ORIGINAL

RECEIVED-FPSC

Legal Department

BENNETT L. ROSS General Attorney

BellSouth Telecommunications, Inc. 150 South Monroe Street Room 400 Tallahassee, Florida 32301 (404) 335-0793 00 AUG 21 AM 11:01

RECURS AND REPORTING

August 21, 2000

Mrs. Blanca S. Bayo Director, Division of Records and Reporting Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399

RE: Docket No. 990649-TP

Dear Mrs. Bayo:

Enclosed are an original and 15 copies of BellSouth Telecommunications, Inc.'s. Rebuttal Testimony of D. Daonne Caldwell, William H. B. Greer, Wiley G. (Jerry) Latham, W. Keith Milner, Joseph H. Page, Ronald M. Pate, Walter S. Reid, James W. Stegeman and Alphonso J. Varner. Please file these documents in the captioned docket.

A copy of this letter is enclosed. Please mark it to indicate that the original was filed and return the copy to me. Copies have been served on the parties shown on the attached Certificate of Service.

Bundl L. Ross (54)

APP		
CAF Encl	osures	
CMP		
COM cc:	All Parties of Record	
ECR	M. M. Criser, III	
LEG	N. B. White	
OPC	R. D. Lackey	
PAI RGO	•	
SEC	RECEIVED & FILED	
OTH	· · · · · · · · · · · · · · · · · · ·	
	FPSC-BUREAU OF RECO)RD\$

10190-00

CERTIFICATE OF SERVICE Docket No. 990649-TP

I HEREBY CERTIFY that a true and correct copy of the foregoing was served via

Federal Express and Electronically this 21st day of August, 2000 to the following:

Wayne D. Knight
Staff Counsel
Florida Public Service
Commission
Division of Legal Services
2540 Shumard Oak Boulevard
Tallahassee, FL 32399-0850
Tel. No. (850) 413-6216
Fax. No. (850) 413-6217
wknight@mail.psc.state.fl.us

Joseph A. McGlothlin (+)
Vicki Gordon Kaufman (+) *
McWhirter, Reeves, McGlothlin,
Davidson, Decker, Kaufman, Arnold,
& Steen, P.A.
117 South Gadsden Street
Tallahassee, FL 32301
Tel. No. (850) 222-2525
Fax. No. (850) 222-5606
Attys. For FCCA
*Atty. for BlueStar
jmcglothlin@mac-law.com

Marsha Rule (+)
AT&T Communications
101 North Monroe Street
Suite 700
Tallahassee, FL 32301
Tel. No. (850) 425-6364
Fax. No. (850) 425-6343
mrule@att.com

Jim Lamoureux (+)
AT&T Communications
1200 Peachtree Street, N.E.
Room 8068
Atlanta, Georgia 30309
Tel. No. (404) 810-4196
Fax. No. (404) 877-7648
jlamoureux@att.com

Richard D. Melson (+)
Gabriel E. Nieto
Hopping Green Sams & Smith, P.A.
Post Office 6526
123 South Calhoun Street
Tallahassee, FL 32314
Tel. No. (850) 222-7500
Fax. No. (850) 224-8551
Atty. For MCI
Atty. for Rhythms Link
rmelson@hgss.com

Dulaney L. O'Roark
MCI Telecommunications Corporation
6 Concourse Parkway
Suite 600
Atlanta, GA 30328
Tel. No. (770) 284-5498
Fax. No. (770) 284-5488
De.ORoark@mci.com

Floyd Self
Messer, Caparello & Self
Post Office Drawer 1876
215 South Monroe Street, Suite 701
Tallahassee, FL 32302-1876
Tel. No. (850) 222-0720
Fax. No. (850) 224-4359
Atty. for AT&T
fself@lawfla.com

Terry Monroe
Vice President, State Affairs
Competitive Telecomm. Assoc.
1900 M Street, N.W.
Suite 800
Washington, D.C. 20036
Tel. No. (202) 296-6650
Fax. No. (202) 296-7585
tmonroe@comptel.org

Jeremy Marcus (+)
Kristin Smith
Blumenfeld & Cohen
1625 Massachusetts Ave., Ste. 300
Washington, D.C. 20036
Tel. No. (202) 955-6300
Fax. No. (202) 955-6460
Represents Rhythms Links, Inc.
jeremy@technologylaw.com
kristin@technologylaw.com

Kimberly Caswell (+)
GTE Florida Incorporated
One Tampa City Center
201 North Franklin Street
Tampa, Florida 33602
Tel. No. (813) 483-2617
Fax. No. (813) 204-8870
kimberly.caswell@verizon.com

Karen M. Camechis (+)
Pennington, Moore, Wilkinson &
Dunbar, P.A.
215 South Monroe Street, 2nd Flr.
Tallahassee, Florida 32301
Tel. No. (850) 222-3533
Fax. No. (850) 222-2126
Represents Time Warner
Karen@penningtonlawfirm.com

Carolyn Marek (+)
Vice President of Regulatory Affairs
Southeast Region
Time Warner Communications
233 Bramerton Court
Franklin, Tennessee 37069
Tel. No. (615) 376-6404
Fax. No. (615) 376-6405
Carolyn.Marek@twtelecom.com

Mark E. Buechele, Esquire Supra Telecom 1311 Executive Center Drive Koger Center - Ellis Building Suite 200 Tallahassee, FL 32301-5027 Tel. No. (850) 402-0510 Fax. No. (850) 402-0522 mbuechele@stis.com

Donna Canzano McNulty, Esq. (+)
MCI WorldCom, Inc.
325 John Knox Road
The Atrium Bldg., Suite 105
Tallahassee, FL 32303
Tel. No. (850) 422-1254
Fax. No. (850) 422-2586
donna.mcnulty@wcom.com

Michael A. Gross (+)
VP Reg. Affairs & Reg. Counsel
Florida Cable Telecomm. Assoc.
310 North Monroe Street
Tallahassee, FL 32301
Tel. No. (850) 681-1990
Fax. No. (850) 681-9676
mgross@fcta.com

Florida Public Telecomm. Assoc. Angela Green, General Counsel 125 South Gadsden Street #200
Tallahassee, FL 32301-1525
Tel. No. (850) 222-5050
Fax. No. (850) 222-1355
abgreen@nettally.com

Intermedia Communications, Inc. Scott Sapperstein (+)
Sr. Policy Counsel
3625 Queen Palm Drive
Tampa, FL 33619-1309
Tel. No. (813) 829-4093
Fax. No. (813) 829-4923
SASapperstein@intermedia.com

Charles J. Rehwinkel (+)
1313 Blair Stone Road
Tallahassee, FL 32301
Tel. No. (850) 847-0244
Fax. No. (850) 878-0777
Counsel for Sprint
charles.j.rehwinkel@mail.sprint.com

John P. Fons (+)
Ausley & McMullen
227 South Calhoun Street
Tallahassee, FL 32301
Tel. No. (850) 224-9115
Fax. No. (850) 222-7560
Counsel for Sprint
jfons@ausley.com

Brian Sulmonetti
MCI WorldCom, Inc.
6 Concourse Parkway
Suite 3200
Atlanta, GA 30328
Tel. No. (770) 284-5500
Brian.Sulmonetti@wcom.com

Catherine F. Boone, Esq. (+)
Regional Counsel
Covad Communications Company
10 Glenlake Parkway
Suite 650
Atlanta, GA 30328-3495
Tel. No. (678) 579-8388
Fax. No. (678) 320-9433
cboone@covad.com

Charles J. Beck
Deputy Public Counsel
Office of the Public Counsel
111 West Madison Street
Room 812
Tallahassee, FL 32399-1400
Tel. No. (850) 488-9330
Fax. No. (850) 488-4491
charliebeck@bigfoot.com

Eric J. Branfman (+)
Morton J. Posner (+)
Swidler Berlin Shereff Friedman, LLP
3000 K Street, N.W., Suite 300
Washington, D.C. 20007-5116
Tel. No. (202) 424-7500
Fax. No. (202) 424-7645
Represents Florida Digital Network, Inc.
miposner@swidlaw.com

John McLaughlin KMC Telecom. Inc. 3025 Breckinridge Blvd., Suite 170 Duluth, GA 30096 Tel. No. (770) 931-5260 Fax. No. (770) 638-6796 jmclau@kmctelecom.com Bettye Willis (+)
ALLTEL Communications
Services, Inc.
One Allied Drive
Little Rock, AR 72203-2177
bettye.j.willis@alltel.com

J. Jeffry Wahlen (+)
Ausley & McMullen
227 South Calhoun Street
Tallahassee, FL 32301
Tel. No. (850) 425-5471
Fax. No. (850) 222-7560
Atty. for ALLTEL
jwahlen@ausley.com

Stephen P. Bowen
Blumenfeld & Cohen
4 Embarcadero Center
Suite 1170
San Fransisco, CA 94111
Tel. No. (415) 394-7500
Fax. No. (415) 394-7505
stevebowen@earthlink.net

Norton Cutler (+)
General Counsel
BlueStar Networks, Inc.
5 Corporate Centre
801 Crescent Centre Drive
Suite 600
Franklin, Tennessee 37067
Tel. No. (615) 778-7316
norton.cutler@bluestar.com

Michael Bressman (+)
Associate General Counsel
5 Corporate Centre
801 Crescent Centre Drive
Suite 600
Franklin, Tennessee 37067
Tel. No. (615) 778-7350
Fax. No. (615) 788-7354
michael.bressman@bluestar.com

Charles J. Pellegrini
Wiggins & Villacorta, P.A.
2145 Delta Boulevard, Suite 200
Tallahassee, FL 32303
Represents Intermedia
wiggvill@nettally.com

George S. Ford (+)
Chief Economist
Z-Tel Communications, Inc.
601 South Harbour Island Blvd.
Tampa, FL 33602
Tel. No. (813) 233-4630
Fax. No. (813) 233-4620
gford@z-tel.com

Jonathan E. Canis
Michael B. Hazzard
Kelley Drye & Warren, LLP
1200 19th Street, NW, Fifth Floor
Washington, DC 20036
Tel. No. (202) 955-9600
Fax. No. (202) 955-9792
jcanis@kelleydrye.com
mhazzard@kelleydrye.com
Counsel for Z-Tel Communications, Inc.

Rodney L. Joyce
Shook, Hardy & Bacon, LLP
600 14th Street, N.W., Suite 800
Washington, D.C. 20005-2004
Tel. No. (202) 639-5602
Fax. No. (202) 783-4211
rjoyce@shb.com
Represents Network Access Solutions

Russell M. Blau
Marc B. Rothschild (+)
Robert Ridings
Swidler Berlin Shereff Friedman
3000 K Street, N.W.
Suite 300
Washington, D.C. 20007-5116
Tel. No. (202) 424-7755
Fax. No. (202) 424-7643
Attys. for Broadslate Networks, Inc.
Attys. for Network Telephone
Attys. for Cleartel Comm.
mbrothschild@swidlaw.com
riridings@swidlaw.com

John Spilman
Director Regulatory Affairs and
Industry Relations
Broadslate Networks, Inc.
675 Peter Jefferson Parkway
Suite 310
Charlottesville, VA 22911
Tel. No. (804) 220-7606
Fax. No. (804) 220-7701
john.spilman@broadslate.net

Gary Cohen (+)
Blumfeld & Cohen
1625 Massachusetts Ave., N.W.
Suite 320
Washington, D.C. 20036
Represents Rhythms Links, Inc.
gary@technologylaw.com

Hope G. Colantonio
Legal & Regulatory Manager
Cleartel Communications, Inc.
1255 22nd Street N.W., 6th Floor
Washington, D.C. 20037
Tel. No. (202) 715-1300
h.colantonio@cais.com

Brent E. McMahan
Vice President Regulatory and
Government Affairs
Network Telephone Corporation
815 South Palafox Street
Pensacola, FL 32501
brentm@networktelephone.net

(+) Signed Protective Agreement

ORIGINAL

1		BELLSOUTH TELECOMMUNICATIONS, INC.
2		REBUTTAL TESTIMONY OF D. DAONNE CALDWELL
3		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
4		DOCKET NO. 990649-TP
5		(PHASE II)
6		AUGUST 21, 2000
7		
8	Q.	PLEASE STATE YOUR NAME, ADDRESS AND OCCUPATION.
9		
10	A.	My name is D. Daonne Caldwell. My business address is 675 W. Peachtree St.,
11	-	N.E., Atlanta, Georgia. I am a Director in the Finance Department of BellSouth
12		Telecommunications, Inc. (hereinafter referred to as "BellSouth"). My area of
13		responsibility relates to the development of economic costs.
14		
15	Q.	ARE YOU THE SAME D. DAONNE CALDWELL THAT FILED DIRECT
16		TESTIMONY AND PHASE I REBUTTAL TESTIMONY IN THIS
17		DOCKET?
18		
19	A.	Yes.
20		
21	Q.	WHAT IS THE PURPOSE OF YOUR TESTIMONY?
22		
23	A.	My testimony addresses the issues that the Florida Public Service Commission
24		("Commission") intends to consider in Phase II of this proceeding. Thus, my
25		testimony is devoted to responding to cost development issues raised in the

-1-

1	testimony filed by intervening parties. Specifically, I respond to allegations made
2	by Sprint witnesses, Steven M. McMahon, Talmage O. Cox, James W. Sichter, and
3	Kent W. Dickerson, Broadslate/Cleartel/FL Digital/Network Telephone ("The
4	Coalition") witness, Mark Stacy, FCTA witness, William J. Barta, FCCA witness,
5	Joseph P. Gillan, AT&T/MCI WorldCom witnesses, Brenda J. Kahn, John C.
6	Donovan, Brian F. Pitkin, Greg Darnell, and Jeffrey King,
7	BlueStar/Covad/Rhythms Links ("Data ALECs") witnesses, Joseph P. Riolo and
8	Terry L. Murray.
9	
10	REBUTTAL OF TESTIMONY
11	Q. CAN YOU SUMMARIZE THE COMMENTS MADE BY INTERVENING
12	PARTIES WITH RESPECT TO COST DEVELOPMENT?
13	
14	A. Yes. The main thrust of the criticism can be divided into the following areas:
15	
16	1) Nonrecurring Cost Development - especially for xDSL loops, loop
17	modification, and access to BellSouth's loop make-up databases. Additionally,
18	there appears to be an underlying implication that BellSouth is seeking to
19	double recover labor costs in both its recurring and nonrecurring costs.
20	
21	2) Models - BSTLM assumptions, engineering rules, and network design and the
22	SST® model. (BellSouth witness Joe Page is filing rebuttal testimony in response
23	
24	
25	© 2000 BellSouth Corporation, All Rights Reserved

