ORIGINAL

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		DIRECT TESTIMONY OF DAVID E. CHRISTIANSON
3		ON BEHALF OF SEMINOLE ELECTRIC COOPERATIVE, INC.
4		DOCKET NO. 981827-EC
5		June 26, 2000
6		
7	Q.	Please state your name and business address.
8	А.	My name is David E. Christianson and my business address is 9400 Ward
9		Parkway, Kansas City, Missouri, 64114.
10		
11	ľ.	QUALIFICATIONS
12		
13	Q.	By whom are you employed and in what capacity?
14	А.	I am a Vice President with Burns & McDonnell Engineering Company, a full-
15		service engineering and consulting firm, where I am responsible for managing
16		the firm's Management Service Group.
17		
18	Q.	Please summarize your educational background.
19	Α.	I received a Bachelor of Science degree in Engineering Physics from South
20		Dakota State University in 1972. Subsequently, I received a Master's in Business
21		Administration from the University of Missouri in 1976.
22		
23	Q.	Please summarize your work experience with Burns & McDonnell.
24	A .	I joined Burns & McDonnell in 1976 as a consultant in our company's Power
25		Division. In this position, I was responsible for preparing economic studies for
		DOCUMENT NUMBER-DATE
		1 07777 JUN 26 B

FPSC-RECORDS/REPORTING

1		our electric utility clients. These included electric rate studies, load forecasts,
2		financing studies, and feasibility studies. In 1984, I was promoted to Director of
3		Human Resources of Burns & McDonnell where I was responsible for managing
4		the firm's recruiting, compensation, benefits, and training programs.
5		Subsequently in 1994, I was promoted to Vice President of Administration. On
6		January 1, 1999 I was made Manager of the Management Services Group.
7		
8	Q.	What are your responsibilities as Vice President and Manager of the
9		Management Services Group?
10	A.	In this position I am responsible for managing a multi-discipline team of
11		engineers, accountants, economists and other management professionals. I am
12		responsible for developing personnel within the group, overall review of projects
13		completed by the group, and quality control of the products produced by our
14		consultants. In addition, I provide electric rates and human resources
15		consultation services.
16		
17	Q.	Briefly describe your experience in the area of electric rate design.
18	Α.	In my nearly 25 years of experience with Burns & McDonnell, I have provided a
19		variety of cost-of-service and rate design services to our consumer-owned
20		electric utility clients. These assignments have included development of both
21		wholesale and retail rates. At the retail level, my cooperative experience
22		includes several studies for Southern Maryland Electric Cooperative. These
23		ranged from tariff revisions as part of a make-whole rate proceeding to the
24		development of alternative rate structures to satisfy the Public Utilities
25		Regulatory Policy Act. On the wholesale level, my cooperative rate design

experience includes assisting members of Sunflower Electric Cooperative 1 2 evaluate wholesale rates from their generation and transmission cooperative. More recent cooperative rate experience includes providing 3 oversight for the cost-of-service studies performed by Burns & McDonnell for 4 5 the distribution and transmission members of the Associated Electric Cooperative 6 system. 7 **Q**. Have you previously testified before regulatory commissions or governing 8 boards? 9 10 Α. Yes, I have testified before the Maryland Public Service Commission on several occasions in matters related to cost of service and rate design. I have provided 11 testimony before the Texas Public Utility Commission in support of a certificate 12 of convenience and necessity. In addition, I have presented the results of rate 13 studies for approval before numerous boards of unregulated consumer-owned 14 15 utilities. 16 17 П. **PURPOSE OF TESTIMONY** 18 **Q**. Who are you representing in this proceeding? 19 I have been retained by Seminole Electric Cooperative, Inc. to testify to the 20 Α. results and findings of assignments they have retained Burns & McDonnell to 21 perform. 22 23 24 Q. Can you briefly describe what those assignments were? А. 25 Yes. Burns & McDonnell's first assignment was to perform an independent cost-

1		of-service study and to recommend cost-based wholesale rates to Seminole's
2		Board of Trustees. Second, after having completed this study Burns &
3		McDonnell was retained by Seminole to evaluate its Rate Schedule SECI-7b.
4		Finally, I have been asked to evaluate and comment on the rate structures being
5		proposed by Lee County Electric Cooperative (LCEC).
6		
7	Q.	Briefly describe the points you wish to cover in your testimony.
8	A .	First, I would like to summarize the Cost-of-Service Study and Wholesale Rate
9		Design Report prepared by Burns & McDonnell in 1999. This report
10		recommends that Seminole develop wholesale rates with demand charges that are
11		based on the cost of adding peaking capacity. Second, I would like to comment
12		on Seminole's Rate Schedule SECI-7b and how it compares with the
13		recommendations contained in the Burns & McDonnell report. Third, I would
14		like to comment on the wholesale rates being proposed by LCEC's witness, Mr.
15		William Seelye. I would also like to respond to points in Mr. Seelye's testimony
16		that relate to the Burns & McDonnell Report.
17		
18	Q.	Are you sponsoring any exhibits in this case?
19	А.	Yes. I am sponsoring the following exhibits which are attached to my testimony:
20		Exhibit (DEC-1) – Burns & McDonnell's Cost-of-Service Study and
21		Wholesale Rate Design Report for Seminole Electric Cooperative, December
22		1999.
23		Exhibit (DEC-2) – Comparison of Revenue Collected with Energy,
24		Demand and Consumer Charges, Burns & McDonnell Rates vs. SECI-7b.

1		Exhibit (DEC-3) - Comparison of Expected Average Wholesale Power
2		Costs in 2000, Burns & McDonnell Rates vs. SECI-7b.
3		Exhibit (DEC-4) - Comparison of Expected Average Wholesale Power
4		Costs in 2001, LCEC Alternative 2 vs. SECI-7b.
5		
6	ш.	INDEPENDENT COST-OF-SERVICE STUDY AND WHOLESALE RATE
7		DESIGN
8		
9	Q.	Please describe the initial assignment that Burns & McDonnell was
10		requested to complete by Seminole.
11	А.	Burns & McDonnell responded to a request from Seminole to provide a proposal
12		to perform an independent wholesale cost-of-service and rate design study. After
13		receiving this assignment, Burns & McDonnell was provided only limited
14		direction from Seminole's staff. Burns & McDonnell was instructed to use
15		Seminole's 2000 budget as a basis for developing revenue requirements. All of
16		Seminole's ten member systems were to be included as one class. We were not
17		provided and were instructed not to review the existing wholesale rate schedule
18		at Seminole. We were not aware of Seminole's current or proposed rate
19		schedules or of the LCEC rate structure complaint. We were not provided with
20		any information related to Seminole's strategic plans or long-term goals. Staff
21		from Seminole did provide cost and operating data. All face-to-face meetings
22		between Burns & McDonnell and Seminole staff were also attended by Trustee
23		representatives from the Seminole Rate Committee.
24		
25	Q.	Please describe the study performed by Burns & McDonnell.

Α. The Cost-of-Service Study and Wholesale Rate Design Report is included as 1 Exhibit (DEC-1). Since Seminole had instructed us to use the budgeted 2 cost and operating data for 2000 as a basis for the revenue requirements. Burns & 3 McDonnell did not evaluate revenue requirements. Similarly, since all member 4 systems were included in the same class, there was no need to develop allocation 5 factors. This left the assignment of costs to the various utility functions as the 6 7 key component of the study. 8 How did Burns & McDonnell address the cost assignment issue in this 9 **Q**. 10 study? 11 Α. Burns & McDonnell elected to evaluate three methods of assigning the fixed costs of base-load generation to the energy and demand functions. In all other 12 aspects, the cost assignments were the same. These methods included: (1) a 13 traditional method where all fixed costs were assigned to the demand function. 14 (2) an energy method where the fixed costs of base-load generation were 15 16 assigned to the energy function, and (3) an equivalent peaker method where these same demand costs were assigned to both energy and demand functions. 17 18 19 **O**. You referred to the first assignment method used by Burns & McDonnell as a traditional method. By this do you mean that it is the only method of 20 assigning base-load fixed costs that conforms to generally accepted 21 ratemaking principles? 22 23 **A**. No. In fact, rates have been designed for many years with a portion of the fixed costs being recovered in non-demand charges. "Traditional" was used in the 24 25 report because we wanted to identify the method with a term that would be

1		understandable to the members of the Rate Committee, and we felt most of this
2		audience would be more familiar with this basic assignment method. It could
3		have been called the "demand" method just as easily. Although this method may
4		be one of the more well known, all three methods are familiar to rate design
5		professionals and have been used in the past. There are certainly other
6		acceptable assignment or allocation methods. For example the average and
7		excess method is a well known method that results in a portion of fixed costs
8		being recovered through energy charges. This method is found in use more in
9		retail rate design, yet produces results similar to the equivalent peaker method.
10		As I will discuss later in my testimony, it is not uncommon to find wholesale
11		rates that collect fixed costs in non-demand charges.
12		
13	Q.	The Burns & McDonnell Report states that the traditional method
14		recognizes the cost causation relationship for a utility as it exists today.
15		Does this mean that the traditional method sends appropriate pricing
16		signals?
17	Α.	No. This method sends signals as to how the costs were booked for accounting
18		purposes. It does not necessarily send the correct price signal based on forward-
19		looking costs.
20		
21	Q.	Which of the three assignment methods did Burns & McDonnell use in
22		designing its suggested wholesale rates for Seminole?
23	Α.	The equivalent peaker method was used. With this method, we recognized that
24		base-load generation is installed both to produce capacity and to provide a source
25		of lower cost energy. The share of base-load fixed costs that should be assigned

1		to the demand function is assumed to equal the lowest cost of capacity available
2		to the utility. Additional and more expensive capacity is only placed in service to
3		provide a lower-cost source of energy, and therefore any remaining base-load
4		fixed costs should be assigned to the energy function.
5		
6	Q.	Were purchased power costs assigned using the equivalent peaker method?
7	А.	No. They were assigned to the demand and energy functions based on whether
8		the purchases were billed as demand or energy rates from the supplier.
9		
10	Q.	Should they have been assigned using the equivalent peaker method?
11	A .	Possibly. A more detailed review of Seminole's purchase power contracts would
12		need to be completed to make this determination. To the extent that Seminole
13		pays higher demand charges to obtain a lower cost energy source, the equivalent
14		peaker method should be used to assign a portion of these demand charges to
15		Seminole's energy function. To the extent that the Burns & McDonnell Report
16		did not assign these types of costs to the energy function, it may be appropriate to
17		transfer additional fixed costs to the energy function in future studies.
18		
19	Q.	What are the advantages of using the equivalent peaker method of assigning
20		cost?
21	А.	Using the equivalent peaker method results in wholesale rates that include a
22		demand charge that reflects the cost of adding new peaking capacity. With this
23		type of wholesale rate, the member systems can then design retail rates and
24		develop load management programs that send a price signal that directs their
25		consumers to make economically efficient decisions. In other words, if new

1 peaking capacity can be installed by a utility for an annualized cost of \$40 per kW per year and wholesale (and subsequently retail) rates are designed to reflect 2 this price, then consumers will make decisions to limit their peak demand or find 3 replacement power during periods of peak demand only if they can do so at a 4 cost of less than \$40 per kW per year. With a demand charge based on the 5 equivalent peaker method, consumers would forgo opportunities to reduce load 6 or purchase from another source when this same capacity can be provided by the 7 utility at a lower price. 8 9 By offering a rate with an equivalent peaker derived demand charge, is the 10 **O**. 11 utility committing to use only combustion turbines in its generation expansion plans? 12 13 Α. Not necessarily. There may be other economic reasons to add capacity with higher fixed costs (i.e. base-load, steam generation) and the utility should 14 certainly consider energy costs when developing generation expansion plans. 15 16 However, one should recognize that capacity can be added for the cost of combustion turbines and that any additional cost of new capacity is incurred to 17 18 reduce energy costs and should be assigned to the energy function. 19 **O**. Were there other reasons that Burns & McDonnell recommended the 20 equivalent peaker method? 21 Yes. As the utility industry moves from a regulated to a deregulated business, 22 Α. we anticipate there will be a shift from the traditional approach to the energy 23 approach in developing rates. Using the equivalent peaker method will help 24 prepare Seminole and its members for expected changes in the future while 25

1		recognizing that many traditional techniques are still appropriate or must still be
2		employed.
3		
4	Q.	Could you summarize the proposed rates developed as a result of the Cost of
5		Service Study and Wholesale Rate Design Report?
6	Α.	Yes. The suggested rate consisted of an energy charge of 2.73 cents per kWh, a
7		demand charge of \$7.43 per kW per month, and a customer charge of \$12,397
8		per member per month. These rates are summarized on page ES-10 of Exhibit
9		(DEC-1).
10		
11	IV.	REVIEW OF SEMINOLE RATE SCHEDULE SECI-7B
12		
13	Q.	Have you also reviewed Seminole's Rate Schedule SECI-7b?
14	A.	Yes. This schedule is included with Ms. Novak's testimony, Exhibit (TSN-
15		1). As Ms. Novak has testified, this schedule includes:
16		• Levelized Fuel Energy Charge of \$0.01961 per kWh
17		• Non-Fuel Energy Charge of \$0.00263 per kWh
18		• Production Demand Charge of \$8.50 per kW per month (for eight months)
19		• Transmission Demand Charge of \$1.59 per kW per month
20		• Distribution Demand Charge of \$1.27 per kW per month
21		• Production Fixed Energy Charge - a fixed monthly charge calculated
22		annually for each member
23		Monthly Fuel Adjustment
24		

Q. Please compare Rate Schedule SECI-7b with the proposed rates in the Burns & McDonnell report.

1

2

Α. While at first these rates may appear to have significantly different charges, a 3 closer review of these rates reveals major similarities. These similarities stem 4 5 from the fact that Seminole has chosen to collect a portion of its fixed costs in a charge other than a monthly production demand charge. As discussed above, the 6 fact that Burns & McDonnell used the equivalent peaker method to assign costs 7 also resulted in a portion of Seminole's fixed costs being recovered in non-8 demand charges. In both cases, demand charges are levied on the member 9 10 system's peak coincident with Seminole; however, Seminole has elected to break this charge into two components, a Production Demand Charge and a 11 Transmission Demand Charge. Also the Production Demand Charge is only 12 levied in the four peak summer months and the four peak winter months. When 13 comparing the summarized costs of service on page II-24 of Exhibit (DEC-14 1) with the charges in Rate Schedule SECI-7b, the similarity becomes more 15 apparent. The transmission cost of \$1.59 per kW matches Seminole's 16 transmission charge. The power supply-demand cost of \$5.79 per kW is less 17 than the \$8.50 per kW charged by Seminole. However, it must be remembered 18 that the Burns & McDonnell demand cost is expressed as a per kW per month 19 charge for 12 months of the year, as opposed to eight months – the basis of 20 Seminole's charge. If this cost had been applied to the eight peak months it 21 would have been \$8.02 per kW per month. In summary, had Burns & 22 McDonnell chosen to structure its rates as Seminole has, our recommendation 23 24 would have been to include a demand charge that was 48 cents per kW per month

I		less than Seminole's Production Demand Charge and a transmission charge that
2		was exactly the same as the Transmission Demand Charge.
3		
4	Q.	In your opinion, are there significant reasons for Seminole to collect its
5		Production Demand Charge over only eight months as opposed to the twelve
6		months you recommended?
7	А.	Yes. Since completing the Cost-of-Service Study and Wholesale Rate Design
8		Report, we have received additional information on Seminole that was not
9		provided when we completed the original report. This information has given us
10		added insight into Seminole's longer-term costs. Seminole's new power supply
11		sources are being added to meet peak demand in the summer and winter months.
12		There generally is surplus capacity available to meet demand in the spring and
13		fall, and thus no reason to send a price signal to reduce demand at this time of
14		year. Also a demand charge in these off-peak months would continue to send a
15		false signal to Seminole's members as they attempt to control load when there
16		would be no significant economic savings. To compound the problem,
17		identifying monthly peaks in the spring and fall is extremely difficult if not
18		impossible. With a demand charge in off-peak months, retail customers would
19		likely see increased load management controls that would produce little or no
20		savings for anyone. For the above reasons, limiting the Production Demand
21		Charge to peak months was a sound decision.
22		
23	Q.	Please comment on SECI-7b's Production Fixed Energy Charge.
24	А.	Here again is a charge that was not included in our recommended rates, but is

 A. Here again is a charge that was not included in our recommended rates, but is consistent with the overall philosophy we proposed to Seminole in our

25

independent Cost-of-Service and Wholesale Rate Design Report. Basically, 1 Seminole is recovering its variable cost of fuel through its other energy and fuel 2 charges. It is recovering its transmission cost through its Transmission Demand 3 Charge and it is recovering the incremental cost of capacity through its 4 Production Demand Charge. All of these charges provide price signals to 5 Seminole's member systems. Certainly the energy and fuel charges send the 6 signal to the member systems that if they conserve energy they will allow 7 Seminole to avoid these variable costs and thus result in lower costs. The 8 Production Demand Charge sends the price signal that consumption on peak 9 should be reduced. However, the signal is that price should not be reduced at any 10 cost. Surely, it would not make economic sense for Seminole's members to 11 attempt to reduce peak through load management or generation at a cost greater 12 than Seminole would need to expend to develop new capacity. 13

All of the charges discussed above do not provide sufficient revenue to 15 meet Seminole's revenue requirements. Additional revenue of \$54,000,000 must 16 be collected to meet the fixed costs not recovered through Seminole's Production 17 Demand Charge. These costs are sunk costs and no reduction in kilowatt-hour 18 sales or peak demand will eliminate these costs. For the most part, these costs 19 represent fixed costs associated with base-load generation. Since this base-load 20 generation provides lower cost energy to Seminole and its member systems, it is 21 appropriate that an energy-based charge be developed to recover these costs. 22 Both the philosophical basis for developing Rate Schedule SECI-7b and the 23 resulting effects on the member systems are similar to those proposed in Burns & 24 McDonnell's Cost-of-Service Study and Wholesale Rate Design Report. 25

14

1 Can you compare the rates recommended in the Burns & McDonnell Report **Q**. 2 with Rate Schedule SECI-7b? 3 Yes. To summarize the comparison, I have prepared Exhibit (DEC-2) and Α. 4 Exhibit (DEC-3). Exhibit (DEC-2) contains pie charts that illustrate the 5 relative amount of revenues collected through energy, demand, and consumer 6 charges in both Rate Schedule SECI-7b and the rates suggested in the Burns & 7 McDonnell Report. This chart shows graphically that both rates should collect 8 approximately 60 percent of Seminole's revenue requirements in 2000 with the 9 energy charges. Exhibit (DEC-3) lists and graphs the expected average cost 10 of power for each member system in 2000 under both rate schedules. Again it 11 can be seen that the rates produce similar results. For one of the member systems 12 the average rates are identical. For eight of the member systems the rate 13 schedules produce average rates that differ from 0.1 mills per kWh to 0.6 mills 14 per kWh. The largest difference can be seen at Glades where the Burns & 15 McDonnell schedule would collect on average 1.5 mills per kWh more than Rate 16 17 Schedule SECI-7b. 18

Q. Are there other reasons you feel that it is appropriate to collect fixed costs in an energy charge?

19

20

A. Yes. It is my opinion that as the electric utility industry moves towards
deregulation we will see more commodity pricing of electricity. In a regulated
industry, pricing in effect becomes a conduit where costs are passed along to the
ultimate consumer to the maximum extent possible as they are incurred by the
utility. This places the investment risk squarely on the shoulders of the ultimate

1		consumer. The risks of over or under expansion are borne by the consumer. In a
2		totally unregulated industry, products are sold based on commodity charges.
3		Competitively-priced computers, automobiles, and widgets do not include a
4		demand charge. General Motors does not charge customers directly for its
5		investments in auto manufacturing plants. Rather, it rolls these costs into a per
6		car charge along with the price of steel and labor. If General Motors can sell its
7		product in a competitive market at a price that exceeds all of its costs (both fixed
8		and variable), then it is profitable. If not, it loses money.
9		
10		With deregulation coming to the electric utility industry, it is prudent for
11		Seminole to begin charging more of its costs in an energy charge. This will
12		provide a more gradual transition to what I feel will become a energy charge
13		industry in the future, and will not result in a sudden change in rate structure for
14		Seminole's member systems and their retail consumers.
15		
16	Q.	In your opinion was Rate Schedule SECI-7b developed using generally
17		accepted ratemaking criteria?
18	A .	Yes. As discussed by Ms. Novak, Seminole performed a full analysis of the cost
19		of providing service and used the analysis as the basis for developing Rate
20		Schedule SECI-7b. Also as I discussed above, Burns & McDonnell's
21		independent cost-of-service study supports the general direction of the rates
22		developed. In addition to considering the cost of service, Seminole went a step
23		further and recognized the need to send appropriate pricing signals to its member
24		systems. As discussed by Mr. Woodbury in his testimony, the rate design
25		process followed by Seminole involved extensive input from its users and

1		received support from the majority of those member systems. In summary,
2		Seminole has done an exceptional job in following generally accepted
3		ratemaking principles through a well thought out process that produced rates that
4		are fair, just and reasonable.
5		
6	Q.	Are you familiar with other cases where a portion of the fixed costs are
7		recovered through an energy charge?
8	Α.	Yes. I have completed an informal poll of other consumer-owned utilities and
9		found several examples where fixed costs are intentionally recovered through an
10		energy charge. Both East River Electric Power Cooperative and Kansas Electric
11		Power Cooperative collect a major portion of their fixed costs through energy
12		charges. The Indiana Municipal Power Agency attempts to collect most of its
13		fixed costs through demand charge; however, it does recover both the fixed and
14		variable portions of its purchased power cost for the summer months through an
15		energy charge. TVA's rates to its wholesale customers result in the majority of
16		TVA power being sold with energy charges and no demand charge. Finally, the
17		rates charged by unregulated merchant plants are nearly all energy based.
18		Certainly each utility has its own reasons for collecting fixed costs through
19		energy charges. The fact remains that other wholesale rates do in fact collect
20		fixed costs through energy charges.
21		
22	V.	REVIEW OF LCEC COST-OF-SERVICE STUDY AND PROPOSED
23		RATES
24		

1	Q.	Have you had an opportunity to read the direct testimony of William
2		Seelye?
3	А.	Yes.
4		
5	Q.	What comments do you have about his testimony and the position he takes?
6	А.	First, I find it interesting that Mr. Seelye has spent a significant portion of his
7		testimony addressing Burns & McDonnell's Cost-of-Service Study and
8		Wholesale Rate Design Report. This report was not the basis of the rate design
9		implemented by Seminole, but rather an independent review requested by the
10		Seminole Board of Trustees.
11		
12	Q.	Nevertheless, Mr. Seelye addresses what he feels are "seven serious flaws" in
13		the cost allocation in the Burns & McDonnell study. Would you care to
14		address these?
15	Α.	Gladly. Mr. Seelye refers to the costs used and our analysis as "hypothetical and
16		fictional." As with Mr. Seelye's own cost-of-service analysis, we used budgeted
17		costs for the year 2000. The equivalent peaker method was used to assign costs.
18		As is pointed out in the study, this method is not intended to use historical data to
19		assign costs, but rather to estimate the cost of future peaking capacity and use
20		this information to assign costs. The approach we have chosen to use in assigning
21		costs to the demand and energy functions for Seminole is a forward looking
22		approach and not one that "looks in the rear view mirror." Looking forward
23		requires an informed estimate of what future capacity costs will be. I would not
24		characterize these as hypothetical and fictitious.

