ORIGINAL

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In Re: Petition for Determination of)
Need for an Electrical Power Plant in)
Polk County by Calpine Construction)
Finance Company, L.P.

DOCKET NO. 000442-EI

TESTIMONY AND EXHIBITS

OF

KENNETH J. SLATER

ON BEHALF OF

CALPINE CONSTRUCTION FINANCE COMPANY, L.P.

10249 AUG 218

FPSC-RECOADS/REPORTING

IN RE: PETITION FOR DETERMINATION OF NEED FOR THE OSPREY ENERGY CENTER BY CALPINE CONSTRUCTION FINANCE COMPANY, L.P., FPSC DOCKET NO. 000442-EI

DIRECT TESTIMONY OF KENNETH J. SLATER

-	1	Q:	Please state your name and business address.
-	2	A:	My name is Kenneth J. Slater. My business address is 3370
	3		Habersham Road, Atlanta, Georgia 30305.
-	4		
_	5	Q:	By whom are you employed and in what positions?
	6	A:	I am President and Chief Executive Officer of Slater
•	7		Consulting, which I founded in August 1990. The firm is a
	8		small engineering-economic and management consultancy with
-	9		particular expertise in energy and public utility matters.
	10		The services, which the firm offers to various participants in
	11		the utility business, include analysis of supply/demand
-	12		options, reliability, operating situations and events, new
_	13		technologies and industry developments, strategic decisions,
	14		public policy matters and ratemaking issues.
-	15		
	16	Q:	Please describe your duties with Slater Consulting.
-	17	A:	I am the President and Chief Executive Officer of Slater
-	18		Consulting. Although I am responsible for the overall
	19		management and operation of the Company, I spend most of my
-	20		time working on client projects.

PROFESSIONAL QUALIFICATIONS AND EXPERIENCE

- 2 Q: Please summarize your educational background and experience.
- 3 A: I obtained a Bachelor of Science degree in Pure Mathematics
- 4 and Physics in 1960 and a Bachelor of Engineering degree in
- 5 Electrical Engineering in 1962, both at the University of
- 6 Sydney, Australia. I also received a Master of Applied
- 7 Science degree in Management Sciences at the University of
- 8 Waterloo in Ontario, Canada in 1974.

9

- 10 Q: Please summarize your employment history and work experience.
- 11 A: I have almost forty years of experience in the energy and
- 12 utility industries in the United States, Canada and Australia.
- Prior to founding Slater Consulting, I was Senior Vice
- 14 President and Chief Engineer at Energy Management Associates,
- Inc. ("EMA") in Atlanta, where I worked from 1983 to 1990. At
- 16 EMA, after initially contributing to the firm's utility
- software development functions, I became the head of its
- 18 consulting practice, leading or making significant
- contributions to a number of consulting engagements related to
- valuation or analysis of power supplies and power supply
- contracts, supply/demand planning, damages assessments,
- operating reserve requirements, replacement power cost
- 23 calculations, utility merger valuations, operational
- 24 integration of utility systems, power pooling, system

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

reliability, ratemaking, power dispatching and gas supply studies. From 1969 until 1983, I worked in the Canadian utility industry. From 1975 to 1983, I ran my own firm, Slater Energy Consultants, Inc., in Toronto, Canada and consulted widely in Canada and the United States for utilities, governments, public enquiry commissions, utility customers and other consulting firms. It was during this time and my time at EMA that I was a major developer of PROMOD III®, (now renamed PROMOD IV®), a widely recognized electric utility planning and reliability model.

From 1969 through 1974, I worked as an Engineer, and then as a Senior Engineer at Ontario Hydro, where I headed the Production Development Section of the utility's Operating Department. There I developed computer models, including one which, for more than 20 years, produced the daily generation schedules for the Ontario Hydro system, and another, the which was used for coordination original PROMOD, optimization of production planning and resource management. In 1974 and 1975, I worked as Manager of Engineering at the Ontario Energy Board (Ontario's utility regulatory commission) and in 1975 and 1976, I served as Research Director for the Royal Commission on Electric Power Planning (also in Ontario).

Prior to 1969, I was employed by the Electricity Commission of New South Wales, the largest electric utility in Australia, where I was responsible for the day-to-day

- operation of one of the six regions comprising that system.
- A copy of my resume is included as Exhibit KJS-1.

3

- 4 Q: Have you previously testified before regulatory authorities or
- 5 courts?
- 6 A: I have provided expert testimony in regulatory 7 proceedings in California, Florida, Georgia, Idaho, Indiana, 8 Iowa, Louisiana, New Mexico, New York, Nova Scotia, Ontario, 9 Pennsylvania, Prince Edward Island, South Carolina, Texas, 10 Virginia, and Wisconsin, and at the Federal Energy Regulatory 11 Commission. I have also appeared in Federal Bankruptcy Court and state courts in Florida, Nebraska, Texas and Virginia, and 12 13 in civil arbitration proceedings in Louisiana, Nevada, New I have also served on many 14 England, and Pennsylvania. occasions as an expert examiner for a Royal Commission in 15 Ontario that was charged with studying and evaluating electric 16 power planning in the Province of Ontario. I have also served 17 18 as a member of a panel of arbitrator/valuers in a proceeding

21

19

20

22 Q: Are you a registered professional engineer?

value of a cogeneration plant.

23 A: Yes, I am a registered professional engineer in Ontario.

24

under the American Arbitration Association concerned with the

1		PURPOSE AND SUMMARY OF TESTIMONY
2	Q:	What is the purpose of your testimony in this proceeding?
3	A:	I am testifying on behalf of Calpine Construction Finance
4		Company, L.P. ("Calpine"), to provide the results of various
5		analyses, prepared by me or under my direction and
6		supervision, that address various aspects of the Osprey Energy
7		Center (the "Osprey Project" or simply the "Project") and its
8		projected impacts on the Peninsular Florida power supply
9		system. Specifically, my testimony addresses:
10		1. how the Osprey Project will operate in the Peninsular
11		Florida power supply system;
12		2. the impacts that the Osprey Project will have on overall
13		fuel consumption, power supply costs, and emissions from
14		electricity generation for Peninsular Florida power
15		supply;
16		3. the cost-effectiveness of the Osprey Project as a power
17		supply resource for Peninsular Florida; and
18		4. the impact of the Osprey Project's presence on Peninsular
19		Florida reserves and reliability.
20		
21	Q:	Please summarize your understanding of the Osprey Project.
22	A:	I understand the Osprey Project to be a 529 megawatt ("MW")

23

24

natural gas-fired combined cycle electric generating plant

that will be located in Auburndale, Florida, and

interconnected to the Peninsular Florida power supply grid at the Recker Substation of Tampa Electric Company ("TECO"). Project will have summer generating capability approximately 496 MW and winter capability of approximately 578 MW, without duct-firing and power augmentation. The Project will utilize advanced technology Siemens-Westinghouse 501F combustion turbines in a combined cycle configuration. This design is typical of modern, efficient, advanced technology power plants.

10

19

20

21

22

23

24

1

2

3

4

5

6

7

8

9

11 Q: Please summarize the main conclusions of your testimony.

- A: My staff and I prepared analyses of the Peninsular Florida

 power supply system with and without the Osprey Project using

 the PROMOD IV® production modeling program. Based on these

 analyses, it is my opinion that the Osprey Project will make

 significant and economically valuable contributions to the

 Peninsular Florida power supply system. Even modeled with

 conservative assumptions, the Osprey Project is projected:
 - 1. to operate at annual capacity factors between 86 and 93 percent for the entire analysis period, which in our modeling was the first ten years of the Project's commercial life;
 - 2. to provide significant savings -- 6 trillion to 9 trillion Btu per year -- of primary energy used to

- generate electricity for use in Peninsular Florida;
- 3. to result in significant savings of petroleum fuels and coal:
- 4 4. to improve the overall efficiency of electricity
 5 production and natural gas use in and for Peninsular
 6 Florida:
- 5. to result in wholesale power supply cost savings of approximately \$794 million (Net Present Value) over the first ten years of the Projects's operations;
- 10 6. to provide enhanced reliability of the power supply
 11 system in Peninsular Florida; and
- 7. to result in significant reductions -- approximately
 8,000 to 23,000 tons per year -- in combined emissions of
 sulfur dioxide and nitrogen oxides from the generation of
 Peninsular Florida's power supply.
 - These results hold true under both our base case assumptions and under "sensitivity cases" that we modeled in which we analyzed the Project's operations and impacts assuming a higher natural gas price forecast, lower load growth, and higher load growth in Peninsular Florida.

21

16

17

18

19

- 22 Q: Are you sponsoring any exhibits to your testimony?
- 23 A: Yes. I am sponsoring the following exhibits.
- 24 KJS-1. Resume' of Kenneth John Slater.

1 KJS-2. Fuel Price Assumptions for PROMOD IV® Analyses of 2 Osprey Project Operations. 3 KJS-3. Efficiency and Cost-Effectiveness of Peninsular 4 Florida Generating Units, 2003. 5 KJS-4. Efficiency and Cost-Effectiveness of Peninsular 6 Florida Generating Units, 2008. 7 KJS-5. Peninsular Florida Summary of Existing Capacity As 8 of January 1, 2000. 9 KJS-6. Peninsular Florida, Historical and Projected Summer 10 and Winter Firm Peak Demands, 1991-2012. 11 KJS-7. Peninsular Florida, Historical and Projected Net 12 Energy for Load and Number of Customers, 1991-2012. 13 KJS-8. Osprey Energy Center - Summary of Projected 14 Operations, 2003-2012. 15 KJS-9. Osprey Energy Center - Summary of Projected 16 Operations, 2003-2012, Higher Natural Gas Price 17 Sensitivity Analysis. 18 KJS-10. Osprey Energy Center - Summary of Projected 19 Operations, 2003-2012, Load Growth Sensitivity 20 Analyses. 21 KJS-11. Illustration of Impacts of Osprey Energy Center on 22 Operations of Other Peninsular Florida 23 Plants. KJS-12. 24 Market Indicators - Average Electric Production 25 Costs by NERC Region, 1997-1999.

