

JAMES A. MCGEE SENIOR COUNSEL

August 1, 2000

000000-PU

Mr. Michael Haff Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Re: Ten-Year Site Plan

Dear Mr. Haff:

Enclosed is Florida Power Corporation's response to Staff's first and second request for supplemental information on generation expansion plans. If you have any questions, please feel free to contact me.

Very truly yours,

1 Mes

EC

AUG 2

SAFETY & ELECTRIC RELIABILITY

James A. McGee

JAM/kbd

Enclosure

cc: Mr. Joseph Jenkins

APP

CAF

CMP COM

Florida Public Service Commission Supplemental Data Requests (Questions 1 through 17)

Florida Power Corporation's 2000 Ten-Year Site Plan

August, 2000

1. Provide all data requested on the attached forms. If any of the requested data is already included in FPC's Ten-Year Site Plan, state so on the appropriate form.

Information from FPC's 2000 Ten-Year Site Plan was used to complete the attached requested data forms.

EXISTING GENERATING UNIT OPERATING PERFORMANCE

(1) (2)		(3)	((4)	(5)		6
		FACTO:	O OUTAGE R (POF)		OUTAGE R (FOF)	EQUIVALENT FACTO	AVAILABILITY R (EAF)	NET OP	rage Erating E (anohir)
PLANT NAME	UNIT NO.		% PROJECTED		% PROJECTED	HISTORICAL	PROJECTED		KWH PROJECTED
ANCLOTE	i	9.32	9.32	0.94	0.94	85.96	85.96	10,007	10,062
	2	6.63	6.63	0.48	0.48	85.31	85.31	9,959	10,032
AVON PARK	P1-P2	5.29	5.29	10.77	10.77	85.21	85.21	16,849	17,456
BARTOW	1	10.36	10.36	2.56	2.56	82.41	82.41	10,619	10,276
	2	9.72	9.72	2.59	2.59	84.04	84.04	10,599	10,459
	3	6.38	6.38	2.21	2.21	87.12	87.12	9,986	10,072
BARTOW	P1-P4	6.59	6.59	4.98	4.98	87.54	87.54	15,087	16,278
BAYBORO	P1-P4	4.01	4.01	0.92	0.92	96.68	96.68	13,505	14;347
CRYSTAL	1	7.32	7.32	1.52	1.52	83.01	83.01	9.832	9,684
RIVER	2	3.25	3.25	6.32	6.32	85.32	85.32	9,754	9,714
	3	3.81	5.50	37.25	3.30	57.84	86.76	10,372	10,365
	4	4.20	4.20	3.72	3.72	89.09	89.09	9,446	9,464
	5	8.26	8.26	1.39	1.39	88.69	88.69	9,389	9,422
DEBARY	P1-P10	3.83	3.83	0.70	0.70	94.50	94.50	13,938	15,175
HIGGINS	P1-P4	4.60	4.60	3.11	3.11	92.29	92.29	16,613	17,473
HINES ENERGY									
COMPLEX	1	14.51	4.41	2.56	3.70	76.61	91.00	7,306	7,122
INTERCESSION									
CITY	P1-P11	2.79	2.79	2.97	2.97	93.59	93.59	13,594	14,089
RIO PINAR	P1	0.00	0.00	2.01	2.01	97.79	97.79	18,378	17,807
SUWANNEE	1	0.00	0.00	0.19	0.19	99.59	99.59	12,660	12,097
	2	0.00	0.00	0.00	0.00	99.81	99.81	12,789	13,206
	3	6.69	6.69	3.60	3.60	89.44	89.44	11,209	10,782
SUWANNEE	P1-P3	7.65	7.65	0.13	0.13	86.00	86.00	14,626	14,022
TIGER BAY	1	4.38	4.38	3.19	3.19	91.03	91.03	7,763	7,761
TURNER	P1-P4	4.71	4.71	1.97	1.97	90.79	90.79	16,903	17,102
UNIV. OF FLA.	P1	1.70	1.70	16.02	16.02	78.30	78.30	8,897	9,470

NOTE: HISTORICAL - AVERAGE OF PAST THREE YEARS PROJECTED - AVERAGE OF NEXT TEN YEARS

NOMINAL, DELIVERED RESIDUAL OIL PRICES BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			RI	ESIDUAL O	IL (BY SUL	FUR CONTENT)			
	LESS TH	IAN 0.7%	ESCALATION	0.7 -	2.0%	ESCALATION	GREATER	THAN 2.0%	ESCALATION
YEAR	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
***********				1/	1 /				,
1997		DATA		16.13	252.00			DATA	
1998		NOT	_	12.61	194.00	-23.02		NOT	_
1999		AVAILAB	LE	13.78	212.00	9.28		AVAILABI	Æ
				2 /	2 /		3 /	3 /	
2000				17.81	274.00	1.00	17.62	271.00	
2001				17.49	269.00	-1.82	15.80	243.00	-10.33
2002				17.23	265.00	-1.49	15.60	240.00	-1.23
2003		\10m		17.23	265.00	0.00	15.60	240.00	0.00
2004		NOT	- - -	17.36	267.00	0.75	15.73	242.00	0.83
2005		APPLICAB	LE	17.62	271.00	1.50	15.93	245.00	1.24
2006				18.01	277.00	2.21	16.25	250.00	2.04
2007				18.40	283.00	2.17	16.64	256.00	2.40
2008				18.79	289.00	2.12	16.97	261.00	1.95
2009				19.24	296.00	2.42	17.36	267.00	2.30
								٠	
HEAT CON					MBTU/BBL				
HEAT CON					MBTU/BBL				
HEAT CON	TENT > 2.0	0% RESID	JAL OIL =	6.50 N	MBTU/BBL				
ASH CONT	ENT < 0.7	% RESIDU	AL OIL =	N/A F	PERCENT				