1		to AT&T/MCI witness Catherine Pitts' comments concerning BellSouth's SST
2		model. Additionally, Jim Stegeman, on behalf of BellSouth, will address the
3		BSTLM. BellSouth witness Keith Milner will address the underlying
4		engineering assumptions utilized in the BSTLM.)
5		
6		3) Factors - shared and common cost factors, inflation, in-plant factors, and
7		loadings. (BellSouth witness Walter Reid is addressing the common cost factor
8		in his rebuttal testimony.)
9		
10		4) Deaveraging - which elements display cost variation by geographic location and
11.	-	thus, should be deaveraged. It appears as if Sprint is the only party advocating
12		deaveraging anything but the loop. (BellSouth witness Al Varner will support
13		BellSouth's proposed deaveraging methodology in his rebuttal testimony.)
14		
15		5) Network Terminating Wire/Intrabuilding Network Cable ("NTW/INC") –
16		several parties are questioning BellSouth's proposed method of access and the
17		associated costs. BellSouth witness Keith Milner will respond to the comments
18		concerning the provisioning of NTW/INC. I will discuss the cost development.
19		
20	Q.	BOTH THE FEDERAL COMMUNICATIONS COMMISSION ("FCC")
21		AND THE EIGHT CIRCUIT COURT HAVE ISSUED ADDITIONAL
22		RULINGS THAT AFFECT THIS PROCEEDING. PLEASE COMMENT.
23		
24	A.	Since the last proceeding in which the Commission established cost-based rates, the
25		FCC issued its UNE Remand Order. While the FCC's UNE Remand Order did not

1	alter the Total Element Long Run Incremental Cost ("TELRIC") methodology, it
2	basically expanded the universe of elements BellSouth is obligated to offer to
3	Alternative Local Exchange Carriers ("ALECs"). On July 18, 2000 the United
4	States Court of Appeals for the Eighth Circuit issued an opinion that struck down
5	the FCC's TELRIC pricing rules. The Court held that unbundled network element
6	("UNE") costs should be determined using forward-looking costs of the Incumbent
7	Local Exchange Company's ("ILEC's") existing network rather than on the costs
8	of a hypothetical network of an imaginary carrier.
9	
10	BellSouth has not fully evaluated the impacts of the Court's decision on the cost
11,	methodology for UNEs, further, the full impacts will not be known until the FCC
12	issues new rules consistent with the Eighth Circuit's decision. Therefore, BellSouth
13	has not made any changes to the underlying TELRIC methodology, used in the
14	August 16th filing, to reflect the affect of the Eighth Circuit Court's decision.
15	Thus, BellSouth's costs are forward-looking but are conservative (low) based on
16	the Eight Circuit's opinion.
17	
18	Several parties have dusted off their crystal balls and are making predictions as to
19	the impact of the recent Eighth Circuit Court's Ruling with respect to cost
20	development. As I stated previously, BellSouth feels it is premature to anticipate the
21	full impact or the eventual outcome of this decision. However, let me state that Ms.
22	Murray's belief that this ruling can somehow be construed to exclude consideration
23	of shared and common costs in the rate setting process is not supported by the
24	Court's decision. (Murray Testimony, Page 13)

7	Additionally, FCCA witness Mr. Gillan's belief that the Court's decision advances
2	the exclusion of "fixed" costs such as costs associated with land and buildings is
3	unsupportable. (Gillan Testimony, Page 13) In fact, this short-run methodology is
4	in direct violation of the long-run principle of cost development.
5	
6	Supra witness Mr. Nilson also offers another short-run approach he claims follows
7	the Eighth Circuit's intent. At page 5, he states that because of the Eighth Circuit's
8	ruling, "ILECs should be required to provide the current time in service of each and
9	every piece of equipment comprising the UNEs to be priced." In other words, as I
10	understand Mr. Nilson's point, BellSouth should determine the remaining life of
11	every piece of equipment and every facility that comprise the network being
12	unbundled. This would be a daunting task to say the least, and is an absurd
13	proposition on its face. Furthermore, using remaining lives to establish forward-
14	looking costs is inconsistent with a forward-looking cost approach since all costs
15	are variable in the long run.
16	
17	NONRECURRING COST DEVELOPMENT
18	Q. PLEASE EXPLAIN THE DIFFERENCES BETWEEN CAPITALIZED
19	LABOR AND NONRECURRING LABOR EXPENSE.
20	
21	A. Since the majority of the parties' testimony centers on the loop, I will use it as an
22	example. The labor associated with the installation of the loop (i.e., the
23	construction of the loop) is capitalized based on accounting rules. Part 32 of the
24	FCC's Code of Federal Regulations states: "In accounting for construction costs,
25	the utility shall charge to the telephone plant accounts, all direct and indirect costs."

1		Included in the direct and indirect costs are the "wages and expenses of employees
2		directly engaged in or in direct charge of construction work." Thus, BellSouth has
3		appropriately included these labor-related costs (construction costs) in the
4		calculation of the investment; i.e., as part of the capitalized plant account. The
5		costs associated with the investment (material plus installation costs) are expressed
6		on a recurring (monthly) basis and are comprised of capital costs and operating
7		expenses.
8		
9		Nonrecurring costs, on the other hand, include activities associated with
10		provisioning the service after the loop has been installed. In other words, these are
11.	-	costs BellSouth incurs as a result of a service request.
12		
13	Q.	SEVERAL WITNESSES SEEM TO BE CONFUSED BY THIS
	Q.	SEVERAL WITNESSES SEEM TO BE CONFUSED BY THIS DEFINITION OF NONRECURRING COSTS AND ASSERT THAT
13	Q.	
13 14	Q.	DEFINITION OF NONRECURRING COSTS AND ASSERT THAT
13 14 15	Q.	DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS
13 14 15 16		DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS
13 14 15 16 17		DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS IN ITS STUDY. PLEASE COMMENT.
13 14 15 16 17 18		DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS IN ITS STUDY. PLEASE COMMENT. Ms. Murray's statement on page 55 that "the recurring cost that new entrants
13 14 15 16 17 18		DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS IN ITS STUDY. PLEASE COMMENT. Ms. Murray's statement on page 55 that "the recurring cost that new entrants incur already includes costs for all installation work that BST also seeks to
13 14 15 16 17 18 19 20		DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS IN ITS STUDY. PLEASE COMMENT. Ms. Murray's statement on page 55 that "the recurring cost that new entrants incur already includes costs for all installation work that BST also seeks to include in its nonrecurring cost study" is false. As I mentioned previously, the
13 14 15 16 17 18 19 20 21		DEFINITION OF NONRECURRING COSTS AND ASSERT THAT BELLSOUTH INAPPROPRIATELY REFLECTS ITS LABOR COSTS IN ITS STUDY. PLEASE COMMENT. Ms. Murray's statement on page 55 that "the recurring cost that new entrants incur already includes costs for all installation work that BST also seeks to include in its nonrecurring cost study" is false. As I mentioned previously, the nonrecurring costs BellSouth incurs to provision an unbundled loop for an

and only once BellSouth receives a service request from the ALEC. Examples

1		of nonrecurring activities include running the jumpers at the cross-box, making
2		the physical connection at the Network Interface Device ("NID"), and testing
3		the circuit to ensure that it meets the transmission requirements set for the
4		specific loop ordered. None of the costs of these activities are included in
5		BellSouth's recurring costs and therefore, there is no double recovery of costs.
6		
7	Q.	SEVERAL OF THE WITNESSES FEEL THAT ACTIVITIES
8		BELLSOUTH CATEGORIZED AS NONRECURRING ARE
9		ALREADY RECOVERED IN THE RECURRING MAINTENANCE
10		FACTOR. ARE THEY CORRECT?
11	-	
2	A.	No. Joseph Riolo's contention that loop conditioning costs are included in
13		BellSouth's plant maintenance costs is false. (Riolo Testimony at Page 12)
4		Mr. Riolo feels that load coil removal is part of BellSouth's modernization
15		program and thus, the costs associated with that activity are captured as part of
16		BellSouth's maintenance budget, ultimately ending up in BellSouth's plant
17		specific expense. However, BellSouth is not aggressively removing load coils
18		as part of any rehabilitation initiative. 1 The load coils that are currently on
19		loops less than 18 Kft have been placed for a purpose at some point in time and
20		unless specific trouble occurs in the cable, they are not removed. It is the
21		ALEC's service request that causes BellSouth to incur the cost to remove load
22		coils or bridged tap. Thus, BellSouth is justified in charging the ALEC for the
23		

^{24 1} Ms. Murray's discussion, at page 46, of SBC's "Project Pronto" is illustrative of such a modernization initiative. BellSouth has not evaluated such a project. Furthermore, costs of such a magnitude (\$6 billion) have not been considered in BellSouth's cost study.

1		activity.
2		
3		Sprint witness Steven McMahon, makes a similar mistake on page 26 of his
4		testimony in equating trouble resolution activities to maintenance activities that are
5		considered in the recurring cost of the loop. Again, this is a misrepresentation of
6		the correct classification of labor costs. BellSouth cannot close the ALEC's service
7		request until all troubles are cleared and the circuit is available for the ALEC's
8		desired use. The costs associated with clearing a trouble as part of a service
9		request are obviously not part of the routine maintenance costs included in the
10		recurring cost component and are appropriately calculated as a nonrecurring
11.		expense.
12		
13		One important aspect that distinguishes a nonrecurring cost from a recurring cost is
14		that a nonrecurring cost reflects a one-time activity; i.e., it is not part of a recurring
15		on-going routine. The conditioning and testing activities discussed by Mr. Riolo
16		and Mr. McMahon are one-time tasks undertaken only after a service request is
17		received.
18		
19	Q.	SEVERAL OF THE WITNESSES HAVE ARGUED THAT A NETWORK
20		BASED ON A FORWARD-LOOKING DESIGN WOULD NOT HAVE
21		LOAD COILS AND BRIDGED TAP AND THUS, BELLSOUTH SHOULD
22		NOT BE ENTITLED TO RECOVER ANY COSTS ASSOCIATED WITH
23		CONDITIONING. PLEASE RESPOND.
24		
25	A.	I agree with the postulate that a forward-looking network being designed today

1	would not include load coils. In fact, load coils are not included in BellSouth's
2	forward-looking loop recurring cost studies. However, the fact remains that
3	ALECs are requesting unloaded copper loops from BellSouth's existing network,
4	which contains both load coils and bridged tap. The removal of these elements is a
5	very real on-going cost that BellSouth will incur each and every time that an ALEC
6	requests that BellSouth condition a loop. As long as BellSouth is required to
7	remove load coils and bridged tap at the ALEC's request, BellSouth must be
8	allowed to recover those costs. This is completely consistent with the FCC's views
9	that, "under our rules, the incumbent should be able to charge for conditioning such
10	loops." (¶193, FCC CC Docket 96-98 UNE Remand Order)
11.	
12	On pages 85-86 of her testimony, Ms. Murray attempts to interpret the FCC's
13	intent. First, I agree with Ms. Murray that "a state commission may require an
14	incumbent to recover any nonrecurring costs through recurring charges." This is an
15	issue addressed in Phase I of this proceeding, and both the Tennessee Regulatory
16	Authority and the North Carolina Utilities Commission have adopted this approach
17	for certain nonrecurring costs. It is this Commission's decision as to how costs
18	should appropriately be charged, constrained by practical considerations, such as,
19	the ability to bill. It is Ms. Murray's second point, however, that requires
20	comment. She asserts that "the incumbent's recurring costs and charges for
21	unbundled loops will completely capture the forward-looking costs for providing
22	loops free of load coils, excessive bridged tap and other devices." As I have
23	discussed previously, this is simply not the case. Further, the loop portion of the
24	cost study provides costs for loops free of load coils and bridged tap, but does not
25	include costs for removing them.

1		
2	Q.	ON PAGE 72, MR. RIOLO ALLEGES THAT LOOP CONDITIONING IS
3		PROVIDED AT NO CHARGE FOR BELLSOUTH'S RETAIL ADSL
4		SERVICE. IS HE CORRECT?
5		
6	A.	No. BellSouth offers two distinct retail ADSL services, Industrial Class and
7		Business Class. As the document from which Mr. Riolo quotes states, "Industrial
8		Class service is provisioned as a non-design 'as-is' service." (Page 7, 915-800-
9		019PR - Outside Plant Engineering Methods and Procedures for BellSouth® ADSL
10		Service). The Industrial Class service was intended for the residential market, and
11-		BellSouth does not ordinarily condition a loop in order to make the service work
12		for that customer. The efforts Mr. Riolo lists in his testimony are made only in
13		limited cases and only in the event BellSouth mistakenly told the customer that the
14		loop would meet ADSL parameters when in fact it could not. Thus, BellSouth felt
15		obligated to attempt to make the loop work and absorb the cost of doing so. On
16		the other hand, for Business Class service, BellSouth will make an effort to make
17		the loop compliant with ADSL standards. The cost associated with this
18		conditioning effort was reflected in the cost study for BellSouth's retail ADSL
19		service and allocated to all Business Class ADSL loops.
20		
21	Q.	ON PAGE 54 OF HER TESTIMONY, MS. MURRAY CONTENDS THAT
22		BELLSOUTH "INAPPROPRIATELY PRESUMES THAT IT SHOULD
23		BUNDLE MANUAL LOOP QUALIFICATION AND CONDITIONING
24		RELATED COSTS INTO THE COST TO PROVISION DSL-CAPABLE

LOOPS." PLEASE RESPOND.