_	1	KJS-13.	Peninsular Florida, Impacts of Osprey Energy Center
	2		on Average Electricity Generation Heat Rates and
-	3		Total Fuel Consumption, 2003-2012.
	4	KJS-14.	Peninsular Florida, Fuel Consumption Impacts of
	5		Osprey Energy Center, 2003-2012.
-	6	KJS-15.	Peninsular Florida, Summary of Projected Wholesale
	7		Energy Cost Savings Due to Osprey Energy Center,
_	8		Base Case, 2003-2012.
_	9	KJS-16.	Peninsular Florida, Summary of Projected Wholesale
	10		Energy Cost Savings Due to Osprey Energy Center,
	11		Higher Fuel Price Sensitivity Case, 2003-2012.
-	12	KJS-17.	Peninsular Florida, Summary of Projected Wholesale
	13		Energy Cost Savings Due to Osprey Energy Center,
-	14		Low Load Growth Sensitivity Case, 2003-2012.
	15	KJS-18.	Peninsular Florida, Summary of Projected Wholesale
_	16		Energy Cost Savings Due to Osprey Energy Center,
_	17		High Load Growth Sensitivity Case, 2003-2012.
	18	KJS-19.	Comparison of Peninsular Florida Planned and
-	19		Proposed Generating Units.
_	20	KJS-20.	Summary of Peninsular Florida Capacity, Demand, and
	21		Reserve Margin at Time of Summer Peak, Without and
-	22		With Osprey Energy Center.
	23	KJS-21.	Summary of Peninsular Florida Capacity, Demand, and
	24		Reserve Margin at Time of Winter Peak, Without and
_	25		With Osprey Energy Center.

1	KJS-22.	Peninsular	Florida	Utili	cies'	Identified	But
2		Uncommitted	Capacity	Needs.	2003-2	009.	

3 KJS-23. Peninsular Florida, Emissions Impacts of Osprey
4 Energy Center, 2003-2012.

I am also sponsoring the projected annual output values in Table 2 of the Exhibits in support of Calpine's petition for determination of need for the Osprey Energy Center filed on June 19, 2000 and Tables 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14.A, 14.B, 15, 16.A, 16.B, 17, 18, 19.A, 19.B, and 19.C of those Exhibits. I am also sponsoring the text associated with these tables in the Exhibits to the petition for determination of need for the Osprey Project, and Appendix C to the Exhibits, which is titled DESCRIPTION of PROMOD IV® GENERATION MODELING PROGRAM.

MODELS, ASSUMPTIONS, AND METHODOLOGY

- 17 Q: How did you analyze the operations of the Osprey Project
 18 within the Peninsular Florida power supply system and the
 19 impacts of the Project on that system?
- 20 A: Under my direction and supervision, Slater Consulting prepared
 21 several analyses of the Peninsular Florida power supply
 22 system, both with and without the Osprey Project, using the
 23 PROMOD IV® computer modeling program. Our analyses treated
 24 the Peninsular Florida power supply system as an integrated

system. Our analyses studied the period beginning with the first year that the Osprey Project is expected to be in service and continued for ten years. Thus, our analyses begin with the Osprey Project coming into commercial service in 2003 and continue through 2012. I should note that our analyses actually covered the period through 2014 in order to avoid certain artificial results that may occur in power system modeling when the system is modeled as effectively "shutting down" at the end of the analysis period. (This can occur because if the model is programmed not to have to serve load after a certain date, it will simply postpone maintenance.)

The analyses that we performed included a base case and three sensitivity cases, one with a higher natural gas price forecast, one with a lower load growth forecast, and one with a higher load growth forecast.

- 17 Q: Please briefly describe the PROMOD IV® computer model,
 18 including a summary of the main input variables used by the
 19 model and the main output data produced by the model.
- 20 A: PROMOD IV® is a widely known and widely used model that
 21 simulates the operations of electric power systems. PROMOD
 22 IV® is primarily used as a production costing model and can
 23 also be used to evaluate electric system reliability. A brief
 24 description of PROMOD IV® is included in Appendix C to the

Exhibits accompanying Calpine's petition. PROMOD IV® can be used to prepare utility fuel budget forecasts, evaluate the economics and operations of proposed generating capacity additions, project utility operating costs, estimate the prices of firm power and energy in defined markets, project hourly marginal energy costs, and calculate avoided energy costs.

The inputs to PROMOD IV® include generating unit data for existing and planned power plants in a defined power supply system, fuel consumption and fuel cost data, load and other utility system data, and data regarding transactions both within and external to the system. The primary outputs are individual utility or system production costs, generation by unit, fuel usage, and reliability information. PROMOD IV® utilizes computationally efficient algorithms that yield results identical to those that would be produced with direct specification of values for all availability states of all units in a power supply system.

Q: Who uses the PROMOD IV® model?

A: A significant number of electric utility companies in North
America have used and continue to use PROMOD IV®. To the best
of my knowledge, all four of the major investor-owned
utilities in Florida, as well as some of the larger municipal

and co-operative utilities in Florida, have used PROMOD IV®.

- Q: Before leading us through your detailed results, could you summarize the cost structure and performance you have assumed
- 5 for the Osprey Energy Center?
- 6 I have assumed that the heat rate of the Osprey Energy Center 7 Project will be 6,800 Btu per kilowatt-hour ("kWh") at full 8 load. I assumed that the variable operating and maintenance cost of the Osprey Energy Center Project will be \$1.85 per 9 10 megawatt-hour ("MWH") in 2000, escalating at 3.0 percent per I should add that I also made the conservative 11 assumption that the Osprey Project would have exactly the same 12 heat rate characteristics as all of the other similar 13 14 technology, new gas-fired combined cycle units planned for Florida except FPL's proposed repowering projects at Sanford 15 and Ft. Myers. I made this assumption in order to avoid 16 "favoring" the Osprey Project in our dispatch modeling, 17 despite the fact that the available evidence indicates that 18 the Osprey Project would in fact be slightly more cost-19 effective than nearly all of the other planned gas-fired 20 21 combined cycle units. For FPL's proposed repowering projects, 22 I used heat rate information extracted from FPL's permit applications to the Florida Department of Environmental 23 24 Protection; these data indicate that, as one would expect, the

1		repowering projects are somewhat less efficient than the other
2		new, "greenfield" plants. For example, our analyses indicate
3		that, on an "as-dispatched" basis, FPL's repowering projects
4		will have heat rates of approximately 7,150 to 7,280 Btu/kWh,
5		as compared to heat rates of approximately 6,970 to 7,040
6		Btu/kWh for the new combined cycle units, e.g., the Osprey
7		Project, Cane Island 3, Okeechobee, Payne Creek, Hines 2, Duke
8		New Smyrna Beach, and Purdom. This information is shown in
9		Exhibits and (KJS-3 and KJS-4).
10		
11	Q:	Did your analyses include the possibility of the Osprey
12		Project's having increased output capability from duct-firing
13		and power augmentation?
14	A:	No. Our modeling analyses were conducted assuming no output
15		from duct-firing or power augmentation. If included in the
16		Project's final design configuration, these features would
17		increase the Project's output during peak conditions and
18		further enhance the reliability of the Peninsular Florida
19		power supply system.
20		
21	Q:	Did you model the Osprey Project as an additional unit, i.e.,
22		a unit that was assumed to be brought into service in addition
23		to all other power plants planned for Peninsular Florida, or
24		did you assume that the Osprey Project would displace another

	1		unit or units that might otherwise have been built by Florida
	2		retail-serving utilities or other entities?
•	3	A:	I modeled the Osprey Project as an additional unit, that is,
	4		as one that was incorporated into the Peninsular Florida power
	5		supply system in addition to all other existing and planned
•	6		units. The planned units were identified through my review of
	7		all of the ten-year site plans that were submitted to the
	8		Florida Public Service Commission this year.
	9		
	10	Q:	Why did you model the Osprey Project in this manner?
•	11	A:	I modeled the Osprey Project in this way because it will give
	12		the most conservative results regarding the cost savings
	13		impacts, the fuel savings impacts, and the emissions impacts
•	14		of the Project. This is a conservative assumption because it
•	15		models the impacts of the Osprey Project within a more
	16		efficient system.
•	17		
	18	Q:	How would the Osprey Project affect power supply costs if it
•	19		were developed as a "displacement" unit instead of as an
•	20		"additional" unit?
	21	A:	The Osprey Project's actual impact on power supply costs would
•	22		depend on the precise terms of the contract or contracts that
•	23		Calpine entered into with the utilities whose units were
	24		displaced by the Project. However, if one were to model the

Project's impact on Peninsular Florida power supply costs treating the system as an integrated whole, the Osprey Project would show greater fuel savings, cost savings, and emissions reductions than in the analyses that we performed treating the Project as an "additional" unit. This is because in the "displacement" case, there is less new, efficient gas-fired combined cycle capacity (like the Osprey Project) in the Peninsular Florida system, and thus the Project would be operating within a system which was, overall, less efficient and more costly to run, which would result directly in its providing greater fuel savings and power supply cost reductions.

- 14 Q: What, if any, documents did your review in preparing your 15 analyses?
- 16 A: We reviewed the 1999 Regional Load & Resource Plan published
 17 in July 1999 by the Florida Reliability Coordinating Council
 18 (the "FRCC 1999 Resource Plan") and all ten-year site plans
 19 submitted to the Commission in the spring of 2000.

