S T	230kV	Ckt	1
C-364	Lirie	8700 GANNON	230kV	to	8760 SR60-N T	230kV	Ckt	1
C-365	Line	8700 GANNON	230kV	to	8850 BELCRK	230kV	Ckt	1
C-366	Lirie	8730 SR60-N	230kV	to	8760 SR60-N T	230kV	Ckt	1
C-367	Line	8740 SR60-S	230kV	to	8750 SR60-S T	230kV	Ckt	1
C-368	Line	8760 SR60-N T	230kV	to	8900 B BEND	230kV	Ckt	1
C-369	Line	8850 BELCRK	230kV	to	9050 PEBB	230kV	Ckt	1
C-370	Line	8860 SO GIB	230kV	to	8900 B 8END	230kV	Ckt	1
C-371	Line	8870 RUSKIN T	230kV	to	8900 B BEND	230kV	Ckt	1
C-372	Line	8880 RUSKMTR8	230kV	to	8900 B BEND	230kV	Ckt	1
C-373	Line	8890 BIGBGT-T	230kV	to	8900 B BEND	230kV	Ckt	1
C-374	Line	8900 B BEND	230kV	to	9010 MINES W	230kV	Ckt	1
C-375	Line	9000 POLKPLNT	230kV	to	9030 BRADLY T	230kV	Ckt	1
C-376	Line	9000 POLKPLNT	230kV	to	9050 PEBB	230kV	Ckt	1
C-377	Line	9000 POLKPLNT	230kV	to	9050 PEBB	230kV	Ckt	2
C-378	Line	9000 POLKPLNT	230kV	to	9090 HARDESUB	230kV	Ckt	1
C-379	Line	9010 MINES W	230kV	to	9020 MINES E	230kV	Ckt	1
C-380	Line	9020 MINES E	230kV	to	9030 BRADLY T	230kV	Ckt	1
C-381	Line	9100 RECKER	230kV	to	9110 ARIANA	230kV	Ckt	1
C-382	Line	9100 RECKER	230kV	to	9150 LKAGNES	230kV	Ckt	1
C-383	Line	9100 RECKER	230kV	to	9160 GAPWAY	230kV	Ckt	1
C-384	Line	9120 SELOSE	230kV	to	9130 SELOSE T	230kV	Ckt	1
C-385	Transformer	2289 LKT-DUM1	500kV	to	2269 LK TARPN	230kV	Çkt	1
C-386	Transformer	2290 LKT-DUM2	500kV	to	2269 LK TARPN	230kV	Çkt	1
C-387	Transformer	2911 KATH-DUM	500kV	to	2884 KATHLEEN	230kV	Ckt	1
C-388	Transformer	3548 BRDG-DUM	500kV	to	3518 BRKRIDGE	230kV	Ckt	1
C-389	Transformer	3552 CENT-DM2	500kV	to	3521 CENT FLA	230kV	Ckt	1
C-390	Transformer	3553 CENT-DUM	500kV	to	3521 CENT FLA	230kV	Ckt	1
C-391	Líne	2163 CAMP LK	230kV	to	90000 MIDWAY	230kV	Ckt	1
C-392	Line	2164 CLMT EST	230kV	to	90000 MIDWAY	230kV	Ckt	1
C-393	Line	90000 MIDWAY	230kV	to	3521 CENT FLA	230kV	Ckt	1
C-394	Line	90000 MIDWAY	230kV	to	3521 CENT FLA	230kV	Ckt	2

N:\005551\032789\Testimony\FPG-2- Midway 4-19.doc

۶

تسر