Second, Mr. Seelye is concerned that "... the higher operating cost of combustion 1 turbine capacity has not been dealt with at all." The study does include the cost 2 of all fuel for Seminole's system. Peaking capacity fuel is already included in the 3 energy charge. In assigning costs to the demand and energy function, the fixed 4 costs of a combustion turbine were assigned to the demand function. No 5 adjustments were made to this assignment to consider the possible higher fuel 6 costs from a combustion turbine. The cost to produce one additional kilowatt 7 hour on peak can be viewed as the fixed cost of one kilowatt of capacity and the 8 9 fuel cost of one kilowatt hour. The fuel cost of one kilowatt hour is insignificant when compared with the fixed cost of one kilowatt of capacity, and therefore was 10 not included. 11

Third, Mr. Seelye feels the study "...ignores the historical fact that Seminole's system resources consist of a large amount of base-load capacity." Again this study does recognize all the costs of operating Seminole's system; however, as stated above this is a forward-looking view of costs and how appropriate price signals can be sent to Seminole's member systems. The study accomplishes this by recognizing that Seminole's base-load units are not just a source of capacity, but are also a source of lower cost energy.

20

12

Mr. Seelye's fourth criticism of the study is that transmission costs are recovered through the demand charge. Transmission costs were collected through a demand related charge to provide price signals to the members. Reducing a kilowatt of demand at peak will reduce Seminole's transmission costs. Mr. Seelye's argument should not be totally ignored, however. An argument can be

made to include all transmission costs in an energy charge since the original purpose of most transmission systems was to bring low cost energy from remote generation sites to load centers. I doubt, however, that Mr. Seelye would argue that Seminole's transmission demand cost should be recovered through energy charges.

1

2

3

4

5

6

7

8

9

10

11

12

13

Mr. Seelye's fifth point is that the equivalent peaker method would not be allowed by the Federal Energy Regulatory Commission. Seminole is not regulated by the FERC, but rather governed by the Board of Trustees of Seminole. The equivalent peaker method was presented to the members of Seminole on December 8, 1999. This information was available to the Board before Rate Schedule SECI-7b was implemented.

In Mr. Seelye's sixth point he refers to the hypothetical cost of combustion 14 turbines used in the study and suggests that the cost of Seminole's new combined 15 16 cycle units represents the marginal cost of capacity As stated earlier, the cost of combustion turbines was used to assign costs to demand and energy because it 17 was considered the lowest cost capacity addition available. The fact that 18 Seminole is constructing new combined cycle units is irrelevant. The cost of 19 combustion turbines is the marginal cost for new capacity. The addition of other 20 21 types of capacity may be appropriate, but one should recognize that when more costly capacity is added, it is added to provide a lower cost energy source as well 22 as capacity. (It is also interesting to note that Seminole, in addition to 23 constructing new combined cycle units, is also buying peaking power at a cost of 24 \$4 per kW to meet its future power requirements. This may in fact be even more 25

representative of Seminole's marginal cost of capacity.) Also, in preparing the 1 Cost-of-Service Study and Wholesale Rate Design Report for Seminole we were 2 instructed not to consider future plans or strategic objectives that may have been 3 in place at the time, and did not evaluate Seminole's planned expansion. 4 5 Mr. Seelye's seventh and final point is that there are computational errors in the 6 study. He cites incorrect numbers on Table ES-4 of the report. He is correct in 7 that the coincident peaks for some of the cooperatives on this table are incorrect. 8 This error was noted after the study was published and an errata sheet was 9 provided to Seminole before the presentation to the Seminole Board. I apologize 10 to Mr. Seelye for the inconvenience our typographical errors may have caused 11 him in review of the study without the corrections. 12 13 Finally, I would like to again state the Burns & McDonnell study was not the 14 basis for Rate Schedule SECI-7b, but rather it was an independent review that 15 16 produced results which support the rate design concepts used by Seminole. 17 **Q**. Mr. Seelye states on page 5 of his testimony that "SECI-7b does not reflect 18 fundamental cost of service principles " Do you agree? 19 Α. No. While Rate Schedule SECI-7b may not reflect Mr. Seelye's principles, it 20 does reflect the cost of service. There is not necessarily one and only one correct 21 22 way to complete a cost-of-service study. There are a variety of decisions and 23 judgements that must be made in performing any such study. A test year must be chosen. Revenue requirements must be defined. Classes must be defined. Cost 24 assignments must be made. Allocation factors must be developed. In all of these 25

tasks one should consider the goals that the utility has established and not blindly make decisions based on what has happened in the past. Because both the analysis we performed and the analysis Seminole performed explicitly considered the future direction of the utility industry, I conclude that the results are more appropriate than those obtained from Mr. Seelye's "fundamental" costof-service study.

Q. Mr. Seelye states that wholesale rates consist of a demand charge, an energy charge, and a substation charge. Is that always the case?

A. Certainly not. While most wholesale rates contain one or more of these elements, 10 it is an over simplification to imply that all rates except those of Seminole contain 11 the three charges that recover costs exactly as Mr. Seelye has outlined in his 12 testimony. (Even Mr. Seelye's proposed rates for LCEC do not contain the 13 "typical" substation charge.) In fact, inconsistency is probably the most consistent 14 aspect common to wholesale rates. The wide range of rate structures in wholesale 15 rates (especially in member-owned generation and transmission cooperatives) 16 17 reflects the unique goals and objectives of each utility. To state that rates in use today consist of three basic charges is a gross simplification. 18

19

20

1

2

3

4

5

6

7

8

9

Q. Are there other comments that you have about Mr. Seelye's testimony?

A. Yes, I find it interesting that Mr. Seelye has gone to great lengths to develop his own cost-of-service model, Exhibit _____(WSS-2), yet he does not use the results of his model in developing his proposed rates. It would appear he relied heavily on the work of Seminole in developing his rates, and he seems to accept Seminole's assignment of energy and variable costs. It appears that his rate

design was developed by applying different methods to collect the revenue now 1 being recovered through the Fixed Production Energy Charge. Also, it is 2 interesting that projected revenues by member system vary little between Mr. 3 Seelve's Alternative 2 rate design and Seminole's Rate Schedule SECI-7b. 4 Exhibit (DEC-4) shows the average rate charged each of Seminole's member 5 systems under the Lee County's Alternate 2 rates and Rate Schedule SECI-7b 6 applied to estimated 2001 billing units and revenue requirements. The two 7 schedules collect exactly the same average revenue. This is not surprising, since 8 total revenue requirements have not been an issue in this case. What is surprising 9 is how little the average rate varies with each method from member to member. 10 Three member systems (Central, Clay, and Suwannee) pay nearly the same 11 average rate under either rate schedule. All but one differ by less than 0.5 mills 12 13 per kWh. Glade varies by only 0.6 mills per kWh. Assuming that purchase power cost represents seventy-five percent of the ultimate customer cost, the 14 difference in rates would amount to less than 0.75 percent of Lee County's 15 average retail customer's bill. Whether a difference of this magnitude should be 16 debated in this forum and whether the resulting decision will add real value to the 17 ultimate consumer is questionable. 18

19

20

21

Q. What are the differences in the rate schedules proposed by Mr. Seelye and Rate Schedule SECI-7b?

A. As discussed above, the revenue requirements that form the basis of all three of
Mr. Seelye's proposed rate schedules are identical to those used by Seminole in
Rate Schedule SECI-7b. Also, all three of his rate schedules include fuel and
energy charges of 22.4 mills per kWh and distribution charges of \$1.26 per kW

per month. These charges are identical to the projected charges for 2001 under 1 the Rate Schedule SECI-7b methodology. Two of Mr. Seelye's alternatives 2 contain a transmission charge identical to Seminole's, the third includes this 3 charge implicitly in the Demand Charge (Rate Alternative 1). The common (and 4 only) difference between all of Mr. Seelye's rates and those in Rate Schedule 5 SECI-7b is his treatment of fixed production costs. In two of his alternatives 6 (Rate Alternatives 1 and 2) all production demand costs are collected in demand 7 charges. Alternative 3 mirrors Rate Schedule SECI-7b with the exception that 8 the Production Fixed Energy Charge is replaced with a Production Fixed 9 Demand Charge. This charge collects fixed costs based on each member's 10 demand. (From Mr. Seelye's testimony it is not clear whether this charge is 11 calculated using current or historical demands.) 12

13

14

Q. What are your major concerns with Mr. Seelye's rate structure alternatives?

Although Mr. Seelye's rate alternatives produce similar results to Rate Schedule 15 А. SECI-7b in 2001, they send different price signals. In Alternative 1 Mr. Seelye is 16 sending a signal to reduce peak each month of the year if the cost of saving a 17 18 kilowatt is less than \$9.13. As I have discussed previously, Seminole sees little or no savings by reducing peak in its four off-peak months. For the remaining 19 months, Seminole's cost of additional power at peak periods is significantly 20 lower than the demand charge Mr. Seelye is proposing. (See Ms. Novak's 21 testimony.) Sending incorrect price signals can cause Seminole's members to 22 make incorrect decisions. For example, a member, through load management, 23 may curtail 100 kilowatts of load during a non-peak month and reduce its power 24 bill by \$913. Unfortunately, Seminole's costs would most likely remain the same 25

1		and Seminole could experience a \$913 shortfall. As a member-owned utility,
2		Seminole would eventually need to recover this lost revenue with a rate increase.
3		Alternative 2, while correctly pricing demand in the off-peak months, sends the
4		even more erroneous signal that \$10.59 per kW can be saved during peak
5		months. It is not clear how Mr. Seelye would apply Alternative 3. Depending
6		on how he applied his Fixed Production Demand Charge, he may be sending a
7		delayed price signal. However, with a charge based on demand, he would be
8		sending a price signal to curtail demand when there would not be associated cost
9		savings to the members of Seminole.
10		
11	Q.	Are there areas of Mr. Seelye's or Dr. Blake's testimony that you feel
12		support Rate Schedule SECI-7b?
13	A .	Indirectly, yes. Both Mr. Seelye and Dr. Blake testify that rates should be easily
14		understood. I agree. I feel that Rate Schedule SECI-7b is easy to understand and
15		easy to explain. Although both of these witnesses state an opposing opinion,
16		both are able to explain this new rate schedule quite clearly in their own
17		testimony. Mr. Seelye is able to distill a rate schedule that he feels contains
18		"unnecessary complexity" into two pages of double spaced testimony and still
19		has room to add his editorial comments.
20		
21	Q.	In your opinion, do the rate schedules proposed by Mr. Seelye meet the
22		ratemaking standards advocated in Dr. Blake's testimony?
23	A .	No. As I have previously indicated, the resulting average power rates to
24		Seminole's members differ little between Rate Schedule SECI-7b and the rate
25		schedule Mr. Seelye proposes. It is hard to imagine how such similar rates

1		would not both fail the same criteria. The most obvious example can be found in
2		Dr. Blake's criticism that Rate Schedule SECI-7b does not encourage
3		conservation. If Seminole's energy charge of 22.4 mills per kWh does not
4		encourage conservation, how will Mr. Seelye's charge of 2.24 cents per kWh
5		meet this objective?
6		
7	Q.	Does this conclude your testimony?
8	Α	Yes it does.
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Exhibit (DEC-1) Witness David E. Christianson Docket # 981827-EC

Cost of Service Study and Wholesale Rate Design

December 1999

Prepared for

Board of Directors Seminole Electric Cooperative 1613 N Dale Mabry Highway Tampa, FL 33618

Seminole Electric Cooperative, Inc. Report on Cost-of-Service Analysis And Wholesale Rate Design Project: 99-727-4

Dear Board Members,

Burns & McDonnell is pleased to present this report on the Cost-of-Service Study and Wholesale Rate Design performed on the behalf of Seminole Electric Cooperative Inc. This report provides an explanation of the analysis preformed to develop a cost-based wholesale rate for Seminole's member distribution systems. It describes the data, assumptions, and methodologies used in our study. It also presents the results of the analysis and Burns & McDonnell's recommendations to Seminole for proceeding with wholesale rate design.

In completing the study Burns & McDonnell relied only on cost information. Wholesale rates were not adjusted to account for other factor such as existing rates, long-term goals, etc. All member systems were considered as one class. The year 2000 budget was used as the basis of this study so as to develop rates reflecting the cost that can be expected for the period in which the rates are applied. Also, input from your staff was limited to providing data so that this report would result in an independent, cost-based recommendation for wholesale rates.

The recommended rates are based on an equivalent peaker method for assigning base load generation costs. The recommended cost-based rates are:

- 2.73 cents per kilowatt-hour
- \$7.43 per kilowatt per month (coincident with Seminole's peak)
- \$12,397 per member system

Rates were also calculated using other assignment methodologies and are discussed in more detail in this report.

ENGINEERS + ARCHITECTS + CONSULTANTS 9400 Ward Parkway Kansas City Missouri 64114-3319 Tel: 816 333-9400 Fax: 816 333-3690 http://www.burnsmcd.com

We appreciate having had the opportunity to provide services to Seminole and its member systems. We look forward to discussing this report with you on December 8.

Sincerely,

Ja / GC le ten 6

David E. Christianson P.E. Vice-President Management Services Group

Muchellez Shin_

Michelle Z. Simmons P.E. Project Manager

Table of Contents

(.

TABLE OF CONTENTS

EXECUTIVE SUMMARY

Introduction	 ES-1
Cost of Service Analysis	 ES-1
Bate Design	 ES-7
Conclusions and Recommendations	 ES-11

PART I - INTRODUCTION

Seminole Electric Cooperative, Inc.	I-2
Method of Analysis	I-2
Sources of Data	I-3

PART II - COST OF SERVICE STUDY

Overview		11-1
Revenue Req	guirement	II-2
Test	Year Results	II-2
Year	200 Budget	II-3
Rate	Base	II-7
Costs Assign	ment	II-7
Assis	gnment of Generation Investment Cost	II-10
Trad	litional Method	II-10
Ener	gy Method	II-10
Equi	ivalent Peaker Method	II-11
Rate	Base Assignment	II-12
Year	2000 Budget Assignment	II-15
Cost Allocati	ion	II-21
Summary		II-22

PART III - RATE DESIGN

Costs	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	III-1
Billing Units		III-3
Proposed Rates		III-3
Rates U	Inder Alternate Assignment Methods	III-8

PART IV - CONCLUSIONS AND RECOMMENDATIONS

Assumptions		IV-1
Conclusions		IV-1
Recommendation	ארג	IV-2

TABLE OF CONTENTS (Continued)

APPENDIX A -OUTPUT FROM MODEL

Burns & McDonnell

)

(

LIST OF TABLES

EXECUTIVE SUMMARY

******	F2-2
get Assignment	ES-5
Wholesale Rates	ES-8
******	ES-9
E	ES-10
r Systems	
thodsE	ES-12
	get Assignment Wholesale Rates r Systems thods

PART II - COST OF SERVICE ANALYSIS

H-1	Year 2000 Budget	11-4
11-2	Detailed Cost Breakdown	II-5
11-2	Rate Base Summary	II-8
II-J II_4	Itility Services	II-9
11-4	Rate Base Assignment	II-13
11-5	Comparison of Rate Base Assignment	II-14
II-0 II_7	Vear 2000 Budget Assignment	II-16
11-7 11-8	Comparison of Vear 2000 Budget Assignment	H-19
II-0 II 0	Summary of Cost-of-Service	II-24
11-7	Summary of Cost-of-Service for Alternative Methods	II-25
11-10		

PART III - RATE DESIGN

III-1	Cost to be Recovered Through Wholesale Rates	III-2
111-2	Billing Units	III-4
111-3	Proposed Wholesale Rates (Equivalent Peaker Method)	III-5
111-4	Monthly Bills with Proposed Rates (Equivalent Peaker Method)	III-6
111-5	Proposed Wholesale Rates (Traditional Method)	III-9
111-6	Proposed Wholesale Rates (Energy Method)	II-10
111-7	Monthly Bills with Proposed Rates (Traditional Method)	II-11
111_8	Monthly Bills with Proposed Rates (Energy Method)	II-13
111-0	Comparison of Cost to Member Systems with	
111-7	Different Assignment Methods	II-15
	Dilicient Vosikinnent meruora	

Seminole Electric Cooperative, Inc. Cost of Service & Rate Design Study

EXECUTIVE SUMMARY

· .

EXECUTIVE SUMMARY

INTRODUCTION

Seminole Electric Cooperative, Inc. (Seminole) has entered into an agreement with Burns & McDonnell to prepare a cost-of-service study and to recommend an appropriate rate structure for Seminole. As part of this agreement, dated September 21, 1999, Burns & McDonnell has completed an electric cost-of-service analysis and wholesale rate design for Seminole, a generation and transmission cooperative located in Tampa, Florida.

At Seminole's request, this is an independent, cost-based study in which Seminole staff has limited their involvement. Seminole or its member systems' strategic plans and long- and short-term objectives were not considered in the study. To further ensure an independent analysis, Seminole staff did not provide guidance or direction during the study, and they did not provide existing or prior wholesale rate schedules.

The primary objectives of this study are to perform an independent cost-of-service study for the Seminole system, where individual member cooperatives are considered as one customer class, and to recommend an appropriate wholesale rate structure for Seminole. This report contains a description of the results of the electric cost-of-service analysis and proposed wholesale rate for application to all Seminole members.

As the electric utility industry deregulates across the nation, Seminole should begin preparing itself for a more competitive business environment. While the effects that competition will have on the state of Florida are still not known, Seminole and its members systems should move to position themselves for an uncertain and competitive future.

COST-OF-SERVICE ANALYSIS

This analysis consisted of two primary steps: 1) development of the revenue requirement consistent with Seminole's year 2000 budget and 2) assignment of the various costs which make up the revenue requirement to unbundled functions.

Revenue Requirements

A cost-of-service study analyzes and identifies the revenue requirement for the fiscal year in which any revised rates would be implemented. The first step is to select a test year to be used in the development of revenue requirements. Since operating revenues and expenses of a utility generally vary on a seasonal Executive Summary

basis, a 12-month period was used to capture the seasonal impacts on Seminole's financial results. Seminole has requested that Burns & McDonnell develop rates based on its budget for the year 2000. Given the advantages of using a future test year and the relationship of trust and accountability one would expect in a cooperative organization, this approach seems reasonable. Therefore, Seminole's budget for 2000 was used as the basis for identifying costs for this cost-of-service study.

Seminole provided budget information for the year that is summarized as Table ES-1. From this budget it can be seen that Utility Member Service Revenues are expected to be \$553,789,741. This amount represents the revenue requirements that must be recovered from the proposed wholesale rates and thus the cost of service for the member distribution cooperatives. Revenues from other sources result in a total Operating Revenue and Patronage Capital of \$568,221,117.

Rate Base

In addition to identifying all the costs for the test year, it is also necessary to define the rate base. The rate base represents the total investment required by Seminole to provide service to its member systems. It includes utility net of depreciation and an additional amount to recognize Seminole's investment in working capital to operate the system. The rate base is not truly a cost and is not added to the cost of service. Rather, it represents the investment needed to provide service and is used later to assign capital-related costs included in the year 2000 budget.

Cost Assignments

Having identified the costs to be included in the analysis, Burns & McDonnell turned to the next phase of the cost-of-service study, assigning costs to the appropriate utility functions. This phase is also known as the unbundling phase, in that total utility costs are broken out or unbundled by function. In this phase costs are assigned to the various functions or service that the utility provides. Breaking costs down into functions allows them to be used in rate design. Rates can then be designed to reflect how each customer or customer class uses the various functions or unbundled services of the utility. The unbundled costs for Seminole were summarized into the following major areas: 1) power supply – demand; 2) power supply – energy; 3) transmission; 4) consumer services; and 5) general.

The generation investment costs, i.e. depreciation, interest, patronage capital, etc., are a significant portion of the cost of service. How these costs are assigned can significantly impact the rate design process. Three different approaches were considered in the assignment of investment costs.

. 1

Table ES-1

YEAR 2000 BUDGET

Seminole Electric Cooperative, Inc.

Item	Pear 2000 Budget
Utility Member Service Revenues	\$ 553,789,741
Non-member Sales	8,006,085
Interruptible Sales	5,137,708
Martel Sales	62,806
Other Operating Revenues	1,224,777
Total Operating Revenue and Patronage Capital	\$ 568,221,117
Production Expense	\$243,299,011
Cost of Purchased Power	218,516,713
Transmission Expense - Operation	35,526,936
Transmission Expense - Maintenance	1,200,514
Administrative and General Expense	15,336,534
Total Operation & Maintenance Expense	\$513,879,708
Depreciation and Amortization Expense	\$25,581,072
Taxes	164,817
Interest on Long-Term Debt	30,145,557
Other Deductions	3,818,880
Total Expenses	\$573,590,034
Patronage Capital or Operating Margins	(\$5,368,917)
Non Operating Margins - Interest	\$7,010,135
Gain on Disposition of Clean Air Allowances	100,000
Non Operating Margins - Other	493,662
Other Capital Credits and Patronage Dividends	100,000
Patronage Capital or Margins	\$2,334,880

Executive Summary

Using a "Traditional" approach, the investment cost (and fixed O&M cost) of a plant are recovered through the demand charge and the commodity cost of fuel and variable O&M are recovered through an energy charge. This type of assignment recognizes the cost-causation relationship for the utility as it exists today.

An alternative approach to assigning power production costs, the "Energy" method, is to assign all baseload generation investment cost to power supply - energy. The reasoning behind this assignment method is that baseload units are developed to produce kilowatt-hours. Therefore the investment costs as well as the fuel and variable O&M cost should be recovered through an energy charge (investment costs of peaking units under this methodology are normally assigned to the power supply - demand function).

The recommended approach, the "Equivalent Peaker" method of assigning investment costs, is based on the type of generation resource and not whether the costs are fixed or variable. Peaking units are installed to provide capacity and the investment costs associated with this type of generation are assigned to the power supply - demand function. On the other hand, a baseload resource is installed to provide capacity, but also low-cost energy. Therefore, the investment cost for these units should be assigned to both the power supply - energy and power supply - demand function. Only that portion of the investment cost that would have been incurred with the peaking unit is assigned to the power supply - demand function, thus the term equivalent peaker method. The remaining investment costs are more appropriately assigned to the power supply - energy function.

The budget costs identified in Table ES-1 were assigned to the utility functions and sub-functions. Results of all three methods are compared on Table ES-2. In addition to the rate base assignments discussed above, several assignment methodologies were used for other costs. These included the use of a cost-of-service ratio, payroll ratio and total utility plant ratio. These ratios were developed by adding the costs assigned to each of the functional categories and then dividing by the total cost. In other cases, costs were directly assigned to specific functions.

Unbundling the costs of providing electricity to the distribution cooperatives will give Seminole a clearer picture of the source of their costs. It is important for Seminole to remain aware of the opportunities and consequences of deregulation in other states and in Florida as they relate to its electric system. Examining and understanding the detailed costs of delivering power through its transmission system will aid Seminole in its management of competition. With the nationwide movement toward deregulation, and the challenges undertaken by Seminole to be the future provider of choice, it will be important for

Burns & McDonnell

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study
Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

J

1

ES-5

Burns & McDonnell

Year 2000 Budget kW KWH ACC T-KW CONS \$553,789,741 \$290,308,500 \$211,041,972 \$33,596,446 \$13,330,013 \$1,476,741

Table ES-2

1

ł

Ŧ

\$33,596,446

\$13,330,013

\$1,476,741

\$4,036,067

ł

1

Executive Summary

L

Assignment Method GENL TRADITIONAL \$4,036,067 **EQUIVALENT PEAKER** \$553,789,741 \$171,056,692 \$330,293,781 \$33,596,446 \$13,330,013 \$1,476,741 \$4,036,067 ENERGY \$553,789,741 \$136,967,004 \$364,383,468

COMPARISON OF YEAR 2000 BUDGET ASSIGNMENT Seminole Electric Cooperative, Inc.

