BELLSOUTH TELECOMMUNICATIONS, INC. DIRECT TESTIMONY OF D. DAONNE CALDWELL BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION DOCKET NO. 990649-TP
 MAY 1, 2000

Q. PLEASE STATE YOUR NAME, ADDRESS AND OCCUPATION.
A. My name is D. Daonne Caldwell. My business address is 675 W. Peachtree St., N.E., Atlanta, Georgia. I am a Director in the Finance Department of BellSouth Telecommunications, Inc. (hereinafter referred to as "BellSouth"). My area of responsibility relates to economic costs.

Q. PLEASE PROVIDE A BRIEF DESCRIPTION OF YOUR EDUCATIONAL

 BACKGROUND AND WORK EXPERIENCE.A. I attended the University of Mississippi, graduating with a Master of Science Degree in mathematics. I have attended numerous Bell Communications Research, Inc. ("Bellcore") courses and outside seminars relating to service cost studies and economic principles.

My initial employment was with South Central Bell in 1976 in the Tupelo, Mississippi, Engineering Department where I was responsible for Outside Plant Planning. In 1983, I transferred to BellSouth Services, Inc. in Birmingham, Alabama, and was responsible for the Centralized Results System Database. I

$$
\begin{gathered}
\text { doclmen wherg date } \\
05339 \text { may-18 }
\end{gathered}
$$

moved to the Pricing and Economics Department in 1984 where I developed methodology for service cost studies until 1986 when I accepted a rotational assignment with Bellcore. While at Bellcore, I was responsible for development and instruction of the Service Cost Studies Curriculum including courses, such as, "Concepts of Service Cost Studies", "Network Service Costs", "Nonrecurring Costs", and "Cost Studies for New Technologies". In 1990, I returned to BellSouth and was appointed to a position in the cost organization, now a part of the Finance Department, with the responsibility of managing the development of cost studies for transport facilities, both loop and interoffice. My current responsibilities encompass testifying in cost-related dockets, cost methodology development, and the coordination of cost study filings.
Q. HAVE YOU HAD ANY PREVIOUS EXPERIENCE IN TESTIFYING?
A. Yes. I have participated in arbitration hearings, generic cost dockets, and Universal Service Fund proceedings, providing evidence on cost-related issues. Thus, I have testified before the state public service commissions in Alabama, Florida, Georgia, Kentucky, Louisiana, Mississippi, and South Carolina, the Tennessee Regulatory Authority, and the Utilities Commission in North Carolina.

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?

A. The purpose of my testimony is to respond to the issues released March 16, 2000 by the Florida Public Service Commission ("Commission"), that concern cost development. Specifically, I discuss the requirements that should be imposed on
recurring and nonrecurring cost preparation for unbundled network elements ("UNEs"), combinations of network elements, and deaveraged offerings. In doing so, I will address the underlying cost methodology, the models, and the major inputs BellSouth utilized in the cost studies filed with this Commission on April 17, 2000.
Q. HOW IS YOUR TESTIMONY STRUCTURED?
A. In the first section of my testimony, I discuss the cost development process in general. This section is organized as follows:

Cost Methodology

- Models
- Loop Model
- Switch-related Cost Models
- BellSouth Cost Calculatoro
- Capital Cost Calculator
- Price Calculators
- Nonrecurring Cost Model

Inputs

- General
- Factors and Loadings
- Element Specific Inputs

In the second section of my testimony, I respond to the specific cost-related issues
raised by the Commission.

SECTION 1

COST METHODOLOGY

Q. HAS THIS COMMISSION PREVIOUSLY ADDRESSED COST

 METHODOLOGY?A. Yes. This Commission previously conducted an exhaustive investigation into cost methodology to be used by Incumbent Local Exchange Companies in Docket No. 900633-TL. Its findings established Total Service Long Run Incremental Cost ("TSLRIC") as the appropriate methodology to be used for cost support for tariff filings. More recently, the Commission addressed the cost methodology, i.e., the underlying economic principles, for unbundled network elements in Docket Nos. 960833-TP, 960846-TP, and 960916-TP. The Commission released Order No. PSC-96-1579-FOF-TP ("Order"), on December 31, 1996, in which it first discussed the Federal Communications Commission's ("FCC's") rules and then outlined its interpretation of those cost methodology directives. In fact, the Commission recognized the similarities between the two methodologies, TSLRIC plus shared and common and Total Element Long Run Incremental Cost ("TELRIC") economic cost. On page 24 of the Order this Commission stated, "...we do not believe there is a substantial difference between the TSLRIC cost of a network element and the TELRIC cost of a network element."
Q. WHAT ARE THE ECONOMIC PRINCIPLES UNDERLYING TSLRIC PLUS SHARED AND COMMON AND TELRIC ECONOMIC COSTS?

2 A. Both methodologies embrace the following principles:

3

(1) Efficient network configuration - the cost should be based on the use of the most current telecommunications technology presently available and the economically efficient configuration, given the existing wire center locations.
(2) Long run - the studies should consider a timeframe long enough to reflect the variability of the cost components.
(3) Volume sensitive and volume insensitive costs are considered - these are the costs that will be avoided by discontinuing, or incurred by offering, an entire product or service, holding all other products or services offered by the firm constant. A corollary to this directive is the principle of cost causation, i.e., the costs included in the study are those that are caused because BellSouth offers an unbundled element or a combination of network elements.
(4) Forward-looking - both methodologies demand a forward-looking perspective. Thus, embedded costs are excluded from consideration.
(5) Shared and common costs - a reasonable allocation of shared and common costs are allowed.

BellSouth agrees that the above-mentioned principles should be incorporated into any study that determines the cost of UNEs and for UNE combinations. (By necessity, TELRIC economic costs that are deaveraged also reflect these principles.)

However, implementation of these principles has often been open to dispute. In the past, the main areas of contention with respect to cost development were: network design, work time estimates and the provisioning process, and economic parameters, e.g., cost of money and depreciation.

The overall debate can be distilled into one overriding issue, "What constitutes 'forward-looking'?" Past experience has proven that opposing parties tend to ignore the FCC's statement that the "benchmark of forward-looking cost and existing network design most closely represents the incremental costs incumbents actually expect to incur in making network elements available to new entrants." (FCC Order paragraph 685) Instead they advocate network architectures, provisioning processes, and expense reductions that are unattainable within the foreseeable future.

BellSouth does not support an embedded perspective with respect to cost development. However, BellSouth recognizes that past results may be judged as an indication of future trends and thus, should provide some input into the cost analysis, at least as a starting point. For example, year-end expense and investment data are utilized as starting points in developing some cost factors.

Q. YOU MENTIONED THAT SHARED AND COMMON COSTS ARE COMPONENTS OF ECONOMIC COSTS. WHAT ARE SHARED AND COMMON COSTS?

1 A. Shared costs are those costs that are unaffected by a change in demand (volume) of

25 A. Whether termed TELRIC economic costs or TSLRIC plus shared and common
costs, BellSouth utilized a methodology that reflects the costs BellSouth expects to incur in providing unbundled network elements to competitors on a going-forward basis in the state of Florida. These costs are based on an efficient network, designed to incorporate currently available forward-looking technology, but recognize BellSouth's provisioning practices and network guidelines, as well. Additionally, shared and common costs were considered. The shared and common costs are based on a projection of BellSouth's anticipated expenses, partitioned based on the allocation method presented in Mr. Reid's testimony.

Q. WHAT METHODOLOGY DID BELLSOUTH USE TO DEVELOP THE

 COSTS OF COMBINATIONS?A. The cost methodology for combinations does not differ from the cost methodology used for unbundled elements since they will both be used to support rates for items offered to competitors. However, some of the inputs into a combination study may differ from individual UNE inputs. For example, for a combined loop and port, integrated digital loop carrier is considered in the mix of technologies providing that existing combination. In the UNE study, integration is not an option since each element is unbundled and provided separately. Thus, integrated digital loop carrier technology is not appropriate for developing the cost of individual UNEs. This distinction results from the cost object being studied rather than the underlying methodology. Additionally, depending on how a "combination" is defined, nonrecurring inputs may differ. For example, a combination of UNEs on a "switch-as-is" basis, i.e., one that currently exists in BellSouth's network, basically involves a billing change and thus has substantially shorter work times than the work times
required either to provide individual UNEs or to combine two UNEs.

Q. WHAT COST METHODOLOGY DID BELLSOUTH USE FOR GEOGRAPHIC DEAVERAGING?

A. The same cost methodology is applicable for geographic deaveraging as was used for UNEs and combinations. Geographic deaveraging is merely a finer breakdown of costs into separate subsets based on geographic differences. Some examples of these geographic differences may include distance from serving wire center and customer dispersion. BellSouth developed loop and switch-related costs on a wire center level as required by this Commission. I will discuss how BellSouth calculated the zone costs BellSouth included as part of its April 17, 2000 filing later in my testimony. However, the reasoning behind the proposed zones is discussed in Mr. Varner's testimony.

MODELS

Q. PLEASE EXPLAIN BELLSOUTH'S COST MODELS.

A. Modeling is an important step in developing both recurring and nonrecurring costs for unbundled network elements and combinations, and BellSouth has utilized several in developing UNE costs. There are different levels of complexity in the models depending on the component of the network being studied.

Following is a discussion of each of the models BellSouth utilizes in determining the cost of UNEs, combinations, and deaveraged costs.

LOOP MODEL

Q. IN ITS PREVIOUS FILINGS, BELLSOUTH UTILIZED A SAMPLE TO DETERMINE THE COST OF A LOOP. DID BELLSOUTH CONTINUE THIS PRACTICE?

A. No. BellSouth, in conjunction with INDETEC International, Inc., CostQuest Associates, and Stopwatch Maps, has developed a new BellSouth model for loop investment calculations that replaces the old loop sample approach. This new model is called the BellSouth Telecommunications Loop Model ${ }^{\text {® }}$ ("BSTLM"). The new model is designed to support the cost development for both unbundled loop elements and service-specific loops. Furthermore, the BSTLM is the only model currently available that distinguishes between the different types of loops, 2-wire, 4wire, Integrated Services Digital Network ("ISDN"), Asymmetrical Digital Subscriber Line ("ADSL")-compatible, High Bit Rate Digital Subscriber Line ("HDSL")-compatible, etc. Other proxy models are only capable of producing costs for a 2-wire local loop. Even though the model has the capability to develop costs for high capacity loops, BellSouth has currently confined the use of the BSTLM to loops with transmission rates up to DS1. BellSouth felt the limited customer demand for high capacity loops and high capacity local channels would create unrealistic results. Thus, BellSouth developed the costs for high capacity (DS3 and higher) facilities on spreadsheets outside the BSTLM.

[^0]BellSouth's introduction of a new model should not cast doubt on the accuracy of the previous sample methodology. In fact, this Commission stated, "BellSouth's loop sample construction is appropriate." (Order at Page 75) However, the sample approach does have inherent limitations. First, the original sample was statistically valid only for the services tested, i.e., only for single line residential and single line business loops and only on a statewide average basis. Any attempt to stratify the sample into geographic areas for geographic deaveraging could not be statistically supported. Additionally, sampling is extremely labor intensive, requiring many hours to obtain, validate, input and process the data.

The BSTLM has overcome these limitations and has the ability to geographically deaverage costs for UNEs. The new model incorporates geocoded BellSouth customer serving addresses and the types and quantities of services at each location. When combined with BellSouth-specific input values, the model produces loop investments that accurately reflect the forward-looking, most efficient costs of providing service in BellSouth's territory in Florida at a more detailed level than a statewide average.

Q. PLEASE PROVIDE AN OVERVIEW OF THE BSTLM.

A. BellSouth witness, Mr. Jim Stegeman, will explain in detail the methodology underlying the model's calculations. However, I wish to discuss the fundamental process the BSTLM utilizes in developing material prices associated with the various loop offerings. The foundation of the model is customer service records, addresses, as well as services purchased. The BSTLM determines where customers
are located and "lays" cable along the roads of the wire center. A cable path can literally be traced from each customer's premises to the serving central office; a path that follows actual roads in the wire center. The model then determines serving areas for a wire center based on a Minimum Spanning Road Tree ("MSRT") algorithm. The MSRT is the shortest path that connects customer locations assuming that cables follow roads. Appropriate components, such as, digital loop carrier ("DLC") and Feeder Distribution Interfaces ("FDIs") are then located within each serving area.

Once the layout of the network is determined, the BSTLM's configuration process connects the network components. This procedure entails the determination of cable sizes, cable types (copper/fiber, aerial/buried/underground), and selection of DLC type. Once the network is configured, the BSTLM calculates the material price of each network component, not only by component type, but also by component location. Thus, the granularity required to deaverage costs is available through the model.

In order to run the BSTLM, one must establish the defining attributes of the loops and local channels under study. Exhibit DDC-1 displays the matrix used by BellSouth to accomplish this task. If we take the 2 -wire analog loop (SL1) as an example, Column A contains the element number used to reference the element throughout the study, in this case A.1.1. Column B provides a description of the element, 2Wire Analog Voice Grade Loop - SL1. The next column defines the scenario run to support the loop. Three different scenarios were established by BellSouth; BST2000, Combo, and Copper. For the SLI loop, BST2000 was used.

This scenario assumed all switched services were converted to non-switched unbundled network elements. Combo was used for loops offered in combination with other unbundled network elements (P.1.1 and P.4.1). This scenario is identical to BST2000 except that switched services remain switched. The Copper scenario was used to develop costs for those loops served on copper only. In this run, the copper to fiber crossover point was changed from the standard 12 kilofeet (kft) to $1,000,000$ feet. This extreme input ensures that all loops are served by copper.

Incorporated into the customer location data utilized by the model is the type of service currently delivered by the loop. (Page 3 of Exhibit DDC-1 displays the services used in the model.) This information is used to determine which loops should be considered in the universe of loops used in the cost calculation of that loop. This is necessary since the type of loop makes certain services incompatible. For example, a digital loop, e.g., an ISDN service loop, would not be considered in the cost calculation of an analog loop, e.g., a 2 -wire SL1 loop. Column D crossreferences the service types applicable to each loop. For the calculation of the SL1 loop, the services considered were; Residence, Business, PBX, Centrex, Smartline, Public, 2 Wire Private Line, and 2 Wire Special Access loops provisioned to an end user's premises.

Columns E and F further define the loop. Column E should always be set to

 distribution and feeder (Both). If the user wants to include only certain sections of the loops, the user may do so by selecting certain Cost elements of the loop referenced in Column I. Column F merely states whether the element includes loop (end user) or local channel (carrier Point of Presence ("POP")) customer locations.Column G outlines which medium is appropriate for the type of loop, i.e., copper, fiber, or a combination of copper and fiber (All). For an SL1 loop, both fiber and copper are appropriate. Any length limitation is contained in Column H. For an SLl loop, there is no length limitation, thus it is set to All. The Cost Elements, i.e., the network components, considered for each loop type is shown in Column I. For example, a 2-Wire Analog Loop (SL1) would contain "All" of the network elements from the central office terminal to the Network Interface Device ("NID"). On the other hand, the Sub-loop Feeder associated with that type of loop would only reflect the network elements from the Feeder Distribution Interface ("FDI") to the Central Office Terminal ("COT").

Columns J-M detail which type of main Distributing Frame ("MDF") is applicable. For an SL1 loop, the MDF-Melded selection is appropriate. This reflects an MDF meld of copper and loop fiber non-switched loop terminations. If the loop is designed, a test point is required. Columns N-P shows the type of test point included in the cost calculation. Since an SL1 loop is not designed, no test point is chosen. Columns Q-W identify additional "Adders" applicable to certain loops/local channels. No additional adders, beyond the MDF, are required for an SL1 loop.

I will discuss the major input values entered into the BSTLM later in my testimony (in particular in response to Issue \#7), but let me mention here that it is critical that the inputs used in any model reflect the costs BellSouth will incur on a goingforward basis. Thus, the BSTLM inputs are BellSouth-specific and reflect

BellSouth's operations in the state of Florida. Exhibit DDC-2 contains the inputs BellSouth utilized in running the BSTLM.

BellSouth witness, Mr. Jim Stegeman, explains why the BSTLM is superior to the existing proxy models, provides an overview of the model, discusses the model's method of locating customers, and expands on how the inputs are utilized by the model.

SWITCH-RELATED MODELS

Q. BELLSOUTH UTILIZED TELECORDIA'S (FORMERLY KNOWN AS

 BELLCORE) SWITCHING COST INFORMATION SYSTEM ("SCIS") MODEL IN PAST UNE FILINGS. DID BELLSOUTH CONTINUE TO USE SCIS IN THIS FILING?A. Yes. BellSouth used the model office module out of the SCIS program, ("SCIS/MO"), in order to determine the fundamental investments. The switch is a multi-faceted entity that performs a number of functions, from establishing a call to providing vertical features, such as, three-way calling. To accurately identify the fundamental unit switch investments necessary for these individual functions, a sophisticated model, like SCIS/MO, is required. BellSouth witness, Mr. Joe Page, describes the SCIS/MO inputs and outputs and its underlying methodology. Also, Appendix I of the cost study filed on April 17, 2000 provides an overview of the SCIS/MO model.
Q. WHAT MODELS DID BELLSOUTH USE TO DETERMINE SWITCH-
BellSouth Corporation All Rights Reserved (the SST model)

- 1999 BellSouth Corporation All Rights Reserved (BellSouth Cost

RELATED COSTS?
2
A. In past UNE filings in Florida, BellSouth utilized the Telcordia Network Cost Analysis Tool ("NCAT") to develop usage costs and Switching Cost Information System/Intelligent Network ("SCIS/IN") to determine some port and all feature costs. BellSouth no longer supports NCAT. SCIS/IN is another module of Telecordia's SCIS program. Both models were plagued by the proprietary label, making portions of the models inaccessible. To overcome the problem of proprietary models, in this proceeding BellSouth introduces its Simplified Switching Tool ("SST") ${ }^{\oplus}$ Model in this proceeding. The SST model incorporates cost development for all switch-related elements; ports, usage, and vertical features. BellSouth witness, Mr. Joe Page, discusses the scope of the SST model, required inputs, fundamental algorithms, and underlying assumptions. Mr. Page further explains why BellSouth moved to a new model for switch-related cost development.

BELLSOUTH COST CALCULATOR ${ }^{\ominus}$

Q. IN DOCKET NOS. 960757-TP, 960833-TP AND 960846-TP, BELLSOUTH INTRODUCED THE TELRIC CALCULATOR ${ }^{\circ}$. WILL THIS MODEL CONTINUE TO BE USED? Calculator)

- 1997 BellSouth Corporation All Rights Reserved (TELRIC Calculator)
-16-
A. The functions of the TELRIC Calculator have been incorporated into the BellSouth Cost Calculator. It was decided to enhance and rename the model to eliminate any preconceived notion that the model could only produce TELRIC level costs. The BellSouth Cost Calculator converts input data (material prices/investments by field reporting code ("FRC"), recurring additives, nonrecurring additives, and work times by job function code ("JFC")) into cost. The type of cost (i.e., Long Run Incremental Cost ("LRIC"), TSLRIC, or TELRIC) developed is dependent upon the inputs and the selections made by the user. (LRIC cost methodology considers only the volume sensitive direct costs.)