- Q: What assumptions did you make regarding future fuel prices over the period that you analyzed?
- 23 A: In developing the fuel price projections for our analyses, we examined historical Florida-specific fuel costs for

electricity generation and evaluated the major publicly available fuel price forecasts, which are presented in the Energy Information Administration's ("EIA") Annual Energy Outlook 2000 publication. Our base case fuel price projections were based primarily on the forecasts prepared by EIA but with the gas price projections following those of Resource Data International, Inc. ("RDI"). For the higher gas price sensitivity case, we assumed the EIA projections (the EIA's "reference case") for all fuels. Exhibit _____ (KJS-2) shows the projected fuel prices for both our base case analysis and for the higher natural gas price sensitivity case.

Q: What assumptions did you make regarding the electric power plants that would be available to serve Peninsular Florida? A: Our assumptions regarding available power plants to provide capacity and energy to Peninsular Florida are summarized in Exhibits ____ and ____ (KJS-3 and KJS-4), which present the projected Peninsular Florida generating fleet for 2003 and 2008, respectively. For reference, Exhibit (KJS-5) presents a summary of existing capacity as of January 1, 2000. These data were obtained from the FRCC 1999 Resource Plan and from the ten-year site plans filed with the Commission by Florida utilities in the spring of 2000.

1	Q:	What assumptions did you make regarding the growth rates of
2		summer and winter peak demands and energy consumption in
3		Peninsular Florida?
4	A:	Exhibit (KJS-6) presents the historical and projected
5		summer and winter firm peak demands for Peninsular Florida.
6		Exhibit (KJS-7) presents the historical and projected
7		net energy for load, number of customers, and load factor for
8		Peninsular Florida. For the base case, the load forecast was
9		developed on a company-by-company basis from the 2000 ten-year
10		site plans. Some adjustments were necessary to account for
11		loads which were included in more than one site plan, for one
12		system which does not file a site plan, and for some
13		overstatement of load management impact. We reconciled our
14		company-by-company forecasts with the FRCC 1999 Resource Plan
15		in order to achieve accuracy and completeness.
16		
17	Q:	What assumptions did you make regarding imports of electric
18		power from outside Peninsular Florida and exports of power
19		from Peninsular Florida to other regions?
20	A:	We assumed that imports into Peninsular Florida would be as
21		projected in the FRCC 1999 Resource Plan. We assumed that
22		there would be no significant exports of power from Peninsular
23		Florida to other regions.

- Q: What assumptions did you make regarding the effects of energy
 conservation and demand-side management programs?
- 3 A: We generally assumed that the forecasts of peak demands and 4 net energy for load presented in the FRCC 1999 Resource Plan 5 and the 2000 ten-year site plans reflected the achievement of 6 the Florida retail-serving utilities' Commission-approved 7 energy conservation goals. There was one exception to this 8 assumption, however: the FRCC projections and some of the site 9 plans assume that net energy for load (total energy consumption) will reflect maximum possible reductions from 10 interruptible, load management, and other energy conservation 11 In my opinion, this systematically 12 measures and programs. understates total energy consumption because it assumes far 13 greater reductions in energy use from interruptible and load 14 management customers than are actually realized. Accordingly, 15 we adjusted the net energy for load projections upward to 16 reflect more realistic energy consumption levels where 17 18 necessary.

- 20 Q: How was transmission modeled or treated in your analyses?
- A: We modeled Peninsular Florida as an integrated power supply system, with all generation resources available to serve all loads. Transmission was assumed to be costless for all transactions, such that the most efficient generation

-	1		resources would be dispatched to serve the Peninsular Florida
	2		load, without regard to transmission constraints or tariffs.
-	3		
-	4	Q:	Do you consider this to be a realistic assumption?
	5	A:	Yes. Because it is not known what transmission augmentations
-	6		will be carried out in the FRCC region in the next twelve
	7		years, it is best to make an assumption which would not favor
•	8		the Osprey Project over any other new project or over existing
_	9		generation. We made such an assumption.
	10		
-	11	Q:	What, if any, effect would altering this assumption have on
_	12		your analyses of the operations of the Osprey Energy Center?
	13	A:	Altering this assumption would likely have very little effect
-	14		on the actual dispatch of the Osprey Project.
	15		
•	16	Q:	Did you review any documents that you understood to be
-	17		confidential or proprietary to Calpine?
	18	A:	No.
•	19		
	20	Q:	Do you consider any of your input or output data to be
	21		confidential, proprietary business information from Slater
-	22		Consulting's perspective?
-	23	A:	Yes. Our compilation of the generating units and their
	24		dispatch characteristics, and to some extent the load forecast

		DIRECT IDDITIONS OF REMNETH J. SLATER
1		data, are the intellectual work product of Slater Consulting,
2		developed through significant and substantial effort. We
3		consider this to be confidential, proprietary business
4		information, but we are, of course, willing to disclose it
5		pursuant to appropriate confidentiality protections.
6		
7		OPERATIONS OF THE OSPREY ENERGY CENTER
8	Q:	What does your base case analysis show regarding the projected
9		operations of the Osprey Energy Center?
10	A:	For the base case, our analyses show that the Osprey Energy
11		Center will generally produce between 4,000 and 4,400
12		gigawatt-hours ("GWH") annually, indicating annual capacity
13		factors between 86 and 93 percent, for the 2003-2012 analysis
14		period. Exhibit (KJS-8) shows the projected annual
15		energy production from the Osprey Project and the annual
16		capacity factors based on the indicated output amounts.
17		Our analyses also indicate that, in peak demand periods,
18		the Project will make sales equal to the Project's full rated
19		capacity, subject only to outages.
20		
21	Q:	What do your analyses show regarding the projected operations
22		of the Osprey Project if natural gas prices are higher than
23		your base case forecast?
24	A:	Exhibit (KJS-9) displays the results of this

1	sensitivity analysis, and shows that the Osprey Project will
2	produce between 3,900 and 4,400 GWH annually in this case.
3	That is, it will operate at annual capacity factors between 83
4	and 92 percent.
5	
6 Q:	What do your analyses show regarding the projected operations
7	of the Osprey Project if Peninsular Florida's load growth is
8	higher or lower than in your base case?
9 A:	Exhibit (KJS-10) shows that load growth will have
10	virtually no impact on the operations of the Osprey Project.
11	
12 Q :	What, if any, impacts will the Osprey Project's operation have
13	on other power plants in Peninsular Florida?
14 A:	Generally, the Project will cause less efficient and more
15	costly plants to operate at lower output levels. Exhibit
16	(KJS-11) shows the modeled impacts of the Osprey
17	Project's operations on other units supplying Peninsular
18	Florida during two representative days in 2005, one a June
19	weekday and one a December weekday. Of course, the actual
20	impacts would depend on the actual availability status of all
21	units in Peninsular Florida on any given day.
22	
23 Q :	In your opinion, even if the Osprey Project were developed as
24	a "merchant" plant, would the Osprey Project make any

1		significant amount of power sales outside Peninsular Florida?
2	A:	No. Based on my general knowledge of the Florida and
3		Southeastern Electric Reliability Council ("SERC") markets,
4		including both existing and planned generating capacity for
5		both, and the transmission systems in both markets, I believe
6		that, even if the Osprey Project were not specifically
7		contracted to serve Florida retail-serving utilities, it would
8		be highly unlikely that the Project would make any significant
9		amount of sales outside Peninsular Florida. This is generally
10		because Florida's generation resources are high-cost.
11		
12	Q:	Are you aware of other evidence that supports your opinion
13		that the Osprey Project will not make significant sales of
13 14		that the Osprey Project will not make significant sales of power outside Peninsular Florida?
	A:	
14	А:	power outside Peninsular Florida?
14 15	А:	<pre>power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data</pre>
14 15 16	A:	<pre>power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data International, Inc. and reported on a regular basis in Public</pre>
14 15 16 17	A:	<pre>power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data International, Inc. and reported on a regular basis in Public Utilities Fortnightly shows that the average generation cost</pre>
14 15 16 17	A:	power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data International, Inc. and reported on a regular basis in <u>Public Utilities Fortnightly</u> shows that the average generation cost (defined as fuel cost plus reported non-fuel operating and
14 15 16 17 18	A:	power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data International, Inc. and reported on a regular basis in <u>Public Utilities Fortnightly</u> shows that the average generation cost (defined as fuel cost plus reported non-fuel operating and maintenance cost) in the FRCC region, i.e., Peninsular
14 15 16 17 18 19	A:	power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data International, Inc. and reported on a regular basis in <u>Public Utilities Fortnightly</u> shows that the average generation cost (defined as fuel cost plus reported non-fuel operating and maintenance cost) in the FRCC region, i.e., Peninsular Florida, was the highest of all of the reliability regions in
14 15 16 17 18 19 20 21	A:	power outside Peninsular Florida? Yes, I am. The PowerDAT data base maintained by Resource Data International, Inc. and reported on a regular basis in Public Utilities Fortnightly shows that the average generation cost (defined as fuel cost plus reported non-fuel operating and maintenance cost) in the FRCC region, i.e., Peninsular Florida, was the highest of all of the reliability regions in the United States for 1997, 1998, and 1999. Exhibit

Electric Reliability Council of Texas ("ERCOT"), with an average cost of \$24.10 per MWH. The average cost for electricity generation in Florida's nearest neighbor regions was significantly less than in the FRCC region: the average cost for the SERC region was \$17.60, approximately 32 percent less than in FRCC, the average cost for the Southwestern Power Pool ("SPP") region was \$21.10 per MWH, approximately 19 percent less than in FRCC, and the average cost for the East Central America Reliability ("ECAR") was \$21.20 per MWH, approximately 18 percent less than in FRCC.

In addition, I am aware from reading the power generation trade press that there are significant amounts of new, efficient, relatively low-cost capacity being installed in SERC, ECAR, and other regions. The addition of this new capacity will further reduce the economic viability of power exports from Florida to other regions.