1		
2	A.	As discussed in my revised direct testimony filed on August 18, 2000, BellSouth
3		has revised its nonrecurring costs in its August 16 th filing to separate the costs
4		associated with producing a manual loop make-up from the provisioning of the
5		xDSL loop. Rebuttal Exhibit DDC-7 outlines the impact of the revised
6		nonrecurring costs for xDSL loops. This change should address at least part of Ms.
7		Murray's concerns.
8		
9		Ms. Murray's second point that BellSouth included conditioning costs in its xDSL
10		provisioning costs is accurate. As I explained in my rebuttal testimony filed in Phase
11	-	I of this proceeding, BellSouth has endeavored to expand the universe of xDSL-
12		capable loops for short loops by unloading 10 pairs each time conditioning takes
13		place. The conditioning cost has been allocated among those 10 pairs. It is
14		projected that of the 10 conditioned loops, an ALEC will purchase 2 and BellSouth
15		will utilize 4 pairs. That leaves 4 pairs whose conditioning costs will not be
16		recovered. BellSouth developed an additive that is applied to ADSL-compatible
17		loops, HDSL-compatible loops, and Unbundled Copper Loops ("UCLs") - Short in
18		order to compensate BellSouth for the unrecovered costs based on the probability
19		of xDSL loops requiring conditioning. This additive is displayed on Rebuttal
20		Exhibit DDC-7 as ULM Additive.
21		
22	Q.	REBUTTAL EXHIBIT DDC-7 SHOWS A COST FOR MECHANIZED
23		LOOP MAKE-UP ("LMU"). PLEASE EXPLAIN WHAT THAT COST
24		REFLECTS.

1	A.	First, let me state that BellSouth's August 16 th filing substantially reduced the cost
2		from \$1.08 per query to \$.69 per query. This reduction was the result of lower
3		than expected costs for implementing mechanized LMU. Second, the cost
4		associated with the mechanized loop make-up reflects the investment-related
5		expenses for the newly installed computer servers and data communications
6		equipment. The vendor-installed prices and installation costs for the incremental
7		investments are identified along with their associated hardware maintenance
8		expenses. This cost also includes software expenses for system development,
9		contractor expenses for the development, enhancement and implementation for the
10		computer applications, and ongoing computer application support.
11.		
12	Q.	MR. RIOLO ASSERTS ON PAGE 50 THAT "THE PRICE FOR THIS
13		FUNCTION SHOULD NOT EXCEED THE INCREMENTAL COST OF
14		THE PROCESSOR TIME ASSOCIATED WITH SUCH A DIP." PLEASE
15		COMMENT.
16		
17	A.	Obviously, from reviewing my previous response, BellSouth incurs costs for more
18		than a mere "dip" into its database. Software must be installed, additional
19		equipment must be purchased, and programming must be preformed in order for
20		ALECs to make use of the mechanized LMU. Each of these activities causes
21		BellSouth to incur a cost, which is caused by the ALECs, and thus, should be
22		recovered from the ALECs.
23		
24	Q.	IN DEVELOPING NONRECURRING COSTS, MR. RIOLO IMPLIES
25		THAT NETWORK PERSONNEL "MERELY AGREED TO ACCEPT THE

ı		COST ESTEVIATES PROVIDED TO [THEM] BY THE COST GROUP."
2		(PAGE 25) PLEASE RESPOND.
3		
4	A.	Let me explain the process BellSouth used to update the nonrecurring cost
5		information. Existing input information was gathered, and the different activities
6		for each loop were compared to other loops that had similar provisioning
7		requirements. This comparison was provided to the product teams for review,
8		possible update, and final concurrence.
9		
10		If Mr. Riolo is alleging that the cost analyst produced the inputs that went into the
11		study, he is sadly mistaken. As I described previously, the current product teams
12		were provided then existing inputs that had been provided to the cost group as a
13		starting point for the product team's review. The product teams could accept,
14		reject, or modify those inputs. The original inputs also were obtained from
15		network experts that participated on prior product teams and were in no way,
16		shape, or form "developed" by the cost analyst.
17		
18	Q.	MR. RIOLO ALSO CLAIMS TO HAVE DISCOVERED DISCREPANCIES
19		BETWEEN THE COST STUDY AND SUPPORTING DOCUMENTS. ARE
20		HIS CLAIMS ACCURATE?
21		
22	A.	No. On page 16, Mr. Riolo claims that BellSouth's cost study inappropriately
23		includes two test procedures and thus, overstated the costs. The real problem is
24		one of terminology and perspective. From the viewpoint of the UNE Center
25		("UNEC"), it is coordinating one test, but for two locations, one inside the central

1	office and one in the field. Thus, in actuality there is one test that takes 54 minutes
2	(2X27).
3	
4	On page 19, Mr. Riolo states that BellSouth "erroneously" used 61.8 minutes
5	instead of 45 minutes for Complex Resale Support Group ("CRSG") time. Mr.
6	Riolo apparently disregarded the second page of the CRSG document upon which
7	Mr. Riolo relies. This document clearly states that the 45 minutes "Assumes
8	perfect flow". Of course, "perfect flow" is rarely achieved. Thus, the additional
9	16.8 minutes is appropriately considered for resolving order complications. Mr.
10	Riolo also implies that BellSouth did not consider the fact that multiple loops may
11.	be ordered at the same time when calculating CRSG work times. (Page 25) This is
12	not true. BellSouth's cost study reflects a "First and Additional" rate structure,
13	designed to recognize just such cost savings. Further, if one were to review the
14	input file, it is clear the work times for the CRSG differ between First and
15	Additional.
16	
17	Also on page 19, Mr. Riolo claims that BellSouth has overstated the Local Carrier
18	Service Center ("LCSC") work time for service inquiry by 15 minutes. The
19	document upon which Mr. Riolo relied is outdated and was not used by the cost
20	organization in developing the time for LCSC functions. The 45 minute
21	assumption was provided by the LCSC subject matter expert based on more current
22	information.
23	
24	On page 27, Mr. Riolo asserts that BellSouth has double counted travel time. If
25	one were to review the explanation of the activities that comprise his 115.2

1		minutes, however, it is evident that these minutes relate to activities that take place
2		only after the technician is at the work site. Because the technician is not magically
3		transported to the work location, travel time must be included! Travel time is not
4		reflected in the 115.2 minutes, notwithstanding, Mr. Riolo's claim to the contrary.
5		The 20 minutes contained in the equation in the input file reflects the time required
6		for the technician to receive and analyze the service request, not for travel. This
7		information is also contained in the document that generated the chart Mr. Riolo
8		presented as part of his testimony.
9		
10	Q.	AT&T WITNESS JEFFERY KING CONTENDS THAT BELLSOUTH HAS
11		"INTRODUCED UNNECESSARY WORKGROUPS." (PAGE 12) ARE
12		HIS ASSERTIONS JUSTIFIED?
13		
14	A.	No. Mr. King's elimination of the LCSC and UNEC/Access Customer Advocate
15		Center ("ACAC") work centers is based upon an incorrect premise. His reasoning
16		that "BellSouth's own retail operations do not incur" costs associated with these
17		work centers misses the point. In the retail environment, BellSouth has a business
18		office that corresponds to the LCSC and an ACAC for Access customers. The
19		LCSC and the ACAC are integral centers involved in the provisioning of UNEs and
20		UNE combinations and the cost of operating these centers must be reflected in
21		developing forward-looking costs.
22		
23	Q.	SPRINT WITNESS STEVEN MCMAHON CLAIMS THAT BELLSOUTH'S
24		NONRECURRING COSTS FOR ENHANCED EXTENDED LINKS
25		("EELS") EXCEEDS THE SUM OF THE INDIVIDUAL COMPONENTS.

1 (PAGE 30) PLEASE COMMENT.

2

Combinations (Element P.17.10) is valid for all voice-grade loops, i.e., it reflects an average provisioning time for the various types of 2-wire and 4-wire loops. Thus, a comparison between an average rate for a combination and a single rate for a specific element is not a valid comparison. Furthermore, the notion that nonrecurring costs for EELs exceeds the sum of the individual components is not universally true, as reflected in my Rebuttal Exhibit DDC-8. For example, for a 4-wire Voice Grade Loop with DS1 IOF, the sum of the UNEs is \$710.23 and the

cost of the combination is \$673.99. Similarly, for a DS3 Loop with DS3 IOF, the

sum of the UNEs is \$1,515.97, and the nonrecurring cost of the combination is

A. Mr. McMahon failed to realize that BellSouth's Voice Grade Local Loop for

13 \$1,050.83.

14

11

12

15 **MODELS**

- 16 Q. ON PAGE 14, AT&T/MCI WORLDCOM WITNESS JEFFREY KING
- 17 COMMENTS ON BELLSOUTH'S MODELS. PLEASE RESPOND.

- 19 A. Mr. King's broad statement that "Many computations were found to be in error",
- 20 makes it difficult, if not impossible, to respond in any meaningful manner.
- 21 However, BellSouth filed an updated cost study on August 16, 2000 that should
- remedy Mr. King's concerns, particularly the "incorrect cell references" and "hard
- coding" problems Mr. King identifies.
- 24 Q. ON PAGES 45-46 OF THEIR TESTIMONY, MR. PITKIN AND MR.
- 25 DONOVAN LIST THE "FLAWS" THEY FEEL NEED TO BE

1		CC	PRECIED IN DELLECTION 5 BSILM. PLEASE SUMMARIZE
2		BE	CLLSOUTH'S POSITION ON EACH OF THEIR PROPOSED
3		M	ODIFICATIONS.
4			
5	A.	Mr	Pitkin and Mr. Donovan raise twelve issues concerning the BSTLM. I will
6		ado	dress the following issues:
7			
8		1)	Use of BellSouth's "Combo" scenario to reflect use of integrated digital loop
9			carrier systems;
10		2)	Use of the plant-specific factors recommended by Mr. Darnell;
11		3)	Use of the expense development factors recommended by Mr. Darnell;
12		4)	BellSouth's alleged attempts to double-count the effects of inflation;
13		5)	BellSouth's installation and engineering factors versus the Commission's prior
14			unit-cost determinations;
15		6)	BellSouth's installation and engineering factors for DLC equipment;
16		7)	BellSouth's use of multiple vendors for Digital Loop Carrier ("DLC")
17			equipment;
18		8)	BellSouth's method of allocating common equipment based on DS0 capacity;
19		9)	BellSouth's land and building investment calculations.
20			
21		Ве	llSouth witness Walter Reid also will respond to Mr. Pitkin and Mr. Donovan's
22		rec	commendations for expense adjustments (Issue 3). BellSouth witness Jim
23		Ste	egeman will discuss how the BSTLM utilizes DS0s in sizing equipment and thus,
24		wh	y this Commission should reject AT&T/MCI WorldCom's proposal with respect
25		to	Issue 8. Mr. Stegeman will also respond to the following issues:

1		
2		1) Adjusting the loop length criteria to reflect the most efficient network design
3		consistent with the Commission's decision in the USF proceeding;
4		2) Requiring BellSouth to evaluate and "correct" routing algorithms;
5		3) Requiring BellSouth to "correct" drop calculations.
6		
7		Mr. Pitkin and Mr. Donovan also propose that this Commission adopt the
8		depreciation and cost of capital input presented by AT&T/MCI WorldCom. These
9		issues will be resolved as part of the Phase I decision in this docket.
10		
11.	Q.	ON PAGE 6 OF THEIR TESTIMONY, MR. PITKIN AND MR. DONOVA
12		STATE THAT THE BSTLM "ESTIMATE[S] THE FORWARD-LOOKING
13		COSTS OF PROVIDING UNBUNDLED NETWORK ELEMENTS USING
14		CURRENT TECHNOLOGY." IS THIS AN ACCURATE ASSESSMENT?
15		
16	A.	Well, they got half of it right. The BSTLM does estimate forward-looking costs.
17		However, it is not based upon the "current" technology BellSouth has deployed in
18		its network today to the extent such "current" technology is not forward-looking.
19		In fact, the model builds a network using the most efficient network design, which
20		utilizes forward-looking technology to obtain that goal.
21		
22		The forward-looking investments determined by the BSTLM are in turn used to
23		determine the forward-looking maintenance costs associated with those
24		investments. Thus, Ms. Murray's analogy on page 42 of the ALECs paying for

building a "brand-new" car and absorbing the cost of maintaining an "older"

24

ı		verticle is incorrect. The BSTEM develops the cost of building and maintaining a
2		forward-looking network.
3		
4	Q.	ON PAGE 9 OF HIS TESTIMONY, MR. PITKIN MAINTAINS THAT
5		EVEN AFTER THREE VERSIONS OF RSERVICE.SYS FILES FROM
6		BELLSOUTH, HE HAS NOT BEEN ABLE TO REPLICATE
7		BELLSOUTH'S FILING RESULTS USING THE BSTLM. PLEASE
8		COMMENT.
9		
10	A.	The BSTLM develops material investments based on the scenario selected and a set
11.		of characteristics identified on a Report Services (Rservice) screen in the Reports
12		section of the model. The Rservice setup determines: 1) the components of the
13		network included in the UNE; 2) the services used as the universe for each UNE;
14		3) the special characteristics/restrictions (e.g., only include locations served less
15		than 18,000 feet from the wire center) that apply to each UNE; and 4) the central
16		office adders that should be included with the UNE.
17		
18		While Mr. Pitkin is correct that BellSouth originally filed an Rservice sys file that
19		contained errors, the file was correct for most of the UNEs. Therefore, the
20		erroneous Rservice.sys file did not prevent Mr. Pitkin from replicating BellSouth's
21		filing for most of the UNEs. Additionally, BellSouth's Rservice screens were set
22		up for three different scenarios, each intended to be used to develop specific UNE
23		costs. Mr. Pitkin has chosen to use only one scenario - the Combo scenario - for
24		all UNEs. This, along with many of the other changes Mr. Pitkin attempted to
25		incorporate into the BSTLM, has more to do with Mr. Pitkin's inability to match

