DAVID S. DEE
DIANE K. KIESLING
JOSEPH W. LANDER, JR
JOHN T. LIVIA. III
FRED A. McCORMACK
PHILIP S. PARSONS
LESLIE J. FAUGH
ROBERT SCHEFFEL WRIGHT

VICTORIA J. TSCHINKEL
senior consultant
'NOT A MEMBER OF THE FLORIDA BARI,

ORIGINAL

Blanca S. Bayo, Director
Division of Records and Reporting
Florida Public Service commission
2540 Shumard Oak Boulevard
Tallahassee, Florida 32399-0850
Re: Petition for Determination of Need for the osprey Energy Center, FPSC Docket No. 000442-EI

Dear Ms. Bayo:
Enclosed for filing on behalf of Calpine construction Finance Company, L.P., are an original and fifteen copies of each of the following witnesses' testimony and exhibits:

Michel P. Armand, peE. $-10 / 69-00$
Ted S. Baldwin - 10170-00
Gerard J. Kordecki - $10(71-00)$
Michael Petit - $10172-00$
Richard A. Zwolak, AICP-10173-00
Calpine will file the testimony and exhibits of its two remaining witnesses, Timothy R. Eves and Kenneth J. Slater, on Monday, August 21.

I will appreciate your confirming receipt of this response by
\qquad _-_stamping the tamping the attached filing copy thereof and returning same to my

CAP attention. As always, thanks to you and your staff for your 3 foconsiderate and professional assistance. If you have any
CTR tofuestions, please give me a call.

ER LEG ORC PAl
RGO SEE SER
\qquad

Thandornclosures -

$$
10169-00
$$

```
In Re: Petition for Determination of ,
Need for an Electrical Power Plant in ) DOCKET NO. 000442-EI
Polk County by Calpine Construction )
Finance Company, L.P. )
)
```


DIRECT TESTIMONY AND EXHIBITS

OF
MICHEL P. ARMAND, P.E.
ON BEHALF OF

CAIPINE CONSTRUCTION FINANCE COMPANY, L.P.

Q: Please state your name and business address.
A: My name is Michel Armand, and my business address is 3113 Lawton Road, The Carr Building, Suite 130, Orlando, Florida 32803-3519.

Q: By whom are you employed and in what position?
A: I am employed as a Principal of Navigant Consulting, Inc. (NCI).

Q: Please describe your duties with NCI.
A: I am responsible for conducting transmission planning and operations studies for NCI clients. These studies cover proposed generating plants and their associated transmission interconnections, actual system performance based on projected seasonal loading conditions, and the determination of potential operating constraints necessary to insure reliable operation of the bulk transmission system.

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

QUALIFICATIONS AND EXPERIENCE

Q: Please summarize your educational background and experience. A: I graduated from the City College of the City University of New York in June 1968, with the degree of Bachelor of Engineering - Electrical. In June 1971, I graduated from the Bernard Baruch College of the City University of New York with the degree of Master of Business Administration.

In 1971, I attended the General Electric Company's oneyear course in Advanced Power System Engineering, in Schenectady, New York. In 1978, I attended the one-month Public Utility Executive Program of the Graduate School of Business Administration of the University of Michigan. In 1983, I attended the two-month Executive Program of the Colgate Darden Graduate School of Business Administration of the University of Virginia.

Upon graduation, I was employed by the Consolidated Edison Company of New York. I was assigned to the Distribution Engineering, Station Design, and System Planning Departments. My permanent assignment was in the Transmission Planning Section of the System Planning Department.

In April 1974, I was employed by Florida Power \& Light Company (FPL) in the System Planning Department. In April 1976, I was put in charge of the Reliability and System Security Section, responsible for testing and assessing the

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

dynamic performance of the planned generation and transmission system, and for making recommendations based on our tests and assessments. In June 1984, I was transferred to FPL's Power Supply Department as Manager of Technical Services responsible for daily analysis of system performance, monitoring the adequacy of performance of transmission protective systems, and coordinating the protection and control settings of FPL's generation, transmission, and distribution systems. In May 1991, I became Director of Protection and Control Systems responsible for the design, engineering, installation, and maintenance of all protections and control systems for the generation, transmission, and distribution systems of FPL. In October 1993, I took early retirement from FPL.

From December 1994 to December 1996, I was employed as Energy Consultant in the Office of the Prime Minister of Haiti. In 1997, I assumed my present position as Principal Executive Consultant with NCI, formerly Resource Management International, Inc.

I am a registered professional engineer in the State of Florida, and I am a member of the Institute of Electrical and Electronic Engineers and a member of the Society of Professional Engineers.

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

Q: What is your experience in power plant engineering, construction, operations, permitting, and licensing?

A: As a manager for NCI, I provided transmission planning analyses for Duke Energy Power Services (Duke) in support of a 500 MW plant at New Smyrna Beach, Florida. I was the project manager for this work and prepared testimony in support of Duke's petition to the Florida Public Service Commission. NCI conducted Power Flow Studies to determine the best configuration to integrate a 500 MW power plant into the transmission grid.

As Supervisor of Reliability and System Security for Florida Power \& Light Company, responsible for modeling the dynamic response of the system to disturbances, I was involved with the Power Plant Engineering Department in specifying the electrical parameters of new generators such as power factor, short circuit ratio, high initial response exciter, power system stabilizer, generator step-up and auxiliary transformers, tap ratio coordination, and switchyard connections. I also initiated studies to add power system stabilizers and modify relay protection schemes for existing high capacity generating units (600 MW and above) on the FPL system.

I was heavily involved in the licensing of FPL's St. Lucie Unit No. 2, a nuclear unit. In this activity, I

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

participated in the Final Safety Analysis Report for the unit's operating license and testified at the evidentiary hearing in Miami, in November 1979, on the issue of grid reliability.

Q: What is your experience in generation planning, transmission planning, transmission design, and load flow studies?

A: In my professional work, the size and location of generation was always a given. My responsibility was the integration of the generators in the transmission grid for optimum delivery of the power under all postulated transmission outages.

I have extensive professional experience in transmission planning. At Consolidated Edison of New York, I was responsible for transmission planning for the borough of Manhattan, representing at that time about 45 percent of ConEd's total system demand. At $F P L$, I was responsible for transmission planning in Dade and Broward Counties, representing, at that time, about 60 percent of FPL's total system demand. While not involved in the physical design of transmission lines, studies initiated and conducted by me resulted in the partial transposition of the 500 kV transmission corridor on the East Coast of Florida. The deleterious effects of unbalanced, negative sequence currents on the generators along the corridor were considerably

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

reduced.
Load flow and transient stability studies were the principal tools used to assess the seasonal, yearly, and longrange performance of the Florida Grid. Such studies were conducted by me and by my section internally for FPL, and in participation with the Florida Electric Power Coordinating Group (FCG). Such tools were also used to update the Florida under-frequency load shedding program and to establish the various remedial action systems on FPL's system to mitigate loss of heavily loaded transmission corridors.

Q: Have you previously testified before regulatory authorities or courts?

A: I have testified before the Atomic Safety and Licensing Appeal Board of the U.S. Nuclear Regulatory Commission, in an evidentiary hearing on the alleged inadequacy of electric power systems for St. Lucie Unit No. 2. The operating license was granted after it was clearly demonstrated that the planned transmission grid would provide adequate and reliable off-site power in an emergency. I have testified before the florida Public Service Commission in the Duke New Smyrna need determination hearing. I have also testified in court in an eminent domain proceeding for the condemnation of property for transmission line right-of-way.

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

Q: Are you a registered professional engineer?

Abstract

A: Yes. I am a registered professional engineer in the State of Florida.

SUMMARY AND PURPOSE OF TESTIMONY

Q: What is the purpose of your testimony?

A: I am testifying on behalf of Calpine Construction Finance Company, L.P., (Calpine) for the Commission's determination of need for the Osprey Energy Center (the Osprey Project or the Project). My testimony describes the transmission interconnection facilities that will connect the proposed power plant to the Tampa Electric Company Recker Substation located adjacent to the southeastern boundary of the site. My testimony also presents and describes the load flow analyses that NCI conducted to evaluate the transmission impacts of the Osprey Energy Center under various power delivery scenarios.

Q: Please summarize your testimony.

A: The Osprey Energy Center will be connected to Tampa Electric Company's Recker Substation located adjacent to the southeastern boundary of the Project site. This interconnection, together with some limited transmission upgrades, will enable power from the Project to be delivered to virtually any retail-service utility in Peninsular Florida
under almost all conditions on the Florida transmission grid. The Project's output will not adversely affect any of the "constrained transmission paths" identified by the Florida Reliability Coordinating Council (FRCC). System impact studies conducted for Calpine included load flow analyses, transient stability analyses, and short circuit analyses. These studies indicate that, under normal operating conditions, that is, with all facilities in service, the Project will not materially burden the transmission system or violate any transmission constraints or contingencies in Peninsular Florida. These studies suggest that some limited upgrades may be needed and those are discussed in detail later in my testimony.

Q: Are you sponsoring any exhibits to your testimony?

A: Yes. I am sponsoring the following exhibits:
MPA-1. Qualifications of Michel P. Armand, P.E.
MPA-2. Proposed 530 MW Florida Generating Facility, Osprey Energy Center, February 2000; and

MPA-3. Analysis of Transmission System Improvements in support of Osprey Energy Center, April 18, 2000; and

MPA-4. Regional Transmission Map of West Central Florida.

```
DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.
```

I am also sponsoring the portions of the Exhibits to the Petition for Determination of Need related to transmission. Specifically, in the Exhibits supporting the Petition, I am sponsoring Figures 11 and 12 as well as the text that accompanies those figures.

NCI'S ROLE REGARDING THE OSPREY ENERGY CENTER

Q: Please describe Navigant Consulting, Inc. and its business.
A: Navigant Consulting, Inc. provides comprehensive consulting and engineering services to a wide range of clients, including the electric power industry. NCI provides consulting and engineering services on power system design, power plant design, and transmission and distribution system design and operations.

Q: What are your responsibilities with respect to the electrical power plant project that is the subject of this proceeding?

A: NCI has been retained to evaluate the transmission impacts of the Osprey Energy Center's operation as a power plant selling wholesale power to other utilities that provide retail electric service in Peninsular Florida. I have the primary responsibility for conducting the studies by which we have analyzed the Project's transmission impacts.

Q: With what similar projects has NCI been involved, and in what capacity?

A: NCI has conducted numerous evaluations of the load flow impacts of planned and proposed interconnections of generating units, including wholesale power plants, with high-voltage transmission systems, including projects in Oregon, Minnesota, New York, Hawaii, Texas, California, and the East Central Area Reliability (ECAR) Region.

TRANSMISSION INTERCONNECTION AND ASSOCIATED DOWNSTREAM TRANSMISSION FACILITIES FOR THE OSPREY ENERGY CENTER

Q: Please describe the transmission facilities by which the Osprey Energy Center will be connected to the Florida transmission grid.

A: The Osprey Energy Center Project will be connected to the existing Tampa Electric Company's Recker Substation. The interconnection will include switchgear, circuit breakers, and related equipment appropriate for this type of interconnection.

Q: How did you and NCI evaluate the capability of the Osprey Energy Center Project to deliver wholesale power to other retail-service utilities in Florida?

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

A: We evaluated the transmission system impacts of the Project by conducting power flow studies (also known as load flow studies or load flow analyses) in which we simulated the power flows that would result from sales from the Project to other key utilities in Peninsular Florida. Our power flow studies utilized standard transmission modeling techniques and assumptions. Basically, as discussed in more detail below, we compared the simulated operations of the Florida transmission system with and without the Project's output being delivered to Florida Power \& Light Company (FPL), Florida Power Corporation (FPC), Tampa Electric Company (TECO), Jacksonville Electric Authority (JEA), and Seminole Electric Cooperative (Seminole or SEC).

We reviewed and utilized the following documents and reports in preparing our power flow studies.

1. FPL's 1999 Ten-Year Plant Site Plan.
2. FPC's 1999 Ten-Year Site Plan.
3. TECO's 1999 Ten-Year Site Plan.
4. Florida Reliability Coordinating Council (FRCC), 1997 Final Transmission System Constraints Maps.
5. FRCC, 1997 Transfer Capability Study: FLA/SOV Interface.
6. FRCC, 1999 Reliability Study.

We utilized these documents and reports because at the time

```
DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.
```

out study was done, the 2000 Ten-Year Site Plans were not available. We used the most current data available.

Q: What are the relevant import and export capabilities of the transmission interface between Peninsular Florida and the Southeastern Electric Reliability Council (SERC) region?

A: Peninsular florida has the capability of importing approximately 3,600 MW of power from the SERC region, and the capability of exporting approximately $2,100 \mathrm{MW}$ of power to the SERC region. This difference exists because the transmission system in southern Georgia becomes constrained, on a firstorder contingency basis, at lower loads than does Peninsular Elorida.

Q: Please summarize the results of the power flow studies you conducted for the Osprey Project.

A: The analyses conducted by NCI indicate that at average loading conditions on the Florida transmission system (60\% for the rest of the state, 70% for Tampa), no overload occurs for all the contingencies simulated and for all dispatch scenarios. The studies also indicate that in order to support the delivery of wholesale power from the Project to utilities providing retail service in Florida, under eighteen base cases modeled, none of the transmission lines in the vicinity of the

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

Osprey Project would be overloaded under normal conditions with all facilities in service. Under summer 2004 peak load, when importing 2400 MW from Southern Company, loss of the Recker-Gapway 230 kV line (a single contingency) causes the Ariana $230 / 69 \mathrm{kV}$ transformer to load up to 103.8 percent of its emergency rating for all dispatch scenarios. Similarly, loss of the McIntosh-Lake Agnes $230-\mathrm{kV}$ circuit causes the Lake Agnes-Recker $230-\mathrm{kV}$ circuit to load up to 102.6 of its emergency rating when the plant output is scheduled for FPL, FPC, JEA, and SEC. Also, loss of the Griffin-Lakeland West 230-kV circuit causes the Osceola-Lake Agnes 230 - kV circuit to load up to 100 percent of its emergency rating when the plant output is scheduled to FPC, JEA and SEC.

During the summer 2004 peak load period, when importing 3600 MW from Georgia, loss of the Recker-Gapway $230-\mathrm{kV}$ circuit causes the Ariana $230 / 69-k V$ transformer to load up to 104.6 percent of its emergency rating.

Q: Did NCI conduct any additional load flow studies?

A. Yes. NCI then conducted additional load flow analyses to determine the capacity of the surrounding transmission system to effectively transform and transmit the Project's generated electric power to its customers via the Florida transmission grid. This study, using a single contingency approach,
identified four critical facilities owned by TECO. Those four critical facilities are the Recker to Lake Agnes 230 kV transmission line, the Recker to Crews Lake 230 kV transmission line, the Crews Lake to Pebbledale 230 kV transmission line, and the 150 MVA, 225Y/130-69Y/38.8 kV transformer at Ariana Substation. The analysis conducted by NCI indicates that under maximum loading conditions and single contingency failure of related facilities, the transmission lines interconnecting the Project with the grid should be rated a minimum of 478 MVA . According to TECO, however, the load carrying capacity of the critical transmission lines is 398 MVA. The NCI analysis also indicates that under maximum loading conditions and single contingency failure of associated facilities, the transformer at TECO's Ariana Substation would be overloaded to 220 MVA, or 47 percent above its nominal rating of 150 MVA.

Q: Please describe any downstream transmission system upgrades that may be needed in connection with the Project.

A: Based on the single contingency load flow studies, NCI has identified the following downstream transmission upgrades that may be needed:

1. Upgrading the conductor and poles on a 1.4 -mile section of the Recker to Crews Lake transmission line;
```
DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.
```

2. Upgrading all conductor on the 6.3-mile Crews Lake to Pebbledale line and upgrading the poles on approximately 3.2 miles of that line; and
3. Upgrading the transformation capacity at TECO's Ariana Substation, which may include adding cooling capacity to the existing 150 MVA transformer or adding another 150 MVA transformer.

A map showing the transmission interconnection and the transmission facilities in the Osprey Energy Center area is found at Figure 11 of the Petition for Need Determination Exhibits and is included here as MPA-4.

Q: Did you evaluate the Project's capability to deliver power outside Florida?

A: No. I understand that Calpine's intent is to sell wholesale power from the Project within Peninsular Florida, and accordingly, NCI was not asked to perform any power flow studies for sales outside Peninsular Florida.

Q: Are you aware of any other transmission studies that have been done for the Project?

A: Yes. TECO performed a preliminary transmission service request facilities study and provided a draft to Calpine on May 22, 2000. TECO's study considered double second-order

DIRECT TESTIMONY OF MICHEL P. ARMAND, P.E.

contingencies as well as first single-order contingencies and was therefore more restrictive than NCI's studies. TECO's study also had no cost information related to its suggested upgrades.

Q: What did TECO recommend?
A: Under a second contingency scenario, TECO recommended a new Recker-South Eloise $230-\mathrm{kV}$ line, 10.6 miles of new 230 kV pole line and five new breakers, creating a loop from the North Bartow-West Lake Wales line through South Eloise, splitting the line up into two 2-terminal 230 kV circuits: North Bartow to South Eloise and West Lake Wales to South Eloise.

Q: Does the TECO study alter your opinion?

A: No. I stand by my analysis which assumes that under a single contingency and NCI's proposed modifications, the plant output can be delivered without causing undue burden on the Florida Transmission Grid. However, the TECO proposal is also supportable since it postulates a double contingency scenario and an appropriate solution.

Q: How will the actual transmission system upgrades be decided?
A: Calpine and TECO will reach an appropriate solution under TECO's Open Access Transmission Tariff. Regardless which
package of upgrades is implemented, the transmission system, will support delivery of Osprey Project power to any other utility in Peninsular Florida without materially burdening the transmission grid and without causing any violation of any constraints or contingencies in the grid. Calpine is fully prepared to do what it must to support delivery of its full output to any utility in Peninsular Florida. The details will be a matter to be negotiated between Calpine and TECO pursuant to TECO's tariff.

Q: Does this conclude your direct testimony?
A: Yes, it does.

In Re: Petition for Determination of Need for an Electrical Power Plant in, DOCKET NO. 000442-EI Polk County by Calpine Construction) Finance Company, L.P.)

)

)})

EXHIBITS

OF
MICHEL P. ARMAND, P.E.

ON BEHALF OF

CALPINE CONSTRUCTION FINANCE COMPANY, I.P.
\qquad (MPA-1)

MICHEL P. ARMAND

Michel Armand is a Senior Engagement Manager in the Transmission Planning sub-practice area of Navigant Consulting, Inc. He has 33 years of utility experience in transmission and distribution planning and engineering both in New York and in Florida. He has conducted numerous studies in the area of transmission reliability and network security, and is extremely knowledgeable of the Florida transmission system. He has expertise in managing corporate staff involved in load flow, short circuit and transient stability studies, including the determination of operating limits, the development of remedial action schemes, and the development of methods to assess system-wide losses. In addition, he has testified before the Nuclear Regulatory Commission (NRC) and various state courts in condemnation hearings, and in Florida PSC power plant 'NEED' hearings. He was involved in restructuring and privatization studies of the State Utility Company as Energy Advisor to the Prime Minister of Haiti. He has consulted with the Transmission Agency of Northem Califomia, the Bonneville Power Administration and the Califormia ISO in assessing Operating Transfer Capabilities (OTC) for spring and summer across the California Oregon Interconnection (COI). Mr. Armand has also performed numerous transmission system impact assessment for merchant power projects in Texas, Califomia and Florida.

EDUCATION MBA - Baruch College of the City University of New York
New York
BEE - City College of the City University of New York
New York
BA - College St. Martial
Port-Au-Prince, Haiti

PROFESSIONAL HISTORY

Navigant Consulting, Inc. formerly Resource Management International, Inc.
Manager
Government of Haiti
Energy Consultant - Prime Minister's Office
Florida Power \& Light Company
Director, Protection and Control Systems
Consolidated Edison Company of New York
Senior Engineer

REPRESENTATIVE Duke Energy Power Services. 1998

PROJECT
EXPERIENCE

Duke Energy Power Services retained NCI to provide transmission planning analyses in support of a 500 Mw plant at New Smyrna Beach in Florida. Duke also requested that NCI prepare testimony in support of their petition to the Florida Public Service Commission for a Determination of Need for power plants. Michel Armand was project manager for this work and prepared the resulting testimony. NCI conducted Power Flow Studies to determine the best configuration to integrate a 500 Mw power plant in the vicinity of New Smyma Beach, Florida. NCI also prepared and filed testimony in support of Duke's Needs Petition Hearing before the Florida Public Service Commission.

St. Lucie Nuclear Unit No. 2 - Regulatory Licensing. Florida Power and Light Company. Miami, Florida. 1979
 As Supervisor of Reliability and System Security for Florida Power and Light Company (FPL), responsible for testing and assessing the dynamic performance of the planned generation and transmission system, I was called to testify about the ability of the system to support the addition of a second nuclear unit at St. Lucie Power Station. In testimony before the NRC Atomic Safety and Licensing Appeal Board, the adequacy of the transmission grid was demonstrated and the operating license was subsequently granted.

500 kV Interconnection with Georgia. Florida Power and Light Company. Miami, Florida. 1980
As Supervisor of Reliability in the System Planning Department at Florida Power and Light Company (FPL), and member of the 500 kV project team, performed the evaluations necessary to justify the construction of two 500 kV lines from the Georgia state line in the north to a point 310 miles south. Wrote testimony in support of the economic and reliability benefits of the lines in proceedings of the Florida Transmission Line Siting Act before the Public Service Commission and the State Cabinet. Conducted technical studies to define the line parameter, the ancillary equipment and the termination of various segments of the project. Given the considerable benefits of reducing oil consumption in favor of coal, the project was given accelerated depreciation privileges for rate making purposes.

Breaker Duty Evaluation Program. Florida Power and Light Company. Miami, Florida. 1981
As Project Manager, oversaw the definition, design, development, testing, and implementation of an automated system to evaluate the adequacy of transmission circuit breakers on the Florida Light and Power (FPL) system. Coordinated the work of equipment specialists, computer programmers and systems planners to arrive at a program which consistently and accurately performs the many calculations required. The very serious potential for human errors was practically eliminated, and these long lead items could be ordered within reasonable schedules.

Audit of Energy Reduction Marketing Program. Florida Power and Light Company. Miami, Florida. 1983
As auditor, performed an independent assessment of the various marketing product offerings and determined their effectiveness in achieving the goals of the demand side programs. Recommended a market segmentation approach where the effectiveness of specific programs was shown to be related to the four distinct weather regions of Florida. Also provided valuable insight to the marketing team on the behavior of the load during
winter and summer, i.e., pool pumps, an 800 MW load then, were rescheduled to different time slots to avoid the early morning peak in the winter and the late afternoon peak in the summer.

Economic Evaluation of Power Generation Asset. Florida Power and Light Company. Miami, Florida. 1984
As Project Manager, conducted examination of options available to determine final disposition of questionable assets. The asset could be kept in use, put into long-term reserve shut down, retired, or sold. Taking into account the various interests of the operating groups, recommendation was made to choose the long-term reserve shut down as the most attractive option financially, from a capacity addition standpoint, and from considerations of system adequacy and reliability.

Analysis of Electric System Losses. Florida Power and Light Company. Miami, Florida. 1984
As lead investigator, I was charged with a determination of accounting for losses on the Florida Power and Light (FPL) system. As the system was experiencing rapid growth, economic decisions to select among alternative proposals were based on crude assumptions regarding system losses.
Electric power system losses in the United States run into the billions of dollars each year. Selection among competing alternatives could sometimes be made on the basis of their contribution to reducing system losses. Over a three month period, all the departments having an impact were visited, huge amounts of data collected, tens of employees interviewed and, finally, one document produced. In it, for the first time in one document, the issue of system losses was addressed in all its major components, and its myriad of implications. The report is still used today as a reference document in any effort to reduce system losses in a systematic fashion.

Blackout Prevention by Automated Fast Action. Florida Power and

 Light Company. Miami, Florida. 1985As Manager, Power Supply Technical Services, was charged with recommending programs and actions to prevent another blackout similar to the one on May 17, 1985, which put the Greater Miami, Ft. Lauderdale area in the dark for three hours. The result wa a computer program that monitors the system for specific conditions and takes remedial action within a $15-20$ second time window. Severe economic penalties were incurred until this system went in place and economic dispatch was resumed. The same concept was replicatd in another part of the system providing additional economic benefit.

Transmission Outage Data Base. Florida Power and Light Company. Miami, Florida. 1989
 As Project Manager, was tasked with the charge of researching, developing, and implementing a transmission outage data base system.

PROFESSIONAL

 MEMBERSHIPSThe purpose was to collect information in such a way that it could be stored, analyzed, categorized, and utilized by many departments involved in the designing, engineering, construction, and operation of the transmission system. The task involved the collection of valid requirements from all concerned parties, the resolution of conflicting demands and, finally, securing agreement on analysis and categorization of data covering the prior period of 1983 to 1987. The information proved invaluable to the system operators, transmission maintenance personnel and the transmission design and engineering staff. Unexpected results of this effort: the data was also used to show potential industrial customers the reliability of a particular transmission line (since data went back to 1983); used in court proceedings dealing with the issue of power quality; and used in regulatory hearings dealing with needed new transmission corridors.

Privatization Strategy for Haiti Electric Utility. Prime Minister
Office-Government of Haiti. Port-Au-Prince, Haiti. 1996
As Energy Advisor in the office of the Prime Minister, responsible for developing and recommending options t restructure the state owned utility. In the framework of privatization of money-losing state enterprises, I evaluated various of options: restructuring and improving operations as an independent commercial operation owned by the state; contract with a foreign entity for the management and operation within a fixed time period; lease the assets and the franchise for a $25-30$ year period with the assets plus additions reverting the state at contract expiration; and an outright sale to private investors, local and/or foreign. Each option was evaluated based on economic, financial, and political risk considerations, and presented to the cabinet. The lease option was selected as the final objective preceded by a five-year management contract to increase the value of the assets and the lease. Parliament approved the concept and laws are being passed or modified to allow the state and the operator to achieve their objective.

FPSC Docket No. 000442-EI Calpine Construction Finance Co., L.P. Witness: Armand Exhibit \qquad (MPA-2)

Proposed 530 MW Florida Generating Facility

Osprey Energy Center

Prepared For
CALPINE EASTERN CORPORATION

UnPublished Work © February 2000

Navigant

CONFIDENTIAL

March 1, 2000

VIA Federal Express

Mr. Paul A. Barnett
Director - Asset Optimization
Calpine Eastern Corporation
The Pilot House, 2nd Floor
Lewis Wharf
Boston, MA 02110
Subject: Transmission System Analysis in Support of Calpine Eastern Corporation Osprey Energy Center

Dear Paul:
Enclosed are four copies of the subject report prepared in accordance with our agreement with Calpine Eastern Corporation.

The starting point for this study is the year 2004 summer peak case filed with the Federal Energy Regulatory Commission (FERC) by the Florida Reliability Coordinating Council (FRCC), fiscal year 1998, Revision 5. This base case was obtained from the FERC-1999 Form 715 Regional Power Flow Cases and Transmission Planning Reports, Website updated 10/12/1999.

The FRCC case submitted to FERC was carefully reviewed, and the data on generation resources was compared to the individual utility Ten Year Site Plans filed with the Florida Public Service Commission. Although several merchant plants have been announced, some requiring a Need Determination approval and some not, none were represented in the base cases. Only generation containing the Official Ten Year Site Plans were represented and dispatched if needed.

The transmission system was scrutinized, especially around the projected site for the Osprey Energy Center. Except for some minor transmission inconsistencies in the FPL system, there appears to be no wholesale tampering with the representation of the Florida transmission system.

Mr. Paul A. Barnett
March 1, 2000
Page Two

Therefore, the powerflow studies discussed in the enclosed report evaluated:
$>$ Pre- and post-project transmission system performance for the year 2004, when the Florida system experiences peak loading conditions and imports $3,600 \mathrm{MW}$ of power from Georgia.
$>$ Pre- and post-project transmission system performance for the year 2004 when the Florida system is at peak load and imports $2,400 \mathrm{MW}$ of power from Georgia.
$>$ Pre- and post-project transmission system performance for the year 2004 when the Florida system is loaded to 60% of summer peak load and imports 2,400 MW of power from Georgia. This load level is considered the average loading of the Florida system.