FUEL CONSUMPTION IMPACTS OF THE OSPREY ENERGY CENTER

- 19 Q: What, if any, effects will the Osprey Project have on the
 20 total consumption of primary fuels used to generate the
 21 electric power supply for Peninsular Florida?
- 22 A: Exhibit _____ (KJS-13) shows the estimated impacts of the
 23 Osprey Project's operations on total primary energy
 24 consumption for generating Peninsular Florida's electricity

1 supply for each year from 2003 through 2012. Our modeling 2 analyses show that the Osprey Project can be expected to 3 reduce total fuel consumption by roughly 6 trillion Btu per 4 year to 9 trillion Btu per year over the analysis period. 5 This is a tremendous amount of energy: 6 trillion Btu is 6 approximately the amount of energy in 6 million Mcf 7 (equivalent to 6 billion cubic feet) of natural gas, or the 8 amount of energy in 1 million barrels of residual fuel oil.

9

Q: What effects will the Osprey Project have on the specific fuels used to generate the electric power supply for Peninsular Florida?

(KJS-14) shows the impacts of the Osprey A: 13 Exhibit Project's operations on the total use of natural gas, No. 6 14 (residual) fuel oil, No. 2 fuel oil, nuclear, and coal and 15 other solid fuels to generate Peninsular Florida's electricity 16 supply for the 2003-2012 analysis period. Page 1 of 2 of 17 18 this exhibit shows the impact on fuel use in millions of Btu, and page 2 of 2 of the exhibit shows the impact in terms of 19 gigawatt-hours (i.e., thousands of megawatt-hours) generated 20 using each fuel type. Generally, the Project results in 21 significant decreases in the use of coal and No. 6 oil, with 22 a corresponding increase in natural gas use. The Project's 23 specific impacts are also illustrated in Exhibit 24

	DIRECT TESTIMONY OF RENNETH J. SLATER
1	(KJS-11), which shows the expected impacts of the Osprey
2	Project's operations on the operations of other units in
3	Peninsular Florida during representative days.
4	
5 Q:	It is relatively easy to understand how the Osprey Project,
6	with its relatively low heat rate, would reduce the use of gas
7	or oil used in less efficient power plants. Can you explain,
8	however, how the Osprey Project would displace generation from
9	coal-fired power plants?
10 A:	Of course. Certain coal plants, while they have relatively
11	low fuel costs, also have relatively high non-fuel operating
12	and maintenance ("O&M") costs. Because dispatch decisions are
13	based on total variable costs, in some instances, the sum of
14	the Osprey Project's incremental fuel and non-fuel variable
15	O&M cost (and the corresponding costs for the other planned
16	gas-fired combined cycle units as well) will be less than the
17	sum of those costs for coal units. This results in the
18	economic dispatch decision being to operate the Osprey Project
19	at higher output levels and the relatively higher-cost coal
20	units at lower levels.
21	
22 Q :	Please summarize the impact of the Osprey Project's operations
23	on the consumption of petroleum fuels for electricity

generation for Peninsular Florida?

1	A:	The Osprey Project's operations will result in significant
2		reductions in the use of petroleum fuels for electricity
3		generation for Peninsular Florida. For example, Exhibit
4		(KJS-14) shows savings of approximately 13,122 billion Btu of
5		No. 6 oil and another 518 billion Btu of No. 2 oil in 2004.
6		This translates to a total savings of petroleum fuels of 13.6
7		trillion Btu, or approximately 2.2 million barrels for 2004.
8		
9	Q:	Will the Osprey Project have any effect on the overall
10		efficiency of natural gas use in Florida?
11	A:	Yes. The Osprey Project will increase the overall efficiency
12		of natural gas use in Florida. This will occur as the Osprey
13		Project, with its heat rate of approximately 6,970 Btu/kWh (as
14		dispatched), is dispatched economically in preference to other
15		gas-fired units with less efficient heat rates, e.g., the
16		numerous gas-fired steam units in Florida that have heat rates
17		in the range of 10,000 to 11,000 Btu/kWh.
18		
19	Q:	What, if any, effect will the Osprey Project have on the
20		overall efficiency of electricity generation for Peninsular
21		Florida?
22	A:	The Osprey Project will significantly increase the overall
23		efficiency of electricity generation for Peninsular Florida.
24		Exhibit (KJS-13) shows not only that the Project will

result in overall savings of 6 trillion to 9 trillion Btu per year for electricity generation, but that the Project will also reduce the average heat rate for Peninsular Florida electricity generation by 24 to 44 Btu per kilowatt-hour, a reduction on the order of 0.4 percent. This is a significant improvement in the overall efficiency of producing approximately 200,000,000 MWH of electricity per year for the fourth largest state in the nation.

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Α:

1

2

3

4

5

6

7

8

Q: Why will the Osprey Project have these effects?

The Osprey Project will have these fuel and energy savings effects because it is significantly more efficient and costeffective than the vast majority of electric generating plants that currently exist in Peninsular Florida and at least as efficient as virtually all of the new capacity that is planned (KJS-3) shows the Exhibit for Peninsular Florida. estimated dispatch costs and heat rates (as assumed in our PROMOD IV® modeling) for all of the power plants that are expected to be serving Peninsular Florida in 2003. The Osprey Project's dispatch cost of \$28.09 per MWH is lower than the dispatch costs of approximately 34,000 MW of the total capacity of approximately 47,000 MW (including 3,877 MW of nuclear capacity operated as "must run" generation) that is projected to be available to serve Peninsular Florida in that

Btu per kWh is more efficient than virtually all of the generating capacity that is projected to be available to serve Peninsular Florida in that year. Similarly, Exhibit _______ (KJS-4) shows the estimated dispatch costs and heat rates for all of the power plants that are expected to be serving Peninsular Florida in 2008. The Osprey Project's dispatch cost of \$32.57 per MWH is lower than the dispatch costs of approximately 38,000 MW of the total of approximately 51,000 MW (again including 3,877 MW of nuclear as "must run") that is projected to be available to serve Peninsular Florida in that year. In addition, the Osprey Project's as-dispatched heat rate of 6,984 Btu per kWh is more efficient than virtually all of the generating capacity that is projected to be available to serve Peninsular Florida in that year.

- Q: Will there be any adverse effect on primary fuel consumption
 and the efficiency of electricity generation for Peninsular
 Florida if the Osprey Project is not brought into service as
 requested by Calpine in this proceeding?
- 21 A: Yes. If the Osprey Project is either delayed or not brought
 22 into operation at all, Florida will lose the primary fuel
 23 savings benefits that the Project will provide. As shown
 24 above, these primary fuel savings are quite significant -- on

1	the o	order	of	6	trillion	to	9	trillion	Btu	per	year	for	each
2	year	of th	e Pi	ro	ject's op	era	ti	on.					

3

4

COST-EFFECTIVENESS OF THE OSPREY ENERGY CENTER

- Q: Did your analyses address the cost-effectiveness of the Osprey
 Project as an additional power supply resource in the
 Peninsular Florida power supply system?
- 8 Yes. Our analyses addressed the Project's cost-effectiveness **A**: 9 by evaluating the impact that it would have as an incremental 10 power supply resource added into the Peninsular Florida power 11 supply system in addition to all other planned additions, as indicated by the ten-year site plans filed with the Commission 12 this year. Basically, our analyses modeled the total power 13 supply costs for serving Peninsular Florida without the Osprey 14 Project and with the Project. The difference in costs 15 represents the cost savings properly attributable to the 16 Osprey Project. 17

18

19

Q: And what did your analyses show?

20 A: Our "base case" analyses and our sensitivity analyses showed
21 that the Osprey Project will provide significant power supply
22 cost savings to Peninsular Florida. Exhibit ______ (KJS-15)
23 shows that for the base case, the Project would result in
24 power supply cost savings between \$113 million and \$204

million per year (in nominal terms), with projected total savings of \$794 million in Net Present Value terms over the Project's first ten years of operations (2003-2012).

For the higher natural gas price sensitivity case, Exhibit _____ (KJS-16) shows that the Project will provide power supply cost savings between \$115 million and \$218 million per year (in nominal terms), with projected total savings of \$806 million in Net Present Value terms over the Project's first ten years of operations (2003-2012).

For the low load growth sensitivity case, Exhibit _______ (KJS-17) shows that the Project will provide power supply cost savings between \$47 million and \$219 million per year (in nominal terms), with projected total savings of \$627 million in Net Present Value terms over the Project's first ten years of operations (2003-2012).

For the high load growth sensitivity case, Exhibit _______ (KJS-18) shows that the Project will provide power supply cost savings between \$88 million and \$410 million per year (in nominal terms), with projected total savings of \$1.12 billion in Net Present Value terms over the Project's first ten years of operations (2003-2012).

	1 (2:	How do these total cost savings translate into reductions in
	2		the estimated wholesale cost of power for Peninsular Florida?
	3 <i>I</i>	A :	Exhibit (KJS-15) shows that for the base case, the
	4		estimated reduction in the average wholesale cost of power for
	5		Peninsular Florida is approximately \$0.54 to \$0.84 per MWH
	6		over the 2003-2012 study period. Exhibit (KJS-16)
	7		shows that the impact of the Osprey Project in the higher
	8		natural gas price scenario is approximately \$0.55 to \$0.88 per
	9		MWH over the study period. Exhibit (KJS-17) shows that
1	10		for the low load growth scenario, the impact of the Osprey
1	11		Project would be a reduction in average power supply costs of
1	12		approximately \$0.23 to \$0.94 per MWH, and that for the high
1	13		load growth scenario, the impact of the Osprey Project would
1	L 4		be a reduction in average power supply costs of approximately
1	15		\$0.41 to \$1.47 per MWH.
1	16		
1	17 Ç):	Will the Osprey Project be the most cost-effective alternative
1	L 8		available to serve Peninsular Florida's needs for cost-
1	19		effective, reliable power?
2	20 <i>I</i>	<i>A</i> :	In my opinion, yes. The Osprey Project has a favorable heat
2	21		rate and favorable direct construction costs, as reported by
2	22		Calpine, when compared to other generating units that are
2	23		planned or proposed for Peninsular Florida. Combining these
,	24		factors with the fact that the Project will not be included in

any retail-serving utility's rate base, but rather the Project's output will only be purchased for resale to retailserving utilities' customers when such purchases are costeffective, it is obvious that it is the most cost-effective alternative available. Exhibit ___ (KJS-19) lists planned and proposed generating units for Peninsular Florida. Among the gas-fired combined cycle units, the Osprey Project compares quite favorably: only the Cane Island 3, Duke New Smyrna Beach, and Okeechobee units have comparable heat rates and lower construction costs. Most of the proposed combined cycle capacity, e.g., FPL's repowering units and its proposed unsited units, have significantly higher direct construction costs. What, if anything, could prevent the Osprey Project from being a cost-effective power supply resource in the Peninsular Florida region?