This Commission accepted the TELRIC Calculator as a viable model in its Order No.PSC-96-1579-FOF-TP. The BellSouth Cost Calculator, the modified version of the TELRIC Calculator, adheres to the same underlying methodology as the model previously reviewed by this Commission. However, the BellSouth Cost Calculator has been revised to enhance the user interface and to allow further user flexibility.

Exhibit DDC-3 pictorially displays the interrelationships between the BellSouth Cost Calculator and the other models and price calculators BellSouth used to determine costs. The BellSouth Cost Calculator is the mechanism that performs the mathematical exercise that appropriately applies the correct inflation factors, support loadings, annual cost factors, labor rates, tax factors, and shared and common factors to the inputs. Additionally, to ensure consistency between studies, the BellSouth Cost Calculator serves as the warehouse for annual cost factors, labor rates, loading factors, and inflation factors.

```
25 1999 BellSouth Corporation All Rights Reserved (Capital Cost
Calculator)
```

the development of the depreciation factors and adjustments for differences in book and tax depreciation. In calculating annual depreciation amounts, the Capital Cost Calculator methodology now uses the standard Midyear Equal Life Group ("ELG") approach, which employs a midyear convention. Previously, a straight-line method was used to calculate depreciation.

Additional FRCs have also been added. In particular, FRCs for capitalized software (intangible assets) are included due to changes in the accounting rules.

PRICE CALCULATORS

Q. EXHIBIT DDC-3 ALSO SHOWS SEVERAL "PRICE CALCULATORS". WERE THESE THE SAME PRICE CALCULATORS PREVIOUSLY PRESENTED TO THIS COMMISSION?
A. Not entirely. The four price calculators that BellSouth used in the past are the Loop Multiplexer, Digital Loop Carrier, SONET, and DS1 price calculators. These price calculators develop the material price of specialized components used in the provisioning of various network capabilities. These calculators take vendor prices for various pieces of equipment and express the prices on a per circuit level. In essence, the process involves (1) determining the appropriate types and quantities of equipment required, (2) utilizing vendor-furnished price lists, (3) applying a discount rate (if applicable), and (4) dividing by the capacity of the equipment. The price calculators reflect the latest prices, discount rates, and technology applicable to BellSouth. A vendor-provided "configuration" file that details the manner in
which the equipment is assembled may aid the first step. With the completion of BellSouth's New Loop Model, the Multiplexer and Digital Loop Carrier calculators are incorporated into that model, i.e., they will not be separate entities. Yet, the same type of calculation takes place within the BSTLM's equations.

NONRECURRING COSTS

Q. YOU MENTIONED THAT THE DEVELOPMENT OF NONRECURRING COSTS INVOLVES MODELING. DOES BELLSOUTH HAVE A NONRECURRING COST MODEL?

A. Not in the formal sense. Each analyst is responsible for obtaining estimates of the activities required to provision the element under study. BellSouth personnel familiar with the provisioning process identify the work groups involved and the amount of time it takes to complete the necessary tasks. Consideration is given to anticipated productivity improvements and potential technological advances that may impact the amount of time required. Thus, the projections are forwardlooking, yet attainable. These estimates are entered into the BellSouth Cost Calculator on the Nonrecurring Input sheet by element.

INPUTS

GENERAL INPUTS

Q. PLEASE DISCUSS INPUTS IN GENERAL.
A. There are several overriding considerations that must be taken into account when developing inputs. First, the inputs should be forward-looking, realistic, and
achievable. Second, since the objective is to determine the costs BellSouth will incur on a going-forward basis, it is imperative that BellSouth-specific inputs be utilized in the calculations. The use of BellSouth-specific inputs does not violate any of the cost characteristics I listed previously. BellSouth has been a large, efficient provider of telecommunications services in Florida for many years. Thus, economies of scale, negotiated volume discounts, and experience obtained from designing and provisioning an advanced telecommunications network are reflected in values based on BellSouth results.

Q. PLEASE COMMENT ON THE INPUTS COMMON TO ANY UNE COST

 STUDY.A. Exhibit DDC-3 outlines the general types of inputs BellSouth utilized in the studies for UNEs and combinations presented in this filing. I will describe each class of input and the process BellSouth used to determine the appropriate value.

INFLATION ADJUSTMENT FACTOR

Q. PLEASE DESCRIBE THE INFLATION ADJUSTMENT FACTOR AND DESCRIBE HOW IT IS DEVELOPED.
A. Over the life of an investment, inflation causes fluctuations in the forward-looking investment amount. Thus, the investment must be averaged over the study period. Investment inflation factors, by FRC, are used to trend plant investment in base year dollars to a levelized amount that is valid for a three year planning period, i.e., the study period (in this case 2000-2002). The investment inflation factors are the
cumulative average of three years' projected inflation rates based on BellSouth telephone plant indices ("TPIs").

The TPIs are price indices that measure the relative changes in prices BellSouth pays for the construction of telephone plant between specific periods of time. The development of TPIs uses econometric techniques to establish mathematical relationships between the historical movement in each of the labor and material components that make up the TPIs and the historical movement in explanatory variables. Explanatory variables are usually aggregate measures of the U.S. economy, e.g., price deflators from the national income and product accounts, union wage rates, copper prices, and other macroeconomic variables. Joel Popkin and Company, a BellSouth consultant, assists BellSouth with the calculation of TPIs.

LOADINGS

Q. WHAT IS MEANT BY THE TERM "LOADINGS"?
A. These factors are designed to augment calculated material prices to account for additional costs that are difficult to ascertain on an individual, element-specific basis. Thus, BellSouth develops mathematical relationships between the material prices and the additional labor expense, miscellaneous material, and support structures to capture the total cost BellSouth will incur on a going-forward basis.

Q. PLEASE DESCRIBE THE DIFFERENT TYPES OF LOADING FACTORS AND THEIR DEVELOPMENT.

A. One type of loadings are In-Plant loadings ("In-Plants"). In-Plants add engineering and installation labor and miscellaneous equipment to the material price, i.e., InPlants convert a material price to an installed investment. The installed investment is the dollar amount recorded in capital accounts.

In-Plants are account specific and are developed on the state level. There are four types of In-Plant loadings: (1) Material Loading, (2) Telco Loading, (3) Plug-in Loading, and (4) Hardwire Loading. The Material Loading is applied to a material price, the Telco Loading to the vendor-installed investment, the Plug-in Loading to the deferrable plug-in and common plug-in material prices, and the Hardwire Loading to the hardwire portion of an equipment material price.

In order to reflect the costs BellSouth will incur, the In-Plant factors are based on information that is specific to BellSouth. BellSouth used year-end reports developed from extracts of BellSouth's financial systems to develop these factors.

Q. WHAT OTHER TYPE OF LOADINGS WERE INCLUDED IN BELLSOUTH'S COST STUDIES?

A. Supporting Equipment and Power ("SE\&P") Loadings were used to calculate the incremental investment required to support an additional dollar of central office and circuit investment. The SE\&P Loadings were developed for the digital switch account (FRC 377C), digital subscriber pair gain account (FRC 257C), and other digital circuit equipment account (FRC 357C). Examples of the support and power
equipment included in the 377C factor include power equipment, distribution frames, ladders, tools, and test sets.

The source of the data used to develop the SE\&P Loading factors is the Central Office Monthly Allocation Process ("COMAP"), a year-end report extract that identifies total investment and supporting investments for FRCs 377C, 257C, and 357C. As with the In-Plant Loading factors, this is BellSouth-specific data.

In addition to the SE\&P Loading factors, central office and circuit investments require loadings for land and buildings. Ratios are developed by comparing central office land and building investments to central office and circuit investments. Base year investment amounts are developed from extracts of BellSouth's financial systems and projected plant additions are furnished by Network.
Q. ARE THERE LOADING FACTORS UNIQUE TO CABLE ACCOUNTS?
A. Yes. Poles and conduit are related only to cable placements. As in the past, BeilSouth developed translators to determine the amount of investment in poles and conduit associated with aerial and underground cable investment. The Pole Loading factor was developed by comparing the investment in poles to the investment in aerial cable. Similarly, the Conduit Loading factor was determined based on the relationship between investment in conduit and investment in underground cable.

Base year investment amounts are developed from extracts of BeilSouth's financial
systems and projected plant additions are furnished by Network.

Q. IS THERE A LOADING FACTOR UNIQUE TO THE DIGITAL SWITCHING (377C) ACCOUNT?

A. Yes. BellSouth developed a loading factor that accounts for the Right-to-Use ("RTU") investment related to central office switching equipment. As I mentioned previously, an accounting change reclassified RTU fees from expense to capital. Thus, it became necessary to develop a method of identifying this investment. The switch vendors' practice of packaging RTU fees together, the preponderance of buy-outs in effect, and the discounting schemes offered to BellSouth made the direct allocation of switching RTU investment impossible. Alternatively, BellSouth calculated a ratio that reflects the relationship between RTU capitalized investment to digital switch investment over the study period. Budget forecasts from Network were used in this calculation.

ANNUAL COST FACTORS

Q. WHAT ARE ANNUAL COST FACTORS AND HOW DID BELLSOUTH DEVELOP THEM?

A. Annual cost factors are translators used to determine the annual recurring cost associated with acquiring and using equipment. When an investment is multiplied by an annual cost factor, the product reflects the annual recurring cost incurred by the company. There are basically two types of cost associated with an investment, capital-related costs and operating-related costs.

An investment includes the initial purchase price of the item of plant and all engineering and installation costs required to make that item of plant ready to provide service. Capital costs associated with the investment consist of three major categories: depreciation, cost of money, and income tax. As I mentioned previously, BellSouth uses an internally developed model to calculate the capitalrelated annual cost factors based on user changeable inputs.

Plant must also be maintained to provide continuing operations. Ordinary repairs and maintenance, as well as rearrangements and changes, are necessary for all categories of plant (except land) in order to maintain quality service.

Maintenance-type expenses are reflected in the Plant Specific Expense factor. The following types of operations are included:
(1) Inspecting and reporting on the condition of plant investment to determine the need for repairs, replacements, rearrangements, and changes
(2) Performing routine work to prevent trouble
(3) Replacing items of plant other than retirement units
(4) Repairing materials for reuse
(5) Restoring the condition of plant damaged by storms, floods, fire, and other casualties
(6) Inspecting after repairs have been made
(7) Salaries, wages, and expenses associated with plant craft and work reporting engineers, as well as their immediate supervision and office support.

The Plant Specific Expense factor is developed, by FRC, based on three years of projected expense and investment data. Base year expenses are pulled from the Cost Separations System ("CSS"). Projected view data is obtained from BellSouth's Finance Regulatory Group for the study period. Base year investments are determined from extracts from BellSouth's financial systems. Investment projections are obtained from BellSouth Network for the study period. A relationship between the expenses and the investments is established by dividing the cumulative expenses by the cumulative investments for the study period. Adjustments are made for subsequent right-to-use fees, service order expense and rents. Since Plant Specific Expense factors are based on actual and projected BellSouth data, they reflect expenses BellSouth will incur in providing unbundled elements to competitors on a going-forward basis. Additionally, they reflect BellSouth's network practices, quality of service commitments, budget constraints, and process efficiencies.

Finally, BellSouth pays taxes. BellSouth's Tax Department provides the appropriate tax information, by jurisdiction, to be used in the development of the tax-related factors.

UNBUNDLED ELEMENT SPECIFIC INPUTS

LOOP

Q. THE LOOP ELEMENT IS A MAJOR COMPONENT OF THE NETWORK. WHAT INPUTS ARE THE MAIN COST DRIVERS OF LOOP COSTS AND HOW DID BELLSOUTH DETERMINE THESE INPUTS?

2 A. As I mentioned previously, Exhibit DDC-2 outlines the inputs BellSouth utilized in the running of the BSTLM. One group of inputs that significantly impacts the loop cost results is the investment (material plus engineering and installation) for feeder, distribution, and digital loop carrier. The per unit material prices (for example, material price per sheath foot of cable) are displayed in Exhibit DDC-2. As explained earlier, investment includes the material price as well as the cost to engineer and install (E\&I) the item of plant. BellSouth In-Plant factors are used to calculate the engineering costs along with BellSouth-specific placing costs. The material prices are obtained from procurement records that reflect actual BellSouth purchase prices and contractual agreements. Inherent in the material prices are discounts BellSouth enjoys due to its negotiated contracts. In its Order No.PSC-96-1579-FOF-TP, this Commission ruled, "it is appropriate to accept the cable costs proposed by BellSouth." (Order at Page 88)

The loop model design determines the amount of each facility required, i.e., the BSTLM determines the length of the loops based on customer location and network design. Obviously, loop length is a major cost driver. The MSRT routines built into the model ensure the most efficient routes are considered in determining the loop lengths.

Utilization or fill factors also play an important role in the calculation of loop costs. The FCC's TELRIC methodology allows for a reasonable projection of actual utilization to be incorporated into the equation. (1682) Similar to other models, such as, the HAI model, the FCC Synthesis Model, and the Benchmark Cost Proxy

Model ("BCPM"), utilization is not entered as a percentage in the BSTLM. Rather, the distribution cables are sized based on the appropriate standard size cable and the number of pairs provisioned to each living unit. Still the effective distribution utilization can be calculated from the BSTLM. The average distribution cable effective fill in BellSouth's study for Florida is 47%. For feeder cable, the model uses the cable sizing factor and standard size cables to determine the required cables to be placed. The average effective fill of the copper feeder cables in this filing is 74\%. These results are reflective of BellSouth's anticipated future fill in the distribution and feeder routes.

The amount of structure sharing is also a major cost driver. The structure sharing percentages should be BellSouth-specific and representative of BellSouth's achievable sharing arrangements in Florida. Structure sharing is reflected in the loading factors for poles and conduit and in the in-plant factor associated with buried cable.

Additional inputs related to loops will be discussed further in my response to Issue \#7.

SWITCBING

Q. WHAT INPUTS ARE CRITICAL TO THE DEVELOPMENT OF

 SWITCHING-RELATED COSTS?[^1]existing analog offices, digital technology, based on Network's replacement forecasts, has been assumed. (By year-end 1999, less than 15\% of BellSouth's lines in Florida were served by analog offices.)

The SCIS/MO data reflects the investment drivers, i.e., what will cause exhaust of the switch. The investment drivers are inputs such as $\mathrm{O}+\mathrm{T}$ (originating plus terminating) usage, CCS, quantity of analog lines, quantity of digital lines, processor utilization, etc. Another important input in the model is the discount rate. BellSouth utilized a discount that is indicative of the way switching equipment will be purchased in the future. BellSouth buys a limited number of new central office switches, however, BellSouth grows capacity in its existing central offices on a regular basis. Thus, the discount rate should reflect this combination of new/growth purchasing activity.

In determining the investment related to vertical features busy hour usage is an important component. Switches are engineered to handle the busy hour load. Thus, in order to develop flat-rated feature costs, the usage in the busy hour is the only relevant factor. Inputs need to reflect the anticipated demand that is going to be placed on the switch due to the request for feature-enhanced call processing. Consideration must be given to the number of feature-related calls, holding times, and activations/deactivations that occur.

Usage costs are driven by such items as distribution of calls (intra-office/interoffice split), percent local tandem occurrence, busy hour-full day ratio, average number of facility terminations per call, minutes per call, airline miles per call. The outputs
from SCIS/MO also are important contributors to the development of the usage costs.

As with the inputs to the loop model, only BellSouth-specific data will appropriately reflect the costs BellSouth will incur in the provisioning of switchrelated UNEs to competitors in Florida. Mr. Page, in his testimony, expands on the inputs required by the SST model in order to determine switch-related costs.

NONRECURRING COST INPUTS

Q. WHAT INPUTS ARE IMPORTANT TO THE DEVELOPMENT OF NONRECURRING COSTS?

A. I have previously discussed the manner in which time estimates are obtained. These inputs drive the nonrecurring costs. However, in addition to the work times, the labor rates are critical in determining the costs to provision unbundled elements. This Commission accepted BellSouth's methodology for developing the direct labor rates in the previously filed UNE studies. It did, however, eliminate the shared component from the labor rate. (Order No.PSC-96-1579-FOF-TP at Page 63) Additionally, this Commission established a rate structure such that disconnect costs are assessed at the time of disconnect. (Order No.PSC-96-1579-FOF-TP at Page 69) BellSouth followed the same process in developing labor rates in this filing and presented the disconnect costs as separate elements.

SECTION 2 - RESPONSES TO ISSUES

Issue 2(b): "For which of the following UNEs should the Commission setdeaveraged rates?(1) loops (all);
(2) local switching;
(3) interoffice transport (dedicated and shared);
(4) other (including combinations)."

Q. WHICH OF THE UNES OUTLINED IN THIS ISSUE SHOULD BE

 DEAVERAGED?A. It is BellSouth's contention that only loops and local channels possess attributes that reflect geographic cost differences and thus, only loops and local channels below DS3 speeds should be deaveraged. Costs for loops and local channels above DS1 are developed on a per mile basis and, therefore, do not require further deaveraging. Other UNEs either do not display the same level of cost variation by geographic location or have price structures that already account for geographic cost differences. Additionally, sub-loops and combinations that have a loop as a component should also be deaveraged since they also reflect cost variations by geographic area.

Switching does not vary significantly by geographic location. None of the factors that make the loop cost vary are present with respect to switching cost calculations. The physical characteristics of the loop and the placing costs associated with that loop vary by geographic location due to cable type (aerial, buried or underground) and distance (length). However, these factors do not impact switching costs to any
great degree. Another factor that influences loop costs, customer density, also has little impact on switching costs since the modularity of digital switching equipment allows BellSouth to grow switches as demand dictates. Also, remote switch entities can be deployed to serve pockets of customers.

Additionally, switching cannot be viewed in the same manner as local loops because logically one cannot isolate one switch from the network. The switch is a part of a total integrated network designed to handle a call from the originating switch entity to the terminating switch entity. To segment individual switches based on individual cost differences ignores the interdependencies between switch entities. This is clearly a problem for remote switches that are dependent on a host switch for interoffice call processing. The insignificant variation in switching costs between wire centers does not warrant the deaveraging of switch-based elements.

The cost of other unbundled network elements may vary by geographic location, but these cost differences are reflected in the rate structure, thus, eliminating the need for deaveraging. An example is interoffice transport. The rate structure for interoffice transport is on a per mile basis. This rate structure already accounts for geographic differences by eliminating length from the equation. Thus, there is no reason to include interoffice transport in the deaveraging scheme. Of course, some of the physical attributes of the interoffice route will impact the costs just as they do in the loop, e.g., the type of placement. However, because the cost is expressed on a per unit (mile) basis, these differences are negligible.

Q. HOW DID BELLSOUTH AGGREGATE THE WIRE CENTER LEVEL

COSTS DEVELOPED BY THE BSTLM INTO ZONES?