NOTES: 1 / TOTAL RESIDUAL OIL AS BURNED - APPROXIMATE

ASH CONTENT 0.7 - 2.0% RESIDUAL OIL = 0.10 PERCENT ASH CONTENT > 2.0% RESIDUAL OIL = 0.10 PERCENT

2 / 1.0% SULFUR

3 / 2.5% SULFUR

NOMINAL, DELIVERED RESIDUAL OIL PRICES HIGH CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			R	ESIDUAL C	OIL (BY SUL	FUR CONTENT)			
	LESS TI	HAN 0.7%	DOCAL ATTOM	0.7 -	2.0%	FROAT ATTOM	GREATER	THAN 2.0%	722
YEAR	\$/BBL	c/MBTU	ESCALATION %	\$/BBL	c/MBTU	ESCALATION %	\$/BBL	c/MBTU	ESCALATION %
1997 1998		DATA NOT			SEE BASE			DATA NOT	
1999		AVAILABI	LE		CASE			AVAILABI	Æ
2000				1 / 19.18	1 / 295.00		2 / 17.88	2 / 275.00	_
2001				18.85	290.00	-1.69	16.90	260.00	-5.45
2002				18.85	290.00	0.00	16.90	260.00	0.00
2003				18.85	290.00	0.00	16.90	260.00	0.00
2004		NOT		19.18	295.00	1.72	17.23	265.00	1.92
2005		APPLICAB	LE	19.50	300.00	1.69	17.55	270.00	1.89
2006				20.48	315.00	5.00	19.18	295.00	9.26
2007				20.80	320.00	1.59	19.50	300.00	1.69
2008				21.45	330.00	3.13	20.15	310.00	3.33
2009				22.10	340.00	3.03	20.80	320.00	3.23
HEAT CONT	ENT < 0.	7% RESIDU	JAL OIL =	N/A N	MBTU/BBL				
HEAT CONT	ENT 0.7 - 2	.0% RESIDU	AL OIL =	6.50 N	MBTU/BBL				
HEAT CONT	ENT > 2.	0% RESIDU	JAL OIL =	6.50 N	MBTU/BBL				
ASH CONTI	ENT < 0.7	% RESIDU	AL OIL =	N/A F	PERCENT				
ASH CONTI	ENT 0.7 - 2.0	0% RESIDUA	LOIL =	0.10 F	PERCENT				

NOTES: 1 / 1.0% SULFUR

2 / 2.5% SULFUR

ASH CONTENT > 2.0% RESIDUAL OIL = 0.10 PERCENT

NOMINAL, DELIVERED RESIDUAL OIL PRICES LOW CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
			RI	ESIDUAL C	OIL (BY SUL	FUR CONTENT)			
	LESS T	HAN 0.7%	ESCALATION	0.7 -	2.0%	ESCALATION	GREATER	THAN 2.0%	ESCALATION
YEAR	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%	\$/BBL	c/MBTU	%
1997		DATA			SEE			DATA	
1998		NOT	•		BASE			NOT	· 10
1999		AVAILABI	.E		CASE			AVAILABI	Æ
2000				1 / 14.95	1 / 230.00		2 / 13.65	2 / 210.00	
2000				14.30	220.00	-4.35	13.00	200.00	-4.76
2001 2002				15.60	240.00	9.09	14.30	220.00	10.00
2002				15.60	240.00	0.00	14.30	220.00	0.00
2003		NOT		15.60	240.00	0.00	14.30	220.00	0.00
2005		APPLICAB	LE	15.60	240.00	0.00	14.30	220.00	0.00
2006		122 1 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		15.60	240.00	0.00	14.30	220.00	0.00
2007				15.60	240.00	0.00	14.30	220.00	0.00
2008				15.60	240.00	0.00	14.30	220.00	0.00
2009				15.60	240.00	0.00	14.30	220.00	0.00
		aw promi	141 OT -	NI/A)	MBTU/BBL				
HEAT CONT					MBTU/BBL				
HEAT CONT					MBTU/BBL				
HEAT CONT	EN1 > 2	.0% KESID	JAL OIL -	0.50	WIDT O/BBL				
ASH CONTI	ENT < 0	7% RESIDII	AI. Off. =	N/A 1	PERCENT				
ASH CONTI					PERCENT				
ASH CONTI					PERCENT				
1.011 CONT1	- A-1	********							

NOTES: 1 / 1.0% SULFUR

2 / 2.5% SULFUR

NOMINAL, DELIVERED DISTILLATE OIL and NATURAL GAS PRICES BASE CASE

(1) (2) (3) (4) (5) (6) (7)

DISTILLATE OIL **NATURAL GAS ESCALATION ESCALATION** % YEAR \$/BBL c/MBTU c/MBTU c/THERM 1 / 1/ 27.55 475.00 287.00 1997 28.70 1998 21.52 371.00 -21.89 291.00 29.10 1.39 22.04 380.00 2.43 299.00 29.90 1999 2.75 2/ 2/ 3 / 3 / 2000 29.12 502.00 261.00 26.10 27.61 476.00 -5.18 259.00 2001 25.90 -0.77 474.00 -0.42 2002 27.49 263.00 26.30 1.54 27.67 477.00 0.63 2003 271.00 27.10 3.04 27.90 0.84 2004 481.00 280.00 28.00 3.32 489.00 2005 28.36 1.66 288.00 28.80 2.86 2006 28.94 499.00 2.04 294.00 29.40 2.08 2007 29.58 510.00 2.20 301.00 30.10 2.38 2008 30.22 521.00 2.16 307.00 30.70 1.99 2009 30.80 531.00 1.92 314.00 31.40 2.28

HEAT CONTENT DISTILLATE OIL = 5.80 MBTU/BBL

ASH CONTENT DISTILLATE OIL = 0.00 PERCENT

NOTES: 1 / AS BURNED DATA - APPROXIMATE

2/ WITHOUT INLAND FREIGHT - 0.5% SULFUR

3 / SUPPLY COST ONLY

NOMINAL, DELIVERED DISTILLATE OIL and NATURAL GAS PRICES HIGH CASE

(1) (2) (3) (4) (5) (6) (7)

	D	ISTILLATE OI	L	NATURAL GAS			
		E	SCALATION			SCALATION	
YEAR	\$/BBL	c/MBTU	%	c/MBTU	c/THERM	%	
1997		SEE			SEE		
1998		BASE			BASE		
1999		CASE			CASE		
	1 /	1 /		2/	2 /		
2000	30.45	525.00	•	283.00	28.30		
2001	28.13	485.00	-7.62	300.00	30.00	6.01	
2002	28.13	485.00	0.00	300.00	30.00	0.00	
2003	28.71	495.00	2.06	310.00	31.00	3.33	
2004	29.00	500.00	1.01	320.00	32.00	3.23	
2005	29.87	515.00	3.00	330.00	33.00	3.13	
2006	31.32	540.00	4.85	330.00	33.00	0.00	
2007	31.90	550.00	1.85	330.00	. 33.00	0.00	
2008	32.48	560.00	1.82	330.00	33.00	0.00	
2009	33.93	585.00	4.46	330.00	33.00	0.00	