14

1

2

3

4

5

6

7

8

9

10

11

12

13

15 16 17

Only highly unlikely developments, such as the total failure 18 A: of the Project to become operational or a technological change 19 so dramatic as to make <u>all</u> of the existing and planned 20 Peninsular Florida generating capacity obsolete, could cause 21 the Osprey Project not to be cost-effective. 22

1	Q:	How does the Osprey Project compare to other existing and
2		planned Peninsular Florida power plants in terms of its
3		projected operating costs?
4	A:	In terms of its operating costs, the Osprey Project compares
5		quite favorably to all existing generating plants in
6		Peninsular Florida except those fueled by nuclear fuel and
7		some of those fueled by coal. Referring back to Exhibit
8		(KJS-3), the Commission will see that the Osprey
9		Project is more cost-effective, in terms of its dispatch
10		costs, than approximately 34,000 MW out of the total of 47,000
11		MW (including nuclear as "must run") available to serve
12		Peninsular Florida in 2003. Similarly, Exhibit (KJS-4)
13		shows that the Project is more cost-effective than
14		approximately 38,000 MW of the total of approximately 51,000
15		MW (including nuclear as "must run") of capacity that is
16		projected to be available to serve Peninsular Florida in 2008.
17		As noted above, the Project also compares favorably to other
18		planned and proposed gas-fired combined cycle units.
19		I should add that in our modeling, we intentionally
20		assumed identical heat rate characteristics for all of the new
21		gas-fired combined cycle capacity. We did so in order to be
22		conservative with respect to the Osprey Project's impacts and
23		operations.

Q: One of the criteria that the Commission must consider in a

1

21

22

23

24

2	need determination proceeding is whether the proposed power
3	plant will contribute to meeting the need for adequate
4	electricity at a reasonable cost. As you understand this
5	term, will the Osprey Project contribute to meeting Florida's
6	need for adequate electricity at a reasonable cost?
7 A:	Yes. In the simplest terms, the Osprey Project is available
8	to Peninsular Florida, and our PROMOD IV® modeling analyses
9	show that it will save between \$627 million and \$1.12 billion
10	in power supply costs for Peninsular Florida in the first ten
11	years of its life, depending on variations in fuel prices and
12	load growth rates. Clearly, if Florida can obtain its needed
13	power supply at savings between half a billion and more than
14	one billion dollars, it would only be reasonable to take
15	advantage of the opportunity. Given the availability of these
16	savings, paying the extra half billion dollars or more would
17	represent paying an unreasonable amount for needed power.
18	
19 Q :	Will the Project have any effect on potential "price spikes"
20	for wholesale power in Peninsular Florida?

Yes, the Project can be expected to suppress and reduce the magnitude of prices in basically all hours when the Project is available to serve. (The Project would be expected to be available to serve continuously during all summer and winter

peak periods, except for unplanned or forced outages.) While
our modeling analyses did not address extreme peak conditions,
it is obvious that the Project's presence would suppress
prices in any extremely tight supply conditions that might be
experienced in Peninsular Florida.

6

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

A:

Q: What, if any, value would the Project have with respect to other services? For example, would the Project suppress the price of ancillary services in Peninsular Florida?

Generally, the Project will also suppress the cost or price of other services, including ancillary services. services are defined by the Federal Energy Regulatory Commission as (a) Scheduling, System Control and Dispatch Reactive Supply and Voltage Control from Service; (b) Generation Sources Service; (c) Regulation and Frequency Response Service; (d) Energy Imbalance Service; (e) Operating Reserve - Spinning Reserve Service; and (f) Operating Reserve Supplemental Reserve Service.) While our PROMOD IV® analyses only addressed the Osprey Project's value in supplying energy and did not include any analyses of the Project's impact on the prices of ancillary services, from my experience I can say that the Project's presence will suppress the prices of ancillary services in Peninsular Florida, especially the prices of the various types of reserve services. These

1	effects are likely to be quite significant in Florida once the
2	transmission function is transferred to some form of regional
3	transmission organization that would have the responsibility
4	for procuring ancillary services in the market.
5	
6 Q :	Do your analyses take account of the value of economic
7	production (e.g., fertilizer, chemicals, services, food
8	products, and so on) that could, and presumably would, be
9	realized by commercial enterprises in Florida if they were
10	able to stay in operation as a result of the Project's
11	presence and operation?
12 A:	No. Our analyses address only the direct impacts on power
13	supply costs. The value of maintaining electric service is
14	generally significantly greater than the cost of providing
15	incremental energy, even in instances where power supplies are
16	tight and incremental power is available only at extremely
17	high prices, for example, \$1,000 or more per MWH. In my
18	experience, the value of "lost production" is frequently
19	several times that amount.
20	
21 Q:	What, if anything, do your analyses of the Osprey Energy
22	Center's operations show regarding the need for the Project?
23 A:	Our analyses show that the Project will meet significant need
24	in Peninsular Florida for cost-effective power, even if the

Project is added onto the projected Peninsular Florida generating fleet in addition to all other planned resources. This is demonstrated by the significant, even dramatic, power supply cost reductions that the Osprey Project will provide.

Again, as I indicated above, these analyses provide the most conservative estimate of the Project's contributions to Peninsular Florida, because they model the Project's operations against the backdrop of the greatest amount of new efficient generation in the area. If, pursuant to contracts between Calpine and Peninsular Florida utilities with retail load-serving responsibility, the Osprey Project is constructed instead of another projected unit, it will provide even greater total benefits in terms of reduced power supply costs.

- 15 Q: Based on your analyses, and in your opinion, will there be any
 adverse effects on total power supply costs for Peninsular
 Florida if the Osprey Project is not brought into service as
 requested by Calpine?
- 19 A: Yes. Our analyses demonstrate quite clearly that the Project
 20 will provide significant, even dramatic, benefits to
 21 Peninsular Florida if and when it is brought into service as
 22 proposed by Calpine. With respect to power supply costs, if
 23 the Project were not brought into service as proposed by
 24 Calpine, Florida would lose these benefits, specifically the

projected cost savings of about \$800 million (Net Present Value) over the Project's first ten years of operation.

Losing these benefits would be a significant adverse effect of the Project's not being brought into service as requested by Calpine. Similarly, delaying the Project's commercial operation will cost Florida amounts on the order of \$150 million annually for each year of delay.

RELIABILITY IMPACTS OF THE OSPREY ENERGY CENTER

Q: How should the Commission evaluate the impact of the Osprey
Energy Center on the reliability of the power supply system
for Peninsular Florida?

A: The Commission should include the Osprey Project in its

The Commission should include the Osprey Project in its reliability evaluation for Peninsular Florida as a committed resource both under the scenario projected by Calpine, wherein the Project's output will be sold to Peninsular Florida retail-serving utilities, and in the hypothetical scenario where the Project were to be operated as a "merchant" plant. In the scenario projected here by Calpine, the Project's capacity would also be counted toward meeting the reserve margins of the utilities having contractual rights to the Project's capacity.

1 What impact will the Osprey Project have on the reliability of 2 Peninsular Florida's power supply system? 3 **A**: The Osprey Project will improve Peninsular Florida reliability 4 by increasing Peninsular Florida reserve margins by 5 approximately 1.2 to 1.3 percent in both summer and winter 6 seasons following the Project's achievement of commercial inservice status. For example, Exhibit (KJS-20) shows 7 8 that in the summer of 2003, the Project will increase 9 Peninsular Florida's reserve margin from 20.1 percent to 21.3 percent. Exhibit (KJS-21) shows similar improvement in 10 winter reserve margins. If the Project's output were 11 12 purchased by a Florida retail-serving utility instead of that utility constructing its own generation, then the Project 13 would be expected to have comparable effects on that utility's 14 15 and Peninsular Florida's reliability as the utility's "avoided" unit, allowing for adjustments in the relative 16 availability of the Osprey Project and the utility's unit and, 17 if applicable, in the amount purchased as compared to the 18 capacity of the avoided unit. 19 20 From the perspective of statewide, or Peninsular Florida-wide, 21 reliability, does it matter whether the Osprey Project is 22 under contract to any specific utility or utilities? 23 24 **A**: No.

A:

Q: What, if any, impact would the availability of the Osprey
Project have on the ability of Peninsular Florida's retailserving utilities to maintain service to their retail
customers during periods when power supply was short relative
to demand?

The Osprey Project will have significant beneficial effects on the ability of Peninsular Florida retail—serving utilities to maintain uninterrupted service to their firm and non-firm customers. This would apply not only during extreme seasonal peak demand conditions, but any time that supply was "tight" relative to demand. Such conditions have occurred in what are typically regarded as "shoulder" months when demand was higher than projected (though far below annual peak levels) but supply was tight due to scheduled maintenance outages and unexpected outages of generating units.

In an extreme winter peak event, the Project's capacity of approximately 578 MW would enable Florida's retail-serving utilities to maintain service to between 115,000 and 165,000 residential customers, at an average coincident peak demand of 3.5 to 5.0 kilowatts per household. Even in less extreme conditions, the Project's capacity would enable Florida retail-serving utilities to maintain service to more of their customers without implementing direct load control measures or without interrupting service to commercial and industrial

interruptible customers. In an extreme summer event, the Project's summer capacity of 496 MW would enable Florida's retail-serving utilities to maintain service to between 99,000 and 142,000 residential customers or equivalent load.