1

L

1

ł

1

1

ł

Executive Summary

Seminole to know the unbundled cost of service in order to realize its efficiency in each separate unbundled category. In preparation for changes in the industry, the proprietary cost-of-service model developed by Burns & McDonnell was designed to support the development of unbundled service rates.

Cost Allocation

Generally, the next step in a cost-of-service study is to allocate the unbundled costs to the appropriate customer classes. In this part of a study, costs are allocated based on various classes use of different services, i.e., kWh, kW, meters, etc. For this study, Seminole requested that all member distribution systems be considered as one class. To the extent that all member cooperatives receive the same level of service, this is an appropriate approach. Actual allocation between the various member systems then becomes covered in the actual rate design.

The unbundled costs listed on Table ES-2 (for the "Equivalent Peaker" method) were subsequently summarized into the following major areas:

- Power supply energy Power supply energy costs are expected to vary directly with the production or purchase of energy measured in kilowatt-hours (kWh). The power supply energy portion of Seminole's budgeted costs totaled \$330,293,781. Power supply energy costs included Seminole's expenditures associated with electricity generation and purchases. Power supply energy costs were defined as the costs incurred to meet the energy needs of the consumers and consisted primarily of fuel costs and variable generation operation and maintenance (O&M) costs.
- Power supply demand Power supply demand costs are expected to vary directly with
 the capacity installed or purchased to meet the demand requirements of Seminole's system
 measured in kilowatts (kW). The power supply demand portion of Seminole's budgeted
 costs totaled \$171,056,692. Power supply demand costs were defined as the costs incurred
 to meet the peak demand needs of the customers and included Seminole's expenditures
 associated with electricity generation and purchases. These costs consisted primarily of the
 equivalent peaker portion of investment costs for Seminole's generation resources, fixed
 generation O&M costs, and demand-related purchased power costs.
- Transmission Transmission costs are expected to vary directly with the transmission capacity installed or purchased to meet the transmission demand requirements of Seminole's

system measured in kilowatts (kW). The transmission demand portion of Seminole's budgeted costs totaled \$46,926,459. Transmission demand costs were defined as the costs incurred to transmit the peak demands of Seminole's customers and consisted primarily of transmission facilities and operating expenses.

- Consumer Consumer costs for the Seminole system totaled \$1,476,741. Consumer service costs included expenditures that are directly related to providing member services to Seminole's ten distribution cooperatives.
- General General costs totaled \$4,036,067. These general costs are necessary to support all
 of the above functions of the utility. For this reason, the general costs wre broken down into
 sub-functions in proportion of the subtotal of the costs for power supply energy, power
 supply demand, transmission, and consumer costs.

RATE DESIGN

1

Burns & McDonnell used the cost-of-service study results that were based on the equivalent peaker method of assigning costs to design the proposed wholesale rates. The costs were combined into three major categories: commodity, capacity, and customer costs. These costs are summarized on Table ES-3. Commodity costs included the power supply – energy costs. Capacity costs included the power supply – demand and transmission costs. Customer costs included the consumer costs. General costs were included in each category based on the sub-function breakdown. The three major categories of costs provided the basis for developing three separate charges to recover revenues from the member distribution cooperatives on a cost basis.

Having determined the costs to be collected, the next task in designing wholesale rates was to identify the billing units that would be applied to the resulting rates. Table ES-4 summarizes the billing units that were selected for recovering each of the three cost categories.

Proposed Rates

Having defined the costs and the billing units, developing the proposed rates basically became a matter of dividing costs by billing units. The proposed cost-based rates for Seminole's member systems are summarized in Table ES-5. The commodity charge of 2.73 cents per kilowatt-hour is applied to all energy sales. The capacity charge is applied to the members' contribution to Seminole's monthly peak. The actual rate was developed by dividing the sum of monthly capacity costs by the sum of Seminole's

Executive Summary

Table ES-3

COST TO BE RECOVERED THROUGH WHOLESALE RATES Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Category	Cost				
Commodity	\$332,718,663				
Capacity	219,583,495				
Customer	1,487,583				
Total Cost of Service	\$553,789,741				

Burns & McDonnell

}

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

1

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumter	
kWh Purchased	401,047,636	2,522,169,887	325,643,638	2,671,165,760	387,811,955	1,658,790,641	
Sum of Monthly Coincident Peaks (kW)	973,941	5 ,908,70 9	657,585	5,966,874	880,499	4,304,641	
Customer	1	1 12 12	1	1	1		
Units	Simirnee	Talquin	Tri-County	Withlacoochee	Totai	÷	
kWh Purchased	302,701,398	856,509,058	185,508,871	2,882,794,637	12,194,143,481		
Sum of Monthly Coincident Peaks (kW)	723,965	2,122,127	414,093	7,584,148	29,536,582		
Customer	1	1	1	1	10		

Table ES-4

BILLING UNITS Seminole Electric Cooperative, Inc.

Executive Summary

Couvertes

1

P.03

816 822-3474

Table ES-5

PROPOSED WHOLESALE RATES

Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Commodity 2.73 cents per kWh

Capacity

\$7.43 kW per month Monthly member contribution to SECI peak.

Customer Charge

\$12,397 per member

1

monthly peak demand and then dividing this result by 12. Since the billing units used to determine this rate were the sum of the 12 months' demands, no ratchet is included in this rate. Finally, the customer charge is a monthly charge assessed to each member system.

Rates Under Alternate Assignment Methodologies

To provide an indication of how assigning the investment costs of baseload generation would affect the rates, rates were also calculated using the traditional and energy methods. Table ES-6 was included to compare the effect of using different assignment methods on each of the member systems. The average cost of service, expressed in cents per kilowatt-hour, was calculated for each member cooperative using each of the three assignment methods.

CONCLUSIONS AND RECOMMENDATIONS

This study was based on information provided by Seminole, including the 2000 budget numbers, and other sources. The information was also used by Burns & McDonnell to make certain assumptions with respect to conditions that may exist in the future. These assumptions provided the basis for this cost-of-service and rate design study.

Important assumptions made in performing the cost-of-service study and rate design are that:

- 1. energy and demand will be as forecast for Seminole and its members;
- 2. costs will be as budgeted by Seminole; and
- 3. all member cooperatives will be considered as one customer class.

Conclusions

Based on the cost-of-service study and rate design, Burns & McDonnell concludes that:

- 1. Seminole will need to meet a load of 37,907 MW and produce 12,194,143,000 kWh for its members in 2000.
- 2. The total cost of service for Seminole to provide service to its ten member distribution systems in the year 2000, will be \$553,789,741;

1

1

1

ł

I

COMPARISON OF COST TO MEMBER SYSTEMS WITH DIFFERENT ASSIGNMENT METHODS Seminole Electric Cooperative, Inc.

(cents/kWh)

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumter	
TRADITIONAL	4.57	4.47	4.22	4.37	4.43	4.69	
EQUIVALENT PEAKER	4.57	4.48	4.28	4.39	4.45	4.67	
ENERGY	4.57	4.49	4.32	4.42	4.47	4.65	

Units	Suwannee	Talquin	Tri-County	Withlacoochee	Average
TRADITIONAL	4.55	4.60	4.44	4.72	\$4.54
EQUIVALENT PEAKER	4.56	4.59	4.47	4.69	\$4.54
ENERGY	4.56	4.58	4.49	4.67	\$4.54

1

1

١

ł

J

1

1

ł

- 3. This total cost of service can be assigned to the major utility functions using the equivalent peaker method to:
 - Commodity costs \$332,718.663;
 - Capacity costs \$219,583,495; and
 - Consumer cost \$1,487,583.
- 4. Using the traditional method of assigning costs transfers \$40,278,836 from power supply energy to power supply demand. The total cost of service can be assigned to the major utility functions using the traditional method to:
 - Commodity costs \$292,439,827;
 - Capacity costs \$259,862,331; and
 - Consumer cost \$1,487,583.
- 5. Using the energy method of assigning costs transfers \$34,339,960 from power supply demand to power supply energy. The total cost of service for Seminole in the year 2000 using the energy method consists of:
 - Commodity costs \$367,058,623;
 - Capacity costs \$185,243,535; and
 - Consumer cost \$1,487,583.
- 6. The following rates (based on the equivalent peaker method of assigning costs) are cost-based and can provide the basis for designing wholesale rates for Seminole's ten members systems:
 - Commodity 2.73 cents per kWh
 - Capacity \$7.43 kW per month.
 - Customer \$12.397 per member

Executive Summary

Recommendations

Based on conclusions as stated above, it is recommended that:

- 1. The equivalent peaker method be used for the assignment of costs;
- 2. Assignments based on the equivalent peaker method be the basis for developing final rates:
- 3. Seminole compare the cost-based rates with Seminole's existing rates to consider rate stability;
- 4. Seminole compare the cost-based rates with its strategic plans and other long- and short-term goals:
- 5. Seminole modify the rates, if necessary, after making comparisons with existing rates and Seminole and member goals;
- 6. Seminole implement the rate among its member systems;
- 7. Seminole's cost of service be re-evaluated regularly to ensure full cost recovery;
- 8. Seminole continue to review the effectiveness of its rates, especially if changes in member status or the electric utility occur;
- 9. Seminole continue to position itself to be prepared as changes occur through the deregulation of the electric utility industry; and
- 10. Seminole continue to position itself to be prepared as changes occur through the deregulation of the electric utility industry and consider investigating the appropriateness of rate concepts in the future including time-of-use rates, performance-based rates and accelerated recovery of investments.

PART I - INTRODUCTION

_ : ·

--- (

PART I

Seminole Electric Cooperative, Inc. (Seminole) has entered into an agreement with Burns & McDonnell to prepare a wholesale cost-of-service study for the Seminole system and to develop a wholesale rate for application to all Seminole members. As part of this agreement, dated September 21, 1999. Burns & McDonnell has completed an electric cost-of-service analysis and wholesale rate design for Seminole Electric Cooperative, Inc., a generation and transmission cooperative located in Tampa, Florida.

At Seminole's request, this is an independent, cost-based study in which Seminole staff has limited their involvement. Seminole's or its members' strategic plans and long- and short-term objectives were not considered in this study. To further ensure an independent analysis, Seminole staff did not provide guidance or direction to Burns & McDonnell, nor did they provide existing or prior wholesale rate schedules.

This report contains a description of the results of the electric cost-of-service analysis and rate design performed for Seminole. The primary objectives of this study were:

- to determine the revenue required to meet all operating and capital costs consistent with Seminole's 2000 budget;
- to perform a cost-of-service study for the Seminole system where individual member systems are considered one customer class; and
- to develop a wholesale rate for application to all Seminole members.

The electric utility industry has undergone substantial changes in moving toward a more competitive business environment. The potential impacts of the impending deregulation of the electric industry are becoming clearer. While the effects that competition will have on Seminole are still not completely known. Seminole and its members should move to position itself for an uncertain and competitive future.

As the electric utility industry deregulates, utilities and suppliers must have competitive rates. In response to this changing environment, Seminole should have a clear understanding of its current cost structure. This cost-of-service analysis will provide Seminole with information to continue addressing this changing environment. The knowledge gained from the cost-of-service analysis will result in a rate

design that will allow Seminole to effectively recover its costs based on the assumptions made, including the projections in Seminole's 2000 budget.

SEMINOLE ELECTRIC COOPERATIVE, INC.

Seminole is a generation and transmission cooperative system with headquarters located in Tampa. Florida. Seminole provides wholesale electric service to ten member distribution cooperatives:

- Central Florida Electric Cooperative
- Clay Electric Cooperative
- Glades Electric Cooperative
- Lee County Electric Cooperative
- Peace River Electric Cooperative
- Sumter Electric Cooperative
- Suwannee Valley Electric Cooperative
- Talquin Electric Cooperative
- Tri-County Electric Cooperative
- Withlacoochee River Electric Cooperative

Seminole's primary generating facility, the Palatka generating station, is located on the St. Johns River in Putman County and consists of two 625 megawatt coal-fired units. Seminole also owns 14.4 megawatts of Florida Power Corporation's Crystal River 3 nuclear plant and approximately 345 miles of transmission line. While Seminole's primary source of electric power purchases is provided through a long-term agreement with an independent power producer, Seminole also has contracts with other Florida utilities.

METHOD OF ANALYSIS

The cost-of-service analysis performed by Burns & McDonnell first consisted of the determination of Seminole's revenue requirement for the year 2000. This determination was made by use of Burns & McDonnell's "Unbundle" model using data from Seminole's 2000 operating budget. Then the various costs that make up the revenue requirement were assigned to electric utility functions (i.e., power production, transmission, and consumer). The functionalized costs were classified as being either demand-related, energy-related, transmission-related, consumer-related or some combination of these

Burns & McDonnell

four. The ten member cooperatives in the Seminole system were treated as one customer class for the purposes of this study. The resulting cost of service provided the basis for the design of the proposed wholesale rate that resulted in a cost-based wholesale rate for all members.

Seminole's financial and accounting data, provided as input for the analysis, closely followed the Federal Energy Regulatory Commission's (FERC) Uniform System of Accounts for electric utilities. The FERC USOA captures expense data on a functional cost basis as unique accounts are categorized as production, transmission, or administration expenses. This organization of accounting data is important in a cost-ofservice analysis for functionalizing costs, as well as assigning these costs to power supply - demand, power supply - energy, transmission or consumer services.

Part II of this report discusses the cost-of-service study including the determination of the revenue required from the distribution cooperatives. Results are shown at various stages in the analysis and are explained in detail in this section. The assignment of costs in the cost-of-service study performed for Seminole is based on an "equivalent peaker" methodology. Results are also shown for two other methods so that the reader can compare the equivalent peaker method to other alternative methodologies.

Part III discusses the rate design for Seminole developed with their member systems treated as one customer class. Results for two other methodologies are also shown here for comparison to alternative, methodologies.

Part IV summarizes this report and provides conclusions and recommendations regarding the cost of service and recommended rate structure.

SOURCES OF DATA

Seminole's staff and management provided data for the cost-of-service study. This data included computer-generated reports, financial and statistical information, financial reports, and other documents such as power bills, debt service schedules, trial balances, and RUS Form 12 data. The data for the year 2000 provided by Seminole reflected the projected levels of expenses, sales, and revenues from the 2000 operating budget.

Burns & McDonnell used the information provided by Seminole and other sources to make certain assumptions with respect to conditions that may exist in the future. While we believe the assumptions made are reasonable for the purposes of this report, we make no representation that the conditions assumed will, in fact, occur. In addition, while we have no reason to believe that the information provided to us by Seminole and other parties is inaccurate in any material respect, we have not independently verified such information and cannot guarantee its accuracy or completeness. To the extent that actual future conditions differ from those assumed herein or from the information provided to us, the actual results will vary from those projected.

•)

1-4

PART II - COST-OF-SERVICE STUDY

.

(

PART II COST-OF-SERVICE ANALYSIS

OVERVIEW

This part of the report describes the data, methodology, and results of the wholesale cost-of-service analysis performed by Burns & McDonnell for Seminole Electric Cooperative Inc. Seminole has requested that Burns & McDonnell develop rates that were based solely on the cost of service. To complete this assignment, a cost-of-service study needed to be completed. In an electric utility there are many costs that are shared or common to more than one consumer. For this reason, a detailed study is necessary to determine the cost of providing service to each of Seminole's ten member distribution cooperatives.

In determining the cost of service, it is necessary to make a number of subjective decisions as to how to account for various costs. Obviously, these are decisions that affect the results of the cost of service and the subsequent rate design. In this report we have laid out in detail not only the information from which the cost of service was calculated, but also the methodology and assumptions used in developing the unbundled cost of service. With a better understanding of the methodology and assumptions, the reader will better appreciate the results of this study.

Completing a cost-of-service study involves several phases. These include identifying the costs necessary to provide service, assigning or unbundling these utility costs to functions provided by Seminole and summarizing the results in a succinct and meaningful manner. This part of the report has been written to follow the methodology outlined above and describes in detail the procedure used to identify, define, assign, and summarize Seminole's costs of providing wholesale electric power to its member distribution systems.

In performing this study, Burns & McDonnell made use of Unbundle, its proprietary cost-of-service model, to assign costs. A complete copy of the output from the model is included as Appendix A to this report. Significant intermediary and final results have been extracted from the model and are included as tables in the body of this report.

In addition to providing the basis for wholesale rates, a thorough cost-of-service study will provide other benefits to Seminole. It will provide unbundled cost data that will be of value to Seminole as it prepares Cost-of-Service Study

for deregulation. Unbundled cost information will help Seminole evaluate its ability to provide specific unbundled utility services in a deregulated market. Detailed cost breakdowns will also provide additional information to Seminole to help manage and operate its system.

REVENUE REQUIREMENT

Identifying all of the costs necessary to operate Seminole's electric system provides the foundation for the cost-of-service study and ultimately the final wholesale rate design recommendation. Simply stated, rates must be designed to collect *all* of the costs of operating an electric utility. These costs include operating costs, depreciation, interest, taxes and margins. In addition, other costs and revenue sources such as sales to non-members, non-operating margins, capital credits, etc. must be accounted for. In defining costs, the costs of operating the system for a complete 12-month period are used. A full year of cost information is necessary to recognize the seasonal variation of costs in operating an electric utility. For this reason, the first step in defining costs is to define a test year.

Test Year

Although there are a variety of ways to develop a test year, generally speaking test years can be broken into historical test years and future test years. Most other forms of test years are basically combinations of actual and projected cost information. Both historical and future test years offer advantages and disadvantages.

An historical test year method uses data developed from historical accounting and operating records. The advantage to using an historical test year is that the cost actually did occur and the data in the cost-ofservice study can be verified by others such as regulators or intervenors. If an historical test year were to be used at this point, Burns & McDonnell would most likely need to look back to 1998, the most recent year for which audited financial information is available. This would result in developing rates that would be based on information that would be over two years old at the time that rates were actually implemented.

Using a future test year allows the analyst to design rates based on costs that are expected to be incurred during the period in which the rates are initially in effect. If reliable budgets are available, this approach produces rates that have a higher probability of producing the desired results. This approach is also useful when future conditions are expected to change or differ from actual historical year data.

II-2

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study · `)

Seminole has requested that Burns & McDonnell develop rates based on its budget for the year 2000. Given the advantages of using a future test year and the relationship of trust and accountability one would expect in a cooperative organization, this approach seems reasonable. In addition, Seminole's projected budgets have historically been very close to year-end actual costs. Therefore, Seminole's budget for 2000 was used as the basis for identifying costs for this cost-of-service study.

Year 2000 Budget

Seminole provided budget information for the year that is summarized as Table II-1. From this budget it can be seen that Utility Member Service Revenues are expected to be \$553,789,741. This amount represents the revenue requirements that must be recovered from the proposed wholesale rates and thus the cost of service for the member distribution cooperatives. Revenues from other sources result in a total Operating Revenue and Patronage Capital of \$568,221,117.

The cost of operating the Seminole system consists of operation & maintenance expense, depreciation & amortization expense, and other deductions. These costs total \$573,590,034. To account for all costs of serving member systems, margins and capital credits and interest on long-term debt must be added and non-operating margins and other revenues must be subtracted. The budget was restated on Table II-2 to show how this cost build-up produced the total cost of service (\$553,789,741) equal to the Utility Member Service Revenues. This table also shows a more detailed breakdown of the costs.

Production Expenses and Cost of Purchased Power were the two largest operating and maintenance expenses and together accounted for over \$461 million or nearly 90 percent of the \$514 million in Total Operation & Maintenance Expense. Transmission Operation & Maintenance Expenses accounted for approximately seven percent of the total Operations & Maintenance expenses with Administrative and General expenses accounting for approximately three percent. Depreciation was budgeted to exceed \$25 million and Interest on Long Term Debt to exceed \$30 million. Taxes and Other Deductions are expected to total less than \$4 million.

The most significant of other Non-Operating Margins is interest of slightly over \$7 million. Other Revenues are budgeted to exceed \$14 million. The total of Other Revenues and Non-Operating Margins is budgeted to be \$22 million. Cost-of-Service Study

١

Table II-1

YEAR 2000 BUDGET

Seminole Electric Cooperative, Inc.

Item	Year 2000 Budget
Utility Member Service Revenues	\$ 553,789,741
Non-member Sales	8,006,085
Interruptible Sales	5,137,708
Martel Sales	62,806
Other Operating Revenues	1,224,777
Total Operating Revenue and Patronage Capital	\$ 568,221,117
Production Expense	\$243,299,011
Cost of Purchased Power	218,516,713
Transmission Expense - Operation	35,526,936
Transmission Expense - Maintenance	1,200,514
Administrative and General Expense	15,336,534
Total Operation & Maintenance Expense	\$513,879,708
Depreciation and Amortization Expense	\$25,581,072
Taxes	164,817
Interest on Long-Term Debt	30,145,557
Other Deductions	3,818,880
Total Expenses	\$573,590,034
Patronage Capital or Operating Margins	(\$5,368,917)
Non Operating Margins - Interest	\$7,010,135
Gain on Disposition of Clean Air Allowances	100,000
Non Operating Margins - Other	493,662
Other Capital Credits and Patronage Dividends	100,000
Patronage Capital or Margins	\$2,334,880

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

Table II-2

DETAILED COST BREAKDOWN

Seminole Electric Cooperative, Inc.

		Year
		2000
Acct #	Account Name	Budget
500	PRODUCTION EXPENSES	\$2 681 624
500	Operations Supervision And Engineering	162 194 262
501		7 700 904
502	Steam Expenses	1,720,824
505		1,694,210
506	Misc Steam Power Expenses	10,557,901
507	Power Plant Rents	28,641,657
510	Maintenance Supervision and Engineering	5,428,515
511	Maintenance of Structures	349,878
512	Maintenance of Power Plant	14,443,520
513	Maintenance of Electric Plant	1,105,936
<u>5</u> 14	Maintenance of Misc. Steam Plant	5,554,701
518	Nuclear Fuel Expense	648,000
528	Maintenance Supervision and Engineering	2,287,873
_	COST OF PURCHASED POWER	
555	Purchased Power	\$216,750,478
556	System Control and Load Dispatch	1,717,774
557	Other Power Supply Expenses	48,461
	TRANSMISSION EXPENSE - OPERATIONS	
560	Operations Supervision And Engineering	\$177,341
562	Station Expenses	9,604
565	Transmission of Electricity by Others	34,051,675
566	Miscellaneous Transmission Expense	1,285,816
567	Rents	2,500
	TRANSMISSION EXPENSE - MAINTENANCE	
570	Maintenance of Station Equipment	\$1,195,105
571	Maintenance of Overhead Lines	5,409
	ADMINISTRATIVE AND GENERAL EXPENSE	
920	Administrative & General Salaries	\$10.805.074
921	Office Supplies And Expense	2,276,213
922	Administrative Expenses Transferred - Credit	(1.007.800)
923	Outside Services Employed	1,666,460
924	Property Insurance	35,944
925	Injuries And Damages	39,607
926	Employee Pensions and Benefits	58,306
930	General Advertising and Miscellaneous General Expenses	1,342,030
932	Maintenance Of General Plant	120,700
	TOTAL OPERATION AND MAINTENANCE EXPENSE	\$513,879,708

Ĺ

)

Table II-2

DETAILED COST BREAKDOWN

Seminole Electric Cooperative, Inc.