Based on the studies discussed in the enclosed report, it appear that:

1. The proposed 530 MW Osprey Energy can reliably deliver its output into the Florida Transmission System.
2. Some minor overloads, at peak and at peak import, following certain system element outages, can be resolved by either system upgrade or reduction in plant output.
3. At average load conditions, 60% of summer peak, no overloaded facility was uncovered under all dispatch scenarios modeled and outages simulated.

We look forward to discussing the enclosed report with you, at your convenience. In the interim, please call me at (407) 895-7000 should you have any questions on the enclosed.

Sincerely,

Michel P. Armand
Manager

Proposed 530 MW Florida Generating Facility

Osprey Energy Center

Prepared For
\section*{CALPINE EASTERN CORPORATION}

Prepared By

Calpine Eastern Corporation

Calpine Eastern Corporation (Calpine) is proposing to build a 530 MW merchant plant facility in Florida. The facility will be sited in Polk County at the Recker Substation of Tampa Electric Company, and is projected to begin commercial operation before the summer of 2004. Calpine retained Navigant Consulting, Inc. (Navigant Consulting) to assist them in evaluating the interconnection of the proposed Osprey Energy Center (OEC) project with the Florida transmission network.

In providing this support, Navigant Consulting performed a series of preliminary power flow studies evaluating:
$>$ Summer 2004 transmission system performance at peak load, importing 3600 MW from the Southern Company, with and without the Osprey Energy Center project.
> Summer 2004 transmission system performance at peak load, importing 2400 MW from the Southem Company, with and without the Osprey Energy Center project.
$>$ Summer 2004 transmission system performance at an average 60% of peak load (70% of peak for TECO), importing 2400 MW from the Southern Company, with and without the Osprey Energy Center project.

To determine the ability of the project to deliver its output over the Florida transmission system, the total capacity of the plant (530 MW) was scheduled alternatively to Florida Power and Light Company (FPL), Florida Power Corporation (FPC), Tampa Electric Company (TEC), Jacksonville Electric Authority (JEA), and Seminole Electric Cooperative (SEC). Each of these dispatch scenarios was modeled and tested with the three base cases.

In summary, these studies (which are summarized in Table 1-1 and discussed in detail in Sections 2 and 3 , show that for the conditions modeled:

1. None of the lines in the vicinity of the proposed Osprey Energy Center were overloaded in the eighteen base cases that were developed for these studies, and which model system normal conditions (all facilities in service).
2. During the summer 2004 peak load period, when inporting 2400 MW from Southern, loss of the Recker-Gapway $230-\mathrm{kV}$ line causes the Ariana $230 / 69-\mathrm{kV}$ transformer to load up the 103.8 percent of its emergency rating for all dispatch scenarios. Similarly, loss of the McIntosh-Lake Agnes $230-\mathrm{kV}$ circuit causes the

Lake Agnes-Recker $230-\mathrm{kV}$ circuit to load up the 102.6 percent of its emergency rating when the plant output is scheduled to FPL, FPC, JEA, and SEC. Also, loss of the Griffin-Lakeland West $230-\mathrm{kV}$ circuit causees the Osceola-Lake Agnes $230-\mathrm{kV}$ circuit to load up to its emergency rating when the plant output is scheduled to FPC, JEA, and SEC.
3. During the summer 2004 peak load period, when importing 3600 MW from Georgia, loss of the Recker-Gapway $230-\mathrm{kV}$ circuit causes the Ariana 230/69-kV transformer to load up to 104.6 percent of its emergency rating.
4. At average loading conditions on the Florida transmission system (60% for the rest of the state, 70% for Tampa), no overload is noticed for all the contingencies simulated and for all dispatch scenarios.

Therefore, based on the preliminary studies discussed in this report, it appears that:

1. 530 MW can be reliably sited at the Osprey Energy Center.
2. The output of the plant can be delivered without imposing undue burden on the Florida transmission system. System upgrade considerations must be weighted against reducing plant output following the specific contingencies which could cause overloads.

TABLE 1-1
Summary of Powerflow Base Cases Evaluated

Year	Case	Georgia Imports (MW)	OEC* Generation (MW)	Output Delivered to:	
2004	$2004 . P \mathrm{PI}$	3,600	$-0-$	N/A	
	$2004 . \mathrm{Pla}$	3,600	530	Florida Power \& Light	
	$2004 . \mathrm{Plb}$	3,600	530	Florida Power Corporation	
	$2004 . \mathrm{PIc}$	3,600	530	Tanipa Electric Company	
	$2004 . P \mathrm{PId}$	3,600	530	Jacksonville Electric Authority	
	$2004 . \mathrm{Ple}$	3,600	530	Seminole Electric Cooperative	
2004	2004.	2,400	$-0-$	N/A	
	$2004 . \mathrm{a}$	2,400	530	Florida Power \& Light	
	$2004 . \mathrm{b}$	2,400	530	Florida Power Corporation	
	$2004 . \mathrm{c}$	2,400	530	Tampa Electric Company	
	$2004 . \mathrm{d}$	2,400	530	Jacksonville Electric Authority	
	$2004 . \mathrm{e}$	2,400	530	Seminole Electric Cooperative	
2004	$2004-60$	2,400	$-0-$	N/A	
	$2004-60 \mathrm{a}$	2,400	530	Florida Power \& Light	
	$2004-60 \mathrm{~b}$	2,400	530	Florida Power Corporation	
	$2004-60 \mathrm{c}$	2,400	530	Tampa Electric Company	
	$2004-60 \mathrm{~d}$	2,400	500	Jacksonville Electric Authority	
	$2004-60 \mathrm{e}$	2,400	530	Seminole Electric Cooperative	

* Osprey Energy Center

As discussed in Section 2 (Results of Power Flow Studies), each of the cases summarized in Table 1-1 were used as a starting point in evaluating system performance under both normal and single facility (line or generator) - ($\mathrm{N}-1$) outage conditions.

Documents reviewed and utilized by Navigant Consulting during these studies included:

$>$ FPL's	1999 Ten Year Plant Site Plan	
$>$	FPC's	1999 Ten Year Site Plan
$>$ TEC's	1999 Ten Year Site Plan	
$>$	FRCC's	1997 Final Transmission System Constraints Maps
$>$	FRCC's	1997 Transfer Capability Study: FLA/SOV Interface
$>$	FRCC's	1999 Reliability Study

The powerflow base cases used in these studies were based on the 2004 Summer Base Case filed with FERC by the Florida Reliability Coordinating Council (FRCC.), FY'1998, Kevision 5. This FRCC case was reviewed and compared to the Ten Year Site Plans of FPL, FPC, TEC, JEA, and SEC.

Case 2004.PI was obtained by increasing the import from Georgia to 3600 MW and reducing FPL generation in the south end by $1,200 \mathrm{MW}$. All loads were maintained at peak summer level.

Case 2004-60 was obtained by scaling loads in Florida to represent 60% of summer peak (except for Tampa, where the average load level is 70% of summer peak). Generation in Florida was re-dispatched for each control area. Import from the Southern Company was maintained and interchange schedules were modified.

SECTION 2

POWERFLOW BASE CASE DEVELOPMENT

As noted in the Executive Summary, the powerflow base cases used in these studies were based on the 2004 summer peak case filed with FERC by the Florida Reliability Coordinating Council (FRCC), fiscal year 1998, Revision 5. This powerflow case represented the system in peninsular Florida as consisting of nineteen control areas with a combined load of approximately $39,860 \mathrm{MW}$, and on-line generation of approximately 38,520 MW (both utility and non-utility). Interchange into Florida was approximately 2400 MW and Florida system losses were around 1000 MW. The nineteen control areas and the load and generation represented in each, are summarized in Table 2-1.

TABLE 2-1		
Florida Control Area Loads and Generation in FRCC 2004 Peak Case		
Control Area	Load (MW)	Generation (MW)
FPL	19,544	16,471
FPC	9,834	7,782
Fort Pierce	113	63
Gainesville	438	430
Homestead	62	35
Jacksonville	2,825	3,121
Key West	128	0
Kissimmee	277	392
Lake Worth	85	56
New Smyrna Beach	80	18
Orlando	1,129	1,328
Seminole	318	2,804
Lakeland	601	1,070
City of Starke	16	0
Tallahassee	555	558
Tampa	3,522	3,986
FMPA	152	150
Cedar Bay	0	251
Reedy Creek	182	0

The FRCC case submitted to FERC was carefully reviewed and the data on generation resources was compared to the individual utility Ten Year Site plans filed with the Florida Public Service Commission. Although several merchant plants have been announced, some requiring a Need Determination approval and some not, none were represented in the base cases. Only generation contained the Official Ten Year Site Plans were represented and dispatched if needed.

The transmission system was scrutinized, especially around the projected site for the Osprey Energy Center. Except for some minor transmission inconsistencies in the FPL system, there appears to be no wholesale tampering with the representation of the Florida transmission system.

The result of these efforts was acceptance of the FERC-2004 Summer Base Case, FY1998, Revision 5, as a legitimate starting point for the evaluation, based on the load and resource characteristics summarized in Table 2-2. The Osprey Energy Center generation was added to the base case and was integrated at the Recker Substation bus. This case was labeled 2004.sav.

Case 2004.PI.sav was derived by increasing the import in case 2004. sav to 3600 MW . This was accomplished by increasing generation in Georgia by slightly over 1200 MW, and decreasing FPL generation at Turkey Point and Port Ereglades by approximately 1200 MW. Cape Canaveral No. 2, the FPL swing generator, was adjusted to provide the additional capacity required.

Case 2004-60.sav was derived by modifying the base case, 2004.sav, to represent loading conditions of 60% of peak, except for Tampa, which was represented at 70%. The 60% load level is considered average loading of the Florida system, and represents a considerable portion of the load duration curve for Florida. Therefore, this load level has always been the benchmark of all transmission assessment studies by powerflow or by transient stability conducted by the PRCC. To achieve such reduction, the load in each control area was scaled down to sixty percent. The total generation required for each area was calculated by adding load, plus generation, plus interchange, and then re-dispatching each area by the removal of appropriate generating units to achieve total required generation. There were a few exceptions.

TABLE 2-2 2004 - Base Case Y 1998 - Revision 5 Load 2400 MW Import				
LOAD, LOSSES, Interchange, and Generations Modeled				
Control Area	Load	Losses	Interchange	Generation
1 FPL	19,544	475	-3,548	16,471
2 FPC	9,834	258	-2,310	7,782
3 Ft . Pierce	113	1	-51	63
4 GVL	438	5	-13	430
5 HST	62	0	-27	35
6 JEA	2,825	52	244	3,121
7 KEY	128	6	-134	0
8 KIS	277	8	107	392
9 LWU	85	0	-29	56
10 NSB	80	0	-62	18
11 OUC	1,129	24	175	1,328
12 SEC	318	52	2,434	2,804
13 LAK	601	7	462	1,070
14 STK	16	0	-16	0
15 TAL	555	14	-11	558
16 TEC	3,522	93	371	3,986
17 FMP	152	2	-4	150
18 NUG	0	1	250.0	251
19 RCU	182	1	-183	0

$$
\begin{aligned}
& \mathscr{\sim} \\
& \hat{3} \\
& \underset{\omega}{0} \\
& \vdots
\end{aligned}
$$

SECTION 3 RESULTS OF POWER FLOW STUDIES

As discussed in Section 2, three base cases: 2004.PI.sav, 2004.sav, and 2004-60.sav, were developed as a starting point. These three base cases had the proposed Osprey Energy Center at 0 MW. Next, five individual dispatches were established as follows:
a) Simulated all the plant output being delivered to FPL;
b) Simulated all the plant output being delivered to FPC;
c) Simulated all the plant output being sold to TEC;
d) Simulated all the plant output being delivered to JEA; and
e) Simulated all the plant output being delivered to SEC.

In all, eighteen base cases (summarized in Table 3-1) were developed in order to evaluate the effects of the proposed 530 MW Osprey Energy Center on the performance o! the Florida system. Each of these eighteen cases, summarized in Table 3-1, were used as a starting point in evaluating system performance under normal conditions by comparing pre- and post-project powerflows over key lines and equipment in the proximity of the plant and over certain facilities monitored in past FRCC transmission studies.

In addition, thirty-five (35) single line or generator outages (N-1) were simulated on all the eighteen base cases to assess performance under other than normal conditions. Navigant Consulting also monitored flows over twelve of the thirteen constrained transmission paths discussed in the FRCC 1997 Final Transmission System Constraint Maps. Table 3-2 is a list of the single outages simulated on each of the eighteen base cases. Table 3-3 is a tabulation of the FRCC constrained paths and the transmission circuits affected. Constrained paths \#15 and \#16 are the Stanton-Rio Pinar 230-kV line. Because the studies performed represent summer season peak load conditions, and, therefore, power transfer from Georgia to Florida, Constraint \#13 (which deals with flows from Florida to Georgia) was not checked. Appendix IV is a summary of total constrained path flows in graphic and tabular form, representing the pre- and post-project performance for the 18 base cases.

The contingencies listed in Table 3-2 represent a broad array of outages throughout the Florida system designed to test any negative impact this new plant may have. Some of the outages selected are similar to those selected for past FRCC transmission assessment studies. Some are not expected to be impacted by the new plant; others could potentially be influenced by whether the plant output is scheduled to different receiving parties. In all cases, the most pessimistic conditions were modeled.

The circuits monitored, as shown in Table 3-4, represent all facilities around the plant 3-1
location that could experience loading problems, as well as some circuits that have shown a tendency in past FRCC studies to exhibit thermal loading problems.

2004. PI CASES

The result of these cases, representing summer peak loading in Florida and peak import of 3600 MW from Georgia, are summarized in Appendix I, which presents information about the lines monitored, the specific outage, the pre-project conditions, and the five dispatch scenarios; i.e., the plant output respectively delivered to FPL, FPC, TEC, JEA, and SEC.

The analysis reveals that when the Recker to Gapway $230-\mathrm{kV}$ circuit is out of service, the Ariana $230 / 69-\mathrm{kV}$ autotransformer loads up to:
>104.6 percent of its emergency rating when the plant output is dispatched to TEC,
>104.2 percent when the output is sent to FPL,
> 103.9 percent when the output is dispatched to FPC, and
>103.8 percent when the output is sent to either JEA or SEC.
Also, under peak import conditions and for the specific control area dispatches simulated, loss of the Manatee-Big Bend $230-\mathrm{kV}$ circuit, causes the Buckeye-Ruskin Metering section of the Big Bend-Johnson $230-\mathrm{kV}$ circuit to reach 100.8 percent or its thermal rating. This loading is highly dependent on actual generation at Manatee, and is not an unusual occurrence.

The distribution of flows over the various lines emanating form the Recker Substation for the various dispatch scenarios are shown in Appendix I-A.

2004. CASES

The results of these cases representing summer peak loading in Florida, and an import of 2400 MW, are summarized in Appendix II, which presents information about the lines monitored, the specific outage, the pre-project conditions, and the five dispatch scenarios, i.e., the plant output respectively delivered to FPL, FPC, TEC, JEA, and SEC.

The analysis reveals again that when the Recker to Gapway $230-\mathrm{kV}$ circuit is out of service, the Ariana $230 / 69-\mathrm{kV}$ exceeds its rated thermal limit:
>103.8 percent of its emergency rating when the plant output is dispatched to TEC,
>103.4 percent when the plant output is dispatched to FPL,
>103.1 percent when the plant output is dispatched to sither FPC or JEA, and
>103 percent when the output is dispatched to SEC.

Also, when the McIntosh-Lake Agnes $230-\mathrm{kV}$ circuit is out of service under peak load conditions, the Recker-Lake Agnes $230-\mathrm{kV}$ circuit experiences loading around 103 percent of its emergency rating when the plant output is dispatched to FPC, JEA, and SEC, and loading of 100 percent of its emergency rating when the output is dispatched to FPL. However, loading is within limits when the output is dispatched to TEC.

When the $230-\mathrm{kV}$ circuit Griffin-Lakeland West is out of service, the Osceola-Lake Agnes $230-\mathrm{kV}$ circuit reaches it emergency thermal rating when the plant output is dispatched to either FPC, JEA, or SEC. When the output is dispatched to FPL or TEC, the line loading is below its emergency thermal rating. Appendix II-A shows the distribution of flows over the various lines emanating from the Recker Substation for the various dispatch scenarios.

2004-60 CASES

The results of these cases representing 60% of summer peak loading in Florida, and an import of 2400 MW from Georgia are summarized in Appendix III, which presents information about the lines monitored, the specific outage, the pre-project conditions, and the five dispatch scenarios; i.e., the plant output respectively delivered to FPL, FPC, TEC, JEA, and SEC.

The analysis reveals that for all the scenarios and all the contingencies simulated, no monitored lines in the proximity of the plant or around the system reached their thermal limits. Since the 60% load level represents the average loading of the Florida system, it appears that the proposed plant can be dispatched most of the time. Appendix III-A shows the distribution of flows over the various lines coming out of the plant for the various dispatch scenarios.

TABLE 3-2Index to OUTAGE CONTINGENCIES					
Outage \#	Bus 1	kV	Bus 2	kV	CKT
1	Osceola	230	OUCCITP2	230	1
2	Osceola	230	LKAGNES	230	1
3	Osceloa	69	Studio	69	1
4	Sheld	230	LK TARPON	230	1
5	Ruskin T	230	Manatee	230	1
6	RUSKMTR8	230	Buckeye	230	1
7	B Bend	230	Manatee	230	1
8	PEBB	230	Barcola	230	1
9	PEBB	230	N Bartow	230	1
10	PEBB	230	CREWSLK	230	1
11	HARDESUB	230	CC Plant	230	1
12.	Recker	230	CREWSLK	230	1
13	Recker	230	LKAGNES	230	1
14	Selose T	230	N Bartow	230	1
15	Selose T	230	Wlk Wale	230	1
16	Recker	230	Gapway	230	1
17	Eaton Pk	230	TENOROC	230	1
18	Eaton Pk	230	CREWSLK	230	1
19	TENOROC	230	I-State	230	1
20	West	230	I-State	230	1
21	TENOROC	230	McIntosh	230	1
22	LKAGNES	230	McIntosh	230	1
23	West	230	Barcola	230	1
24	West	230	Griffin	230	1
25	Sheld	230	Sheld-NW	69	1
26	Sheld	230	Sheld-SE	69	1
27	Camp LK	230	Cent Fla	230	1
28	IND RIV	230	Stanton	230	1
29	Curry FD	230	Stanton	230	1
30	BRKRIDGE	500	CRYST RV	500	1
31	Kathleen	500	Cent Fla	500	1
32	Martin 1	22	814 MW	Gen	1
33	Manatee 1	22	783 MW	Gen	1
34	Gannon 6	22	362 MW	Gen	1
35	B Bend4	22	439 MW	Gen	1

TABLE 3-3 LIST OF CONSTRAINED PATHS IN FLORIDA		
Const. Number	Constrained Path Name	Transmission Lines Involved
5	Lake Tarpon - Sheldon	Three Lake Tarpon-Sheldon: 230-kV lines.
6	Central-South East	Poinsett-Martin \& Poinsett-Midway: $500-\mathrm{kV}$ Lines Malabar-Midway \& Malabar-Emerson: 230-kV Lines Malabar-West: $138-\mathrm{kV}$ Line
7	Central-South	Ruskin-Manatee: 230-kV Line Big Bend-Manatee: $230-\mathrm{kV}$ Line Big Bend-Ruskin: 230-kV Line
8	Northwest-Central	2 Silver Spring North-Silver Springs: 230 -kv Line
9	Brookridge-South	Brookridge-Lake Tarpon: $500-\mathrm{kV}$ Line Brookridge-Brooksville West: 230-kV Line Brookridge-Hudson: 230-kV Line
10	Northeast-Central	Duval-Poinsett \& Rice-Poinsett: $500-\mathrm{kV}$ Lines Putnam-Volusia \& Bunnell-Volusia: 230-kV Lines
11	Sylvan-North Longwood	Sylvan-North Longwood: 230-kV Line
12	Georgia-Florida	Hatch-Duval \& Thalman-Duval: $500-\mathrm{kV}$ Lines Pine Grove-Sunannee \& Kingsland-Yulee: 230-kV Lines South Bainbridge-Tallahassee (sub 20): $230-\mathrm{kV}$ Line Callaway-Port St. Joe: $230-\mathrm{kV}$ Line Pine Grove-Jasper, Tarver-Jasper: 115-kV Line Scholtz-Woodruff: $115-\mathrm{kV}$ Line Twin Lake-Suwannee Pl: 115-kV Line
13	Florida-Georgia	Same as 12 (flows reversed)
14	Crystal River-South	Crystal River-Brookridge: $500-\mathrm{kV}$ Line CR Plant-Brookridge: $230-\mathrm{kV}$ Line CR Plant-Cryst RE: 299-kV Line
15	Cape Canaveral-Indian River	Cape Canaveral-Indian River: $230-\mathrm{kV}$ Line
16	Indian River-Cape Canaveral	Indian River-Cape Canaveral: $230-\mathrm{kV}$ Line
17	Stanton-Central Florida	Stanton-Rio Pinar: $230-\mathrm{kV}$ Line

	TABLE 3-4					
	MONITORED BRANCHES					
Bus 1	kV 1	Bus 2	kV 2	CKT	Area	
SN Plant	230	Sylvan	230	1	1	
Sylvan	230	N Longwd	230	1	1	
Ind Riv	230	Stanton	230	1	11	
Buckeye	230	Ruskmtr8	230	1	1	
Silvr SP	230	Silv Spn	230	1	2	
Silvr SP	230	Ocala 1	230	1	2	
Rio Pinr	230	Curry FD	230	1	2	
Stanton	230	Curry FD	230	1	11	
Osceola	230	LkAgnes	230	1	16	
Sheld	230	Lk Tarpon	230	1	2	
Pebb	230	Crewslk	230	1	16	
Pebb	230	N Bartow	230	1	16	
Recker	230	LkAgnes	230	1	16	
Recker	230	Ariana	230	1	16	
Recker	230	Crewslk	230	1	16	
B Bend	230	Manatee	230	1	1	
Ruskin	230	Manatee	230	1	1	
Ind Riv	230	Ind Riv	115	1	11	
Sheld	230	Sheld-NW	69	1	16	
Largo	230	Largo A	69	1	2	
CLMT EST	230	CLMT EST	69	1	16	
Eleven W	230	Eleven-E	69	1	16	
Winderme	230	Winderme	69	1	2	
Pasadena	230	Pasadena	115	1	2	
Ariana	230	Ariana N	69	1	16	
Selose	230	Selose N	69	1	16	
Gapway	230	Gapway	69	1	16	
Crewslk	230	Crewslk	69	1	13	
Tenoroc	230	Tenoroc	69	1	13	
Barcola	230	West	230	1	13	
Eaton Pk	230	Crewslk	230	1	13	
Eaton Pk	230	Eaton Pk	69	1	13	
Eaton Pk	230	Tenorock	230	1	13	
Recker	230	Gapway	230	1	16	
SN Plant	115	Turner	115	1	1	

				Com Vario		rison Follo OEC	Tabl of Line \& wing $\mathrm{N}-1$ 500 MW	Transfor Disturbanc Generatio	er Flows s Alternati			
							100\% Load	e Case				
All Flows above 100\% of Emergency rating are Shown												
Monitored Branches							$\begin{gathered} \text { Case 2004P1 } \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{gathered} \text { Case 2004PIA } \\ \text { Sell to } \\ \text { FPL } \\ \hline \end{gathered}$	Case 2004PIB Sell to FPC	$\begin{gathered} \text { Case 2004PIC } \\ \text { Setl to } \\ \text { TEC } \\ \hline \end{gathered}$	Case 2004P1D Sell to JEA	Case 2004PIE Sell to SEM
Case	Bus 1	kV 1	Bus 2	kV2	ckt	Area	Parcent	Percont	Percant	Parcent	Percent	Parcom
2004 P1-9	SN PLANT	230										
2004 Pl -9	SYLVAN	230	N LONGWD	230	1	1						
$2004 \mathrm{Pl}-9$	IND RIV	230	STANTON	230	1	11						
$2004 \mathrm{Pl}-9$	SN PLANT	115	TURNER	115	1	1						
$2004 \mathrm{Pl} \cdot 9$	BUCKEYE	230	RUSKMTR8	230	1	1						
$2004 \mathrm{Pl}-9$	SILVR SP	230	SILV SPN	230	1	2						
$2004 \mathrm{Pl}-9$	SILVF SP	230	OCALA 1	230	1	2						
2004P1-9	RIO PINR	230	CURRY FD	230	1	2						
$2004 \mathrm{PI}-9$	STANTON	230	CURRY FD	290	1	2						
2004 Pl -9	OSCEOLA	230	LKAGNES	230	1	16						
2004 Pl 1.9	SHELD	230	LK TARPN	230	1	2						
2004 Pl -9	PEEB	230	CREWSLK	230	1	13						
2004 Pi -9	PEEBB	230	N BARTOW	230	1	2						
$2004 \mathrm{Pl}-9$	RECKER	230	LKAGNES	230	\uparrow	16						
2004 P1-9	REECKER	230	ARIANA	230	1	16						
$2004 \mathrm{PI}-9$	RECKER	230	CREWSLK	230	1	13						
$2004 \mathrm{PI}-9$	B BEND	230	Manatee	230	1	1						
2004Pi.9	RUSKIN T	230	manatee	230		1						
2004 P1.9	IND RIV	230	IND RIV	115	1	11						
2004P1.9	SHELD	230	SHELD-NW	69	1	16						
2004P1.9	LARGO	230	LARGOA	69	1	2						
2004 P1-9	CLMM EST	230	CLMT EST			2						
2004P1-9	11 THAVE	230	ELEVENE	69	1	16						
$2004 \mathrm{PI}-9$	WINDERME	230	WINDERME	69	1	2						
$2004 \mathrm{PI}-9$	PASADENA	230	PASADENA	115	1	2						
2004 P1-9	ARIANA	230	ARIANA-N	89	1	16						
2004 Pl -9	SELOSE	230	SELOSE-N	69								
2004P1-9	gapway	230	GAPWAY	69		16						
2004 P1. 9	CREWSLK	230	CREWSLK	69	1	13						
2004P1-9	TENOROC	230	TENOROC	69	1	13						
2004P1-9	BARCOLA	230	WEST	230								
$2004 \mathrm{Pl}-9$	EATONPK	230	CREWSLK	230		13						
2004 PI 1.9	EATONPK	230	EATONPK	69	1	13						
2004 Pl 19	EATON PK	290	TENOROC	230	1	13						
$2004 \mathrm{Pl}-9$	RECKER	230	gapway	230	1	16						
2004 Pl 1.9	SN PLANT	115	TURNER	115		1						
2004 PI 10	SN PLANT	230	SYLVAN	230	1	1						
$2004 \mathrm{PI}-10$	SYLVAN	230	N LONGWD	230	1	1						
$2004 \mathrm{PI}-10$	IND RIV	230	STANTON	230	1	11						
2004P1-10	SN PLANT	115	TURNER	115		1						
2004 Pl -10	BUCKEYE	230	RUSKMTR8	230	1	1						
$2004 \mathrm{PI}-10$	SLLVR SP	230	SILV SPN	230	1	2						
$2004 \mathrm{PI}-10$	SILVA SP	290	OCALA 1	230	1	2						
$2004 \mathrm{Pl}-10$	RIO PINR	230	CURRYFD	230		2						
2004P1-10	STANTON	230	CURRY FD	230		2						
2004 PI 10	OSCEOLA	230	LKAGNES	230	1	16						
2004P1-10	SHELD	230	LK TARPN	230		2						
2004 PI 10	PEBB	230	CREWSLK	230		13						
$2004 \mathrm{PI}-10$	PEBB	230	N BARTOW	230		2						
2004PI-10	RECKER	230	LKAGNES	230		16						
2004P1-10	RECKER	230	ARIANA	230	1	16						
2004P1-10	RECKER	230	CREWSLK	230		13						
2004P1-10	8 BEND	230	MANATEE	230		1						
2004 Pl - 10	RUSKIN T	230	MANATEE	230		1						
$2004 \mathrm{PI}-10$	IND RIV	230	IND RIV	115		11						
$2004 \mathrm{PI}-10$	SHELD	230	SHELD-NW	69		16						
$2004 \mathrm{Pl}-10$	LAFGO	230	LARGOA	69		2						
2004PF-10	CLMT EST	230	CLMT EST	69		2						
2004 Pl -10	11 THAVE	230	ELEVENE	69		16						
2004 Pl -10	WINDERME	230	WINDERME	69		2						
$2004 \mathrm{PI}-10$	Pasadena	230	PASADENA	115		2						
2004P1-10	ARIANA	230	ARIANA-N	69		16 16						
2004PI-10	SELOSE	230 230	SELOSE-N GAPMAY	69		16						
2004 PI 10	GAPWAY	230	GAPWAY	89		18						
2004 Pl 10	CREWSLK	230	CREWSLK	69		13						
2004 Pl - 10	TENOROC	230	TENOROC	69	1	13						
$2004 \mathrm{Pl}-10$	BARCOLA	230	WEST	230		2						
2004P1-10	EATON PK	230	CREWSLK	230		13						
2004 PI 10	EATON PK	230	EATON PK	69		13						
$2004 \mathrm{PI}-10$	EATON PK	230	TENOROC	230		13						
$2004 \mathrm{Pl}-10$	RECKER	230	GAPWAY	230		16						
$2004 \mathrm{PI}-10$	SNPLANT	115	TUANEA	115		1						