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

2

3

4

In your opinion, would it be accurate to say that Florida has a need for the Osprey Project from a reliability perspective? As Calpine has presented its plans for the Osprey **A**: Yes. Project, one can only conclude that the Project will meet the needs of Florida retail-serving utilities and their customers, that the Project will do so cost-effectively, and that the Project will enhance the reliability of Peninsular Florida's electric power supply system. It is fairly obvious that if there is an opportunity to add a power supply resource that is cost-effective from the perspective of Florida's ratepayers and that will enhance reliability, then there is a need for The Commission should remember that the that resource. concept of "need" exists with respect to relative economics, and not with respect to some exogenously established reliability criterion. This is because the need depends on the cost of additional resources and on the costs incurred if the system fails to maintain service. The Commission's goal, and the utilities' goal, should be to optimize the level of reserves, not merely to satisfy some reserve margin or loss of

	1	load probability criterion. If a resource will both enhance
	2	reliability and do so cost-effectively, then it is needed.
	3	
	4 Q:	At this time, can you say which utility or utilities need the
	5	Osprey Project's capacity?
	6 A:	No. However, Exhibit (KJS-22) shows a compilation of
	7	units from seven utilities' ten-year site plans for which
	8	permits and other commitments do not appear to be in hand.
	9	The capacity represented by these units totals approximately
1	0	8,700 MW. It is at least possible that the Osprey Project
1	1	could serve part of this identified need. It is, of course,
1	2	also possible that Florida retail-serving utilities could
1	.3	choose to purchase the Project's capacity and output in
1	4	addition to their own planned resource additions, thereby
1	5	resulting in enhanced reliability for their own systems and to
1	. 6	the Peninsular Florida system considered as a whole.
1	.7	
1	.8 Q:	Will there be any adverse effects on the reliability of the
1	.9	Peninsular Florida power supply system if the Osprey Project
2	20	is not brought into service as requested by Calpine?
2	21 A:	Yes. Reserve margins will be less, by a measurable,
2	22	significant amount, than if the Project is added. More
2	23	significantly, in practical terms, Peninsular Florida
2) /I	utilities will be unable to serve approximately 500 MW of load

(up to approximately 660 MW of load with duct-firing and power augmentation) that they could serve if the Project were constructed as sought by Calpine. This means that, in periods when supply is short relative to demand, the equivalent of 99,000 to 185,000 homes will not be served, or will have their service interrupted, if the Project is not built. The actual impacts could be felt by residential customers or by industrial and commercial customers who would have to shut down their operations as a result of power supply shortages. The actual amount of load depends on the season and the final configuration of the Project, i.e., whether it is constructed with duct-firing and power augmentation capability.

A:

IMPACTS OF THE OSPREY ENERGY CENTER ON ENVIRONMENTAL EMISSIONS FROM ELECTRICITY GENERATION

Q: Did you evaluate the impacts of the Osprey Energy Center's operations on the emissions of pollutants that are associated with electricity generation?

Yes. Our PROMOD IV® analyses evaluate the impacts on total emissions of sulfur dioxide and nitrogen oxides from the operation of the power plants included in our analyses. In this application, we evaluated the emissions of sulfur dioxide and nitrogen oxides in the various cases with and without the Osprey Project included as a power supply resource for Peninsular Florida.

1	Q:	What are the projected impacts of the Osprey Energy Center on
2		the emissions of sulfur dioxide and nitrogen oxides associated
3		with producing the electric power supply for Peninsular
4		Florida?
5	A:	Exhibit (KJS-23) shows that with the Osprey Project in
6		service in our base case scenario, the emissions of sulfur
7		dioxide are approximately 4,600 to 16,000 tons per year less
8		than if the Osprey Project is not in service. Similarly,
9		Exhibit (KJS-23) shows that the Osprey Energy Center's
10		operations are expected to result in reductions of nitrogen
11		oxides emissions of approximately 3,900 to 7,000 tons per
12		year.
13		
14	Q:	Will there be any adverse effects on Florida's environment if
15		the Osprey Project is not brought into service as requested by
16		Calpine in this proceeding?
17	A:	Yes. The combined emissions of sulfur dioxide and nitrogen
18		oxides from producing Peninsular Florida's electricity supply
19		will be more than eight thousand tons greater in each year
20		that the Osprey Project's operation is delayed.
21		
22	Q:	Does this conclude your direct testimony?
23	A:	Yes. It does.
		\cdot

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In Re: Petition for Determination of)
Need for an Electrical Power Plant in) DOCKET NO. 000442-EI
Polk County by Calpine Construction)
Finance Company, L.P.

EXHIBITS

OF

KENNETH J. SLATER

ON BEHALF OF

CALPINE CONSTRUCTION FINANCE COMPANY, L.P.

Witness: Slater
Exhibit _____ (KJS-1)
Page 1 of 10

Technical Qualifications and Professional Experience

Kenneth John Slater

EDUCATION

B.Sc., Pure Mathematics and Physics, Sydney University, 1960
B.E., Electrical Engineering, Sydney University, 1962
M.A.Sc., Management Sciences, University of Waterloo, 1974

PROFESSIONAL AFFILIATIONS

Association of Professional Engineers of Ontario

- Registered Professional Engineer

Institute of Electrical and Electronic Engineers

- Member of Power Engineering Society
- Past member of Power System Engineering Committee
- Past member of System Economics subcommittee and working group

EXPERIENCE

1957-62	Mr. Slater was a Junior Professional Officer at the Electricity
	Commission of New South Wales attending university and
	undergoing on-the-job training in power station and substation
	design, construction, protection, maintenance, and operation.

- Mr. Slater was a Professional Engineer Grades 1 and 2 at The Electricity Commission of New South Wales, engaged in a variety of functions within the areas of Power Station Construction, Generation Planning, System Operation and Load Dispatch.
- As Assistant Engineer Area Operations/Sydney West (Professional Engineer, Grade 3) with the Electricity Commission of New South Wales, Mr. Slater was responsible for the day-to-day operation of the Sydney West Area (approximately 20% of the State System).

He supervised the day-to-day work of more than 18 operators as they provided safe working conditions for Commission staff and others on system apparatus, and as they provided safe, secure, reliable and economic operation of this portion of the State System. He performed the liaison function with head office staff, other divisions and customers on all operating activities, directed the performance of complicated operating procedures and trained both regular and emergency operators.

While he was in this and his previous position, Mr. Slater was responsible for the design and manufacture of the live line testing devices used by the Commissions' operators and linemen.

As well, he assumed responsibility for the preparation and execution of "black start" exercises and for the arrangement and detailing of complicated switching for major rearrangements and commissionings on the State System. He also developed original computer applications.

1969-74

As Engineer, and then Senior Engineer, heading the Production Development Section of Ontario Hydro's Operating Department, Mr. Slater was engaged in developing computational procedures and computer programs for Production Economics and Resource Management.

Major contributions included (1) the development and implementation of the computer program which, for more than 20 years, produced the daily generation schedule for the Ontario Hydro System, (2) the formulation of a Stochastic System Model to coordinate and optimize the production planning, maintenance planning, interchange planning and resource management of the Ontario Hydro System, and (3) the development of PROMOD, a Probabilistic Production Cost and Reliability model, the first version of the "core" of the Stochastic Model in (2) above.

As a member of the project group implementing the Operating Department's Data Acquisition and Computer System, he headed a work unit responsible for providing the application programs related to generation scheduling, power interchange and resource management. Also, he held responsibilities in the areas of policy determination, analytical techniques and the planning of future applications.

As Manager of Engineering at the Ontario Energy Board, Mr. Slater was heavily involved in public hearings into Ontario Hydro's System Expansion Plans and Financial Policies, and into Ontario Hydro's Bulk Power Rates.

During this time, he provided much of the power system engineering input necessary for the start-up and formulation of the public hearing process related to Ontario Hydro. He also provided the engineering input for the regulation of Ontario's three major investor owned gas utilities.

- For 12 months, Mr. Slater was a private consultant contracted to the Royal Commission on Electric Power Planning, in Ontario, as its Research Director. During this time, he directed and participated in various studies of different aspects of electricity supply. He was also a member of the panel of expert examiners in a number of the Royal Commission's public hearings.
- As President of Slater Energy Consultants, Inc., in Toronto, Mr. Slater performed or made major contributions to a number of important assignments at the forefront of the electrical energy industry. These included:
 - The Export of Electrical Power a study for the Ontario Ministry of Industry and Tourism.
 - Load Management Studies
 for the Detroit Edison Company.
 - California Utilities Increased Integration Study
 for San Diego Gas & Electric Company, Southern
 California Edison Company, Los Angeles Department of
 Water and Power, and Pacific Gas and Electric Company.
 - Bradley-Milton 500 kV Transmission Lines
 a study for the Ontario Ministry of Energy and the
 Interested Citizens Group (Halton Hills).
 - Solar Energy and the Conventional Energy Industries
 a study for the Canadian Ministry of Energy, Mines and Resources.
 - The Expert Examiner for the Ontario Royal Commission on Electric Power Planning during hearings into Priority Projects.

- Various Studies into Unconventional Electrical Resources
 for the P.E.I. Institute of Man and Resources and the P.E.I Energy Corporation.
- Analysis and Expert Testimony in Support of Lower Demand Rates for Lake Ontario Steel Company Limited, Ivaco Industries Limited and Atlas Steels.
- Claims for Consequential Damages of the Roseton Boiler Implosions
 - for Consolidated Edison Company, Central Hudson Power Company and Niagara Mohawk Power Corporation.
- A study of the Potential for Megawatt Scale Wind Power Plants in Electrical Utilities
 - for the Canadian Ministry of Energy, Mines and Resources.