		Year
		2000
Acct #	Account Name	Budget
	DEPRECIATION AND AMORTIZATION EXPENSE	
403.1	Steam Production Plant	\$18,223,995
403.2	Nuclear Production Plant	1,061,449
403.5	Transmission Plant	3,854,282
403.7	General Plant	953,646
990	Depreciation Transferred	(23,785)
404	Amortization Leasehold Improvements	1,205,605
405	Miscellaneous Depreciation/Amortization	288,624
406	Amortization Electric Plant Acquisition	17,256
	TAXES	
408.1	Property Taxes	\$8,618,067
408.2	Payroli Taxes	24,186
408.3	Payroll Taxes	1,731,795
408.4	Payroll Taxes	15,116
408.7	Taxes, Other	(12,282)
990.0	Overhead Allocation and Taxes Transferred	(10,212,065)
	OTHER DEDUCTIONS	
425	Miscellaneous Depreciation/Amortization	\$72
426	Donations	38,120
428	Amortization of Debt Discount and Expense	3,780,688
	TOTAL OPERATING EXPENSE	\$543,444,477
	REQUIRED MARGINS & PATRONAGE CAPITAL	
	REQUIRED MARGINS & PATRONAGE CAPITAL	\$2,334,880
	NON-OPERATING MARGINS	
419	Non-Operating Margins - Interest	(\$7,010,135)
411	Gain on Disposition of Clean Air Allowances	(100,000)
421	Non-Operating Margins - Other	(493,662)
424	Other Capital Credits and Patronage Dividends	(100,000)
	INTEREST ON LONG-TERM DEBT	
427.0	Interest on Long-Term Debt	\$30,145,557
	OTHER REVENUES	
	Interruptible Sales	(\$5,137,708)
	Non-Member Sales	(8,006,085)
	Martel Sales	(62,806)
456	Other Electric Revenues	(1,224,777)
	TOTAL COST OF SERVICE	\$553,789,741

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

Rate Base

In addition to identifying all the costs for the test year, it is also necessary to define the rate base. The rate base represents the total investment required by Seminole to provide service to its member systems. It includes utility net of depreciation and an additional amount to recognize Seminole's investment in working capital to operate the system. Table II-3 summarizes the rate base for Seminole. The actual rate base numbers shown are not truly cost of service and are not added to the cost of service. Rather, they represent the investment needed to provide service and are used later to assign capital-related costs included in the year 2000 budget.

As shown on Table II-3, total utility plant net of depreciation is \$489 million. This amount is based on a projected balance sheet for December 31, 2000, the end of the test year. Although this information is "projected" it provides a good indication of the relative investment and plant equipment. Since these dollars will not be directly recovered, but rather used as the basis for assigning patronage capital cost, they are appropriate for use in this study. Working capital is expected to be \$56 million. This represents 15 days of power production and purchase power expense, 45 days of other operating expenses, and approximately \$30 million in materials, supplies, and prepayments.

COST ASSIGNMENT

Having identified the costs to be included in the analysis. Burns & McDonnell turned to the next phase of the cost-of-service study, assigning costs to the appropriate utility functions. This phase is also known as the unbundling phase, in that total utility costs are broken out or unbundled by function. In this phase costs are assigned to the various functions or services that the utility provides. Breaking costs down into functions allows them to be used in rate design. Rates can then be designed to reflect how each customer or customer class uses the various functions or unbundled services of the utility.

Table II-4 lists the four major functions and associated sub-functions used in the cost-of-service study for Seminole. Also listed are the codes shown for each of the sub-functions. These codes are shown on a variety of tables and are provided to assist the reader in understanding how costs were tracked. The specific major functions were:

- Power Supply
- Transmission
- Consumer
- General

1

Table II-3

RATE BASE SUMMARY

Seminole Electric Cooperative, Inc.

Account		Year 2000
Number	Item	Budget
201 202	Tetal Intensible Plant	\$5 779 220
301-303	Tetal Broduction Blant - Steam	673 348 929
310-316	Total Production Plant - Steam	22 306 484
320-325	101al Production Plant - Nucleon	\$701 434 633
	Total Production Flant	•••••
350	Land and Land Rights	\$15,406,249
352	Structures and improvements	•
353	Station Equipment	-
354-359	Other Transmission Plant	140,203,133
	Total Transmission Plant	\$156,609,382
389	Land and Land Rights	\$798,157
391	Office Furniture & Equipment	1.597.554
302		748,182
397	Communication Equipment	5.649.731
398	Miscellaneous Equipment	15,591,733
550	Total General Plant	\$24,385,357
	All Other Utility Plant	
		. 0
107	Construction work in Progress	
	Total Utility Plant	\$882,429,372
	Depreciation Reserve:	
108.1	Steam Plant	(\$281,169,188)
108.2	Nuclear Plant	(\$8,413,949)
108.5	Transmission Plant	(49,002,883)
108.7	General Plant	(12,791,254)
108.9	Cost of Removal - Nuclear	(94,379)
111.1	Transportation Lease	(23,444,300)
111.1	Intangible Plant (HPS-Acuera)	(2.311,850)
111.1	Leasehold Improvements - U2	(8,650,311)
115.1	Acquisition Adjustment	(429,202)
120.5	Nuclear Fuel	(6,504,475)
	Total Depreciation	(\$392,811,791)
	Net Plant	\$489,617,581
	Working Capital:	
	Power Production	\$9,998,589
	Purchase Power Expense	8,980,139
	Transmission	4,528,042
	Administrative & General	1,890,806
	Payroll & Property Taxes	1.279,342
	Working Funds	4,289
154	Plant Materials and Operating Supplies	17,545,183
165	Prepayments	12,021.018
	Working Capitai	\$56,247,408
	Deductions:	
235	Consumer Deposits	(3,981)
	TOTAL RATE BASE	\$545,861,008

-			**
0	~		
$\alpha uuus$	~	<i>пист и</i>	36.26.26444

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

Part II

.

Table II-4

UTILITY SERVICES

Seminole Electric Cooperative, Inc.

		Unbundled Codes
1.	Power Supply	
	Demand	kW
	Energy	kWh
2.	Transmission	
	Demand	T-kW
	Access	ACC
3.	Consumer	CONS
4.	General	GENL

//-9

Assignment of Generation Investment Cost

As can be seen from a brief review of the costs identified in the previous section, the generation investment costs, i.e., depreciation, interest, patronage capital, etc., are a significant portion of the cost of service. How these costs are assigned can significantly impact the rate design process. To the extent that these costs are assigned to an energy- or demand-related function, they will impact the design of rates and its effect on high and low load factor consumers. Assigning investment-related costs for generation and transmission cooperatives is probably the single most controversial issue faced in most cost-of-service studies. For this reason, the following discussion of cost assignment is included before moving on to the discussion of the actual assignments used in the study. For this assignment, Burns & McDonnell evaluated a traditional form of investment cost assignment as well as an energy-based method and an equivalent peaker method.

Traditional Method. Traditionally, power supply costs are assigned either to power supply - energy or power supply - demand. Generally, there is little disagreement that fuel and variable operating cost should be assigned to the power supply - energy function. Traditionally, fixed costs including investment costs are assigned to the power supply - demand function. This approach helps ensure the fixed investment costs of generation resources (such as the depreciation) are recovered in the demand component of the resulting rates and are not subject to fluctuation and energy sales. Using this method, the investment cost (and fixed O&M cost) of a plant are recovered through the demand charge and the commodity cost of fuel and variable O&M are recovered through an energy charge. This type of assignment recognizes the cost-causation relationship for the utility as it exists today.

This approach protects the utility from changes in consumption patterns over what was expected. For example, if a baseload unit is installed and subsequently energy sales dropped off, the utility will still recover its fixed investment costs. Similarly, if peaking units are installed and energy growth exceeds demand growth, consumers will have paid for the increases in the cost of fuel. In a totally regulated environment this approach provides price signals to the consumer, i.e. use more energy and your bill will increase as fuel costs increase, increase your demand and your bill will increase as investment costs increase. Also, this approach minimizes the risk to the utility, and the utility in essence becomes a conduit for providing service with all cost changes being born by the consumer.

Energy Method. An alternative method to assigning power production costs is to assign all baseload generation investment costs to power supply - energy. The reasoning behind this assignment method is that baseload units are developed to produce kilowatt-hours. Therefore, the investment costs as well as

Burns & McDonnell

the fuel and variable O&M cost should be recovered through an energy charge (investment costs of peaking units under this methodology are normally assigned to the power supply - demand function).

As the electric utility industry moves toward deregulation, the energy method of assigning investment costs for baseload generation is taking on greater prominence. Many merchant power producers are pricing their baseload products on a cents per kilowatt-hour basis. Under this scenario, utilities no longer provide direct price signals and conduits, but rather producers bear the risk and reward of making the proper investment decision. A power producer that builds a baseload facility prices his product based on the market. To the extent that all costs of producing power (both investment and fuel) are lower than the market, he receives the reward in increased profits. Similarly, to the extent that he misgauges the market, he bears the loss.

Equivalent Peaker Method. The equivalent peaker method is based on the type of generation resource and not whether the costs are fixed or variable. Peaking units are installed to provide capacity and the investment costs associated with this type of generation are assigned to the power supply - demand function. On the other hand, a baseload resource is installed to provide capacity, but also low-cost energy. Therefore, the investment costs for these units should be assigned to both the power supply - energy and power supply - demand function. Only that portion of the investment cost that would have been incurred with the peaking unit is assigned to the power supply - demand function, thus the term equivalent peaker method. The remaining investment costs are more appropriately assigned to the power supply - energy function. The principals of the equivalent peaker method are (1) increases in peak demand require the addition of peaking capacity only, and (2) utilities incur the cost of more expensive baseload units because of the additional lower cost energy they provide. Thus, the cost of peaking capacity can be properly regarded as peak-demand related and classified as power supply - demand while all other investment costs can be regarded as energy-related and assigned to the power supply - energy function.

In applying the equivalent peaker method to the Seminole system, Burns & McDonnell determined the date and cost of the installed baseload units. The cost of these units, expressed in dollars per kilowatt, was adjusted to 1998 using the Handy-Whitman Index of Public Utility Construction Costs. Installed costs for combustion turbines, taken from Resource Data International's POWERdat database, were similarly adjusted to 1998 costs.

Cost-of-Service Study

The ratios of the investment cost of the equivalent peaker units (1998 dollars) to the investment cost of the baseload units (1998 dollars) were used to determine how much of the baseload investment cost should be allocated to the power supply - demand function. These ratios were:

Plant	Percent of Investment Cost <u>Assigned</u> <u>to Power Supply – Demand</u>	Percent of Investment Cost Assigned to Power Supply - Energy
Coal	46.3%	53.1%
Nuclear	35.9%	64.1%

All three methods of assigning production investment costs were considered in developing cost-based rates for Seminole. For this project, Burns & McDonnell selected the equivalent peaker method to assign generation investment costs. As the utility industry moves from a regulated to a deregulated business, we anticipate that there will be a shift from the traditional approach to the energy approach. Using the equivalent peaker method will prepare Seminole for expected changes in the future while recognizing that many traditional techniques are still appropriate or must still be employed. In the remaining sections of this report the equivalent peaker method provided the basis for subsequent analyses and rate design; however, summary results from the other two assignment methodologies have been included for comparison.

Rate Base Assignment

Rate base was assigned using the equivalent peaker method discussed above and is summarized on Table II-5. (The resulting rate base assignments for all three methods are compared on Table II-6). The resulting assignment of rate base provided the basis for assigning investment-related costs in the year 2000 budget (see following section). More specifically, the following assignments were made:

- Production plant was assigned by the equivalent peaker method, one of the three methods discussed above.
- Total transmission plant accounts were assigned directly to the transmission-demand function.
- Intangible plant was assigned in proportion to the subtotals for production and transmission plant.
- Office furniture and equipment were assigned to the consumer function.
- Communication equipment was assigned based on the proportion of the estimated utilization by each function.
- Miscellaneous equipment was assigned in proportion to the subtotals for production and transmission plant.

. 1

1 I-5

ł

I

1

)

1

J

Т

ł

RATE BASE ASSIGNMENT Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Account	1	Year 2000							
Number	ltern	Budgel	kW	KWH	ACC	T-KW	CONS	GENL	Description of Assignment
301-303	Total Intangible Plant	\$5,779,220	\$2,044,878	2,672,372	· · ·	1.061.971			Prod/Xmso Plaol Patro
310-316	Total Production Plant - Steam	673,348,929	293,551,261	379,797,668	-	-			KW KWH - 625 MW
320-325	Total Production Plant - Nuclear	22,306,484	8,008,028	14,298,456	•	-	-	-	KW KWH - CR3
	Total Production Plant	\$701,434,633	\$303,604,167	\$396,768,496	\$0	\$1,061,971	\$0	\$0	
350	Land and Land Rights	\$16,406,249				\$16,406,249			T-KW
352	Structures and Improvements			-	-	-			T-KW
353	Station Equipment	· · ·	-	•					T-KW
354-359	Other Transmission Plant	140,203,133	-	-	-	140,203,133	-		T-KW
	Total Transmission Plant	\$156,609,382	\$0	\$0	\$0	\$156,609,382	\$0	\$0	
389	Land and Land Rights	\$798,157	\$282,414	\$369,076	S 0	\$146 667	\$0	50	Prod/Ymen Biant Bate
391	Office Furniture & Equipment	1,597,554	•	-	•		1 597 554		CONS
392	Transportation Equipment	748,182	-	748.182	_	_	1,001,004		KAN
397	Communication Equipment	5,649,731	225,989	338 984	-	2 259 892	2 259 892	564 973	Standordf indemoni
398	Miscellaneous Equipment	15,591,733	5 516 867	7,209,780	-	2 865 086	2,200,002	304,313	Brod/Yman Bloot Datie
	Total General Plant	\$24,385,357	\$6,025,271	\$8,666,022	\$0	\$5,271,645	\$3 857,446	\$564,973	FIOUXINSI FIANL RADO
	All Other Utility Plant	•	-	-	-			-	Prod/Xmsn Plant Ratio
107	Construction Work in Progress	0	0	0	0	0	٥	0	Prod/Xmsn Plant Ratio
	Total Utility Plant	\$882,429,372	\$309,629,437	\$405,434,518	\$0	\$162 942 997	\$3,857,446	\$564.973	
	•						40,000,000	4 004,010	
108.1	Depreciation Reserve:								
106 1	Steam Plant	(281,169,188)	(130,181,334)	(150,987,854)	0	0	0	0	KW, KWH - 625 MW Capa
108 2	Nuclear Plant	(8,413,949)	(3,020,608)	(5,393,341)	0	0	0	0	KW, KWH - CR3
108 5	Transmission Plant	(49,002,883)	0	0	0	(49,002,883)	0	0	Total Utility Plant Ratio
	General Plant	(12,791,254)	(4,488,233)	(5,876,976)	0	(2,361,940)	(55,916)	(8,190)	Total Utility Plant Ratio
108 9	Cost of Removal - Nuclear	(94,379)	(33,682)	(60,497)	0	0	0	Q	KW, KWH - CR3
111.1	Iransportation Lease	(23,444,300)	0	(23,444,300)	0	0	0	0	KW, KWH - CR3
111 1	Intangible Plant (HPS-Acuera)	(2.311,850)	(818,008)	(1,069,024)	0	(424,818)	0	0	KW, KWH - CR3
11.1	Leasehold improvements - U2	(8,650,311)	(4,005,094)	(4,645,217)	0	0	0	0	KW, KWH - CR3
115 1	Acquisition Adjustment	(429,202)	(154,084)	(275,118)	0	0	0	0	KW, KWH - CR3
20 5	Nuclear Fuel	(6,504,475)	0	(6,504,475)	0	0	0	0	KW, KWH - CR3
	Total Depreciation	(\$392,611,791)	(\$142,701,243)	(\$198,256,802)	\$ 0	(\$51,789,641)	(\$55,916)	(\$8,190)	
	Net Plant	\$489,617,581	\$166,928,195	\$207,177,716	\$0	\$111,153,356	\$3,801,531	\$556,784	
	Working Capital:								•
	Power Production	9,998,589	986,671	9,011,919	0	0	0	0	Operating Expense
	Purchase Power Expense	\$8,980,139	4,944,324	4,004,210	0	0	31,605	0	Operating Expanse
	Transmission	4,528,042	0	0	4,198,152	329,890	0	0	T-KW
	Administrative & General	1,690,806	770,173	463,750	0	57,789	65,935	533,159	Admin & General Ratio
	Payroll & Property Taxes	1,279,342	914,609	226,632	0	44,460	29,032	64,410	Tax Expense Ratio
	Working Funds	4,289	0	0	0	0	4,289	0	Direct
54	Plant Materials and Operating Supplies	17 545 183	6,156,306	8.061,181	0	3,239,766	76,697	11,233	Total Utility Plant Ratio
65	Prepayments	12,021,018	4,217,970	5,523,089	0	2,219,714	52,549	7 696	Total Utility Plant Ratio
	Working Capital	\$66,245,997	\$18,976,923	\$36,302,698	\$4,198.152	\$5,891,619	\$260,106	\$616,499	
	Deductions:								
35	Consumer Deposits	(3.981)	0	0	0	0	(3,981)	0	CONS
	TOTAL RATE BASE	\$545,861,008	\$184,918,447	\$234 468 495	\$4,198,152	\$117,044,975	\$4,057,656	\$1 173 282	
	Rate Base Ratio	100 00%	33 86%	42 95%	0 77%	21 44%	0.74%	0 21%	

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

1

)

J

]

1

Ţ

J

Ĩ

)

11-13

ł

ł

Cost-of-Service Study

1

1

Table II-6

1

1 1

1

1

1

1

ł

COMPARISON OF RATE BASE ASSIGNMENT

Assignment Method	Year 2000 Budget	kW	KWH	ACC	T-KW	CONS	GENL
TRADITIONAL	\$545,861,008	\$394,437,055	\$24,949,888	\$4,198,15 2	\$117,044,975	\$4,057,656	\$1,173,282
EQUIVALENT PEAKER	\$545,861,008	\$184,918,447	\$234,468,495	\$4,198,152	\$117,044,975	\$4,057,656	\$1,173,282
ENERGY	\$545,861,008	\$7,343,297	\$412,043,646	\$4,198,152	\$117,044,975	\$4,057,656	\$1,173,282

Seminole Electric Cooperative, Inc.

11-14

1

Burns & McDonnell

1

1

1

1

ł

1

1

1

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

Part II

- Transportation equipment consists of fuel transportation equipment and was therefore assigned the power supply energy function.
 - The depreciation reserves were assigned based on the corresponding plant.
- Working capital was assigned in the same ratio as the equivalent expense from the budget.
- Consumer deposits were assigned directly to the consumer function.

Year 2000 Budget Assignment

The budget costs identified in Table II-2 were assigned to the utility functions and sub-functions on Table II-7. Results of all three methods are compared on Table II-8. In addition to the rate base assignments discussed above, several assignment methodologies were used for other costs. These included the use of a cost-of-service ratio, payroll ratio and total utility plant ratio. These ratios were developed by adding the costs assigned to each of the functional categories and then dividing by the total cost. The actual ratios are shown at the end of Table II-7. In other cases, costs were directly assigned to specific functions.

Table II-7 summarizes the results from the Unbundle model that describe how the various costs in the year 2000 budget were assigned. More specifically, the costs were assigned as described below:

Power Production Expenses

- Operations supervision and engineering, and steam and nuclear maintenance supervision and engineering were assigned to power supply demand. It was assumed that large portions of these costs were salaries and that the number of employees was dependent on the size of the plants.
- Steam, electric and miscellaneous steam power expenses depend on the amount of energy generated and were assigned to the power supply energy function. Maintenance related to these items is also an expense incurred to produce electricity and was assigned to energy.
- The costs of fossil and nuclear fuel are dependent on the amount of energy produced and were therefore assigned to the power supply energy function.
- The maintenance of structures is dependent on the size of the plants and was classified as a fixed expense assigned to the power supply demand function.
- Power plant rents apply only to Palatka 2 generating unit and were assigned to power supply demand and power supply energy based on the equivalent peaker method.

Į

1

Table II-7

1

]

1

1

1

J

I

1

Page 1 of 3

1

Cost-of-Service Study

}

I.

Year 2000 Budget Assignment Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

		514 0000				_			
		FY 2000							
		Budget		KIMH	ACC	ТКМ	CONE	CENI	Description of Antioement
ACCI		104013			765	1-6.44	CONS	GEINL	Description of Assignment
600	Operations Supervision And Engineering	2 681 634	2 681 634	0	ß	6	- n		KW .
501	Fuel Expense	162 184 362	0	162 184 362	۵ م	j õ.	0	- -	KMH
502	Stam Expenses	7,720,824	o	7,720,824	0	Ő	i o	Ö	KWA
505	Flectric Expenses	1.694,210	0	1.694.210	Ō	Ö	ō	, o	KWH
506	Misc Steam Power Expenses	10,557,901	ő	10,557,901	o	Ō	Ö	Ō	KWH
507	Power Plani Ranis	28.641.657	13,261,087	15.380.570	0	0	Ŏ	ō	KWKWH
510	Maintenance Supervision and Engineering	5,428,515	5.428.515	0	0	l o	0	l õ	KW
511	Mainlenance of Structures	349.878	349.878	0	0	l o	۔ ا	i õ	KW
512	Maintenance of Boiler Plant	14,443,520	0	14,443,520	a	0	Ö	a	KWH
513	Maintenance of Electric Plant	1,105,936	0	1,105,936	0	0	0	ō	KWH
514	Maintenance of Misc. Steam Plant	5,554,701	0	5,554,701	0	0	0	l o	KWH
518	Nuclear Fuel Expense	648,000	0	648,000	0	0	0	i o	KWH
528	Maintenance Supervision and Engineering	2,287,873	2,287,873	0	0	0	0	0	ĸw
	PURCHASED POWER					Γ			
555	Purchased Power	216,750,478	118,545,653	97,435,770	0	0	769,055	0	KW,KWH, CONS - BY CONTRACT
556	System Control and Load Dispatch	1,717,774	1,717,774	0	0	(0	0	0	kw
557	Other Power Supply Expenses	48,461	48,461	0	0	0	0	0	ĸw
	TRANSMISSION OPERATIONS EXPENSES								
560	Operations Supervision And Engineering	177,341	0	0	0	177,341	0	0	T-KW
562	Station Expenses	9,604	0	0	0	9,604	0	0	T-KW
565	Transmission of Electricity by Others	34,051,675	0	0	34,051,675	0	0	0	ACC
566	Miscellaneous Transmission Expenses	1,285,816	0	0	0	1,285,816) o] 0	T-KW
567	Rents	2,500	0	0	0	2,500	0	0	1-KW
	TRANSMISSION MAINTENANCE EXPENSES					1	1		
570	Maintenance of Station Equipment	1,195,105	0	0	a	1,195,105	0	0	т-кw
571	Maintenance Of Overhead Lines	5,409	0	0	0	5,409	0	0	ТКМ
	ADMINISTRATIVE AND GENERAL OPERATIONS EX	PENSES							1
920	Administrative & General Salaries	10,805,074	4,890,317	3,787,480	0	565,680	485,177	1,076,420	Personnel Function
921	Office Supplies And Expense	2,276,213	1,627,634	403,224	0	79,104	51,653	114,598	PAYROLL RATIO
922	Administrative Expenses Transferred - Credit	(1,007,800)	(353.620)	(463,036)	0	(186,093)	(4,405)	(645)	TOTAL UTILITY PLANT RATIO
923	Outside Services Employed	1,666,460	0	0	0	0	0	1,666,460	GENL
924	Property Insurance	35,944	12,612	16,515	0	6,637	157	23	TOTAL UTILITY PLANT RATIO
925	Injuries And Damages	39,607	28,321	7,016	0	1,376	899	1,994	PAYROLL RATIO
926	Employee Pensions and Benefits	58,306	41,692	10,329	0	2,026	1,323	2,935	PAYROLL RATIO
930	General Advertising and Miscellaneous General Expen	1,342,030	0	0	0	0	0	1,342,030	GENL
	ADMINISTRATIVE AND GENERAL MAINTENANCE E	XPENSES						[
932	Maintenance Of General Plant	120,700	0	0	0	0	0	120,700	GENL
_	DEPRECIATION AND AMORTIZATION EXPENSE								
403.1	Steam Production Plant	18,223,995	8,437,710	9,786,285	0	0	0	0	KW,KWH
403.2	Nuclear Production Plant	1,061,449	381,060	680,389	0	0	0	0	KW,KWH
403.5	Transmission Plant	3,854,282	0	0	0	3,854,282	0	0	T-KW
403 7	General Plant	953,646	0	0	0) 0	ļo	953,646	GENL
990.0	Depreciation Transferred	(23,785)	(8,346)	(10,928)	0	(4,392)	(104)	(15)	TOTAL UTILITY PLANT RATIO
404.0	Amortization Leasehold Improvements	1,205,605	558,195	647,410	Ū	0	0	0	KW,KWH
405.0	Miscellaneous Depreciation/Amortization	268,624	101,273	132,609	0	53,295	1,262	185	TOTAL UTILITY PLANT RATIO
406.0	Amortization Electric Plant Acquisition	17,256	6,195	11,061	0	0	0	0	IKW,KWH