				Vario		rison Follo OEC	Tab of Line \& wing $\mathrm{N}-1$ 500 MW	II Transform Disturban Generatio	er Flows es Alternati			
							100\% Load	se Case				
All Flows above 100\% of Emergency rating are Shown												
Monitored Branches							$\begin{gathered} \text { Case 2004P1 } \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{aligned} & \text { Case 2004PIA } \\ & \text { Sell to } \\ & \text { FPL } \end{aligned}$	Case 2004 PiB Sell to FPC	$\begin{gathered} \text { Case 2004PIC } \\ \text { Sell to } \\ \text { TEC } \end{gathered}$	$\begin{aligned} & \text { Case 2004P1D } \\ & \text { Sell to } \\ & \text { JEA } \\ & \hline \end{aligned}$	Case 2004PIE Sell to SEM
Case	Bus 1	kV1	Bus 2	kV2	ckt	Area	Percent	Percent	Percent	Parcent	Parcan	Porcent
2004 Pl 18	SN PLANT	230	SYLVAN	230		1						
2004 Pl 18	SYLVAN	230	N LONGWD	230	1	1						
2004 Pl 18	IND RIV	230	STANTON	230	1	11						
2004 PJ 18	SN PLANT	115	TUFANER	115	1	1						
$2004 \mathrm{PI}-18$	buckeye	230	RUSKMTRB	230	1	1						
2004 Pl -18	SILVR SP	230	STLVSPN	230	1	2						
2004P1-18	SILVR SP	230	OCALA 1	230	1	2						
2004 PL 18	RIO PINR	230	CUPRY FD	230	1	2						
$2004 \mathrm{PL}-18$	STANTON	230	CURRY FD	230	1	2						
2004 Pl 18	OSCEOLA	230	LKAGNES	230	1	16						
2004 Pl 18	SHELD	230	LK TARPN	230	1	2						
2004 Pl 18	PEBE	230	CREWSLK	230	1	13						
2004 P1-18	PEBB	230	N BARTOW	230	1	2						
2004 Pl 18	RECKER	230	LKAGNES	230	1	16						
2004 P1-18	RECKER	230	ARIANA	230	1	16						
$2004 \mathrm{PP1} 18$	RECKER	230	CREWSLK	230	1	13						
2004 PF .18	B BEND	230	Manatee	230	1	1						
2004 Pl -18	RUSKINT	230	MANATEE	230	1	1						
2004P1. 18	IND RIV	230	IND RIV	115	1	11						
2004 Pl 18	SHELD	230	SHELD-NW	69	1	16						
2004P1-18	largo	230	LAPGO A	69	1	2						
2004 PJ - 18	CLMT EST	230	CLMTEST	69	1	2						
2004P1-18	11THAVE	230	ELEVEN-E	69	1	16						
2004 Pl 18	WINDERME	230	WINDERME	68	1	2						
$2004 \mathrm{PI}-18$	PASADENA	230	PASADENA	115	1	2						
2004 Pl 18	ARIANA	230	ARIANA-N	69	1	16						
2004 Pl 18	selose	230	SELOSE-N	69	1	18						
2004 Pl 18	gapwar	230	GAPWAY	69	1	16						
2004 PJ - 18	CAEWSLK	230	CREWSLK	69	1	13						
2004 PI 13	TENOAOC	230	TENOROC	69	1	13						
2004 Pl 18	BARCOLA	230	WEST		1.							
2004 Pl - 18	EATONPK	230	CREWSUK	230	1	13						
$2004 \mathrm{PI}-18$	EATON PK	230	EATON PK	69	1	13						
2004P1-18	EATON PK	230	TENOROC	230	1	13						
$2004 \mathrm{Pl}-18$	RECKER	230	gapway	230	1	16						
$2004 \mathrm{PI}-18$	SN PLANT	115	TUANER	115		1						
2004 PI 119	SNPLANT	230	SYLVAN	230	1	1						
$2004 \mathrm{PI}-19$	SYLVAN	230	NLONGWD	230		1						
2004P1-19	IND RIV	230	STANTON	230	1	11						
2004PI-19	SN PLANT	115	TURNER	115		1						
$2004 \mathrm{PI}-19$	BUCKEYE	230	RUSKMTR8	230	1	1						
2004P1-19	SILVA SP	230	SLLV SPN	230	1	2						
2004 Pi. 19	SILVR SP	230	OCALA 1	230		2						
2004 Pl 19	RIO PINP	230	CURRY FD	230		2						
2004P1-19	STANTON	230	CURRY FD	230	1	2						
2004 PJ 19	OSCEOLA	230	LKAGNES	230		16						
2004 Pl 19	SHELD	230	LK TARPN	230		2						
2004 PJ 19	PEBB	230	CREWSLK	230	1	13						
2004 PH 19	PEBB	230	N BARTOW	230	1	2						
2004P1-19	RECKER	230	LKAGNES	230	1	16						
$2004 \mathrm{PI}-19$	RECKER	230	ARIANA	230		16						
2004 Pl 19	RECKER	230	CREWSLK	230	1	13						
$2004 \mathrm{Pl}-19$	B BEND	230	MANATEE	230		1						
$2004 \mathrm{PI}-19$ $2004 \mathrm{PI}-19$	RUSXINT INO RIV	230 230	MANATEE IND RIV	230 115	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1 11						
2004P1-19	SHELD	230	SHELD-NW	69	1	16						
2004PJ-19	LARGO	230	Largo a	69	1	2						
2004 PI 19	CLMT EST	230	CLMTEST	69		2						
2004P1-19	11THAVE	230	ELEVEN-E	69	1.	16						
2004PI-19	WINDERME	230	WINDERME	69	1	2						
2004 Pl -19	Pasadena	230	PASADENA	115		2						
$2004 \mathrm{PI}-19$	ariana	230	ARIANA-N	69	1	16						
2004 PI 19	SELOSE	230	SELOSE-N	69	1	16						
2004P1-19	GAPWAY	230	GAPWAY	69	1	18						
2004 Pl 19	CREWSLK	230	CREWSLK	69	1	13						
2004P1-19	TENOPOC	230	TENOROC	69	1	13						
2004 Pl 19	BARCOLA	230	WEST	230	1	2						
2004PI-19	EATONPK	230	CREWSLK	230	1	13						
2004 PI .19	EATON PK	230	EATON PK	69	1	13						
$2004 \mathrm{PI}-18$	EATON PK	230	TENOROC	230	1	13						
$2004 \mathrm{PI}-19$	RECKER	230	gapway	290	1	16						
2004PI-19	SN PLANT	115	TURNER	115		1						

-	Comparison of Line \& Transformer Flows Following N - 1 Disturbances Various OEC 500 MW Generation Alternatives												
-								100\% Load	se Case				
	All Flows above 100\% of Emergency rating are Shown												
	Monitored Branches							$\begin{gathered} \text { Case 2004P1 } \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	Case 2004PIA Sell to FPL	Case 2004P1B Sell to FPC	Case 2004PIC Sell to TEC	Case 2004PID Soll to JEA	Case 2004P1E Sell to SEM
-	Case	Bus 1	kV 9	Bus 2	kV2.	ckt	Area	Percent	Percent	Percent	Percent	Percent	Porcent
	2004P1-20	SN PLANT	230	SYLVAN	230								
	2004P1-20	SYLVAN	230	NLONGWD	230	1	1						
	2004P1-20	ino Riv	230	STANTON	230		11						
	$2004 \mathrm{Pl}-20$	SN PLANT	115	TURNER	115	1	1						
	2004P1-20	BUCKEYE	230	RUSKMTAB	230	1	1						
	2004 Pl -20	SILVA SP	230	SILV SPN	230	1	2						
	$2004 \mathrm{Pl}-20$	SILVR SP	20	OCALA 1	230	1	2						
	2004P1-20	RIO PINR	230	CURRY FD	230	1	2						
	$2004 \mathrm{Pl}-20$	STANTON	230	CURRY FD	230	1	2						
	2004P1-20	OSCEOLA	230	LKAGNES	230	1	16						
	$2004 \mathrm{PI}-20$	SHELD	230	LK TARPN	230	1	2						
	2004 Pl - 20	PEBB	230	CREWSLK	230	1	13						
	2004 Pl . 20	PEBB	230	N BARTOW	230	1	2						
	2004 Pl -20	RECKER	230	LKAGNES	230	1	16						
	$2004 \mathrm{Pl}-20$	RECKER	230	ARIANA	230	1	16						
	2004 PI .20	RECKER	230	CREWSLK	230	1	13						
	$2004 \mathrm{PI} \cdot 20$	B BEND	230	MANATEE		1	1						
	$2004 \mathrm{Pl}-20$	RUSKIN T	230	MANATEE	230	1	1						
	2004 Pl -20	INO RIV	230	IND RIV	115	1	11						
	$2004 \mathrm{PI}-20$	SHELD	230	SHELD-NW	89	1	16						
	2004 PI 20	largo	230	LARGO A	69	1	2						
	2004P1-20	CLMT EST	230	CLMTEST	69	1	2						
	2004 P1.20	11 THAVE	230	ELEVENE	69	1	18						
	2004 PJ -20	WINDERME	230	WINDERME	69	1	2						
	2004PI-20	PASADENA	230	PASADENA	115	1	2						
	$2004 \mathrm{PI} \cdot 20$	ARIANA	230	ARIANA-N	69	1	18						
	$2004 \mathrm{Pl}-20$	SELOSE	230	SELOSE-N	69	,	16						
	2004P1-20	GAPWAY	230	GAPWAY	69	1	18						
	2004P1. 20	CREWSLK	230	CREWSLK		1	13						
	2004P1.20	TENOROC	230	TENOROC	69	1	13						
	2004P1-20	barcola	230	WEST	230	1	2						
	2004P1.20	EATON PK	230	CREWSLK	230	1	13						
	2004P1-20	EATON PK	230	EATONPK	69	1	13						
	2004PF-20	EATON PK	230	TENOROC	230	1	13						
	2004Pl-20	RECKER	230	GAPWAY	230	1	16						
	2004PI-20	SN PLANT	115	TURNER	115								
	2004P1-21	SNPLANT SYLVAN			230								
	$2004 \mathrm{Pl}-21$	SYLVAN	230	NLONGWD	230		1						
	$2004 \mathrm{Pl}-21$	IND RIV	230	STANTON	230	1	11						
	2004 Pl -21	BUCKEYE	230	RUSKMTR8	115		1						
	$2004 \mathrm{Pl}-21$	SILVR SP	230	SILV SPN	230	1	2						
	$2004 \mathrm{Pl}-21$	SILVR SP	230	OCALA 1	230	1	2						
-	2004 Pl - 21	RIO PINR	230	CUPRY FD	230		2						
	$2004 \mathrm{Pl}-21$	STANTON	230	CURAY FD	230		2						
	$2004 \mathrm{Pl}-21$	OSCEOLA	230	UKAGNES	230	1	16						
	$2004 \mathrm{Pl}-21$	SHELD	230	LK TARPN	230		2						
	$2004 \mathrm{Pl}-21$	PEBB	230	CREWSLK	230		13						
	2004 P1-21	PEBE	230	N BAATOW	230	1	2						
	2004Pl-21	RECKER	230	LKAGNES	230		18						
	$2004 \mathrm{Pl}-21$	RECKER	230	ARIANA	230		18						
	2004P1-21	RECKER	230	CREWSLK	230	1	13						
-	2004P1-21	B BEND RUSKINT	230 230	Manatee	230		\mathfrak{i}						
	2004 2004 Pl -21	RUSKINT IND RIV	230 230	MANATEE IND RIV	230 115		$\begin{gathered} 1 \\ 11 \end{gathered}$						
	2004 Pl -21	SHELD	230	SHELD-NW	69		16						
	2004 Pl -21	LARGO	230	LARGOA	69		2						
	2004 Pl -21	CLMT EST	230	CLMT EST	69		2						
	2004 Pl -21	11 TH AVE	230	ELEVENE	69		18						
	2004P1-21	WINDERME	230	WINDERME	69		2						
	$2004 \mathrm{Pl}-21$	Pasadena	230	PASADENA	115		2						
	2004 PJ -21	ARIANA	230	ARIANA-N	69	1	16						
-	2004 Pl -2	SELOSE	230	SELOSE-N	69		16						
	2004 Pl -21	gapway	230	GAPWAY	69		16						
	$2004 \mathrm{Pl} \cdot 21$	CPEWSLK	230	CREWSLK	69		13						
	2004P1-21	TENOROC	230	TENOROC	69	1	13						
	$2004 \mathrm{Pl}-21$	BARCOLA	230	WEST	230	1	2						
\cdots	2004 PP -21	EATON PK	230	CREWSLK	230	1	13						
	2004 Pl -21	EATON PK	230	EATON PK	69	1	13						
	2004 PP -21	EATONPK	230	TENOROC	230	1	13						
	2004 Pl 121	RECKER	230	GAPWAY	230	1	18						
	$2004 \mathrm{Pl}-21$	SNPLANT	115	TURNER	115								

Table II
Comparison of Line \& Transformer Flows
Following N-1 Disturbances
for Various OEC 500 MW Generation Alternatives
[100\% Load Base Case
All Flows above 100% of Emergency rating are Shown

APPENDIX II

-					Com Vario		rison Follo OEC	Tab wing $\mathrm{N}-1$ 500 MW	eI Transform isturbanc Generatio	er Flows Alternativ			
-								100\% Load	ase Case				
	All Flows above 100\% of Emergency rating are Shown												
	Monitored Branches							$\begin{gathered} \text { Case } 2004 \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{gathered} \text { Case } 2004 \mathrm{~A} \\ \text { Sell to } \\ \text { FPL } \end{gathered}$	Case 2004B Soll to FPC	Case 2004C Sell to TEC	$\begin{gathered} \text { Case 20040 } \\ \text { Sen to } \\ \text { JEA } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { Case 2004E } \\ \text { Soll to } \\ \text { SEM } \\ \hline \end{gathered}$
	Case	Bus i	kV 1	Bus 2	kV2	ckt	Aras	Porcont	Percem	Poriconk	Percent	Percent	Percent
-	2004.1	SNPLANT	230	SYLVAN	230	1	$\stackrel{1}{1}$						
	2004-1	SYLVAN	230	NLONGWD	230	1	1						
	2004-1	IND RIV	230	Stanton	230	1	11						
	2004-1	SN PLANT	115	TURNER	115	1	1						
	2004.1	BUCKEYE	230	RUSKMTRE	230	1	1						
	2004.1	SLLVR SP	230	SILVSPN	230	1	2						
	2004.1	SILVRSP	230	OCALA 1	230	1	2						
	2004-1	RIO PINA STANTON	230 230	CUARY FD CURRY FD	230 230	1	2						
	2004-1	OSCEOLA	230 230	LKAGNES	230	1	18						
	$2004-1$	SHELD	230	LK tarpn	230	1	2						
	2004-1	PEBB	230	Crewslk	230	1	13						
	2004-1	PEBB	230	N BARTOW	230	1	2						
	2004.1	RECKER	230	LKAGNES	230	1	16						
	2004.1	RECKER	230	ARIANA	230	1	16						
	2004.1	B BEND	230	MANATEE	230	1	1 1 1						
	2004.1	RUSKIN T	230	manatee	230	,	1						
	$2004 \cdot 1$	IND RIV	230	IND RIV	115	,	11						
	2004.1	SHELD	230	SHELD-NW	69	1	16						
	2004-1	LARGO	230	LARGOA CLMT EST	89 89	1 1	2 2						
	2004.1	11 THAVE	230	Eleleven-E	69	1	16						
	2004-1	WINDERME	230	WINDERME	68	1	2						
	2004.1	PASADENA	230	PASADENA	115	1	2						
	2004 -1	ARIANA	230	ARIANA-N	69	1	18						
	2004.1	SELOSE	230	SELOSE-N	69	1	${ }^{16}$						
-	$\left\lvert\, \begin{aligned} & 2004-1 \\ & 2004-1 \end{aligned}\right.$	$\underline{\text { GAPWAY }}$ CREWSLK	230	GAPWAY CREWSLK	69 69	1	16 13 13						
	2004-1	tenoroc	230	TENOROC	69	1	13						
	2004 -1	BARCOLA	230	WEST	230	1	2						
	2004.1	EATON PK	230	CREWSLK	230	1	13						
-	2004-1	EATONPK	230	EATON PK	${ }^{99}$	1	13						
	2004-1	EATONPK	230	tenoroc	230	1	${ }^{13}$						
	2004-1	SECKER	$\begin{aligned} & 230 \\ & 115 \end{aligned}$	GAPWAY	$\begin{aligned} & 230 \\ & 115 \end{aligned}$	1	18						
	2004-2	SN PLANT	230	SYLVAN	230	1	1						
	2004-2	SYLVAN	230	NLONGWD	230	1	1						
	2004.2	IND RIV	230	Stanton	230	1	11						
	2004-2	SN PLANT	115	TURNER	115	1	1						
	2004.2	BUCKEYE	230	RUSKMTR8	230	1	1						
	2004-2	SILVR SP	230 3	SILV SPN	230	1	2						
	2004.2	SLVR SP RIO PINR	230 230	OCALA C FD	230	1	2						
	2004-2	Stanton	230	CUARY FD	230	1	2						
	2004-2	osceola	230	LKAGNES	230	1	16						
	2004.2	SHELD	$\stackrel{230}{ }$	LK TARPN	230	1	2						
	2004.2	PEBB	230 230	CREWSLK	230	1	13						
	2004-2	PEEB	230 230	N BARTOW LKagnes	230 230	1	$\stackrel{2}{16}$						
	2004-2	RECKER	230	ARIANA	230	1	16						
	2004-2	RECKER	230	CREWSLK	230	1	${ }^{13}$						
	2004.2	B BEND	230	MANATEE	230	1	1						
	2004-2	RUSkIN ${ }^{\text {T }}$	230	manatee	${ }^{230}$	1	1						
	2004-2	IND RIV	230 230	IND RIV	115 89	1.	11 16						
	2004.2	Largo	235	LARGO A	${ }^{69}$	1	11						
-	20042	CLMT EST	230	CLMTEST	69	1	2						
	2004-2	11 TH AVE	230	ELEVENE	69	1	16						
	2004.2	WINDERME	230	WINDERME	${ }^{69}$	1	2						
	2004.2	PASADENA	230	PASADENA	115	1	2						
	2004.2	ARIANA	230 230	AARIANA-N	69 69	1	18 18 18						
	2004-2	GAPWAY	230	GAPWAY	69	1	16						
	2004-2	CREWSLK TENOROC	230 230	CAEWSLK TENOROC	69 69	1	13						
	2004-2	TENOROC	230 230	TENOROC	${ }_{29}^{69}$	1	13 2						
	2004.-2	EAATON PK	230 230	WEST	230 230	1	${ }_{13}^{2}$						
	2004.2	EATON PK	230	EATON PK	69	1	13						
	2004-2	EATONPK	230	TENOROC	230	1	${ }^{13}$						
	2004-2	RECKER	230 115	GAPWAY TURNER	230 115	1	16						
	2004-2	SN PLANT	115	TURNER	115								

Table I

Comparison of Line \& Transformer Flows Following N-1 Disturbances for Various OEC 500 MW Generation Alternatives
100\% Load Base Case
All Flows above 100\% of Emergency rating are Shown

Monitored Branches							$\begin{gathered} \text { Case } 2004 \\ \text { Base } \end{gathered}$	$\begin{aligned} & \text { Case } 2004 \mathrm{~A} \\ & \text { Sell to } \end{aligned}$	$\begin{aligned} & \text { Case } 2004 \mathrm{~B} \\ & \text { Sell to } \end{aligned}$	$\begin{gathered} \text { Case } 2004 \mathrm{C} \\ \text { Soll to } \end{gathered}$	$\begin{gathered} \text { Case } 20040 \\ \text { Sell to } \end{gathered}$	Case 2004E Soll to
Case	Bus 1	kV1	1 Bus2	kV2	ckt	Ares	Percorl	Percont	Percent	Percent	Percerk	Parcent
2004-11	SNPLANT	230	SYLVAN	230	1	1						
2004-11	SYLVAN	230	NLONGWD	230	1							
$2004 \cdot 11$	IND RIV	230	StANTON	230	1	11						
2004-11	SN PLANT	115	TURNER	115	,	1						
2004.11	BUCKEYE	230	RUSKMTR8	230	1	1						
2004.11	SILVR SP	230	SILV SPN	230	1	2						
2004-11	SILVA SP	230	OCALA 1	230	1	2						
2004-11	RIO PINR	230	CURAY FD	230	1	2						
2004-11	STANTON	230	CURRY FD	230	1	2						
2004-11	OSCEOLA	230	LKAGNES	230	1	16						
2004-11	SHELD	230	LK TARPN	230	1	2						
2004.11	PEBB	230	CREWSLK	230	1	13						
2004-11	PEBB	230	N bartow	230	1	2						
2004-11	RECKER	230	LKAGNES	230	1	16						
2004.11	RECKER	230	ariana	230	1	15						
2004-11	RECKER	230	CREWSLK	230	1	13						
2004-11	B BEND	230	manatee	230	1	1						
2004-11	RUSKIN ${ }^{\text {T }}$	230	MANATEE	230	1	1						
2004.11	IND RIV	230	IND RIV	115	1	11						
2004-11	SHELD	230	SHELD-NW	69	1	16						
2004.11	LARGO	230	Lapgo a	69	1	2						
2004-11	CLMT EST	230	CLMT EST	69	1	2						
2004-11	11 TH ave	230	ELEVENE	89	1	16						
2004.11	WINDERME	230	WINDERME	69	1	2						
2004.11	PASADENA	230	Pasadena	115	1							
2004-11	ariana	230	ARIANA-N	69	1	18						
2004-11	SELOSE	230	SELOSE-N	69	1	16						
2004.11	gapway	230	gapway	69	1	16						
2004-11	CREWSLK	230	CREWSLK	${ }^{89}$	1	13						
2004.11	TENOROC	230	tenoroc	69	,	13						
2004.11	barcola	230	WEST	230	,	2						
2004.11	EATON PK	230	CREWSLK	230	1	13						
2004-11	EATON PK	230	EATON PK	69	1	13						
2004-11	EATON PK	230	tenoroc	230	1	13						
2004-11	RECKER	230	gapway	230	1	16						
2004-11	SN PLANT	115	turner	115	,	1						
2004.12	SNPLANT	230	SYLVAN	230	'	1						
2004-12	SYLVAN	230	NLONGWD	230	,	1						
2004-12	IND RIV	230	Stanton	230	1	11						
2004-12	SN PLANT	115	TURNER	115		1						
2004-12	BUCKEYE	230	Ruskmtrs	230	1	1						
2004 -12	SILVA SP	230	SILV SPN	230	1	2						
2004.12	SILVR SP	230	ocala 1	230	1	2						
2004-12	RIO PINR	230	CURRY FD	230	1	2						
2004.12	STANTON	230	CURAY FD	230		2						
$2004 \cdot 12$	OSCEOLA	230	LKAGNES	230		16						
2004.12	PEBB	230	CREWSLK	230	1	$\stackrel{2}{2}$						
$2004 \cdot 12$	PEbB	230	n baitow	230	1	2						
2004-12	Recker	230	LKAGNES	230	1	16						
2004.12	RECKER	230	ariana	230		16						
2004-12	RECKER	230	CREWSLK	230	1	13						
2004 -12	B BEND	230	MANATEE	230	1	1						
2004.12	RUSKIN T	230	manatee	230	1	1						
2004.12	IND RIV	230 230	TND AIV	${ }_{69}^{115}$		11 16						
2004.12	LARGO	230	largoa	${ }^{69}$	1	2						
2004.12	CLMTEST	230	clmtest	69	1	2						
2004-12	11 THAVE	230	Elevene	69	1	16						
2004-12	WINDERME	230	WINDERME	69	1	2						
2004-12	PASADENA	230 230	PASADENA	115	,	$\stackrel{2}{2}$						
2004.12	SELOSE	230	SELOSE-N	${ }_{69}$	1	16						
2004-12	gapway	230	gapway	69	1	16						
204.12	CREWSLK	230	CREWSLK	69		13						
2004-12	TENOROC	230	TENOROC	${ }^{69}$		13						
2004-12	BARCOLA	230	WEST CREWSLK	230 230		$\stackrel{2}{2}$						
2004-12	EATON PK	230	EATONPK	69		13						
204.12	EATONPK	230	tenoroc	230	1	13						
2064-12	RECKER	230	GAPWAY	230	1	16						
2004 -12	SN PLANT	115	TURNER	115		1						

Table I
Comparison of Line \& Transformer Flows
Following N-1 Disturbances
for Various OEC 500 MW Generation Alternatives
100% Load Base Case
All Flows above 100\% of Emergency rating are Shown

-			-	+_				$\begin{aligned} & \text { Base } \\ & \text { No OEC Gen } \end{aligned}$	$\begin{aligned} & \text { Solf to } \\ & \text { FPL } \end{aligned}$	$\begin{aligned} & \text { Sell to } \\ & \text { FPC } \end{aligned}$	TEC	$\begin{aligned} & \text { Sell to } \\ & \text { JEA } \end{aligned}$	$\begin{aligned} & \text { Sell to } \\ & \text { SEM } \end{aligned}$
	Case	Bus 1	kV1	Bus 2	kV2	ck	Area	Percent	Percent	Percent	Percent	Percent	Percent
	2004-13	SNPLANT	230	SYLVAN	230	1	1						
	2004-13	SYLVAN	230	NLONGWD	230	1	1						
	2004-13	IND RIV	230	StANTON	230	1	11						
-	2004-13	SN PLANT	115	TURNER	115	1	1						
	2004-13	BUCKEYE	230	RUSKMTRs	230	1	1						
	2004-13	SILVA SP	230	SILV SPN	230	1	2						
	2004-13	SILVR SP	230	OCALA 1	230		2						
	2004-13	RIO PINR	230	CURAY FD	230	1	2						
	2004-13	STANTON	230	CUARY FD	230	1	2						
	2004-13	OSCEOLA	230	LKAGNES	230	1	18						
	2004-13	SHELD	230	LK TARPN	230	1	2						
	2004-13	PEBB	230	CREWSLK	230	1	13						
	2004-13	PEBB	230	N BARTOW	230	1	2						
	2004-13	RECKER	290	LKAGNES	230	1	16						
	2004-13	RECKER	230	ARIANA	230	1	16						
	2004-13	RECKER	230	CREWSLK	230	1	13						
	2004-13	B BEND	230	MANATEE	230	1	1						
	2004-13	RUSKIN T	230	MANATEE	230	1	1						
	2004-13	IND RIV	230	IND RIV	115	,	11						
	2004-13	SHELD	230	SHELD.NW	69	1	16						
	2004-13	LARGO	230	LARGOA	69	1	2						
	2004-13	CLMT EST	230	CLMT EST	69	1	2						
	2004-13	11 TH AVE	230	ELEVENE	69	1	16						
	2004-13	WINOERME	230	WINDERME	69	1	2						
	2004-13	PASADENA	230	PASADENA	115	1	2						
	2004-13	ARIANA	230	ARIANA-N	69	1	16						
	2004-13	SELOSE	230	SELOSE-N	69	1	16						
	2004-13	GAPWAY	230	GAPWAY	69	1	16						
	2004-13	CREWSLK	230	CREWSLK	69	1	13						
	2004-13	TENOROC	230	TENOROC	69	1	13						
	2004-13	BARCOLA	230	WEST	230	1	2						
	2004-13	EATON PK	230	CREWSLK	230	1	13						
	2004-13	EATON PK	230	EATON PK	69	1	13						
	2004-13	EATON PK	230	TENOROC	230	1	13						
	2004-13	RECKER	230	GAPWAY	230	1	16						
	2004-13	SN PLANT	115	TURNER	115	1	1						
	2004-15	SNP PLANT	230	SYLVAN	230	1	1						
	2004-15	SYLVAN	230	NLONGWD	230	1	1						
	2004-15	IND RIV	230	STANTON	230	1	11						
	2004-15	SN PLANT	115	TURNER	115	1	1						
	2004-15	buckeve	230	RUSKMTRA	230	1	1						
	2004-15	SILVR SP	230	SILV SPN	230	1	2						
	2004-15	SILVR SP	230	OCALA	230	1	2						
	2004-15	FIO PINA	230	CURAY FD	230	1	2						
	2004-15	STANTON	230	CURRY FD	230	1	2						
	2004-15	OSCEOLA	230	LKAGNES	230	1	16						
	2004-15	SHELD	230	LK TAPPN	230	1	2						
-	2004-15	PEBB	230	CREWSLK	230	1	13						
	2004-15	PEBE	230	N BARTOW	230	1	2						
	2004-15	RECKER	230	UKAGNES	230	1	16						
	2004-15	RECKER	230	ARIANA	230	1	16						
	2004-15	RECKER	230	CREWSUK	230	1	13						
-	2004 -15	B BEND	230	manatee	230	1	1						
	2004-15	RUSKIN T	230	manatee	230	1	1						
	2004-15	IND RIV	230	IND RIV	115	1	11						
	2004.15	SHELD	230	SHELD-NW	69	1	16						
	2004.15	LARGO	230	LARGO A	69		2						
-	2004-15	CLMT EST	230	CLMT EST	69	1	2						
	2004.15	11 TH AVE	230	ELEVENE	69	1	16						
	2004-15	WINDERME	230	WNDERME	69	1	2						
	2004 -15	PASADENA	230	PASADENA	115		2						
	2004.15	ARIANA	230	ARIANA.N	89	1	18						
-	2004-15	SELOSE	230	SELOSEN	63	1	16						
	2004-15	GAPWAY	230	GAPWAY	69	1	16						
	2004-15	CREWSLK	230	CREWSLK	69	1	13						
	2004-15	TENOROC	230	TENOROC	69		13						
	2004-15	barcola	230	WEST	230		2						
-	2004.15	EATON PK	230	CREWSLK	230	1	13						
	2004-15	EATONPK	230	EATON PK	69	1	13						
	2004.15	EATON PK	230	TENOROC	230	1	19						
	2004.15	RECKEA	230	GAPWAY	230	1	16						
	2004-15	SN PLANT	115	TURNER	115		1						