1		BellSouth's results than did the incorrect Rservice sys file. Furthermore, BellSouth
2		has corrected the Rservice sys file in its August 16 th filed cost study.
3		
4	Q.	YOU STATED THAT THE BSTLM DEVELOPS MATERIAL BASED ON
5		THE SCENARIO SELECTED. WHILE BELLSOUTH USED THREE
6		SCENARIOS, ON PAGE 13, MR. PITKIN CLAIMS THAT ONLY ONE
7		SCENARIO IS NEEDED. (MS. MURRAY ALSO ADVANCES THIS
8		CLAIM.) CAN YOU ELABORATE ON THE SCENARIOS BELLSOUTH
9		USED IN ITS FILING OF THE BSTLM AND WHY EACH IS REQUIRED?
10		
11	A .	BellSouth uses three scenarios to develop the costs of the various UNEs and the
12		loop component of combinations in this filing. First, the BST2000 scenario is used
13		to develop material investments for all of the non-copper only, non-UNE
14		Combination UNEs. Second, the Copper Only scenario is used to develop those
15		UNEs served only on unloaded copper feeder and distribution facilities. Third, a
16		Combo scenario is used to develop material associated with the two loops used in
17		UNE combinations (the 2-wire analog voice grade loop and the 2-wire ISDN loop)
18		
19		The BST2000 scenario reflects the fact that all UNE loops (other than those
20		combined with a port in the Combo scenario) served via a fiber feeder based digital
21		loop carrier ("DLC") system must operate on a non-integrated basis since these
22		unbundled loops are not terminated directly into the BellSouth switch. This is
23		accomplished in the BSTLM by setting all of the switched services to "non-
24		switched" so the model will build the network such that these loops terminate in a

1		central office terminal rather than terminating in a directly integrated DS1 into the
2		switch.
3		
4		The Copper Only scenario is necessary in order to develop costs for non-loaded
5		copper facilities requested by the ALECs. Neither the BST2000 scenario nor the
6		Combo scenario can be used for these loops since both of those scenarios limit
7		loops served on copper to approximately 12,000 feet. However, ALECs want
8		access to available copper loops at any distance and do not want to be limited to
9		access to loops of specific length. Therefore, if either the BST2000 scenario or the
10		Combo scenario is used to develop costs for any of the "copper only" loops, the
11.		costs developed by the BSTLM would be based only on those loops less than
12		12,000 feet. Since BellSouth did not want to limit copper-only loops to 12,000 feet
13		or less, the new "Copper Only" scenario was created with a crossover from copper
14		to fiber set beyond the wire center boundaries resulting in all loops in this scenario
15		served on copper feeder and distribution cable.
16		
17		The Combo scenario, as noted above, is used only for the 2-wire analog voice
18		grade and 2-wire ISDN loops used in combination with a port. Since combination
19		loop/port offerings can be served via integrated DLC, this scenario sets all switched
20		services back from the "non-switched" setting used in BST2000 to the "switched"
21		setting. With this setting, all switched services are designed using integrated DLC.
22		
23	Q.	ON PAGE 41 OF HER TESTIMONY, MS. MURRAY ASSERTS THAT
24		THE "USE OF A SINGLE, CONSISTENT NETWORK DESIGN
25		

2 COSTS. IS SHE CORRECT?

11 .

A. No. Ms. Murray's proposition of using one network would, in fact, lead to an under-recovery of BellSouth's costs because not all possible uses for a loop to a specific customer location are considered with a single scenario. For example, assume a customer is located 15,000 feet from the central office. If the Combo scenario was used exclusively, this customer would never be considered for an unbundled copper loop since in the Combo run all loops over 12,000 feet are served via DLC or fiber. Also, if this loop was used to provide a stand-alone loop that connects to an ALEC switch, the cost is understated. Before a voice grade circuit can go to an ALEC switch, this loop must be removed from the DLC digital DS1, converted to voice grade, and terminated on the main distribution frame ("MDF"). The costs for this conversion and the MDF termination are not included in the Combo run. Multiple scenarios are the only way to ensure that all costs of the various UNEs are identified.

In each of the scenarios BellSouth built, the "total quantity of facilities" was considered; i.e., each scenario had the same overall line count. This methodology is appropriate since BellSouth cannot anticipate the ultimate use for any particular loop. A loop delivering voice grade service today potentially can be utilized to provide digital service tomorrow. Thus, Ms. Murray's contention that BellSouth failed to consider "the total quantity of facilities and functions" is without merit.

1	Q.	MR. PITKIN CLAIMS ON PAGE 15 THAT COPPER-ONLY UNES
2		SHOULD BE DEVELOPED FROM THE "COMBO" NETWORK
3		SCENARIO. IS HE CORRECT?
4		
5	A.	No, for two reasons. First, the combo scenario is based on loops being provided on
6		fiber-based DLC systems directly integrated into the switch at the central office. As
7		I've already discussed, this is not a realistic assumption for unbundled loops served
8		on copper. Copper only unbundled loops do not terminate in BellSouth switches
9		and, therefore, cannot be terminated at a DS1 level directly into the switch. In fact,
10		copper-only loops cannot be served via DLC on fiber.
11.		
12		Second, the Combo scenario assumes all loops greater than 12,000 feet from the
13		wire center are served on fiber-fed DLC systems. Therefore, the Combo scenario
14		only develops costs for copper loops less than 12,000 feet. If one were to accept
15		Mr. Pitkin's argument, the average cost of all copper-only loops would be based
16		only on those loops less than 12,000 in length. Since the ALECs request copper-
17		only loops of all lengths, Mr. Pitkin's approach is unreasonable.
18		
19	Q.	ON PAGE 29 OF HER TESTIMONY, MS. MURRAY STATES THAT
20		BELLSOUTH HAS NOT ASSUMED THE MOST EFFICIENT DLC
21		TECHNOLOGY BY NOT ASSUMING THE USE OF IDLC. IS SHE
22		CORRECT?
23		
24	A.	No. BellSouth's studies reflect Integrated Digital Loop carrier ("IDLC"), as Ms.
25		Murray notes, in its "Combo" scenario since these loops are combined with a

1		switch port and can be terminated directly into BellSouth's switch. However,
2		BellSouth cannot use IDLC and directly integrate stand-alone loops into
3		BellSouth's switch at the DS0 level. Mr. Milner addresses this issue in greater
4		detail. While an ALEC could buy a full DS1 from the DLC remote terminal into
5		the central office, BellSouth has an offering for an unbundled DS1 loop that the
6		ALEC can purchase. However, if the ALEC orders individual 2-Wire Voice Grade
7		Unbundled Loops, then by definition those loops cannot terminate in BellSouth's
8		switch. Therefore, they cannot ride integrated DLC.
9		
10	Q.	ON PAGE 34 OF MR. DONOVAN'S AND MR. PITKIN'S TESTIMONY,
11		THEY STATE THAT THEY HAVE CHOSEN THEIR SECOND DESIGN
12		OPTION OF "USING EXTENDED RANGE LINE CARDS ABOVE 13,000
13		FEET WITH A MAXIMUM LOOP LENGTH OF 16,800 FEET ON 26-
13		
14		GAUGE COPPER CABLE, WITH NO 24-GAUGE COPPER CABLE". IS
		GAUGE COPPER CABLE, WITH NO 24-GAUGE COPPER CABLE". IS THERE A FLAW IN THIS ANALYSIS?
14		
14 15	A.	
14 15 16	A.	THERE A FLAW IN THIS ANALYSIS?
14 15 16 17	A.	THERE A FLAW IN THIS ANALYSIS? Yes. First, it ignores BellSouth's design principles, which are addressed by Mr.
14 15 16 17 18	A.	THERE A FLAW IN THIS ANALYSIS? Yes. First, it ignores BellSouth's design principles, which are addressed by Mr. Milner. Second, through no fault of their own, Mr. Donovan and Mr. Pitkin
14 15 16 17 18 19	A.	THERE A FLAW IN THIS ANALYSIS? Yes. First, it ignores BellSouth's design principles, which are addressed by Mr. Milner. Second, through no fault of their own, Mr. Donovan and Mr. Pitkin analysis is flawed because in the original cost filing, BellSouth inadvertently set all
14 15 16 17 18 19	A.	THERE A FLAW IN THIS ANALYSIS? Yes. First, it ignores BellSouth's design principles, which are addressed by Mr. Milner. Second, through no fault of their own, Mr. Donovan and Mr. Pitkin analysis is flawed because in the original cost filing, BellSouth inadvertently set all extended range line card costs equal to the normal line card costs. This was an
14 15 16 17 18 19 20 21	A.	Yes. First, it ignores BellSouth's design principles, which are addressed by Mr. Milner. Second, through no fault of their own, Mr. Donovan and Mr. Pitkin analysis is flawed because in the original cost filing, BellSouth inadvertently set all extended range line card costs equal to the normal line card costs. This was an oversight on BellSouth's part that has been corrected in the August 16th filing.

2 INVESTMENTS; SUCH AS, DLC COMMON EQUIPMENT AND FIBER 3 CABLE SHOULD NOT BE ALLOCATED TO THE SERVICES USING 4 THOSE FACILITIES ON THE BASIS OF DS0 EQUIVALENTS. INSTEAD, THEY ARGUE THAT ALLOCATION SHOULD BE BASED ON 5 6 PAIR EQUIVALENTS. (PAGES 35-39) DO YOU AGREE WITH THEIR 7 APPROACH? 8 9 A. Absolutely not. First of all, I continue to believe the best approach of assigning 10 investment of items, such as DLC common equipment and fiber facilities, is on the 11. basis of DS0 equivalents. This methodology represents a reasonable approach and, 12 in many cases, the equipment is actually sized based on DS0 equivalents. While 13 one could debate the assignment of these costs, the fact is that the BSTLM uses DS0 equivalents not only to assign "fixed" investments among services, but it also 14 uses DS0 equivalents to size the equipment. Therefore, as Mr. Pitkin and Mr. 15 Donovan point out on page 39 of their testimony, they have indeed adjusted down 16 the capacity requirements of the DLC optical equipment. To illustrate my point, a 17 18 DS1 requires 24 DS0s or 2 pairs. Using 2 lines instead of 24 DS0s as input, the BSTLM would size the equipment to support only 2 DS0s, not the 24 DS0s that 19 are really required. The bottom line is that this adjustment proposed by Mr. Pitkin 20 and Mr. Donovan understates the equipment requirements generated by the 21 BSTLM and therefore, understates the costs. For this reason alone, this 22 Commission should disregard their results from the model. 23 24 Q. IN DISCUSSING BELLSOUTH'S ISDN COSTS, MS. MURRAY

O. MR. PITKIN AND MR. DONOVAN ARGUE THAT CERTAIN "FIXED"

1

1		MAINTAINS THAT THE BELLSOUTH STUDY INAPPROPRIATELY
2		ASSUMES THAT HIGHER BANDWIDTH OF DIGITAL LOOPS
3		RESULTS IN HIGHER COSTS OF CENTRAL OFFICE AND REMOTE
4		TERMINAL COSTS. IS SHE CORRECT?
5		
6	A.	No. BellSouth's study correctly apportions a greater cost of DLC equipment to
7		ISDN, which requires greater bandwidth requirements, than to POTS-type services.
8		As Ms. Murray notes, "each of the incumbents" has done this. This is not a
9		"BellSouth" methodology. Cost studies typically assign DLC common costs and
10		fiber costs on the basis of DS0 equivalents. Sprint's methodology basically mirrors
11	-	what BellSouth has done with respect to this issue.
12		
13	Q.	ON PAGE 26 OF HER TESTIMONY, MS. MURRAY COMPARES
14		BELLSOUTH'S RECURRING COST FOR A 2-WIRE ANALOG SERVICE
15		LEVEL ("SL")1 LOOP TO THE COST OF AN UNBUNDLED COPPER
16		LOOP. IS HER COMPARISON VALID?
17		
18	A.	No. First, if such a cost comparison were to be made, it should be a comparison of
19		an SL2 (designed loop) and the unbundled copper loops (short and long) both
20		designed. By using an SL1 loop, Ms. Murray distorts the example. Second, Ms.
21		Murray uses another inappropriate comparison on page 39 where she states that
22		"BST proposes a statewide average monthly recurring rate for ISDN-capable loops
23		of \$29.80, about 67% more expensive than BST's proposed charge for analog
24		loops." Her math is only correct if one compares an SL1 (non-designed loop) to
25		the ISDN-capable loop, which is an invalid comparison.

- 2 Q. BELLSOUTH'S COST STUDY INCLUDES SEPARATE COSTS FOR A
- 3 SHORT (<18KFT) UNBUNDLED COPPER LOOP ("UCL") AND FOR A
- 4 LONG (>18KFT) UNBUNDLED COPPER LOOP. FROM A COST
- 5 METHODOLOGY PERSPECTIVE, IS THIS RATE STRUCTURE
- 6 APPROPRIATE?

- 8 A. Yes. As I have explained earlier in my testimony, a special run was made in the
- 9 BSTLM based on the assumption that all potential xDSL customer locations are
- served via copper, the Copper Scenario. Two investment reports are then
- generated from the BSTLM, one that reflects loops less than 18Kft (UCL-Short)
- and one that reflects loops greater than 18kft in length (UCL-Long).