HEAT CONTENT DISTILLATE OIL = 5.80 MBTU/BBL

ASH CONTENT DISTILLATE OIL = 0.00 PERCENT

NOTES: 1/ WITHOUT INLAND FREIGHT - 0.5% SULFUR

2 / SUPPLY COST ONLY

NOMINAL, DELIVERED DISTILLATE OIL and NATURAL GAS PRICES LOW CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)				
	D	ISTILLATE	OIL		NATURAL GAS					
			ESCALATION		**************************************	ESCALATION				
YEAR	\$/BBL	c/MBTU	%	c/MBTU	c/THERM	%				
1997		SEE			SEE					
1998		BASE			BASE					
1 999		CASE		•	CASE					
	1 /	1/		2/	2 /					
2000	24.48	422.00		228.00	22.80					
2001	23.20	400.00	-5.21	220.00	22.00	-3. 5 1				
2002	25.52	440.00	10.00	220.00	22.00	0.00				
2003	25.52	440.00	0.00	220.00	22.00	0.00				
2004	25.52	440.00	0.00	220.00	22.00	0.00				
2005	25.52	440.00	0.00	220.00	22.00	0.00				
2006	25.52	440.00	0.00	220.00	22.00	0.00				
2007	25.52	440.00	0.00	220.00	22.00	0.00				
2008	25.52	440.00	0.00	220.00	22.00	0.00				
2009	25.52	440.00	0.00	220.00	22.00	0.00				
H	EAT CONTE	NT DISTILL	ATE OIL =	5.80	MBTU/BBL					
A	SH CONTEN	T DISTILLA	TE OIL =	0.00	PERCENT					

NOTES: 1/ WITHOUT INLAND FREIGHT - 0.5% SULFUR

2 / SUPPLY COST ONLY

NOMINAL, DELIVERED COAL PRICES BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	[LOW SULFUR	COAL (< I	.0%)	MEI	DIUM SULFU	R COAL (1.0 -	2.0%)	н	IGH SULFUR	COAL (> 2.0	1%)
YEAR	\$/TON	c/MBTU	SCALATION %	% SPOT PURCHASE	\$/TON	c/MBTU	ESCALATION %	% SPOT PURCHASE	\$/TON	c/MBTU	ESCALATION %	% SPOT PURCHASE
1997			ATA OT		1 / 47.25 47.00	1 / 189.00 188.00	-0.53	4 / 0.00 0.00			ATA OT	
1999		AVAII	LABLE		46.25	185.00	-1.60	0.00			LABLE	
2000	2 / 48.75	2 / 195.00		4 / 0.00	3 / 40.75	3 / 163.00		4 / 0.00				
2001	48.25	193.00	-1.03	0.00	41.25	165.00	1.23	0.00				
2002	48.00	192.00	-0.52	0.00	41.75	167.00	1.21	0.00				
2003	48.50	194.00	1.04	0.00	42.25	169.00	1.20	0.00				
2004	49.00	196.00	1.03	0.00	42.75	171.00	1.18	0.00		N	ОТ	
2005	47.75	191.00	-2.55	0.00	43.25	173.00	1.17	0.00		APPLI	CABLE	•
2006	48.25	193.00	1.05	0.00	44.25	177.00	2.31	0.00				
2007	48.75	195.00	1.04	0.00	44.75	179.00	1.13	0.00				
2008	49.75	199.00	2.05	0.00	45.50	182.00	1.68	0.00				
2009	50.50	202.00	1.51	0.00	46.00	184.00	1.10	0.00				
		% LOW SUI		=		MBTU/TON MBTU/TON						
		% HIGH SU		=		MBTU/TON						
ASH CONTI	ENT < 1.09	LOW SUL	FUR COAL	**	8.36	PERCENT						
ASH CONT	ENT 1.0 - 2.0	% MED. SUL	FUR COAL	=	8.89	PERCENT						
ASH CONTI	ENT > 2.09	6 HIGH SUL	FUR COAL	=	N/A	PERCENT						

NOTES: 1 / TOTAL COAL - \$/TON ARE APPROXIMATE - AS BURNED DATA

2 / LIMITED TO 1.2 Ib \$02/MBTU

3 / LIMITED TO 2.1 lb SO2/MBTU

4 / 100% CONTRACT

NOMINAL, DELIVERED COAL PRICES HIGH CASE

(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
1	.ow sulfur	COAL(<1	1.0%)	ME	DIUM SULFUR	COAL (1.0	- 2.0%)	н	IGH SULFUR	COAL (> 2.0	%)
		ESCALATION	N % SPOT		E	SCALATIO	N % SPOT]	ESCALATION	% SPOT
\$/TON	c/MBTU	%	PURCHASE	\$/TON	c/MBTU	%	PURCHASE	\$/TON	c/MBTU	% 	PURCHASE
	D/	ATA			SI	EE			D	ATA	
					CA	SE			AVA	LABLE	
17	1/		3/	2/	2 /		3 /				•
									APPL	CABLE	
											•
50.75	203.00	1.00	0.00	46.50	186.00	1.09	0.00				
TENT < 1.0	% LOW SU	LFUR COAL	=	25.00	MBTU/TON						
ΓENT 1.0 - 2.	.0% MED. SU	LFUR COAL	. =	25.00	MBTU/TON						
ΓENT > 2.0	% HIGH SU	ILFUR COAL	. =	N/A	MBTU/TON						
ENT < 1.0	% LOW SUL	FUR COAL	**	8.36	PERCENT						
			-	8.89	PERCENT		·				
			-	N/A	PERCENT						
	\$/TON 	LOW SULFUR \$/TON c/MBTU	ESCALATION S/TON c/MBTU % DATA NOT AVAILABLE 1 / 1/ 49.25 197.00 48.75 195.00 -1.02 48.50 194.00 -0.51 49.00 196.00 1.03 49.75 199.00 1.53 48.25 193.00 -3.02 48.75 195.00 1.04 49.50 198.00 1.54 50.25 201.00 1.52 50.75 203.00 1.00 TENT < 1.0% LOW SULFUR COAL TENT 1.0 - 2.0% MED. SULFUR COAL	DATA NOT AVAILABLE	LOW SULFUR COAL (< 1.0%) ME	LOW SULFUR COAL (< 1.0%) MEDIUM SULFUR	LOW SULFUR COAL (< 1.0%) MEDIUM SULFUR COAL (1.0	LOW SULFUR COAL (< 1.0%) MEDIUM SULFUR COAL (1.0 - 2.0%)	LOW SULFUR COAL (< 1.0%) MEDIUM SULFUR COAL (1.0 - 2.0%) H	LOW SULFUR COAL (< 1.0%) MEDIUM SULFUR COAL (1.0 - 2.0%) HIGH SULFUR	LOW SULFUR COAL (< 1.0%) MEDIUM SULFUR COAL (1.0~2.0%) HIGH SULFUR COAL (> 2.0