These studies have included the need to create special and unique power system models and solution techniques and have addressed significant issues of major importance in the electricity supply industry. Mr. Slater also has carried out assignments for the following clients;

Nova Scotia Power Corporation.

The Government of Prince Edward Island.

The New Brunswick Electric Power Commission.

Ontario Energy Corporation.

Ontario Energy Board.

Go-Home Lake Cottagers Associations.

Saskatchewan Power Corporation.

FMC Corporation.

FMC of Canada Limited.

ERCO Industries Limited.

Canadian Occidental Petroleum Ltd.

State Energy Commission (Western Australia).

Toronto District Heating Corporation.

In connection with his consulting activities, Mr. Slater gave expert testimony in the state of Idaho and in the provinces of Ontario and Prince Edward Island.

Mr. Slater also was a principal developer of PROMOD III. a proprietary electric utility production cost and reliability model owned by Energy Management Associates, Inc.. This model was used by over seventy utilities in Canada, the United States. Japan and Australia. Its wide acceptance made it the "Industry Standard" in the U.S..

1983-90

As Vice President and Chief Engineer for Energy Management Associates, Inc., Mr. Slater was responsible for giving technical direction for the development and maintenance of Energy Management Associates, Inc., state-of-the-art software products. As Senior Vice President and Chief Engineer, Mr. Slater was head of the Energy Management Associates, Inc.'s utility consulting practice. He led or made significant contributions to a number of important consulting engagements, including:

- . Study and regulatory testimony concerning the value to the Idaho Power Company system of the interruptibility provisions in F.M.C.'s supply contract.
- . Generation planning studies for Cincinnati Gas and Electric Company, San Diego Gas & Electric Company and the City of Austin Electric Utility Department.
- . Assistance to legal counsel during regulatory litigation regarding the hostile takeover of a major Canadian gas utility holding company (Union Enterprises), including definition and examination of issues, selection of witnesses, and analysis of the opposing case.
- . Development and demonstration of a method for the allocation of the Inland Power Pool's operating reserve requirement among its members.
- . Analysis of replacement power costs during the outage of Niagara Mohawk Power Corporation's Nine Mile Point #1 nuclear unit.
- . Reserve margin assessments for Public Service Company of Indiana, Allegheny Power System Inc., Iowa Electric Light & Power Company, San Diego Gas & Electric Company, and El Paso Electric Company.

- Examination of the gas supply situation in Southern California and regulatory testimony regarding the "unbundling" of storage service.
- Evaluation of the operational, planning and financial impacts of merging two large Eastern U.S. electric utilities.
- Study and regulatory testimony regarding the value and appropriate level of interruptible demand for the Union Gas system.
- Evaluation of the benefits of increased operational integration of a group of electric utilities.
- Assistance for Tucson Electric Power Co. and its legal counsel during arbitration of its dispute with San Diego Gas and Electric Company regarding the operation of a large power sale agreement.
- Analysis of the economics of a third A/C transmission line linking California and Oregon.
- A seminar on "Power Pooling and Inter-Utility Interconnections" for the management of the Central Electricity Generating Board and other parties involved in U.K. privatisation.
- . Determination of the benefits of pool membership for two electric utilities in the Northeast U.S..
- Assistance for Riley Stoker Corporation and its legal counsel with the arbitration of direct and consequential damages arising out of the late completion and early poor performance of two major coal-fired generating units. The work included case examination and development, detailed reconstruction of events, analysis of all financial and economic consequences of project delay and performance with separation of fault, analysis of opponent's case and assistance with cross-examination, direct and rebuttal testimony, and assistance with oral and written argument.

Mr. Slater's consulting assignments included the areas of power system planning, operations, reliability, economics, ratemaking and assessment of the worth of unconventional resources. He appeared as an expert witness in regulatory hearings in Idaho, Iowa, Indiana, Florida, California, Texas, Ontario and Nova Scotia and in civil arbitration proceedings in Louisiana and Pennsylvania.

Mr. Slater continued to contribute to the development of E.M.A.'a utility software products. His contributions included being a principal developer of SENDOUT, E.M.A.'s proprietary supply model for gas utilities.

1990-

In August 1990, Mr. Slater returned to working in his own practice, in Atlanta, where he heads a small corporation. Slater Consulting, which provides consulting services and expert testimony for various different participants in the utility industry.

Slater Consulting assignments, led by Mr. Slater, have included:

- Assistance to legal council for creditors of a bankrupt utility.
- Analysis and testimony for Texas New Mexico Power Company regarding prudent alternatives to their decision to build TNP ONE Unit 2.
- Assistance and analysis for a utility and its legal counsel during litigation regarding damages sustained because of interference in a proposed merger of that utility with another utility.
- Analyses and testimony before the New York PSC for Sithe Energies, Inc., in certification proceedings and in numerous avoided cost and buy-back rate proceedings.
- Analyses and testimony for the Independent Power Producers of New York in QF curtailment, buy-back rate and back-up rate proceedings before the New York PSC.
- Analysis and testimony for Southwestern Public Service Co. at FERC and before the New Mexico Public Service Commission regarding the lack of production cost savings from the proposed merger of Central & South West Utilities with El Paso Electric Company.
- Analyses and testimony before the Public Service Commission for Independent Power Producers in Florida regarding QF curtailment.

- Analyses and testimony in Civil Court cases for Independent Power Producers in Florida regarding the correct implementation of contractual dispatchability provisions.
- Testimony before regulatory commissions in New York, Pennsylvania, Texas, Florida and Louisiana regarding various aspects of emerging competition.
- Analyses and testimony before the Georgia Public Service Commission on behalf of Mid-Geogia Co-gen and others regarding avoided costs on the Georgia Power / Southern Company system.
- Analysis and testimony before the Georgia Public Service Commission on behalf of Georgia Power Company regarding the Prudence of Georgia Power's 1978-1980 investment in the Rocky Mountain pumped storage plant.
- Testimony before the regulatory commissions of Texas, Virginia and Wisconsin regarding the fair allocation of utility revenue requirements to individual customer classes.
- Testimony before the United States Bankruptcy Court regarding the value of the non-nuclear assets of Cajun Electric Power Co-operative, Inc.
- Analyses for Sithe Energies, Inc. of the future dispatch and associated energy revenues for numerous generating resources in the Northeast United States.
- Operational planning analyses for Sithe Energies, Inc. regarding numerous existing and new generating resources in the Northeast United States.
- Analyses and testimony in Courts and before arbitrators for the non-operating owners of the South Texas Nuclear Project, the Cooper nuclear unit in Nebraska, and the Millstone 3 nuclear unit in Connecticut concerning the replacement power costs during extended outages.

In connection with these and other assignments, Mr. Slater has appeared as an expert in regulatory proceedings in Florida, Georgia, Louisiana, New Mexico, New York, Pennsylvania, South Carolina, Virginia, Wisconsin and Texas, and at the Federal Energy Regulatory Commission. He has also appeared in Federal Bankrupty Court, state courts in Virginia, Nebraska, Texas and Florida, and civil arbitration proceedings in Nevada and Pennsylvania.

PUBLICATIONS & PRESENTATIONS

"Meeting System Demand"

Canada-USSR Electric Power Working Group Electrical Seminar. Montreal, March, 1973.

"Stochastic Model for Use in Determining Optimal Power System Operating Strategies."

Power Devices and Systems Group, Electrical Engineering Department. University of Toronto - 1973.

"Economy-Security Functions in Power System Operations"

IEEE Power System Economic Subcommittee Work Group Paper IEEE Special Publication 75 CH0960-6-PWR-1975.

"Economy-Security Functions in Power System Operations - A Summary Introduction."

IEEE Power System Economics Subcommittee Working Group Paper IEEE T.P.A.S. Sept/Oct 1975 p. 1618.

"A Large Hydro-Thermal Scheduling Model"

TIMS/ORSA

Miami, November 1976.

"Generation System Modeling for Planning and Operations"

Atlantic Regional Thermal Conference Charlottetown, June 1978.

"The Feasibility of Electricity Export from CANDU Nuclear Generation" Canadian Nuclear Association Ottawa, June 1978.

"Evaluation of the Worth of System Scale Wind Generation to the Prince Edward Island Electrical Grid."

IEEE Canadian Conference Toronto, October 1979.

"The Results of a Study Examining The Possible Impact of Solar Space Heating on the Electrical Utility in New Brunswick."

The Potential Impacts of the Deployment of Solar Heating on Electrical Utilities - A workshop sponsored by the Canadian Department of Energy, Mines and Resources

Ottawa, May 1980.

"Reliability Indices: Their Meanings and Differences"

Planmetrics/Energy Management Associates, Inc. 8th Annual National Utilities Conference
Chicago, May 1980.

"Description and Bibliography of Major Economy-Security Functions

Part I - Description

Part II - Bibliography (1959-1972)

Part III - Bibliography (1973-1979)"

IEEE Power System Economics Subcommittee Working Group Papers(3).

IEEE TPAS January 1981, p.211, p.214. p.224.

"PROMOD III Evaluation of the Worth of Grid Connected WECS."
Fifth Annual Wind Energy Symposium, Ryerson Polytechnical Institute
Toronto, December 1982.

"Probabilistic Simulation in Power System Production Models"
China-U.S.A. Power System Meeting, Electrical Power Research
Institute of China
Tianjin, China, June 1985.

"Computer Modeling of Wheeling Arrangements"

Electricity Consumers Resource Council Seminar
Washington, D.C. September 1985.

"Power Systems Reliability Improvement Benefits - A Framework for Analysis" ASME Energy-Sources Technology Conference Dallas, February 1987.