A. The first step is to partition the wire centers in Florida into rate groups based upon the General Subscriber Tariff. Next, the rate groups were classified into one of three zone designations. The final step in calculating the average monthly cost for a specific loop or local channel in each zone is to weight the wire-center level costs produced by the BSTLM by wire center line counts for that specific loop or channel. Mr. Varner supports the methodology used to develop the definition of the three zones in his testimony

Exhibit DDC-4 displays the recurring costs by the three zones and the statewide average. (If an element only had nonrecurring costs, it is not shown since nonrecurring costs are not subject to deaveraging. Additionally, if a particular zone does not have a cost, no loops or channels of that type were found in that zone.)

Mr. Varner includes the rates BellSouth is proposing for each zone. BellSouth's cost study displays costs for extended loops not currently combined in BellSouth's network , i.e., "new" combinations, in Zones 2 and 3. However, as explained by Mr. Varner, BellSouth is only obligated to offer this combination in Zone 1. This is also reflected in Mr. Varner's rate sheet.

Issue 3(b): "Should a cost study for xDSL-capable loops make distinctions based on loop length and/or the particular DSL technology to be deployed?"
Q. WHAT COST SUPPORT HAS BELLSOUTH PREPARED IN RESPONSE

TO THIS ISSUE?
A. BellSouth previously submitted costs for ADSL and HDSL compatible loops in Docket Nos. 960833 -TP, $960846-\mathrm{TP}$, and 960916-TP. This Commission established rates based upon BellSouth's proposal, essentially validating BellSouth's definition of these xDSL types of loops. These loops meet the transmission requirements set for ADSL and HDSL service.

Additionally, for this proceeding, BellSouth has developed recurring and nonrecurring costs for 2 -wire unbundled copper loops ("UCLs") and 4 -wire unbundled copper loops. The costs are segmented between loops less than 18,000 feet ("UCL-Short") and loops greater than 18,000 feet ("UCL-Long"). The UCLs are commonly referred to as "dry copper" loops because they have no intervening equipment such as, load coils, bridged tap, repeaters, etc., between the end user premises and the serving wire center. The UCL-Short will be designed to Resistance Design on a non-loaded metallic facility up to 18,000 feet in length. The UCL-Long will be any copper loop longer than 18,000 feet in length. BellSouth does not guarantee the transmission quality beyond the resistance design standards. BellSouth used the BSTLM to calculate the material costs associated with the xDSL loops.

Issue 4(b): "How should access to such subloop elements be provided, and how should prices be set?"

Q. WHAT COST SUPPORT HAS BELLSOUTH PREPARED IN RESPONSE

TO THIS ISSUE?

A. BellSouth has developed costs for Unbundled Sub-Loops that are 2-wire or 4-wire components of a loop that can be technically unbundled. Sub-Loops consist of Sub-Loop Feeder ("USL-F"), Sub-Loop Distribution ("USL-D"), Intra-building Network Cable ("INC"), and Network Terminating Wire ("NTW"). USL-F is also provided for the DS1 digital loop.

Sub-loop feeder is the physical transmission facility (or channel or group of channels on such facility) which extends from the main distributing frame connection in the end office to the cross-connect box. If the loop is served by digital loop carrier, a central office digital loop carrier terminal is required to convert the digital signal to voice grade analog. A test point is provisioned with the sub-loop feeder for remote test access.

Sub-loop distribution is the physical transmission facility from a BellSouth crossconnect device to the customer's premises (i.e., the Network Interface Device ("NID")). This facility will allow an end user to send and receive telecommunications traffic when it is properly connected to other required network elements, such as, loop feeder facility. This facility includes a NID (where applicable) at the customer's location in the loop.

BellSouth will also provide sub-loop interconnection to the Intrabuilding Network Cable ("INC") (riser cable). INC is the distribution facility inside a subscriber's building or between buildings on one customer's premises (continuous property
not separated by a public street or road). USL-INC (riser cable) will include the facility from the cross-connect device in the building equipment room up to and including the end-user's point of demarcation.

Network Terminating Wire ("NTW") is unshielded twisted copper wiring that is used to extend circuits from an INC terminal or from a building entrance terminal to an individual customer's point of demarcation. It is the last segment of the fieldside loop distribution facilities. In multi-subscriber configurations, NTW represents the point at which the network branches out to serve individual subscribers.

NTW will be provided in Multi-Dwelling Units ("MDUs") and/or Multi-Tenants Units ("MTUs") where BellSouth provides wiring all the way to the end-users premises. BellSouth will not provide this element in those locations where the property owner provides the wiring to the end user's premises or where the property owner will not allow BellSouth to place its facilities to the end user.

Another group of elements that can be classified as "sub-loop" is unbundled subloop concentration ("USLC"). These eiements allow an ALEC to concentrate loop distribution elements, provided by the ALEC, on to multiple DS1s. This arrangement allows the ALEC to connect the loop distribution elements (at a concentrated level) to.BellSouth's feeder facilities. BellSouth will then transport the DS1s carrying the distribution circuits back to the serving wire center for termination on a BellSouth DSX1 block and ultimately to the ALEC's collocation space.

Mr. Varner addresses the rates BellSouth is proposing for these sub-loop elements in his testimony, while Mr. Milner discusses sub-loop access.

Issue 5: "For which signaling networks and call-related databases should rates

 be set?"Q. WHAT COST SUPPORT HAS BELLSOUTH PREPARED IN RESPONSE TO THIS ISSUE?
A. BellSouth previously submitted costs for 800 Access, Line Information Database ("LIDB") Access, and CCS7 Signaling Transport in Docket Nos. 960833-TP, 960846-TP, and 960916-TP. This Commission established rates based upon BellSouth's costs for these items. In this docket, BellSouth has revised these elements to reflect the 2000-2002 study period (i.e., factors, labor rates, and material prices were updated). BellSouth is augmenting its list of database access items to include Calling Name ("CNAM"), Local Number Portability ("LNP"), and E911.

Issue 6: "Under what circumstances, if any, is it appropriate to recover nonrecurring costs through recurring rates?"
Q. IN ITS COST STUDY, DID BELLSOUTH CONVERT ANY OF ITS NONRECURRING COSTS TO RECURRING? way in which the costs are incurred. In other words, if the costs result from a onetime provisioning process, they are displayed as a nonrecurring cost. The process of converting nonrecurring cost to recurring is sometimes employed in order to reduce the up-front fees charged. However, this is a pricing decision, not generally a part of cost development.

Issue 7: "What are the appropriate assumptions and inputs for the following items to be used in the forward-looking recurring UNE cost study?
(a) network design (including customer location assumptions);
(b) depreciation;
(c) cost of capital;
(d) tax rates;
(e) structure sharing;
(f) structure costs;
(g) fill factors;
(h) manholes;
(i) fiber cable (material and placement costs);
(j) copper cable (material and placement costs);
(k) drops;
(l) network interface devices;
(m) digital loop carrier costs;
(n) terminal costs;
(o) switching costs and associated variables;
(p) traffic data;
(q) signaling system costs;
(r) transport system costs and associated variables;
(s) loadings;
(t) expenses;
(u) common costs;
(v) other."

Q. TO WHICH OF THE ITEMS ARE YOU RESPONDING?

A. I will discuss (a), (d) -(n), and (q) -(t). Mr. Stegeman will also respond to several of these items in regard to the BSTLM. Mr. Cunningham supports BellSouth's depreciation inputs in his testimony, item (b). Dr. Billingsley discusses the appropriate cost of capital (c) in his testimony. Items related to switching and network usage (items (o) and (p)) will be contained in Mr. Page's testimony and Mr. Reid explains shared and common cost ($(\mathrm{t})-(\mathrm{u})$) development in his testimony.

Q. WHAT ARE THE APPROPRIATE ASSUMPTIONS FOR NETWORK DESIGN (TTEM (a))?

A. As I have mentioned previously, the network design or architecture must reflect not only a forward-looking perspective, but must also be based upon BellSouth's practices and guidelines. In this manner, the resulting costs will reflect costs BellSouth will incur in providing UNEs and combinations on a going-forward
basis. The network design not only impacts the recurring cost development, but also provides a foundation for the development of nonrecurring costs since provisioning practices are based on the type and the design of the equipment being installed. In general, the network design should:
(1) Be forward-looking, yet attainable.
(2) Reflect equipment utilized in BellSouth's network on a going-forward basis.
(3) Reflect BellSouth's Network Guidelines.
(4) Incorporate efficiencies projected to improve provisioning practices.

Q. HOW DID BELLSOUTH DEVELOP THE TAX FACTORS UTILIZED IN

 ITS COST STUDY FILED ON APRIL 17, 2000 (ITEM (d))?A. The ad valorem and other tax factor is an effective tax factor furnished by the BellSouth Tax Department. The BellSouth Tax Department develops the factor by calculating the ratio of certain tax expenses to the telephone plant in service, as follows:

Accounts $7240.1000+7240.3000+7240.9000=$
Telephone Plant In Service (Account 2001)

$$
107,585,824 / 11,306,437,040=.009515
$$

Account 7240.1000 includes taxes levied upon the assessed value of property.
Account $\mathbf{7 2 4 0 . 3 0 0 0}$ includes taxes levied upon the value or number of shares of outstanding capital stock, upon invested capital, upon rate of dividends paid, etc.

Account 7240.9000 includes other non-income, non-revenue taxes such as municipal license taxes, state privilege taxes, state self-insurer's tax, etc.

Some states and municipalities tax the revenues that a company receives from services provided within the state/municipality. The taxes may be designed to fund such things as Public Service Commission fees, franchise taxes, license taxes, or other similar items, but because the taxes are levied on the basis of revenues, they are commonly referred to as a gross receipts tax. Unlike some taxes that are billed to the customer and flowed through to the taxing authority, a gross receipts tax is a cost of doing business to BellSouth.

The BellSouth Tax Department provides the effective tax rate at which BellSouth is charged by the taxing authority and that rate is "grossed up" to reflect the following formula:

GROSS RECEIPTS TAX RATE $\quad=.0096$
(1-GROSS RECEIPTS TAX RATE)
Q. HOW DID BELLSOUTH REFLECT STRUCTURE SHARING IN ITS STUDIES (ITEM (e))? HOW WERE THE ASSOCIATED STRUCTURE COSTS DEVELOPED (ITEM (f))?
A. As I explained earlier, BellSouth utilizes loading factors to identify the amount of pole and conduit investment required to support the associated aerial and underground cable. During the development of these factors, anticipated net rents -42-
(expenses paid to other parties for attaching to their structures less revenues received from others for attaching to BellSouth's structures) from sharing arrangements are considered. Thus, implicitly structure sharing is reflected in the calculation. Past information supports the fact that sharing of poles is a relatively common occurrence. In fact, in Florida BellSouth only owns approximately 40\% of the poles to which it attaches cable. However, the sharing of conduit space is not as extensive, as reflected in the relatively low amount of rent BellSouth receives from these structures. Sharing of trenching is reflected in the in-plant factor associated with buried cable. Since this factor is developed by analyzing the relationship between total installed investments and material prices, any savings gleaned from sharing of placement costs has been considered. As with the sharing of conduit, joint trenching occurs on a very limited basis.

BellSouth does not anticipate any major changes to the amount of structure sharing in the future. Arguments have been made in past proceedings alleging dramatic increases in the percent of structure sharing due to competition. BellSouth's experience suggests otherwise. Structure sharing is dependent on timing, location of facilities, and technical considerations. It is difficult for all the factors to coincide. In fact, this Commission agreed with this declaration in its Order No.PSC-96-1579-FOF-TP stating: "We are not persuaded by AT\&T/MCI's argument that a competitive environment will encourage more structure sharing." (Order No.PSC-96-1579-FOF-TP at Page 78) BellSouth utilized loading factors to determine the cost of the poles and conduit. Even though the BSTLM has the flexibility to "place" structures, BellSouth felt the
use of loading factors more accurately portrays the costs BellSouth is expected to incur in provisioning loops on a going-forward basis.

Q. HOW DID BELLSOUTH DETERMINE THE FLLL FACTORS THAT

 WERE UTLLIZED IN THE COST STUDY (Item (g))?A. BellSouth's fill factors were based upon the FCC's directive that "[p]er unit costs shall be derived from total costs using reasonably accurate 'fill factors." (\$682) In many cases, BellSouth Network provided the anticipated utilization of the equipment based on projected demand and quality of service considerations.

For unbundled loops (and sub-loops), the fill factors were developed within the BSTLM. As I explained earlier, the BSTLM builds facilities to meet existing customer demand. Cables are then sized to appropriately serve that demand in an efficient manner. Thus, the utilization is a product of this exercise. Even though the model allows for growth to be considered in the sizing of cables, BellSouth set the growth component to zero. Thus, spare capacity for growth was not reserved. As I mentioned previously, the model produced the reasonable utilizations of 47% for distribution and 74% for copper feeder.

Q. HOW DOES BELLSOUTH ACCOUNT FOR THE COST OF MANHOLES

 IN ITS STUDIES (ITEM (h))?A. Manhole costs are not developed individually, i.e., BellSouth does not develop the cost of a 4X6X7 manhole or a 12X6X7 manhole and enter those values into the

BSTLM. Instead, manhole costs are incorporated into the study through the conduit loading factor. The manhole placement costs are considered in the in-plant factors associated with underground cable.
Q. WHAT ARE THE APPROPRIATE MATERIAL AND PLACEMENT COSTS FOR CABLE (ITEMS (i) and (j))?
A. BellSouth used BellSouth-specific costs for both copper and fiber cable. Material prices for copper and fiber cable were obtained from procurement records that reflect actual BellSouth purchase prices and contractual agreements. As previously explained, future inflation trends ("TPIs") were also taken into consideration in order to reflect forward-looking costs. Telephone company engineering and labor costs were derived from BellSouth's Florida in-plant loading factors. In-plant factors convert material prices to a Florida-specific installed investment.

BellSouth-specific cable costs reflect economies of scale and vendor prices that an efficient provider would be able to expect to achieve on a going forward basis. Exhibit DDC-2 (inputs to the BSTLM) contains material prices for both copper and fiber cable.
Q. HOW WERE THE COSTS FOR DROPS AND NETWORK INTERFACE DEVICES CALCULATED IN BELLSOUTH'S COST STUDY (ITEMS (k) and (I))?
A. BellSouth used BellSouth-specific costs for the material, travel, and installation labor associated with the NID and the drop in the BSTLM. These costs are based
on material prices for equipment/material and BellSouth's expertise and experience in placing the equipment/material. The BSTLM, through internal calculations determines drop length, which for Florida averaged 116 feet for a 2-wire analog loop.

Q. HOW ARE DIGITAL LOOP CARRIER ("DLC") COSTS DEVELOPED IN

 THE BSTLM (ITEM (m)) ?A. The BSTLM determines the size, type, and placement of digital loop carrier system required to serve the designated customer locations. Internal algorithms determine the required number of commons and working plug-ins and supporting equipment necessary based upon vendor capacities and equipment configurations. User populated tables contain BellSouth-specific material prices, reflecting negotiated discount rates, for the individual pieces of digital loop carrier equipment and the vendor capacities.
Q. IN PAST PROCEEDINGS, DIGITAL LOOP CARRIER ("DLC")

DEPLOYMENT HAS GENERATED SIGNIFICANT CONTROVERSY. IN PARTICULAR, THE ISSUES OF (1) UNIVERSAL DLC ("UDLC") VERSUS INTEGRATED DLC ("IDLC") AND (2) TR008 SYSTEMS VERSUS GR303 SYSTEMS HAVE BEEN DEBATED. HOW DOES THE BSTLM ADDRESS THESE TWO AREAS OF PAST CONCERN?
A. First, let me discuss the issue of universal versus integrated. It is still BellSouth's contention that for an unbundled offering, only universal digital loop carrier is
appropriate. The only way in which BellSouth can "hand-off" a loop, i.e., unbundle the loop, is to terminate the central office end of the loop on a MDF. Thus, only UDLC (non-integrated) is appropriate for this scenario. However, in the combination studies, IDLC is applicable since the loop and the port are combined and no "hand-ofP" of the loop is needed. In the BSTLM, Scenarios BST2000 and Copper reflect the unbundled configuration, where each loop is not switched. Thus, in these instances, the loop is not integrated in the switch. However in the Combo Scenario, switched loops are considered. Because these loops are switched, they can be directly integrated into the switch and thus, IDLC is appropriate.

In the past, BellSouth's cost studies did not reflect any GR303-based digital loop carrier systems. This assumption resulted from the extremely limited number of GR303 systems deployed in BellSouth's network and guidelines that restricted consideration of GR303 for future systems until a demand threshold was met. However, BellSouth has reconsidered this directive and now considers GR303 systems in its loop cost modeling. The BSTLM places GR303 systems for all DLC systems with greater than 150 DSOs. For consistency, BellSouth also populated the SCIS/MO database such that GR303 terminations are considered in the switch. BellSouth witness, Mr. Keith Milner, explains why this reflects the most economic architecture.

Q. PLEASE EXPLAIN BELLSOUTH'S BSTLM INPUT VALUES FOR DROP TERMINALS (ITEM (n))?

A. Drop terminal costs for line sizes below 100 pairs are included as exempt material in the in-plant factors used to develop the installed investments of cable.

Therefore, terminal costs for these sizes are not included. The material prices for larger sized terminals were obtained from procurement records and were adjusted for inflation. The engineering and labor costs were developed from Floridaspecific in-plant factors. As previously explained, the in-plant factor converts material prices to installed investments.

Q. HOW ARE SIGNALING COSTS REFLECTED IN BELLSOUTH'S COST STUDIES (ITEM (q))?

A. One of BeilSouth's fundamental studies, the Signaling System 7 ("SS7") Price Calculator, determines the unit costs associated with BellSouth's SS7 network. This price calculator calculates the vendor prices for the equipment and facilities deployed in the BellSouth's regional SS7 signaling network. Studies that require SS7 network resources are linked to the results of this study.

Common channel signaling, using the SS7 signaling protocol, provides the capability of transporting signaling messages used to establish calls and query databases separately from the voice network. The study components are comprised of the six mated Gateway Signal Transfer Point ("STP", packet switch) pairs, the thirteen mated Local STP pairs, the BellSouth signaling links, the Link Monitoring System ("LMS") and the Integrated Digital Service Terminals ("IDSTs") that make up the SS7 infrastructure.

Access Links connect end offices or Service Switching Points to STPs. Bridge Links and Diagonal Links connect STPs that are at the same or different switching hierarchies in the system respectively. Cross Links are administrative links mating paired STPs.

The material prices for the SS7-related equipment are divided by the total annual octets to develop the per unit material prices.
Q. HOW ARE TRANSPORT SYSTEM COSTS DETERMINED (ITEM (r))?
A. Transport costs incorporate the forward-looking Synchronous Optical Network ("SONET") architecture in determining network design and subsequent costs. Inputs to this calculation reflect BellSouth-specific costs for Florida. They include fill factors, SONET material prices, number of nodes on a ring, air-to-route factor, and the mix of aerial, underground and buried fiber in the interoffice transport.