Table I
Comparison of Line \& Transformer Flows
Following N -1 Disturbances for Various OEC 500 MW Generation Alternatives

100% Load Base Case
All Flows above 100% of Emergency rating are Shown

Monitored Branches							$\begin{gathered} \text { Case } 2004 \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{aligned} & \text { Case } 2004 \mathrm{~A} \\ & \text { Sell to } \\ & \text { FPL. } \end{aligned}$	Case 2004B Sell to FPC	$\begin{gathered} \text { Case 2004C } \\ \text { Sen to } \\ \text { TEC } \end{gathered}$	Case 20040 Soll to JEA	Case 2004E Sell to SEM
Case	Bus 1	kV1	1 Bus 2	kV 2	ck	Araa	Percent	Percent	Percent	Percent	Percent	Percent
2004-16	SN PLANT	230	SYLVAN	230	1	1						
2004-16	SYLVAN	230	N LONGWD	230	1	1						
2004-16	IND RIV	230	STANTON	230	1	11						
2004-16	SN PLANT	115	TURNER	115	1	1						
2004-16	BUCKEYE	230	RUSKMTR8	230	1	1						
2004-16	SILVR SP	230	SILV SPN	230	1	2						
2004-16	SILVR SP	230	OCALA 1	230	1	2						
2004-16	AIO PINA	230	CURAY FD	230	1	2						
2004-16	STANTON	230	CURAY FD	230	1	2						
2004-16	OSCEOLA	230	LKAGNES	230	1	16						
2004-16	SHELD	230	LK TAPAPN	230	1	2						
2004-16	PEBB	230	CREWSLK	230	1	13						
2004-16	PEBB	230	N BARTOW	230	1	2						
2004-16	RECKER	230	LKAGNES	230	1	16						
2004-16	RECKER	230	ARIANA	230	1	46						
2004-16	FECKER	230	CREWSLK	230	1	13						
2004-16	B BEND	230	MANATEE	230	1	1						
2004-16	RUSKIN T	230	MANATEE	230	1	1						
2004-16	IND RIV	230	IND RIV	115	1	11						
2004-18	SHELD	230	SHELD-NW	69	1	16						
2004.16	LARGO	230	LARGOA	69	1	2						
2004-16	CLMT EST	230	CLMT EST	69	1	2						
2004-16	11 TH AVE	230	ELEVEN-E	69	1	16						
2004-16	WINDEAME	230	WINDERME	69	1	2						
2004-16	PASADENA	230	PASADENA	115	1	2						
2004-16	ARIANA	230	ARIANA-N	69	1	16						
2004-16	SELOSE	230	SELOSE-N	69	1	18						
2004-16	GAPWAY	230	GAPWAY	68	1	16						
2004-16	CREWSLK	230	CREWSLK	69	1	13						
2004-16	TENOROC	230	TENOROC	69	1	19						
2004-16	BARCOLA	230	WEST	280	1	2						
2004-16	EATONPK	230	CREWSLK	230	1	13						
2004-16	EATON PK	230	EATON PK	69	1	13						
2004-16	EATON PK	230	TENOROC	230	1	13						
2004-16	RECKER	230	GAPWAY	230	1	16						
2004-16	SN PLANT	115	TUPNEA	115	1	1						
2004-17	SNPLANT	230	SYLVAN	230	1	1						
2004-17	SYLVAN	230	NLONGWD	230	1	1						
2004-17	IND RIV	230	STANTON	230	1	11						
2004-17	SN PLANT	115	TUPNEER	115	1	1						
2004-17	BUCKEYE	230	RUSKMTRB	230	1	1						
2004-17	SILVR SP	230	SILV SPN	230	1	2						
2004-17	SILVR SP	230	OCALA 1	230	1	2						
2004-17	RIO PINP	230	CUARY FD	230	1	2						
2004-17	STANTON	230	CURAY FD	230	1	2						
2004-17	OSCEOLA	230	LKAGNES	230	1	16						
2004-17	SHELD	230	LK TARPN	230	1	2						
2004-17	PEBB	230	CREWSLK	230	1	13						
2004-17	PEBB	230	N BARTOW	230	1	2						
2004-17	RECKER	230	LKAGNES	230	1	16						
2004-17	RECKER	230	ARIANA	230	1	16						
2004-17	RECKER	230	CREWSLK	230	1	13			-			
2004-17	B BEND	230	MANATEE	230	1	1						
2004-17	RUSKINT	230	MANATEE	230	1	1						
2004-17	IND RIV	230	IND RIV	115	1	11						
2004-17	SHELO	230	SHEL.D-NW	69	1	16						
2004-17	LARGO	230	LAPGO A	69	1	2						
2004-17	CLMT EST	230	CLMT EST	89	1	2						
2004-17	11TH AVE	230	ELEVENE	69	1	16						
2004-17	WINDERME	230	WINDERME	69	1	2						
2004-17	PASADENA	230	PASADENA	115	1	2						
2004-17	ARIANA	230	ARIANA-N	69	1	16						
2004-17	SELOSE	230	SELOSE-N	89	1	16						
2004-17	GAPWAY	230	gapway	69	1	16						
2004-17	CREWSLK	230	CREWSLK	69	1	13						
2004-17	TENOROC	230	TENOROC	69	1	13						
2004-17	BARCOLA	230	WEST	230	1	2						
004-17	EATON PK	230	CREWSLK	230	1	13						
004-17	EATON PK	230	EATON PK	69	1	13						
004-17	EATON PK	230	TENOROC	230	1	13						.
004-17	RECKER	230	GAPWAY	230	1	16						
004-17	SN PLANT	115	TURNER	115		1						

Table I
Comparison of Line \& Transformer Flows
Following N-1 Disturbances
for Various OEC 500 MW Generation Alternatives
100\% Load Base Case
All Flows above 100\% of Emergency rating are Shown

Monitored Branches							$\begin{gathered} \text { Case } 2004 \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	Case 2004A Sell to FPl	$\begin{gathered} \text { Case } 2004 B \\ \text { Sell } 10 \\ \text { FPC } \end{gathered}$	$\begin{aligned} & \text { Case 2004C } \\ & \text { Sell to } \\ & \text { TEC } \end{aligned}$	Case 20040 Sell to JEA	Case 2004E Sell to SEM
Case	Bus 1	kV 1	Bus 2	kV2	ckt	Area	Percent	Percent	Percent	Percent	Percent	Percent
2004-18	SN PLANT	230	SYLVAN	230	?	1						
2004-18	SYLVAN	230	N LONGWD	230	1	1						
2004-18	IND RIV	230	STANTON	230	1	11						
2004-18	SN PLANT	115	TURNER	115	1	1						
2004-18	BUCKEYE	230	PUSKMTRB	230	1	1						
2004-18	SILVR SP	230	SHV SPN	230	1	2						
2004-18	SHLVR SP	230	OCALA 1	230	1	2						
2004-18	RIO PINR	230	CUFAY FD	230	1	2						
2004-18	STANTON	230	CURRY FD	230	1	2						
2004-18	OSCEOLA	230	LKAGNES	230	1	16						
2004-18	SHELD	230	LK TARPN	230	1	2						
2004-18	PEBB	230	CREWSLK	230	1	13						
2004-18	PEBB	230	NBARTOW	230	1	2						
2004-18	RECKER	230	LKAGNES	230	1	16		100.0	103.2		102.6	1021
2004-18	RECKER	230	ARIANA	230	1	16						
2004-18	RECKER	230	CPEWSLK	230	1	13						
2004-18	B BEND	230	MANATEE	230	1	1						
2004.18	RUSKIN T	230	MANATEE	230	1	1						
2004-18	IND RIV	230	IND RIV	115	1	11						
2004-18	SHELD	230	SHELD-NW	69	1	16						
2004-18	LARGO	230	LARGOA	68	1	2						
2004-18	CLMT EST	230	CLMT EST	69	1	2						
2004-18	11 TH AVE	230	ELEVEN-E	69	1	16						
2004-18	WINDERME	230	WINDERME	69	1	2						
2004-18	PASADENA	230	PASADENA	115	1	2						
2004-18	ARIANA	230	ARIANA-N	69	1	18						
2004-18	SELOSE	230	SELOSE-N	69	1	16						
2004.18	GAPWAY	230	GAPWAY	69	1	16						
2004-18	CREWSLK	230	CPEWSLK	69	1	13						
2004-18	TENOROC	230	TENOPOC	89	1	13						
2004-18	BARCOLA	230	WEST	230	1	2						
2004-18	EATON PK	230	CREWSLK	230	1	13						
2004-18	EATON PK	230	EATON PK	69	1	13						
2004-18	EATONPK	230	TENOAOC	230	1	13						
2004-18	RECKEA	230	GAPWAY	230	1	16						
2004 -18	SN PLANT	115	TUANER	115	1	1						
2004-19	SN PLANT	230	SYLVAN	230	1	1						
2004-19	SYLVAN	230	N LONGWD	230	1	1						
2004-19	IND RiV	230	STANTON	230	1	11						
2004-19	SN PLANT	115	TUANER	115	1	1						
2004-19	BUCKEYE	230	RUSKMTR8	230	1	1						
2004-19	SILVR SP	230	SILV SPN	230	1	2						
2004-19	SILVR SP	230	OCALA 1	230	1	2						
2004-19	RIO PINR	230	CUAPAY FD	230	,	2						
2004-19	STANTON	230	CURRY FD	230	1	2						
2004-19	OSCEOLA	230	LKAGNES	230	1	16						
2004-19	SHELD	230	LK TARPN	230	1	2						
2004-19	PEBB	230	CREWSLK	230	1	13						
2004-19	PEBE	230	N BARTOW	230	1	2						
2004-19	RECKER	230	LKAGNES	230	1	16						
2004-19	RECKER	230	ARIANA	230	1	16						
2004-19	RECKER	230	CREWSLK	230	1	13						
2004-19	B BEND	230	MANATEE	230	1	1						
2004-19	RUSKINT	230	MANATEE	230	1	1						
2004.19	IND RIV	230	IND AN	115	1	11						
2004-19	SHELD	230	SHELD-NW	69	1	16						
2004-19	LARGO	230	LARGOA	69	1	2						
2004-19	CLMTEST	230	CLMT EST	69	1	2						
2004-19	11THAVE	230	ELEVENE	69	1	16						
2004-19	WNDERME	230	WINDERME	69	1	2						
2004-19	PASADENA	230	PASADENA	115	1	2						
2004-19	ARIANA	230	ARIANA-N	. 69	1	16						
2004-19	SELOSE	230	SELOSE-N	69	1	16						
2004-19	gAPWAY	230	GAPWAY	69	1	16						
2004-19	CREWSLK	230	CREWSLK	69	1	13						
2004-19	TENOROC	230	TENOROC	69	1	13						
2004-19	BARCOLA	230	WEST	230	1	2						
2004-19	EATON PK	230	CREWSUK	230	1	13						
2004-19	EATON PK	230	EATON PK	69	1	13						
2004-19	EATON PK	230	TENOROC	230	1	13						
2004-19	RECKER	230	GAPWAY	230	1	16						
2004.19	SN PLANT	115	TURNER	115	1.	1						

Table I

Comparison of Line \& Transformer Flows
Following N-1 Disturbances for Various OEC 500 MW Generation Alternatives

100\% Lond Base Case
All Flows above 100\% of Emergency rating are Shown

Table I

-	Comparison of Line \& Transformer Flows Following N-1 Disturbances for Various OEC 500 MW Generation Alternatives												
-					100\% Load Base Case								
	All Flows above 100\% of Emergency rating are Shown												
-	Monitored Branches							$\begin{gathered} \text { Case } 2004 \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{aligned} & \text { Case 2004A } \\ & \text { Sell to } \\ & \text { FPL } \end{aligned}$	$\begin{aligned} & \text { Case } 2004 \mathrm{~B} \\ & \text { Sell to } \\ & \text { FPC } \end{aligned}$	$\begin{gathered} \text { Case } 2004 \mathrm{C} \\ \text { Sell to } \\ \text { TEC } \end{gathered}$	$\begin{gathered} \text { Case } 20040 \\ \text { Sell to } \\ \text { JEA } \end{gathered}$	$\begin{aligned} & \text { Case 2004E } \\ & \text { Sell to } \\ & \text { SEM } \end{aligned}$
	Case	Bus 1	kV1	Bus 2	kV2	ckt	Area	Porcent	Percend	Percent	Porcent	Percent	Porcert
	2004-2B	SN PLANT	230	SYLVAN	230	1	1						
	2004-28	SYLVAN	230	N LONGWD	230	1	1						
	2004-28	IND RIV	230	STANTON	230	1	11						
	2004-28	SN PLANT	115	TURNER	115	1	1						
	2004-28	BUCKEYE	230	RUSKMTRB	230	1	1						
	2004-28	SILVR SP	230	SILV SPN	230	1	2						
	2004-28	SILVR SP	230	OCALA 1	230	1	2						
	2004-28	RIO PINP	230	CURRY FD	230	1	2						
-	2004-28	STANTON	230	CURRY FD	230	1	2						
	2004-28	OSCEOLA	230	LKAGNES	230	1	16						
	2004-28	SHELD	230	LK TARPN	230	1	2						
	2004-28	PEBE	230	CREWSLK	230	1	13						
	2004-28	PEBB	230	N BARTOW	230	1	2						
	2004-28	RECKER	230	LKAGNES	230	1	16						
	2004.28	RECKER	230	ARIANA	230	1	16						
	2004-28	RECKER	230	CREWSLK	230	1	13						
	2004-28	B BEND	230	MANATEE	230	1	1						
	2004-28	RUSKIN T	230	MANATEE	230	1	1						
	2004-28	IND RIV	230	IND RIV	115	1	11						
	2004-28	SHELD	230	SHELD-NW	69	1	18						
	2004-28	LARGO	230	LARGOA	69	1	2						
	2004-28	CLMT EST	230	CLMT EST	69	1	2						
	2004-28	11 TH AVE	230	ELEVEN-E	69	1	16						
-	2004-28	WINDEAME	230	WINDERME	69	1	2						
	2004-28	PASADENA	230	PASADENA	115	1	2						
	2004-28	ARIANA	230	ARIANA-N	69	1	16						
	2004-28	SELOSE	230	SELOSE-N	69	1	16						
	2004-28	GAPWAY	230	GAPWAY	89	1	16						
-	2004-28	CREWSLK	230	CREWSLK	69	1	13						
	2004-28	TENOROC	230	TENOROC	69	1	13						
	2004-28	BARCOLA	230	WEST	230	1	2						
	2004-28	EATON PK	230	CREWSLK	230	1	13						
	2004-28	EATON PK	230	EATON PK	69	1	13						
	2004-28	EATON PK	230	TENOROC	230	1	13						
	2004 -28	RECKER	230	GAPWAY	230	1	16						
	2004-28	SN PLANT	115	TURNEA	115	1	1						
-	2004-29	SYLVAN	230	NLONGWD	230	1	1						
	2004-29	IND RIV	230	STANTON	230	1	11						
	2004-29	SN PLANT	115	turner	115	1	1						
	2004-29	BUCKEYE	230	RUSKMTRA	230	1	1						
	2004-29	SILVR SP	230	SILV SPN	230		2						
-	2004.29	SILVR SP	230	OCALA 1	230	1	2						
	2004-29	RIO PINA	230	CURRY FD	230	1	2						
	2004-29	STANTON	230	CURRY FD	230	1	2						
	2004-29	OSCEOLA	230	LKAGNES	230		18						
	2004-29	SHELD	230	LK TARPN	230		2						
-	2004-29	PEBB	230	CREWSLK	230	1	13						
	2004-29	PEBB	230	N BARTOW	230		2						
	2004-29	RECKER	230	LKAGNES	230		16						
	2004-29	REGKER	230	ARIANA	230	1	18						
	2004-29	RECKER	230	CREWSLK	230		19						
-	2004-29	B BEND	230	MANATEE	230		1						
	2004-29	RUSKIN T	230	MANATEE	230	1	1						
	2004-29	IND RIV	230	IND RIV	115	1	11						
	2004-29	SHELD	230	SHELD-NW	69	1	18						
	2004-29	LARGO	230	LARGO A	69	1	2						
-	2004-29	CLMT EST	230	CLMT EST	69	1	2						
	2004-29	11 THAVE	230	ELEVEN-E	69	1	16						
	2004.29	WINDERME	230	WINDERME	69		2						
	2004.29	PASADENA	230	PASADENA	115		2						
	2004-29	ARIANA	230	ARIANA-N	69	1	16		103.4	\$03.1	103.8	103.1	103.0
-	2004-29	SELOSE	230	SELOSE-N	69		16					103.	103.0
	2004-29	GAPWAY	230	GAPWAY	69		16						
	2004-29	CREWSLK	230	CREWSLK	68	1	13						
	2004-29	TENOROC	230	TENOROC 6	69		13						
	2004-29	BARCOLA	230	WEST	230	\dagger	2						
-	2004-29	EATON PK	230	CREWSLK	230	1	13						
	2004-29	EATON PK	230	EATON PK	89	1	13						
	2004-29	EATON PK	230	TENORCC	230		13						
	2004-29	AECKER	230	GAPWAY	230	1	16						
	2004.29	SN PLANT	115	TURNER									

Table I

-	Comparison of Line \& Transformer Flows Following N - 1 Disturbances for Various OEC 500 MW Generation Alternatives												
	100\% Load Base Case												
-	All Flows above 100\% of Emergency rating are Shown												
	Monitored Branches							$\begin{gathered} \text { Case } 2004 \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	\qquad	$\begin{aligned} & \text { Case } 2004 \mathrm{~B} \\ & \text { Sell to } \\ & \text { FPC } \\ & \hline \end{aligned}$	Case 2004C Sell to TEC	$\begin{gathered} \text { Case 2004D } \\ \text { Sell to } \\ \text { JEA } \end{gathered}$	$\begin{gathered} \text { Case 2004E } \\ \text { Sell to } \\ \text { SEM } \\ \hline \end{gathered}$
	Case	Bus 1	kV1	Bus 2	kV 2	ckt	Area	Parcent	Percent	Percent	Parcent	Percera	Percent
-	2004-32	SN PLANT	230	SYLVAN	230	1	1						
	2004-32	SYLVAN	230	NLONGWD	230	1	1						
	2004-32	IND RIV	230	STANTON	230	1	11						
	2004.32	SN PLANT	115	TURNER	115	1	1						
	2004-32	BUCKEYE	230	RUSKMTR	230	1	1						
	2004-32	SILVR SP	230	SILV SPN	230	1	2						
	2004-32	SILVA SP	230	OCALA 1	230	1	2						
	2004-32	RIO PINR	230	CUPRT FD	230	1	2						
	2004-32	STANTON	230	CURRY FD	230	1	2						
	2004-32	OSCEOLA	230	LKAGNES	230	1	16						
	2004-32	SHELD	230	LK TARPN	230	1	2						
	2004-32	PEBB	230	CREWSLK	230	1	13						
	2004-32	PEBB	230	N BARTOW	230	1	2						
m	2004-32	RECKER	230	LKAGNES	230	1	16						
	2004-32	RECKER	230	ARIANA	230	1	16						
	2004-32	RECKEA	230	CREWSLK	230	1	13						
	2004-32	B BEND	230	MANATEE	230	1	1						
	2004-32	RUSKIN T	230	MANATEE	230	1	1						
-	2004-32	IND RIV	230	IND RIV	115	1	11						
	2004-32	SHELO	230	SHELD-NW	69	1	16						
	2004-32	LARGO	230	LARGO A	89	1	2						
	2004-32	CLMT EST	230	CLMTEST	69	1	2						
	2004-32	19TH AVE	230	ELEVENE	89	1	16						
-	2004-32	WINDERME	230	WINDERME	69	1	2						
	2004-32	PASADENA	230	PASADENA	115	1	2						
	2004-32	ARIANA	230	ARIANA-N	69	1	16						
	2004-32	SELOSE	230	SELOSE-N	89	1	16						
	2004-32	GAPWAY	230	gapway	69	1	16						
-	2004-32	CREWSLK	230	CREWSLK	69	1	13						
	2004-32	TENOROC	230	TENOROC	69	1	13						
	2004-32	BARCOLA	230	WEST	230	1	2						
	2004-32	EATON PK	230	CREWSLK	230	1	13						
	2004-32	EATONPK	230	EATON PK	69	1	13						
	2004-32	EATON PK	230	TENOROC	230	1	13						
	2004-32	RECKEA	230	GAPWAY	230	1	16						
	2004-32	SN PLANT	115	TURNER	115		1						
	2004-33												
-	2004-33	SYLVAN	230	NLONGWD	230	1	1						
	2004-33	ind AIV	230	STANTON	230	1	11						
	2004-33	SN PLANT	115	TURNER	115	1	1						
	2004.33	BUCKEVE	230	RUSKMTR8	230	1	1						
	2004-33	SILVR SP	230	SLLVSPN	230	1	2						
-	2004-33	SILVA SP	230	OCALA 1	230	1	2						
	2004-33	RIO PINA	230	CURRY FD	230	1	2						
	2004-33	STANTON	230	CURRY FD	230	1	2						
	2004-33	OSCEOLA	230	LKAGNES	230	1	16						
	2004-33	SHELD	230	LK TARPN	230	i	2						
-	2004.33	PEBB	230	CREWSLK	230	1	13						
	2004-33	PEBB	230	N BARTOW	230		2						
	2004-33	AECKER	230	LKAGNES	230		16						
	2004.33	RECKER	230	ARIANA	230	1	18						
	2004-33	RECKER	230	CREWSLK	230	1	13						
-	2004-33	B BEND	230	Manatee	230	1	1						
	2004-33	RUSKIN T	230	MANATEE	230	1	1						
	2004.33	IND RIV	230	IND RIV	115		11						
	2004-33	SHELD	230	SHELD-NW	69	1	16						
	2004-33	LAFGO	230	LARGOA	69	1	2						
-	2004-33	CLMT EST	230	CLMT EST	69		2						
	2004-33	11TH AVE	230	ELEVENE	69	1	16						
	2004-33	WINOERME	230	WINDERME	69	1	2						
	$2004 \cdot 33$	Pasadena	230	PASADENA	115	1	2						
	2004-33	ARIANA	230	ARIANA-N	69	1	16						
-	2004-33	SELOSE	230	SELOSE-N	69	1	16						
	2004-33	gapway	230	GAPWAY	69	1	16						
	2004-33	CREWSUK	230	CREWSUK	68		13						
	2004-33	TENOROC	230	TENOROC	69	1	13						
	2004-33	BARCOLA	230	WEST	230	1	2						
-	2004-33	EATONPK	230	CREWSUK	230		13						
	2004-33	EATON PK	230	EATON PK	69	1	13						
	2004 -33	EATON PK	230	TENOROC	230		13						
	2004-33	RECKER	230	GAPWAY	230	1	16						
	2004-33	SN PLANT	115	TUANER	115								

Table I
Comparison of Line \& Transformer Flows
Following N-1 Disturbances for Various OEC 500 MW Generation Alternatives
100\% Load Base Case
All Flows above 100% of Emergency rating are Shown

-	Monitored Branches								$\begin{gathered} \text { Base } \\ \text { No OEC Gon } \end{gathered}$	Sell to FPL	Sell to FPC	Sell to TEC	Sell to JEA	Soll to SEM
	Case	Bus 1	kV1	1 Bus 2	kV2	ck	kt ${ }^{\text {A }}$	Area	Porcent	Percent	Parcan!	Pement	Percent	Porcern
	2004 -34	SNP PLANT	230	SYLVAN	230			1						
	2004-34	SYLVAN	230	NLONGWD	230		1	1						
	2004-34	IND PIV	230	STANTON	230	1		11						
	2004-34	SN PLANT	115	TUANER	115			1						
	2004-34	BUCKEYE	230	RUSKMTRE	230	1	1	1						
	2004-34	SILVF SP	230	SLV SPN	230	1		2						
	2004-34	SILVR SP	230	ocala	230	,		2						
	2004-34	RIO PINR	230	CURAY FD	230	1	1	2						
	2004-34	STANTON	230	CURRY FD	230	,		2						
	2004-34	OSCEOLA	230	UKAGNES	230	,		16						
	2004 -34	SHELD	230	LK TARPN	230	,		2						
	2004-34	PEBB	230	CREWSLK	230	1		13						
	2004-34	PEBE	230	N BARTON	230	1		2						
	2004-34	RECKER	230	LKAGNES	230	1		16						
	2004-34	RECKER	230	ARIANA	230	1		18						
	2004-34	RECKER	230	CREWSLK	230	1		13						
	2004-34	B BEND	230	manatee	230	1		1						
	2004-34	RUSKIN T	230	MANATEE	230	,		1						
	2004-34	IND RIV	230	IND RIV	115	1		11						
	2004-34	SHELD	230	SHELD-NW	69	1		16						
	2004-34	LARGO	230	LARGO A	89	1		2						
	2004-34	CLMT EST	230	CLMT EST	69	1		2						
	2004-34	11TH AVE	230	ELEVENE	69	1		16						
	2004-34	WINDERME	230	WINDERME	69			2						
	2004-34	PASADENA	230	PASADENA	115	,		2						
	2004-34	ARIANA	230	ARIANA-N	69	1		18						
	2004-34	SELOSE	230	SELOSE-N	69	1		18						
	2004-34	GAPWAY	230	gapway	69	1		16						
	2004-34	CREWSLK	230	CPEWSLK	69	1		13						
	2004-34	TENOROC	230	TENOROC	69	1		13						
	2004-34	BARCOLA	230	WEST	230	1		2						
	2004-34	EATONPK	230	CFEWSLK	230	1		13						
-	2004-34	EATON PK	230	EATON PK	69	1		13						
	2004-34	EATON PK	230	TENOROC	230	1		13						
	2004-34	RECKER	230	GAPWAY	230	1		16						
	2004-34	SN PLANT	115	TURNER	115	1								
	2004-35	SN PLANT	230	SYLVAN	230									
	2004-35	SYLVAN	230	NLONGWD	230	1		1						
	2004-35	IND RIV	230	STANTON	230	1		11						
	2004-35	SN PLANT	115	TUANER	115	1		1						
	2004-35	Buckeye	230	FUSKMTR8	230	1		1						
	2004-35	SILVR SP	230	SILV SPN	230	1		2						
-	2004-35	SILVR SP	230	ocala 1	230	1		2						
	2004-35	RIO PINA	230	CURRY FD	230	1		2						
	2004-35	STANTON	230	CUAAY FD	230	1		2						
	2004-35	OSCEOLA	230	LKAGNES	230	1		16						
	2004-35	SHELD	230	LK TARPN	230	1		2						
-	2004-35	PEBB	230	CREWSLK	230	1		3						
	2004-35	PEBB	230	N BARTOW	230	1		2						
	2004-35	RECKER	230	LKAGNES	230	1		6						
	2004-35	RECKER	230	ARIANA	230	1		6						
	2004-35	RECKER	230	CREWSLK	230	1		3						
m	2004.35	B EEND	230	manatee	230	1	1	1						
	2004.35	RUSKINT	230	Manatee	230	1	1	1						
	2004.35	IND RIV	230	IND AIV	115	1	11	1						
	2004-35	SHELD	235	SHELD-NW	69		16	6						
	2004-35	LARGO	230	LARGOA	88		2	2						
\cdots	2004-35	CLMT EST	230	CLMTEST	69			2						
	2004-35	11THAVE	230	ELEVEN-	69									
	2004-35	WINDERME	230	WINDERME	69	1	2	2						
	2004.35	PASADENA	230	PASADENA	115	1	2							
	2004-35	ARIANA	230	ARIANA-N	69									
-	2004.35	SELOSE	230	SELOSE-N	68		16							
	2004.35	GAPWAY	230	GAPWAY	69	1	16							
	2004-35	CREWSLK	230	CREWSLK	69		13							
	2004-35	TENOROC	230 T	TENOROC	69		13							
\cdots	2004-35	BARCOLA	230	WEST	230		2							
	2004-35	EATON PK	230	CREWSLK	230 69	1	13 13 13							
	2004.35	EATON PK	230	TENOROC	230		13							
	2004-35	RECKER	230	GAPWAY	230	1	16							
	2004-35	SN PLANT	115	TURNER	115	1	1							