~

Burns & McDonnell

Ì

ł

ł

J

T

1

1

1

11-16

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

Part II

T. ił-7

I

I

1

1

E

1

1

1

Year 2000 Budget Assignment Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

	· · · · · · · · · · · · · · · · · · ·								
		FY 2000		1					1
		Budget							
Acci #		Totals	KW	KWH	ACC	T-KW	CONS	GENL	Description of Assignment
	OTHER EXPENSES								
408.1	Property Taxes	8,618,067	3,023,933	3,959,594	0	1,591,350	37,673	5,518	TOTAL UTILITY PLANT RATIO
408.2	Payroll Taxes	24,186	17,294	4,284	0	841	549	1,218	PAYROLL RATIO
408.3	Payroll Taxes	1,731,795	1,238,341	306,782	0	60,184	39,299	87,189	PAYROLL RATIO
408.4	Payroll Taxes	15,116	10,609	2,678	Û	525	343	761	PAYROLL RATIO
408.7	Taxes, Other	(12,282)	0	0	0	0	0	(12,282)	GENL
990.0	Overhead Allocation and Taxes Transferred	(10,212,065)	(3,583,240)	(4,691,960)	0	(1,885,686)	(44,641)	(6,538)	TOTAL UTILITY PLANT RATIO
425	Miscellaneous Depreciation/Amortization	72	25	33	0	13	0	0	TOTAL UTILITY PLANT RATIO
426	Donations	38,120	0	0	0	0	0	38,120	GENL
428	Amortization of Debt Discount and Expense	3,760,688	1,326,579	1,737,047	0	698,114	16,527	2,421	TOTAL UTILITY PLANT RATIO
	TOTAL OPERATING EXPENSE	543,444,477	162,077,661	333,052,605	34,051,675	7,513,032	1,354,766	5,394,737	
<u>, </u>	ANNUAL INVESTMENT COST:		·						
Y	Target Margin Dollar Amount								i
	Required Margins & Patronage Capital	2,334,680	619,270	1,072,767	0	431,142	10,207	1,495	TOTAL UTILITY PLANT RATIO
	Required Margins & Patronage Capital	2,334,860	819,270	1 072 767	0	431,142	10,207	1,495	
	Non-Operating Margins								
419	Non Operating Margins - Interest	(7,010,135)	(2,165,317)	(4,181,016)	(425,280)	(168,738)	(18,693)	(51,090)	COS RATIO - PREL
411	Gain on Disposition of Clean Air Allowances	(100,000)	(100,000)	0	0	0	0	0	ĸw
421	Non Operating Margins - Other	(493,662)	(152,484)	(294,432)	(29,949)	(11,683)	(1,316)	(3,598)	COS RATIO - PREL
424	Other Capital Credits and Patronage Dividends	(100,000)	0	0	0	0) o	(100,000)	GENL
	Required Operating Margins	(5,368,917)	(1,598,532)	(3,402,682)	(455,229)	250,522	(9,803)	(153,193)	
427	Interest on L-T Debt	30,145,557	10,577,563	13,850,456	0	5,566,460	131,778	19,301	TOTAL UTILITY PLANT RATIO
	Total Interest & Op. Margins	24,776,640	8,979,031	10,447,775	(455,229)	5,816,981	121,975	(133,893)	
	Total Operating Expense	543,444,477	162.077.661	333,052,605	34,051,675	7,513,032	1,354,766	5,394,737	
	Less Other Revenues								
	Interruptable Sales	(5,137,708)	0	(5,137,708)	0	0	0	0	кмн
	Non-Member Sales	(8,006,085)	Jo	(8,006,085)	0	0	0	0	KWH
	Martel Sales	(62,806)	0	(62,806)	0	o	O	(o	KWH
456	Other Electric Revenues	(1,224,777)	0	0	0	0	j 0	(1,224,777)	GENL
	TOTAL COST OF SERVICE	553,789,741	171,056,692	330,293,781	33,596,446	13,330,013	1,476,741	4,036,067	<u> </u>
	Cost-of-Service Ratio	1.000	0.309	0.596	0.061	0.024	0.003	0.007	
	Non-Power Supply COS Ratio	1,000	0.000	0.000	0.000	0.707	0.078	0.214	
SUMMA	RY OF COST OF SERVICE						1		
Power Pr	oduction	243,299,011	24,008,987	219,290,024	0	(0	(o	0	1
Purchase	d Power	218.516,713	120,311,888	97,435,770	0	0	769,055	j o	
T ransmiş	sion Operations Expenses	35,526,936	0	0	34,051,675	1,475,261	0	0	
Transmis	sion Maintenance Expenses	1,200,514	0	0	0	1,200,514	0	0	1
Administr	ative And General Operations Expenses	15,215,834	6,246,957	3,761,527	0	468,731	534,804	4,203,816	
Administrative And General Maintenance Expenses		120,700	0	0	0	a 🛛 🖉	o	120,700	
Depreciation		25,581,072	9,476,087	11,246,826	0	3,903,185	1,158	953,816	
Taxes & Other		3,983,697	2,033,742	1,318,458	0	465,341	49,750	116,406	1
Total Interest & Op. Margins		32,480,437	11,396,832	14,923,223	0	5,997,602	141,985	20,796	
Non-operating Margins		(7,703,797)	(2,417,801)	(4,475,449)	(455,229)	(180,620)	(20.010)	(154,688	
Non-Member Sales		(8.006,085)	O O	(8,006,085)	0	0	0	0	
Interruptible Sales		(5,137,708)	0	(5,137,708)	0	0	0	0	
Martel Sales		(62,806)	0	(62,806)	0	0	. 0	0	
Other On	Other Op. Revenue		0	Ó	0	0	0	(1,224,777)
Cost of Service		553,789,741	171.056.692	330,293,781	33,596,446	13,330,013	1,476,741	4,036,067	1

1

1

....

1

ļ

1

1

}

١

age 2 of 3

1

Part II

1

Cost-of-Service Study

Table II-7

1

l l

1

1

1

1

T

ł

Ł

Page 3 of 3

ł

Cost-of-Service Study

Part II

1

1

Year 2000 Budget Assignment Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

	FY 2000			<u> </u>	Γ	<u></u> _	r	1
1	Budget				1		ł	1
Acct#	Totals	ĸw	KWH	ACC	T-KW	CONS	GENL	Description of Assignment
COS Excluding Payroll & Gross Receipts Tax, Req'd Margins,	& Int. on LT Debt							
Required Operating Margins	32,280,437	11,296,832	14,923,223	0	5.997,602	141,985	(79,204)	
Total Op Exp	543,444,477	162,077,661	333,052,605	34,051,675	7.513,032	1,354,766	5,394,737	
Cost of Service (excl. nonoperating interest and other income)	561,293,538	173,374,493	334,769,229	34,051,675	13,510,634	1,496,751	4,090,755	1
COS Ratio (Prelim.)	1.000	0.309	0.596	0.061	0.024	0.003	0.007	}
Non-Power Supply COS Ratio (Prelim.)	1.000	0.000	0.000	0.000	0.707	0.078	D.214	L
RATIOS								······
Power Production	1.000	0.099	0.901	0.000	0.000	0.000	0.000	
Purchased Power	1.000	0.551	0.446	0.000	0.000	0.004	0.000	
Transmission	1.000	0.000	0.000	0.927	0.073	0.000	0.000	
Admin, & General	1.000	0 407	0.245	0.000	0.031	0.035	0.282	}
Taxes (Payroll & Property)	1.000	0.413	0.412	0.000	0.159	0 008	0.008	
Cost of Service Ratio	1.000	0.309	0.596	0.061	0.024	0.003	0.007	[
PAYROLL RATIO	.							
Operations Supervision And Engineering	2.681,634	2,681,634	0	0	0	0	0	
Maintenance Supervision and Engineering	5,428,515	5,428,515	0	0	0	0	0	
Maintenance Supervision and Engineering	2,287,873	2,287,873	0	0	0	0	0	
Operations Supervision And Engineering	177,341	0	0	0	177,341	0	0	1
Administrative & General Salaries	10,805,074	4,890,317	3,787,480	0	565,680	485,177	1,076,420	4
Total	21,380,437	15,288,339	3,787,480	G	743,021	465,177	1.076,420	1
Payroli Ratio	1.000	0.715	0.177	0.000	0.035	0.023	0.050	1
TOTAL UTILITY PLANT RATIO								
Production Plant Ratio	1.000	0.433	0.567	0.000	0.000	0.000	0.000	
Transmission Plant Ratio	1 000	0.000	0.000	0.000	1.000	0.000	0.000	
Prod/Xmsn/Dist Plant Ratio	1.000	0.354	0.462	0.000	0.184	0.000	0.000	
Total Utility Plant Ratio	1.000	0.351	0.459	0.000	0.185	0.004	0.001	1

Burns & McDonnell

1

1

I

F

}

T

•

.....

Table II-8

ł

ł

1

1

1

COMPARISON OF YEAR 2000 BUDGET ASSIGNMENT

1

1

Assignment Method	Year 2000 Budget	kW	КМН	ACC	Т-КМ	CONS	GENL	
TRADITIONAL	\$ 553,789,741	\$ 211,041,972	\$290,308,500	\$33,596,446	\$13,330,013	\$1,476,741	\$4,036,067	
EQUIVALENT PEAKER	\$553,789,741	\$171,056,692	\$330,293,781	\$33,596,446	\$13,330,013	\$1,476,741	\$4,036,067	
ENERGY	\$553,789,741	\$136,967,004	\$364,383,468	\$33,596,446	\$13,330,013	\$1,476,741	\$4,036,067	

Seminole Electric Cooperative, Inc.

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

Ŧ

Ŧ

T

1

}

11-19

Burns & McDonnell

1

)

1

Purchased Power

- Purchased power supply costs were assigned 55% to the power supply demand function, 44.6% to the power supply energy function and .4% to the consumer function consistent with Seminole's purchased power contracts.
- System control and load dispatch and other power supply expenses are fixed with respect to capacity purchased and were assigned 100% to the power -supply demand function.

Transmission Operation Expense

- Operations supervision and engineering was assigned to transmission-demand since large portions of these costs are salaries and the number of employees is dependent on the capability of the facilities.
- Station expenses, miscellaneous transmission expenses and rents are dependent on the capability of facilities, based on capacity requirements, and were assigned to transmission-demand.
- Transmission of electricity by others or to others was directly assigned to the transmission access function.

Transmission Maintenance Expense

• Transmission maintenance expenses related to station equipment and overhead lines are dependent on the demand capability of the facilities and were therefore assigned to transmission-demand.

Administrative and General O&M Expense

- Based on a brief review of payroll provided by Seminole staff, administrative and general salaries were assigned to various functions.
- Office supplies and expenses, injuries and damages, and employee pension and benefits were assigned to all categories using the payroll ratio.
- Administrative expense-transferred credit and property insurance were assigned to all categories based on the total utility plant ratio.
- Outside services employed and general advertising and miscellaneous general were all considered general services and were therefore assigned to that function.
- Maintenance of general plant was considered to be a general service and was therefore assigned to the general function.
Depreciation and Amortization Expense

- Steam depreciation and nuclear production depreciation were assigned with the equivalent peaker method (as well as the traditional and energy methods for comparison).
- Transmission plant is based on the capacity of the facilities and therefore, depreciation was assigned to transmission-demand.
- Depreciation transferred, miscellaneous depreciation and amortization, and amortization of electric plant acquisition were assigned based on the total utility plant ratio.
- General plant was assigned to the general category.
- Amortization of leasehold improvements applies only to Palatka #2 and was assigned consistent with the equivalent peaker method.

Other Expenses

- Property tax, overhead allocated tax transferred, miscellaneous depreciation and amortization, and amortization of debt discount and expense were assigned based on the total utility plant ratio.
- Payroll taxes (social security, state unemployment and federal unemployment) were assigned based on the payroll ratio.
- Other taxes and donations were assigned to the general category.

Annual Investment Cost

- Required margins and patronage capital were assigned based on the total utility plant ratio.
- Interest from non-operating margins and other non-operating margins were assigned using the cost-of-service ratio.
- Disposition of clean air allowances depends on the capability of the units and therefore, the gain was assigned to the demand function.
- Other capital credits and patronage dividends were assigned to the general function.
- Interest on long-term debt was assigned based on the total utility plant ratio.
- Revenue from non-member sales was assigned to energy.
- Other electric revenues were assigned to the general function.

COST ALLOCATION

Generally, the next step in a cost-of-service study is to allocate the unbundled costs to the appropriate customer classes. In this part of a study, costs are allocated based on various classes use of different services, i.e., kWh, kW, meters, etc. For this study, Seminole requested that all member distribution

Cost-of-Service Study

1

systems be considered as one class. To the extent that all member cooperatives receive the same level of service, this is an appropriate approach. Actual allocation between the various member systems then becomes covered in the actual rate design, which is discussed in Part III of this report. For these reasons, there were no allocation of costs in this study.

SUMMARY

The unbundled costs listed on Table II-7 were subsequently summarized into the following major areas:

- Power supply energy Power supply energy costs are expected to vary directly with the production or purchase of energy measured in kilowatt-hours (kWh). The power supply energy portion of Seminole's budgeted costs totaled \$330,293,781. Power supply energy costs included Seminole's expenditures associated with electricity generation and purchases. Power supply energy costs were defined as the costs incurred to meet the energy needs of the consumers and consisted primarily of fuel costs and variable generation operation and maintenance (O&M) costs.
- Power supply demand Power supply demand costs are expected to vary directly with the capacity installed or purchased to meet the demand requirements of Seminole's system measured in kilowatts (kW). The power supply - demand portion of Seminole's budgeted costs totaled \$171,056,692. Power supply - demand costs were defined as the costs incurred to meet the peak demand needs of the customers and included Seminole's expenditures associated with electricity generation and purchases. These costs consisted primarily of the equivalent peaker portion of investment costs for Seminole's generation resources, fixed generation O&M costs, and demand-related purchased power costs.
- Transmission Transmission costs are expected to vary directly with the transmission capacity installed or purchased to meet the transmission demand requirements of Seminole's system measured in kilowatts (kW). The transmission demand portion of Seminole's budgeted costs totaled \$46,926,459. Transmission demand costs were defined as the costs incurred to transmit the peak demands of Seminole's customers and consisted primarily of transmission facilities and operating expenses.
- Consumer Consumer costs for the Seminole system totaled \$1,476,741. Consumer service costs included expenditures that are directly related to providing member services to Seminole's ten distribution cooperatives.

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study • General – General costs totaled \$4.036,067. These general costs are necessary to support all of the above functions of the utility. For this reason, the general costs were broken down into sub-functions in proportion of the subtotal of the costs for power supply – energy, power supply – demand, transmission, and consumer costs.

These costs have been summarized in Table II-9. The costs are expressed in total dollars and in cents per kilowatt-hours. Also, the costs have been expressed in dollars per unit cost where the applicable units are: kilowatt-hours for power supply - energy, coincident kilowatts for power -supply - demand, coincident peak demand kilowatts for transmission, and number of consumers for consumer costs. The general service costs, split up by their contribution to the other four functional categories (Power supply – energy, power supply – demand, transmission and consumer) are also shown on Table II-9. These costs reflect the equivalent peaker method of assignment. Table II-10 has been provided to compare the cost summary using the traditional and energy methods for assigning costs. The costs included in Table II-9 for the equivalent peaker method has provided the basis for designing rates which are discussed in the next part of this report.

1

· ')

Table II-9

SUMMARY OF COST-OF-SERVICE

Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Category	Cost	Cents/kWh	Applicable Unit Cost	Unit
Power Supply - Energy	\$330,293,781	2.71	2.71	cents per kWh
Power Supply - Demand	171,056,692	1.40	\$5.79	per k₩*
Transmission	46,926,460	0.38	\$1.59	per kW*
Consumer	1,476,741	0.01	\$12,306.18	per consumer per month
General				
Power Supply - Energy	\$2,424,882	0.02	0.02	cents per kWh
Power Supply - Demand	\$1,255,828	0.01	\$0.04	per kW*
Transmission	\$344,515	0.00	\$0.01	per kW*
Consumer	\$10,842	0.00	\$90.35	per consumer per month
Total	\$553,789,741	4.54		

* Per sum of monthly coincident peak.

Burns & McDonnell

Table II-10

SUMMARY OF COST-OF-SERVICE FOR ALTERNATIVE METHODS Seminole Electric Cooperative, Inc.

Traditional Method

Category	Cost	Cents/kWh	Applicable Unit Cost	Unit
Power Supply - Energy	\$290,308,500	2.38	2.38	cents per kWh
Power Supply - Demand	211,041,972	1.73	\$7.15	per kW*
Transmission	46,926,460	0. 38	\$1.59	per kW*
Consumer	1,476,741	0.01	\$12,306.18	per consumer
General				
Power Supply - Energy	2,131.327	0.02	0.02	cents per kWh
Power Supply - Demand	1,549,384	0.01	\$0.05	per kW*
Transmission	344,515	0.00	\$0.01	per kW*
Consumer	10,842	0.00	\$90.35	per consumer per month
	\$553,789,741	4.54		

Energy Method

Category	Cost	Cents/kWh	Applicable Unit Cost	Unit
Power Supply - Energy	\$364,383,468	2.99	2.99	cents per kWh
Power Supply - Demand	136,967,004	1.12	\$4.64	per k₩*
Transmission	46,926,460	0.38	\$1.59	per kW*
Consumer	1,476,741	0.01	\$12,306.18	per consumer per month
General				
Power Supply - Energy	2,675,155	0.02	0.02	cents per kWh
Power Supply - Demand	1,005,556	0.01	\$0.03	per kW*
Transmission	344,515	0.00	\$0.01	per kW*
Consumer	10.842	0.00	\$90.35	per consumer per month
	\$553,789,741	4.54		

* Per sum of monthly coincident peak.

-

-. .

.

. .

(

.

. . .

PART III - RATE DESIGN

.

PART III WHOLESALE RATE DESIGN

Having completed the cost-of-service study as discussed in the previous part of this report, Burns & McDonnell's efforts then turned to developing wholesale rates for Seminole to charge its member distribution systems. Good cost information provides the basis for rate design. Other factors such as revenue stability, rate stability, practicality, social and environmental objectives, etc. should also be considered when rates are designed. However, Seminole requested that Burns & McDonnell only consider the cost of service for this assignment. Therefore, the rates discussed in this part of the report are cost-based only and did not consider other rate-making criteria.

Costs developed in Part II of this report provided the basis for the rate design. Appropriate billing determinants were identified that provided the basis for applying rates to recover the costs previously discussed. Per unit rates were developed for wholesale service to the member distribution cooperatives. As a final step, the proposed rates were applied to the billing units so Seminole could see the effects that the proposed rates would have on each member cooperative. The remainder of this report describes in greater detail the methodology used to develop cost-based wholesale rates.

COSTS

For reasons discussed in Part II of this report, Burns & McDonnell used the cost-of-service study results that were based on the equivalent peaker method of assigning costs to design the proposed wholesale rates. The costs were combined into three major categories: commodity, capacity, and customer costs. These costs are summarized on Table III-1. Commodity costs included the power supply – energy costs. Capacity costs included the power supply – demand and transmission costs. Customer costs included the consumer costs. General costs were included in each category based on the sub-function breakdown discussed in Part II. The three major categories of costs provided the basis for developing three separate charges to recover revenues from the member distribution cooperatives on a cost basis.

Although the equivalent peaker costs provided the basis for the recommended rates, costs from the traditional method and the energy method were also evaluated. The resulting rates have been included at the end of this section of the report.

)

Table III-1

COST TO BE RECOVERED THROUGH WHOLESALE RATES Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Category	Cost
Commodity	\$332,718,663
Capacity	219,583,495
Customer	1,487,583
Total Cost of Service	\$553,789,741

BILLING UNITS

Having determined the costs to be collected, the next task in designing wholesale rates was to identify the billing units that would be applied to the resulting rates. Table III-2 summarizes the billing units that were selected for recovering each of the three cost categories.

The most common billing unit is kilowatt-hour sales to distribution members. As shown on Table III-2, 12,194,143,481 megawatt- hours of sales to the member cooperatives are expected during the year 2000. Kilowatt-hour sales will be the billing units to which the commodity portion of the wholesale rate is applied.

The sum of monthly coincident peaks provided the basis for developing the billing units for capacity costs. Since monthly capacity costs are a function of Seminole's monthly peak demand, it was felt that each cooperative's contribution to this peak demand should provide the basis for billing for this service. Table III-2 not only shows Seminole's total system demand on a monthly basis, but also each member system's monthly contribution to this demand.

The number of member systems was considered the unit by which to charge customer costs. As shown on Table III-2, Seminole provides service to ten member cooperatives.

PROPOSED RATES

Having defined the costs and the billing units, developing the proposed rates basically became a matter of dividing costs by billing units. The proposed cost-based rates for Seminole's member systems are summarized in Table III-3. The commodity charge of 2.73 cents per kilowatt-hour is applied to all energy sales. The capacity charge is applied to the members' contribution to Seminole's monthly peak. The actual rate was developed by dividing the sum of monthly capacity costs by the sum of Seminole's monthly peak demand and then dividing this result by 12. Since the billing units used to determine this rate were the sum of the 12 months' demands, no ratchet is included in this rate. Finally, the customer charge is a monthly charge assessed to each member system.

To provide an indication of how these rates would collect revenue from the 10 member systems, a table was prepared showing revenue from each cooperative. Table III-4 shows the expected revenue that will be received from each cooperative each month during the year 2000. Revenues have been summed by Burns & McDonnell Cost-of-Service & Rate Design

F

1

]

1

Table III-2

}

1

}

1 1 1

BILLING UNITS Seminole Electric Cooperative, Inc.

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumler
kWh Purchased	401,047,636	2,522,169,887	325,643,638	2,671,165,760	387,811,955	1,658,790,641
Sum of Monthly Coincident Peaks (kW)	973,941	5,908,709	657,58 5	5,966,874	880,499	4,304,641
Customer	1	1	1	1	1	1

Units	Suwannee	Talquin	Tri-County	Withlacoochee	Total
kWh Purchased	302,701,398	856,509,058	185,508,871	2, 882, 794,637	12,194,143,481
Sum of Monthly Coincident Peaks (kW)	723,965	2,122,127	414,093	7,584,148	29,536,582
Customer	1	1	1	1	ťŪ

ž

06/26/00 09:30 FAI

1

1

]

1

J

Rate Design

SECI HQ MAILROOM

\$

E.

Part III

1.1

ŧ.

Ъ Г

Table III-3

PROPOSED WHOLESALE RATES

Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Commodity 2.73 cents per kWh

Capacity

\$7.43 kW per month Monthly member contribution to SECI peak.