Q. WHAT ARE THE APPROPRIATE LOADINGS TO BE USED (ITEM (s))?

A. I have discussed loading factors and their development earlier. BellSouth uses loading factors for land, buildings, poles, conduit, and the capitalized RTU fees associated with switching. Additionally, loading factors were used to augment material prices to account for supporting equipment and power and for capitalized labor (in-plants). To summarize, since these factors are calculated from BellSouth's accounting records and the projected view of BellSouth's future additions in the various accounts, these values reflect costs that an efficient

25 A. The same network design assumptions that provide the foundation for recurring
costs should be utilized when developing nonrecurring costs. Thus, the network should be forward-looking, reflect BellSouth's guidelines and practices, should consider potential process improvements, and should be attainable.
Q. WHAT OSS DESIGN WAS ASSUMED IN THE COST DEVELOPMENT (ITEM (b))? WHAT IS THE PROPER MIX OF ELECTRONIC AND MANUAL ACTIVITIES (ITEM (e))?
A. BellSouth developed interfaces that allow Alternative Local Exchange Carriers ("ALECs") access to BellSouth's existing legacy systems, as directed by the FCC. Paragraph 523 of the FCC's First Report and Order states:
"We thus conclude that an incumbent LEC must provide nondiscriminatory access to their operations support systems functions for pre-ordering, ordering, provisioning, maintenance and repair, and billing available to the LEC itself." BellSouth provides ALECs access via mechanized interfaces to certain operational support systems ("OSSs"). The interactive pre-order activities revolve around telephone number reservation, address validation, switch feature and service verification, and due date calculation. ALEC access to Customer Service Records allows ALECs to increase the accuracy of orders by using existing name, address, directory, and line features and service options information.

The ordering processes facilitate interactive order entry, order status inquiry, and supplemental order entry. The ALECs are allowed to access the BellSouth's
internal network legacy systems with a single log-on. The ALEC is then authorized to access the electronic interfaces to perform interactive pre-ordering and ordering functions. The electronic interfaces manage the sending and receiving of data to and from the BellSouth OSSs.

BellSouth also provides the ALECs the option of submitting LSRs manually. LSRs not submitted through a BellSouth Electronic Interface, as described earlier, will be considered a manual LSR. A service representative in the Local Carrier Service Center ("LCSC") manually enters the LSR information into BellSouth's legacy (existing) service order systems. Once the Firm Order Confirmation ("FOC") status is returned from the systems, this notification is faxed to the ALEC.

In this filing, BellSouth did not include the cost of the OSS interfaces developed to allow competitors access to BellSouth's provisioning systems. This Commission in its order in Docket Nos. 960757-TP, 960833-TP, and 960846-TP stated "we strongly encourage the parties to negotiate in good faith to establish rates for OSS functions." (Order at Page 165) However, a resolution has never occurred and BellSouth has not recovered either the cost it incurred to develop the interfaces or the ongoing costs associated with these interfaces that are utilized by the ALECs in Florida.

However, BellSouth did reflect the labor costs associated with the tasks required to fill an order. Two cost elements encompass these costs; Electronic Service Order per local service request and Manual Service Order per local service request. The Electronic Service Order costs were developed based upon projected fall-out rates
for orders placed electronically and include fall-out generated by ALEC errors and "by design." Experts familiar with ALEC order processing provided the distribution of the different types of UNE orders, e.g., individual unbundled network elements, combinations, and complex orders, the time required to handle the different types of orders, and the amount of fall-out that occurs for electronic orders.
Q. HOW DID BELLSOUTH DEVELOP ITS LABOR RATES (ITEM (c))?
A. Labor rates for specific work groups are developed based on extracts of previous year's data from the Financial Front End System. This extract accumulates labor expense and hours. A PC application processes this information to produce labor rates. During processing, the actual costs for a given work group are accumulated by expenditure type (e.g., direct labor productive, premium, other employee, etc.). These actual costs are divided by the actual hours (classified productive hours for plant and engineering work groups and total productive hours for cost groups) reported by work group to determine the basic rates. The base year of labor rate data collection was the 1998 calendar year. A labor inflation factor is developed from the BellSouth Region TPIs and is applied to inflate these rates to the study period 2000-2002.

Q.HOW WERE THE REQUIRED ACTIVITIES DETERMINED BY BELLSOUTH (ITEM (d))?

A. As I have discussed previously, personnel familiar with the provisioning process
provided input into the nonrecurring cost development. They provide the process flow, the work centers involved, any probabilities that may be required, and the time required by work center. Provisioning activities can be desegregated into five basic categories: Service Inquiry, Service Order Processing, Engineering, Connect \& Test, and Travel. (Every category is not applicable to every unbundled network element.) Service Inquiry reflects an up-front process by which the availability/suitability of facilities is determined. Service Order Processing considers activities incremental to the Electronic and Manual Service Order rate elements previously described. Let me note that the only work center considered in the two Service Order elements is the LCSC. However, other work centers may be involved in service processing for certain elements. Engineering times reflect activities such as, the work required to construct design lay-out records, review of pending jobs, and confirmation of network design standards. Connect \& Test considers the physical activities required to provision the requested element and to ensure the transmission quality of the element. Forces involved with Connect \& Test include such groups as Installation and Maintenance, Special Services Installation and Maintenance, Circuit Provisioning Group, and Recent Change Memory Administration Group. The Travel category reflects the amount of time needed by technicians to get to the work location. Travel times consider accomplishing more than one task per trip.

Q. ARE THERE OTHER TOPICS RELATED TO NONRECURRING COST DEVELOPMENT THAT SHOULD BE DISCUSSED (ITEM (f)?

A. Yes. In this proceeding, there are really three different types of nonrecurring
categories; nonrecurring costs for unbundled network elements, nonrecurring costs for combinations that currently exist in BellSouth's network ("switch-as-is" combinations), and nonrecurring costs for combinations that do not currently exist in BellSouth's network ("new" combinations). Thus, the required activities vary based on whether the ALEC is ordering an unbundled element, an existing combination or a new combination.

Issue 9: "What are the appropriate recurring rates (average or deaveraged as the case may be) and non-recurring charges for each of the following UNEs?
(1) 2-wire voice grade loop;
(2) 4-wire analog loop;
(3) ISDN/IDSL loop;
(4) 2-wire $\mathbf{~ D S L}$-capable loop;
(5) 4-wire xDSL-capable loop;
(6) 4-wire 56 kbps loop;
(7) 4-wire 64 kbps loop;
(8) DS1 loop;
(9) High capacity loops (DS3 and above);
(10) Dark fiber loop;
(11) Subloop elements (to the extent required by the Commission in Issue 4)
(12) Network interface device;
(13) Circuit switching (where required);
(14). Packet switching (where required);
(15) Shared interoffice transmission;
(16) Dedicated interoffice transmission;
(17) Dark fiber interoffice facilities;
(18) Signaling networks and call-related databases;
(19) OS/DA (where required)."

Issue 10: "What is the appropriate rate, if any, for customized routing?"
Q. WHAT COST SUPPORT HAS BELLSOUTH DEVELOPED IN RESPONSE TO THESE ISSUES?
A. BellSouth has developed recurring and nonrecurring costs, as appropriate, for all of the requested items in Issue \#9 except for packet switching and operator call processing and directory assistance services ("OS/DA"). The FCC in its UNE Remand Order recognized that incumbent providers do not have an advantage in deploying packet switching. Paragraph 306 states: "The record demonstrates that competitors [ALECs] are actively deploying facilities used to provide advanced services to serve certain segments of the market - namely medium and large business - and hence they cannot be said to be impaired in their ability to offer service." Thus, the FCC released incumbents from the obligation of unbundling packet switching with one caveat. "Incumbent LECs must provide requesting carriers with access to unbundled packet switching in situations in which the incumbent has placed its DSLAM in a remote terminal. The incumbent will be relieved of this unbundling obligation only if it permits a requesting carrier to
collocate its DSLAM in the incumbents remote terminal." (\$313, FCC Docket CC
96-98 UNE Remand Order) BellSouth has developed the cost associated with allowing an ALEC to collocate in the remote terminal and has filed those costs in this proceeding.

The FCC's UNE Remand Order also states "where incumbent LECs provide customized routing, lack of access to the incumbents' OS/DA service on an unbundled basis does not materially diminish a requesting carrier's ability to offer telecommunications service." (\$441, FCC Docket CC 96-98 UNE Remand Order) Since BellSouth deploys customized routing, it is not obligated to provide operator call processing and directory assistance services. This Commission has established permanent rates for customized routing based on the use of Line Class Codes in Docket Nos. 960757-TP, 960833-TP, and 960846-TP. In this docket, BellSouth is revising those costs and also submitting costs for the AIN-based solution to customized routing (response to Issue \#10).

Issue \#11: "What is the appropriate rate, if any, for line conditioning, and in what situations should the rate apply?"

Q. WHAT COST SUPPORT HAS BELLSOUTH DEVELOPED IN RESPONSE TO THIS ISSUE?

A. BellSouth has structured the Loop Conditioning (Loop Modification) costs to appropriately reflect the way in which the costs to provide this service will occur. Costs were developed for loops less than 18,000 feet and for loops greater than

18,000 feet. In its study, BellSouth assumed for loops less than 18,000 feet that 10 pairs will be conditioned at the same time. This is based on projected demand for the conditioned loops. Additionally, for loops less than 18,000 feet the impact of this procedure on voice grade service will be minimal since load coils neither enhance nor impair the quality of voice transmission for loops of that length. However, for loops greater than 18,000 feet, the removal of intermediary electronics would likely degrade the voice grade transmission quality, rendering it unusable for voice grade transmission. Thus, to minimize the quantity of voice grade circuits that will be unavailable for transmission of voice grade level service, BellSouth practices assume only one circuit will be conditioned initially.

One may argue that intermediary devices are not required for loops less than 18,000 feet and thus, BellSouth is not entitled to recover costs to remove those devices. However, the FCC responded to such arguments and states: "We agree that networks built today normally should not require voice-transmission enhancing devices on loops of 18,000 feet or shorter. Nevertheless, the devices are sometimes present on such loops, and the incumbent LEC may incur costs in removing them. Thus, under our rules, the incumbent should be able to charge for conditioning such loops." (\$193, FCC CC Docket 96-98 UNE Remand Order)

Issue \#12: "Without deciding the situations in which such combinations are

 required, what are the appropriate recurring and non-recurring rates for the following UNE combinations:(a) "UNE platform" consisting of : loop (all), local (including packet, where
required) switching (with signaling), and dedicated and shared transport (through and including local termination);
(b) "extended links" consisting of:
(1) loop, DS0/1 multiplexing, DS1 interoffice transport;
(2) DS1 loop, DS1 interoffice transport;
(3) DS1 loop, DS1/3 multiplexing, DS3 interoffice transport."
Q. WHAT COST SUPPORT HAS BELLSOUTH DEVELOPED IN RESPONSE TO THIS ISSUE?
A. BellSouth has developed recurring costs for the following UNE Platforms: 2-wire voice grade loop with 2 -wire voice grade port and 2 -wire ISDN digital loop with 2wire ISDN port. Recurring costs for other platform combinations, e.g., 4-wire DS1 digital loop with 4-wire ISDN trunk port, 4-wire DS1 loop with DDITS port, or a 2-wire loop/2-wire voice grade transport/2-wire port combination, can be determined by adding the individual UNE recurring costs. The associated nonrecurring costs are displayed on the summary sheets. For example the nonrecurring cost to switch a res/bus 2-wire voice grade loop with 2-wire voice grade port to an ALEC is $\$.198$. The additional cost of $\$ 2.77$ for electronic ordering would also apply.

BellSouth developed "extended link" costs for combinations, e.g., 2-wire voice grade loop with dedicated DS1 interoffice transport, 2-wire ISDN loop with DS1 interoffice transport, 4-wire DS1 digital loop with dedicated STS-1 interoffice
transport, and 2-wire voice grade loop with dedicated DS1 interoffice transport with $3 / 1$ mux.

Refer to BellSouth's Final Cost Summary contained in Section 2 of the study filed on April 17, 2000. Elements P. 1 through P. 58 are the combinations BellSouth has studied. These combinations reflect the most common configurations.

Q. PLEASE SUMMARIZE YOUR TESTIMONY.

A. This Commission has ruled on the appropriate methodology for developing costs for unbundled network elements, TSLRIC plus shared and common or the equivalent TELRIC economic costs. BellSouth utilized the principles inherent in this methodology for its cost studies filed April 17, 2000. Thus, the incremental recurring and nonrecurring costs are long-run and reflect an efficient, forwardlooking, yet attainable, network.

BellSouth employed several models to develop the cost support. These models incorporated the TSLRIC/TELRIC principles and to the greatest extent possible are open for inspection. With this proceeding, BellSouth has introduced two new models, the BSTLM (for loops) and the SST model (for switching). Additionally, BellSouth has made enhancements to the BellSouth Cost Calculator (AKA the TELRIC Calculator) and the Capital Cost Calculator to increase user flexibility and to ease processing.

Since the results of the cost study must replicate the incremental costs BellSouth -60-
will incur in providing unbundled elements and combinations to competitors, BellSouth-specific values are the only relevant source for inputs. Thus, the inputs utilized in BellSouth's cost studies reflect BellSouth network guidelines, provisioning practices, vendor discounts, labor rates, and factors.

Costs have appropriately been deaveraged into three zones that reflect geographic differences. BellSouth contends that only loops and local channels (below DS3 level), sub-loops and combinations that are comprised of loops should be deaveraged.
Q. DOES THIS CONCLUDE YOUR TESTIMONY?
A. Yes.

1. To get Local Channels on Fbier Cable oniv, the user must specify so prior to ruming the GIS step of the model. Electronics for Local Channels indisfed as "adders"

SERVICE I UNE CODES USED IN BSTLM

Service Code	ServiceDescription Residence Primary Foreign		UNE Loop Description
ab	Residence Primary Home		
ac	Residence - Add' Foreign	AA	2wVG Analog SL1
ad	Residence - Add'l Home	$A B$	2wVG Analog SL2
ae	Business Single Foreign	B	2wVG ADSL Compatible
af	Business - Single Home	C	2wVG HDSL Compatible
ag	Business - Multi Foreign	D	2wVG ISDN
ah	Business - Multi Home Residence - Centrex	E	2wVG Subloop Feeder
ai	Dorm	F	2wVG SubLoop Distribution
ba	PBX - Foreign	H	2wVG U Local Channel
bb	PBX - Home	1	4w Digital Loop 56/64 Kbps
ca	Centrex-FX Station	3	4w HDSL Compatible
cb	Centrex Station	K	4w DS 1 Digital Loop
da	Smartine	L	4 WVG USLC OS1
db	Smartline	M	4wVG Loop
ea	Putlic - Mutiline	N	4wVG Subloop Distribution
eb	Pubsic - Single Line Residnece Primary ISDN	Q	2W Unbundied Copper Loop
fa	Foreign Residence Primary ISDN	R	$4 W$ Unbundled Copper Loop
fb	Home Residence Add'I ISDN	S	DS3 Loop
fc	Foreign	T	OC3 Loop
	Residence Add" ISDN		
fod	Home	u	OC12 Loop
	Business Single ISDN		
f	Foreign	V	OC48 Loop
	Business Single ISDN		
ff	Home	w	U Local Channel DS3
	Business Multi ISDN		
fg	Foreign	x	U Local Channel OC3
	Business Multi ISDN		
fh	Home	Y	U Local Channel OC12
9	ISDN PBX Home	z	U Local Channel OC48
	DSO 2w Special Access		
ha	POP	0	4WVG Local Channel
	DSO 2w Special Access -		
hb	Premises	P	Local Channel DS1
nc	DSO 2w Private Line		
	DSO 4w Special Access		
ia	POP		
	DS0 4w Special Access		
ib	Premises		
ic	DSo 4w Private Line		
ja	Analog 2 w Private Line		
	Analog 2w Special		
jb	Access POP		
	SL Analog 2w Special		
jc	Access Premises		
	Megalink ISDN		
k	Residence		
oa	Analog 4w Private Line Analog 4w Special		
ob	Access POP		
	Analog 4w Special		
oc	Access Premises		
	DS1 Digital Special		
pa	Access Premises DS1 Digital SP Access		
pb	POP		
pc	DS1 Digital Private Line DS3 Digital Special		
ra	Access Premises		
	DS3 Digital Special		
$r b$	Access POP		
	DS3 Digital		
s	LightGate/Video		
	DS1 Digital Switch Area		
t	Commitment Plan		

OC48 - Line Cards (SONET Terminals-SONET Cards)

Vend "A" Material Cost Vend "B" Material Cost Service Capacity Total Placing Hours

Item
DS1
DS3
STS1
OC1
OC3
OC12

Item Vend "A" Material Cost Vend "B" Material Cost
Service Capacity Total Placing Hours
DS1
DS3
STS1
OC1

10

OC12 - Line Cards (SONET Terminals-SONET Cards)

Item	Vend "A" Material Cost	Vend "B" Material Cost	Service Capacity	Total Placing Hours
DS1		4	0	
DS3		3	0	
STS1		3	0	
OC1		3	0	
OC3		1	0	

OC1	Cards (SONET	SONET Cards)			-2
Item	Vend "A" Material Cost	Vend "B" Material Cost	Service Capacity	Total Placing Hours	Page 4 of 64
DS1			Service	0	

Item
DS1
DS3
STS1
OC1
OC3
OC12 Equipment Category Channel Unit Investment Driver
Plug-in DS1

Plug-in DS3
Plug-in STS1
Plug-in OC1
Plug-in OC3
Plug-in OC12

Vendor Mix	(SONET Terminals-Other) (SOrminal	Vendor "A"
Oendor "B"		

OC48-SONET Term (SONET Terminals-SONET COT)
Item
Optical shelf - Hardwire (Low)
Optical shelf - Hardwire (High)
Optical Common Equip (Low)
Optical Common Equip (High)
Interface MUX Working Card (28 DS1 Capacity)
OC12 Interface MUX Working Card (84 DS1 Capacity)
OC48 Interface MUX Working Card (84 DS1 Capacity)
Interface MUX Equipment (28 DS1 Capacity)
OC12 Interface MUX Equipment (84 DS1 Capacity)
OC48 Interface MUX Equipment (84 DS1 Capacity)
Interface MUX Equipment (336 DS1 Capacity)
Interface MUX Equipment (1344 DS1 Capacity)
OC12 Interface MUX Commons
OC48 Interface MUX Commons
Interface MUX - Hardwire (28-56 DS1 Capacity)
OC12 Interface MUX - Hardwire (84 DS1 Capacity)
OC48 Interface MUX - Hardwire (84 DS1 Capacity)
Batt. Backup
Data communications Link
Fiber Splicing Terminal
DSX-1 Panel
DSX-3 Pane
LGX

Vend "A" Material Cost Vend "B" Material Cost DS1 Capacity Total Placing Hours 7 of 64

0 0
1344
0
672
0
1344
0
28
0
0
0
0
0
$84 \quad 0$
$336 \quad 0$
13440
$0 \quad 0$
400
$56 \quad 0$
0 0
840
$0 \quad 0$

13440
13440

56
0
6720
13440

OC3 - SONET Term (SONET Terminals-SONET COT)

Optical shelf - Hardwire (Low)