NOTES: 1 / LIMITED TO 1.2 Ib SO2/MBTU

2 / LIMITED TO 2.1 lb SO2/MBTU 3 / 100% CONTRACT

NOMINAL, DELIVERED COAL PRICES LOW CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		LOW SULFUR	COAL (<	1.0%)	ME	DIUM SULFUR	COAL (1.0	- 2.0%)	н	IGH SULFUR	COAL (> 2.0	1%)
	70	E	SCALATIO	N % SPOT]	SCALATIO	N % SPOT			ESCALATION	% SPOT
YEAR	\$/TON	c/MBTU	%	PURCHASE	\$/TON	c/MBTU	% 	PURCHASE	\$/TON	c/MBTU	%	PURCHASE
1997		DA	ATA.			S	EE			D.	ATA	
1998		N	от				SE				OT	
1999		AVAII	ABLE			CA	ASE				LABLE	
	1/	1/		3/	2/	2/		3 /				•
2000	48.25	193.00		0.00	40.25			0.00				
2001	47.50	190.00	-1.55	0.00	40.50		0.62	0.00				
2002	47.25	189.00	-0.53	0.00	40.75		0.62	0.00				
2003	47.75	191.00	1.06	0.00	41.00		0.61	0.00				
2004	48.50	194.00	1.57	0.00	41.50		1.22	0.00			OT	
2005	46.75	187.00	-3.61	0.00	42.00		1.20	0.00		APPLI	CABLE	
2006	47.50	190.00	1. 60 1. 05	0.00 0.00	42.75 43.75	171.00	1.79	0.00				•
2007 2008	48.00 48.75	192.00 195.00	1.56	0.00	43.73	175.00 178.00	2.34 1.71	0.00				
2009	48.73 49.75	199.00	2.05	0.00	45.00		1.71	0.00 0.00				
HEAT CONT	ΓENT < 1.0	% LOW SUI	LFUR COAL	, =	25.00	MBTU/TON						
HEAT CONT	TENT 1.0 - 2.	0% MED. SUI	LFUR COAL	_ =	25.00	MBTU/TON				-		
HEAT CON	TENT > 2.0	% HIGH SU	LFUR COA	L =	N/A	MBTU/TON						
ASH CONT	ENT < 1.09	% LOW SUL	FUR COAL	=	8.36	PERCENT						
ASH CONT	ENT 1.0 - 2.0	% MED. SUL	FUR COAL	=	8.89	PERCENT						
ASH CONT	ENT > 2.05	K HIGH SUL	FUR COAL	-	N/A	PERCENT						

NOTES: 1 / LIMITED TO 1.2 lb SO2/MBTU

2 / LIMITED TO 2.1 lb SO2/MBTU

3 / 100% CONTRACT

NOMINAL, DELIVERED NUCLEAR FUEL AND FIRM PURCHASES

(1)	(2)	(3)	(4)	(5)	(6)	(7)
	NUCLEAR		FIRM PURCHASES		QF PURCHASES	
YEAR	c/MBTU	ESCALATION %	\$/MWh	ESCALATION %	\$/MWh	ESCALATION %
1997	32.00		1 / 57.12		2 / 19.72	**************************************
1998	34.00	6.25	57.65	0.93	19.00	-3.65
1999	30.00	-11.76	57.22	-0.75	19.19	1.00
			3 /			
2000	32.80	9.33	13.90		20.22	5.37
2001	32.80	0.00	14.10	1.44	20.53	1.53
2002	33 <i>.6</i> 0	2.44	14.40	2.13	20.81	1.36
2003	33. <i>6</i> 0	0.00	14.60	1.39	21.28	2.26
2004	32.40	-3.57	14.70	0.68	21.59	1.46
2005	32.40	0.00	14.60	-0.68	21.56	-0.14
2006	33.90	4.63	14.90	2.05	21.96	1.86
2007	33.90	0.00	15.20	2.01	22.46	2.28
2008	35.70	5.31	15.40	1.32	23.08	2.76
2009	35.70	0.00	15.60	1.30	24.73	7.15

NOTES: 1 / PURCHASED POWER - INVOICE COST (INCLUDING ANY DEMAND CHARGES)

^{2 /} QF CONTRACTS WITH FIRM DELIVERIES - ENERGY COST ONLY

^{3 /} ENERGY COST ONLY

FINANCIAL ASSUMPTIONS BASE CASE

AFUDC RATE	8.53	%
CAPITALIZATION RATIOS:		
DEBT	45.00	%
PREFERRED	0.00	%
EQUITY	55.00	%
RATE OF RETURN:		
DEBT	7.00	%
PREFERRED	8.00	%
EQUITY	12.00	%
INCOME TAX RATE:		
STATE	5.50	%
FEDERAL	35.00	%
EFFECTIVE	38.58	%
OTHER TAX RATE:	NOT USED	%
DISCOUNT RATE:	8.53	%
TAX		
DEPRECIATION RATE:	15 YEAR,	150% TO SL

FINANCIAL ESCALATION ASSUMPTIONS

(1)	(2)	(3)	(4)	(5)
		PLANT	FIXED	VARIABLE
	GENERAL	CONSTRUCTION	O & M	O & M
	INFLATION	COST	COST	COST
YEAR	%	%	%	%
2000	3.00	2.50	2.50	3.00
2001	3.00	2.50	2.50	3.00
2002	3.00	2.50	2.50	3.00
2003	3.00	2.50	2.50	3.00
2004	3.00	2.50	2.50	3.00
2005	3.00	2.50	2.50	3.00
2006	3.00	2.50	2.50	3.00
2007	3.00	2.50	2.50	3.00
2008	3.00	2.50	2.50	3.00
2009	3.00	2.50	2.50	3.00