Customer Charge \$1

\$12,397 per member

ί

1

}

1

ł

}

1

I

1

]

)

MONTHLY BILLS WITH PROPOSED RATES Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumter
January	\$1,656,541	\$10,195,368	\$1,214,475	\$11,306,915	\$1,684,652	\$7,239,933
February	1,481,331	9,660,678	1,191,767	9,933,126	1,624,597	7,091,542
March	1,378,580	8,393,220	1,121,679	9,405,689	1,475,112	5,881,887
April	1,227,159	7,483,793	1,065,837	7,993,188	1,161,454	5,344,565
Мау	1,547,623	8,908,334	1,198,484	9,496,042	1,454,208	5,797,651
June	1,628,952	10,087,907	1,122,408	10,465,147	1,440,174	6,693,342
July	1,827,155	10,927,590	1,234,758	11,030,244	1,466,897	6,764,056
August	1,763,708	10,996,674	1,205,653	11,296,672	1,496,500	6,973,244
September	1,546,178	10,332,414	1,136,832	9,983,467	1,371,622	6,834,014
October	1,266,492	8,387,213	1,115,749	9,101,109	1,320,076	6,166,370
November	1,396,082	8,058,179	1,105,602	7,884,849	1,292,685	6,120,190
December	1,612,149	9,462,148	1,209,418	9,494,855	1,488,160	6,504,212
Total	\$18,331,950	\$112,893,517	\$13,922,661	\$117,391,303	\$17,276,138	\$77,411,006

Bums & McDonnell Cost-of-Service & Rate Design

ļ

}

}

1

1

1

11-6

 ł

Rate Design

1

ł

Table III-4

ł

]

1

1

)

J

1

ļ

MONTHLY BILLS WITH PROPOSED RATES

Seminole Electric Cooperative, Inc.

Equivalent Peaker Method

Units	Suwannee	Talquin	Tri-County	Withlacoochee	Total
January	\$1,215,046	\$3,777,937	\$755,694	\$13,127,872	\$52,174,433
February	1,057,095	3,507,823	688,617	12,509,221	48,745,799
March	1,002,212	3,094,052	643,969	11,105,249	43,501,650
April	850,145	2,481,014	523,224	8,194,651	36,325,028
Мау	1,020,013	3,128,227	645,867	10,914,815	44,111,264
June	1,359,290	3,481,410	738,004	11,754,541	48,771,176
July	1,535,292	3,774,000	872,878	11,878,011	51,310,881
August	1,461,497	3,659,002	796,122	12,390,266	52,039,337
September	1,194,176	3,319,344	717,592	11,092,593	47,528,233
October	902,073	2,533,270	555,755	9,231,077	40,579,184
November	989,420	2,960,941	623,669	10,164,278	40,595,896
December	1,203,908	3,578,195	727,487	12,826,330	48,106,861
Total	\$13,790,167	\$39,295,216	\$8,288,877	\$135,188,905	\$553,789,741

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study

ł

1 1 1

1

)

1

1

1

Part III

columns to show each member's expected annual cost and by month to show how the revenue would be collected throughout the year.

Rates Under Alternate Assignment Methodologies

To provide an indication of how assigning the investment costs of baseload generation would affect the rates, rates were also calculated using the traditional and energy methods. These rates have been summarized in a manner similar to the recommended rates on Table III-5 and Table III-6. Similarly, the affect of these rates on the member systems has also been included and is shown on Table III-7 and Table III-8.

Table III-9 was included to compare the effect of using different assignment methods on each of the member systems. The average cost of service, expressed in cents per kilowatt-hour, was calculated for each member cooperative using each of the three assignment methods.

As stated in Part II of this report, the equivalent peaker method was selected because it was felt that it would provide a fair allocation of costs between member systems. It was also felt that it would produce results that would allow Seminole to further its transition from the traditional utility world to the future, competitive electric power industry.

· ;

1

Table III-5

PROPOSED WHOLESALE RATES

Seminole Electric Cooperative, Inc.

Traditional Method

Commodity

2.40 cents per kWh

Capacity

\$8.80 kW per month Monthly member contribution to SECI peak.

Customer Charge

\$12,397 per member

Seminole Electric Cooperative, Inc. Cost-of-Service & Rate Design Study 111-9

)

•)

Table III-6

PROPOSED WHOLESALE RATES

Seminole Electric Cooperative, Inc.

Energy Method

Commodity

3.01 cents per kWh

Capacity

\$6.27 kW per month Monthly member contribution to SECI peak.

Customer Charge

\$12,397 per member

Table III-7

]

)]]

)

1

MONTHLY BILLS WITH PROPOSED RATES

Seminole Electric Cooperative, Inc.

Traditional Method

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumter
January	\$1,675,549	\$10,255,418	\$1,209,142	\$11,515,179	\$1,716,791	\$7,370,046
February	1,506,050	9,789,564	1,189,805	10,076,766	1,660,017	7,265,400
March	1,385,185	8,410,072	1,106,896	9,376,788	1,480,182	5,959,856
April	1,222,610	7,456,033	1,054,878	7,877,018	1,144,199	5,327,109
Мау	1,543,069	8,854,675	1,180,581	9,383,639	1,433,107	5,748,860
June	1,624,626	9,987,437	1,098,899	10,351,277	1,420,088	6,691,612
July	1,811,324	10,832,542	1,208,820	10,866,392	1,441,928	6,733,432
August	1,748,219	10,897,836	1,182,49 9	11,123,787	1,464,468	6,952,972
September	1,535,631	10,247,430	1,113,190	9,839,107	1,353,334	6,816,807
October	1,260,424	8,326,028	1,101,489	8,984,150	1,297,300	6,157,579
November	1,401,207	8,063,544	1,096,850	7,742,520	1,281,005	6,166,813
December	1,621,499	9,499,550	1,200,713	9,568,460	1,503,457	6,611,529
Total	\$18,335,395	\$112,620,130	\$13,743,762	\$116,705,082	\$17,195,876	\$77,802,015

1

1 1

1

}

1

1

)

}

11-11

Page 1 of 2

ł

Part III

Ł

Rate Design

1

MONTHLY BILLS WITH PROPOSED RATES

1

} } }

)

J

Seminole Electric Cooperative, Inc.

Traditional Method

Units	Suwannee	Talquin	Tri-County	Withlacoochee	Total
January	\$1,228,203	\$3,845,041	\$761,021	\$13,439,201	\$53,015,591
February	1,075,403	3,593,714	700,928	12,878,680	49,736,328
March	1,008,080	3,146,710	645,183	11,269,672	43,788,625
April	844,287	2,452,101	514,451	8,116,031	36,008,717
May	1,001,919	3,110,445	636,225	10,883,638	43,776,157
June	1,355,027	3,463,510	732,037	11,710,285	48,434,797
July	1,520,381	3,738,374	860,732	11,775,152	50,789,078
August	1,450,349	3,614,186	783,353	12,329,768	51,547,436
September	1,192,516	3,307,208	709,383	11,035,385	47,149,991
October	896,801	2,502,285	546,885	9,216,401	40,289,342
November	995,113	3,001,032	624,570	10,267,313	40,639,967
December	1,209,493	3,585,379	726,046	13,087,585	48,613,711
Total	\$13,777,572	\$39,359,986	\$8,240,813	\$136,009,112	\$553,789,742

Ŧ

1

1

1

1

1

ł

1

Page 2 of 2

ł

Rate Design

1

Part III

Table III-8

ł

1

J

1

MONTHLY BILLS WITH PROPOSED RATES

Seminole Electric Cooperative, Inc.

Energy Method

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumter
January	\$1,640,336	\$10,144,172	\$1,219,022	\$11,129,358	\$1,657,252	\$7,129,004
February	1,460,257	9,550,796	1,193,439	9,810,665	1,594,399	6,943,318
March	1,372,949	8,378,852	1,134,282	9,430,328	1,470,791	5,815,414
April	1,231,037	7,507,459	1,075,179	8,092,230	1,176,164	5,359,447
Мау	1,551,504	8,954,081	1,213,747	9,591,873	1,472,198	5,839,248
June	1,632,640	10,173,564	1,142,450	10,562,228	1,457,299	6,694,817
July	1,840,652	11,008,623	1,256,873	11,169,937	1,488,184	6,790,164
August	1,776,913	11,080,939	1,225,392	11,444,066	1,523,809	6,990,527
September	1,555,169	10,404,868	1,156,987	10,106,542	1,387,214	6,848,685
October	1,271,666	8,439,377	1,127,906	9,200,823	1,339,494	6,173,865
November	1,391,713	8,053,604	1,113,065	8,006,193	1,302,642	6,080,441
December	1,604,176	9,430,261	1,216,839	9,432,103	1,475,119	6,412,719
Total	\$18,329,014	\$113,126,596	\$14,075,182	\$117,976,345	\$17,344,567	\$77,077,649

ł

1

1

1

}

1

)

1

1

1-13

Page 1 of 2

Ŧ

Part III

Ł

ł.

Rate Design

1

1

ł

1

1

J

J

MONTHLY BILLS WITH PROPOSED RATES

Seminole Electric Cooperative, Inc.

Energy Method

Units	Suwannee	Talquin	Tri-County	Withlacoochee	Total
January	\$1,203,828	\$3,720,727	\$751,153	\$12,862,446	\$51,457,299
February	1,041,487	3,434,597	678,122	12,194,237	47,901,317
March	997,208	3,049,159	642,934	10,965,070	43,256,987
April	855,140	2,505,663	530,703	8,261,679	36,594,701
Мау	1,035,440	3,143,388	654,087	10,941,395	44,396,962
June	1,362,926	3,496,671	743,090	11,792,272	49,057,957
July	1,548,004	3,804,373	883,234	11,965,704	51,755,747
August	1,471,000	3,697,210	807,008	12,441,844	52,458,709
September	1,195,591	3,329,691	724,590	11,141,366	47,850,705
October	906,568	2,559,687	563,316	9,243,589	40,826,291
November	984,567	2,926,761	622,902	10,076,435	40,558,324
December	1,199,146	3,572,070	728,715	12,603,595	47,674,744
Total	\$13,800,906	\$39,239,997	\$8,329,854	\$134,489,633	\$553,789,741

1

I

1

1

1

I

1

1

1

Page 2 of 2

I

Rate Design

1

١

Ì

T

1

Ţ

ļ

1

ł

ł

ł

I

1

l

COMPARISON OF COST TO MEMBER SYSTEMS WITH DIFFERENT ASSIGNMENT METHODS Seminole Electric Cooperative, Inc.

(cents/kWh)

Units	Central Florida	Clay	Glades	Lee County	Peace River	Sumter
TRADITIONAL	4.57	4.47	4.22	4.37	4.43	4.69
EQUIVALENT PEAKER	4.57	4.48	4.28	4.39	4.45	4.67
ENERGY	4.57	4.49	4.32	4.42	4.47	4.65

Units	Suwannee	Talquin	Trí-County	Withlacoochee	Average
TRADITIONAL	4.55	4.60	4.44	4.72	\$4.54
EQUIVALENT PEAKER	4.56	4.5 9	4.47	4.69	\$4.54
ENERGY	4,56	4.58	4,49	4.67	\$4.54

I.

1

1

11-15

ł

ł

PART IV - CONCLUSIONS AND RECOMMENDATIONS

.

(.

PART IV

CONCLUSIONS AND RECOMMENDATIONS

This study was based on information provided by Seminole, including the 2000 budget numbers, and other sources. The information was also used by Burns & McDonnell to make certain assumptions with respect to conditions that may exist in the future. These assumptions provided the basis for this cost-of-service and rate design study.

ASSUMPTIONS

Important assumptions made in performing the cost-of-service study and rate design are that:

- 1. energy and demand will be as forecast for Seminole and its members;
- 2. costs will be as budgeted by Seminole; and
- 3. all member cooperatives will be considered as one customer class.

CONCLUSIONS

Based on the cost-of-service study and rate design. Burns & McDonnell concludes that:

- 1. Seminole will need to meet a load of 37,907 MW and produce 12,194,143,000 kWh for its members in 2000.
- 2. The total cost of service for Seminole to provide service to its ten member distribution systems in the year 2000, will be \$553,789,741;
- 3. This total cost of service can be assigned to the major utility functions using the equivalent peaker method to:
 - Commodity costs \$332,718,663;
 - Capacity costs \$219,583,495; and
 - Consumer cost \$1,487,583.
- 4. Using the traditional method of assigning costs transfers \$40,278,836 from power supply energy to power supply – demand. The total cost of service can be assigned to the major utility functions using the traditional method to:

(

- Commodity costs \$292,439,827;
- Capacity costs \$259,862,331; and
- Consumer cost \$1,487,583.
- 5. Using the energy method of assigning costs transfers \$34,339,960 from power supply demand to power supply energy. The total cost of service for Seminole in the year 2000 using the energy method consists of:
 - Commodity costs \$367,058,623;
 - Capacity costs \$185,243,535; and
 - Consumer cost \$1,487,583.
- 6. The following rates (based on the equivalent peaker method of assigning costs) are cost-based and can provide the basis for designing wholesale rates for Seminole's ten members systems:
 - Commodity costs \$332,718,663;
 - Capacity costs \$219,583,495; and
 - Consumer cost \$1,487,583.

RECOMMENDATIONS

Based on conclusions as stated above, it is recommended that:

- 1. The equivalent peaker method be used for the assignment of costs;
- 2. Assignments based on the equivalent peaker method be the basis for developing final rates;
- 3. Seminole compare the cost-based rates with Seminole's existing rates to consider rate stability;
- 4. Seminole compare the cost-based rates with its strategic plans and other long- and short-term goals;
- 5. Seminole modify the rates, if necessary, after making comparisons with existing rates and Seminole and member goals:
- 6. Seminole implement the rate among its member systems;

Burns & McDonnell

ì

- 7. Seminole's cost of service be re-evaluated regularly to ensure full cost recovery;
- 8. Seminole continue to review the effectiveness of its rates, especially if changes in member status or the electric utility occur;
- 9. Seminole continue to position itself to be prepared as changes occur through the deregulation of the electric utility industry; and
- 10. Seminole continue to position itself to be prepared as changes occur through the deregulation of the electric utility industry and consider investigating the appropriateness of rate concepts in the future including time-of-use rates, performance-based rates and accelerated recovery of investments.

í

, { ,

1

APPENDIX A - OUTPUT FROM MODEL

STATEMENT OF OPERATIONS

Seminole Electric Cooperative, Inc.

1

í

Source: RUS Form 12a, Section A. Statement of Operations, for Year Ended 1998.

	Item	1998 Year End
1.	Electric Energy Revenues	548,631,677
2.	Income From Leased Property (Net)	-
3.	Other Operating Revenue and Income	11,306,105
4.	Total Oper. Revenue & Patronage Capital (1 thru 3)	559,937,782
5.	Operations Expense - Production - Excluding Fuel	53,911,443
6.	Operations Expense - Production - Fuel	168,291,838
7.	Operations Expense - Other Power Supply	207,608,605
8.	Operations Expense - Transmission	23,849,089
9.	Operations Expense - Distribution	-
10.	Operations Expense - Consumer Accounts	-
11.	Operations Expense - Consumer Service & Information	-
12.	Operations Expense - Sales	-
13.	Operations Expense - Administrative & General	14,842,678
14.	Total Operation Expense (5 thru 13)	468,503,653
15.	Maintenance Expense - Production	25,468,879
16.	Maintenance Expense - Transmission	934,086
17.	Maintenance Expense - Distribution	•
18.	Maintenance Expense - General Plant	196,784
19.	Total Maintenance Expense (15 thru 18)	26,599,749
20.	Depreciation and Amortization Expense	24,964,220
21.	Taxes	89,430
2 2 .	Interest on Long-Term Debt	34,150,418
23.	Interest Charged to Construction - Credit	(176,522)
24.	Other Interest Expense	675,481
25.	Other Deductions	14,058,636
26.	Total Cost of Electric Service (14 plus 19 thru 25)	568,865,065
27.	Operating Margins (4 minus 26)	(8,927,283
28.	Interest Income	10,269,310
29.	Allowances for Funds Used During Construction	-
30.	Incomes (Loss) from Equity Investments	254,070
31.	Other Nonoperating Income (Net)	732,205
32.	Generation and Transmission Capital Credits	-
33.	Other Capital Credits and Patronage Dividends	166,764
34.	Extraordinary Items	-
35.	Net Patronage Capital or Margins (27 thru 34)	2,495,066

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

CosmodelBF3.xls Form12 Financial Page 1

BALANCE SHEET

Seminole Electric Cooperative, Inc. Source: RUS Form 12a, Section B. Balance Sheet, for Year Ended 1998.

	ASSETS AND OTHER DEBITS	1998 Year End
1	Total Utility Plant in Service	845,908,346
2	Construction Work in Progress	15,252,830
2	Total Utility Plant (1+2)	861,161,176
4	Accum Provision for Depreciation & Amort.	337,141,968
5	Net Iltility Plant (3-4)	524,019,208
6	Non-Utility Property (Net)	•
7	Investments in Subsidiary Companies	4,472,683
8	Invest In Assoc. Org Patronage Capital	547,193
q.	Invest In Assoc. Org Other - Gen. Funds	17,928
10.	Invest, In Assoc. Org Nongen, Funds	7,247,150
11.	Investments in Economic Development Projects	•
12.	Other Investments	-
13	Special Funds	91,548,374
14.	Total Other Property and Investments (6 thru 13)	103,833,328
15.	Cash - General Funds	25,103
16.	Cash - Construction Funds - Trustee	113,672
17.	Special Funds	-
18.	Temporary Investments	71,285,386
19.	Notes Receivable (Net)	•
20.	Accounts Receivable - Sales of Energy (Net)	21,932,202
21.	Accounts Receivable - Other (Net)	885,931
22	Fuel Stock	37,796,297
23.	Materials and Supplies - Electric and Other	17,545,183
24	Prepayments	2,722,430
25.	Other Current and Accrued Assets	77,016
26	Total Current and Accrued Assets (15 thru 25)	152,383,220
27.	Unamortized Debt Disc. & Extraordinary Prop. Losses	4,216,048
28	Regulatory Assets	3,932,178
29	Other Deferred Debits	48,747,783
30.	Accumulated Deferred Income Taxes	2,675,843
31	Total Assets and Other Debits (5+14+26 thru 30)	839,807,608

	LIABILITIES AND OTHER CREDITS	
32.	Memberships	1,000
33.	Patronage Capital	-
	a. Assigned and Assignable	79,309,964
	b, Retired This Year	676,441
	c. Retired Prior Years	13,144,828
	d. Net Patronage Capital	65,488,695
34.	Operating Margins - Prior Years	-
35.	Operating Margins - Current Year	(8,760,519)
36.	Non-Operating Margins	11,255,585
37.	Other Margins and Equities	31,715
38.	Total Margins and Equities (32 plus 33d thru 37)	68,016,476
39.	Long-Term Debt - REA (Net)	7,371,070
	(Payments-Unapplied)	-
40.	Long-Term Debt - Other - Econ, Devel. (Net)	-
41.	Long-Term Debt - FFB - REA Guaranteed	420,832,678
42.	Long-Term Debt - Other - REA Guaranteed	-
43.	Long-Term Debt - Other (Net)	206,414,147
44.	Total Long-Term Debt (39 thru 43)	634,617,895
45.	Obligations Under Capital Leases - Noncurrent	18,581,800
46.	Accumulated Operating Provisions	5,392,515
47.	Total Other Noncurrent Liabilities (42+43)	23,974,315
48	Notes Payable	18,697,049
49	Accounts Payable	24,624,492
50	Taxes Accrued	101,034
51.	Interest Accrued	819,591
52	Other Current and Accrued Liabilities	34,686,632
53	Total Current & Accrued Liabilities (45 thru 48)	78,928,798
54	Deferred Credits	31,594,281
55	Accumulated Deferred Income Taxes	2,675,843
56	Total Liabilities and Other Credits (36+41+44+49 thru 51)	839.807.608

Unbundle, Copyright 1998

Burns & McDonnell Engineering Company, Inc. All rights reserved

CosmodelBF3.xls Form12 Financial (2) Page 1)

PLANT-IN-SERVICE

1

-

Seminole Electric Cooperative, Inc. Sources RUS Form 12a, Annual Supplement Section A. Utility Plant for Year Ended 1998 and 1999 & 2000 Capital Budget

				T					
			`			t (54)	CONS	CENI	Description of Assignment
		Total	kW	KWH	ACC	T-KW	CONS	GENIL	Deadlyman Diant Paka
Ren	m	5 779 220	2.044.878	2,672,372	•	1,061,971	•	- 1	Programsn Plant Rate
1 Tot	tal Intangiola Plant (301 - 303)	673 348 929	293 551 261	379,797,668					KW, KWH - 020 MW Capacity
2 Tot	tal Production Plant - Steam (310 - 316)	22 306 484	8 008 028	14,298,456		l i	1	1	KW, KWH - CR3
3 Tol	(a) Production Plant - Nuclear (320 - 325)	11,000,000							KW
4 Tol	tal Production Plant - Hydro (330 - 336)	•							<u>KW</u>
5 To	tal Production Plant - Other (340 - 340)		301 559 289	394,096,124	-	•	-	-	
6 SU	JBTOTAL - Production (2 Inv 5)	46 406 240	301,333,200			16,406,249			T-KW
7. L#	nd and Land Rights (350)	10,400,245							T-KW
8 Sir	ructures and Improvements (352)								T-KW
9 Sta	ation Equipment (353)	4 10 000 100				140,203,133			T-KW
10 Of	her Transmission Plant (354 - 359)	140,203,133				1			
11 SU	JBTOTAL - Transmission Plant (7 thru					156,609,382		-	
10))	156,609,382						-	OP-T, OP-S, OP-D, CONS
12. La	ind and Land Rights (360)	-							OP-T, OP-S, OP-D, CONS
13 Str	ructures and Improvements (361)	•							OP-T, OP-S, OP-D
14 Su	ation Equipment (362)	-							Dist Plant Ratio
15 00	ther Distribution Plant (363 - 373)	· _ ·		· · · · · · · · · · · · · · · · · · ·					
16								-	
SL	UBTOTAL - Distribution (12 thru 15)			260.076		146 667	<u> </u>		Prod/Xmsn Plant Ratio
17. La	and and Land Rights (389)	796,157	262,414	309,070	-	1 140,007	1		Prod/Xmsn Plant Ratio
18 St	fructures and Improvements (390)	•					1 597 554		CONS
19 Of	flice Furniture & Equipment (391)	1 597 554		749 493		ļ	1,201,000		KWH
20 Tr	ransportation Equipment (392)	748,182		/48,182					
21 St	tores, Tools, Shop, Garage, and Lab							ļ	9% to 11 Functional Areas
E	ouipment (393, 394, 395)	•				1			9% to 11 Functional Areas
22 PC	ower - Operated Equipment (396)				1	2 250 897	2 259 892	564 973	Standard/Judoment
23 6	ommunication Equipment (397)	5,649,731	225,969	338,984		2,239,092	2,255,032	1	Prod/Xmsn Plant Ratio
24 14	liscellaneous Equipment (396)	15,591,733	5 516 867	7,209,780		2,005,000			Prod/Xmsn Plant Ratio
25 0	ther Tancible Property (399)	•			L	E 174 845	3 867 448	564 973	
26 8	UNTOTAL - General Plant (16 thru 24)	24,385,357	6,025,271	8,666,022	·	D,2/1,045	3,031,040	1	Prod/Xmso Plant Ratio
27 0	ther Hilling Plant (101, 114, 120)	-		-	L		3 867 448	564 973	
21. 0	HETOTAL (1+5+12+16+26+27)	882,429,372	309,629,437	405,434,518	ļ	162,942,997	3,037,440	004,973	Provi/Xmen Plant Ratio
20 0	contraction Work in Progress (107)	1	•	I	· · · ·			564 973	
29. 0	OTAL UTILITY PLANT (28 + 29)	882,429,372	309,629,437	405,434,518	· · ·	162,942,997	3,857,444	394,913	

	Total	kW	KWH	ACC	T-KW		GENL
SUBICIALS	695 655 413	301 559 289	394 096 124	-	•	•	-
Subtotal - Production Plant	035,055,415	001,000,200			156,609,382	-	-
Subtotal - Transmission Plant	156,609,362	-	-			.	-
Subtotal - Distribution				· · · ·	156 609 382		-
Total Prod/Xman/Dist Plant	852,264,795	301,559,269	394,096,124		5 371 645	3 857 446	564 973
Subletal - General	24,385,357	6,025,271	8,666,022	-	5,271,045	3,031,440 [
	5,779,220	2,044,878	2,672,372		1,061,971		-
a na nyawa Ali Oshar i kulika Dinat	0	-		-	•	•	•
				•	-	-	
<u>CWP</u>	882 420 272	309 629 437	405 434 518		162,942,997	3,857,446	564,973
Total Utility Plant	002,429,372	303,023,407					
RATIO CALCULATION							
Production Plant Ratio	1.000	0.433	0.567		1 000		
Transmission Plant Ralio	1.000	· 1		· ·	1.000		
Distribution Plant Ratio Excluding Other Dist	•	•		•		•	-
Prod/Xmen/Dist Plant Ratio	1.000	0.354	0.462		0.184		
Front Million Diant Batto	1,000	0.351	0.459	-	0.185	0.004	0.001
FOCAL DURLY FRAME TRACE			A	4			

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved 1

.