Optical shelf - Hardwire (High)
Optical Common Equip (Low)
Optical Common Equip (High)
Interface MUX Working Card (28 DS1 Capacity)
OC12 Interface MUX Working Card (84 DS1 Capacity)
OC48 Interface MUX Working Card (84 DS1 Capacity)
Interface MUX Equipment (28 DS1 Capacity)
OC12 Interface MUX Equipment (84 DS1 Capacity)
OC48 Interface MUX Equipment (84 DS1 Capacity)
Interface MUX Equipment (336 DS1 Capacity)
Interface MUX Equipment (1344 DS1 Capacity)
OC12 Interface MUX Commons
OC48 Interface MUX Commons
Interface MUX - Hardwire (28-56 DS1 Capacity)
OC12 Interface MUX - Hardwire (84 DS1 Capacity)
OC48 Interface MUX - Hardwire (84 DS1 Capacity)
Batt. Backup
Data communications Link
Fiber Splicing Terminal
DSX-1 Panel
DSX-3 Panel
LGX

Vend "A" Material Cost Vend "B" Material Cost DS1 Capacity Total Placing Hours 8 埕

OC12-SONET Term (SONET Terminals-SONET COT)			DS1 Capacity	Total Placing HoursExge 9 of 64
Item	Vend "A" Material Cost	Vend "B" Material Cost		
Optical shelf - Hardwire (Low)			336	0
Optical shelf - Hardwire (High)			0	0
Optical Common Equip (Low)			336	0
Optical Common Equip (High)			0	0
Interface MUX Working Card (28 DS1 Capacity)			0	0
OC12 Interface MUX Working Card (84 DS1 Capacity)			84	0
OC48 Interface MUX Working Card (84 DS1 Capacity)			0	0
Interface MUX Equipment (28 DS1 Capacity)			28	0
OC12 Interface MUX Equipment (84 DS1 Capacity)			84	0
OC48 Interface MUX Equipment (84 DS1 Capacity)			0	0
Interface MUX Equipment (336 DS1 Capacity)			0	0
Interface MUX Equipment (1344 DS1 Capacity)			0	0
OC12 Interface MUX Commons			84	0
OC48 Interface MUX Commons			0	0
Interface MUX - Hardwire (28-56 DS1 Capacity)			0	0
OC12 Interface MUX - Hardwire (84 DS1 Capacity)			84	0
OC48 Interface MUX - Hardwire (84 DS1 Capacity)			0	0
Batt. Backup			0	0
Data communications Link			336	0
Fiber Splicing Terminal			1344	0
DSX-1 Panel			56	0
DSX-3 Panel			672	0
LGX			1344	0

OC1 - SONET Term (SONET Terminals-SONET COT)
Item
Optical shelf - Hardwire (Low)
Optical shelf - Hardwire (High)
Optical Common Equip (Low)
Optical Common Equip (High)
Interface MUX Working Card (28 DS1 Capacity) OC12 Interface MUX Working Card (84 DS1 Capacity)
OC48 Interface MUX Working Card (84 DS1 Capacity)
Interface MUX Equipment (28 DS1 Capacity)
OC12 Interface MUX Equipment (84 DS1 Capacity)
OC48 Interface MUX Equipment (84 DS1 Capacity)
interface MUX Equipment (336 DS1 Capacity)
Interface MUX Equipment (1344 DS1 Capacity)
OC12 Interface MUX Commons
OC48 Interface MUX Commons
Interface MUX - Hardwire (28-56 DS1 Capacity)
OC12 Interface MUX - Hardwire (84 DS1 Capacity)
OC48 Interface MUX - Hardwire (84 DS1 Capacity)
Batt. Backup
Data communications Link
Fiber Splicing Terminal
DSX-1 Panel
DSX-3 Panel
LGX

Vend "A" Material Cost Vend "B" Material Cost DS1 Capacity
Vend "A" Material Cost Vend 8 Material Cost
28
0

Total Placing Hours

BellSouth Telecommunications, Inc.

Information - SONET Term (SONET Terminals-SONET COT)			Exhibit DDC-2
Item	Equipment Category	Channel Unit Investment Driver	Page 11 of 64
Optical shelf - Hardwire (Low)	Hardwired	ALL	
Optical shelf - Hardwire (High)	Hardwired	ALL	
Optical Common Equip (Low)	Common	ALL	
Optical Common Equip (High)	Common	ALL	
Interface MUX Working Card (28 DS1 Capacity)	Common	DS1	
OC12 Interface MUX Working Card (84 DS1 Capacity)	Common	DS1	
OC48 Interface MUX Working Card (84 DS1 Capacity)	Common	DS1	
Interface MUX Equipment (28 DS1 Capacity)	Common	DS1	
OC12 Interface MUX Equipment (84 DS1 Capacity)	Common	DS1	
OC48 Interface MUX Equipment (84 DS1 Capacity)	Common	DS1	
Interface MUX Equipment (336 DS1 Capacity)	Common	DS3-0C1	
Interface MUX Equipment (1344 DS1 Capacity)	Common	DS3-OC1	
OC12 Interface MUX Commons	Common	DS1	
OC48 Interface MUX Commons	Common	DS1	
Interface MUX - Hardwire (28-56 DS1 Capacity)	Hardwired	DS1	
OC12 Interface MUX - Hardwire (84 DS1 Capacity)	Hardwired	DS1	
OC48 Interface MUX - Hardwire (84 DS1 Capacity)	Hardwired	DS1	
Batt. Backup	Hardwired	ALL	
Data communications Link	Common	ALL	
Fiber Splicing Terminal	Hardwired	DS1-OC3	
DSX-1 Panel	Hardwired	DS1	
DSX-3 Panel	Hardwired	DS3-OC1	
LGX	Hardwired	OC3-OC48	

OC48 - SONET Term (SONET Terminals-SONET RT)
Item
Optical shelf - Hardwire (Low Capacity)
Optical shelf - Hardwire (High Capacity)
Optical Common Equip (Low Capacity)
Optical Common Equip (High Capacity)
Interface MUX Working Card (28 DS1 Capacity)
OC12 Interface MUX Working Card (84 DS1 Capacity)
OC48 Interface MUX Working Card (84 DS1 Capacity)
Interface MUX Equipment (28 DS1 Capacity)
OC12 Interface MUX Equipment (84 DS1 Capacity)
OC48 Interface MUX Equipment (84 DS1 Capacity)
Interface MUX Equipment (336 DS1 Capacity)
Interface MUX Equipment (1344 DS1 Capacity)
OC12 Interface MUX Commons
OC48 Interface MUX Commons
Interface MUX - Hardwire (28-56 DS1 Capacity)
OC12 Interface MUX - Hardwire (84 DS1 Capacity)
OC48 Interface MUX - Hardwire (84 DS1 Capacity)
Batt. Backup (Hard)
Batt. Backup (Common)
Fiber Splicing Terminal
DSX-1 Panel
DSX-3 Panel
Ltie

Vend "A" Material Cost Vend "B" Material Cost

DS1 Capacity
672
1344
672
1344
28
0
84
28
28
0
84
84
336 1344
0
84
56
0
84
1344
1344 1344
56
672
1344

Total Placing Hours

OC3 - SONET Term (SONET Terminals-SONET RT)

Item	Vend "A" Material Cost Vend "B" Material Cost	DS1 Capacity	Total Placing Ho
Optical shelf - Hardwire (Low Capacity)		84	0
Optical shelf - Hardwire (High Capacity)		0	0
Optical Common Equip (Low Capacity)		84	0
Optical Common Equip (High Capacity)		0	0
Interface MUX Working Card (28 DS1 Capacity)		0	0
OC12 Interface MUX Working Card (84 DS1 Capacity)		0	0
OC48 Interface MUX Working Card (84 DS1 Capacity)		0	0
Interface MUX Equipment (28 DS1 Capacity)		28	0
OC12 Interface MUX Equipment (84 DS1 Capacity)		0	0
OC48 Interface MUX Equipment (84 DS1 Capacity)		0	0
Interface MUX Equipment (336 DS1 Capacity)		0	0
Interface MUX Equipment (1344 DS1 Capacity)		0	0
OC12 Interface MUX Commons		0	0
OC48 Interface MUX Commons		0	0
Interface MUX - Hardwire (28-56 DS1 Capacity)		0	0
OC12 Interface MUX - Hardwire (84 DS1 Capacity)		0	0
OC48 Interface MUX - Hardwire (84 DS1 Capacity)		0	0
Batt. Backup (Hard)		84	0
Batt. Backup (Common)		84	0
Fiber Splicing Terminal		1344	0
DSX-1 Panel		56	0
DSX-3 Panel		672	0
L.tie		0	0

OC12-SONET Term (SONET Terminals-SONET RT)

Item

Optical shelf - Hardwire (Low Capacity)
Optical shelf - Hardwire (High Capacity)
Optical Common Equip (Low Capacity)
Optical Common Equip (High Capacity)
Interface MUX Working Card (28 DS1 Capacity)
OC12 Interface MUX Working Card (84 DS1 Capacity) OC48 Interface MUX Working Card (84 DS1 Capacity) Interface MUX Equipment (28 DS1 Capacity) OC12 Interface MUX Equipment (84 DS1 Capacity) OC48 Interface MUX Equipment (84 DS1 Capacity) Interface MUX Equipment (336 DS1 Capacity) Interface MUX Equipment (1344 DS1 Capacity) OC12 Interface MUX Commons OC48 Interface MUX Commons Interface MUX - Hardwire (28-56 DS1 Capacity) OC12 Interface MUX - Hardwire (84 DS1 Capacity) OC48 Interface MUX - Hardwire (84 DS1 Capacity) Batt. Backup (Hard)
Batt. Backup (Common)
Fiber Splicing Terminal
DSX-1 Pane!
DSX-3 Panel
Ltie

OC1 - SONET Term (SONET Terminals-SON Item	(RT) Vend "A" Material Cost	Vend "B" Material Cost	DS1 Capacity	Page 15 of 64 Total Placing Hours
Optical shelf - Hardwire (Low Capacity)			28	0
Optical shelf - Hardwire (High Capacity)			0	0
Optical Common Equip (Low Capacity)			28	0
Optical Common Equip (High Capacity)			0	0
Interface MUX Working Card (28 DS1 Capacity)			0	0
OC12 Interface MUX Working Card (84 DS1 Capacity)			0	0
OC48 Interface MUX Working Card (84 DS1 Capacity)			0	0
Interface MUX Equipment (28 DS1 Capacity)			28	0
OC12 Interface MUX Equipment (84 DS1 Capacity)			0	0
OC48 Interface MUX Equipment (84 DS1 Capacity)			0	0
Interface MUX Equipment (336 DS1 Capacity)			0	0
Interface MUX Equipment (1344 DS1 Capacity)			0	0
OC12 Interface MUX Commons			0	0
OC48 interface MUX Commons			0	0
Interface MUX - Hardwire (28-56 DS1 Capacity)			0	0
OC12 Interface MUX - Hardwire (84 DS1 Capacity)			0	0
OC48 Interface MUX - Hardwire (84 DS1 Capacity)			0	0
Batt. Backup (Hard)			28	0
Batt. Backup (Common)			28	0
Fiber Splicing Terminal			1344	0
DSX-1 Panel			56	0
DSX-3 Panel			0	0
Ltie			0	0

BellSouth Telecommunications, Inc.
FPSC Docket No. 990649-TP

Information - SONET Term (SONET Terminals-SONET RT)		
Item	Equipment Category	Channel Unit Investment Driver
Optical shelf - Hardwire (Low Capacity)	Hardwired	Page 16 of 64
Optical shelf - Hardwire (High Capacity)	Hardwired	ALL
Optical Common Equip (Low Capacity)	Common	ALL
Optical Common Equip (High Capacity)	Common	ALL
Interface MUX Working Card (28 DS1 Capacity)	Common	DS1
OC12 Interface MUX Working Card (84 DS1 Capacity)	Common	DS1
OC48 Interface MUX Working Card (84 DS1 Capacity)	Common	DS1
Interface MUX Equipment (28 DS1 Capacity)	Common	DS1
OC12 Interface MUX Equipment (84 DS1 Capacity)	Common	DS1
OC48 Interface MUX Equipment (84 DS1 Capacity)	Common	DS1
Interface MUX Equipment (336 DS1 Capacity)	Common	DS3-OC1
Interface MUX Equipment (1344 DS1 Capacity)	Common	DS3-OC1
OC12 Interface MUX Commons	Common	DS1
OC48 Interface MUX Commons	Common	DS1
Interface MUX - Hardwire (28-56 DS1 Capacity)	Hardwired	DS1
OC12 Interface MUX - Hardwire (84 DS1 Capacity)	Hardwired	DS1
OC48 Interface MUX - Hardwire (84 DS1 Capacity)	Hardwired	DS1
Batt. Backup (Hard)	Hardwired	ALL
Batt. Backup (Common)	Common	ALL
Fiber Splicing Terminal	Hardwired	DS1-OC3
DSX-1 Panel	Hardwired	DS1
DSX-3 Panel	Hardwired	DS3-OC1
Ltie	Hardwired	OC3-OC48

Vendor "B" DLC - Channel	(DLC/ONU-COT)	
Item	Material Cost	Service Capacity

Vendor "B" DLC - CE (DLC/ONU-COT) Item	Material Cost	DSO Capacity	Total Placing Hours	Exhibit DDC-2 Page 18 of 64
CO CE Optical Bank/Shelf		2016	0	
CE Bank/Shelf Common Equip.		672	0	
TSI Integrated		NA	0	
TSI Universal		NA	0	
TSI Protect		2016	0	
CO channel bank/metallic shelf SW		96	0	
SW Channel Bank/Shelf CE		NA	0	
CO channel bank/metallic shelf NSW		96	0	
NSW Channel Bank/Shelf CE		NA	0	
CO DS1 channel units for integration		24	0	
Optical ONU Bank/Shelf		8	0	
Optical Line Units		1	0	
HDSL Common Equipment		24	0	
ADSL Common Equipment		1	0	
DSX Panel		2016	0	
Bay		672	0	
D4 Bay		48	0	
D4 Shelf		48	0	
D4 Channel Unit		2	0	

Vendor "A" DLC - Channel (DLC/ONU-COT)			
Item	Material Cost	Service Capacity	Total Placing Hours
POTS		4	0
COIN		4	0
BRI-ISDN		4	0
CENTREX		4	0
SW-VGSS		4	0
NSW-VGSS		4	0
4-WIRE		2	0
DS1		1	0
HDSL		1	0
ADSL		1	0
PBX		4	0

Vendor "A" DLC - CE (DLC/ONU-COT)			
Item	Material Cost	DSO Capacity	Total Placing Hours
CO CE Optical Bank/Shelf		0	0
CE Bank/Shelf Common Equip.		0	
TSI Integrated		2016	0
TSI Universal 64			
TSI Protect		672	0
CO channel bank/metallic shelf SW	672	0	
SW Channel Bank/Shelf CE	672	0	
CO channel bank/metallic shelf NSW	224	0	
NSW Channel Bank/Shelf CE	224	0	
CO DS1 channel units for integration	224	0	
Optical ONU Bank/Shelf	224	0	
Optical Line Units	1	0	
HDSL Common Equipment	8	0	
ADSL Common Equipment		1	0
DSX Panel	24	0	
Bay		1	0
D4 Bay		2016	0
D4 Shelf		48	0
D4 Channel Unit		2	0

Information - Channel (DLCIONU-COT) Equipment Category	UOM	
Item	Plug-in	
POTS	Plug-in	Item
COIN	Plug-in	Item
BRI-ISDN	Plug-in	Item
CENTREX	Plug-in	Item
SW-VGSS	Plug-in	Item
NSW-VGSS	Plug-in	Item
4-WRE	Plug-in	Item
DS1	Plug-in	Item
HDSL	Plug-in	Item
ADSL	Plug-in	Item

Information - CE (DLCIONU-COT)		
Item	Equipment Category	UOM
CO CE Optical Bank/Shelf	Hardwired	All
CE Bank/Shelf Common Equip.	Common	All
TSI Integrated	Common	Integrated
TSI Universal	Common	Universal
TSI Protect	Common	All
CO channel bank/metallic shelf SW	Hardwired	Integrated
SW Channel Bank/Shetf CE	Common	Integrated
CO channel bank/metalic shelf NSW	Hardwired	NSW
NSW Channel Bank/Shelf CE	Common	NSW
CO DSS channel units for integration	Plug-in	Integrated
Optical ONU Bank/Sheif	Hardwired	ONU
Optical Line Units	Common	ONU
HDSL Common Equipment	Common	HDSL
ADSL Common Equipment	Common	ADSL
DSX Panel	Hardwired	All
Bay	Hardwired	All
D4 Bay	Hardwired	NSW
D4 Shelf	Hardwired	NSW
D4 Channel Unit	Plug-in	NSW

Vendor "B" Item	C - Channel Material Cost	C/ONU-DLCRT	Total Placing Hours	Exhibit DDC-2 Page 23 of 64
POTS		2	0	
POTSX		2	0	
COIN		1	0	
COINX		1	0	
BRI-ISDN		1	0	
BRI-ISDNX		1	0	
CENTREX		2	0	
CENTREXX		2	0	
SW-VGSS		2	0	
SW-VGSSX		2	0	
NSW-VGSS		1	0	
NSW-VGSSX		1	0	
4-WIRE		1	0	
4-WIREX		1	0	
DS1		4	0	
DS1X		4	0	
HDSL		1	0	
HDSLX		1	0	
ADSL		1	0	
ADSLX		1	0	
PBX		2	0	
PBXX		2	0	

Vendor "B" DLC - CE (DLC/ONU-DLCRT) Item	Material Cost	DSO Capacity	Total Placing Hours	Exhibit DDC-2 Page 24 of 64
RT CE Optical Bank/Shelf		2016	0	
CE Bank/Shelf Common Equip. (Integrated)		672	0	
CE Bank/Shelf Common Equip. (Universal)		672	0	
TSI		NA		
TSI Protect		2016		
RT channel bank /Shelf (Metallic)		96	0	
Channel Bank/Shelf CE		NA	0	
ADSL Common Equipment		NA	0	
HDSL Common Equipment		NA	0	
Optical ONU Bank/Shelf		8	0	
Optical Shelf CE		8	0	
Optical Line Units		1	0	
DSX Panel		2016	0	
Batteries, Environ. Equip., Etc.		672	0	
Bay		672	0	
ONU Cabinet (e.g. CAD-12)		NA	NA	
Cabinet Small (includes Batt. Etc.)		NA	0	
Cabinet Medium (includes Batt. Etc.)		480	0	
Cabinet Large (includes Batt. Etc.)		1344	0	
Cabinet Xtra Large (includes Batt. Etc.)		2016	0	
Mini-Hut		7257	0	
Maxi -Hut		9792	0	
CEV 16		8064	0	
CEV 24		12096	0	

| Vendor "A" DLC - Channel(DLC/ONU-DLCRT)
 Material Cost | Service Capacity |
| :--- | :---: | :---: |\quad| Total Placing Hours |
| :--- |
| Item |
| POTS |
| POTSX |

Vendor "A" DLC - CE (DLC/ONU-DLCRT)