13

- Everyone recognizes that loop length is a major cost driver. However, this is
- especially true for loops that are 100% copper, where digital loop carrier costs and
- fiber cable costs are not considered in the calculations. In fact, the cost of copper
- loops increases practically linearly with length. This relationship can be seen from
- the information presented below:

20	Loop	Average Length	Cost
21	2-wire UCL-Short	10,139 feet	\$18.06
22	2-wire UCL - Long	42,844 feet	\$53.24
23			
24	4-wire UCL - Short	8,380 feet	\$26.05
25	4-wire UCL - Long	40,140 feet	\$93.13

from Sprint, considered by this Commission to be representative of an "efficient

25

1		provider." On the other hand, the rates set here should be set at a level that
2		compensates BellSouth (not Sprint) for the use of BellSouth's (not Sprint's)
3		network.
4		
5		In fact, the FCC's Third Report and Order alluded to this subtle, but important
6		difference; the "benchmark of forward-looking cost and existing network design
7		most closely represents the incremental costs incumbents actually expect to incur in
8		making network elements available to new entrants." (Paragraph 685, FCC Third
9		Report and Order, emphasis added) The Eight Circuit Court's recent ruling only
10		underscores the need to use inputs that reflect the cost to BellSouth of the use of
11 .		BellSouth's network and not some hypothetical efficient provider.
12		
13	Q.	ON PAGES 28-29 OF THEIR TESTIMONY, MR. PITKIN AND MR.
13 14	Q.	ON PAGES 28-29 OF THEIR TESTIMONY, MR. PITKIN AND MR. DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE
	Q.	
14	Q.	DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE
14 15	Q.	DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE
14 15 16		DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE
14 15 16 17		DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE COMMENT.
14 15 16 17 18		DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE COMMENT. Programming the model to evaluate alternative vendors for each DLC site once the
14 15 16 17 18 19		DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE COMMENT. Programming the model to evaluate alternative vendors for each DLC site once the site was sized would be a nightmare. BellSouth's solution simplified the execution
14 15 16 17 18 19		DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE COMMENT. Programming the model to evaluate alternative vendors for each DLC site once the site was sized would be a nightmare. BellSouth's solution simplified the execution of the program without significantly sacrificing the accuracy of the results. Using
14 15 16 17 18 19 20 21		DONOVAN PROPOSE THAT THE BSTLM BE MODIFIED TO CHOOSE THE LEAST COST VENDOR FOR DLC PLACEMENTS? PLEASE COMMENT. Programming the model to evaluate alternative vendors for each DLC site once the site was sized would be a nightmare. BellSouth's solution simplified the execution of the program without significantly sacrificing the accuracy of the results. Using BellSouth's methodology, if one were to examine the cost of each DLC site

incur on a going-forward basis.

vendors that BellSouth actually utilizes can costs reflect BellSouth's incurred costs

and ensure adequate equipment supply.

24

1		
2	Q.	AFTER THEY MADE ALL OF THEIR ADJUSTMENTS, MR. PITKIN
3		AND MR. DONOVAN PRODUCED A COST OF \$7.42 FOR A 2-WIRE
4		UNBUNDLED COPPER LOOP (SL1). PLEASE COMMENT.
5		
6	A.	This result should definitely call into question the adjustments AT&T and MCI
7		WorldCom are proposing. The last time this Commission established the rate of an
8		unbundled 2-wire loop in Florida for BellSouth, the Commission used \$17.00.
9		There is no reason that Messrs. Donovan and Pitkin offer for the cost of a 2-wire
10		loop to decline so precipitously in such a short period of time. Obviously,
11	-	something is very wrong with the revisions made to the model and inputs proposed
12		by Mr. Pitkin and Mr. Donovan.
13		
14	Q.	SPRINT WITNESS KENT DICKERSON DISCUSSES BELLSOUTH'S
15		DEVELOPMENT OF COSTS FOR HIGH CAPACITY LOOPS. PLEASE
16		RESPOND TO HIS CONCERNS.
17		
18	A.	It appears that Mr. Dickerson does not have any problem with the manner in which
19		BellSouth developed its material prices nor with the underlying study methodology
20		On page 17, however, he states "I have a concern with the weighting factors
21		(Probability of Occurrence) used to determine the frequency of occurrence of each
22		Synchronous Optical Network (SONET) Terminal type." I will address his
23		concerns. On page 22, he displays a chart that compares BellSouth's inputs to
24		Sprint's inputs for these items:

- Allen

1		BST Local	Sprint
2		Loop	
3	OC - 3	75%	64.58%
4	OC - 12	20%	22.92%
5	OC - 48	5%	12.50%

- 7 Mr. Dickerson laments that "BellSouth has a much greater occurrence of Urban
- 8 Wire Centers" and thus, should have at least comparable distributions to Sprint.
- 9 Mr. Dickerson fails to realize that BellSouth has two distinct offering, Local Loops
- and Local Channels. If one introduces both types of loops into Mr. Dickerson's
- 11 chart, it is apparent that the two companies are using basically the same inputs.

12

13		BST Local	BST Local	BST	Sprint
14		Loop	Channel	Average	
15	OC - 3	75%	55%	65.0 %	64.58%
16	OC - 12	20%	25%	22.5%	22.92%
17	OC - 48	5%	20%	12.5%	12.50%

18

19

20

21

Of course while I have used a straight average rather than a weighted average, this straightforward analysis indicates that the disparity about which Mr. Dickerson is concerned should be no concern at all.

- 3 Q. ON PAGE 19, MR. DICKERSON STATES THAT "NO EXPLANATION IS
- 24 PROVIDED FOR THE EQUIPMENT UTILIZATION LEVELS" FOR
- 25 HIGH CAPACITY LOOPS. PLEASE COMMENT ON THIS

1		STATEMENT.
2		
3	A.	Utilization is developed and applied in the SONET model and does vary based on
4		network functionality, transmission level, and study area. Utilization is multiplexed
5		down to accommodate the required transmission level and the formulas are shown
6		in the UTIL table in the SONET model. BellSouth obtained utilization data from
7		the Loop Engineering Information System ("LEIS").
8		
9	Q.	FCTA WITNESS WILLIAM BARTA SUGGESTS CERTAIN INPUT
10		MODIFICATIONS TO THE BSTLM. PLEASE COMMENT.
11.		
12	A.	Mr. Barta recommends that BellSouth's cost study be "modified to include two
13		additional parties sharing pole facilities." (Page 27) If I understand this correctly,
14		Mr. Barta is proposing that BellSouth incur 1/3 of the pole costs. Even though the
15		model now allows structure sharing percentages as an input, BellSouth's filed cost
16		study still relies on a loading factor to determine pole investment associated with
17		aerial cable. Any structure sharing is reflected in the plant specific factors in the
18		form of rents received. However, based on a review of the number of poles
19		BellSouth owns, the number of non-BellSouth poles to which BellSouth attaches,
20		and rents, the percentage should be closer to 40%, not the 33% proposed by Mr.
21		Barta.
22		
23		On page 28, Mr. Barta implies BellSouth "deploy[ed] facilities to satisfy demand

that is not expected to materialize." If this were true, the result would be low

utilization rates, which is not the case with the BSTLM. Furthermore, as I

24

1		explained in my direct testimony, the BSTLM builds to existing customer locations,
2		thus, the demand is already there! Therefore, Mr. Barta's concerns with respect to
3		utilization are unfounded.
4		·
5	<u>FA</u>	CTORS
6	Q.	MR. DONOVAN AND MR. PITKIN CLAIM THAT BELLSOUTH'S COST
7		CALCULATIONS IMPROPERLY DOUBLE COUNT THE EFFECTS OF
8		INFLATION. ARE THEY CORRECT?
9		
10	A.	No. On page 17 Mr. Donovan and Mr. Pitkin state, "The cost of capital employed
11.		by BellSouth, the Commission, and Mr. Hirshleifer are 'nominal' costs of capital.
12		Nominal costs of capital compensate investors not only for the time value of money
13		and business and financial risk, but also for the effects of inflation." They then
14		claim that because of this BellSouth's proposed costs double-count inflation
15		because a unit-cost inflation factor is also applied to the material investment
16		generated by the BSTLM.
17		
18		Mr. Donovan and Mr. Pitkin have ignored the fact that there are two distinct types
19		of inflation that impact the cost BellSouth will incur; one to compensate investors
20		for the use of their funds and the other to capture the increase/decrease in cost of
21		the plant itself. The cost of capital, as they state, compensates investors for the use
22		of their funds and of course, this must consider inflation effects. On the other hand,
23		the loop material costs are the actual costs BellSouth incurs in running the business.
24		To imply that the costs BellSouth faces in purchasing plant are immune to inflation
25		is ridiculous. BellSouth must pay both for its facilities and to reimburse its

1	investors.
2	
3	AT&T witness Mr. Hirshleifer's testimony addresses the appropriate cost of capital
4	period. Nowhere does he state that it is incorrect to apply inflation to the loop
5	material costs. Furthermore, Mr. Hirshleifer cites work by Thomas Copeland in his
6	testimony.
7	
8	The following discussion from Mr. Copeland's economic text supports my position
9	
10	Source: "Financial Theory and Corporate Policy", 3 rd edition by Thomas E.
11.	Copeland and J. Fred Weston, 1988 Addison-Wesley Publishing Company, page
12	62-63:
13	
14	The market data utilized in the estimated current capital costs will
15	include a premium for anticipated inflation. But while the market
16	remembers to include an adjustment for inflation in the discount
17	factor, the cash flow estimates used by the firm in the capital
18	budgeting analysis may fail to include an element to reflect future
19	inflation. Given that the cost of capital (observed using market
20	rates of return) already includes expected inflation, the decision
21	maker can correct for inflation either (a) by adding an estimate of
22	inflation to the cash flows in the numerator or (b) by expressing the
23	numerator without including an adjustment for inflation and
24	removing an inflationary factor from the market rate in the
25	denominator Sound analysis requires that the anticipated inflation

1	rate be taken into account in the cash flow estimates.
2	
3	Thus when anticipated inflation is properly reflected in both the
4	cash flow estimates in the numerator and the required rate of return
5	from market data in the denominator, the resulting NPV calculation
6	will be in both real and nominal terms. This was noted by Findlay
7	and Frankle [1976] as follows: "Any properly measured, market-
8	determined wealth concept is, simultaneously, both nominal and
9	real. NPV, or any other wealth measure gives the amount for
10	which one can 'cash out' now (nominal) and also the amount of
11	today's goods that can be consumed at today's prices (real)" (p.84).
12	Thus if inflation is reflected in both the cash flow estimates and in
13	the required rate of return, the resulting NPV estimate will be free
14	of inflation bias.
15	
16	Clearly, according to the economic theory relied upon by AT&T and MCI's own
17	expert witness, accounting for inflation both in the cost of capital and in the cash
18	flow analysis is the correct methodology. Thus, BellSouth's reflection of inflation
19	both in the investment calculation and as a consideration in establishing the cost of
20	capital is valid.
21	
22	Q. SPRINT WITNESS KENT DICKERSON ALSO ATTEMPTS TO
23	DISCREDIT BELLSOUTH USE OF INFLATION FACTORS. DOES HE
24	HAVE A VALID ARGUMENT?
25	

1	A.	No. Let me note that Mr. Dickerson does not question the appropriateness of an
2		inflation factor. Rather, he alleges that the methodology BellSouth uses to
3		determine the inflation factors for use with material prices involves adding a loading
4		factor to inflation and then subtracting productivity. Unfortunately, Mr. Dickerson
5		has confused the process by which BellSouth projects plant specific expenses for
6		future years with how the inflation adjustment factor that is used in conjunction
7		with material prices is developed. In determining future plant specific expenses,
8		BellSouth appropriately uses the following components to project a growth rate;
9		load (percent change in average access lines in service), inflation related to labor,
0		and productivity offset. This calculation appropriately recognizes the fact that
11	-	expenses related to maintenance; i.e. plant specific expenses, are highly labor
12		intensive.
13		
14		The inflation factor is developed to recognize the increase/decrease in prices
15		BellSouth pays for physical pieces of plant on average over a three-year period.
16		Exhibit DDC-9 (from file InflinLv2.xls in the BellSouth cost study) illustrates that
17		this calculation is nothing more than a straight average of the cumulative effect of
18		inflation over the study period.
19		
20	Q.	A NUMBER OF PARTIES RAISE CONCERNS WITH BELLSOUTH'S
21		RELIANCE ON IN-PLANT FACTORS TO DETERMINE ENGINEERING
22		AND INSTALLATION COSTS. PLEASE RESPOND.
23		
24		
25		

1	A.	BellSouth utilizes in-plant loading factors to add engineering and installation labor
2		and miscellaneous equipment to the material price and/or vendor installed price.
3		That is, the in-plant loading converts the material price to an installed investment.
4		
5		On pages 23-26 of their testimony, Mr. Donovan and Mr. Pitkin allege BellSouth's
6		outside plant in-plant factors overstate the costs of larger sized cables. While the
7		relationship of the combined costs of installation labor, exempt material, sales tax
8		and engineering to total material costs may not be perfectly linear, the use of in-
9		plant factors produces representative cost results when viewed on a total cable
10		placement basis. While the use of in-plant factors may potentially overstate, to
11 .		some degree, the costs for large size cables, Mr. Donovan and Mr. Pitkin
12		conveniently disregard the fact that if one believes that in-plants overstate the cost
13		of large sized cables, then the corollary is also true; i.e., that the in-plants
14		potentially understate, to some degree, the costs for small size cables.
15		
16		Rebuttal Exhibit DDC-10 depicts: 1) the cable route feet placed by cable size
17		produced by the BSTLM and 2) the actual cable route feet placed by cable size
18		during 1998 as derived from the Vintage Retirement Unit Cost ("VRUC") extract.
19		For copper cable placement, the following points are relevant:
20		
21		1) The 1998 VRUC data, upon which BellSouth's in-plants are based, reflects
22		somewhat of a bell-shaped curve with most copper placement related to 25 pair
23		(12%), 50 pair (26%), 100 pair (21%), 200 pair (14%), and 300 pair (7%). Only
24		20% of BellSouth's 1998 placements relate to cable sizes of 400 pair and larger.
25		The in-plant factors are theoretically based on the composite total installed and