LOSS OF LOAD PROBABILITY, RESERVE MARGIN, AND EXPECTED UNSERVED ENERGY BASE CASE LOAD FORECAST

(1)	(2)	(3)	(4)	(5)	(6)	(7)
	1	ANNUAL ISOLATE	D	A	NNUAL ASSISTE	D
YEAR	LOSS OF LOAD PROBABILITY (DAYS/YR)	RESERVE MARGIN % (INCLUDING FIRM PURCH.)	EXPECTED UNSERVED ENERGY (MWh)	LOSS OF LOAD PROBABILITY (DAYS/YR)	RESERVE MARGIN (%)	EXPECTED UNSERVED ENERGY (MWb)
2000	1.378	16	1817.3	0.061	16	64.7
2001	1.457	16	1856.4	0.066	16	67.5
2002	0.510	20	630.3	0.018	20	17.9
2003	0.457	22	579.9	0.015	22	14.9
2004	0.188	25	238.3	0.005	25	5.4
2005	0.392	23	512.9	0.012	23	13.2
2006	0.191	25	250.7	0.006	25	6.0
2007	0.620	21	871.5	0.023	21	26.5
2008	0.188	24	250.7	0.006	24	6.4
2009	0.623	20	897.1	0.024	20	29.1

2. Illustrate what FPC's generation expansion plan would be as a result of each of the demand and fuel price forecast sensitivities discussed in FPC's Ten-Year Site Plan. Include the cumulative present worth revenue requirements (CPWRR) of each sensitivity.

The CPWRR from the #1 ranked PROVIEW expansion plan for each sensitivity are provided below.

	High Demand Fore	cast	Low Demand Forecast Sensitivity		
Year	Unit(s)	CPWRR (\$000)	Unit(s)	CPWRR (\$000)	
2000		1,128,684		1,074,578	
2001	Inter. City P12-14	2,213,975	Inter. City P12-14	2,103,029	
2002		3,200,947		3,034,540	
2003		4,169,949		3,936,046	
2004	Hines Energy Complex CC 2	5,100,942		4,786,874	
2005	Hines Energy Complex CC 3	6,018,676		5,609,222	
2006	сті	6,900,825	Hines Energy Complex CC 2	6,399,796	
2007	Hines Energy Complex CC 4	7,774,701		7,168,876	
2008		8,603,636	Hines Energy Complex CC 3	7,905,317	
2009	Hines Energy Complex CC 5	9,408,182		8,599,929	
2010	CT 2 & 3	10,165,567	Hines Energy Complex CC 4	9,250,606	

	High Fuel Price For	recast	Low Fuel Price Forecast Sensitivity		
	Sensitivity				
Year	Unit(s)	CPWRR (\$000)	Unit(s)	CPWRR (\$000)	
2000		1,117,640		1,057,830	
2001	Inter. City P12-14	2,207,791	Inter. City P12-14	2,073,047	
2002		3,188,428		3,001,669	
2003		4,148,840		3,904,728	
2004	Hines Energy Complex CC 2	5,070,560	Hines Energy Complex CC 2	4,765,167	
2005		5,965,735		5,592,985	
2006	Hines Energy Complex CC 3	6,831,121	Hines Energy Complex CC 3	6,389,288	
2007		7,670,905		7,157,334	
2008	Hines Energy Complex CC 4	8,476,286	Hines Energy Complex CC 4	7,894,070	
2009		9,238,649		8,581,758	
2010	Hines Energy Complex CC 5	9,959,842	Hines Energy Complex CC 5	9,220,919	

	Constant Oil & Gas to Coal Differential Forecast				
	Sensitivity				
Year	Unit(s)	CPWRR (\$000)			
2000		1,099,178			
2001	Inter. City P12-14	2,166,146			
2002		3,128,120			
2003		4,067,424			
2004	Hines Energy Complex CC 2	4,960,324			
2005		5,817,623			
2006	Hines Energy Complex CC 3	6,641,378			
2007		7,438,312			
2008	Hines Energy Complex CC 4	8,205,203			
2009		8,925,845			
2010	Hines Energy Complex CC 5	9,600,036			

3. Provide a table of annual and cumulative present worth revenue requirements (CPWRR) for all combinations of units that were evaluated in order to arrive at FPC's base case generation expansion plan. Include the type and timing of the unit or units that comprise each alternative, and the effect of these unit additions on FPC's reliability criteria.

FPC's 2000 Ten-Year Site Plan expansion review analyzed hundreds of possible expansion alternatives. In order to simplify the data collection for this question, FPC selected six PROVIEW expansion plans that related to various types of technology and produced the CPWRR for these plans. The types of technology selected are shown below.

PROVIEW Expansion Plans

Plan#	Description
1	Combined Cycle Technology (Base Plan)
9	Combined Cycle & Combustion Turbines
18	Combined Cycle Repowering Technology
286	Pulverized Coal Technology
334	Fluidized Bed Technology
634	Integrated Gasification Combined Cycle (IGCC) Technology

The data requested has been attached for the above technologies:

PROVIEW Expansion Plan # 1

Combined Cycle Technology (Base Plan)

				Annual	Winter
Year	Unit(s)	Annual PWRR (\$000)	CPWRR (\$000)	LOLP	Reserve Margin (%)
2000		1,099,178	1,099,178	0.061	16
2001	Inter. City P12-14	1,060,241	2,159,419	0.066	16
2002		957,804	3,117,223	0.018	20
2003		935,894	4,053,117	0.015	22
2004	Hines Energy Complex CC 2	897,570	4,950,688	0.005	25
2005		869,108	5,819,796	0.012	23
2006	Hines Energy Complex CC 3	840,869	6,660,665	0.006	25
2007		817,261	7,477,926	0.023	21
2008	Hines Energy Complex CC 4	788,544	8,266,470	0.006	24
2009		745,745	9,012,215	0.024	20
2010	Hines Energy Complex CC 5	700,814	9,713,029	N/A	22