1

.

J

ł

)

TRIAL BALANCE

Seminole Electric Cooperative, Inc. G&T Cooperative Source: General Ledger Balance, for Year Ended 1998 Venty range names "Acct" and "Acct_Bal" extend to bottom of list. Add or delete accounts as necessary.

		1998 Year End
ACCT	DESCRIPTION	Balance
101.000	ELECTRIC PLANT IN SERVICE	\$2,455
101.111	LEASED ASSET-TRANSPORTATION LEASES	39,325,927
107.100	CONSTRUCTION WORK IN PROGRESS	15,244,930
108.100	DEPRECIATION STEAM PLANT	(244,903,148)
108.200	DEPRECIATION NUCLEAR PROD. PLANT	(6,293,017)
108.500	DEPRECIATION TRANSMISSION	(41,295,561)
108.703	DEPRECIATION GENERAL PLANT	(11,139,899))
108.910	COST OF REMOVAL - NUCLEAR CLEARING	(94,379)
111.103	ACCUMULATED AMORTIZATION	(18,452,426)
111.120	ACCUMULATED AMORTIZATION	{1,/34,4/9]
111.120	ACCUMULATED AMORTIZATION	(6,334,060)
114.100	ACQUISITION ADJUSTMENT	557,902
115.100	ACCUMULATED AMORTIZATION - ACQUISITION ADJUSTMENT	(394,669)
120.100	NUCLEAR FUEL IN PROCESS	131,/55
120.200	NUCLEAR FUEL STOCK	1,132,962
120.300	NUCLEAR FUEL IN REACTOR	1,852,050
120.400	SPENT NUCLEAR FUEL	4,331,020
120.500	ACC. AMORTIZATION - NUCLEAR FUEL	(6,504,475)
123.105	PATRONAGE CAPITAL	547,193
123.110	SECI INVESTMENT	2,330,000
123.225	CFC	3,475,112
123.230	OTHER INVESTMENT IN ASSOCIATE ORGANIZATIONS	9,517
123.235	INVESTMENT IN CFC	8,471
123.245	SUBTERM CERTIFICATE - TBT	3,772,039
128.220	POL CNTRL BOND FUND	292,6/5
128.225	INT REC PC BOND FUND	382
128.305	SPECIAL FUND DSR	14,632,000
128.315	DSR DISCOUNT	(43,750)
128.329	AMORT DSR DISCOUNT	10,208
128.335	ACRD INT REC DSR	121,52/
128.400	TRANS SERVICES	36,290,483
126.410	INTEREST - LLB	28,761,533
128.507	NUCLEAR DECOMM TRUST FUND	2,532,149
128.517	NDTF INTEREST REGEIVABLE	71,349
131.111		(3,522,106)
131.205	CAST, TRUST	113,672
134.107	NDTF TRADING	1,202,375
135.100	PETTY CASH	1,000
135.200		3,289
136.200		83,256,000
136.210	CASH EQUIVILANT ACCR INTEREST	11,809
142.105	ACCOUNTS RECEIVABLE - ELECTRIC	17,613,707
142.114	ACCOUNTS RECEIVABLE - INTCH	4,318,496
142.225	ACCOUNTS RECEIVABLE - MEMBER WORKORDERS	7,096
143.200	ACCOUNTS RECEIVABLE - BY-PRODUCT SALES	25,013
143.240	ACCOUNTS RECEIVABLE - MISCELLANEOUS	662,829
143.250	ACCOUNTS RECEIVABLE - RENT	125
143.270	ACCOUNTS RECEIVABLE - PC LOAD REPAYMENT	158,536
143.280	ACCOUNTR RECEIVABLE - MEDICAL INS NON-EMPLOYEES	2,331
151.100	COAL - CURRENT YEAR	163,297,720
151.103		(129,379,042)
101.200		10,001,612
151.209		(0,804,0/2)
464 300		1038 685
151.301		(\$38,666)
191.309		78,222
154.100	PUEL STUGR EXP - CURRENT TEAR	3,426,183
192.107		(124,252)
182.10		(2,659,834)
134.110		15,750,647
184.117	TRATERIALS & SUPPLIES - LINESTUNE	160,610
104.120	I mai Ernalo q Jufflico - Uktoi al Kivek	{ 556,037

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

CosmodelBF3.xls Trial Balance Page 1 • •)

	1			1998 Year End
	1.	ACCT	DESCRIPTION	Balance
-	· · ·	154.140	MATERIALS & SUPPLIES	1,073,850
	1	154.145	MATERIALS & SUPPLIES	3,331
		154.145	MMIS CLEARING	156
		154.300	GASOLINE INVENTORT	3,193,643
-		165.100		6,490,000
		165.109	PPD COAL	2,083,442
		165.200	PPD TRAVEL EXPENSE	9,239
		165.300	PPD OTHER	204,775
		165.305	PPD PC FEES	29,755
		165.400	IPPD UNIT 2 LEASE FEES	10,163
		171.105		(9 804.007)
		173.100		(105.679)
-		174.100	CAPITALIZED ACCRUED P/R	7,900
		181.109	UMAMORTIZED DEBT EXPENSE - OPEN	330,358
		181.119	UNAMORTIZED DEBT EXPENSE - CLOSED	3,885,690
		182.329	U1 LEASE	3,932,178
—		183.100		132,555
		184.019	OVERHEAD ALLOCATION - PR	(1 514.815)
		164.240	ACCOUNTS PAYABLE SUSPENSE	429
		184.270	OVERHEAD ALLOCATION - CLEARING	(32,787)
		186.509	DEF DEBITS - COAL TRANSPORTATION	1,574,202
		189.119	UNAMORTIZED DEBT - CLOSED	41,816,422
		169.139		5,245,534
		190.000	DEPERKED INCOME TAX ASSET	(43,339,388)
		200.100	MEMBERSHIPS ISSUED	(1,000)
		201.100	SECI PAT CAP ASSIGNED	(76,604,197)
		201.106	TAX MARGINS ASSIGNED	(101,555,936)
_		201.110	PAT CAPITAL RET THIS YEAR	575,441
		201.120	PRIOR YEARS' RETIREMENTS	13,144,828
	4	201.200		(2,705,767)
		201.206		(2.330.000)
		208.000	DONATED CAPITAL	(31,715)
		221.105	PRTN LTD-PC S&H	(137,650,000)
		224.125	L ST PRTN LTD-CFC	(8,743,919)
		224.145	PRTN LTD-REA	(5,963,425)
		224.155	PRTN LTD-REA C8	(429,406,593)
		224.305	FRANCE ORI LINIT IL FASE	(63.916.264)
		227.000	NON-CURRENT CAPITAL LEASE	(18,581,800)
		228.100	PROPERTY INSURANCE	(185,667)
_		228.300	FAS 112 PROV FOR PENSION & BENEFITS	(356,500)
		228.310	PROVISION FOR PENSION & BENEFITS - SERP	(143,626)
		228.320	FAS 105 SICK LEAVE POST RETIREMENT BENEFIT	(2,740,384)
		228.328	IPAS 106 MEDIGALIO I MER POST RETIKEMENT	(302 922)
		232.100	ACCOUNTS PAYABLE GENERAL	(6,212.856)
		232.200	ACCOUNTS PAYABLE POWER	(8,705,391)
		232.300	ACCOUNTS PAYABLE CRIN	(95,070)
		235.100	RENTAL SECURITY DEPOSITS	(3,981)
_		236.200		(390)
		236,310	FICAMEDICARE TAX PAYABLE	(4,996)
		236.400	SUTA TAX PAYABLE	(121)
		238.500	STATE SALES TAX	31,741
***		236.505	ACCR STATE SALES TAX - U2 LEASE	(3,511)
		235.550		(371)
		236.000	ACCRUED STATE SALESTAX	(108.858)
		237.305	ACCR INTEREST PC	(819.591)
-		241.200	FED WW - PAYABLE	9,978
		242.200	ACCR PAYROLL	(345,602)
	1	242.310		(770,537)
		1 242.50	HACCH WISC FEE	(132,314)

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

_

CosmodelBF3.xis Trial Balance Page 2

		1998 Year End	
ACCT	DESCRIPTION	Balance	
242.510	ACCR CONTROLLABLE EDXP	(1,619,544)	
242.527		(25,500)	
242.530	DEDUCTIONS	(173,566)	
242.560	ACC LEASE - PMT - U2	(1,262,262)	
242.563	ACC LEASE	(2,552,310)	
242.570	ACCR PUR PWR PAYABLE	(11,136,237)	
242.580		(6,404,272)	
242.585		22,361	
242.600	COAL SURVEY ADJUSTMENT	(105,938)	
242.800	PREPAID POWER BILLING	(8,019,282)	
242.950	ACCRUED BANK SERVICE CHARGES	(3,058)	
243.000	CURRENT CAPITAL LEASE	(2,699,135)	
253.050		(1,023)	
253.100		(3,606,723)	
253.400	UZ DEF LEASE FINANCE	1.826.272	
253.460	DEFERRED CR - MISC	(656)	
253.600	UNEARNED INCOME-CITY OCALA	(7,677)	
256.100	DEF GAIN - SALE OF UNIT 2	(35,243,381)	
256.109	AMORTIZATION OF DEFERRED GAINS-UNIT 2	19,728,914	
283.000		(2,675,843)	
303.000	INTANGIBLE FLANT - ACCERA	5,772.394	
310.000	LAND AND LAND RIGHTS	4,862,393	
311.000	STRUCTURES & IMPROVEMENTS	69,756,948	
312.000	SOILER PLANT EQUIPMENT	350,352,865	
314.000		110,896,606	
315.000	ACCESSORT ELECTRIC EQUIPMENT	35,137,553	
320.000	I AND AND LAND RIGHTS	635	
321.000	STRUCTURES & IMPROVEMENTS	3,733,987	
322.000	REACTOR PLANT EQUIPMENT	4,199,494	
323.000	TURBOGENERATOR UNITS	1,543,534	
324.000		1,901,714	
325.000	I AND AND I AND DIGHTS	16 406 749	
352.000	STRUCTURES & IMPROVEMENTS	3.287.838	
353.000	STATION EQUIPMENT	26,865,918	
354.000	TOWERS AND FIXTURES	30,000,860	
355.000	POLES AND FIXTURES	39,857,112	
356.000		38,528,113	
389.000	LAND AND LAND RIGHTS	798.157	
390.000	STRUCTURES & IMPROVEMENTS	7,448.923	
391.000	OFFICE FURNITURE & EQUIPMENT	3,760,317	
392.000	TRANSPORTATION EQUIPMENT	818,046	
393.000		43,443	
394.000		183,291	
395.000	POWER OPERATED EQUIPMENT	210.916	i
397.000	COMMUNICATION EQUIPMENT	5,722.993	
398.000	MISC EQUIPMENT	90,530	i
399.000	OTHER TANGIBLE PROPERTY	44,611	
403.049		(6,900)	ļ
403.108	DEPREVATION EXPENSE-SECTIONMON	17,973,063	
403.508	DEPRECIATION EXPENSE	3.858.097	ļ
403.718	DEPRECIATION EXPENSE-GENERAL PLANT	588,001	ĺ
403.768	DEPRECIATION EXPENSE-EMS HOWR	17,253	
403.708	DEPRECIATION HDQTRS LEASED	41,597	ļ
404.018	AMORTIZATION OF LEASEHOLD IMPROVEMENTS	1,086,337	ĺ
405.008		258,605	
408.049	OVERHEAD TRANSFERS	17,259	i
408.108	PROPERTY TAX	8,558.061	
408.118	PROPERTY TAX-HQ ALLOCABLE	194,160	
-		•	1

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

Cosmodel8F3.xts Triat Balance Page 3

1

		1998 Year End
ACCT	DESCRIPTION	Balance
408.218 FEDER	AL UNEMPLOYMENT TAX	18,504
408.318 FEDER		1,532,398
408.418 STATE		58,863
408.705 OTHER		(20,230
408.739 TAXES	F TAYES	10,000
11.800 GAINS/	DISP OF CLEAN AIR ALLOWANCES	(59,080
19.011 CTC &	SCTC	(1,213,798
419.020 LLB EC	UITY	(3,437,965
(19.021 BOND I	FUNDS	(1,277,238
419.041 SECI, A	CUERA AND NONCASH EQUILIVENT	(3,993,203
419.061 WHOLE		(415,/14
419.071 MUSC IN		(22,855
419.065 IN IERE	DADING SEC LINRFALIZED GAINS	(232,875
21.007 ROSP 7	IN DISPOSAL OF PROPERTY	(10,014,919
421.316 COLL /	ALLOW	(760
121.340 LEASE	INC-ACUERA GROUND LEASE	(175,601
21.344 NON-O	PERATING INCOME	(287,765
121.400 MISCEI	LANEOUS NON-OPERATING INCOME	(190,927
624,100 CAPITA	L CREDITS - CFC	(166,572
424.205 CAPIT/		(192
425.008 AMORT	IZA HON-AUUERA CURP	10.400
426.104 UURA1	TIES	1,700
426 404 CIVIC. 1	POLITICAL & REL EXP	14,016
428.504 OTHER	DEDUCTIONS - WRITE OFFS	9,995,683
427.105 INTERE	STEXPENSE	388,989
427.205 INTERE	ST EXPENSE	28,257,024
427.225 WEEKL	Y INTEREST EXPENSE	2,612,750
427_235 1984H :	SEMIS INTEREST EXPENSE	2,227,733
427.240 U1 LEA	SE INTEREST EXPENSE	663,922
427.315 (DC, IN	TEREST EXPENSE - 1995	(1/6,524
428.109 ANUR 1	Neekiya	5,003,028
428.235 1984H	SEMIS	197,192
428.247 NDT - T	RUSTEE FEES	284
431.105 INTERE	ST - MEMBER EARLY PAYMENT	302,916
431.115 INTERE	ST EXPENSE - MEMBER MISCELLANEOUS	343,374
431.205 INTERE	ST EXPENSE	29,192
447.140 MEMBE		(541,130,005
447.147 ACCRU	JED REVENUES	(221,500
447.150 INTERM	OF HELE FOWER SALES	(1,632,270
447 200 INTER	HANGE SALES	(5 125 44
447.300 LOAD	OLLOWING SALES	(265.027
458.210 TFUC		(806,365
456.220 TFUC -	66 NON-MEMBERS	(30,711
456.237 TFUC -	WHEELING REVENUE	(139,881
456.247 OFF-SY	STEM SALES WHEELING	(176,679
456.304 MISCE	LANEOUS OPERATING REVENUE	(157,470
500.017 13T AL		571
500.01/ SALAR		1,691,659
SNO 208 TRAINE	NG . FXISTING BFOURFMENTS	1,301,700
500.209 OVERH	IEAD TRANSFERS	955
500.218 NEW T	RAINING	2.912
500.219 APPLIE	ID OVERHEAD	573
501.017 ALLOC	ATION OF ACCOUNTS 161 AND 152	160,347,52
501.027 COST (OF IGNITION OIL	853,23
501.037 INBAN		(397,254
501 517 CENER		5,978,824
SOI SIN MIRCH	LANFOUS OPERATING SUPPLIES	89,217,387
501.519 OUTSI	E SERVICES	121,28
501.527 GENER	AL OPERATING SUPPLIES	26.18
501.528 SALAR	165	1,123.286

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

_

- (

.

:

CosmodelBF3.xls Trial Balance Page 4

		1998 Year End
ACCT	DESCRIPTION	Balance
501.537	EQUIPMENT FUELS	39,511
501.999	TSFD 501.51, 501.52, 502.53	(1/6,//6,200)
502.017	CHEMICALS AND FUELS	755 868
502.018		1,080,322
502.019	SALARIES	8,277
502.029	OVERHEAD TRANSFERS - PR HOURS	180
502.037	MISCELLANEOUS	2,352,126
502.038	SALARIES	861,538
502.039	OVERHEAD	45,337
502.047	CHEMICALS AND FUELS	706 694
502.049		275.524
002.007 607 058		210,988
502.059	OVERHEAD TRANSFERS - PR HOURS	5,444
502.208	TRAINING - EXISTING REQUIREMENTS	13,130
502.209	OVERHEAD TRANSFERS - PR HOURS	1,576
502.218	NEW TRAINING	4,219
502.219	OVERHEAD TRANSFERS - PR HOURS	1,091
505.017		649,231
505.018		301.914
505.018		562.775
506.018	SALARIES	1,117,623
506.019	OTHER OUTSIDE SERVICES	8,863,758
506.208	TRAINING - EXISTING REQUIREMENTS	471
506.209	APPLIED OVERHEAD	195
507.205	U2	29,250,235
510.017	TOOLS UNDER \$500	1,713
510.018		1,149,249
510.019 610.208		26,378
510 209		7.884
510.218	NEW TRAINING	17,798
510.2 1 9	OVERHEAD TRANSFERS	6,451
511.017	GENERAL OPERATING SUPPLIES	142,347
511.018	SALARIES	38,977
511.019		1,436,1/5
512.01/	GENERAL OPERATING SUPPLIES	2.311
512.019	CONTRACT LABOR	1,028,652
512.027	GENERAL OPERATING SUPPLIES	406,713
512.028	SALARIES	321,620
512.029	OVERHEAD TRANSFERS	250,516
512.037	GENERAL OPERATING SUPPLIES	286,327
512.038		171,516
512.038		27 916
512.04/		32.857
512.049	OVERHEAD TRANSFERS	17,389
512.057	GENERAL OPERATING SUPPLIES	562,998
512.058	SALARIES	246,845
512.059	OVERHEAD TRANSFERS	1,015,490
512.067	GENERAL OPERATING SUPPLIES	353,775
512.06		345,876
512.06	UVERHEAD TRANSFERS	451,175
512.07	SALARIES	60.957
512.079	OVERHEAD TRANSFERS	2,019
512.08	GENERAL OPERATING SUPPLIES	387,091
512.08	SALARIES	43,449
512.08	OVERHEAD TRANSFERS	67,353
512.09	GENERAL OPERATING SUPPLIES	36,851
512.09	SALARIES	61,652
512.09	UVERMEAD TRANSFERS	1,707
512.10	SALARIES	117,130
512.10	OVERHEAD TRANSFER	491.270
1		

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

CosmodelBF3.xls Trial Balance Page 5 •

1	· · · · · ·		1998 Year End
•	ACCT	DESCRIPTION	Balance
•	512.127	GENERAL OPERATING SUPPLIES	127,225
	512.128	SALARIES	124,810
İ	512.129	OVERHEAD TRANSFER	2,054,221
	512.137	GENERAL OPERATING SUPPLIES	36,870
	512.138	SALARIES	19,147
	512.139	OVERHEAD TRANSFER	6,124
1	512.147	GENERAL OPERATING SUPPLIES	400,770
	512 140		344.021
i	512.157	GENERAL OPERATING SUPPLIES	762.258
	512.158	SALARIES	175,288
	512.159	OVERHEAD TRANSFERS	2,114,128
	512,157	GENERAL OPERATING SUPPLIES	330,257
	512.168	SALARIES	15,560
1	512.169		571,210
1	512.1/6	Salaries Aveduean transfed	198 182
1	513.017	GENERAL OPERATING SUPPLIES	250.991
	513.018	SALARIES	99,937
	513.019	OVERHEAD TRANSFER	261,034
	513.027	GENERAL OPERATING SUPPLIES	(37,130)
	513.026	SALARIES	12,580
Ì	513.029		89,407
	513.03/	General Operating Supplies	212 527
	513.039	OVERHEAD TRANSFERS	686.435
	513.047	GENERAL OPERATING SUPPLIES	29,972
	513.048	SALARIES	18,899
	513.049	OVERHEAD TRANSFERS	254
	513.057	GENERAL OPERATING SUPPLIES	41,201
	513.058	SALARIES	61,394
	513.059		550,070
	513.067	sai Arifs	6.048
	513.069	OVERHEAD TRANSFERS	8
	514.017	GENERAL OPERATING SUPPLIES	338,905
	514.018	SALARIES	1,394,572
	514.019	OVERHEAD TRANSFERS	1,754,862
	514.027		70,239
i	514.028		64,147
	014.047	OVERHEAD IRANSPERS GENEDAL ODEDATING \$11001 IES	10,783
1	514.038	SALARIES	14.379
	517.039	OVERHEAD TRANSFERS	17,081
	514.047	GENERAL OPERATING SUPPLIES	373,039
	514.048	SALARIES	2,581
	514.049	OVERHEAD TRANSFERS	143,366
	517.010	OPER SUPV & ENGINEERING	755,081
	518.017	NUÇLEAN FUEL Ateam Eysenger Ast	509,506
	521.010	STEAM CAPENGES CR3	1,302
	524.010	MISC NUCLEAR POWER EXP CR3	469.031
	524.019	OVERHEAD TFR-PROP TAX	128,872
	525.010	RENTS CR3	138
	528.010	MAINT SUPV & ENG CR3	754,134
	529.010	MAINT OF STRUCTURES CR3	107,890
	530.010 531.010	MAINT & SCTDIC DI ANT CD3	147,331
	532.01h	MAINT NISC NUCL PLT CR3	31 672
i	565.100	INTERRUPTIBLE POWER-NONFUEL	939,573
	555.107	INTERRUPTIBLE POWER-FUEL	883,324
	555.110	FULL REQUIREMENTS · NON-FUEL	1,567,321
	555.117	FULL REQUIREMENTS - FUEL	1,211,775
	555.120	PARTIAL REQUIREMENTS - NON-FUEL	89,061,720
	555 147	MARTEL DEL PT PURCHASES	32,307,947
	555.200	INTERCHANGE - NONFUEL	46.291.673
1	555.207	INTERCHANGE - FUEL	32,448,253

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, (nc. All rights reserved

(

		1998 Year End
ACCT	DESCRIPTION	Balance
555.280	RESERVES - NON-FUEL	386,257
555.287	RESERVES - FUEL	5,523
555.300	LOAD FOLLOWING - NON-FUEL	49,938
555.307	LOAD FOLLOWING - FUEL	332,909
556.010	OPS & LOAD CONTROL CR3	303
556.017	GENERAL OPERATING SUPPLIES	23,807
556.018	SALARIES	1,112,563
556.019	OVERHEAD TRANSFERS	440,365
557.017	USE CHARGE & PARTICIPATION ALLOCATION	517,590
557.019	INSURANCE CR3	(37,566)
560.018	SALARIES	111,949
560.019	OVERHEAR TRANSFERS	47,793
562.018	UTILITIES & FURNITURE	7,629
565.100	TFUC	86,850
565.200	WHEELING	22,215,355
565.207	WHEELING - FUEL	50,374
566.017	1ST AID SUP & SAFETY EQUIPMENT	81
566.180	SALARIES	41,062
566.019	OVERHEAD TRANSFERS	1,286,390
567.019	RENT - OTHER	1,608
570.017	GENERAL OPERATING SUPPLIES	50,814
570.018	SALARIES	378,057
570.019	OVERHEAD TRANSFERS	396,464
571.017	GENERAL OPERATING SUPPLIES	4,741
571.019	OTHER OUTSIDE SERVICES	104,020
920.018	SALARIES	2,291,840
920.019	OVERHEAD TRANSFERS	1,817,586
920.048	SALARIES	548,300
920.068	SALARIES	3,583,178
920.069	OVERNEAD TRANSFERS	2,200,200
921.017	GENERAL OPERATING SUPPLIES	30,0/0
921.018		1,822,330
921.019		30 042
921.046	JALARIEJ TRAVEL	226 408
341.000		/648 0111
944.048		199 479
923.016		1 038 229
943.017		(11,241)
923 049	FINANCIAL AND OTHER	573.795
924 040	OVERHEAD TRANSFERS	(387.934)
924 040		424,877
925 018	INSURANCE	615.028
925 049	INSURANCE AND OVERHEAD TRANSFERS	(987.890)
925 069	INSURANCE AND OVERHEAD TRANSFERS	414.732
926.018	RENEFITS	8.034.706
926.049	OVERHEAD TRANSFERS	(8,128,853)
930.019	TRAINING	128,931
930.029	OVERHEAD TRANSFER - PROPERTY TAX & PROPERTY INS	210.393
930.041	MISC EXP TSFD - DIRECT	(3,318)
930.065	PROFESSIONAL DEVELOPMENT	245.958
930.069	OTHER OUTSIDE SERVICES	552.801
932.019	OTHER OUTSIDE SERVICES	196,784
		100,100

Unbundle, Copyright 1998 Burns & McDonneil Engineering Company, Inc. All rights reserved

CosmodelBF3.xls Trial Balance Page 7 .)