 RT CE Optical Bank/ShelfCE Bank/Shelf Common Equip. (Integrated)
CE Bank/Shelf Common Equip. (Universal)
TSI
TSI Protect
RT channel bank /Shelf (Metallic)
Channel Bank/Shelf CE
ADSL Common Equipment
HDSL Common Equipment
Optical ONU Bank/Shelf
Optical Shelf CE
Optical Line Units
DSX Panel
Batteries, Environ. Equip., Etc.
Bay
ONU Cabinet (e.g. CAD-12)
Cabinet Small (includes Batt. Etc.)
Cabinet Medium (includes Batt. Etc.)
Cabinet Large (includes Batt. Etc.)
Cabinet Xtra Large (includes Batt. Etc.)
Mini-Hut
Maxi -Hut
CEV 16
CEV 16

	Material Cost	DSO Capacity
	2016	Total Placing Hours
	2016	0
	2016	0
	672	0
	672	0
	224	0
	224	0
	1	0
	1	0
	8	0
	8	0
	1	0
	56	0
	672	0
	672	0
	NA	NA
	448	0
	672	0
	1344	0
	2240	0
	7257	0
	9792	0
	8064	0
	12096	

ONU 24 - Channel (DLCIONU-DLCRT)

	Material Cost	Service Capacity	Total Placing Hours
Item		0	
POTS		4	0
POTSX		1	0
COIN	1	0	
COINX	1	0	
BRI-ISDN	1	0	
BRI-ISDNX	1	0	
CENTREX	4	0	
CENTREXX	4	0	
SW-VGSS	1	0	
SW-VGSSX	1	0	
NSW-VGSS	1	0	
NSW-VGSSX	1	0	
4-WRE	1	0	
4-WIREX	1	0	
DS1	4	0	
DS1X	4	0	
HDSL	1	0	
HDSLX	1	0	
ADSL	1	0	
ADSLX	1	0	
PBX	1	0	
PBXX	1	0	

ONU 24 -CE (DLC/ONU-DLCRT)

Item	Material Cost	DSO Capacity	Total Placing Hours	Page 28 of 64
RT CE Optical Bank/Shelf		24	0	
CE Bank/Shelf Common Equip. (Integrated)		24	0	
CE Bank/Shelf Common Equip. (Universal)		24	0	
TSI	NA	NA	NA	
TSI Protect	NA	NA	NA	
RT channel bank /Shelf (Metallic)	NA	NA	NA	
Channel Bank/Shelf CE	NA	NA	NA	
ADSL Common Equipment	NA	1	0	
HDSL Common Equipment	NA	1	0	
Optical ONU Bank/Shelf	NA	NA	NA	
Optical Shelf CE	NA	NA	NA	
Optical Line Units	NA	NA	NA	
DSX Panel	NA	NA	NA	
Batteries, Environ. Equip., Etc.	NA	NA	NA	
Bay	NA	NA	NA	
ONU Cabinet (e.g. CAD-12)		24	0	
Cabinet Small (includes Batt. Etc.)	NA	NA	NA	
Cabinet Medium (includes Batt. Etc.)	NA	NA	NA	
Cabinet Large (includes Batt. Etc.)	NA	NA	NA	
Cabinet Xtra Large (includes Batt. Etc.)	NA	NA	NA	
Mini-Hut	NA	NA	NA	
Maxi -Hut	NA	NA	NA	
CEV 16	NA	NA	NA	
CEV 24	NA	NA	NA	

Information - Channel (DLC/ONU-DLCRT)		
Item	Equipment Category	UOM
POTS	Plug-in	POTS
POTSX	Plug-in	POTSX
COIN	Plug-in	COIN
COINX	Plug-in	COINX
BRI-ISDN	Plug-in	BRIISDN
BRI-ISDNX	Plug-in	BRI-ISDNX
CENTREX	Plug-in	CENTREX
CENTREXX	Plug-in	CENTREXX
SW-VGSS	Plug-in	SW-VGSS
SW-VGSSX	Plug-in	SW-VGSSX
NSW-VGSS	Plug-in	NSW-VGSS
NSW-VGSSX	Plug-in	NSW-VGSSX
4-WRRE	Plug-in	4-WIRE
4-WIREX	Plug-in	4-WIREX
DS1	Plug-in	DS1
DSS1X	Plug-in	DS1X
HDSL	Plug-in	HDSL
HDSLX	Plug-in	HDSLX
ADSL	Plug-in	ADSL
ADSLX	Plug-in	ADSLX
PBX	Plug-in	PBX
PBXX	Plug-in	PBXX

Information - CE (DLC/ONU-DLCRT)		
Item	Equipment Category	UOM
RT CE Optical Bank/Shelf	Hardwired	All
CE Bank/Shelf Common Equip. (Integrated)	Common	All
CE Bank/Shelf Common Equip. (Universal)	Common	All
TSI	Common	All
TSI Protect	Common	All
RT channel bank /Shelf (Metallic)	Hardwired	All
Channel Bank/Shelf CE	Common	All
ADSL Common Equipment	Common	ADSL
HDSL Common Equipment	Common	HDSL
Optical ONU Bank/Shelf	Hardwired	All
Optical Shelf CE	Common	ONU
Optical Line Units	Common	ONU
DSX Panel	Hardwired	All
Batteries, Environ. Equip., Etc.	Hardwired	All
Bay	Hardwired	All
ONU Cabinet (e.g. CAD-12)	Hardwired	All
Cabinet Small (includes Batt. Etc.)	Hardwired	All
Cabinet Medium (includes Batt. Etc.)	Hardwired	All
Cabinet Large (includes Batt. Etc.)	Hardwired	All
Cabinet Xtra Large (includes Batt. Etc.)	Hardwired	All
Mini-Hut	Hut	All
Maxi -Hut	Hut	All
CEV 16	CEV	All
CEV 24	CEV	All

DLCISONET SubFRC			
Item	(DLCIONU-Other)		
Item	COT SubFRC	RT SubFRC	Customer Premise SubFRC
CEV	0	0	0
Combined	15	0	0
Common	6	40	22
Hardwired	3	37	19
Hut	0	0	0
Plug-in	12	46	28

DLC/SONET FRC (DLC/ONU-Other)

Item FRC

 Page 32 of 64CEV
COT 4C

Hut
257C
POP
10C
RT
357C
RT 257C

DLC Vendor Mix (DLC/ONU-Other)

Universal	0.42	0.58

8
$\stackrel{H}{4}$
C1
0

Plant Mix（Engineering Rules）

Plant Mix（Engineering Rules）							
Density Lower Range	Donsity Upper Range	Denstry Group	Cost Family	Water Table 1000	Bedrock Oepth 1000	Terrain Dinicully	
\bigcirc	100000000 100000000	－	．	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	1000	．	FTLPFLCYOSO
0	100000000	－	－	1000	1000	－	FTLDFLIADSO
0	100000000	－	－	1000	1000	－	FTLDFLMRDSO
0	100000000	－	－	1000	1000	－	FTLDFLOADS
0	100000000	＊	＊	1000	1000	－	FTLDFLPLISSO
0	100000000	－	－	1000	1000	－	FTLPFLSGDSO
0	100000000	＊	－	1000	1000	－	FTldelsudso
0	100000000	－	－	1000	1000	＊	FTLPFLWNOSO
0	100000000	－	－	1000	1000	＊	FTPRFLMADSO
0	100000000	－	－	1000	1000	＊	GCSPFLCNOSO
0	100000000	－	－	1000	1000	＊	GCVIFLMARSO
0	100000000	－	－	1000	1000	－	GENVFLMARSO
0	100000000	－	－	1000	1000	－	glerflmcoso
	100000000	－	＊	1000	1000	＊	GSVFLMMOSO
0	100000000	－	－	1000	1000	－	GSVLFLMM33E
0	100000000	＊	＊	1000	1000	－	HAVWFLMADSO
0	100000000	＊	＊	1000	1000	－	hBSDFLMADSO
0	100000000	＊	，	1000	1000	＊	HLNVFLMADS1
0	100000000	＊	－	1000	1000	＊	HLWOFLHAOSO
0	100000000	＊	－	1000	1000	－	HLWDFLMADSO
0	100000000	－	－	1000	1000	－	MMWOFLPEDSO
0	100000000	－		1000	1000	－	HEWOFLWHDSO
0	100000000	＊	－	1000	1000	：	HMSTFLLFRSO
0	100000000			1000	1000	＊	HMSTFEARSO
0	100000000	－	－	1000	1000	，	HMSTFLMMDS 0
0	100000000	－	－	1000	1000	－	HTISFLMADSO
0	100000000	，	－	1000	1000	－	HWTHFLMARSO
0	100000000	－	－	1000	1000	－	ISLMFLMARSO
0	100000000	，	－	1000	1000	＊	JAY．FLMARSO
0	100000000	－	－	1000	1000	－	JCBHFLABRSO
0	100000000		－	1000	1000	－	JCBHFLMADSO
0	100000000	－	＊	1000	1000	－	JCEHFLSPRSO
0	100000000	－	－	1000	1000	－	JCVIFLARDSO
	1000000000	－	，	1000	1000	：	JCVFLEMDSO
0	100000000	－	－	1000	1000	＊	JJCuflcioso
0	100000000	＊	＊	1000	1000	＊	JIVFLFLFCDSO
0	100000000	－	－	1000	1000	－	JCVFLIARSO
0	100000000	．	＊	1000	1000	，	JCVFLITRSO
0	100000000	，	－	1000	1000	＊	JCVIFLLEDSO
0	100000000	－	－	1000	1000	＊	JCVFLINOSSO
0	100000000	，	－	1000	1000	－	JCVFLOWDSO
0	100000000	，	＊	1000	1000	－	JCVFIRVDSo
0	100000000	－	＊	1000	1000	－	JCVFLSIT3E
0	100000000	－	＊	1000	1000	＊	JCVFLSMDSSO
0	100000000	＊	＊	1000	1000	－	JCVFLWCDSO
0	100000000	－	－	1000	1000	＊	JPTRFLMADSO
0	100000000	－	－	1000	1000	＊	KHHGFLMARSO
0	100000000	．	＊	1000	1000	－	KYLRFLSRSO

Percenx Underground 0.403894546
0.427449066
0.229687429
0.447079058
0.283913438
0.200638582
0.43107865
0.159994059
0.208434268
0.145003284
${ }^{3.80 E-02}$
0．37E－03
$2.14 \mathrm{E}-03$
0.13062017
0.215453365
0.130831308
$1.52 \mathrm{E}-02$
0.114588534
6．00E－03
0.388818382
0.40134122
0.142663431
0.351313518
0.18318128
0.16063944
0.23170561
0.167209215
1．096－02
0.104939146
1．93E－02
－3．14E－03
0.202595054
$3.71 \mathrm{E}^{\text {－02 }}$
0.214808405
0.209606533
0.404400878
0.124837296
0.332733239
0.862837535
0.181387145
0.143188362
0.137586121
0.269381265
0.308200302
0.425807528
0.215257255
0.56 E－02
0．47E－03
． 13730211

Order of Processsing

source
MRT Report Mr
MR7 Repport
MR7 Reor膜高 56 ，minnom 5

 E
465
篰童

\％inf
56
站童室
，wifnem

敫空
5童童

魏官
5

，mifeem
cirn
，urnfon
\mathfrak{c}

Plant Mix (Engineering Rules) Densthy Lower Range

Donsify Group Cost Finity

r
Terrain Dificurut
rerrain $\begin{aligned} & \text { mi } \\ & \vdots \\ & \vdots\end{aligned}$
\vdots
\vdots
\vdots
\vdots

 Source
MR7 Repo
MRT Repo
MR7 MR7 Repoer
MR7 Repor

 2官宾

Network Rules (Engineering Rules)			Exhibit DDC-2
Rule	Value	UOM	
AA24/26GaugeXover	12000	Feet	
BuildToWhat	HouseholdsOnLotsWithWorkingLines	Text	
CSA24/26GaugeXover	9000	Feet	
CustomerGrowthFactor	0	Percent	
DesignPairsPerHU	2	Pairs	
DistributionSizingRoutine	PairsPerHouse	Text	
DS1XoverToFOatLot	5	DS1s	
FDICableDesignPairsPerHU	1.5	Factor	
HiCapNodesPerSONETRing	5	Nodes	
MaximumCUCableSize	4200	Pairs	
MaximumFOSize	216	Strands	
MinFDIToDLCAANDistance	8	Feet	
MinFOStrandsPerONU	1.2	Strands	
MinFOStrandsPerRing	6	Strands	
MinimumCUCableSize	25	Pairs	
MinimumFOSize	12	Strands	
MinimumPairsPerBusiness	6	Pairs	NOT USED
PoleSizeWithoutSharing	40	Feet	NOT USED
PoleSizeWithSharing	40	Feet	NOT USED
TR008BusConcentrationRatio	1		
TR008ResConcentrationRatio	2		
TR303BusConcentrationRatio	3		
TR303ResConcentrationRatio	4		
WaterDepthCev/HutXover			

BellSouth Telecommunications, Inc FPSC Docket No. 990649-TP

| GIS Rules (Engineering Rules) | | | |
| :--- | :---: | :---: | :--- | :--- |
| Rule | Value | UOM | |
| AALineDesignLimit | 1800 | Lines | |
| AALineMinimumLimit | 10 | Lines | |
| BTDTToFDIXover | 100 | Lines | NOT USED |
| CopperLengthDesignLimit | 12000 | Feet | |
| CopperLengthHardLimit | 13000 | Feet | |
| DLCLengthDesignLimit | 12000 | Feet | |
| DLCLengthHardLimit | 18000 | Feet | |
| DLCLineDesignLimit | 1800 | Lines | |
| DLCLineMinimumLimit | 10 | Lines | |
| DTBTHHDesignLimit | 6 | HH | |
| FDILineDesignLimit | 900 | Lines | |
| FDIToDLCXoverBus | 400 | DSO | |
| FDIToDLCXoverTotal | 1000 | DSO | |
| MaxDropLen | 700 | Feet | |
| MinimizeTotDistFDICost | Yes | Text | NOT USED |
| NIDToBTDTXover | 5 | Lines | |
| NumberNodesPerRing | 4 | Nodes | |
| UseActualCustomerLocations | Yes | Text | |
| UseActualNetworkLocations | No | Text | |

BellSouth Telecommunications, Inc

FDI and BT Engineering	(Engineering Rules)		Exhibit DDC-2
Rule Name	Rule	Value	
CrossOverfrom66to303	Cross-over from 66 type to 303 type (In Pairs)	7200	
BTOutlnRatio	Indoor building terminal In/Out Ratio	2	
FDIOutinRatiolndoor	Indoor SAl In/Out Ratio	3	
FDIOutlnRatioOutdoor	Outdoor SAI In/Out Ratio	3	

BellSouth Telecommunications, Inc. FPSC Docket No. 990649-TP
Electronic and Fiber Sizing (Engineering Rules) Exhibit DDC-2
Equipment Engineering Fill
DistCUFill
DistFOFill
1
0.75

DLCCOTFill 0.8
DLCRTFill
0.7

DTFill
0.85

ElectronicFill
0.85

FDIFill
0.9

FdrCUFill
0.75

FdrFOFill
0.75

SonetRTFill 0.85
NOT USED

NOT USED

NOT USED

DLC Technology (Engineering Rules)
Integrated/Universal Lower Limit on DSO'
on DS
0
0
ONU
Integrated008
Integrated303

Upper LImit on DSO's
0
24
150
100000

Density Lower Range
wer Ra
0
0
0 0
0

Density Upper Range
100000000
100000000
100000000 100000000

Copper Cable Sizing Density	(Engineering Rules) Feeder	Distribution*
0	0.700	$\mathbf{0 . 5 0 0}$
5	0.775	$\mathbf{0 . 5 0 0}$
100	0.800	$\mathbf{0 . 5 0 0}$
200	0.825	$\mathbf{0 . 5 0 0}$
650	0.825	$\mathbf{0 . 5 0 0}$
850	0.825	$\mathbf{0 . 5 0 0}$
2550	0.825	$\mathbf{0 . 5 0 0}$
5000	0.825	$\mathbf{0 . 5 0 0}$
10000	0.825	$\mathbf{0 . 5 0 0}$

Building Cable Rules (Engineering Rules) Rule Value
AvgLengthEntranceCable 10
AvgLengthFloortoFloor 25
AvgLinesPerFloor 25
PctTelcoCabledBuildings 0.75

Drop Placing Hours	(Splicing And Placing Hours) Placing (Hrs/100 Ft)	Placing (Hrs)
Item	0	1.0392
AerialCU	0	1.4216
BuriedCU	0	0.25

Service Des	tion (Lookup Tables)								Clustersed
Service Code	Service	Service Catogory	Proferred Media*	Extended Range Cutover	Pair Equivalence	OSO Equivalonce		Channea Unis ${ }_{\text {POTS }}$	Yos
A	2 WG UV	NSW	cu cu	14800 14800	1	1	$\xrightarrow{\text { Bus }}$	POTS	Yes
B	LOCAL POTSAPOTS-LIKE	NSW	cu	1000000	1	32	Bus	NA	Yes
b	PBX	NSW	cu	14800	1	1	Bus	PBX	Yes
c	2 WWG UDL HDSL	NSW	cu	1000000	1	24	Bus	NA	Yes
c	CENTREX	NSW	cu	14800	1	1	Bus	CENIREX	Yes
0	2 WVG UDL ISON	NSW	cu	18000	,	3	Bus	COIN	Yes
d	COIN SMART LINE	NSW	Cu	14600	1	1	Bua	POTS	Yes
E	2 WUG USL FEEDER	NSW	CU	14800	1	1	Bus	COIN	Yes
-	COIN REGULAR	NSW	cu	14800	1	1	Bus	BRHSON	Yes
F	ISDN LOC	NSW	cu	18000 1000000	1	1	Bus	NA	Yes
G	2WVG USL RISER	NSW	cu	1000000	1	1	Bus	NA	Yes
9 .	ISDN PEX	NSW	cu	18000	1	3	Bus	BRHISON	Yes
H	2WUG U LOCAL CHANNEL(357C)	NSW	cu	14800	1	1	Bus	POTS	No
n	OSO 2 W	NSW	cu	18000	1	1	Bus	SW-VGSS	
1	4WV UD	NSW	cu	18000	2	2	Bus	4 WRE	Yos
i	DSO 4 W	NSW	cu	18000	2	2	Bus	4 HOSL	Yes
J	4WVG UDL (257C) HDSL	NSW	cu	18000	2	24	But	HDSL	Yes
j	SLV ANALOG 2W	NSW	cu	14800	1	1	Bus	HDSL	Yes
k	OS1 DIGITAL MEGALINK ISDN	NSW	cu	18000 18000	2	24 24	Bus	HDSL	Yes
K	4WVG UDL (257C) DS1	Wideband	cu	18000 18000	2	24	Bus	HDSL	Yes
M	4WWG LOOP	NSW	cu	18000	2	2	Bus	4-MRE	Yes
N	4WVG USL distribution	NSW	cu	1000000	2	2	Bus	Na	Yes
-	SLV ANALOG 4W	NSW	cu	18000	2	2	Bus	4. Wre	
0	4WWGA LOCAL CHANNEL(357C)	NSW	cu	18000	2	2	Bus	4-MRE	No
p	DS1 DIGITAL ACCESS	Wideband	cu	18000	2	24	Bus	HDSL	No
P	UCL (357C) LOCAL CHANNEL DS1 DIGITAL	Wideband	cu	1000000	2	24	Bus	NSW-VGSS	Yes
0	UCL 2W	NSW	cu	14800	1	172	Bus Bus	NS3	No
\%	OS3 DGITAL ACCESS	Widoband	FO	1000000 18000	2	12 2	Bus	4 w	Yes
R	UCL AW dSI dital lightgatenideo	WSW	co	18000 1000000	$\stackrel{2}{0}$	672	Bus	DS3	No
s	ULL (257C) DS3	Widaband	FO	1000000	0	672	Bus	DS3	No
T	ULL (257C) OC3	Wideband	FO	1000000	0	2018	Bus	OC3	No
t	OS1 DIGITAL SWITCHED AREA COMM. PLAN	Widoband	cu	18000	2	24	Bus	HDSL	Yes
u	OTHER DSOIANALOG $2 \mathrm{~W} / 4 \mathrm{~W}$	NSW	cu	18000	1	1	Bus	NSW-VGs	No
U	ULL (257C) OC 12	Wideband	FO	1000000	0	6064	Bus		No
v	DS3 DIGITAL SWICHED AREA COMM PLAN, BST TRK SVC	Wideband	FO	1000000	0	672	Bus	$\bigcirc{ }^{0} 48$	No
v	ULL (257C) OC48	Wideband	FO	1000000	0	32256	Bus	${ }^{\circ} \mathrm{OC4}$	No
w	U LOCAL CHANNEL (357C) DS3	Wideband	FO	1000000	0	672	Bus	$\bigcirc 003$	No
X	\cup LOCAL CHANNEL (357C) OC3	Wideband	FO	1000000	0	${ }_{3}^{2016}$	Bus	${ }_{0} \mathrm{C} 12$	No
r	U LOCAL CHANNEL (357C) OC12	Wideband	FO	1000000	0	8064	Bus	0 C 48	No
z	U LOCAL CHANNEL (357C) OC4	Wideband	FO	1000000	0	32256	Bus		