-
-
-
-
-
-
-
-
-
-

APPENDIX II-A
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-
APPENDIX III
-
-
-
-
-
-
-
-
-

Comparison of Line \& Transformer Flows Following N-1 Disturbances for Various OEC 500 MW Generation Alternatives												
60\% Load Base Case												
All Flows above 100\% of Emergency rating are Shown												
Monitored Branches							$\begin{gathered} \text { Case 2004-60 } \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{gathered} \text { Case 2004-609 } \\ \text { Sell to } \\ \text { FPL } \\ \hline \end{gathered}$	$\begin{gathered} \text { Case 2004-60B } \\ \text { Sell to } \\ \text { FPC } \end{gathered}$	$\begin{gathered} \text { Case } 2004-80 C \\ \text { Sell to } \\ \text { TEC } \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { Case 2004-600 } \\ \text { SeB to } \\ \text { JEA } \end{array}$	$\begin{gathered} \text { Case 2004-60E } \\ \text { Sell to } \\ \text { SEM } \\ \hline \end{gathered}$
Case	Bus 1	kV1	Bus 2	kV2	ckt	\|Aroa	Porcent	Percent	Porcent	Porcent	Porcent	Percont
2004-60-1	SNPLANT	230	SYLVAN	230	1	1						
2004-60-1	SYLVAN	230	N LONGWD	230	1	1						
2004-60-1	IND RIV	230	STANTON	230	1	11						
2004-60.1	SN PLANT	115	turner	115	1	1						
2004-60-1	BUCKEYE	230	RUSKMTR8	230	,	1						
2004-60-1	SILVA SP	230	SILV SPN	230	1	2						
2004-80-1	SILVR SP	230	OCALA 1	230	1	2						
2004-60.1	RIO PINA	230	CURRY FD	230	1	2						
2004-80-1	Stanton	230	CURPY FD	230	1	2						
2004-60.1	OSCEOLA	230	LKAGNES	230	1	16						
2004-60.1	SHELD	230	LK TARPN	230	1	2						
2004-60.1	PEBB	230	CREWSLK	230	1	13						
2004-80.1	PEBB	230	N BARTOW	230	,	2						
2004-60.1	AECKER	230	LKAGNES	230	1	16						
2004-60.1	RECKER	230	ARIANA	230	1.	16						
2004-60-1	RECKER	230	CAEWSLK	230	1	13						
2004-60.1	B BEND	230	MANATEE	230	1	1						
2004-60-1	RUSKIN T	230	MANATEE	230		1						
2004-80-1	IND RIV	230	IND RIV	115	1	11						
2004-60-1	SHELD	230	SHELD-NW	69	1	16						
2004-60-1	lafgo	230	LARGOA	69	1	2						
2004-60-1	CLMT EST	230	CLMT EST	69	1	2						
2004-60.1	11THAVE	230	ELEVENE	69	1	16						
2004-60-1	WINDERME	230	WINDERME	69	1	2						
2004-60-1	PASADENA	230	PASADENA	115	1	2						
2004-60-1	ARIANA	230	ARIANA-N	69	1	16						
$2004 \cdot 60.1$	SELOSE	230	SELOSE-N	69	1	16						
2004-60-1	GAPWAY	230	GAFWAY	89	\uparrow	16						
2004-60.1	CREWSLK	230	CREWSLK	69	1	13						
2004-60.1	TENOROC	230	TENOROC	69	1	13						
2004-60.1	BARCOLA	230	WEST	230		2						
2004-60-1	EATON PK	230	CREWSUK	230	1	13						
2004-60-1	EATON PK	230	EATON PK	69	1	13						
2004-60-1	EATON PK	230	TENOROC	230		13						
2004-80-1	RECKER	230	gapway	230		16						
2004-60-1	SN PLANT	115	TURNER	115		1						
2004-60-2		230		230								
2004-60-2	SYLVAN	230	N LONGWD	230		1						
2004-60-2	IND RIV	230	STANTON	230	1	11						
2004-80-2	SN PLANT	115	TURNER	115	1	1						
2004-60-2	BUCKEYE	230	RUSKMTRS	230		1						
2004-60-2	SILVR SP	230	SILV SPN	230		2						
2004-60-2	SILVR SP	230	OCALA 1	230	1	2						
2004-60-2	RIO PINR	230	CURAY FD	230	1	2						
2004-60-2	STANTON	230	CUPARY FD	230		2						
2004-60.2	OSCEOLA	230	LKAGNES	230		16						
2004-602	SHELD	230	LK TARPN	230		2						
2004-80-2	PEBB	230	CREWSLK	220		13						
2004-60-2	PEBB	230	N BARTOW	230		2						
2004-60-2	RECKEA	230	UKAGNES	230		${ }^{16}$						
2004-60-2	RECKER	230	ARIANA	230		16						
	RECKER	230	CREWSLK	230		13						
2004-60-2	B BEND RUSKIN	230 230	MANATEE MANATEE	$\begin{aligned} & 230 \\ & 230 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \end{aligned}$	1						
2004-60-2	IND RIV	230	IND RIV	115		11						
2004-80-2	SHELD	230	SHELD-NW	69	1	16						
2004-80-2	LARGO	230	LARGO A	69		2						
2004-60-2	CLMT EST	230	CLMT EST	69	1	2						
2004-60-2	11tH AVE	230	ELEVEN-	69		16						
2004-80.2	WInderme	230	WINDERME	69	1	2						
2004-60-2	PASADENA	230	PASADENA	115	1	2						
2004-60-2	ARIANA	230	ARIANA-N	69	1	16						
2004-60-2	SELOSE	230	SELOSE-N	69	1	16						
2004-60-2	gapway	230	GAPWAY	69	1	16						
2004-60-2	CREWSLK	230	CREWSLK	69	1	13						
2004-60-2	TENOROC	230	TENOROC	69	1	13						
2004-80-2	BARCOLA	230	WEST	230	1	2						
2004-60-2	EATON PK	230	CREWSUK	230	1	13						
2004-60-2	EATONPK	230	EATON PK	69	1	13						
2004-80-2	EATON PK	230	TENOROC	230	1	13						
2004-60-2	RECKER	230	GAPWAY	230	1	18						
2004.60-2	SN PLANT	115	TUPNER	115		1						

Comparison of Line \& Transformer Flows Following $\mathrm{N}-1$ Disturbances for Various OEC 500 MW Generation Alternatives												
				60\% Load Base Case								
				All	ws	above	100\% of Emergency rating are Shown					
Monitored Branches							$\begin{aligned} & \text { Case 2004-60 } \\ & \text { Base } \\ & \text { No OEC Gen } \end{aligned}$	$\begin{gathered} \text { Case 2004-604 } \\ \text { Sell to } \\ \text { FPL } \end{gathered}$	$\begin{aligned} & \text { Case } 2004-608 \\ & \text { Sell to } \\ & \text { FPC } \\ & \hline \end{aligned}$	Case 2004-60C Sell to TEC	$\begin{gathered} \text { Case } 2004-600 \\ \text { Sell to } \\ \text { JEA } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Case 2004-60E } \\ & \text { Sell to } \\ & \text { SEM } \\ & \hline \end{aligned}$
Case	Bus 1	kV1	Bus 2	kV2	ckt	Area	Porcent	Parcent	Percent	Percent	Porcem	Porcent
2004-80-3	SN PLANT	230	SYLVAN	230	1	1						
2004-60-3	SYLVAN	230	NLONGWD	230	1	1						
2004-60-3	IND RIV	230	STANTON	230	,	11						
2004-60-3	SN PLANT	115	TURNER	115	1	1						
2004-60-3	BUCKEYE	230	RUSKMTR8	230	1							
2004-60.3	SILVR SP	230	SILVSPN	230	1	2						
2004-60-3	SILVR SP	230	OCALA 1	230	1	2						
2004-60-3	RIO PINR	230	CURRY FD	230	1	2						
2004-60-3	STANTON	230	CURRY FD	230	1	2						
2004-60-3	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-3	SHELD	230	LK TARPN	230	1	2						
2004-60-3	PEBE	230	CREWSLK	230	1	13						
2004-60-3	PEBB	230	N BARTOW	230	1	2						
2004-60-3	RECKER	230	LKAGNES	230	1	16						
2004-60-3	RECKER	230	ARIANA	230	1	16						
2004-60-3	RECKEA	230	CREWSLK	230	1	13						
2004-60.3	B BEND	230	Manatee	230	1	1						
2004-60-3	RUSKIN T	230	MANATEE	230	1	1						
2004-60-3	IND RIV	230	IND RIV	115	1	11						
2004-80-3	SHELD	230	SHELD-NW	69	1	18						
2004-60-3	LARGO	230	LARGO A	69	1	2						
2004-60-3	CLMTEST	230	CLMT EST	69	1	2						
2004-60-3	11 THAVE	230	ELEVENE	69	1	16						
2004-60-3	WNDERME	230	WINOERME	69	1	2						
2004-60-3	PASADENA	230	PASADENA	115	1	2						
2004-60-3	ARIANA	230	ARIANA-N	69	1	16						
2004-60-3	SELOSE	230	SELOSE-N	69	1	16						
2004-60.3	GAPWAY	230	gapwar	69	,	16						
2004-60-3	CREWSLK	230	CREWSLK	69	1	13						
2004-60-3	TENOROC	230	TENOROC	69	1	13						
2004-60-3	BARCOLA	230	WEST	230	1	2						
2004-60-3	EATON PK	230	CREWSLK	230	1	13						
2004-60-3	EATON PK	230	EATON PK	69	1	13						
2004-60-3	EATON PK	230	TENOROC	230	1	13						
2004-60-3	RECKER	230	GAPWAY	230	1	16						
2004-60-3	SN PLANT	115	TUFNEA	115	1	1						
2004-60-4	SN PLANT	230	SYLVAN	230	1							
2004-60-4	SYLVAN	230	NLONGWD	230	1	1						
2004-60-4	IND RIV	230	STANTON	230	1	11						
2004-60-4	SNPLANT	115	TURNER	115	1	1						
2004-60-4	BUCKEVE	230	RUSKMTR8	230	1	1						
2004-60-4	SILVR SP	230	SILVSPN	230	1	2						
2004-60-4	SLIVR SP	230	ocala 1	230	1	2						
2004-60-4	RIO PINA	230	CURAY FD	230	1	2						
2004-60-4	Stanton	230	CUPARY FD	230	1	2						
2004-60-4	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-4	SHELD	230	LK TARFN	230	,	2						
2004-60-4	PEBB	230	CREWSLK	230	1	13						
2004-60-4	PEBB	230	N BARTOW	230	1	2						
2004-60-4	RECKER	230	LKAGNES	230	1	16						
2004 -60-4	RECKER	230	aplama	230	1	16						
2004-60-4	RECKER	230	CREWSLK	290	1	13						
2004-60-4	B BEND	230	MANATEE	230	1	1						
2004-60-4	RUSKIN T	230	Manatee	230	1	1						
2004-60-4	IND RIV	230	IND RIV	115	1	11						
2004-60-4	SHELD	230	SHELD-NW	69	1	16						
2004-60-4	LARGO	230	LARGO A	69	1	2						
2004-60-4	CLMMT EST	230	CLMTEST	69	1	2						
2004-60-4	11THAVE	230	ELEVEN-E	69	1	16						
2004-60-4	WINDERME	230	WNDEERME	69	1	2						
2004-60-4	PASADENA	230	PASADENA	115	1	2						
2004-60-4	APIANA	230	ARIANA.N	69	1	16						
2004-60.4	SELOSE	230	SELOSE-N	69	1	16						
2004-60-4	GAPWAY	230	GAPWAY	69	1	16						
2004-60-4	CREWSLK	230	CREWSLK	69	1	13						
2004-60-4	TENOAOC	230	TENOROC	69	1	13						
2004-60-4	BARCOLA	230	WEST	230	1	2						
2004-80-4	EATON PK	230	CREWSLK	230	1	13						
2004-60-4	EATON PK	230	EATON PK	69	1	13						
2004-60-4	EATON PK	230	TENOROC	230	1	13						
$2004-60-4$ $2004-60-4$	RECKER SNPLANT	230 115	GAPWAY TURNER	230 115	1	16 1						

Table III

Comparison of Line \& Transformer Flows
 Following N-1 Disturbances for Various OEC 500 MW Generation Alternatives

All Flows above 100% of Emergency rating are Shown

Monitored Branches							$\begin{aligned} & \text { Case 2004-60 } \\ & \text { Base } \\ & \text { No OEC Gen } \end{aligned}$	$\begin{gathered} \hline \text { Case 2004-80 } \\ \text { Sell to } \\ \text { FPL } \\ \hline \end{gathered}$	$\begin{gathered} \text { Case 2004-606 } \\ \text { Sell to } \\ \text { FPC } \\ \hline \end{gathered}$	$\begin{gathered} \text { Case } 2004-60 \mathrm{C} \\ \text { Sell to } \\ \text { TEC } \\ \hline \end{gathered}$	Case 2004-600 Sell to JEA	$\begin{gathered} \text { Case 2004-60 } \\ \text { Sell to } \\ \text { SEM } \end{gathered}$
Case	Bus 1	kV1	Bus 2	kV2	ckt	Area	Percort	Percent	Percent	Porcent	Percent	Percont
2004-60-7	SN PLANT	230	SYLVAN	230	1	1						
2004-60-7	SYLVAN	マง०	N LONGWD	230	1	1						
2004-60-7	IND RIV	230	STANTON	230	1	11						
2004-60-7	SN PLANT	115	TURNER	115	1	1						
2004-60-7	BuCKEYE	230	RUSKMTR8	230	1	1						
2004-80-7	SILVR SP	230	SILV SPN	230	1	2						
2004-60.7	SILVR SP	230	OCALA 1	230	1	2						
2004-60.7	RIO PINR	230	CURRY FD	230	1	2						
2004-60.7	STANTON	230	CURRY FD	230	1	2						
2004-60-7	OSCEOLA	230	Lkagnes	230	1	16						
2004-60.7	SHELD	230	LK TARPN	230	1	2						
2004-60-7	PEBB	230	CREWSLK	230	1	13						
2004-60-7	PEBB	230	N BARTOW	230	1	2						
2004-60-7	RECKER	230	LKAGNES	230	1	16						
2004-60-7	RECKER	230	ARIANA	230	1	16						
2004-60.7	RECKER	230	CREWSLK	230	1	13						
2004-80.7	B BEND	230	manatee	230	1	1						
2004-60-7	RUSKIN T	230	MANATEE	230	1	1						
2004-60.7	IND RIV	230	IND RIV	115	1	11						
2004-60.7	SHELD	230	SHELD-NW	69	1	16						
2004-60.7	LARGO	230	LARGOA	69	1	2						
2004-60-7	CLMT EST	230	CLMT EST	69	1	2						
2004-60-7	11TH AVE	230	ELEVEN-E	69	1	16						
2004-60-7	WINDEAME	230	WINDERME	69	1	2						
2004-60.7	PASADENA	230	PASADENA	115	1	2						
2004-60.7	ARIANA	230	ARIANA-N	69	1	16						
2004-60.7	SELOSE	230	SELOSE-N	69	1	16						
2004-60-7	GAFWAY	230	gapway	69	1	16						
2004-60.7	CREWSLK	230	CPEWSLK	69	1	13						
2004-60.7	TENOROC	230	TENOROC	69	1	13						
2004-60-7	BAFCOLA	230	WEST	230	,	2						
2004-60-7	EATON PK	230	CREWSLK	230	1	13						
2004-60.7	EATON PK	230	EATONPK	69	1	13						
2004-60.7	EATON PK	230	TENOROC	230	1	13						
2004-60-7	RECKER	230	GAPWAY	230	1	16						
2004-60-7	SN PLANT	115	TUANER	115	;	1.						
2004-60-8	SNPLANT	230	SYLVAN	230	1	1						
2004-60-8	SYLVAN	230	NLONGWD	230	1	1						
2004-60-8	IND RIV	230	STANTON	230	1	11						
2004-60-8	SN PLANT	115	TURNER	115	1	1						
2004-60-8	BUCKEVE	230	RUSKMTRS	230	1	1						
2004-80-8	SILVR SP	230	SILV SPN	230	1	2						
2004-60-8	SILVA SP	230	OCALA 1	230	1	2						
2004-60-8	RIO PINR	230	CUARY FD	230	1	2						
2004-60-8	STANTON	230	CURRY FD	230	1	2						
2004-60-8	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-8	SHELD	230	LK TARIPN	230	1	2						
2004-60-8	PEBB	230	CREWSLK	230	1	13						
2004-60-8	PEBB	230	N BARTOW	230	1	2						
2004-80-8	RECKER	230	LKAGNES	230	1	16						
2004-80-8	RECKER	230	ARIANA	230	1	16						
2004-60-8	RECKER	230	CREWSLK	230	,	13						
2004-60-8	B BEND	230	MANATEE	230	1	1						
2004-60-8	RUSKINT	230	MANATEE	230	1	1						
2004-60-8	IND RIV	230	IND RIV	115	1	11						
2004-60-8	SHELD	230	ShELD.NW	69	1	16						
2004-60-8	LARGO	230	LAAGOA	69	1	2						
2004-60-8	CLMT EST	230	CLMT EST	69	1	2						
2004-60-8	11TH AVE	230	eleven-e	69	1	16						
2004-60-8	WINDERME	230	WINDERME	69	1	2						
2004-60-8	PASADENA	230	PASADENA	115	1	2						
2004-60-8	ARIANA	230	ARIANA-N	69	1	16						
2004-60-8	SELOSE	230	SELOSE-N	69	1	16						
2004-60-8	GAPWAY	230	GAPWAY	69	1	16						
2004-60-8	CREWSLK	230	CREWSLK	69		13						
2004-60-8	TENOROC	230	TENOROC	69	1	13						
2004-60-8	barcola	230	WEST	230	1	2						
2004-60-8	EATON PK	230	CREWSLK	230	1	13						
2004-60-8	EATON PK	230	EATON PK	69	1	13						
2004-60-8	EATON PK	230	TENOAOC	230	1	13						
2004-60-8	RECKER	230	GAPWAY	230	1	16						
2004-60-8	SN PLANT	115	TURNER	115	1	1						

		Following $\mathrm{N}-1$ Disturbances for Various OEC 500 MW Generation Alternatives					Table of Line \& wing $\mathrm{N}-1$ 500 MW	e III Transform Disturbanc Generation	ner Flows es Alternativ	ves		
				60\% Load Base Case								
All Flows above 100\% of Emergency rating are Shown												
Monitored Branches							$\begin{gathered} \hline \text { Case 2004-60 } \\ \text { Base } \\ \text { No OEC Gen } \\ \hline \end{gathered}$	$\begin{gathered} \text { Case 2004-60A } \\ \text { Sell to } \\ \text { FPI } \end{gathered}$	$\begin{aligned} & \text { Case } 2004-608 \\ & \text { Sell to } \\ & \text { FPC } \end{aligned}$	$\begin{gathered} \text { Case 2004-60C } \\ \text { Sell to } \\ \text { TEC } \end{gathered}$	$\begin{gathered} \text { Case 2004-800 } \\ \text { Sell to } \\ \text { JEA } \end{gathered}$	$\begin{gathered} \text { Case 2004-60 } \\ \text { Sell to } \\ \text { SEM } \end{gathered}$
Case	Bus 1	kV 1	Bus 2	kV2	ckt	Area	Percent.	Porcent	Percert	Percent	Percent	Percent
2004-60.9	SN PLANT	230	SYLVAN	230	1	1						
2004-80-9	SYLVAN	230	NLONGWD	230	1	1						
2004-80.9	IND RIV	230	STANTON	230	1	11						
2004-80.9	SN PLANT	115	TURNER	115	1	1						
2004-80.9	BUCKEYE	230	AUSKMTR8	230	1	1						
2004-60-9	SLVVR SP	230	SILV SPN	230	1	2						
2004-60-9	SILVA Sp	230	OCALA 1	230	1	2						
2004-60-9	RIO PINA	230	CURRY FD	230	1	2						
2004-80-9	STANTON	230	CURRY FD	230	1	2						
2004-80-9	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-9	SHELD	230	LK TARPN	230	1	2						
2004-60-9	PEBB	230	CREWSLK	230	1	13						
2004-60-9	PEBB	230	N BARTOW	230	1	2						
2004-60-9	RECKER	230	LKAGNES	230	1	16						
2004-60-9	RECKER	230	ARIANA	230	1	18						
2004-60-9	RECKER	230	CREWSLK	230	1	13						
2004-60-9	B BEND	230	MANATEE	230	1	1						
2004-60-9	RUSKIN T	230	MANATEE	230	1	1						
2004-60-9	IND RIV	230	IND RIV	115	1	11						
2004-60-9	SHELD	230	SHELD-NW	69	1	16						
2004 -60-9	LARGO	230	LARGOA	69	1	2						
2004-60-9	CLMT EST	230	CLMT EST	69	1	2						
2004-60-9	11 TH AVE	230	ELEVEN-E	69	1	16						
2004-60-9	WINDERME	230	WNDERME	69	1	2						
2004-60-9	PASADENA	230	PASADENA	115	1	2						
2004-80-9	ARIANA	230	ARIANA-N	69	1	16						
2004-80-9	SELOSE	230	SELOSE-N	69	1	16						
2004-60-9	GAPWAY	230	gapway	69	1	18						
2004-60-9	CAEWSLK	230	CREWSLK	69	1	13						
2004-60-9	TENOROC	230	TENOROC	69	1	13						
2004-60.9	BARCOLA	230	WEST	230	,	2						
2004-60-9	EATONPK	230	CREWSLK	230	,	13						
2004-60-9	EATON PK	230	EATONPK	69	1	13						
2004-60-9	EATON PK	230	TENOROC	230	1	13						
2004-60-9	RECKER	230	GAPWAY	230	1	18						
2004-60-9	SN PLANT	115	TURNER	115	1	1						
2004-60-10	SN PLANT	230	SYLVAN	230	1	1						
2004-60-10	SYLVAN	230	NLONGWD	230	1	1						
2004-60-10	IND RIV	230	STANTON	230	1	11						
2004-60-10	SN PLANT	115	TURNER	115	1	,						
2004-60-10	EUCKEYE	230	RUSKMTR8	230	1	1						
2004-60-10	SILVA SP	230	SILV SPN	230	,	2						
2004-60-10	SILVR SP	230	OCALA 1	230	1	2						
2004-60-10	RIO PINR	230	CURRY FD	230	1	2						
2004-60-10	STANTON	230	CURPY FD	230	,	2						
2004-60-10	Osceola	230	LKAGNES	230	1	16						
2004-60-10	SHELD	230	LK TARPN	230	,	2						
2004-60-10	PEBB	230	CREWSLK	230	1	13						
2004-60-10	PEBB	230	N BARTOW	230	,	2						
2004-60-10	RECKER	230	LKAGNES	230	1	16						
2004-60-10	RECKER	230	arlana	230	,	16						
2004-60-10	RECKER	230	CREWSLK	230	1	13						
2004-80-10	B BEND	230	Manatee	230	1	1						
2004-60-10	RUSKIN T	230	MANATEE	230	1	1						
2004-80-10	IND RIV	230	IND RIV	115	1	11						
2004-60-10	SHELD	230	SHELD.NW	69		16						
2004-60-10	LARGO	230	LARGOA	69	1	2						
2004-60-10	CLMT EST	230	CLMT EST	89	1	2						
2004-80-10	11 THAVE	230	ELEVEN-E	69	1	16						
2004-60-10	WINDERME	230	WINDERME	69	1	2						
2004-60-10	Pasadena	230	PASADENA	115	1	2						
2004-60-10	ARIANA	230	ARIANA-N	69	1	16						
2004-60-10	SELOSE	230	SELOSE-N	69	1	16						
2004-60-10	gapway	230	GAPWAY	69	1	16						
2004-66-10	CREWSLK	230	CREWSLK	68	1	13						
2004-60-10.	TENOAOC	230	TENOROC	69	1	13						
2004-60-10	BARCOLA	230	WEST	230	1	2						
2004-60-10	EATON PK	230	CREWSLK	230	1	13						
2004-60-10	EATON PK	230	EATONPK	69	1	13						
2004-60-10	EATON PK	230	TENOROC	230	1	13						
2004-60-10	RECKER	230	gapway	230	1	16						
2004-60-10	SN PLANT	115	TURNER	115	1	1						

Table III

Table III Comparison of Line \＆Transformer Flows Following N－1 Disturbances for Various OEC 500 MW Generation Alternatives										
60\％Load Base Case										
					100\％of Em	nor rain	re Shown			
						$\begin{aligned} & 502004- \\ & \text { Sell to } \end{aligned}$	300 Sell to FPC	Sull to	Some	2004－60E Sell to
					Pareat	Param	Percamt	Pemorat	Peream	
20060011 SNPLANT										
200460.11 SYLVAN	${ }^{230}$	NLonewo	230							
200480．11 SNP PANT	115	TLPNER	${ }^{220}$							
	${ }_{230}^{230}$	（ Ruskurpe	${ }_{230}^{230}$	\cdots						
200460．1．STVA SP	${ }_{230}^{230}$	${ }^{\text {OCOAP }}$ Cli	220	$\cdots 2$						
200．6anl｜STANTON	${ }_{230}^{230}$	Cunap FD	230	$1{ }^{1} 2$						
20030．10	230		${ }_{230}^{230}$	${ }^{18}$						
200．60011	230	CrEwSLK	${ }_{220}^{230}$	113						
	${ }^{230}$	Lagnes	${ }_{220}^{230}$							
边	${ }_{230}^{230}$	CREWSLK	${ }_{230}^{220}$							
	230	MANATEE	${ }_{230}^{230}$							
边		No Reve	$1{ }^{115}$	118						
200．6anl	230	，	${ }_{69}^{99}$							
｜en	${ }_{230}^{230}$		${ }_{8}^{88}$	2						
（200450，11／WNOEAME	${ }_{230}^{230}$		${ }^{115}$	1 \vdots 2						
	${ }_{230}^{230}$	ARIANV．N．	${ }^{\circ}$	${ }^{16}$						
	${ }^{230}$	OAPWMY	${ }^{69}$	， 16						
${ }^{2}$ 200460， 11 TENOROCO	230	TENOROC	${ }^{\circ}$	${ }_{13}^{13}$						
${ }^{\text {a }}$	1230	cement	${ }_{220}^{220}$							
${ }^{\text {a }}$	${ }_{230}^{230}$		${ }_{20}^{\infty}$							
	230									
200400．12 SNPANT	220	Srlan	230							
2004．80，12	${ }_{230}^{230}$	Nonswo stanton								
2060．20．15NPMNT	${ }_{230}^{115}$		${ }_{20}^{115}$							
边	${ }^{230}$	Slvsse	230							
2004．60．12	${ }_{230}^{230}$	cunay fo	${ }_{230}^{230}$	！ 2						
	${ }_{230}^{230}$		${ }_{230}^{230}$	1－12						
	230 230	LKM	$\xrightarrow{230}$							
2004．60．12	230	nBatrow	${ }_{220}^{200}$	$\bigcirc 2$						
边	${ }_{230}^{200}$	Latina	230	$\cdots{ }^{16}$						
	${ }_{230}^{230}$	${ }^{\text {CREWSLK}}$	${ }_{230}^{230}$	\cdots						
200ase．1．	${ }_{230}^{230}$	Manate	${ }_{125}^{230}$	\therefore						
	230 230	Sternm	${ }_{69}^{88}$	1 1						
	${ }^{230}$	Climest	${ }_{69}^{69}$	1 ${ }_{1}{ }^{2}$						
（2004600．12 WITHOEREME	${ }_{230}^{230}$	｜lelen	${ }_{99}^{69}$							
200．50．12 PASADENA	${ }_{230}^{230}$	PASADENA	${ }_{69}^{115}$							
	$\begin{array}{r}20 \\ 200 \\ \hline\end{array}$		${ }^{69}$	－						
边	${ }_{2}^{20}$		${ }_{69}^{69}$	${ }_{18}^{16}$						
200．60．12 TENOROCC	${ }_{230}^{230}$		${ }_{230}^{69}$	${ }_{2}^{13}$						
	230 230	cenemsk	${ }_{8}^{230}$							
	230 200 200			（13						