PROVIEW Expansion Plan # 9

Combined Cycle & Combustion Turbines

			,	Annual	Winter
Year	Unit(s)	Annual PWRR (\$000)	CPWRR (\$000)	LOLP	Reserve Margin (%)
2000		1,099,178	1,099,178		16
2001	Inter. City P12-14	1,060,241	2,159,419		16
2002		957,804	3,117,223		20
2003		935,894	4,053,117	LOLP	22
2004	CT 1	894,282	4,947,399	SENSITIVITY	21
2005	Hines Energy Complex CC 2	878,899	5,826,298	TON	25
2006		833,470	6,659,768	PERFORMED	20
2007	Hines Energy Complex CC 3	826,481	7,486,250		23
2008	CT 2	784,800	8,271,050		22
2009	Hines Energy Complex CC 4	759,015	9,030,065		24
2010	CT 3	704,913	9,734,978		21

PROVIEW Expansion Plan # 18

Combined Cycle Repowering Technology

				Annual	Winter
Year	Unit(s)	Annual PWRR (\$000)	CPWRR (\$000)	LOLP	Reserve Margin (%)
2000		1,099,178	1,099,178		16
2001	Inter. City P12-14	1,060,241	2,159,419		16
2002		957,804	3,117,223		20
2003		935,894	4,053,117	LOLP	22
2004	Hines Energy Complex CC 2	897,570	4,950,688	SENSITIVITY	25
2005		869,108	5,819,796	NOT	23
2006	Hines Energy Complex CC 3	840,869	6,660,665	PERFORMED	25
2007		817,261	7,477,926		21
2008	Hines Energy Complex CC 4	788,544	8,266,470		24
2009		745,745	9,012,215		20
2010	Repower Bartow 3 & CT 1	709,144	9,721,359		21

PROVIEW Expansion Plan # 286

Pulverized Coal Technology

				Annual	Winter
Year	Unit(s)	Annual PWRR (\$000)	CPWRR (\$000)	LOLP	Reserve Margin (%)
2000		1,099,178	1,099,178		16
2001	Inter. City P12-14	1,060,241	2,159,419		16
2002		957,804	3,117,223	•	20
2003		935,894	4,053,117	LOLP	22
2004	Hines Energy Complex CC 2	897,570	4,950,688	SENSITIVITY	25
2005	1	869,108	5,819,796	NOT	23
2006	Hines Energy Complex CC 3	840,869	6,660,665	PERFORMED	25
2007		817,261	7,477,926		21
2008	Pulverized Coal	839,287	8,317,213		27
2009		786,804	9,104,016		23
2010	CT 1	726,069	9,830,085		20

PROVIEW Expansion Plan # 334

Fluidized Bed Technology

				Annuai	Winter
Year	Unit(s)	Annual PWRR (\$000)	CPWRR (\$000)	LOLP	Reserve Margin (%)
2000		1,099,178	1,099,178		16
2001	Inter. City P12-14	1,060,241	2,159,419		16
2002		957,804	3,117,223		20
2003		935,894	4,053,117	LOLP	22
2004	Hines Energy Complex CC 2	897,570	4,950,688	SENSITIVITY	25
2005		869,108	5,819,796	NOT	23
2006	Hines Energy Complex CC 3	840,869	6,660,665	PERFORMED	25
2007		817,261	7,477,926		21
2008	Hines Energy Complex CC 4	788,544	8,266,470		24
2009		745,745	9,012,215		20
2010	Fluidized Bed	730,548	9,742,763		21

PROVIEW Expansion Plan # 634

Integrated Gasification Combined Cycle (IGCC) Technology

		1		Annual	Winter
Year	Unit(s)	Annual PWRR (\$000)	CPWRR (\$000)	LOLP	Reserve Margin (%)
2000		1,099,178	1,099,178		16
2001	Inter. City P12-14	1,060,241	2,159,419		16
2002		957,804	3,117,223		20
2003		935,894	4,053,117	LOLP	22
2004	Hines Energy Complex CC 2	897,570	4,950,688	SENSITIVITY	25
2005		869,108	5,819,796	тои	23
2006	Hines Energy Complex CC 3	840,869	6,660,665	PERFORMED	25
2007		817,261	7,477,926		21
2008	Hines Energy Complex CC 4	788,544	8,266,470		24
2009		745,745	9,012,215		20
2010	IGCC	748,155	9,760,370		22

4. Identify and discuss any firm power purchases that FPC expects to make from other utilities over the planning horizon. If an unidentified or unconfirmed future power purchase is part of FPC's generation expansion plan, explain the nature of that purchase.

FPC has long-term contracts for about 469 MW of purchased power with other utilities, including a contract with Southern Company for approximately 409 MW of purchased power annually through May 2010. This represents about 4.3 percent of FPC's total current system capacity. FPC has an option to lower the UPS purchases by approximately 200 MW given a three-year notice.

The other 60 MW of purchased power is a partial requirements contract between Tampa Electric Company (TECO) and FPC. This was originally a full requirements contract between TECO and the Sebring Utilities Commission (SUC). The contract was assumed by FPC and converted to partial requirements after FPC purchased the SUC electric distribution system in 1993. The terms of this contract with TECO change to 70 MW from 2005 through February 2011. This contract expires in March 2011.

5. For each of the generating units contained in FPC's Ten-Year Site Plan, discuss the "drop-dead" date for a decision on whether or not to construct each unit. Provide a time line for the construction of each unit, including regulatory approval, final decision point, and vendor order.

FPC's April 2000 TYSP projects an in-service date of November 2003, November 2005, November 2007 and November 2009 for HEC #2 through #5, respectively. Given the current increase in market activity for combustion turbines, FPC would anticipate a 48-month window for developing a combined cycle power plant. Vendor equipment lead times are anticipated to be approximately 30 months. FPC would typically proceed with placing equipment orders within the first year of the 48-month installation schedule. A decision date to proceed with HEC #2 through #5 would typically occur 36-42 months before their in-service dates. The major components of the 48-month schedule are shown in the following Table A5.