1	material costs for the universe of cables placed in 1998.
2	
3	2) The network placed by the BSTLM assumes a greater incidence of small cable
4	placement; i.e., 25 pair (42%), 50 pair (14%), 100 pair (9%), 200 pair (12%), 300
5	pair (5%) with about 18% of the placements related to cable sizes of 400 pair and
6	larger.
7	
8	Thus, if the theory advanced by Mr. Donovan and Mr. Pitkin were true, BellSouth
9	has understated the cost of its copper loop network since the BSTLM has projected
10	a greater percent of small cable placements then what was used to develop the
11	factors.
12	
13	Referencing page 25 of their testimony, the statement that "the true cost of placing
14	a 400-pair cable is not significantly higher than the cost of placing a 25-pair cable"
15	may be, as literally written, technically true. (Emphasis added.) However, the
16	implication that the total cost of placing a 400-pair cable into service (including
17	engineering, exempt material, and especially, splicing costs), is not significantly
18	higher than the cost of putting a 25-pair cable into service is very misleading.
19	
20	Also on page 25, Mr. Donovan and Mr. Pitkin advocate the use of Standard Time
21	Increments in lieu of in-plant factors for developing installation costs. While
22	Standard Time Increments are available, such an approach should only be used in
23	an environment where detailed engineering information is available for the specific
24	network segment being installed. The BSTLM does not contain all of the necessary
25	engineering criteria; and if Standard Time Increments were employed, numerous

N. A.

1		assumptions would have to be made based on typical situations or probable
2		occurrences. The cost results would be subject to some of the same frailties that
3		Mr. Donovan and Mr. Pitkin criticize in the use if BellSouth's in-plant process.
4		Once again, BellSouth's in-plant factors produce representative cost results when
5		viewed from a total cable placement basis, and whatever distortions may be present
6		from a "size of cable placed" perspective are minimal.
7		
8	Q.	SPRINT WITNESS KENT DICKERSON ALSO DISCUSSES
9		BELLSOUTH'S USE OF IN-PLANT FACTORS ON PAGES 7-14 OF HIS
10		TESTIMONY. PLEASE RESPOND TO HIS COMMENTS.
11	-	
12	A .	Mr. Dickerson asserts that the application of BellSouth's outside plant in-plant
13		factors overstates the "per pair" costs of wire centers in higher density areas and
14		understates the "per pair" cost of wire centers in rural areas. Mr. Dickerson also
15		implies that BellSouth makes no distinction between the type of facility being
16		studied; and therefore, engineering and installation costs are loaded equally fiber
17		and copper. He also implies that BellSouth's use of in-plants causes projected
18		installation costs to vary linearly with the number of pairs placed.
19		
20		Mr. Dickerson is wrong. First, BellSouth developed unique in-plant factors for
21		each type of cable (aerial copper, aerial fiber, underground copper, underground
22		fiber, buried copper, buried fiber, etc.) based on costs incurred during 1998 in
23		placing hundreds of thousands of cable sheath feet. Since BellSouth developed
24		unique in-plants for each type of cable, it is obvious that BellSouth does not load
25		engineering and installation costs equally to all loops ignoring the type of cable,

1		fiber or copper, as alleged by Mr. Dickerson.
2		
3		Second, as mentioned previously, BellSouth in-plant factors are designed to
4		convert a material cost into a fully installed, ready-for-service cost; and therefore,
5		they do not vary linearly with the number of pairs placed as alleged by Mr.
6		Dickerson. It is true, however, that BellSouth's installed, ready-for-service costs
7		vary linearly with the material costs of the specific cable type. Whatever distortions
8		that may be present from a "wire center density" or "size of cable placed"
9		perspective are minimal in BellSouth's cost study.
10		•
11		Mr. Dickerson compares potential cost differences based at the extremes of "cable
12		sizes." The reality is that actual cable placements, generated by the BSTLM,
13		basically follows somewhat of a bell shaped curve with the great preponderance
14		(over 75%) of cable placement affecting only 25 pair, 50 pair, 100 pair, and 200
15		pair cable placements. (Refer to Rebuttal Exhibit DDC-10.) BellSouth almost
16		never places the extreme cable sizes Mr. Dickerson uses as examples in his
17		testimony, which calls into serious question the usefulness of his analysis.
18		
19	Q.	MR. DONOVAN AND MR. PITKIN STATE THAT BELLSOUTH'S
20		ENGINEERING AND INSTALLATION COSTS ARE OVERSTATED FOR
21		DIGITAL LOOP CARRIER SYSTEMS. (PAGES 27-28) ARE THEIR
22		CONCERNS JUSTIFIED?
23		
24	A.	No. BellSouth's hardwire and plug-in factors were developed using hardwire and

plug-in costs actually experienced during 1998 in placing 257C (DLC) equipment

7	into service. It does not reflect some theoretical approach to installing a DLC
2	system with "cook-book" like engineering, placement, splicing, and testing
3	components, but rather it reflects the real world experience of actually placing
4	hundreds of these systems into service. The Donovan/Pitkin plug-in and hardware
5	factors simply bear no resemblance to the real world costs associated with the
6	complete job of placing digital subscriber line carrier into service. While we both
7	agree on the relative portion of total costs related to engineering functions (about
8	31/2 % of total costs), Mr. Donovan and Mr. Pitkin approximate installation costs a
9	about 6 % of total installed costs while BellSouth attributes more than twice that
0	amount to installation activities. Additionally, Mr. Donovan and Mr. Pitkin appea
1	to completely ignore such small, but necessary, in-service costs as sales taxes, right
2	of way costs, license/permit fees, etc. The fact of the matter is that the
3	Donovan/Pitkin derived hardwire and plug-in factors simply do not represent the
4	real costs associated with the complete job of placing digital subscriber line carrier
5	into service.
6	
7	Q. MR. DONOVAN AND MR. PITKIN ALSO QUESTION THE VALIDITY
8	OF USING LOADING FACTORS TO REFLECT THE LAND AND
9	BUILDING COSTS ASSOCIATED WITH CENTRAL OFFICE
20	EQUIPMENT. (PAGES 43-44) PLEASE REPLY TO THEIR COMMENTS
21	
22	A. Mr. Donovan and Mr. Pitkin allege that the use of central office-related land and
23	building investment loadings overstate the land and building investment associated
24	with plug-in cards. While two plug-in cards of the same size should require
5	relatively the same amount of central office-related land and building space, there

1	no feasible wa	ay to measure the exact size of every conceivable type of plug-in card
2	and other cent	tral office-related equipment.
3		
4	While the use	of BellSouth's land and building loading factors potentially overstate
5	the costs for "	high cost/small size" central office equipment, they also potentially
6	understate the	costs for "low cost/large size" central office equipment (a point
7	ignored by Mr	r. Donovan and Mr. Pitkin). For the preponderance of central office-
8	related items,	the simple relationship of central office-related land & building
9	investment to	central office-related equipment investment appears to be a
10	reasonable allo	ocation method for recovering the costs of central office-related land
11	and building in	nvestment. This methodology produces representative cost results
12	when viewed	from a total-central office equipment perspective.
13	i	
14	Q. ARE THERE	OTHER LOADINGS THAT BELLSOUTH USED WHICH
15	HAVE BEEN	N CRITICIZED?
16	i	
17	A. Yes. On page	es 14-16 of his testimony, Mr. Dickerson implies that BellSouth's pole
18		is 14-10 of his testimony, with Diekerson implies that Bendouth's pole
	and conduit lo	pading factors are based on a fixed installed cost loading per
19		
19 20	equivalent pair	pading factors are based on a fixed installed cost loading per
	equivalent pair	pading factors are based on a fixed installed cost loading per r. He then goes into an exhaustive list of factors that influence the
20	equivalent pair cost of pole ar stating that po	pading factors are based on a fixed installed cost loading per r. He then goes into an exhaustive list of factors that influence the nd conduit placement and concludes this section of his testimony by
20 21	equivalent pair cost of pole ar stating that po	pading factors are based on a fixed installed cost loading per r. He then goes into an exhaustive list of factors that influence the nd conduit placement and concludes this section of his testimony by
20 21 22	equivalent pair cost of pole ar stating that po	pading factors are based on a fixed installed cost loading per r. He then goes into an exhaustive list of factors that influence the and conduit placement and concludes this section of his testimony by the ble and conduit costs are not and cannot be uniform per pair.

1	are not based on a fixed installed cost loading per pair. While BellSouth's pole and
2	conduit loading process does not individually capture each of the items contained in
3	Mr. Dickerson's exhaustive list of cost drivers, BellSouth's loadings produce
4	representative cost results when viewed from a total pole and conduit placement
5	basis. Such loadings obviously do not translate to a uniform per pair amount. The
6	relationship of pole investment to aerial cable investment and conduit investment to
7	underground cable investment provides the best practical approach to developing
8	representative pole and conduit costs.
9	
0	Q. AT&T/MCI WORLDCOM WITNESS MR. DARNELL IMPLIES THAT
1	BELLSOUTH'S EXPENSE AND COMMON COSTS ARE EXCESSIVE.
2	(PAGE 2). IS HIS ASSESSMENT CORRECT?
13	
4	A. No. BellSouth witness Walter Reid addresses Mr. Darnell's comments on
15	BellSouth's shared and common cost calculations. However, I would like to
16	respond to several concerns he raises concerning other expense items. First, let me
17	mention that the 32.75% expense result BellSouth obtained in its calculation of the
18	cost of a 2-wire loop is not out-of-line, as implied by Mr. Darnell. In its USF
19	Order, for example, expense constitutes approximately 38% of the cost. In fact,
20	the HAI model previously endorsed by AT&T produces results with over 30% of
21	the cost related to expense. In fact, BellSouth's analysis of cost results based on
	I TIAT and I ATOT Clade Towards for an unbundled loop reflect that
22	the HAI model AT&T filed in Tennessee for an unbundled loop reflect that
22	approximately 44% of the costs are expense related.

25 Q. ON PAGE 10 OF HIS TESTIMONY, MR. DARNELL ALLEGES THAT

- 1 BELLSOUTH IS FILING PLANT SPECIFIC EXPENSES THAT ARE
- 2 HIGHER THAN THOSE FILED WITH THE FCC IN 1997 AND 1998.
- 3 PLEASE COMMENT.

5 A. First, the plant specific expense factors BellSouth filed with the FCC in 1997 and

6 1998 were based on a 1995 base year and a 1997-1999 study period. The factors

7 used in the current filing reflect a 1998 base year, projected to a 2000-2002 study

8 period. Comparing data of different vintages is illogical.

9

Second, Mr. Darnell fails to acknowledge that the factors reflect a relationship

between two items; expenses and investments. To base his argument on a

perceived and unsupported decline in expense without addressing the trends in

investment is inappropriate. Further, as evidenced by the chart presented below,

only 6 out of the 11 categories of plant referenced by Mr. Darnell are experiencing

an increase and the majority of those are insignificant.

16

17
18
19
20
21
22
23
24

Field Code	Current	1997/1998	Difference
377C	0.0221	0.0400	-0.0179
257C	0.0161	0.0169	-0.0008
357C	0.0133	0.0169	-0.0036
1C	0.0204	0.0179	0.0025
22C	0.0446	0.0558	-0.0112
822C	0.0103	0.0029	0.0074
5C	0.0202	0.0196	0.0006

1	85C	0.0036	0.0032	0.0004
2	45C	0.0462	0.0346	0.0116
3	845C	0.0057	0.0039	0.0018
4	4C	0.0026	0.0033	-0.0007

6 Thus, Mr. Darnell's concerns are unfounded and unsupported by any evidence in 7 his testimony.

8

9 Q. ON PAGES 8-9, MR. DARNELL ALLEGES BELLSOUTH IS OVER-10 RECOVERING FOR LAND, BUILDING, AND POWER BECAUSE THE 11 IMPACT OF COLLOCATION WAS NOT CONSIDERED. IS HE

13

15

16

17

18

19

20

21

22

23

24

25

12

CORRECT?

14 A. No. BellSouth does not agree with Mr. Darnell's proposal that BellSouth offset Land, Building, and Power expense accounts with collocation revenue. While he contends that the situation is analogous to offsetting pole expenses with pole rent revenue, the situations are somewhat dissimilar. In the pole expense/rent revenue example, BellSouth is offsetting a narrowly defined expense category with an equivalently defined, directly related revenue. Pole attachment rentals are paid to compensate the receiving party for its cost of providing poles for attachments; there is a direct, definable relationship between pole maintenance expenses and pole attachment rent revenue. On the other hand, in the case of collocation revenue, while it is true that a portion of such revenue compensates BellSouth for power consumption and building floor space, there are other items of cost recovery related to collocation revenue. Additionally, a one-for-one direct relationship of

1	collocation revenue with a single expense category does not exist.
2	
3	Portions of Land, Building, and Power expense are recovered in the revenue that
4	BellSouth receives for numerous services/products/elements; however, it would
5	make little sense to pursue some complicated cost recovery allocation process in
6	order to account for this fact. Even if, hypothetically, BellSouth was able to
7	allocate a portion of collocation revenue to each of the involved expense
8	categories, the level of collocation revenue would be insignificant in terms of
9	offsetting such expenses. Mr. Darnell's offsetting collocation revenue proposal is
10	both impractical and irrelevant to the costs of providing UNEs.
11	•
12	Q. MR. DARNELL ALSO ALLEGES BELLSOUTH MAY BE OVER
13	RECOVERING COSTS DUE TO ITS CORPORATE COMMUNICATIONS
14	NETWORK. (PAGES 9-10) PLEASE REPLY TO HIS ARGUMENT.
15	
16	A. Mr. Darnell alleges that BellSouth has opportunities for "over recovery" of costs if
17	adjustments are not made to the "Corporate Communications account" for revenue
18	contributions from competitive services related to Operator and Signaling services.
19	
20	I believe that Mr. Darnell is confused as to the nature of assets and expenses
21	contained in Account 2123.2000 Company Communications Equipment and
22	Account 6123.2000 Company Communications Equipment Expenses, respectively
23	A significant portion of the costs related to these two accounts is allocated to
24	shared and common costs.
25	