Table III

Comparison of Line \& Transformer Flows
 Following N -1 Disturbances for Various OEC 500 MW Generation Alternatives

60\% Load Base Case
All Flows above 100% of Emergency rating are Shown

Monitored Branches							$\begin{aligned} & \text { Case 2004-80 } \\ & \text { Ease } \\ & \text { No OEC Gen } \end{aligned}$	$\begin{gathered} \text { Case } 2004-800 \\ \text { Sell } 10 \\ \text { FPL } \end{gathered}$	$\begin{aligned} & \text { Case 2004-80E } \\ & \text { Sell to } \\ & \text { FPC } \end{aligned}$	$\begin{gathered} \text { Case 2004-60C } \\ \text { Sety to } \\ \text { TEC } \end{gathered}$	$\begin{gathered} \text { Case } 2004-600 \\ \text { Soll to } \\ \text { JEA } \\ \hline \end{gathered}$	$\begin{gathered} \text { Case 2004-60E } \\ \text { Soll to } \\ \text { SEM } \end{gathered}$
Case	Bus 1	kV1	Bus 2	kV2	ct	Areal	Porcent	Porcent	Porcent	Porcert	Percent	Percena
2004-60-13	SN PLANT	230	SYLVAN	230	1	1						
2004-60.13	SYLVAN	230	NLONGWD	230	1	1						
2004-60-13	IND RIV	230	STANTON	230	1	11						
2004-60-13	SN PLANT	115	TUPNEA	115	1	1						
2004-60-13	BUCKEYE	230	fuSKMTR8	230	,	1						
2004-80-13	SULVR SP	230	SILV SPN	230	1	2						
2004-60-13	SILVR SP	230	OCALA 1	230	1	2						
2004-60.13	RIO PINA	230	CURRY FD	230	1	2						
2004-60-13	STANTON	230	CURRY FD	230	1	2						
2004-80-13	Osceola	230	LKAGNES	230	1	16						
2004-60-13	SHELD	230	LK TARPN	230	1	2						
2004-60-13	PEB8	230	CREWSLK	230	1	13						
2004-60-13	PEBB	230	N BARTOW	230	1	2						
2004-60-13	RECKER	230	UKAGNES	230	1	16						
2004-60-13	RECKER	230	ARIANA	230	1	16						
2004-60-13	RECKER	230	CREWSLK	230	1	13						
2004-60.13	B BEND	230	manatee	230	1	1						
2004-60-13	RUSKINT	230	MANATEE	230	1	1						
2004-60-13	IND RIV	230	IND AIV	115	1	11						
2004-60.13	SHELD	230	SHELD-NW	69	1	16						
2004-60-13	LARGO	230	LARGO A	69	1	2						
2004-60-13	CLMT EST	230	CLMT EST	69	1	2						
2004-60-13	11 THAVE	230	ELEVENE	69	1	16						
2004-60-13	WINDERME	230	WINDERME	69	1	2						
2004-60-13	PASADENA	230	PASADENA	115	1	2						
2004-60-13	ARIANA	230	ARIANA-N	69	1	16						
2004-60.13	SELOSE	230	SELOSE-N	69	1	16						
2004-60-13	GAPWAY	230	GAPWAY	69	1	18						
2004-60-13	CREWSLK	230	CREWSLK	69	1	13						
2004-60-13	TENOROC	230	TENOROC	69	1	13						
2004-60.13	BARCOLA	230	WEST	230	1	2						
2004-60-13	EATON PK	230	CREWSLK	230	1	13						
2004-60-13	EATON PK	230	EATON PK	89	1	13						
2004-60-13	EATON PK	230	TENOROC	230	1	13						
2004-60-13	RECKER	230	GAPWAY	230	1	18						
2004-60-13	SN PLANT	115	TURNER	115	1	1						
2004-60-15	SN PLANT	230	SYLVAN	230		1						
2004-60-15	SYLVAN	230	N LONGWD	230	1	1						
2004-60-15	IND RIV	230	STANTON	230	1	11						
2004-60-15	SN PLANT	115	TURNEA	115	1	1						
2004-60-15	BUCKEYE	230	RUSKMTRE	230	,	1						
2004-60-15	SILVA SP	230	SLLVSPN	230	1	2						
2004-60.15	SILVA SP	230	OCALA 1	230	1	2						
2004-60-15	RIO PINR	230	CURRY FD	230	1	2						
2004-60-15	STANTON	230	CURRY FD	230	1	2						
2004-60-15	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-15	SHELD	230	LK TARPN	230	1	2						
2004-60-15	PEBB	230	CREWSUK	230	1	13						
2004-60-15	PEBB	230	N BARTOW	230	1	2						
2004-60-15	RECKER	230	LKAGNES	230	1	16						
2004-60-15	RECKER	230	ARIANA	230	1	16						
2004-60-15	RECKER	230	CREWSUK	230	1	13						
2004-60-15	B BEND	230	manatee	230	,	1						
2004-60-15	RUSKIN T	230	MANATEE	230	1	1						
2004-60-15	IND RIV	230	IND RIV	115	1	11						
2004-60-15	SHELD	230	SHELD.NW	69	1	16						
2004-60.15	LARGO	230	LARGO A	69	1	2						
2004-60-15	CLMT EST	230	CLMT EST	69	1	2						
2004-60-15	11 TH AVE	230	ELEVENE	69	1	16						
2004-60-15	WINDERME	230	WINDERME	69	t	2						
2004-60-15	PASADENA	230	PASADENA	115	1	2						
2004-60-15	ARIANA	230	ARIANA-N	69	1	16						
2004-60-15	SELOSE	230	SELOSE-N	69	1	16						
2004-60-15	GAPWAY	230	GAPWAY	69	1	16						
2004-60-15	CREWSLK	230	CREWSLK	69	1	13						
2004-60-15	TENOROC	230	TENOROC	69	1	13						
2004-60-15	BARCOLA	230	WEST	230	1	2						
2004-60-15	EATON PK	230	CREWSUK	230	1	13						
2004-60-15	EATON PK	230	EATON PK	69	1	13						
2004-60-15	EATON PK	230	TENOROC	230	1	13						
2004-60-15	AECKER	230	gapway	230	,	18						
2004.60 .15	SN PLANT	115	TUPNER	115	1	1						

Table III

				Vario	UUS	parison Follo s	Table of Line \& wing $\mathrm{N}-1$ 500 MW	III Transform Disturbanc Generatio	ner Flows es Alternativ	ves		
				60\% Load Base Case								
All Flows above 100\% of Emergency rating are Shown												
Monitored Branches							$\begin{array}{\|c\|} \hline \text { Case } 2004-60 \\ \text { Base } \\ \text { No OEC Gen } \\ \hline \end{array}$	Case 2004-60 Sell to FPL	$\begin{gathered} \text { Case 2004-60B } \\ \text { Sell to } \\ \text { FPC } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Case 2004-60C } \\ \text { Sell to } \\ \text { TEC } \end{array}$	$\begin{gathered} \text { Case 2004-600 } \\ \text { Sell to } \\ \text { JEA } \end{gathered}$	$\begin{gathered} \text { Case } 2004-60 E \\ \text { Sell to } \\ \text { SEM } \end{gathered}$
Case	Bus 1	kV1	1 Bus 2	kV2		ckt Area	Percent	Porcent	Percem	Percem	Putcent	Percent
2004-60-16	6 SN PLANT	230	SYLVAN	230		-						
2004-60-16	6 SYLVAN	230	N LONGWD	230		1 1						
2004-60-16	6 IND RIV	230	STANTON	230		111						
2004.60 .16	SN PLANT	115	TUPNER	115		1 1						
2004-60-16	6 BUCKEYE	230	RUSKMTR8	230		1						
2004-60-16	SILVR SP	230	SILV SPN	230		12						
2004-60-16	SILVR SP	230	OCALA 1	230		12						
2004-60-16	RIO PINR	230	CURAY FD	230		12						
2004-60-16	STANTON	230	CURRY FD	230		12						
2004-60-16	OSCEOLA	230	UKAGNES	230		$1{ }^{16}$						
2004-60-16	SHELD	230	LK TAGPN	230		12						
2004-60-16	PEBB	230	CREWSLK	230		113						
2004-60-16	PEBB	230	N BARTOW	230		12						
2004 -60-16	RECKER	230	LKAGNES	230	1	116						
2004-60-16	RECKER	230	ARIANA	230		$1{ }^{16}$						
$2004-60-16$	RECKER	230	CREWSLK	230	1	$1{ }^{13}$						
2004-60-16	B BEND	230	MANATEE	230	1	1						
2004-60-16	RUSKIN T	230	MANATEE	230	,	,						
2004-60.16	IND RIV	230	IND RIV	115	1	11						
2004-60-18	SHELD	230	SHELD-NW	69	1	16						
2004-60-16	LARGO	230	LARGO A	69	1	12						
2004-60-18	CLMM EST	230	CLMT EST	69	1	12						
2004-60-16	11THAVE	230	ELEVENE	69		16						
2004-60-18	WINDERME	230	WINDERME	69	1	2						
2004-60-18	PASADENA	230	PASADENA	115	,	2						
2004-60-16	ARIANA	230	ARIANA.N	69		16						
2004-60.16	SELOSE	230	SELOSE-N	69	1	16						
2004-60-18	GAPWAY	230	GAPWAY	69	,	18						
2004-60-16	CREWSLK	230	CREWSLK	69	1	13						
2004.60-16	TENOROC	230	TENOPOC	69		13						
2004-60-16	barcola	230	WEST	230	1	2						
2004-60-16	EATON PK	230	CREWSLK	230	,	13						
2004-60-16	EATONPK	230	EATON PK	69	1	13						
2004-60-16	EATON PK	230	TENOROC	230		13						
2004-60-18	RECKER	230	GAPWAY	230	1	16						
2004-60.16	SN PLANT	115	TUFANEA	115	1	1						
2004-60.17	SN PLANT	230		230		1						
2004-60-17	SYLVAN	230	N LONGWD	230	1	1						
2004-60.17	IND RIV	230	STANTON	230	1	11						
2004-60-17	SN PLANT	115	TUPNER	115	1	1						
2004-60-17	BUCKEYE	230	RUSKMTRE	230	1	1						
2004-60-17	SILVA SP	230	SILV SPN	230	1	2						
2004-60-17	SILVR SP	230	OCALA 4	230	1	2						
2004-60-17	RIO PINA	230	CURRY FD	230		2						
2004-60-17	STANTON	230	CURAY FD	230		2						
2004-60-17	OSCEOLA	230	LKAGNES	230	,	16						
2004-60.17	SHELD	230	LK TARPN	230		2						
2004-60-17	PEBB	230	CREWSLK	230	1	13						
2004-60-17	PEBB	230	N BARTOW	230	1	2						
2004-80-17 \|	RECKER	230	UKAGNES	230	1	16						
2004-80-17	RECKER	230	Ariana	230	1	16						
2004-60-17	RECKER	230	CREWSLK	230	1	13						
2004-60-17	B BEND	230	MANATEE	230	1	1						
2004-60-17	RUSKIN T IND RIV	230	MANATEE	230 115	1	1						
2004-60-17	IND RIV SHELD	230	IND RIV SHELD-NW	115 89	1	11 16						
2004-60-17	Lafgo	230	LARGO A	69	1	[16						
2004-60-17	CLMT EST	230	CLMT EST	69	1	2						
2004-60-17	11 THAVE	230	ELEVENE	69	1	16						
004-60-17	WINDERME	230	WINDERME	69	1	2						
2004-60-17	Pasadena	230	PASADENA	115	1	2						
2004-80-17	ARIANA	230	ARIANA-N	69	1	16						
004-60-17	SELOSE	230	SELOSE-N	69	1	16						
204-60-17	GAPWAY	230	gapway	69	1	16						
2004-60-17	CREWSLK	230	CREWSLK	69	,	13						
004-80-17	TENOROC	230	TENOROC	69	1	13						
004-60.17	BARCOLA	230	WEST	230	1	2						
204-60-17	EATONPK	230	CREWSLK	230	1	13						
204-60-17 E	EATON PK	230	EATON PK	69	1	13						
2004-60-17	EATON PK	230	TENOROC	230	1	13						
2004-60.17	AECKER	230	GAPWAY	230	1	16						
004-60-17/S	SN PLANT	115	TURNER	115	1.	1						

Table III Comparison of Line \& Transformer Flows Following N-1 Disturbances Various OEC 500 MW Generation Alternatives												
				60\% Load Base Case						Case 2004-80C Soll to TEC	Case 2004-600Sell toJEA	Case 2004-60E Sell to SEM
Monitored Branches							00\% of E	gency	Shown			
							$\begin{gathered} \text { Case 2004-60 } \\ \text { Base } \\ \text { No OEC Gon } \end{gathered}$	$\begin{gathered} \text { Case 2004-604 } \\ \text { Sell to } \\ F P 1 \end{gathered}$	$\begin{aligned} & \text { Case } 2004-608 \\ & \text { Sell to } \end{aligned}$			
Case	Bus 1	kV 1	1 Bus 2	kV2	ckt	kt Area	Percent	Percand	Parcent	Purcent	Parcent	Parcent
2004-60-22	2 SN PLANT	230	SYLVAN	230		1				Prim	P促	Pbrcank
2004-60-22	SYLVAN	230	NLONGWD	230		1						
2004-60-22	2 ND RIV	230	Stanton	230	1	111						
2004-60-22	2 SN PLANT	115	TURNER	115	,	11						
2004-60-22	BUCKEYE	230	RUSKMTR8	230	1	1						
2004-60-22	Silva SP	230	SILV SPN	230	1	2						
2004-60-22	SILVA SP	230	OCALA 1	230	1	2						
2004-60-22	RIO PINR	200	CUPARY FD	230	1	12						
2004-60-22	STANTON	230	CUARY FD	230	1	2						
2004-60-22	OSCEOLA	230	LKAGNES	230	,	16						
2004-60-22	SHELD	230	LK TARPN	230	1	2						
2004-60-22	PEBB	230	CREWSLK	230	1	13						
2004-60-22	PEBE	230	N BARTOW	230	1	2						
2004-60-22	RECKER RECKER	230 230	lkagnes	230	1	16						
2004-60-22	RECKER	230	CREWSLK	230	1	13						
2004-60-22	B BEND	230	manatee	230	1	1						
$2004.60-22$	RUSKIN T	230	Manatee	230	1	1						
2004-60-22	IND RIV	230	IND Riv	115	1	11						
2004-60-22	SHELD	230	SHELD-NW	69	1	16						
2004-60-22	LARGO	230	LARGOA	69	1	2						
2004-60-22	CLMTEST	230	CLMT EST	69	1	2						
2004-60-22	11 THAVE	230	ELEVENE	69	1	16						
2004-60-22	WINDERME	230	WINDERME	69	1	2						
2004-60-22	PASADENA	230	PASADENA	115	1	2						
2004-60-22	ARIANA	230	ARIANA-N	69	1	16						
2004-60-22	SELOSE	230	SELOSE-N	89	1	16						
2004-60-22	GAPWAY	230	GAPWAY	89	1	16						
2004-60-22	CREWSLK	230	CREWSLK	69	1	13						
2004-60-22	TENOROC	230	TENOROC	69	t	13						
2004-60-22	BAPCOLA	230	WEST	230	1	2						
2004-60-22	EATON PK	230	CREWSLK	230	,	13						
2004-80-22	EATON PK	230	EATON PK	69	1	13						
2004-60-22	EATON PK	230	TENOROC	230	,	13						
2004-60-22	RECKER	230	gapway	230	1	16						
2004-60-22	SN PLANT	115	TURNER	115	1	1						
2004-60-23	SNPLANT	230	SYLVAN	230	1	1						
2004-80-23	SYLVAN	230	NLONGWD	230	1	1						
2004-60-23	IND PIV	230	STANTON	230	1	11						
2004-60-23	SN PLANT	115	TUANER	115	1	1						
2004-60-23	BUCKEYE	230	RUSKMTRA	230	1	1						
2004-60-23	SILVA SP	230	SILV SPN	230	1	2						
2004-60-23	Sllva Sp	230	ocalay	230	1	2						
2004-60-23	RIO PiNR	230	CURRY FD	230	,	2						
2004-60-23	STANTON	230	CUPARY FD	230	1	2						
2004-60-23	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-23	SHELD	230	LK TARPN	230	,	2						
2004-60-23	PEBB	230	CREWSLK	230	1	13						
2004-60-23	PEBB	230	N BARTOW	230	1	2						
2004-60-23	RECKER	230	LKAGNES	230		16						
2004-60-23	AECKER	230	ARIANA	230	1	16						
2004-60-23	RECKER	230	CREWSLK	230	1	13						
2004-60-23	B BEND	230	MANATEE	230	1	1						
2004-60-23	RUSKIN T	230	MANATEE	230	1	1						
2004-60-23	IND RIV	230	IND RIV	115	1	11						
2004-60-23	SHELD	230	SHELD.NW	69	1	16						
2004-80-23	LARGO	230	LAFGOA	69	1	2						
2004-60-23	CLMT EST	230	CLMT EST	69	1	2						
2004-60-23	11 THAVE	230	ELEVENE	69	1	18						
2004-60-23	WINDERME	230	WINDERME	69	1	2						
2004-60-23	PASADENA	230	PASADENA	115	1	2						
2004-60-23	ARIANA	230	ARIANA.N	69	1	16						
2004-60-23	SELOSE	230	SELOSE-N	69	1	18						
2004-60-23	GAPWAY	230	GAPWAY	69	1	16						
2004-60-23	CREWSLK	230	CREWSLK	69	1	13						
2004-60-23	TENOAOC	230	TENOROC	68	1	13						
2004-60-23	barcola	230	WEST	230	1	2						
2004-60-23	EATON PK	230	CREWSLK	230	1	13						
2004-80-23	EATON PK	230	EATON PK	69	1	13						
2004-60-23	EATON PK	230	TENOROC	230	1	13						
2004-60-23	AECKER	230	GAPWAY	230	1	16						
2004-60-23	SN PLANT	115	TURNER	115		1						

Table III

Comparison of Line \& Transformer Flows
 Following N -1 Disturbances for Various OEC 500 MW Generation Alternatives
 60\% Lond Base Case
 All Flows above 100\% of Emergency rating are Shown

Monitored Branches							$\begin{gathered} \text { Case 2004-60 } \\ \text { Base } \\ \text { No OEC Gen } \end{gathered}$	$\begin{gathered} \text { Case } 2004-60 \mathrm{~A} \\ \text { Sell to } \\ \text { FPL } \end{gathered}$	$\begin{aligned} & \text { Case 2004-60B } \\ & \text { Sell to } \\ & \text { FPC } \end{aligned}$	$\begin{gathered} \text { Case } 2004-80 \\ \text { Sell to } \\ \text { TEC } \end{gathered}$	$\begin{gathered} \text { Case 2004-600 } \\ \text { Sell to } \\ \text { JEA } \\ \hline \end{gathered}$	$\begin{gathered} \text { Case 2004-60 } \\ \text { Sell to } \\ \text { SEM } \end{gathered}$
Case	Bus 1	kV1	Bus 2	kV2	ckt	Area	Parcent	Percent	Percent	Percon	Porcent	Percent
2004-60-24	4 SN PLANT	230	SYLVAN	230	1	1						
2004-60-24	4 SYLVAN	230	NLONGWO	230	1	1						
2004-60-24	4 IND RIV	230	STANTON	230	1	11						
2004-60-24	SN PLANT	115	TUPNER	115	1	1						
2004-80.24	BUCKEYE	230	RUSKMTRE	230	1	1						
2004-60-24	SILVR SP	230	SILV SPN	230	1	2						
2004-60-24	SILVR SP	230	OCALA 1	230	1	2						
2004-80-24	RIO PINR	230	CUPRY FD	230	1	2						
2004-60-24	STANTON	230	CURRY FD	230	1	2						
2004-60.24	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-24	SHELD	230	LK TARPN	230	1	2						
2004-60-24	PEBB	230	CREWSLK	230	1	13						
2004-60-24	PE8B	230	N BARTOW	230	1	2						
2004-60-24	RECKER	230	LKAGNES	230	1	16						
2004-60-24	RECKER	230	ARIANA	230	1	16						
2004-60-24	PECKER	230	CREWSLK	230	1	13						
2004-60-24	B BEND	230	MANATEE	230	1	1						
2004-60-24	RUSKIN T	230	MANATEE	230	,	1						
2004-60-24	IND RIV	230	Ind Riv	115	1	11						
2004-60-24	SHELD	230	SHELD-NW	69	1	16						
2004-60-24	Largo	230	LARGO A	69	1	2						
2004-60-24	CLMT EST	230	CLMTEST	69	1	2						
2004-60-24	IITHAVE	230	ELEVEN-E	69	1	16						
2004-60-24	WINDEPME	230	WINDERME	69	1	2						
2004-60-24	PASADENA	230	PASADENA	115	1	2						
2004-60-24	ARIANA	230	ARIANA-N	69	1	16						
2004-60-24	SELOSE	230	SELOSEN	89	,	18						
2004-60-24	GAPWAY	230	gapwar	88	1	16						
2004-60-24	CREWSLK	230	CREWSLK	69	1	13						
2004-60-24	TENOROC	230	TENOROC	69	1	13						
2004-60-24	barcola	230	WEST	230	1	2						
2004-60-24	EATON PK	230	CREWSLK	230	1	13						
2004-60-24	EATON PK	230	EATON PK	69	1	13						
2004-60-24	EATONPK	230	TENOROC	230	1	13						
2004-60-24	RECKER	230	GAPWAY	230	1	16						
2004-80-24	SN PLANT	115	TUPNER	115	1	1						
2004-80-25	SNPLANT	230	SYLVAN	230	1	1						
2004-60-25	SYLVAN	230	N LONGWD	230	1	,						
2004-60-25	IND RIV	230	STANTON	230	1	11						
2004-60.25	SN PLANT	115	TURNER	115	1	1						
2004-60-25	BUCKEYE	230	RUSKMTRA	230	1	1						
2004-60-25	SILVR SP	230	SILV SPN	230		2						
2004-80-25	SILVR SP	230	ocala 1	230	1	2						
2004-60.25	RIO PINR	230	CURRY FD	230	1	2						
2004-60-25	STANTON	230	CURAY FD	230	1	2						
2004-60-25	OSCEOLA	230	LKAGNES	230	1	16						
2004-60-25	SHELD	230	LK TARPN	230	1	2						
2004-60-25	PEBB	230	CREWSLK	230	1	13						
2004-60-25	PEBB	230	N BARTOW	230	1	2						
2004-60-25	RECKER	230	UKAGNES	230	1	16						
2004-60-25	RECKER	230	ARIANA	230	1	16						
2004-60-25	RECKER	230	CREWSLK	230		13						
2004-60-25	B BEND	230	MANATEE	230	1	1						
2004-60-25	RUSKIN T	230	manatee	230	1	1						
2004-60-25	IND RIV	230	IND RIV	115	1	11						
2004-60-25	SHELD	230	SHELO-NW	69	1	16						
2004-60-25	Lafgo	230	LARGO A	69	1	2						
2004-60-25	CLMT EST	230	CLMTEST	69	1	2						
2004-60-25	11 TH AVE	230	ELEVENE	69	1	16						
2004-60-25	WINDERME	230	WINDERME	69	1	2						
2004-80-25	PASADENA	230	PASADENA	115	1	2						
2004-60-25	ARIANA	230	ARIANA-N	69	1	16						
2004-60-25	SELOSE	230	SELOSE-N	69	1	16						
2004-60-25	gapway	230	gapway	69	1	16						
2004-60-25	CREWSLK	230	CREWSLK	89	1	13						
2004-60-25	TENOROC	230	TENOPOC	69	1	13						
2004-60-25	BARCOLA	230	WEST	230	1	2						
2004-60-25	EATON PK	230	CREWSLK	230	1	13						
2004-60-25	EATON PK	230	EATON PK	69	1	13						
2004-60-25	EATON PK	230	TENOAOC	230	1	13						
2004-60-25	RECKER	230	GAPWAY	230	1	18						
2004-60-25	SN PLANT	115	TUANER	115	1	1						