.
I.

POWER REQUIREMENTS DATA BASE

Seminole Electric Cooperative, inc.

Source: RUS Form 12a, Sales of Electricity, for Year Ended 1998.

Rate Class	Data	Total
	Consumers	10
Sales for Resale - RUS	kWh Sold	8,945,919,000
Borrowers	Revenue	\$420,529,947
Sales for Resale -	Consumers	2
2 Special Sales to RUS	kWh Sold	53,143,000
Borrowers	Revenue	\$1,899,599
	Consumers	27
Sales for Resale -	kWh Sold	2,786,908,000
^{3.} Others	Revenue	\$126 202 131
	Consumers	-
Sales to Ultimate	Consumers	-
4. Consumers	Ryvn Solu	• •
	Revenue	
Other Sales to Public	Consumers	-
5. Authorities	kwn Sola	-
	Revenue	<u> </u>
	Consumers	-
6. Other Sales	kWh Sold	•
	Revenue	\$0
7. TOTAL No. Consumers	(1a thru 6a)	
		39
8. TOTAL kWh Sold (1b th	ru 6b)	
	. ,	11,785,970,000
O TOTAL Revenue Receit	ed From Sales of	
9. TOTAL Revenue Receiv		\$549 631 677
Electric Revenue (10 th		\$340,031,077
10. Total kWh Generated		
		9,263,609,000
11. Total kWh Purchased		
		2,842,345,000
12. Cost of Generation		
		\$300,726,664
13. Cost of Purchases		
		\$205,551,542
14 Cost of Purchases and	Generation	
		\$506,278,206
15 Interchange KM/b Net	·····	
is, interchange - kvvn - Nei		(21 202)
		(21,303)
16. VVneeling - KVVn - Net		
		1,072
17. Total Energy Available	- kWh	
		12,105,933,769
18. Total Energy Sold - kW	h	
		11,785,970,000
19. Energy Furnished Withd	out Charge - kWh	,
	Ŧ	-
20. Energy Used - kWh		1
,		-
21 Total Fremy Accounter	For - kWh	<u> </u>
L. I Viai Linergy Accounter		11 785 970 000
		1 11,100,910,000
22. Energy Losses - KVVN		240.000.200
		1 213'302'08
23. Energy Losses - Percer	ntage	
		2.71%
24 Peak Demand - kW		

ł Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

CosmodelBF3.xls Form 12 Class Data Page 1

CLASS DATA VERIFICATION

Seminole Electric Cooperative, Inc.

3

ł

Compares Form 12a Data to Rate Class Summaries

			Form 12a Data		Su	immarized Rate Cl	ass Data	Variance from Form 12a			
Form 12a Classifications	Code	Consumers	kWh Sold	Revenue	Consumers	kWh Sold	Revenue	Consumers	kWh Sold	Revenue	
Sales for Resale - RUS Borrowers	1	10	8,945,919,000	420,529,947	10	11,565,891,000	541,351,605		29.3%	28.7%	
Sales for Resale - Special Sales to											
RUS Borrowers	2	2	53,143,000	1,899,599	-	-	-	-100.0%	-100.0%	-100.0%	
Sales for Resale - Others	3	27	2,786,908,000	126,202,131	-	-	-	-100.0%	-100.0%	-100.0%	
Sales to Ultimate Consumers	4	•	-	-	-	-	-				
Other Sales to Public Authorities	5	•	-	-	-	-	-				
Other Sales	6	-	-	-	-	-	-				
Total		39	11,785,970,000	548,631,677	10	11,565,891,000	541,351,605	-74.4%	-1.9%	-1.3%	

· · · · · · · · · · · · · · · · · · ·		1	Actual FY 1998	3		Forecasted FY	2000		
Seminole Electric Cooperative, Inc.	Class Summarized in Form 12a Classification				Projected	Projected kWh	Projected	· · · · · · · · · · · · · · · · · · ·	
Rate Classes & Other Splits	Code	Consumers	kWh Sold	Revenue	Consumers	Sold	Revenue	Caclulation of Total	Sales for FY 2000
Sales for Resale - Member Sales	1	10	11,565,891,000	541,351,605	10	12,194,143,481	553,789,741	FY 1998	·····
0	-		-	-	-	-	-	Purchased Power	2,842,345,000
0	-	-	-	-	-	-	-	Generation	9,263,609,000
0	-	-	-	-	- 1	-	-	Energy Reqmts	12,105,954,000
0	-	-	-	•	· ·	-	-	Total Class Sales	11,565,891,000
0	-		-	•	-	-	-	Losses	540,063,000
, o	-	-	-	-		-	-	Losses	4.46%
0	-	-	•	-	-	-	-		
0	-	-	-	-		-		FY 2000	
0	-	-		-	-	-		Purchased Power	3,394,850,000
0	•	-	-	-	-	-		Generation	9,624,832,000
0	-	-		-		-		Energy Reqmis	13,019,682,000
0	-	-		-		-		Total Class Sales	12,194,143,481
0	•	-		•	-	•		Assumed Losses	825,538,519
0	-	-	•	-	-	-		Assumed Losses	6.34%
Total Sales		10	11,565,891,000	541,351,605	10	12,194,143,481	553,789,741		

Unbundle, Copyright 1998 Burns & McDonnell Engineering Company, Inc. All rights reserved

 $\dot{}$

CosmodelBF3.xls Class Verification Page 1

)

1

}

1	۱,	1	}	1	1)	1	1	1	1	1	
ASSIG	NME M#	OF COS	TS						6 m			

Seminole Electr operative, Inc.

		FY 2000							· · · · · · · · · · · · · · · · · · ·
		Budget	. 10.11	10.00		T 1011			
Acci #		lotais	KW	KVVH	ACC	1-KW	CONS	GENL	Description of Assignment
]		ļ		1]		
600	POWER PRODUCTION EXPENSES	2 691 634	2 681 634				[1	KIM
500	Operations Supervision And Engineering	162 184 262	2,001,004	162 184 362					
501	Fuel Expense	7 720 924		7 720 824					
502	Steam Expenses	1 604 210		1 694 210		ł			
505	Electric Expenses	10 557 001		10 557 001			l		
500	Misc Steam Fower Expenses	28 641 657	13 261 087	15 380 570		1	1		
510	Fower Flam Rems	5 428 515	5 428 515	10,000,070	ļ	J			
510	Maintenance Supervision and Engineering	340.979	340 878				Í		
511	Maintenance of Boiler Diant	14 443 520	545,010	14 443 520		1			KINA-I
512	Maintenance of Bootsis Plant	1 105 036		1 105 036					K/AAL
514	Maintenance of Misc. Steam Plant	5 554 701		5 554 701	1	4			KIAAH
518	Muclear Suel Evente	648,000		648,000					KIMH
528	Maintenance Supervision and Engineering	2.287.873	2,287,873	010,000			ľ		ĸw
	PURCHASED POWER								
555	Purchased Power	216,750 478	118.545.653	97.435.770			769 055		KW KWH CONS - BY CONTRACT
556	System Control and Load Dispatch	1.717.774	1.717.774	,		1			KW
557	Other Power Supply Expenses	48,461	48,461						ĸw
	TRANSMISSION OPERATIONS EXPENSES								
560	Operations Supervision And Engineering	177,341				177,341			т-кw
562	Station Expenses	9,604				9,604			T-KW
565	Transmission of Electricity by Others	34,051,675			34,051,675		1		ACC
566	Miscellaneous Transmission Expenses	1,285,816				1,285,816			T-KW
567	Rents	2,500				2,500			Т-КМ
	TRANSMISSION MAINTENANCE EXPENSES								
570	Maintenance of Station Equipment	1,195,105				1,195,105			T-KW
571	Maintenance Of Overhead Lines	5,409				5,409			T-KW
	ADMINISTRATIVE AND GENERAL OPERATIONS EXPENSES								
920	Administrative & General Salaries	10,805,074	4,890,317	3,787,480	0	565,680 (485,177	1,076,420	Personnel Function
921	Office Supplies And Expense	2,276,213	1,627,634	403,224	0	79,104	51,653	114,598	PAYROLL RATIO
922	Administrative Expenses Transferred - Credit	(1,007,800)	(353,620)	(463,036)	0	(186,093)	(4,405)	(645)	TOTAL UTILITY PLANT RATIO
923	Outside Services Employed	1,666,460						1,666,460	GENL
924	Property Insurance	35,944	12,612	16,515	0	6,637	157	23	TOTAL UTILITY PLANT RATIO
925	Injuries And Damages	39,607	28,321	7,016	0	1,376	899	1,994	PAYROLL RATIO
926	Employee Pensions and Benefits	58,306	41,692	10,329	0	2,026	1,323	2,935	PAYROLL RATIO
930	General Advertising and Miscellaneous General Expenses	1,342,030						1,342,030	GENL
	ADMINISTRATIVE AND GENERAL MAINTENANCE EXPENSE	S							
932	Maintenance Of General Plant	120,700						120,700	GENL

1

]

1)

1

•

. ...

1

) ASSIGNMENI OF COSIS

Seminole Electric Cooperative, Inc.

F		FY 2000		I – –			· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	1
		Budget							
Acct #		Totals	кw	KWH	ACC	T-KW	CONS	GENL	Description of Assignment
	DEPRECIATION AND AMORTIZATION EXPENSE								
403 1	Steam Production Plant	18,223,995	8.437,710	9,786,285			8		KW KWH
403 2	Nuclear Production Plant	1,061,449	381,060	680,389					KW KWH
403.5	Transmission Plant	3,854,282				3,854,282			T-KW
403.7	General Plant	953,646						953 646	GENI
990.0	Depreciation Transferred	(23,785)	(8,346)	(10,928)	0	(4,392)	(104)	(15)	TOTAL UTILITY PLANT RATIO
404.0	Amortization Leasehold Improvements	1,205,605	558,195	647,410			,	(,	KW KWH
405.0	Miscellaneous Depreciation/Amortization	288,624	101,273	132,609	0	53,295	1,262	185	TOTAL UTILITY PLANT RATIO
406.0	Amortization Electric Plant Acquisition	17,256	6,195	11,061					KW.KWH
	OTHER EXPENSES								
408.1	Property Taxes	8,618,067	3,023,933	3,959,594	0	1,591,350	37,673	5,518	TOTAL UTILITY PLANT RATIO
408.2	Payroll Taxes	24,186	17,294	4,284	0	841	549	1,218	PAYROLI BATIO
408.3	Payroli Taxes	1,731,795	1,238,341	306,782	0	60,184	39,299	87,189	PAYROLL RATIO
408.4	Payroli Taxes	15,116	10,809	2,678	0	525	343	761	PAYROLL RATIO
408.7	Taxes, Other	(12,282)						(12,282)	GENL
990.0	Overhead Allocation and Taxes Transferred	(10,212,065)	(3,583,240)	(4,691,960)	0	(1,885,686)	(44,641)	(6.538)	TOTAL UTILITY PLANT RATIO
425	Miscellaneous Depreciation/Amortization	72	25	33	0	13	0	0	TOTAL UTILITY PLANT RATIO
426	Donations	38,120						38,120	GENL
428	Amortization of Debt Discount and Expense	3,780,688	1,326,579	1,737,047	0	698,114	16,527	2,421	TOTAL UTILITY PLANT RATIO
	TOTAL OPERATING EXPENSE	543,444,477	162,077,661	333,052,605	34,051,675	7,513,032	1,354,766	5,394,737	
	ANNUAL INVESTMENT COST:								h
Y	Target Margin Dollar Amount								
	Required Margins & Patronage Capital	2,334,880	819,270	1,072,767	0	431,142	10,207	1,495	TOTAL UTILITY PLANT RATIO
	Required Margins & Patronage Capital	2,334,880	819,270	1,072,767	Ő	431,142	10,207	1,495	
	Non-Operating Margins								
419	Non Operating Margins - Interest	(7,010,135)	(2.165,317)	(4,181,016)	(425,280)	(168,738)	(18,693)	(51,090)	COS RATIO - PREL
411	Gain on Disposition of Clean Air Allowances	(100,000)	(100,000)						ĸw
421	Non Operating Margins - Other	(493,662)	(152,484)	(294,432)	(29,949)	(11,883)	(1,316)	(3,598)	COS RATIO - PREL
424	Other Capital Credits and Patronage Dividends	(100,000)						(100,000)	GENL
	Required Operating Margins	(5,368,917)	(1,598,532)	(3,402,682)	(455,229)	250,522	(9,803)	(153,193)	
427	Interest on L-T Debt	30,145,557	10,577,563	13,850,456	0	5,566,460	131,778	19,301	TOTAL UTILITY PLANT RATIO
	Total Interest & Op. Margins	24,776,640	8,979,031	10,447,775	(455,229)	5,816,981	121,975	(133,893)	
	Total Operating Expense	543,444,477	162,077,661	333,052,605	34,051,675	7,513,032	1,354,766	5,394,737	
	Less Other Revenues								
	interruptable Sales	(5,137,708)		(5,137,708)					кмн
	Non-Member Sales	(8,006,085)		(8,006,085)					KWH
	Martel Sales	(62,806)		(62,806)					КМН
456	Other Electric Revenues	(1,224,777)						(1,224,777)	GENL
	TOTAL COST OF SERVICE	553,789,741	171,056,692	330,293,781	33,596,446	13,330,013	1,476,741	4,036,067	
	Cost-of-Service Ratio	1.000	0.309	0.596	0.061	0.024	0.003	0.007	
	Non-Power Supply COS Ratio	1.000	0.000	0.000	0.000	0.707	0.078	0.214	
C1 18 494 4									
SUMMA Dower D		242 200 044	24 009 097	210 200 024				•	
Durch	rouucion	243,299,011	24,000,987	219,290,024	0	0	760.067	0	
Tracensi	reine Operations Executor	35 526 026	120,311,000	ar,433,770 A	34 061 675	1475 264	709,005	0	
Transmit	Sour Operations Expenses	1 200 514	0	0	34,031,075	1,4/0,201	0	0	
Adminie	ssion maintenance expenses	15 215 924	6 246 057	2 761 627	0	1,200,314	524 904	4 102 810	
Marianisi	rative And General Operations Expenses	1 15,215,834	0,240,957	3,701,527	U	408,731	534,804	4,203,816	

. .

}

¢ ASSIGNMENT OF COSTS

Seminole Electr operative, Inc.

}

1

	FY 2000							
	Budget							
Acct #	Totals	ĸw	KWH	ACC	T-KW	CONS	GENL	Description of Assignment
Administrative And General Maintenance Expenses	120,700	0	0	0	0	0	120,700	
Depreciation	25,581,072	9,476,087	11,246,826	0	3,903,185	1,158	953,816	
Taxes & Other	3,983,697	2,033,742	1,318,458	0	465,341	49,750	116,406	
Total Interest & Op. Margins	32,480,437	11,396,832	14,923,223	0	5,997,602	141,985	20,796	
Non-operating Margins	(7,703,797)	(2,417,801)	(4,475,449)	(455,229)	(180,620)	(20,010)	(154,688)	
Non-Member Sales	(8,006,085)	0	(8,006.085)	0	0	0	0	
Interruptible Sales	(5,137,708)	0	(5,137,708)	0	0	0	0	
Martel Sales	(62,806)	0	(62,806)	0	0	0	0	
Other Op. Revenue	(1,224,777)	0	0	0	0	0	(1,224,777)	
Cost of Service	553,789,741	171,056,692	330,293,781	33,596,446	13,330,013	1,476,741	4,036,067	
COS Excluding Payroll & Gross Receipts Tax, Req'd Margins, & Int. (on LT Debt							
Required Operating Margins	32,280,437	11,296,832	14,923,223	0	5,997,602	141,985	(79,204)	
Total Op Exp	543,444,477	162,077,661	333,052,605	34,051,675	7,513,032	1,354,766	5,394,737	
Cost of Service (excl. nonoperating interest and other income)	561,293,538	173,374,493	334,769,229	34,051,675	13,510,634	1,496,751	4,090,755	
COS Ratio (Prelim.)	1.000	0.309	0.596	0.061	0.024	0.003	0.007	
Non-Power Supply COS Ratio (Prelim.)	1.000	0.000	0.000	0.000	0.707	0.078	0.214	· · · · · · · · · · · · · · · · · · ·
RATIOS								
Power Production	1.000	0.099	0.901	0.000	0.000	0.000	0.000	
Purchased Power	1.000	0.551	0.446	0.000	0.000	0.004	0.000	
Transmission	1 000	0.000	0.000	0.927	0.073	0.000	0.000	
Admin. & General	1.000	0.407	0.245	0.000	0.031	0.035	0.282	
Taxes (Payroll & Property)	1.000	0.413	0.412	0.000	0.159	0.008	0.008	
Cost of Service Ratio	1.000	0.309	0.596	0.061	0.024	0.003	0.007	
PAYROLL RATIO								
Operations Supervision And Engineering	2,681,634	2,681,634	0	0	0	0	0	
Maintenance Supervision and Engineering	5,428,515	5,428,515	U	0		0	0	
Maintenance Supervision and Engineering	2,287,873	2,287,873	0	0	0	0	0	
Operations Supervision And Engineering	177,341	0	0	0	177,341	0	0	
Administrative & General Salaries	10,805,074	4,890,317	3,787,480	0	565,680	485,177	1,076,420	
Total	21,380,437	15,288,339	3,787,480	0	743,021	485,177	1,076,420	
Payroli Ratio	1.000000	0.715	0.177	0.000	0.035	0.023	0.050	

ł

ì

RATE BASE

1

Seminole Electric Cooperative, Inc.

1

					·····		r			······································
		1							1	
	RATE BASE CALCULATION	Total	kW	kWh	ACC	T-KW	т-кwн	CONS	GENL	Description of Assignment
	Total Utility Plant	882,429,372	309,629,437	405,434,518	0	162,942,997	0	3,857,446	564,973	Plant in Service
1	Depreciation Reserve:								<u>_</u>	
108.1	Steam Plant	(281,169,188)	(130,181,334)	(150,987,854)		1	1			KW, KWH - 625 MW Capacity
108 2	Nuclear Plant	(8,413,949)	(3,020,608)	(5,393,341)						KW. KWH - CR3
108.5	Transmission Plant	(49,002,883)				(49,002,883)				Direct
108.7	General Plant	(12,791,254)	(4,488,233)	(5,876,976)	0	(2,361,940)	0	(55,916)	(8,190)	Total Utility Plant Ratio
108.9	Cost of Removal - Nuclear	(94,379)	(33,882)	(60,497)			}		, , ,	KW, KWH - CR3
111.1	Transportation Lease	(23,444,300)		(23,444,300)						KW, KWH - 625 MW Canacity
111.1	Intangible Plant (HPS-Acuera)	(2,311,850)	(818,008)	(1,069,024)		(424,818)				Prod/Xmsn Plant Ratio
111.1	Leasehold Improvements - U2	(8,650,311)	(4,005,094)	(4,645,217)						KW, KWH - 625 MW Capacity
115.1	Acquisition Adjustment	(429,202)	(154,084)	(275,118)						KW, KWH - CR3
120.5	Nuclear Fuel	(6,504,475)		(6,504,475)						Direct
1	Working Capital:									
]	Power Production	9,998,589	986,671	9,011,919						Operating Expense
	Purchase Power Expense	8,980,139	4,944,324	4,004,210				31,605		Operating Expense
	Transmission	4,528,042	•		4,198,152	329,890	0			T-KW
	Administrative & General	1,890,806	770,173	463,750	0	57,789	l ol	65,935	533,159	Admin. & General Ratio
	Payroll & Property Taxes	1,279,342	914,809	226,632	0	44,460	0	29,032	64,410	Tax Expense Ratio
135	Working Funds	4,289					Í	4,289		Direct
154	Plant Materials and Operating Supplies	17,545,183	6,156,306	8,061,181	0	3,239,766	0	76,697	11,233	Total Utility Plant Ratio
165	Prepayments	12,021,018	4,217,970	5,523,089	0	2,219,714	0	52,549	7,696	Total Utility Plant Ratio
	Deductions:									
235	Consumer Deposits	(3,981)						(3,981)		CONS
	TOTAL RATE BASE	545,861,008	184,918,447	234,468,495	4,198,152	117,044,975	0	4,057,656	1,173,282	
	Rate Base Ratio	1.000	0.339	0.430	0.008	0.214	0.000	0.007	0.002	1.000

1

Exhibit _____ (DEC-2) Witness David E. Christianson Docket # 981827-EC

ł

I

Comparison of Revenue Collected with Energy, Demand, and Consumer Charges BMcD Rates vs SECI-7B

Т

t

Exhibit _____ (DEC-3) Witness David E. Christianson Docket # 981827-EC

L

1

1

1

Comparison of Expected Average Wholesale Power Cost in 2000 BMcD Rates vs SECI-7b Rates (mills/kWh)

1

ł

I

ł

]

1

ł

1

T

1

J.

ł

1

ł

BMcD SECI-7b

Exhibit _____ (DEC-4) Witness David E. Christianson Docket # 981827-EC

1

T

1

1

1

L

1

J

Comparison of Expected Average Wholesale Power Cost in 2001 LCEC Alt 2 Rates vs SECI-7b Rates (mills/kWh)

1

)

1

1

1

1

1

1

1

1

🖸 SECI-7b 🖩 LCEC