1		Account 2123,2000 includes the original costs of stand-alone company
2		communications equipment costing more than \$2000 and the cost of private branch
3		exchange and key system intra-systems, including the associated communications
4		equipment, installed for official company use. Account 2123.2000 is basically
5		composed of terminal equipment and associated wiring. Account 6123.2000
6		includes expenses related to equipment classified to Account 2123.2000. The costs
7		of individual items of stand alone company communications equipment costing
8		\$2000 or less are included in this account, along with the costs of inside wiring and
9		labor charges related to such equipment.
10		
11	-	None of the costs of transport related to Operator or Signaling services are
12		contained in these two accounts; and furthermore, neither account has a direct
13		relationship to the costs or revenues associated with the provisioning of Operator
14		or Signaling services. Thus, Mr. Darnell's concerns are without merit.
15		
16	DE	EAVERAGING
17	Q.	PLEASE SUMMARIZE THE GENERAL CONSENSUS WITH RESPECT
18		TO WHICH ELEMENTS NEED TO BE DEAVERAGED.
19		
20	A.	Sprint appears to be the only party actively advocating that anything beyond local
21		loops and local channels and combinations, which have local loops and local
22		channels as components, be deaveraged. Of course, the original stipulation
23		mandated that sufficient evidence be provided such that the Commission could
24		review and analyze the results and ultimately decide which elements should be
25		deaveraged based on geographic cost differentials. BellSouth has done so and has

1		submitted costs at the wire center level for usage, ports, features, and all types of
2		loops. Additionally, deaveraged costs have been presented for combinations that
3		involve a local loop.
4		,
5		Lack of support from any other party for Sprint's proposal should speak volumes.
6		Sprint has limited its interpretation of how deaveraging should be implemented such
7		that they have lost focus on the total picture. Yes, switching costs differ by wire
8		center, but does it make sense to segment these costs when one considers how calls
9		transverse the network? Since central offices do not work independently, it is
10		irrational to attempt to isolate central office costs at the wire center level, as Sprint
11	-	proposes. Sprint's narrowing of the analysis to a simple question of whether or not
12		cost differences are present skews the intent of the deaveraging process.
13		
14	O.	SPRINT WITNESSES, MR. COX, MR. DICKERSON, AND MR. SICHTER,
	ζ.	
15	· ·	PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE
15 16	Z.	
	Ž.	PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE
16		PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE
16 17		PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE TRANSPORT SHOULD BE DEAVERAGED. PLEASE COMMENT.
16 17 18		PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE TRANSPORT SHOULD BE DEAVERAGED. PLEASE COMMENT. While both switching and interoffice transport may display cost differences at the
16 17 18 19		PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE TRANSPORT SHOULD BE DEAVERAGED. PLEASE COMMENT. While both switching and interoffice transport may display cost differences at the wire center level, wire center level costs are not the only factors that need to be
16 17 18 19 20		PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE TRANSPORT SHOULD BE DEAVERAGED. PLEASE COMMENT. While both switching and interoffice transport may display cost differences at the wire center level, wire center level costs are not the only factors that need to be considered with respect to geographic deaveraging. The same argument that I
16 17 18 19 20 21		PRESENT ARGUMENTS THAT SWITCHING AND INTEROFFICE TRANSPORT SHOULD BE DEAVERAGED. PLEASE COMMENT. While both switching and interoffice transport may display cost differences at the wire center level, wire center level costs are not the only factors that need to be considered with respect to geographic deaveraging. The same argument that I discussed with respect to switching holds for interoffice transport; i.e., you must

which end of the circuit should be considered the cost driver, A or B? Both A and

1	B terminations must be considered since the traffic load riding the circuit is
2	determined by both ends, not just one.
3	
4	Another issue, totally ignored in Sprint's testimony, is the question of deaveraging
5	combinations when components that comprise the combination fall into different
6	zones. For example consider a loop/port combination. If this Commission rules
7	that the loop cost should drive the combination to its zone, then potentially two
8	ports (if ports are deaveraged) that reside in the same switch, one unbundled and
9	one in combination, would be rated differently. This pricing schedule makes no
10	sense.
11	
12	This argument extends to EELs. The problems I discussed with loop/port
13	combinations would also exist here; a dedicated interoffice DS1 could have one rate
14	when sold alone and another when sold in combination. Again, this makes no
15	sense.
16	
17	Another factor ignored by Sprint is one of implementation; rating, administration,
18	and billing of UNEs that potentially could change based on how they are used; i.e.,
19	whether they are sold as stand-alone UNEs or in combination! This nightmare
20	expands if one considers that BellSouth offers19 unbundled loops, 7unbundled
21	ports, and 9 IOF UNEs. This does not even consider the potential permutations of
22	these elements to create combinations. Now multiply each of these by over 200

25

23

wire centers!

With respect to deaveraging, I'm advocating that the Commission consider more

25	Q. ON PAGE 7 OF HER TESTIMONY, AT&T/MCI WORLDCOM WITNESS
24	
23	included in elements A.2.19 and A.2.20.
22	BellSouth's intra-building cable is not included in this calculation. Rather it is
21	provisioning UINC. Note that the point at which the ALEC gains access to
20	extract from the BSTLM. The nonrecurring costs reflect the labor associated with
19	terminal (52C) are included. The capital investments were developed from an
18	with the intra-building cable (52C), building terminal (12C), and distribution
17	UINC recurring costs reflect the NTW components as well as the costs associated
16	
15	does not exceed \$2,000 and thus is classified as an expense item.
14	typically located next to a garden terminal or in a wiring closet terminal, whose cost
13	reflect labor costs and the actual access terminal costs. The access terminal is
12	expense and expense related to subscriber line testing. The nonrecurring costs
11	expressed on a recurring basis; network terminating wire ("NTW") maintenance
10	A. The recurring cost of UNTW reflects two types of expenses that BellSouth has
9	
8	("UNTW") AND UNBUNDLED INTRA-BUILDING CABLE ("UINC").
7	DEVELOPMENT OF UNBUNDLED NETWORK TERMINATING WIRE
6	Q. PLEASE DESCRIBE WHAT BELLSOUTH INCLUDED IN THE COST
5	NTW/INC
4	oc deaveraged. Rates for other office should remain at the statewide level.
3	be deaveraged. Rates for other UNEs should remain at the statewide level.
2	most parties agree, that the loop is the major cost driver and only the loop should
1	than the mere cost results. Logic needs to be applied. BellSouth maintains, and

1	BRENDA KAHN COMPARES BELLSOUTH'S UNBUNDLED INTRA-
2	BUILDING CABLE ("UINC") COSTS TO THE RECURRING COST OF A
3	2-WIRE LOOP. IS SUCH A COMPARISON VALID?
4	
5	A. No. Ms. Kahn's comparison is invalid for a number of reasons. First, she is
6	comparing apples-to-oranges. If one desired to make a comparison, the valid
7	comparison would be INC costs versus 2-wire loop costs for those loops that have
8	intra-building cable. Second, the \$3.90 BellSouth calculated is for a specific
9	unbundled element, which makes a comparison to other elements inappropriate. If
10	an ALEC orders UINC, the cost should not be spread over all loops, but should
11	stand on its own.
12	
13	Q. ON PAGE 14, MS. KAHN STATES THAT "BELLSOUTH INCLUDES
14	TWO TERMINALS IN THE BUILDING EQUIPMENT ROOM." IS SHE
15	CORRECT?
16	
17	A. No. BellSouth does not include two terminals in the building equipment room
18	element (A.2.20). The input sheet to file FLUSL.xls reflects material costs that
19	include one 25-pair connecting block, bridging clips, backboard, and wire guides.
20	However, if Ms. Kahn is implying that BellSouth also includes the cost of a
21	terminal in the recurring cost associated with INC, then she is correct. This is
22	BellSouth's terminal and the one in the building equipment room is the ALEC's
23	point of access, two separate items that are required thus, two costs. BellSouth
24	witness Mr. Milner explains why this arrangement ensures the integrity of
25	BellSouth's network and allows for a single point of contact for ALECs.

1	
2	Q. MS. KAHN IMPLIES BELLSOUTH RELIES ON AN "EMBEDDED COST
3	ANALYSES" WHEN DEVELOPING INPUTS SUCH AS DEPRECIATION
4	AND COST OF CAPITAL. (PAGE 19-20) IS SHE CORRECT?
5	
6	A. No. Ms. Kahn offers no support for her statement, which is an obvious attempt to
7	raise concern where none is warranted. Depreciation rates and cost of capital
8	inputs have been debated in Phase I of this docket. BellSouth will abide by the
9	Commission's ruling, thus, Ms. Kahn's point is moot. If she desired to review
10	BellSouth's proposed inputs, the BellSouth Cost Calculator incorporates these
11	values and are easily accessible.
12	
13	Q. WHY IS SUBSCRIBER LINE TESTING VALID FOR INC AND NTW?
14	
15	A. Subscriber line testing is a generic cost applied to all loop and sub-loop elements.
16	This cost reflects the activities required to determine the condition of plant on a
17	routine basis, prior to assignment of facilities, during trouble reports, or corrective
18	action. Since BellSouth still owns the network terminating wire, this function is
19	still needed. The method BellSouth utilizes to determine this expense is to divide
20	the annual expense by the average number of access lines and then to divide by 12
21	to reflect a recurring cost. Since the expense is spread over all loops, all loops,
22	including sub-loops, should bear the cost. Also, BellSouth has excluded these
23	expenses from the calculation of the plant specific factor in order to directly

assigned them on a per loop basis.

24

1	Q.	COALITION WITNESS MARK STACY CONTENDS THAT
2		BELLSOUTH'S COST STRUCTURE FOR INC ACCESS IS IN
3		VIOLATION OF THE FCC'S ADVANCED SERVICES ORDER. (PAGES
4		20-23) IS THIS TRUE?
5		
6	A.	No. The Advanced Services Order was designed to address fixed costs that could
7		potentially benefit multiple carriers, including ALECs and the incumbent. Access
8		terminals for INC are dedicated to a particular ALEC. Thus, multiple ALECs
9		cannot utilize (benefit from) the placement of that terminal. BellSouth's structure
10		reflects a feasible means of reflecting anticipated demand in a multi-unit location.
11	-	
12	Q.	DOES THIS CONCLUDE YOUR TESTIMONY?
13		
14	A.	Yes.
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

Page 1 of 1

Impact of Revised Nonrecurring Costs for XDSL Offerings									
1		Filing	1	Filing		Filing			
		LMU Only		al LMU		nic LMU			
UNE	First	Additional	First	Additional	First	Additional			
		ADSL							
Loop			\$ 333.72	\$ 195.13	\$ 200.87	\$ 117.49			
ULM Additive			\$ 57.99	\$ 57.99	\$ 57.99	\$ 57.99			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total	\$ 423.24		\$ 391.71	\$ 253.12	\$ 259.55	\$ 176.17			
		2-Wire HD							
	\$ 319.72		\$ 351.05	\$ 212.46	\$ 218.20	\$ 134.82			
ULM Additive		\$ 120.98	\$ 57.99	\$ 57.99	\$ 57.99	\$ 57.99			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total	\$ 440.70	\$ 332.70	\$ 409.04	\$ 270.45	\$ 276.88	\$ 193.50			
		4-Wire HD							
	\$ 383.87	\$ 268.16	\$ 408.25	\$ 241.62	\$ 275.41	\$ 192.03			
ULM Additive		\$ 120.98	\$ 57.99	\$ 57.99	\$ 57.99	\$ 57.99			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total		\$ 389.14	\$ 466.24	\$ 299.61	\$ 334.09	\$ 250.71			
		Wire UCL	Short						
	\$ 300.38	\$ 192.38	\$ 331.86	\$ 193.27	\$ 199.01	\$ 115.63			
ULM Additive		\$ 120.98	\$ 57.99	\$ 57.99	\$ 57.99	\$ 57.99			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total	\$ 421.36	\$ 313.36	\$ 389.85	\$ 251.26	\$ 257.69	\$ 174.31			
		Wire UCL L							
	\$ 192.33		\$ 331.86	\$ 193.27	\$ 199.01	\$ 115.63			
ULM Additive		\$ 120.98	\$ -	\$ -	\$ -	\$ -			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total	\$ 313.31	\$ 230.15	\$ 331.86	\$ 193.27	\$ 199.70	\$ 116.32			
		Wire UCL S							
Loop	\$ 355.69		\$ 380.29	\$ 241.70	\$ 247.44	\$ 164.06			
ULM Additive		\$ 120.98	\$ 57.99	\$ 57.99	\$ 57.99	\$ 57.99			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total	\$ 476.67	\$ 360.95	\$ 438.28	\$ 299.69	\$ 306.12	\$ 222.74			
	4-	Wire UCL L	.ong						
	\$ 247.63	\$ 156.76	\$ 380.29	\$ 241.70	\$ 247.44	\$ 164.06			
ULM Additive		\$ 120.98	\$ -	\$ -	\$ -	\$ -			
Mechanized LMU		\$ -	\$ -	\$ -	\$ 0.69	\$ 0.69			
Total	\$ 368.61	\$ 277.74	\$ 380.29	\$ 241.70	\$ 248.13	\$ 164.75			
		led Loop Mo							
Load Coil/Eq. Removal - Short			\$ 65.40	\$ 65.40	\$ 65.40	\$ 65.40			
	\$ 772.31	\$ 23.96	\$ 710.71	\$ 23.77	\$ 710.71	\$ 23.77			
Bridged Tap Removal	\$ 82.06	\$ 82.06	\$ 65.44	\$ 65.44	\$ 65.44	\$ 65.44			

Note:

Local Service Request processing is charged seprately either through element N.1.1 or N.1.2.