Table III

-	Comparison of Line \& Transformer Flows Following $\mathrm{N}-1$ Disturbances for Various OEC 500 MW Generation Alternatives												
	60\% Land Base Case												
	All Flows above 100\% of Emergency rating are Shown												
-	Monitored Branches							$\begin{aligned} & \text { Case 2004-60 } \\ & \text { Base } \\ & \text { No OEC Gen } \end{aligned}$	$\begin{gathered} \text { Case 2004-604 } \\ \text { Sell to } \\ \text { FPL } \end{gathered}$	$\begin{gathered} \text { Case } 2004-808 \\ \text { Sell to } \\ \text { FPC } \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Case 2004-60C } \\ \text { Soll to } \\ \text { TEC } \\ \hline \end{array}$	$\text { Case } 2004-600$	$\begin{gathered} \text { Case } 2004-60 \mathrm{E} \\ \text { Sell to } \\ \text { SEM } \end{gathered}$
	Case	Bus 1	kV1	Bus 2	kV2	ckt	Area	Percent	Percert	Percent	Percont	Percent	Percent
	2004-60-28	SN PLANT	230	SYLVAN	230		1						
	2004-60-28	SYLVAN	230	N LONGWD	230	1	1						
	2004-80-28	IND RIV	230	STANTON	230	1	11						
	2004-60.28	SN PLANT	115	TUANER	115	1	1						
	2004-60-28	BUCKEYE	230	RUSKMTRE	230	1	;						
	2004-60.28	SILVR SP	230	SILV SPN	230	1	2						
	2004-60-28	SILVR SP	230	OCALA 1	230	1	2						
	2004-60-28	RIO PINR	230	CURRYFO	230	1	2						
	2004-60-28	STANTON	230	CUARY FD	230	1	2						
	2004-60-28	OSCEOLA	230	LKAGNES	230	1	16						
	2004-60-28	SHELO	230	LK TARPN	230	1	2						
	2004-60-28	PEBB	230	CREWSLK	230	1	13						
	2004-60-28	PEBB	230	N BARTOW	230	1	2						
	2004-60-28	RECKER	230	LKAGNES	230	1	16						
	2004-60-28	RECKER	230	ARIANA	230	1	16						
	2004-60-28	RECKER	230	CREWSLK	230	1	13						
	2004-60-28	B BEND	230	MANATEE	230	1	1						
	2004-60-28	RUSEINT	230	MANATEE	230	,	1						
	2004-60-28	IND RIV	230	IND RIV	115	1	11						
	2004-60-28	SHELD	230	SHELD-NW	69	1	16						
	2004-60.28	LARGO	230	LARGOA	69	,	2						
	2004-60-28	CLMT EST	230	CLMT EST	69		2						
	2004-60-28	11THAVE	230	ELEVENE	69	1	16						
	2004-60-28	WINDERME	230	WINDERME	69	1	2						
	2004-60-28	PASADENA	230	PASADENA	115	1	2						
	2004-60-28	ARIANA	230	ARIANA-N	69	1	16						
	2004-60-28	SELOSE	290	SELOSE-N	69	1	16						
	2004-60-28	gapway	230	gapway	69	1	16						
-	2004-60-28	CAEWSLK	230	CREWSLK	69		13						
	2004-60-28	TENOROC	230	TENOROC	69		13						
	2004-60-28	BARCOLA	230	WEST	230	1	2						
	2004-60-28	EATON PK	230	CREWSLK	230	1	13						
	2004-60-28	EATON PK	230	EATON PK	69	1	13						
	2004-60-28	EATON PK	230	TENORDC	230	1	13						
-	2004-60-28	RECKER	230	GAPWAY	230	1	16						
	2004-60-28	SN PLANT	115	TUANER	115	1	1						
	2004-60-29	SNPLANT	230	SYLVAN	230	1	1						
	2004-60-29	SYLVAN	230	N LONGWD	230	,	1						
-	2004-60-29	IND PIV	230	STANTON	230		11						
	2004-60-29	SN PIANT	115	TUPNER	115		1						
	2004-60-29	BUCKEYE	230	RUSKMTR8	230	1	1						
	2004-60-29	SILVA SP	230	SILV SPN	230	1	2						
	2004-60-29	SILVR SP	230	OCALA 1	230		2						
-	2004-60-29	RIO PINR	230	CURRY FD	230	1	2						
	2004-60-29	STANTON	230	CURAY FD	230	1	2						
	2004-60-29	OSCEOLA	230	LKAGNES	230		16						
	2004-60-29	SHELD	230	LK TARPN	230		2						
	2004-60-20	PEBB	230	CREWSLK	230	1	13						
-	2004-60-29	PEBB	230	N BARTOW	230	1	2						
	2004-60-29	RECKER	230	LKAGNES	230	1	16						
	2004-60-29	RECKER	230	ARIANA	230	1	16						
	2004-60-29	AECKER	230	CREWSLK	230	1	13						
	2004-60-29	B BEND	230	MANATEE	230		1						
	2004-60-29	RUSKINT	230	MANATEE	230		1						
-	2004-60-29	IND RIV	230	IND RIV	115	1	11						
	2004-60-29,	SHELD	230	SHELD-NW	69	1	16						
	2004-60-29	LARGO	230	LARGOA	69		2						
	2004-60-29	CLMTEST	230	CLMT EST	69	1	2						
	2004-60-29	11 THAVE	230	ELEVENE	69	1	16						
-	2004-60-29	WINDERME	230	WINDERME	69	1	2						
	2004-80-29	PASADENA	230	PASADENA	115	,	2						
	2004-60-29	ARIANA	230	ARIANA-N	69	1	16						
	2004-60-29	SELOSE	230	SELOSE-N	69	\dagger	16						
	2004-60-29	GAPWAY	230	gapway	68	3	18						
-	2004-60-29	CREWSLK	230	CREWSLK	69	1	13						
	2004-60-29	TENOFOC	230	TENOROC	69	1	13						
	2004-60-29	BARCOLA	230	WEST	230	1	2						
	2004-60-29	EATON PK	230	CREWSLK	230	1	13						
	2004-60-29	EATON PK	230	EATON PK	69	1	13						
	2004-60-29	EATON PK	230	TENOROC	230	1	13						
	2004-60-29	RECKER	230	gapway	230	1	18						
	2004-80-20	SN PLANT	115	TURNER	115								

Table III

Comparison of Line \& Transformer Flows
 Following N-1 Disturbances
 for Various OEC 500 MW Generation Alternatives
 60% L and Base Case
 All Flows above 100% of Emergency rating are Shown

Table III

\square
-
-
-
-
-
-
-
-
-
APPENDIX III-A

Base Case Flows on Constrained Paths

2004 Case - 100\% Load

Base Case Flows on Constrained Paths

2004PI Case - 100\% Load

Base Case Flows on Constrained Paths

2004 Case - 60\% Load

Table 1
 Summary of Constrained Paths in Base Case \& OEC Alternatives

		OEC Sell 500 MW to:				
	Case 2004	Case 2004A	Case 2004B	Case 2004C	Case 2004D	Case 2004E
	Base Case	Sell to FPL	Sell to FPC	Sell to TEC	Sell to JEA	Sell to SEM
$\# 12$	2314.17	2320.28	2322.50	2325.21	2330.50	2332.42
$\# 6$	1997.09	2344.98	1955.11	2038.61	1903.84	1912.43
$\# 14$	1596.51	1578.06	1545.64	1698.67	1535.50	1526.48
$\# 10$	1373.65	1483.49	1348.16	1381.96	1273.29	1217.95
\# 9	1136.02	1121.98	1100.54	1219.46	1088.65	1081.64
$\# 17$	395.20	391.21	443.31	402.78	406.67	409.93
$\# 8$	391.70	350.70	398.20	393.24	300.83	250.92
$\# 15$	215.94	328.18	203.94	238.97	303.16	287.24
$\# 11$	184.08	169.91	190.72	182.29	164.78	172.71
$\# 7$	128.19	204.39	143.14	93.76	164.33	160.21
$\# 5$	94.52	86.08	1.38	222.41	40.76	31.62

Table 2
 Summary of Constrained Paths in Base Case \& OEC Alternatives

		OEC Sell 500 MW to:					
	Case 2004PI		Case 2004PIA	Case 2004PIB	Case 2004PIC	Case 2004PID	
	Case Case	Sell to FPL	Sell to FPC	Sell to TEC	Sell to JEA	Sell to SEM	
\# 12	3328.22	3333.06	3334.80	3334.25	3337.70	3343.05	
$\# 6$	2985.61	3332.69	2946.20	3026.09	2898.11	2905.90	
$\# 10$	1916.15	2008.69	1894.00	1922.86	1830.74	1772.86	
$\# 14$	178.75	1706.43	1670.07	1822.92	1655.43	1646.84	
$\# 9$	1229.97	1220.86	1196.37	1313.92	1181.00	1174.06	
$\# 8$	519.82	483.65	525.76	520.56	423.80	373.66	
$\# 17$	367.14	363.04	415.41	374.06	378.78	382.17	
$\# 15$	253.01	357.05	241.41	278.43	341.67	325.34	
$\# 7$	239.25	323.59	253.35	205.55	274.10	270.26	
$\# 5$	222.42	220.80	132.21	350.91	167.19	158.60	
$\# 11$	188.06	174.06	194.39	186.00	168.72	176.32	

\qquad (MPA-3)

Analysis of Transmission System IMPROVEMENTS IN SUPPORT OF OSPREY Energy Center

APRIL 18, 2000

Prepared For

CALPINE EASTERN CORPORATION

April 18, 2000

Mr. Paul A. Barnett
Calpine Eastern Corporation
The Pilot House, Lewis Wharf
Boston, MA 02110

Subject: Final Report on Transmission System Upgrade Study for Osprey Energy Center
Dear Mr. Barnett:
Enclosed are three copies of the final report on the transmission system upgrade study performed by Navigant Consulting, Inc. (Navigant Consulting) for the Osprey Energy Center. As we discussed last week, the transmission lines impacted will need to be rebuilt using stronger single pole, spun concrete structures to support the larger conductors required to increase line capacity. Calculations performed to make this determination and associated construction cost estimates are included in the report.

Three technically feasible options emerged for increasing the capacity of the existing $150-\mathrm{MVA}$ transformer at Ariana Substation. Two of these options are: adding auxiliary cooling equipment to the existing transformer and adding a second transformer at the substation. Analyses performed to evaluate these options are included in the report along with associated construction cost estimates.

A third option involves no physical changes to the existing substation or transformer. It involves negotiating with Tampa Electric Cooperative to allow the intermittent, short term overloading of the existing transformer, thus incurring a measured loss in the life expectancy of the transformer. Calpine would then reimburse Tampa Electric Company for the loss of life of the transformer at a pre-determined rate. The actual cost of this option could not be determined at this time, and would depend on the amount of transformer loss of life and the negotiated rate of reimbursement agreed to between Calpine and Tampa Electric Company. However, assuming a reasonable rate can be agreed upon, the overall cost for this option should be much less than either of the other two options.

We hope this report and accompanying documents provide you with the information you needed. If you have any questions regarding the report or any other related issue, please call me.

Sincerely,
Thael Dlaws
Frank Alonso, P.E.

ANALYSIS OF Transmission System Improvements in Support of Osprey Energy Center

APRIL 18, 2000

Prepared For

Calpine Eastern Corporation

Prepared By

CONSUETING. INC.

TABLE OF CONTENTS

ANALYSIS OF TRANSMISSION SYSTEM IMPROVEMENTS IN SUPPORT OF OSPREY ENERGY CENTER APRIL 18, 2000
Section Page
1 Introduction 1-1
2 Background 2-1
Problem Definition 2-1
Site Inspection and Data Gathering 2-2
3 Analysis 3-1
Transmission Line Options 3-1
Transmission Line Design Criteria 3-1
Transmission Line Options for Increasing Conductor Size 3-3
Substation Transformer Options 3-8
Existing Transformer Ratings 3-8
Transformer Technical Feasibility Analysis 3-9
4 Cost Estimates 4-1
5 Conclusions and Recommendations 5-1
Appendices
Appendix A - Calculations A-1
Appendix B - Pictures B-1
Appendix C - Drawings C-1
\qquad

Abstract

In support of the proposed Osprey Energy Center, Calpine Eastern Corporation (Calpine), the project's developer, contracted Navigant Consulting, Inc. (NCI) to perform a load flow analysis to determine the capacity of the surrounding transmission system to effectively transform and transmit the center's generated electric power to its customers via the Florida transmission grid. The results of that analysis initially indicated that under certain conditions, four existing facilities would restrict the flow of power out from the energy center. The four critical facilities identified in the analysis are owned by Tampa Electric Company (TECO) and are described as follows:

> The Recker to Lake Agnes 230-kV Transmission Line
> The Recker to Crews Lake 230-kV Transmission Line
> The Crews Lake to Pebbledale $230-\mathrm{kV}$ Transmission Line
$>$ The $150-\mathrm{MVA}, 225 \mathrm{Y} / 130-69 \mathrm{Y} / 38.8 \mathrm{kV}$ transformer at Ariana Substation.
These lines and substation transformer are located in Polk County, Florida near the City of Auburndale, Florida. A schematic diagram of these lines is shown in Drawing No. 1 in Appendix C.

The analysis conducted by NCI indicates that under maximum loading conditions and single contingency failure of related facilities, the transmission lines interconnecting the energy center with the Florida transmission grid should be rated a minimum of $478-\mathrm{MVA}$. According to TECO, the overall load carrying capacity of the critical transmission lines is to 398-MVA.

The NCl analysis also indicates that under maximum loading conditions and single contingency failure of associated facilities, the transformer at TECO's Ariana Substation will be overloaded to $220-\mathrm{MVA}$ or 47% above its nominal rating of $150-\mathrm{MVA}$.

Under certain equipment failure scenarios and maximum loading conditions, the existing transmission system does not have the capacity to accommodate the proposed Osprey Energy Center.

In view of the impact the transmission lines and substation transformer could have on the ability of Calpine to operate the generation units at the Osprey Energy Center at full capacity, Calpine has contracted with NCI to perform this analysis of potential transmission system modifications to increase the capacities of these critical facilities.

The scope of this analysis includes a feasibility study to determine how these facilities could be modified, improved, or replaced so that they are able to carry the additional anticipated loads. Cost estimates are provided for recommended modifications and improvements.

PROBLEM DEFINITION

Most of the Recker to Lake Agnes $230-\mathrm{kV}$ Transmission Line uses tubular steel pole construction with $1590-\mathrm{kcmil}, \mathrm{ACSR}$ conductor. However, according to the original information provided by TECO, there was a short line section of old wood pole, H-frame construction with $954-\mathrm{kcmil}, \mathrm{ACSR}$ conductors. That section of line was responsible for limiting the overall load carrying capacity of the line to 398 -MVA. The rest of the line is rated for $550-\mathrm{MVA}$. According to more recent information received from TECO, these old sections of the line have been upgraded so that the entire line is now rated 550-MVA.

The Recker to Crews Lake $230-\mathrm{kV}$ Transmission Line is approximately 17 miles long. A major portion of the line uses H -frame structures and 1590 - kcmil , ACSR conductor, which provides a load carrying capacity of 550-MVA. However, two short sections of the line, totaling 1.4 miles, located immediately north of Crews Lake Substation, use 954 -kcmil, ACSR conductors on wood, H-frame structures. These two short line sections limit the overall capacity of the line to 398-MVA. The capacity of these two line sections needs to be upgraded to match the rest of the line.

The Crews Lake to Pebbledale $230-\mathrm{kV}$ Transmission Line is approximately 6.3 miles long. The entire line uses 954 -kcmil, ACSR conductor which limits its load carrying capacity to 398-MVA. The first line section out of Crews Lake Substation is approximately 2.2 miles long and uses wood, H -frame structures. The middle section is approximately 3.1 miles long and uses tubular steel poles with long spans; some exceeding 1000^{\prime}. The last section of the line is approximately one mile long and uses single pole wood structures. The entire line must be upgraded to $1590-\mathrm{kcmil}, \mathrm{ACSR}$ conductor to provide the additional capacity required for the new energy center.

The 230/69-kV auto-transformer at Ariana Substation has a nominal, liquid-immersed, selfcooled (OA) rating of $150-\mathrm{MVA}$ and a liquid-immersed, forced liquid-cooling, forced aircooled (FOA) rating of $168-\mathrm{MVA}$ (12% over OA rating) with a $55^{\circ} \mathrm{C} / 65^{\circ} \mathrm{C}$ temperature rise. Because of the additional generation at the Osprey Energy Center, under certain load flow conditions, this transformer will be overloaded by almost 50% to $220-\mathrm{MVA}$. Although this overload condition is not projected to be long lasting, TECO has indicated that they are not willing to operate their transformer above the FOA rating of 168-MVA. Given that constraint, additional transformer capacity will be required at Ariana Substation.

SITE INSPECTION AND DATA GATHERING

On March 22, 2000, representatives from TECO and NCI met at TECO's Recker Substation. The TECO representatives provided line design information and criteria for the two lines under consideration. In addition, they provided nameplate information for the transformer at Ariana Substation. A cursory inspection of the transmission lines near Recker and Ariana Substation was conducted. A visit to Ariana Substation provided a close-up inspection of the 150-MVA transformer.

Photographs taken during the site inspection are included in Appendix B.

TRANSMISSION LINE OPTIONS

There are only two possible option for increasing the capacity of a power transmission line: increase the line operating voltage or increasing the current carrying capacity of the line by installing a larger conductor or bundling two or more conductors per phase.

For existing lines that are already interconnected within an existing transmission grid, the option to increase the line operating voltage is not cost effective. It involves:
$>$ Voltage transformations at both ends of the line - from the transmission grid voltage to the new line voltage at one end and back from the line voltage to the grid voltage at the other end (The large transformers required makes this option very costly.),
$>$ Replacement of all line structures to accommodate the increased line to ground clearances, conductor to structure clearances, and structure strength requirements, and
$>$ Acquisition of additional right-of-way for operating the line at a higher voltage.
Therefore, in this situation, this option is not cost effective.
Upgrading the transmission line's capacity by increasing the size of the line conductors can sometimes be accomplished with minimal costs. Such would be the case if only the conductors are replaced and all the other hardware and equipment are reused with minor structure adjustments for ground clearances and for the increased loading resulting from the larger conductors. However, typically, the structures are old or not originally designed to handle the increased loading resulting from the larger conductors. Also, in some cases the insulators have to be changed to higher strength type insulators. In most cases, the conductor and shield wire attachment points on the structures will have to be raised to accommodate the greater sag associated with the larger conductors.

TRANSMISSION LINE DESIGN CRITERIA

The Recker to Crews Lake and the Crews lake to Pebbledale $230-\mathrm{kV}$ Transmission Lines were designed and constructed in the 1960's and use old wood, H-frame structures with suspension insulators or single pole wood structures with post insulators to support the 954 or $1590-\mathrm{kcmil}$, ACSR conductors. A 3.1 -mile section of the Crews Lake to Pebbledale Line uses tubular steel poles with $954-\mathrm{kcmil}$ ACSR conductor.

The original design met the requirements of the then applicable edition of the National Electrical Safety Code. Any future modifications or improvements to the lines will have to comply with the requirements in the current edition of the same code. Drawing No. 2 in

Appendix C shows TECO's original wood, H-frame structure design used for the major portions of these lines.

A summary of the original design criteria used for the existing H-frame, wood pole line is presented in Table 1 along with TECO's current line design criteria applicable to future lines.

Table 1

-		Design Criteria for Existing Lines	Design Criteria for New Lines
	CONDUCTOR	954-kcmil, ACSR-S, Code Name "Cardinal"	1590-kcmil, ACSR, Code Name "Lapwing"
-	OHGW	$3 / 8^{\prime \prime} \mathrm{HS}$ steel	$3 / 8^{\prime \prime}$ HS steel
-	INSULATION	For wood, H-frame: 11 units 5$3 / 4^{\prime \prime} \times 10^{\prime \prime}$ suspension type For single wood poles: $230-\mathrm{kV}$ post insulators For tubular steel poles: polymer insulators in braced post arrangement	If exiting H-frames reused, 11 units 5-3/4" $\times 10^{\prime \prime}$ high strength suspension type If structures are changed to concrete or tubular steel poles, use polymer insulators in a braced post arrangement
-	LOADING CONDITIONS	Not known.	NESC Light with following limiting conditions: $75^{\circ} \mathrm{F}$ with 45 psf wind (TECO Extreme) $212^{\circ} \mathrm{F}$ with no-wind (Maximum Sag) $30^{\circ} \mathrm{F}$ with no-wind (Minimum Sag)
- - -	CONDUCTOR SPACING	For H -frame construction: $17^{\prime}-6^{\prime \prime}$ with 36^{\prime} crossarm $19^{\prime}-6^{\prime \prime}$ with 40^{\prime} crossarm For single pole construction: 10 between phase conductors 12^{\prime} between top phase conductor and OHGW.	For H-frame construction: $17^{\prime}-6^{\prime \prime}$ with 36^{\prime} crossarm $19^{\prime}-6^{\prime \prime}$ with 40^{\prime} crossarm For concrete or steel pole construction: 10^{\prime} between phase conductors 12' between top phase conductor and OHGW.
-	BASIC POLE HEIGHT	70' - 75' for H-frames $80^{\prime}-85^{\prime}$ for single poles	$70^{\prime}-75^{\prime}$ for H -frames $80^{\prime}-85^{\prime}$ for single poles
	CLEARANCE TO GROUND	25'	25'

Abstract

Both sets of design criteria were used in this analysis to evaluate the feasibility of the various options considered for upgrading the transmission lines to 550-MVA capacity. The design criteria for existing lines were used to determine the design loading of the existing transmission lines. The design criteria for new lines were used to determine if the existing lines can support the larger sized conductor and to determine the required strength of new concrete or steel poles to be used if lines had to be rebuilt.

\section*{TRANSMISSION LINE OPTIONS FOR INCREASING CONDUCTOR SIZE}

Increasing the size of the phase conductors on the existing transmission lines can be accomplished by re-framing the existing wood, H-frame structures or by replacing them with concrete or tubular steel poles. In either case, we assumed the spans lengths and structure alignments remain the same. If the existing structures are reused, obviously, they will be re-framed in place. If new concrete or steel structures are used, they will be installed in close proximity to the existing structures and along the same centerline. With this approach, no additional right-of-way will be required.

Three options were considered in this analysis for increasing the line conductor size to 1590 -kcmil. The three options are described as follows:

Option L1: Reuse the existing wood, H-frame or single pole, wood structures. Modify structures as required and install new $1590-\mathrm{kcmil}$ conductor.

Option L2: Rebuild line in place using spun concrete poles. Install new $1590-\mathrm{kcmil}$, ACSR conductors on new concrete poles. Then, remove existing wood Hframe structures with $954-\mathrm{kcmil}$ ACSR conductors.

Option L3: Rebuild line in place using tubular steel poles. Install new 1590-kcmil, ACSR conductors on new steel poles. Then, remove existing wood H-frame structures with 954-kcmil ACSR conductors.

TRANSMISSION LINE TECHNICAL FEASIBILITY ANALYSIS

Table 2 lists the basic line criteria, conductor data, conductor loads, preliminary structure loading criteria and capacity factors, and resultant vertical and horizontal loads for Hframe, spun concrete, and tubular steel structures proposed for the three options being considered. Overload factors and safety factors are in accordance with applicable sections of the National Electrical Safety Code (NESC).

-	ANALYSIS				
	Table 2				
	Basic Line Criteria				
-	Max. Wind (psf)	45	(Extreme wind condition on cylindrical surfaces per TECO)		
	Average Span (ft.)	457			(ECO)
	Max Wind Span (ft)	571			
-	Max Weight Span (ft.)	686			
	Conductor Loading Const.	0.05	(in lbs./LF from N	251-1)	
	Cylindrical Shape Factor	1.0	(Per NESC 252.B. 2		
	Conductor Data				
		954	1590	3/8' ${ }^{\prime \prime}$ HS	7\#10
	Conductor Type	ACSR	ACSR	Steel	AW
	Weight (lbs./LF)	1.229	1.792	0.237	0.1647
	Diameter (in.)	1.196	1.504	0.12	0.306
-	Conductor Loading per NESC 251				
		954	1590	3/8' HS	7\#10
	Conductor Type	ACSR	ACSR	Steel	AW
-	Vertical Load (lbs.)	842	1228	187	113
	Horizontal Loads (lbs.)	2562	3222	257	656
	Resultant Load (lbs.)	2697	3448	318	665
-	Total Load (lbs.)	2720	3471	341	688
	(Total loads include NESC Loading Constant.)				

Structure Loading Criteria and Capacity Factors per NESC 252
(Assumed H-frame structures use Class 1 type wood poles.)

	H-Frame W/954	H-Frame $\mathrm{w} / 1590$	Concrete Pole	Tubular Steel Pole
Overload Capacity Factors				
Vertical Loads	2.20	2.20	1.50	1.50
\quad Transverse Loads	4.00	4.00	2.50	2.50
\quad Longitudinal Loads	1.33	1.33	1.10	1.10
Average Pole Height (ft.)	70	70	85	85
Setting Depth (ft.)	10.0	10.0	10.5	10.5
Pole Length Exposed to				
\quad Wind Load (ft.)	60.0	60.0	74.5	74.5
Pole Top Diameter (in.)	8.6	8.6	18.0	13.0
Pole Diameter at Ground				
\quad Line (in.)	15.76	15.76	32.9	27.9
Pole Wind Load Area (sq. ft.)	63.1	63.1	158.0	127.0

Table 2
(Continued)

Resultant Vertical and Horizontal Loads

		H-Frame W/954	H-Frame w/1590	Concrete Pole	Tubular Steel Pole
Conductor Vertical Load/Phase (lbs.)		1869	2720	1855	1855
OHGW Vertical Load/Wire (lbs.)		257	441	301	301
Weight of Insulators/Phase (lbs.)	363	165	113	113	
Conductor Wind Load/Phase (lbs.)	10335	12973	8108	8108	
OHGW Wind Load/Wire (lbs.)	2712	1102	689	689	
Wind Load on Poles (lbs.)	2839	2839	7110	5713	

TECHNICAL FEASIBILITY OF OPTION L1

The main consideration when increasing the size of line conductors is to determine if the existing structures can support the increased loading resulting from the higher weight and wind loading associated with the larger conductors.

Inherently, wood, H-frame structures are relatively strong and provide greater flexibility than single pole steel or concrete structures. However, they are statically indeterminate structures and difficult to analyze. There are various techniques available for analyzing H frame structures: (1) classical indeterminate structural analysis, (2) matrix method of structural analysis, and (3) approximate method. The approximate method will be used for this feasibility analysis for the following reasons:
> Wood is a variable product. More accurate analysis techniques do not always mean assured safety,
> Classical indeterminate analysis and matrix methods are too cumbersome,
> Loading inputs for the classical indeterminate analysis and matrix methods cannot be predicted or determined with a high degree of accuracy.

The approximate method was used to analyze the strength of the existing H -frame structures to determine if they can withstand the additional loading resulting from the use of $1590-\mathrm{kcmil}$ ACSR phase conductors. The calculations, included in Appendix A, show the maximum span limitations resulting from comparing the resultant moment from wind loading on poles and conductors at selected critical points along the length of the poles with the available moment capacity of the poles at that same point. The results of the calculations show the following:
> The resultant moment at the point of crossarm attachment allows a maximum span of 352 ft . This is much less than the existing average span of 457 ft .
> The resultant moment at the top cross brace attachment point allows a maximum span of 448 ft . Again, this is less than the existing average span.
$>$ The resultant moment at the bottom cross brace attachment point allows a maximum span of 105 ft . It is also well below the existing average span.

The resultant ground line moment allows for a maximum span of 203 ft .
Single pole wood structures are easier to analyze than H-frame structures. The typical structure strength calculations are included in Appendix A. They show that the maximum span resulting from comparing the resultant moment from wind loading on the pole and conductors with the ultimate ground line moment of the pole is 14.49 feet which is much less than the existing average span of 275.4 feet.

Clearly, from the results of the H -frame and single pole maximum allowable spans calculations, the existing H -frame and single wood pole structures cannot support the 1590$\mathrm{kcmil}, \mathrm{ACSR}$ conductors without major modifications that would be more costly than total line replacement. For this reason, this option was eliminated from further consideration.

Technical Feasibility of Options L2 and L3

The technical analysis of these two options can be combined because they are very similar in construction and appearance. The loading analysis for these structures is very similar. Currently TECO uses both spun cast concrete poles and tubular steel poles for $230-\mathrm{kV}$ transmission lines throughout their system. The technical feasibility of using either of these types of structures for upgrading the lines has been proven by other existing TECO lines that use $1590-\mathrm{kcmil}, \mathrm{ACSR}$ conductors. (See Pictures 12 through 14, 18 through 21, and 24 in Appendix B.)

Generally, tubular steel poles are stronger than wood or concrete poles. They are typically used in situations where guying is required, but not possible, or where longer spans are desired or required. Self supported angle and corner structures are typically made from tubular steel. Tubular steel poles are fabricated and shipped in sections that are assembled at the job site. Thus, they require smaller cranes and erection equipment during construction. Because they are fabricated in sections, they are also better suited for lines built along right-of-ways with difficult or limited access. The smaller pole sections are easier to maneuver through difficult turns and restricted areas.

The major disadvantages of tubular steel poles are higher initial cost, corrosion, the need for foundations and anchor bolts, and they are difficult to modify in the field.

Although steel galvanizing processes have improved, the section joints and other bolted connections on tubular steel poles are prone to corrosion problems. These can be minimized by careful installation procedures that minimize the damaged to the galvanizing coating. Because they are susceptible to corrosion, most utilities avoid direct burial of tubular steel poles. Typically, they are provided with a concrete foundation that requires precise placement, spacing, and embedment of anchor bolts. The foundations and anchor bolts also increase overall line construction costs.

Modification of tubular steel pole structures in the field is very difficult because they cannot be field drilled. They are shipped from the factory complete with welded flanges and other provisions for the installation of insulators and other hardware. Any field modifications are usually accomplished with steel bands around the pole or by having factory personnel come out to the field to make the required modifications. Any field changes that involve removing and replacing the galvanizing coat on the steel becomes a potential source for corrosion.

The initial cost of tubular steel poles can be 30 to 50% higher than concrete poles. However, because they are stronger, the average span of the line can be increased thereby reducing the total number of poles required and bringing the overall constructed cost of the line down to the same range as with concrete poles. Since we will not be changing the existing span lengths for the existing transmission lines, the ability to go longer spans is not applicable negating the strength advantage tubular steel poles have over concrete poles.

Spun cast concrete poles are heavier than but not as strong or as expensive as tubular steel poles. They provide sufficient strength for average transmission line spans of 400 to 600 feet, depending on the size of the conductors, maximum wind loading conditions, and soil conditions. Concrete poles can be directly buried requiring no foundation or anchor bolts. Where soil conditions require it, they are provided with a concrete footing to spread the bearing load at the bottom of the pole and with concrete backfill to provide greater distribution of side bearing loads on the sides of the hole.