		Table A5									
,		Time Line of Supply-Side Additions									
		TYSP Supplemental Question #5									
	Chart Reflects Major Components of a 48-month Combined Cycle Schedule										
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
HEC #2 In-Service Date				11/03		1]]	
Evaluations/RFP/FPSC Preparations	xxxxxxx					İ		<u> </u>			
Determination of Need (FPSC)	XXXXXXX										
Licensing & Permitting	xxxxxx	XXXXXXXXXXXXXX									
Engineer/Procure/Construct	xxxxxxx	xxxxxxxxxxxx	xxxxxxxxxxxxx	xxxxxxxxxxxxxx							
HEC #3 In-Service Date						11/05	·				
Evaluations/RFP/FPSC Preparations	l		xxxxxx								
Determination of Need (FPSC)			xxxxxxx					<u> </u>	į	1	
Licensing & Permitting			XXXXXXX	XXXXXXXXXXXXXXXXXX							
Engineer/Procure/Construct	t		XXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXX	xxxxxxxxxxx					
HEC #4 In-Service Date								11/07			
Evaluations/RFP/FPSC Preparations					xxxxxx						
Determination of Need (FPSC)					xxxxxxx						
Licensing & Permitting					xxxxxxx	xxxxxxxxxxx					
Engineer/Procure/Construct					XXXXXXXX	xxxxxxxxxxxxx	xxxxxxxxxxxx	xxxxxxxxxxxxx			
HEC #5 In-Service Date										11/09	
Evaluations/RFP/FPSC Preparations							xxxxxx				
Determination of Need (FPSC)							XXXXXXX				
Licensing & Permitting							xxxxxx	xxxxxxxxxxxx			
Engineer/Procure/Construct							2000000	xxxxxxxxxxxxx	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	

6. Discuss FPC's plans to request a determination of need from the Commission. Include a possible timetable for this activity (e.g., when would petition be filed, when would need have to be granted to meet environmental requirements, etc.).

FPC's April 2000 TYSP projects an in-service date of November 2003 for Hines 2. Having identified and confirmed Hines 2 as the Company's next-planned generating alternative, FPC then sought to solicit superior contract alternatives from third-party suppliers. Pursuant to FPSC Rule 25-22.082, F.A.C., FPC issued a Request for Proposals (RFP) on January 26, 2000. FPC has concluded its evaluation of the RFP proposals and is preparing a need petition for FPC's next capacity addition. FPC expects to file a need petition prior to the end of August. FPC's supplemental Site Certification filing anticipates a normal review process by the FPSC on FPC's need determination petition. Based on an estimated August 2000 filing date, FPC would anticipate having a decision from the FPSC by December 2000 in order to proceed on schedule with the FDEP. FPC currently anticipates a PSD permit issuance from the FDEP by November 2001 in its current schedule. Major components of the Hines 2 timetable are shown in Table A5 from Question #5.

. . . .

7. Identify and discuss all proposed or reasonably expected State and Federal environmental regulations or legislation that impacted FPC's generation expansion plan.

The key environmental legislation and resulting regulations that are taken into consideration in FPC's generation expansion plan are:

The Clean Air Act Amendments (CAAA): FPC is in the process of implementing the most cost-effective plan to maintain compliance with the Title IV SO₂ allowance allocations beginning in the year 2000. In addition, as prescribed by Title III of the CAAA, EPA is continuing to evaluate the emissions of air toxins from electric utilities and whether to regulate those emissions. In February, 1998 EPA determined that further regulation of air toxic emissions from electric utilities is not appropriate at the present time, but additional study is needed.

Regional Haze Rule: EPA's final regional haze regulation requires all states to improve visibility to background conditions over the next several decades. This regulation could cause FPC to add costly emissions controls, especially on its coal-fired units.

Ambient Air Quality: Recent high ground-level ozone readings in Florida may cause several areas, including the Tampa Bay area, to become non-attainment for this pollutant. This change will make it more difficult and costly to build new generating capacity and could also result in a requirement to decrease emissions from current facilities.

7. (continued)

New Source Review Reform: EPA has proposed changes to the rules that regulate the air emissions from construction of new units or modification of existing units. If the proposed changes become final, routine activities that are currently exempt from New Source Review would be subject to it in the future. This could result in the installation of costly state-of-the-art pollution control equipment at many of FPC's facilities. Currently, EPA plans to finalize this regulation in the fall of 2000.

The Kyoto Climate Change Agreement: The Kyoto climate change agreement was developed in December 1997. If ratification of the protocol is successful, implementation will have a profound impact on FPC's operations and planning.

The reauthorization of the Clean Water Act (CWA): Congress has begun the process to reauthorize the CWA. Any changes to the CWA, particularly any changes related to intake structures or cooling water systems, may have an effect on the generation plan.

State consumptive use requirements: Because of increased pressure on a limited resource, the state's water management districts have begun restricting and/or denying new consumptive use water permits. Such changes in water use policy will increase reliance on alternative water supplies such as treated effluent and stormwater to support new generation expansion. Many changes are either being considered or have been enacted by the legislature that affect how water is allocated in Florida.

7. (continued)

State industrial wastewater permits: The State of Florida has received delegation of the federal NPDES program. Current state industrial wastewater permits have been consolidated into the NPDES permits. However, no new limitations to wastewater discharges that would restrict generation expansion are anticipated from this delegation.

Total Maximum Daily Loading (TMDL) Rulemaking: The EPA has begun a new rulemaking that would expand the TMDL program required by the Clean Water Act. The EPA is attempting to include air deposition into water bodies as a component of this program. If successful, this rule could result in more stringent air emission limitations at generating facilities.

Wetlands permitting: The Environmental Resource Permitting program requires applicants to address cumulative and secondary impacts to wetlands, wildlife and water quality. These predictive analyses are taken into account during the expansion planning process.

Power Plant Siting Act (PPSA): Florida's current PPSA is designed to be a "one-stop" environmental permitting process. The extensive lead times for the necessary studies, permit application preparation, processing, and approval must be accounted for in generation planning.

8. Provide, on a system-wide basis, historical annual heating degree day (HDD) data for the period 1990-1999 and forecasted annual HDD data for the period 2000-2009.

Year	HDD
1990	445.5
1991	421.2
1992	585.2
1993	508.1
1994	515.0
1995	601.0
1996	859.1
1997	442.7
1998	557.2
1999	441.8
Forecast:	
2000-2009	538.0

9. Provide, on a system-wide basis, historical annual cooling degree day (CDD) data for the period 1990-1999 and forecasted annual CDD data for the period 2000-2009.

Year	<u>CDD</u>
1990	4209.8
1991	3948.0
1992	3327.0
1993	3396.0
1994	3345.3
1995	3928.5
1996	3682.1
1997	3434.1
1998	4159.0
1999	3445.6
Forecast:	
2000-2009	3743.0

10. Provide, on a system-wide basis, the historical annual average real retail price of electricity in FPC's service territory for the period 1990-1999. Also, provide the forecasted annual average real retail price of electricity in FPC's service territory for the period 2000-2009. Indicate the type of price deflator used to calculate the historical prices and forecasted real retail prices.