Comparison of Individual UNE Costs vs. Combo Costs

Individ	ual UNE Costs	Combo Costs			
2-Wire VG Service Level 2 Loop (A.1.2)	\$ 126.70	\$ 195.63	VG Local Loop for Combo Use (P.17.10)		
DS1 IOF (D.4.2)	\$ 179.99				
Channelization 1/0 (A.18.1)	\$ 183.57	\$ 422.64	DS1 IOF w/ MUX (P.17.5) Feauture Activation (P.17.16)		
Feature Activation (A.18.4)	\$ 13.26	\$ 12.26			
			Difference % Difference		
Sub-total	\$ 503.52	\$ 630.53	\$ 127.01 25.22%		
Local Service Request Manual (N.1.2)	\$ 65.19	\$ 43.46	Local Service Request Manual (N.1.2) Difference % Difference		
Total	\$ 568.71	\$ 673.99	\$ 105.28 18.51%		

2-Wire Voice Grade Loop with DS1 IOF and Muxing

	Individual UNE Costs	Combo Costs	
4-Wire VG Loop (A.4.1)	\$ 279.73	\$ 195.63	VG Local Loop for Combo Use (P.17.10)
DS1 IOF (D.4.2)	\$ 179.99		
Channelization 1/0 (A.18.1)	\$ 183.57	\$ 422.64	DS1 IOF w/ MUX (P.17.5)
Feature Activation (A.18.4)	\$ 13.26	\$ 12.26	Feauture Activation (P.17.16)
			Difference % Difference
Sub-total	\$ 656.55	\$ 630.53	\$ (26.02) -3.96%
Local Service Request Manual (I	N.1.2) \$ 65.19	\$ 43.46	Local Service Request Manual (N.1.2) Difference % Difference
Total	\$ 721.74	\$ 673.99	\$ (47.75) -6.62%

4-Wire Voice Grade Loop with DS1 IOF and Muxing

	Individual UNE Costs	Combo Costs	FPSC Docket No. 990649-TP Rebuttal Exhibit DDC-8
2-Wire ISDN Loop (A.5.1)	\$ 220.42	\$ 195.63	VG Local Loop for Combo Use (P.17.10)
DS1 IOF (D.4.2)	\$ 179.99		
Channelization 1/0 (A.18.1)	\$ 183.57	\$ 422.64	DS1 IOF w/ MUX (P.17.5)
Feature Activation (A.18.4)	\$ 13.26	\$ 12.26	Feauture Activation (P.17.16)
Sub-total	\$ 597.24	\$ 630.53	Difference % Difference \$ 33.29 5.57%
Local Service Request Manual	(N.1.2) \$ 65.19	\$ 43.46	Local Service Request Manual (N.1.2)
Total	\$ 662.43	\$ 673.99	Difference % Difference \$ 11.56 1.75%

2-Wire ISDN Loop with DS1 IOF and Muxing

<u>Individ</u>	al UNE Costs	Combo Costs			
4-Wire 19, 56 or 64 KBPS Loop (A.10.1)	\$ 268.22	\$ 195.63	VG Local Loop for Combo Use (P.17.10)		
DS1 IOF (D.4.2)	\$ 179.99				
Channelization 1/0 (A.18.1)	\$ 183.57	\$ 422.64	DS1 IOF w/ MUX (P.17.5)		
Feature Activation (A.18.4)	\$ 13.26	\$ 12.26	Feauture Activation (P.17.16)		
			Difference % Difference		
Sub-total	\$ 645.04	\$ 630 .53	\$ (14.51) -2.25%		
Local Service Request Manual (N.1.2)	\$ 65.19	\$ 43.46	Local Service Request Manual (N.1.2) Difference % Difference		
Total	\$ 710.23	\$ 673.99	\$ (36.24) -5.10%		

4-Wire 19, 56 or 64 KBPS with DS1 IOF and Muxing

Comparison of Individual UNE Costs vs. Combo Costs

<u>Inc</u>	dividual UNE Costs	Combo Costs	
4-Wire DS1 Loop (A.9.1)	\$ 509.08	\$ 351.39 DS1 Local Loop for Combo Use (P.17.3	11)
DS1 IOF (D.4.2)	\$ 179.99	\$ 298.12 DS1 IOF (P.17.4)	
Sub-total	\$ 689.07	Difference % Difference \$ 649.51 \$ (39.56) -5.74%	
Local Service Request Manual (N.1.2	2) \$ 43.46	\$ 43.46 Local Service Request Manual (N.1.2)	
Total	\$ 732.53	Difference % Difference \$ 692.97 \$ (39.56) -5.40%	

DS1 Loop with DS1 IOF

	Individual UNE Costs	Combo Costs	
DS3 Loop (A.16.1)	\$ 910.45	\$ 391.32	DS3 Local Loop for Combo Use (P.17.12)
DS3 (OF (D.6.2)	\$ 562.06	\$ 616.05	DS3 IOF for Combo Use (P.17.7) Difference % Difference
Sub-total	\$1,472.51	\$ 1,007.37	\$(465.14) -31.59%
Local Service Request Manual ((N.1.2) \$ 43.46	\$ 43.46	Local Service Request Manual (N.1.2)
Total	\$1,515.97	\$ 1,050.83	Difference % Difference \$(465.14) -30.68%

DS3 Loop with DS3 IOF

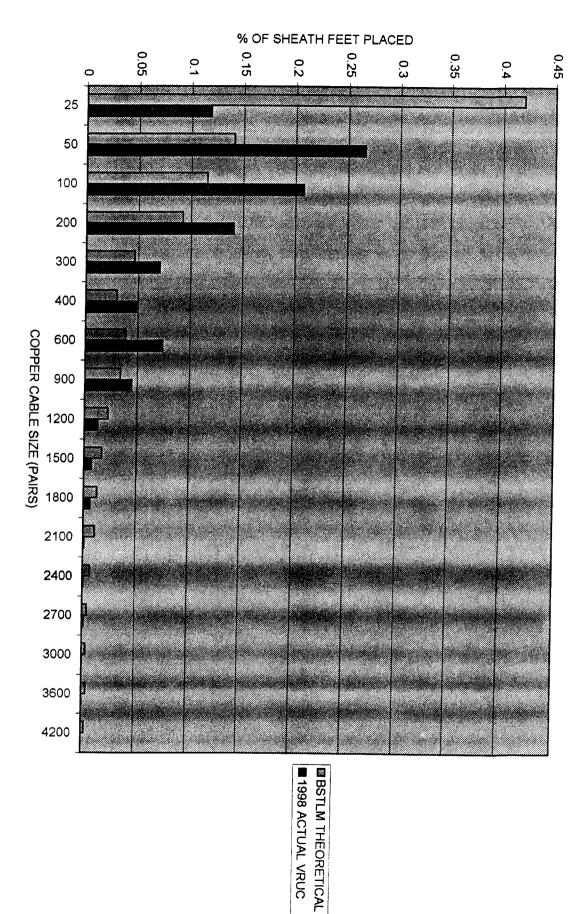
Comparison of Individual UNE Costs vs. Combo Costs

BellSouth Telecommunications, Inc. FPSC Docket No. 990649-TP Rebuttal Exhibit DDC-8 Page 4 of 4

	Individual UNE Costs	Combo Costs	Page 4 o
4-Wire DS1 Loop (A.9.1)	\$ 509.08	\$ 351.39	DS1 Local Loop for Combo Use (P.17.11)
DS3 IOF (D.6.2)	\$ 562.06		
Channelization 3/1 (A.18.5)	\$ 359.20	\$ 838.33	DS3 IOF w/ MUX (P.17.8)
Feature Activation (A.18.6)	\$ 13.26	\$ 12.26	Feauture Activation (P.17.16)
			Difference % Difference
Sub-total	\$1,443.60	\$ 1,201.98	\$(241.62) -16.74%
Local Service Request Manual (I	N.1.2) \$ 65.19	\$ 43.46	Local Service Request Manual (N.1.2)
Total	\$1,508.79	\$ 1,245.44	Difference % Difference \$(263.35) -17.45%

DS1 Loop with DS3 IOF with MUXing

1999 ACCOUNT AVERAGE LEVELIZED INFLATION LOADINGS FOR FORWARD LOOKING STUDIES - THREE YEARS (2000 thru 2002)


		INE	LATION FACTO	De	CI	IMILI ATRIC INC	LATION FACTOR		INVESTMENT
BELLSOUTH		2000	2001	2002	2000	2001	2002	TOTAL	INFLATION LOADINGS
		Α	B	C	D	2001 E	2002 F	G	
ACCOUNT NAME	FRC	,,	D	v	=1+(A/100)	=1+(B/100)XD		=D+E+F	H =G/3
BUILDINGS	10C	2.3	2.5	2.5	1.023305	1.048500	1.074400	3.146205	=G/3 1.04873
MOTOR VEHICLES	40C	1.0	1.0	1.0	1.010000	1.020100	1.030300	3.060400	1.02013
AIRCRAFT	140C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.04053
SARAGE WORK EQ	340C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.04053
OTHER WORK EQ	540C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.04053
URNITURE	30C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.04053
OFFICE EQUIPMENT	430,718C	0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.00000
OFF SUPPORT EQ		0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.00000
OTH COMM EQ		0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.00000
G.P. COMPUTERS	530C	-18.0	-17.0	-17.0	0.820000	0.680600	0.564900	2.065500	0.68850
GEN EQ COMPOSITE		- 9.0	-7.0	-7.0	0.910000	0.846300	0.787100	2.543400	0.84780
ANALOG ELECTRONIC	77C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.0405
DIGITAL ELECTRONIC	377C	1.0	1.0	1.0	1.010000	1.020100	1.030300	3.060400	1.0201
OPERATOR SYSTEMS	117C	0.0	1.0	1.0	1.000000	1.010000	1.020100	3.030100	1.0100
RADIO	67C	0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.0000
CIRCUIT COMPOSITE		-1.0	-1.0	0.0	0.990000	0.980100	0.980100	2.950200	0.9834
ANALOG	57,457C	5.0	4.0	3.0	1.050000	1.092000	1.124 80 0	3.266800	1.0889
DIGITAL SPG	257C	-2.0	0.0	0.0	0.980000	0.980000	0.980000	2.940000	0.9800
OTHER DIGITAL	157,357C	-1.0	-2.0	-2 .0	0.990000	0.970200	0.950800	2.911000	0.9703
COE COMPOSITE		-1.0	0.0	0.0	0.990000	0.990000	0.990000	2.970000	0.9900
STATION APPARATUS	318C	-1.0	0.0	0.0	0.990000	0.990000	0.990000	2.970000	0.9900
LARGE PBX	258C	-1.0	-1.0	0 .0	0.990000	0.980100	0.980100	2.950200	0.9834
PUBLIC TELEPHONES	198C	1.0	1.0	1.0	1.010000	1.020100	1.030300	3.060400	1.0201
OTH TERM EQ	558,858C	0.0	0.0	1.0	1.000000	1,000000	1.010000	3.010000	1.0033
STATION COMPOSITE		0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.0000
ISP COMPOSITE		-1.0	0.0	0.0	0.990000	0.990000	0.990000	2.970000	0.9900

POLES	1C	3.7	3.8	3.8	1.037340	1.076300	1.116800	3.2 30 440	1.076813

1999

ACCOUNT AVERAGE LEVELIZED INFLATION LOADINGS
FOR FORWARD LOOKING STUDIES - THREE YEARS (2000 thru 2002)

		TORTORIVARD COOKING GODDIEG - TIMEE TEARS (2000 till 2002)							
	INFLATION FACTORS CUMULATIVE INFLATION FACTORS							INVESTMENT	
BELLSOUTH									INFLATION
BELL2001H		2000	20 01	2002	2000	2001	20 02	TOTAL	LOADINGS
		Α	В	С	D	E	F	G	Н
ACCOUNT NAME	FRC				=1+(A/100)	=1+(B/100)XD	=1+(C/100)XE	=D+E+F	=G/3
AERIAL CABLE		4.0	4.0	3.0	1.040000	1.081600	1.114000	3.235600	1.078533
COPPER	22C	4.0	4.0	4.0	1.040000	1.081600	1.124900	3.246500	1.082167
OPTICAL	822C	1.0	1.0	1.0	1.010000	1.020100	1.030300	3.060400	1.020133
U.G. CABLE		2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.040533
COPPER	5C	5.0	4.0	4.0	1.050000	1.092000	1.135700	3.277700	1.092567
OPTICAL	85C	0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.000000
BURIED CABLE		4.0	3.0	3.0	1.040000	1.071200	1.103300	3.214500	1.071500
COPPER	45C	4.0	3.0	3.0	1.040000	1.071200	1,103300	3.214500	1.071500
OPTICAL	845C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.040533
SUBMARINE CABLE		3.0	3.0	3.0	1.030000	1.060900	1.092700	3.183600	1.061200
COPPER	6C	4.0	4.0	3.0	1.040000	1.081600	1.114000	3.235600	1.078533
OPTICAL	86C	2.0	3.0	3.0	1.020000	1.050600	1.082100	3.152700	1.050900
INBLDG NETWK CABLE		4.0	4.0	3.0	1.040000	1.081600	1.114000	3.235600	1.078533
COPPER	52C	5.0	4.0	4.0	1.050000	1.092000	1.135700	3.277700	1.092567
OPTICAL	852C	2.0	2.0	2.0	1.020000	1.040400	1.061200	3.121600	1.040533
CABLE COMPOSITE		4.0	3.0	3.0	1.040000	1.071200	1.103300	3.214500	1.071500
COPPER		4.0	4.0	4.0	1.040000	1.081600	1.124900	3.246500	1.082167
OPTICAL		1.0	1.0	1.0	1.010000	1.020100	1.030300	3.060400	1.020133
CONDUIT SYSTEMS	4C	3.2	3.7	3.5	1.032193	1.070000	1.107800	3.209993	1.069998
OSP STRUCTURES		3.4	3.7	3.6	1.034220	1.072500	1.111400	3.218120	1.072707
OSP COMPOSITE		3.6	3.2	3.2	1.035654	1.069000	1.102800	3.207454	1.069151
TOTAL COMPOSITE		0.0	1.0	1.0	1.000000	1.010000	1.020100	3.030100	1.010033

COPPER CABLE PLACEMENT BY CABLE SIZE - FLORIDA

BellSouth Telecommunications, Inc. FPSC Docket No. 990649-TP Rebuttal Exhibit DDC-10

Page 1 of 1