With certain limitations, spun concrete poles can be field drilled by construction crews making it possible to make framing modifications during construction.

For upgrading the existing transmission lines, we recommend the use of spun concrete poles. They are currently used by TECO on other transmission lines and they provide the strength and versatility required for such a project. Most of the structures will have a tangent conductor alignment. Where guying is required, the existing right-of-way is wide enough to allow it. In fact, the existing structures are guyed at angle locations.

The cost estimate for increasing the electrical load carrying capacity of the existing transmission lines from Recker to Crews Lake and from Crews Lake to Pebbledale were prepared based on the use of spun cast concrete poles.

SUBSTATION TRANSFORMER OPTIONS

There are two options for increasing the capacity of the transformer at Ariana Substation. They are described as follows:

Option T1: Increase the capacity of the existing transformer by adding auxiliary cooling equipment, or

Option T2: Adding a second transformer at the substation.

EXISTING TRANSFORMER RATINGS

The nameplate information for the existing transformer was provided by TECO and is summarized in the following Table 3.

Table 3

Manufacturer:	McGraw-Edison Power Systems Division		
Serial Number:	C04020-5-1		
Class:	FOA		
Number of Phases:	3		
Frequency:	$60-\mathrm{Hz}$		
KVA Rating:	$150000 / 168000 \mathrm{kVA}$		
Voltage Ratings:	$225000 \mathrm{GRD} . \mathrm{Y} / 129904-69000 \mathrm{GRD.Y/39837} \mathrm{Volts}$		
Temperature Rise:	$550 / 650 \mathrm{C}$ Rise @ Full Load Continuously		
Percent Impedance:	8.6% at 150000-kVA		
Basic Lightning Impulse	$825-\mathrm{kV}$ high voltage side Insulation Level:		
	$350-\mathrm{kV}$ low voltage side		
$150-\mathrm{kV}$ neutral bushings		\quad	Approximate Total Mass:
:---			
Insulating Liquid:			

TRANSFORMER TECHNICAL FEASIBILITY ANALYSIS

The autotransformer at Ariana Substation has a nominal, OA rating of $150-\mathrm{MVA}$. To reach its FOA rating of $168-\mathrm{MVA}$, it has two sets of radiators, oil pumps, and fans mounted on the north side of the transformer as shown in Pictures $2,3,6$ and 7 in Appendix B. It is not clear, if the FOA rating is achieved in stages or if the cooling fans and pumps all come on at the same time. They seem to be separate, independent systems.

The substation layout provides space for the future addition of a second transformer next to the existing one.

The American National Standards Institute (ANSI) Standard C57.92, IEEE Guide for Loading Mineral-Oil-Immersed Power Transformers Up to and Including 100-MVA with $55^{\circ} \mathrm{C}$ or $65^{\circ} \mathrm{C}$ Average Winding Rise, provides transformer loading limits for normal operation and for moderate sacrifice of life. Although intended for transformers rated less than 100-MVA the Standard can be applicable to this transformer with certain restrictions. The standard says:
> "Loading of transformers larger than 100-MVA may be limited by factors other than insulation aging such as stray flux, etc. When it is known that such limitations do not exist and insulation aging rather than oil temperature, gassing, tank heating, etc is the controlling factor, this guide may be used."

Assuming the loading of the transformer at Ariana Substation is not restricted by any of the limiting factors referred to in ANSI Standard C57.92 and that the original transformer design was performed in accordance with ANSI Standard C57.12.00, then its loading limitations can be determined using the information provided in ANSI Standard C57.92.

According to Table 5(1) of ANSI C57.92, with ambient temperature of $30^{\circ} \mathrm{C}\left(86^{\circ} \mathrm{F}\right)$, the Ariana transformer can be continuously loaded to 100% of its FOA rating. Under those loading conditions, according to the ANSI Standard, the transformer will reach its normal life expectancy of 6.5×10^{4} hours (7.4 years) which represents a normal daily loss of life of 0.0369%. The actual life expectancy of the transformer should be considerably greater than 6.5×10^{4} hours since it is not fully loaded 100% of the time and ambient temperature is not always $30^{\circ} \mathrm{C}$. For most transformers, actual life expectancy is 30 to 35 years.

To stay within the temperature rise limitations of the transformer, the continuous load has to be reduced whenever the ambient temperature increases above $30^{\circ} \mathrm{C}$. For example, at 40 ${ }^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$, the continuous load has to be reduced to 91% of the FOA rating or 153-MVA so as not to shorten the life expectancy of the transformer.

At the $30{ }^{\circ} \mathrm{C}$ ambient temperature, the transformer can be loaded as follows:

Duration	Peak Load (MVA)	Percent of FOA Rating	Percent Loss of Life
1/2 Hour	274	163	0.25
1 Hour	250	149	0.25
2 Hours	232	138	0.25
4 Hours	217	129	0.25
8 Hours	207	123	0.25
24 Hours	193	1.15	0.25

The table shows that for a 0.25% reduction in the normal life expectancy of the transformer it can be loaded for over 4 hours at 220-MVA which is the overload condition projected by the NCI study for the transformer at Ariana.

This points to an option that cannot be quantified at this time, but one we recommend pursuing with TECO. According to the NCI study, the transformer overload condition is expected to last less than one-hour. Since it will be of such short duration, the anticipated loss of life will be less than 0.25%. We have extrapolated the data provided in Table 5 (l) in ANSI Standard C57.92 and determined that the projected loss of life for operating the transformer at $220-\mathrm{MVA}$ for one-hour each day would be 0.16%. That equates to a reduction of 4.3 days from the normal life expectancy of the transformer for each occurrence of this overload condition.

It should be possible, and probably less costly to negotiate a price with TECO for this projected loss of life so that they would be made whole in case such an overload condition occurred. This would eliminate the need to pursue the options being considered.

Technical Feasibility of Oftion T1

Before considering the detailed technical feasibility of this option, the construction sequence for its implementation should be reviewed. Replacing the radiator, cooling fans and oil circulating pumps on the existing transformer will require its removal from service for a long time. Since this is the only transformer at Ariana Substation, removing it from service essentially shuts down the entire substation and removes one source feeding TECO's $69-\mathrm{kV}$ system. Therefore, to perform the required transformer modifications, the installation of a temporary transformer may be required to maintain the substation operational while the transformer is being modified.

This requirement will be included in the cost assessment of this option.

To increase the forced cooled loading capacity of the existing transformer to 220-MVA (50\% above its OA rating), additional auxiliary cooling equipment such as fans, external forcedoil coolers, or water spray equipment will have to be provided. The amount of additional loading capacity resulting from the addition of auxiliary cooling equipment varies widely, depending upon:

D Design characteristics of the transformer
> Type of auxiliary cooling equipment provided
No general rules can be given for such supplemental cooling. Each transformer must be evaluated individually.

The standard levels of overload capacity using auxiliary cooling equipment are 125%, 133%, and 166% of the transformer's OA rating, corresponding to $187.5,199.5$, and $249-$ MVA respectively for the Ariana Substation transformer. These levels are industry wide standards. Therefore, an increase to $220-\mathrm{MVA}$ rating for the Ariana transformer is within standard industry practice.

However, unless provisions were made in the original transformer design for the future addition of cooling equipment, retrofitting such equipment on an existing transformer can be expensive and limited by the original design criteria. And, the effectiveness of such modifications is not always predictable.

Internal limitations may also exist that are difficult to evaluate without additional information about the detailed design of the transformer. Some of these are:
$>$ Capacity for oil expansion
> Size of internal leads
> Tap Changer current carrying capacity
$>$ Stray flux heating.
In addition, there are external limitations that must also be considered such as the thermal capability of associated equipment such as busses, conductors, cables, circuit breakers, disconnecting switches, and current transformers.

At $69-\mathrm{kV}$, the original design provided for a minimum of $1400-\mathrm{A}$ per phase at the FOA loading level. At the projected load of $220-\mathrm{MVA}$, the phase current would be $1840-\mathrm{A}$. That represents an additional $440-\mathrm{A}$ per phase on the $69-\mathrm{kV}$ side of the transformer. All external $230-\mathrm{kV}$ and $69-\mathrm{kV}$ equipment associated with the transformer should be capable of carrying the additional current.

Assuming there are no internal or external limitations to increasing the rating of the transformer to $220-\mathrm{MVA}$, adding cooling fans to the existing transformer would require major modifications. The existing radiators would have to be replaced with much larger units with greater surface area to make the fans more efficient. Additional radiators would be required. They could be installed on the west side of the transformer, which is the only unencumbered side. The potential transformers and air-break switches north of the transformer will have to be relocated along with their associated support structures and foundations. (See Pictures 6, 7, 10, 11, 16, and 17 in Appendix B.)

The existing fans and oil circulating pumps are fed from an auxiliary transformer rated 75kVA. It will not have sufficient capacity to provide a viable source of power for the larger number of fans and oil circulating pumps required. The associated power distribution panelboard will also have to be replaced to provide a greater number of circuits for the new fans and pumps.

Pumping the oil through the radiators would reduce the number of fans required. However, the efficiency of forced oil circulation is limited by diminishing returns. In order to release the optimum amount of heat the oil has to be in contact with the cooled radiator surfaces for a given period of time. The length of contact time required is determined by the ambient temperature and humidity, the heat exchange ratios between the oil and the radiators, and the amount of heat the external fans can remove from the radiators.

Forcing the flow of oil through the radiators faster than the required amount of time it takes for optimum heat removal is not cost effective. Typically, oil-pumping equipment can provide between a 12% and 20% increase in the rating of the transformer. That would provide a boost of 18 to $30-\mathrm{MVA}$. The remaining 40 to $52-\mathrm{MVA}$ required over the OA rating will have to be provided by cooling fans.

In conclusion, while the addition of auxiliary cooling equipment to increase the rating of the existing transformer at Ariana Substation is technically feasible, it will require extensive modifications to the transformer and the surrounding equipment. It will also require the installation of a temporary transformer to maintain the substation in service during construction.

The proposed modifications will include the following as minimum:
$>$ Coordinating with TECO and transformer manufacturer to verify that the rating increase is not limited by the internal transformer limitations discussed previously,
$>$ Verifying that the ratings and capacities of associated equipment and hardware are high enough to accept the increased currents and associated heating,
> Installing a temporary transformer with associated busses, disconnect switches, and with self contained metering and relaying devices,
> If required, replacing external equipment that is undersized for the increased current flows,
> Relocating existing air-break switches and potential transformers with associated supports,
> Removing existing radiators with associated fans, oil circulating pumps, and associated piping and replacing with larger radiators with new fans, oil circulating pumps, and piping, and
> Relocating existing lightning arrestors currently located directly over the existing radiators.

Technical Feasibility of Option T2

The approach for adding a second transformer at the Ariana Substation includes providing a new transformer bay adjacent to the existing transformer. The substation layout provides space for a second transformer to be added at a future date. There are no technical limitations for the implementation of this option.

Prices for equipment, materials, and labor were obtained from past NCI projects, local contractors, vendors, manufacturers, and other utilities. All prices were adjusted to 1999 prices using the "handy-Whitman Index of Public Utility Construction Costs". The 1999 prices were increased by 3% to approximate Y 2000 prices. This increase is based on an assumed annual inflation rate of 3%.

Table 4 provides a breakdown of the estimated construction cost for upgrading the two short sections of the Recker to Crews Lake Line that currently uses 954 -kcmil, ACSR conductor. Table 5 provides a breakdown of the estimated cost for upgrading the structures and conductors in the wood pole sections of the Crews Lake to Pebbledale Line and the conductor in the existing section of he line that currently uses single pole tubular steel structures. Table 6 provides a breakdown of the estimated construction costs for adding auxiliary cooling equipment to the existing $150-\mathrm{MVA}$ transformer at Ariana Substation. Finally, Table 7 provides a breakdown of the estimated construction cost for adding a second transformer at Ariana Substation.

The following budget level construction cost estimates have an accuracy of $\pm 15 \%$.

Table 4

Construction Cost Estimate for
Upgrading Sections of the
Recker to Crews Lake 230-kV Transmission Line

Assumptions: | | Flat terrain |
| :--- | :--- |
| | Normal access |
| | $1590-\mathrm{kcmil}$ ACSR conductor |
| | $3 / 8^{\prime \prime}$ overhead ground wire |
| | Existing right-of-way is adequate |
| | No environmental statement required |
| | Poles are spun cast concrete |
| | Line is single circuit |
| | Line section length is $7387^{\prime}(=1.4$ miles $)$ |
| | Number of tangent structures $=14$ |
| | Number of corner structures $=4$ |
| | Number of deadend structures $=1$ |

Table 4

(Continued)

Cost Estimate:
Concrete Poles 104,710
Guying 23,000
Conductor 209,860
Overhead Ground Wire 34,010
Insulators and Hardware 53,120
Demolition 12,470
Surveying 4,200
Geological Investigation 7,000
Engineering 67,260
Construction Services 53.800
TOTAL \$569,430

Table 5
 Construction Cost Estimate for Upgrading the Crews Lake to Pebbledale 230-kV Transmission Line

Assumptions: Flat terrain
Normal access
$1590-\mathrm{kcmil}$ ACSR conductor
$3 / 8^{\prime \prime}$ overhead ground wire
Existing right-of-way is adequate
No environmental statement required
New poles will be spun cast concrete
Line is single circuit
Line length is $33,088^{\prime}$ ($=6.3$ miles)
Number of tangent structures $=47$
Number of corner structures $=10$
Number of deadend structures $=2$
Number of angle structures $=6$
Cost Estimate:
Concrete Poles 155,340
Guying 50,600
Conductor 710,940
Overhead Ground Wire 110,420
Insulators and Hardware 83,900
Demolition 40,440
Surveying 9,600
Geological Investigation 16,000
Engineering 129,500
Construction Services 117,720
TOTAL \$1,424,460

Table 6
 Construction Cost Estimate for Adding Auxiliary Cooling Equipment to Existing Transformer at Ariana Substation

-	Assumptions: $\begin{array}{ll}\text { No site work required } \\ & \text { Normal access } \\ & \text { Soil is adequate for new equipment foundations } \\ & \text { No additional land required } \\ & \text { No control building required } \\ & \text { No environmental statement required } \\ & \text { Existing transformer suitable for upgrading }\end{array}$	
-		
	Cost Estimate:	
	Auxiliary Cooling Equipment	370,330
	Modifications to Existing Transformer	166,650
-	Installation of Cooling Equipment	53,700
	Adjustments and Relocation of Surrounding Equipment	113,130
	Temporary Transformer	281,420
	Demolition	83,770
	Surveying	7,200
-	Engineering	160,350
	Construction Services	128.280
-	Total	1,364,830

Table 7

Construction Cost Estimate for Adding a Second Transformer at Ariana Substation

Assumptions: No site work required Normal access
Soil is adequate for new foundations
No additional land required No control building required No environmental statement required
Existing transformer stays
New transformer is 150-MVA, FOA to match existing
Cost Estimate:
New Transformer 2,574,690
Circuit Protection Device (Breaker) 187,720
Switches 58,740
Control and Protection Systems 83,010
Bus Systems ($230-\mathrm{kV}$ and $69-\mathrm{kV}$) 126,420
Equipment Support Foundations 152,390
Surveying 12,000
Engineering 477,450
Construction Services 381,960
TOTAL \$4,054,380

CONCLUSIONS AND RECOMMENDATIONS

The existing wood, H-frame and single pole structures in sections of the Recker to Crews Lake and Crews Lake to Pebbledale 230-kV Transmission Lines are not strong enough to support the larger 1590-kcmil, ACSR conductors. Therefore, those line sections should be upgraded using spun cast concrete poles. Upgrading the line sections in the Recker to Crews Lake Line will cost approximately $\$ 549,880$. Upgrading the sections of the Crews Lake to Pebbledale Line will cost approximately $\$ 1,424,460$.

To resolve the transformer overloading problem at Ariana Substation we looked at two conventional options and one potential option that requires no physical modifications to the Substation; but does require entering into negotiations with TECO regarding compensation for the planned loss of life of the transformer.

For obvious economic and scheduling reasons, we recommend pursuing the following options in the order in which they are:
$>$ Making no changes at the substation and entering negotiations with TECO to arrive at an equitable method for reimbursing them for the loss of life of the transformer resulting from the short periods of overloading above its FOA rating.
$>$ Adding auxiliary cooling equipment to the existing transformer to increase its capacity by 50% to 220 -MVA. While this is technically feasible and less costly than installing a new larger transformer at the Substation, it is subject to many limitations including those limitations imposed by the original transformer design. These limitations are not apparent from a physical inspection of the transformer. Therefore, we were not able to evaluate them. This option requires the installation of a temporary second transformer at the substation to maintain the station in service while the modifications are made to the existing transformer.
$>$ Adding a second transformer at Ariana Substation is the most costly option. While it does not carry any of the caveats that the two previous options have, it is three times more costly than the addition of cooling equipment to the existing transformer. It requires the installation of a new transformer bay at the station with associated breakers, bus, and switches.

Calculation of Max Itoriz Spoor for
1t-Frame, Wood Pole Structure
Conductor 131590 ASSR

\qquad
. For the TECO Structure:

$$
\begin{array}{ll}
y=19^{\prime} & x_{1}+x_{0}=21^{\prime} \\
y_{1}=10^{\prime} & z_{1}+z_{0}=9^{\prime} \\
h=59^{\prime}-6^{\prime \prime} & p_{1}+p_{0}=10^{\prime} \\
b=19^{\prime}-6^{\prime \prime} & h_{1}=60^{\prime}-4.6^{\prime}=55.4^{\prime} \\
& h_{2}=h_{1}-x_{0}=55.4^{\prime}-11.3
\end{array}
$$

$$
\frac{x_{0}}{x_{1}+x_{0}}=\frac{c_{A}\left(2 c_{A}+c_{0}\right)}{2\left(c_{A}^{2}+c_{A} c_{D}+c_{D}^{2}\right)} \quad b=19^{\prime}-6^{\prime \prime} \quad h_{1}=60^{\prime}-4.6^{\prime}=55.4^{\prime} 1
$$

Where: $C_{A}=$ circum forence at point $A=49.5^{\prime \prime} \quad h_{2}=44.1^{\prime}$
$C_{D}=$ circumference ot point $D=44^{\prime \prime}$

\qquad
$A / s o$
\qquad

$$
Z_{0}=\left[\begin{array}{c}
3443.1 \\
\frac{34.5[(2 \times 34.5)+30.8)]}{2\left[(34.5)^{2}+(34.5 \times 30.8)+(30.8)^{2}\right]} \\
6402.98
\end{array}\right]
$$

$-\ldots z_{0}=4.8 \quad \Longrightarrow \quad z_{1}=4 . z^{\prime}$

- \qquad Where: $H_{B}=$ Mox. Horizi Span due to momentsat point B
........2,joules $\quad M{B}=$ Moment capacity at point B. ($\mathrm{ft}-\mathrm{lbs}$)
OCF $=$ Orerlodd copocity foctor
$F=$ Wind pressure on cylindricel surfase (psf).

$$
y=19^{\prime}
$$

$$
z_{0}=4.8^{\prime}
$$

$d_{t}=$ Pole diometer at pole top (ft)
$d_{f}=$ Pole diomelerst point $F(f t)$
$z_{1}=4.2^{\prime}$
$P_{t}=$ Totsi horiz force /LF due to wind on
conductors $\& \mathrm{OH}^{\mathrm{H}} \mathrm{W}(\mathrm{lbs} / \mathrm{ft})$
In this cose: $M_{B}=61,400$ (ft-1bs) from REA Bulletin
1724E-200, Appendix F
Page F-11
$O C E=4.0$ from $N E S$

$$
\begin{aligned}
F & =45(\mathrm{psf}) \\
d_{t} & =8.6 / \mathrm{lz}(\mathrm{ft}) \\
d_{F} & =10.97 / \mathrm{lz}(\mathrm{ft}) \\
P_{t} & =(5.64 / \mathrm{bs} / \mathrm{ft} \times 3)+(45 / \mathrm{ls} / \mathrm{Lf} \times 2) \\
& =1782
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Max Hocizontol Spons (w/ } 1590 \text { ACSR Cand on H-Fromes) } \\
& H S_{B}=\left[M_{B}-\frac{(o c F)(F)\left(y-z_{0}\right)\left(d_{t}+d_{f}\right)\left(z_{i}\right)}{2}\right] /\left[\frac{(\partial c r)\left(P_{t}\right)\left(z_{1}\right)}{2}\right]
\end{aligned}
$$

So:

$$
H S_{B}=\frac{\left[61,400-\frac{4.0 \times 45 \times 14.2 \times 1.63 \times 4.2}{2}\right]}{\left[\frac{40 \times 17.82 \times 4.2}{2}\right]}
$$

$$
H S_{B}=\frac{61400-8749.19}{149.69}=\left\{351.73^{\prime}<457^{\prime}\right. \text { Extst Aug Spd }
$$

$$
H S_{t}=\left[M_{F}-\frac{(O C F)(F)\left(y-z_{0}\right)\left(d_{t}+d_{f}\right)\left(z_{0}\right)}{2}\right] /\left[\frac{(O C F)\left(P_{T}\right)\left(z_{0}\right)}{2}\right]
$$

Where: $H_{E}=M_{\text {cix. }}$. Horiz. Spon due to momantat point E
$M_{E}=$ Moment copocity ot point E (ft-lbs)
All other voridbles ore the some
In this cose: $M_{E}=86,700(\mathrm{ft}-\mathrm{ks})$

$$
\begin{aligned}
& \| S_{E}=\left[86,700-\frac{4.0 \times 45 \times 14.2 \times 1.63 \times 4.8}{2}\right] /\left[\frac{1.0 \times 17.82 \times 4.8}{2}\right] \\
& H S_{E}=\frac{86,700-9999.07}{171.07}=\left\{448.36^{\prime}\right.
\end{aligned}
$$

$$
H S_{D}=\left[M_{D}-\frac{(O C F)(f)\left(h-x_{0}\right)\left(x_{1}\right)\left(d_{t}+d_{c}\right)}{2}\right] /\left[\frac{(o c F)\left(P_{t}\right)\left(x_{1}\right)}{2}\right]
$$

Where: $H S_{D}=M_{d x}$. Horiz, Span due to moments at paint D
$M_{D}=$ Moment copocrty at point $D(f t-1 b s)$
$d_{c}=$ Pole diameter at Point c (ft)

In this ede: $M_{0}=152,200(\mathrm{ff}-1 \mathrm{lbs})$

$$
d_{6}=14.08 / 12 \mathrm{ft}
$$

All other varidbles hove the same meanings solves

$$
\begin{aligned}
& \text { So: } \\
& H S_{D}=\left[152,200-\frac{4 \times 45 \times 48.2 \times 9.7 \times 1.89}{2}\right] /\left[\frac{4 \times 17.82 \times 9.7}{2}\right. \\
& H S_{D}=\frac{152,200-79,528.55}{691.42}=105.1^{\prime}<457^{\prime} \text { ExistAug sf }
\end{aligned}
$$

$$
H S_{A}=\left[\mu_{1}-\frac{(\sigma C F)(F)\left(h-x_{0}\right)\left(x_{0}\right)\left(d_{t}-d_{c}\right)}{2}\right] /\left[\frac{\left(0(F)\left(p_{t}\right)\left(x_{0}\right)\right.}{2}\right]
$$

Where: $H S_{A}=M$. Horiz. Span due to moments at paint A, ground line moments.
$M_{A}=$ Moment capacity at paint $A(f t-1 b s)$
In this case: $M_{A}=256,000(f t-16 s)$
All other variables hove the some meanings $\&$ values

So:

$$
\begin{aligned}
& H S_{A}=\left[256000-\frac{4.0 \times 45 \times 48.2 \times 11.3 \times 1.89}{2}\right] /\left[\frac{4 \times 17.82 \times 11.3}{2}\right] \\
& H S_{A}=\frac{256,000-92,646.67}{805.46}=202.8^{\prime}<457^{\prime}
\end{aligned}
$$

$-$
Assume: Pole is 75^{\prime} toll
Conductors are A configuration
Max wind loading 45 psf.
\qquad Horiz, Span $=280^{\prime}$
Vertied Span $=300^{\prime}$
Ruling Span $=275.4^{\prime}$ (colculdted)
No adjustment Required for additional sag. A spume Poles are Class $H-1$

Mod Horlz, Span (w/1590 ACSR Pond.)

$$
H_{S}=\frac{M_{A}-\quad \text { (OCF) }\left(M_{\omega_{p}}\right)}{(O C F)\left[\left(P_{c}\right)\left(h_{a}+h_{b}+h_{c}\right)+\left(P_{q}\right)\left(h_{q}\right)\right]+(O C F)\left[\left(\omega_{c}\right)\left(S_{a}+S_{b}+S_{c}\right)+\left(m_{q}\right)\left(S_{q}\right)\right]}
$$

Where: $M_{A}=$ Ultimate Groundline Moment Capacity of Pole
OCF = Overload capocity Foctor (from NESC)
$M_{w p}=\frac{\left(P_{p}\right)\left(2 d_{t}+d_{p}\right)(h)^{2}}{6}=$ Moment Due to Wind on pole (ft - lbs)
Where: $P_{p}=$ Wind Press on Pole $(p s f)$
$d_{t}=$ Pole Top Diameter ($f t$)
$d_{a}=$ PoleGroundline Dicimeter (ft)
$h=$ Pole Height Above Groundline (ft)
$H S=$ Horizontd Spain (ft)
$P_{c}=$ Wind, Pressure on Conductor per. Unit Length ($1 \mathrm{bs} / \mathrm{ft}$)
$h_{a}=$ Height of A Phase (ft)
$h_{6}=$ ". B Phase (ft)
$h_{c}=$ Height of C Phase ((t)
$P_{g}=$ Wind Press. on OHGW per Unit Length (1bs/ft
$\mathrm{hg}=$ Height of OHGW (et)
$w_{c}=$ Weight of Gond per Unit Length (Ibs/ft)
$s_{a}=$ Horiz. Dist. from Pole Center to A Phase (ft)
$s_{6}=. " B$ Phase ($f t$)
$s_{c}=$ " " " " " " C Phase ($f t$)
$w_{g}=$ Weight of ottsw per Wart length (lbs/ft)
$S_{a}=$ Horiz. Dist. From Pole Center to $0 H 6 \mathrm{~W}(\mathrm{ft})$
\qquad So:

$$
M_{\text {rp }}=\frac{45 \times(2 \times .769+1.43)(65.5)^{2}}{6}=95.501 \mathrm{ft} 16 \mathrm{~s}
$$

$$
\begin{aligned}
& H S=\frac{331,700-(4 \times 95,501)}{4[5.64 \times(53.5778 .5743 .5)+.45 \times-65]+4[1.792(10)+.273 \times(.63)]} \\
& \text {-___ } \\
& \ldots H S=\frac{331,700-382,004}{3399.48+72.37}=-\frac{50,304}{3471.85}=-14,49^{\prime}
\end{aligned}
$$

\qquad
\qquad
Negative No. implies pole is not strong enough to carry 1590 kemil conductors.

-		
-		

Picture 1: \quad Nameplate for $75-$ KVA station power transformer mounted on 150MVA transformer at Ariana Substation.

Picture 2: Oil pump for west radiator on 150-MVA transformer

Picture 3: Oil pump for east radiator on 150-MVA transformer

Picture 4: \quad 150-MVA Transformer Nameplate

Picture 5: \quad 480-V power distribution panel board on 150-MVA transformer

Picture 6: View of existing radiators and fans on 150-MVA transformer (Note proximity to potential device supports)

Picture 7: West side of 150-MVA transformer. Potential location for new auxiliary cooling devices.

Picture 8: \quad South side of 150 -MVA transformer showing LTC.

Picture 9: South side of 150-MVA transformer

Picture 10: East side of 150-MVA transformer showing bus arrangement and surrounding facilities

Picture 11: Panoramic view of Ariana Substation

Picture 12: Typical single pole wood and concrete angle structures

Picture 13: Access road to Ariana Substation. Background shows typical single pole wood and concrete corner structures.

Picture 14: Typical single pole concrete tangent structure

Picture 16: Panoramic view of Ariana Substation

Picture 17: Panoramic view of Ariana Substation

8

Picture 18: Typical single pole tubular steel tangent structure

Picture 19: Typical single pole tubular steel corner structure

Picture 20: Pole top framing for single pole tubular steel corner structure

Picture 21: Pole top framing for single pole tubular steel corner structure

Picture 22: East half of Recker Substation

Picture 24: Typical single pole tubular steel tangent structure in Recker to Lake Agnes $230-\mathrm{kV}$ line