Cost Family (Lookup Tables)		FPSC Docket Cos. Exhibit DDC-2 Past Element
Pase 49 of 64		
BLDGCABLE	Dist	
CO	Fdr	
DLC-COT	Fdr	
DLC-RT	Fdr	
Drop	Dist	
DT-FDI	Dist	
DTBT	Dist	
FDI	Fdr	
FDI-DLC	Fdr	
NID	Dist	
ONU	Dist	

NOT USED NOT USED

Labor Rate (Labor Rates And Loadings)		FPSC Docket No.990649-TP Exhbit DDC-2
Type	Rate/Hour	Labor Rate
Engineering	0	Engineering Plant or Test Direct Labor Costs/ Hour 51 of 64
Estimators	0	Estimators/Posting
Inspectors	0	Inspectors (Contract Administration-46)
LAC	0	Assignment (LAC)
Placing	29.05	Placing (44) Plant Direct Labor Costs per Hour
Splicing	0	Splicing (43) Plant Direct Labor Costs per Hour

NID/NIU (Material)		
Plant Type	Type or Size	Material Cost
HDSL Modem	1	
NID	2	
NID	6	
NIDIntandProt	1	
NIU	1	

BellSouth Telecommunications, Inc.

Indoor FDI Terminals Primitives (Material)			Exhibit DDC-2		
Plant Type	Type	Item	Capacity	Material Cost	Page 53 of 64
Indoor FDI Terminals	FDI66Connector	66 -type Punch-Down Connector Blocks (50 pair)	50		
Indoor FDI Terminals	FDIBackboard	Backboard (ln) (200 pair)	200		
Indoor FDI Terminals	FD1189Protector	189 type Protector (100 pair)	100		
Indoor FDI Terminals	FDI303Connector	303 type connector (100 pair includes coils)	100		NOT USED
Indoor FDI Terminals	FDI303Rack	Iron Racks for 303 (per 100 pair)	100		NOT USED

Plant Type	Type or Size	Material Cost
Aerial	6	
Aerial	12	
Aerial	18	
Aerial	24	
Aerial	30	
Aerial	32	
Aerial	36	
Aerial	44	
Aerial	48	
Aerial	60	
Aerial	72	
Aerial	84	
Aerial	96	
Aerial	108	
Aerial	120	
Aerial	132	
Aerial	144	
Aerial	156	
Aerial	168	
Aerial	216	
Buried	6	
Buried	12	
Buried	18	
Buried	24	
Buried	30	
Buried	32	
Buried	36	
Buried	44	
Buried	48	
Buried	60	
Buried	72	
Buried	84	
Buried	96	
Buried	108	
Buried	120	
Buried	132	
Buried	144	
Buried	156	
Buried	168	
Buried	216	

Fiber Cable (Material)

Plant Type
Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding RiserIntrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Risernntrabuilding Riser/Antrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Underground Underground Underground
Underground Underground Underground Underground Underground Underground Underground Underground Underground
Underground Underground
Underground Underground
Underground Underground Underground Underground Underground Underground Underground Underground

\section*{Type or Size | pe or |
| :---: |
| 6 | 6

12 18 24
30 30
32 32
36 32
44 44 60 60
72
84 72
84 84
96 96
108 120 132 132
144 144
156 168 216
6 6
12 12
18 18
24 30 36
44 44
48 60 60
72
84
 Material Cost
 }

Plant Type	Type or Size	Material Cost
Aerial	50	
Aerial	100	
Aerial	200	
Aerial	300	
Aerial	400	
Aerial	600	
Aerial	900	
Aerial	1000	
Aerlal	1200	
Aerlal	1400	
Aerial	1500	
Aerial	1800	
Aerial	2100	
Aerial	2400	
Aerial	2700	
Aerial	3000	
Aerial	3300	
Aerial	3600	
Aerial	4200	
Aerial	4800	
Aerial	5400	
Aerial	7200	
Buried	50	
Buried	100	
Buried	200	
Buried	300	
Buried	400	
Buried	600	
Buried	900	
Buried	1000	
Buried	1200	
Buried	1400	
Buried	1500	
Buried	1800	
Buried	2100	
Buried	2400	
Buried	2700	
Buried	3000	
Burled	3300	
Buried	3600	
Buried	4200	
Buried	4800	
Buried	5400	
Buried	7200	
Indoor	1	

FDI Terminals (Material)

Plant Type
Underground
Underground Underground Underground Underground
Underground
Underground
Underground
Underground
Underground
Underground

DTBT Material(Material) Type or Size	
Plant Type	Material Cost
Aerial	25
Aerial	50
Aerial	100
Aerial	200
Aerial	300
Aerial	400
Aerial	600
Aerial	900
Buried	25
Buried	50
Buried	100
Buried	200
Buried	300
Buried	400
Buried	600
Buried	900

Drop (Material)		
Plant Type	Type or Size	Material Cost
Aerial	2	
Aerial	6	
Buried	2	
Buried	5	

Copper Cable 26 gauge (Material)		
Plant Type	Type or Size	Material Cost
Aerial	25	0.31
Aerial	50	0.39
Aerial	100	0.61
Aerial	200	0.98
Aerial	300	1.38
Aerial	400	1.72
Aerial	600	2.53
Aerial	900	3.81
Aerial	1200	4.99
Aerial	1500	6.41
Aerial	1800	7.83
Aerial	2100	9.59
Aerial	2400	10.8
Aerial	2700	12.42
Aerial	3000	13.5
Aerial	3600	16.2
Aerial	4200	18.9
Buried	25	0.18
Buried	50	0.31
Buried	100	0.51
Buried	200	0.87
Buried	300	1.28
Buried	400	1.74
Buried	600	2.54
Buried	900	3.68
Buried	1200	4.77
Buried	1500	6.12
Buried	1800	7.28
Buried	2100	8.94
Buried	2400	10.21
Buried	2700	11.42
Buried	3000	12.69
Buried	3600	15.12
Buried	4200	17.64

Copper Cable 26 gauge (Material)		
Plant Type	Type or Size	Material Cost
Riser/Intrabuilding	25	0.31
Riser/Intrabuilding	50	0.39
Riser/Intrabuilding	100	0.61
Riser/Intrabuilding	200	0.98
Riser/Intrabuilding	300	1.38
Riserill ${ }^{\text {trabuilding }}$	400	1.72
Riser/Intrabuilding	600	3.64
Riser/Intrabuilding	900	3.81
Riser/Intrabuilding	1200	4.99
RiserIIntrabuiding	1500	6.41
Riser/Intrabuilding	1800	10.19
Riser/Intrabuilding	2100	9.59
Riser/Intrabuilding	2400	13.78
Riserfintrabuilding	2700	15.94
Riser/Intrabuilding	3000	16.98
Riser/Intrabuilding	3600	20.38
Riser/Intrabuiding	4200	23.1
Underground	25	0.1
Underground	50	0.2
Underground	100	0.4
Underground	200	0.8
Underground	300	1.2
Underground	400	1.6
Underground	600	2.59
Underground	900	3.9
Underground	1200	4.54
Underground	1500	6
Underground	1800	7.09
Underground	2100	8.49
Underground	2400	8.97
Underground	2700	10.06
Underground	3000	11.34
Underground	3600	13.49
Underground	4200	18.74

Copper Cable 24 gauge (Material)		
Plant Type	Type or Size	Material Cost
Aerial	25	0.32
Aerial	50	0.57
Aerial	100	0.74
Aerial	200	1.25
Aerial	300	1.68
Aerial	400	2.26
Aerial	600	3.38
Aerial	900	4.84
Aerial	1200	6.58
Aerial	1500	8.6
Aerial	1800	10.66
Aerial	2100	11.97
Aerial	2400	13.68
Aerial	2700	15.39
Aerial	3000	17.1
Aerial	3600	20.52
Aerial	4200	23.94
Buried	25	0.23
Buried	50	0.38
Buried	100	0.67
Buried	200	1.24
Buried	300	1.91
Buried	400	2.37
Buried	600	3.42
Buried	900	5.04
Buried	1200	6.74
Buried	1500	8.44
Buried	1800	10.04
Buried	2100	11.76
Buried	2400	13.44
Buried	2700	15.12
Buried	3000	16.8
Buried	3600	20.16
Buried	4200	23.52

Plant Type
RiserfIntrabuildin
Riserflntraburilding
Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuliding Riser/Intrabuildin Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding RiserIntrabuilding Riser/Intrabuilding Riser/Intrabuilding RiserIntrabuilding Riserfintrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riser/Intrabuilding Riserfintrabuilding Underground Underground

Type or Size Material Cost 25
50

25	0.31
50	0.39
100	0.61
200	0.98
300	1.38
400	1.72
600	3.64
900	3.81
1200	4.99
1500	6.41
1800	10.19
2100	9.59
2400	13.78
2700	15.94
3000	16.98
3600	20.38
4200	23.1
25	0.13
50	0.27
100	0.53
200	1.06
300	1.59
400	2.12
600	3.33
900	4.82
1200	6.45
1500	8
1800	9.79
2100	11.16
2400	12.75
2700	14.31
3000	15.9
600	19.08
4200	22.26

CO Investment Adder (Material)

Cost Family	Cost Element	Cost Component	FRC	Sub FRC
CO	CO-Adder	2WLC-CO-Combined	357C	15
CO	CO-Adder	2WLC-CO-Common Plugs	357C	6
CO	CO-Adder	2WLC-CO-Def Plugs	357C	9
CO	CO-Adder	2WLC-CO-Hardwired	357C	3
CO	CO-Adder	2WLC-Prem-Def Plugs	357C	25
CO	CO-Adder	2WLC-Prem-Com Plugs	357C	22
CO	CO-Adder	2WLC-Prem-Hardwired	357C	19
CO	CO-Adder	4WLC-CO-Combined	357C	15
CO	CO-Adder	4WLC-CO-Common Plugs	357C	6
CO	CO-Adder	4WLC-CO-Def Plugs	357C	9
CO	CO-Adder	4WLC-CO-Hardwired	357C	3
CO	CO-Adder	4WLC-Prem-Com Plugs	357C	22
CO	CO-Adder	4WLC-Prem-Def Plugs	357C	25
CO	CO-Adder	4WLC-Prem-Hardwired	357C	19
CO	CO-Adder	A.12.5 DSX1	257C	0
CO	CO-Adder	CO Repeater	257C	0
CO	CO-Adder	CO Repeater Shelf	257C	0
CO	CO-Adder	DS1 Line Card - RT	257C	25
CO	CO-Adder	DS1LC-CO-Combined	357C	15
CO	CO-Adder	DS1LC-CO-Common Plug	357C	6
CO	CO-Adder	DS1LC-CO-Def Plugs	357C	9
CO	CO-Adder	DS1LC-CO-Hardwired	357C	3
CO	CO-Adder	DS1LC-Prem-Com Plug	357C	22
CO	CO-Adder	DS1LC-Prem-Def Piugs	357C	25
CO	CO-Adder	DS1LC-Prem-Hardwired	357C	19
CO	CO-Adder	DS1Loop Feeder-HDSL	257C	46
CO	CO-Adder	DSX1	257C	0
CO	CO-Adder	MDF-2Wire Combo	377C	5
CO	CO-Adder	MDF-2Wire Melded	377C	5
CO	CO-Adder	MDF-2Wire-Copper	377C	5
CO	CO-Adder	MDF-4Wire Combo	377 C	5
CO	CO-Adder	MDF-4Wire Melded	377 C	5
CO	CO-Adder	MDF-4Wire-Copper	377C	5
CO	CO-Adder	MDF-DS1	377C	3
CO	CO-Adder	T-P-2Wire-Common	357C	6
CO	CO-Adder	T-P-2Wire-Hardwire	357C	3
CO	CO-Adder	T-P-2Wire-Plugin	357C	9
CO	CO-Adder	T-P-4Wire-Common	357C	6
CO	CO-Adder	T-P-4Wire-Hardwire	357C	3
CO	CO-Adder	T-P-4Wire-Plugin	357 C	9

Material Investment per Service
1.13
44.71
90.15
61.41
90.15
46.78
64.14
1.13
44.72
112.39
61.41
46.78
112.39
64.14
6.03
189.28
115
230
22.95
326.95
145.9
29.3706
368.84
145.9
84.96
38.15
4.13
3.3812
6.6616
7.3442
6.6724
13.3231
14.6883
4.63
0.66
11.78
45.36
1.32
23.56
90.71

TELRIC Calculation

Page 1 of 1

BellSouth Cost Calculator

Unbundied Network Elements Cost Summary

Unbundied Network Elements Cost Summary

Unbundied Network Elements Cost Summary

$\begin{aligned} & \text { Study Name: } \\ & \text { Stme: } \end{aligned}$		Fiorida Docket No $99460-1 \mathrm{~T}$ Florida				
A.11			Zome 1	Zone 2	Zone 3	Statewide Average
	MULTIPLEXERS					
	A 18.1	Channelization - Channel System DS1 to DS0	\$154.74	5154.74	\$154.74	\$154.74
	A. 18.2	interface Unit - Intorface DS1 to DSO-OCU-DP Card	\$2.22	\$2.22	\$2.22	\$2.22
	A. 18.3	Interface Unit - Interflace DS1 to DSO-BRITE Card	\$3.86	\$3.86	\$3.86	\$3.86
	A. 18.4	Interface Unit - Interface DS1 to DSO - Voice Grade Card	\$1.46	\$1.46	\$1.46	\$1.46
	A. 18.5	Channelization - Channel Systam OS3 to DS1	\$222.61	\$222.61	\$222.61	\$222.61
	A 18.6	Interface Unit - Interface DS3 to DS1	\$14.51	\$14.51	\$14.51	\$14.51
8.0	UNEUNDLED LOCAL EXCHANOE PORTS AND FEATURES					
8. 1	EXCHANGE PORTS					
	B.1.1	Exchange Ports - 2 -Wire Analog Line Port (Res., Bus., Centrex, Coin)	51.63	51.63	\$1.63	\$1.63
	B.1. 2	Exchange Ports - 4-Wire Analog Voice Grade Port	58.81	\$8.81	\$8.81	\$8.81
	B.1.3	Exchange Ports-2-Wire DID Port	99.60	$\$ 9.60$	\$9.60	\$9.60
	8.1 .4	Exchange Ports - DDITS Port	\$63.85	563.85	\$63.85	\$63.85
	B. 1.5	Exchange Ports-2-Wire ISDN Port	59.54	\$9.54	\$9.54	59.54
	B.1.6	Exchange Ports -4-Wire ISDN DS1 Port	\$96.34	596.34	\$96.34	\$96.34
	B.1.7	Exchange Ports-2-Wire Analog Line Port (PBX)	\$1.63	\$1.63		\$1.63
8.4	FEATURESB.4.10B.4.13					
		Centrex Functionality	\$9007	5.9007	\$.9007	\$0.9007
		Features per port	\$3.64	53.64	\$3.64	
c. 0	UNBUNDLED SWITCHING AND LOCAL INTERCONNECTION					
6.1	END OFFICE SWIC. 1.1C.1.2	itching				
		End Office Switching Function, Per MOU	\$50008941	\$.0008941	5.0008941	\$0.0008941
		End Olfice Trunk Port - Shared, Per MOU	\$.000191	\$.000191		
c. 2	TANDEM SWITCHC. 2.1C.2.2	Hive				
		Tandem Switching Function Per MOU	\$. 0001545	$\$.0001545$	$\$.0001545$	$\$ 0.0001545$
		Tandem Trunk Port - Shared, Per MOU	5.0002737	$\$ 0002737$	$\$.0002737$	
D. 0	UNBUNDLED TRANSPORT AND LOCAL INTEROFFICE TRANSPORT					
D. 1	COMMON TRANSD.1.1D.1.2	ISPORT				
		Common Transport - Per Mile, Per MOU	5.0000039	\$0000039	\$.0000039	\$0.0000039
		Common Transport - Facilities Termination Per MOU	\$.0004615	\$.0004615	\$.0004615	\$0.0004615
D. 2	INTEROFFICE TRANSPORT - DEDICATED - VOICE GRADE					
	0. 2.1	interoffice Transport - Dedicated - 2-Wire Voice Grade - Per Mile	\$. 01	\$. 01	\$01	\$0.01
	$\text { D. } 2.2$	Interofice Transport - Dedicated-2-Wire Voice Grade - Facility Termination Interofice Transport - Dedicated - 2-Wire Voice Grade - Facility Termination - Disconnect	\$26.72	\$26.72	\$26.72	\$26.72
D. 3						
	$\text { D. } 3.1$	interofice Transport - Dedicated - DSO - Per Mile	\$. 01	$\$.01$	$\$ 01$	\$0.01
	D. 3.2	interofice Transport - Dedicated - DSO - Facility Termination	\$19.46	\$19.46	\$19.46	\$19.46