The following table lists FPC's historical and projected average billed cents per kWh to the retail sector. The deflator used is the Consumer Price Index - All Urban Consumers.

		REAL
AVG. RETAIL PRICE	CPI-U	AVG. RETAIL PRICE
(Cents/kWh)	(1982-84=100)	(Cents/kWh)
6.147	130.7	4.703
6.169	136.2	4.529
6.017	140.3	4.289
6.461	144.5	4.471
6.631	148.2	4.474
6.830	152.4	4.482
6.865	156.9	4.375
6.970	160.5	4.343
6.995	163.0	4.291
6.913	166.6	4.149
7.093	169.4	4.187
7.049	173.3	4.068
6.952	177.3	3.921
7.019	181.7	3.863
7.196	186.4	3.861
7.307	191.2	3.822
7.420	196.1	3.784
7.529	201.0	3.746
7.639	206.0	3.708
7.750	211.1	3.671
	(Cents/kWh) 6.147 6.169 6.017 6.461 6.631 6.830 6.865 6.970 6.995 6.913 7.093 7.049 6.952 7.019 7.196 7.307 7.420 7.529 7.639	(Cents/kWh) (1982-84=100) 6.147 130.7 6.169 136.2 6.017 140.3 6.461 144.5 6.631 148.2 6.830 152.4 6.865 156.9 6.970 160.5 6.995 163.0 6.913 166.6 7.093 169.4 7.049 173.3 6.952 177.3 7.019 181.7 7.196 186.4 7.307 191.2 7.420 196.1 7.529 201.0 7.639 206.0

11. Provide the following data to support Schedule 4 of FPC's Ten-Year Site Plan: the 12 monthly peak demands for the years 1997, 1998, and 1999; and the date on which these monthly peaks occurred.

MONTHLY PEAK DEMANDS

	1997			19	98	_	1999			
<u>Month</u>	Date	MW		Date	MW		Date	MW		
Jan	19	8,066		1	6,097		6	8,318		
Feb	12	5,794		10	6,156		23	6,964		
Mar	5	5,028		13	6,885		5	5,861		
Apr	27	5,085		2	5,630		27	6,197		
May	27	6,798		21	7,066		25	6,726		
Jun	19	6,964		19	7,906		15	7,079		
Jul	3	7,462		2	8,004		21	7,562		
Aug	12	7,300		12	7,808		30	7,715		
Sep	16	6,932		1	7,235		4	7,216		
Oct	1	6,426		7	7,034		11	6,302		
Nov	17	5,239		19	5,387		1	5,264		
Dec	15	6,608		18	5,948		2	6,791		

Interconnection Studies

12. Provide a list of each QF, EWG, IPP or other type of generating entity that, since January 1, 1997, has initiated discussions regarding interconnections to FPC's system.

FPC has received six (6) merchant plant (i.e. EWG) requests to interconnect new generation to the FPC transmission system since January 1, 1997. One request was determined by FPC to be illegitimate because the EWG was proposing to interconnect with another transmission system. Of the remaining five (5) interconnection requests, system impact studies have been completed and negotiations are in progress on three (3) requests, the system impact study is in progress for one (1) request, and the system impact study has not started for one (1) request. See response to Question #13.

- 13. For each entity reported in Question #12, provide the following information:
- a. the size, type, and location of the proposed generator;
- b. the date when initial contact was made regarding interconnection;
- c. the date when a formal application was made for either interconnection or a System Impact Study;
- d. the date the System Impact Study was completed or is anticipated to be completed:
- e. if available, the result of the System Impact Study;
- f. if applicable, the estimated completion or result of any Facilities Studies performed; and
- g. the date when an interconnection agreement was signed, if applicable, indicating the projected in-service date of the facility.
- h. Copies of all notes from meetings, and other correspondences, between FPC and entities identified in Question #12.

At this time, the merchant plant interconnection requests on the FPC transmission system are confidential. FPC is in the process of developing a formal interconnection procedure as well as a queuing order for all generation interconnection requests on the FPC transmission system which will include capacity increases at existing locations, proposed new FPC network resources, and proposed merchant plants. This procedure will outline in detail what is required for a customer to maintain its position in the generation interconnection queue on the FPC transmission system. When this is complete, FPC will be posting the interconnection procedure and the queuing order on the FLOASIS. The proposed queuing information will include the queue number for each request, the date the interconnection request was complete, the proposed capacity (MW), the interconnection point on the FPC transmission system, status of the request (i.e. system impact study complete, facilities study complete, signed Generation Interconnection and Operating Agreement). The exact location of the generator will remain confidential. It is FPC's opinion, until this information is posted on the FLOASIS and same time access to this information is provided to all, this information is confidential.

14. Describe how FPC prioritizes request for interconnection and how this process is integrated with utility-owned generation that is planned for the future.

As indicated in the answer to Question #13, FPC is in the process of developing generation interconnection procedures and a generation interconnection queuing order. FPC is committed to developing a procedure that treats all customers comparably and equitably addresses increases in the capacity of existing FPC network resources, new FPC network resources, and proposed resources of others (i.e. QFs, IPPs, EWGs). Also, FPC is reviewing the criteria for "grandfathering" generation interconnection requests that were made prior to FPC formalizing its generation interconnection procedures.

Distributed Generation

15. Provide a list of each distributed generating resource that is currently interconnected to FPC's system. Indicate the size, type, in-service date, and location of the resource.

FPC has one distributed generating resource currently interconnected to its system as shown below:

Name:

The Nature Conservancy

Size:

6.48 kW

Type:

Photovoltaic

In-Service Date:

June, 1999

Location:

The Disney Wilderness Preserve

16. Provide a list of each distributed generating resource that has a pending request for interconnection to FPC's system. Indicate the size, type, in-service date, and location of the resource.

None.

17. Describe any policies or procedures utilized by FPC to address interconnection requests from owners of distributed generating resources.

The generation interconnection procedures outlined in the answer to Question #13 would also apply to distributed generation, whether at the transmission or distribution level. The procedure would include a system impact study, facilities study, and signing of a Generation Interconnection and Operating Agreement.