$\begin{aligned} & \text { Study Name: } \\ & \text { Strte: } \end{aligned}$		Florida Docket No $984603-\mathrm{TP}$Florlda				
			Zone 1	Zone 2	Zone 3	Statewide Average
0.4	INTEROFFICE TRANSPORT - DEDICATED - DS1					
	D.4.1	Interoffice Transport - Dedicated - OS1 - Per Mile	\$ 2035	\$ 2035	\$. 2035	\$0.2035
	D. 4.2	Interoffice Transport - Dedicated - DS1 - Facility Termination	\$93.31	593.31	\$93.31	593.31
		Interofice Transport - Dedicmed - DS1 - Facility Termination - Disconnect				
D. 5	LOCAL CHANMEL - DEDICATED					
	D.5. 1	Local Channel-Dedicated - 2-Wire Voice Grade	\$24.75	\$38.52		\$26.31
	D.5.2	Local Channel - Dedicated - 4-Wire Voice Grade	\$25.92	\$39.69		\$27.48
	D.5.7	Local Channel - Dedicatad - DS3 - Per Mile	59.32	59.32	\$9.32	59.32
	D.5.8	Local Channed - Dedicated - DS3 - Facility Termination	\$560.39	\$560.39	\$560.39	\$560.39
	D.5.10	Local Channel - Dedicated - OC3 - Per Mile	\$7.83	\$7.83	\$7.83	57.83
	D.5.11	Local Channel-Dedicated-OC3-Facility Termination	\$940.35	\$940.35	\$940.35	\$940.35
	D. 5.13	Local Channel - Dedicated - OC12-Per Mile	\$11.18	\$11.18	\$11.18	\$11.18
	D. 5.14	Local Channel - Dedicated - OC12-Facility Termination	\$2,753	\$2,753	\$2,753	\$2,753
	D. 5.16	Local Channel - Dedicated - OC48-Per Mile	\$36.67	\$36.67	\$36.67	\$36.67
	D.5.17	Local Channel - Dedicated - OC48-Facility Termination	\$1,944	\$1,944	\$1,944	\$1,944
	D.5. 19	Local Channel-Dedicated - OC48-interface OC12 on OC48	\$586.28	\$586.28	\$586.28	\$586.28
	D.5.21	Local Channel - Dedicated - STS-1. Facility Termination	\$569.67	\$569.67	\$569.67	\$569.67
	D.5.23	Local Channel - Dedicated - STS-1 -Per Mile	\$9.32	\$9.32	59.32	\$9.32
	D.5.24	Local Channel - Dedicated - DS1	\$39,39	\$51.18	\$91.98	\$42.98
D. 6	INTEROFFICE TRANSPORT - DEDICATED - DS3					
			\$4.25	\$4.25	\$4.25	\$4.25
	D.6. 2	Interofice Transport-Dedicated - DS3 - Facility Termination	\$1,130	\$1,130	\$1,130	\$1,130
D. 7	INTEROFFICE TRANSPORT - DEDICATED - OC3					
	0.7.1	Interofice Transport - Dedicated - OC3 - Per Mile	\$8.38	\$8.38	\$8.38	\$8.38
	0.7.2	interofice Transport - Dedicated- OC3 - Facility Termination	\$3,043	\$3,043	\$3,043	\$3,043
D. 8	INTEROFFICE TRANSPORT - DEDICATED - OC12					
	D.8. 1	Interoffice Transport - Dedicated - OC12 - Per Mile	$\mathbf{\$ 2 6 . 9 1}$	\$26.91	\$26.91	$\$ 26.91$
	D.8. 2	interofice Transport - Dedicabad - OC12 - Facility Termination	\$11,685	\$11,685	\$11,685	$\$ 11,685$
D. ${ }^{\text {d }}$						
	0.9 .1	Interofice Transport - Dedicated - OC48 - Per Mile	\$34.66	534.66	\$34.66	\$34.66
	0.9.2	interofice Transport - Dedicated - OC48-Facility Termination	\$12,554	\$12.554	\$12,554	\$12,554
	D.9.4	Interoffice Transport - Dadicated - OC48- interface OC12 on OC48	\$1,208	\$1,200	\$1,208	\$1,208
D. 10	INTEROFFICE TRANSPORT - DEDICATED - STS-1					
	$0.10 .1$	interonfice Transport - Dedicated - STS-1 - Per Mile	$\$ 4.25$	\$4.25	\$4.25	\$4.25
	$0.10 .2$	interofice Transport - Dedicated - STS-1 - Facility Termination	$\$ 1,114$	\$1,114	\$1,114	\$1,114
D. 12	INTEROFFICE TRANSPORT - DEDICATED - 4WIRE VOHCE CRADE					
	0.12 .1	interolfice Transport - Dedicated - 4-Wire Voice Grade - Per Mile	5.01	\$01	\$ 01	\$0.01
	D. 12.2	Interofice Transport - Dedicated - 4-Wire Voice Grade - Facility Termination	\$23.82	\$23.82	\$23.82	\$23.82

Unbundied Network Elements Cost Summary

Unbundied Network Elements Cost Summary

Unbundled Notwork Elements Cost Summary

$\begin{aligned} & \text { Study Name: } \\ & \text { State: } \end{aligned}$		Fiorida Docket No 89460-TP Florida				
			Zone 1	Zone 2	Zona 3	Statewide Average
m. 0	DALLY USAGE	Fles				
M. 1	ENHANCED OPTIONAL DAILY USAGE FILE					
	M.1.1	Enhanced Optional Daily usage File: Message Processing. Per Message	\$230552	\$. 230552	\$. 230552	\$0. 230552
M. 2	OPTIONAL DAILY USAGE FLLE					
	M. 2.1	Optional Daily Usage File: Recorting, per Message	\$.0000083	\$.0000083	\$.0000083	\$0.0000083
	M. 2.2	Optional Daily Usage File: Message Processing. Per Message	\$.006868	\$.006868	\$.006868	\$0.006868
	M.2.3	Optional Daily Usage File: Message Processing, Per Magnetic Tape Provisioned	\$499.16	\$49.16	\$49.16	\$49.16
	M.2.4	Optional Daily Usege File: Data Transmission (CONNECT:DIRECT), Per Message	\$. 00010897	\$. 00010897	\$.00010897	\$0.00010897
P. 0	UNBUNDLED L	OOP COmbanations				
P. 1	2-WRR VOICE GRADE LOOP WITH 2-MIRE LINE PORT (RES, BUS, COIN, CENTREX, PBX) P.1.RESBUS 2-Wire VG LoopiPort Combo (Res, Bus, Coin)					
		P. 1.1 2-Wre Voice Grade Loop	\$14.65	\$18.38	\$24.32	\$16.46
		P.1.2 Exchange Port-2-Wire Line Port	\$1.43	\$1.43	\$1.43	\$1.43
			\$16.08	\$19.81	\$25.75	517.89
	P.1.PBX	2.Wire VG Loop/Port Combo (PEX)				
		P. 1.1 2-Wire Voice Grade Loop	\$14.65	\$1838	\$24.32	\$23.75
		P. 1.2 Exchange Port-2-Wre Line Port	\$1.43	\$1.43	\$1.43	\$1.43
			\$16.08	\$19.81	\$25.75	\$25. 18
	P.1.CENTREX	2-Wire VG Loop/Port Combo (Centrex)				
		P. 1.1 2-Wre Voice Grade Loop	\$14.65	\$18.38	\$24.32	\$16.46
		P.1.2 Exchange Port - 2-Wire Line Port	\$1.43	\$1.43	51.43	\$1.43
		B.4. 10 Centrex Functionality	\$.9007	\$.9007	\$.9007	\$.9007
			\$16.98	\$20.71	\$26.65	\$18.79
P. 3	2-WIRE VOICE GRADE LOOP WITH 2-WIRE DID TRUNK PORT					
		A 1.2 2-Wine Analog Voice Grade Loop - Service Leval 2	\$18.28	\$22.34	\$27.97	\$20.20
		8.1.3 Exchange Ports - 2-Wire DID Port	\$9.60	59.60	59.60	\$9.60
			\$27.87	\$31.94	\$37.57	\$29.80
P. 4	2-WIRE ISDN DHGITAL GRADE LOOP WITH 2-WIRE ISDN DIGITAL LINE SIDE PORT P. 4 2W ISDN Digital Grade Loop/2W ISDN Digital Line Side Port P.4. 1 2-Wre ISDN Dipita/ Grade LCOD					
			\$22.15	\$27.82	\$32.24	\$23.75
		P.4.2 Exchange Port - 2-Wre ISDN Line Side Port	\$7.89	\$7.89	\$7.89	\$7.89
			\$30.04	\$35.72	\$40.14	531.64
P. 5	4-WIRE DSI DIGITAL LOOP WITH 4-WIRE ISDN DSI DIGITAL TRUNK PORT					
		A.9.1 4-Wre DS1 Digital Loop	\$89.37	\$113.49	\$194.35	596.46
		E.1.6 Exchange Ports -4-Wire ISDN DS1 Port	596.34	\$96.34	\$96.34	\$96.34
			\$185.71	\$209.83	\$290 69	\$192.80

Unbundied Network Elements Cost Summary

Unbundied Network Elements Cost Summary

Stardy Name: State:	Florlda Dockut No SHEOP-TP Florida				
	D. 42 interotice Transport - Dedicated - DS1 - Facility Termination	$\begin{aligned} & \text { Zone } 1 \\ & \quad \$ 3.31 \\ & \hline \end{aligned}$	$\begin{gathered} \text { Zone } 2 \\ \$ 93.31 \\ \hline \end{gathered}$	$\begin{gathered} \text { Zone } 3 \\ \$ 93.31 \\ \hline \end{gathered}$	$\begin{gathered} \text { Statewide } \\ \text { Average } \\ \$ 93.31 \\ \hline \end{gathered}$
		\$182.68	\$206.80	\$287.66	\$189.77
P.11-2	Per Mile 0.4.1 interoffice Transport - Dedicated - DS1 - Per Mile	\$. 2035	\$ 2035	\$. 2035	\$ 2035
P. 13	ITAL EXTENDED LOOP WITH DEDICATED DS3 Interofrice transportFirst DS1 in DS3				
	A.9 1 4-Wre DST Digitar Loop	589.37	\$113.49	\$194.35	\$96.46
	D.6.2 inferofice Transport - Dedicated - DS3 - Facility Termination	\$1,130	\$1,130	\$1,130	\$1130
	A.18.5 Channelization - Channel Systam DS3 to DS1	\$222.61	\$222.61	\$222.64	\$222.61
	A. 18.6 intertace Unit - interface DS3 to DS1	\$14.51	\$14.51	\$14.51	\$14.51
		\$1,456.78	\$1,480.90	\$1,561.75	\$1,463.58
P.13-2	Per Mile				
	D.6.1 interofice Transport - Dedicaled - DS3 - Per Mile	\$4.25	\$4.25	\$4.25	\$4.25
P.13-3	Additional DS1 in same DS3				
	A.9.1 4-Wre DS1 Digital Loop	\$89.37	\$113.49	$\$ 194.35$	\$56.46
	A. 18.6 interface Unit - intertace DS3 to DS1	\$14.51	\$128.00	\$208.86	\$110.97
P. $15 \quad$ 4-WRR	ITAL LOOP WTH DDITS PORT 4-Wire DS1 Digital Loop with DDITS Port				
	A.9.14-Wire DS1 Dipital Loop	\$89.37	\$113.49	\$194.35	\$96.46
	B.1.4 Exchange Ports - DDITS Port	\$63.85	\$63.85	\$63.85	\$63.85
		\$153.22	\$177 35	\$258.20	\$160.31
P. 16 2-WIRE	2 WIRE VOICE GRADE IO TRANSPORT/ 2 WIRE PORT Fixed				
	A.1.2-Wre Analog Voice Grade Loop - Service Level 2	\$18.28	\$22.34	\$27.97	\$20.20
	D. 2.2 Interofice Transport - Dedicaled - 2-Wire Voice Grade - Facility Termination	\$26.72	\$26.72	\$26.72	\$26.72
	B.1.1 Exchange Ports - 2-Wire Analog Line Port (Res., Bus., Centrex, Coin)	\$1.63	\$1.63	\$1.63	\$1.63
		\$46.63	\$50.69	\$56.32	\$48.55
P.16-2	Per Mile				
	D.2. 1 Interofice Transport - Dedicaled - 2-Wire Voice Grade - Per Mile	\$. 01	\$ 01	\$01	\$. 01
P. 23 2-WRE	GRADE EXTENDED LOOPI 2 WIRE VOICE GRADE INTEROFFICE TRANSPORT				
	Fixed				
	A.1.2-Wire Analog Voice Grade Loop-Service Level 2	\$18.29	$\$ 22.34$	$\$ 27.97$ $\mathbf{5 2 6 . 7 2}$	$\begin{aligned} & \$ 20.20 \\ & \$ 26.72 \end{aligned}$
	D.2.2 interofice Transport - Dedicated - 2-Wire Voice Grade - Facilily Termination	$\mathbf{\$ 2 6 . 7 2}$ $\mathbf{\$ 4 4 . 9 9}$	$\frac{\$ 26.72}{\$ 49.06}$	$\frac{\$ 26.72}{\$ 54.69}$	\$226.72
P.23-2	Per Mile				
	D.2.1 interoflice Iransport - Dedicated - 2-Wire Voice Grade - Per Mile	\$ 01	\$. 01	\$. 01	\$. 01
P. 24 4-WIRE	GRADE EXTENDED LOOPI 4 WIRE VOICE GRADE INTEROFFICE TRANSPORT				
	Fixed				
	A.4.14-Wire Analog Voice Grade Loop	$\begin{aligned} & \mathbf{\$ 2 8 . 9 5} \\ & \mathbf{\$ 2 3 . 8 2} \end{aligned}$	$\$ 40.11$ $\$ 23.82$	$\begin{aligned} & \$ 68.90 \\ & \$ 23.82 \end{aligned}$	$\begin{aligned} & \$ 31.02 \\ & \$ 23.82 \end{aligned}$

Unbundied Network Elements Cost Summary

$\begin{aligned} & \text { Study Name: } \\ & \text { Stete: } \end{aligned}$		Florlda Docket No s94603-TPFlorlda				
			$\begin{aligned} & \text { Zone } 1 \\ & \$ 52.77 \end{aligned}$	Zone 2 $\$ 63.93$	$\begin{aligned} & \text { Zone } 3 \\ & \$ 92.72 \end{aligned}$	Statewide Average $\$ 54.84$
	P.24-2	Per Mile O.12.1 Interofice Transport - Dedicaled - 4-Wire Voice Grade - Per Mile	\$. 01	$\$.01$	5.01	50.01
P. 25	DS3 DIGITAL EXTENDED LOOP WITH DEDHCATED DS3 INTEROFFICE TRANSPORT P.25-1 Fixed A.16.1 High Capacity Unbundied Local Loop - DS3 - Fecility Termination D.6.2 Interoffice Transport - Dedicated - DS3 - Facility Termination		$\begin{array}{r} \$ 407.58 \\ \$ 1,130 \\ \hline \$ 1,537.86 \end{array}$	$\begin{array}{r} \$ 407.58 \\ \$ 1,130 \\ \hline \$ 1,537.86 \end{array}$	$\begin{array}{r} \$ 407.58 \\ \$ 1,130 \\ \hline \$ 1,537.86 \end{array}$	$\begin{array}{r} \$ 407.58 \\ \quad \$ 1,130 \\ \hline \$ 1,537.86 \end{array}$
	P.25-2	Per Mile - Interofice D.6. 1 Interoffice Transport - Dedicated - DS3 - Per Mile	\$4.25	54.25	\$4.25	\$4.25
	P.25-3	Per Mila - DS3 Loop A. 16.2 High Capacity Unbundied Local Loop - DS3 - Per Mile	\$11.97	\$11.97	\$11.97	\$11.97
P. ${ }^{\text {a }}$	STS1 DIGITAL EXTENDED LOOF WTH DEDICATEO STS1 INTEROFFICE TRANSPORT P.26-1 Fixed A.16. 15 High Capacily Unbundled Locel Loop - STS-1 - Facility Termination D. 10.2 interoffice Transport - Dedicated - STS-1 - Facililiy Termination		$\begin{array}{r} \$ 449.40 \\ \mathbf{\$ 1 , 1 1 4} \\ \hline \$ 1,563.61 \end{array}$	$\begin{array}{r} \$ 449.40 \\ \$ 1,114 \\ \hline \$ 1,583.67 \end{array}$	$\begin{array}{r} \$ 449.40 \\ \mathbf{\$ 1 , 1 1 4} \\ \hline \$ 1,563.61 \end{array}$	$\begin{array}{r} \$ 449.40 \\ \mathbf{\$ 1 , 1 1 4} \\ \hline \$ 1.563 .61 \end{array}$
	P.26-2	Per Mile - interofice D.10.1 interofice Transport - Dedicated - STS-1 - Per Mile	\$4.25	\$4.25	\$4.25	\$4.25
	P.26-3	Per Mile - Loop A.16.16 High Capacity Unbundied Local Loop - STS-1 - Per Mile	\$11.97	\$11.97	\$11.97	\$11.97
P50 4-WIRE DSI LOOP WITH CHANMELIZATION WITH PORY P.50.VG-1 First Voice Grade in DS1 A.9.1 4-Wire DS1 Digital Loop B. 1. I Exchange Ports - 2-Wire Anakg Line Port (Res., Bus., Cenbex, Coin) Q.1.1 Of Channel Bank inside CO - Systom Q.1.4 Unbundted Loop Concentration - POTS Card			$\begin{array}{r} \$ 89.37 \\ \$ 1.63 \\ \$ 124.56 \\ \$.6754 \\ \hline \$ 216.24 \end{array}$	$\begin{array}{r} \$ 113.49 \\ \$ 1.63 \\ \$ 124.56 \\ \$.6754 \\ \hline \$ 240.36 \end{array}$	$\begin{array}{r} \$ 194.35 \\ \$ 1.63 \\ \$ 124.56 \\ \$.6754 \\ \hline \$ 321.21 \end{array}$	$\begin{array}{r} \$ 96.46 \\ \$ 1.63 \\ \$ 124.56 \\ \$.6754 \\ \hline \$ 223.32 \end{array}$
	P.50.VG-2	Additional Voice Grade in same DS1 B.1.1 Exchange Ports - 2-Wire Analog Line Port (Ress., Bus., Centrax, Coin) Q.1.4 Unbundled Loop Concentration - POTS Card	$\begin{array}{r} \$ 1.63 \\ \mathbf{\$} .6754 \\ \hline \end{array}$	$\begin{array}{r} \$ 1.63 \\ \mathbf{S . 6 7 5 4} \\ \hline \end{array}$	$\begin{array}{r} \$ 1.63 \\ \mathbf{\$. 6 7 5 4} \\ \hline \end{array}$	$\begin{array}{r} \$ 1.63 \\ \$.6754 \\ \hline \end{array}$

Unbundied Network Elements Cost Summary

Unbundied Network Elements Cost Summary

Unbundied Network Elements Cost Summary

Unbundied Notwork Elements Cost Summary

[^0]: - 1999 INDETEC International and BellSouth Corporation All Rights Reserved (BSTLM)

[^1]: A. The first step in developing switching costs is the population of the SCIS/MO database. Information is entered for each digital office in BellSouth's territory. For