FUEL PRICE ASSUMPTIONS FOR PROMOD IV(R) ANALYSES OF OSPREY PROJECT OPERATIONS, BASE CASE

(All Values in cents/mmbtu)

	COAL		#2 OIL		#6 OIL		GAS			
<u>Year</u>	<u>Lowest</u> <u>Price</u>	<u>Highest</u> <u>Price</u>	<u>Lowest</u> <u>Price</u>	<u>Highest</u> <u>Price</u>	<u>Lowest</u> <u>Price</u>	<u>Highest</u> <u>Price</u>	Lowe	st Price	<u>Highe</u>	st Price
							<u>Winter</u>	<u>Summer</u>	<u>Winter</u>	Summer
2000	158.3	248.2	558.2	656.1	365.2	489.2	346.4	346.2	377.6	380.1
2001	157.0	246.2	510.6	600.1	323.9	433.9	376.7	347.4	410.8	381.4
2002	162.5	254.8	496.1	583.1	315.5	422.6	377.2	347.4	411.4	381.4
2003	168.0	263.3	528.5	621.2	329.3	441.1	382.6	358.1	417.3	393.2
2004	173.4	271.9	561.0	659.4	.343.1	459.6	393.4	368.9	429.1	405.0
2005	178.3	279.6	593.0	697.0	357.1	478.3	404.2	379.7	440.9	416.8
2006	182.3	285.9	614.2	721.9	368.2	493.3	415.1	390.7	452.9	428.8
2007	186.4	292.3	636.1	747.7	379.8	508.7	427.3	404.0	466.1	443.3
2008	190.6	298.9	658.8	774.4	391.6	524.6	440.7	417.6	480.8	458.3
2009	194.9	305.6	682.3	802.0	403.9	541.0	454.6	431.8	496.0	473.7
2010	199.3	312.5	706.7	830.6	416.5	558.0	468.9	446.4	511.7	489.7
2011	203.7	319.4	727.3	854.9	430.7	576.9	483.8	461.4	527.9	506.1
2012	208.3	326.5	748.6	879.9	445.3	596.5	499.1	477.0	544.7	523.1

FUEL PRICE ASSUMPTIONS FOR PROMOD IV(R) ANALYSES OF OSPREY PROJECT OPERATIONS, HIGHER GAS PRICE CASE

(All Values in cents/mmbtu)

	COAL		#2 OIL		#6 OIL		GAS			
<u>Year</u>	<u>Lowest</u> <u>Price</u>	<u>Highest</u> <u>Price</u>	<u>Lowest</u> <u>Price</u>	<u>Highest</u> <u>Price</u>	Lowest Price	<u>Highest</u> <u>Price</u>	Lowes	st Price	<u>Highe</u>	st Price
							Winter	<u>Summer</u>	<u>Winter</u>	Summer
2000	158.3	248.2	558.2	656.1	365.2	489.2	346.4	346.2	377.6	380.1
2001	157.0	246.2	510.6	600.1	323.9	433.9	376.7	347.4	410.8	381.4
2002	162.5	254.8	496.1	583.1	315.5	422.6	382.6	358.1	417.3	393.2
2003	168.0	263.3	528.5	621.2	329.3	441.1	393.4	368.9	429.1	405.0
2004	173.4	271.9	561.0	659.4	343.1	459.6	404.2	379.7	440.9	416.8
2005	178.3	279.6	593.0	697.0	357.1	478.3	415.1	390.7	452.9	428.8
2006	182.3	285.9	614.2	721.9	368.2	493.3	430.9	411.3	470.1	451.3
2007	186.4	292.3	636.1	747.7	379.8	508.7	451.9	432.8	493.2	474,9
2008	190.6	298.9	658.8	774.4	391.6	524.6	474.0	455.4	517.3	499.7
2009	194.9	305.6	682.3	802.0	403.9	541.0	497.2	479. <u>2</u>	542.7	525.7
2010	199.3	312.5	706.7	830.6	416.5	558.0	521.6	504.2	569.4	553.0
2011	203.7	319.4	727.3	854.9	430.7	576.9	544.1	524.3	594.0	574.9
2012	208.3	326.5	748.6	879.9	445.3	596.5	564.5	545.1	616.4	597.7

EFFICIENCY AND COST-EFFECTIVENESS OF PENINSULAR FLORIDA GENERATING UNITS, 2003

Plant	Unit	Summer Capacity (MW)	Average Annual Heat Rate (Btu/kwh)	Average Annual Dispatch Cost (\$/MWh)
<u>Nuclear</u>				
CRYSTAL	3	805	Must Run at Maximu	m Available Capacity
STLUCIE	1	839	Must Run at Maximu	m Available Capacity
STLUCIE	2	839	Must Run at Maximu	m Available Capacity
TURKEYPT	3	697	Must Run at Maximu	m Available Capacity
TURKEYPT	4	697	Must Run at Maximu	m Available Capacity
Coal and Petrol	eum Coke	1		
BIG BEND	1	421	9,965	30.29
BIG BEND	2	421	9,972	30.57
BIG BEND	3	428	9,956	28.72
BIG BEND	4	442	9,943	26.93
CRYSTAL	1	386	9,679	25.40
CRYSTAL	2	488	9,596	25.26
CRYSTAL	4	714	9,094	23.67
CRYSTAL	5	697	9,092	23.41
DEERHAVN	2	228	10,608	25.20
GANNON	1	0	9,688	31.24
GANNON	2	0	9,671	31.19
GANNON	6	362	10,246	35.01
MCINTOSH	3	338	9,093	23.65
NORTHSID	1	265	9,753	23.34
NORTHSID	2	265	13,156	29.42
SCHERER	4	846	9,949	24.53
SEMINOLE	1	638	10,041	26.38
SEMINOLE	2	638	10,041	26.28
ST JOHNS	1	624	9,179	22.26
ST JOHNS	2	638	9,258	22.88
STANTON	1	442	9,777	24.99
STANTON	2	446	9,079	22.85

New Gas Comb	New Gas Combined Cycle						
BAYSIDE	_1	 707	7,236	29.38			
BRANDY B	4	482	7,176	29.68			
CANE IS	3	260	6,999	28.11			
FT MYERS	3	1446	7,145	29.08			
HINES EC	1	470	7,049	28.30			
HINES EC	2	0	7,002	29.59			
KELLEY	4	113	8,362	36.91			
N SMYRNA	1	520	6,971	28.04			
OKEECHOB	1	260	6,965	27.76			
OKEECHOB	2	260	6,966	27.76			
OSPREY	1	520	6,967	28.09			
PAYNECRK	3	520	7,001	28.14			
PURDOM	8	260	6,995	28.10			
SANFORD	14	964	7,206	29.29			
SANFORD	15	964	7,208	29.29			
Other Units							
ANCLOTE	1	503	10.050	69.84			
ANCLOTE	2	503 503	10,952 10,485				
AVONPKGT	1	903 29	·	66.36			
AVONPKGT	2	2 9 2 9	No Signific	ant Output ant Output			
BARTOW	1	115	9,982	39.38			
BARTOW	2	117	9,983	39.81			
BARTOW	3	208	9,975	38.84			
BARTOWGT	1	46	No Signific				
BARTOWGT	2	46	No Signific	•			
BARTOWGT	3	46	No Signific	•			
BARTOWGT	4	49	No Signific	•			
BAYBROGT	1	47	No Signific	•			
BAYBROGT	2	47	~	ant Output			
BAYBROGT	3	47		ant Output			
BAYBROGT	4	47		ant Output			
BGBENDGT	1	12	_	ant Output			
BGBENDGT	2	61	11,635	75.05			
BGBENDGT	3	61	11,635	75.10			
BRANDY B	1	0	11,224	56.71			
BRANDY B	2	0	11,266	56.96			
BRANDY B	3	153	11,383	56.01			
CANE GT	1	30	11,166	50.91			
CANE ISL	2	108	9,583	42.41			
CAPECNVR	1	405	9,437	40.46			

CAPECNVR	2	408	9,441	40.66
CUDJOE D	_1	5	No Significa	
CUTLER	5	71	11,720	45.14
CUTLER	6	144	11,741	45.33
DEBARYGT	1	54	No Significa	
DEBARYGT	2	54	11,730	76.32
DEBARYGT	3	54	No Significa	
DEBARYGT	4	54	No Significa	-
DEBARYGT	5	54	No Significa	
DEBARYGT	6	54	No Significa	•
DEBARYGT	7	88	11,890	76.92
DEBARYGT	8	88	11,890	76.97
DEBARYGT	9	88	11,880	76.91
DEBARYGT	10	88	11,880	77.09
DEERHAVN	1	85	10,604	45.57
DRHVN GT	1	18	14,471	68,60
DRHVN GT	2	18	14,471	68.80
DRHVN GT	3	75	14,471	68.15
EVERGL T	1	35	17,121	74.24
EVERGL T	2	35	17,121	74.10
EVERGL T	3	35	17,121	73.81
EVERGL T	4	35	17,121	73.86
EVERGL T	5	35	17,121	73.60
EVERGL T	8	35	17,121	73.92
EVERGL T	7	35	17,121	73.65
EVERGL T	8	35	17,121	73.39
EVERGL T	9	35	17,121	73.35
EVERGL T	10	35	17,121	73.46
EVERGL T	11	35	17,121	73.04
EVERGL T	12	35	No Significa	int Output
EVERGLDS	1	221	9,550	38.49
EVERGLDS	2	221	9,557	38.63
EVERGLDS	3	375	9,944	39.71
EVERGLDS	4	410	9,925	39.66
FTMYER T	1	54	No Significa	int Output
FTMYER T	2	54	No Significa	int Output
FTMYER T	3	54	No Significa	int Output
FTMYER T	4	54	No Significa	int Output
FTMYER T	5	54	No Significa	int Output
FTMYER T	6	54	No Significa	int Output
FTMYER T	7	54	No Significa	int Output
FTMYER T	8	54	No Significa	int Output
FTMYER T	9	54	No Significa	int Output
FTMYER T	10	54	No Significa	int Output
FTMYER T	11	54	No Significa	int Output

FTMYER T	12	54	No Significa	int Output
FTMYERCT	13	153	11,302	52.34
FTMYERCT	14	153	11,311	52.38
GANNONGT	1	12	No Significa	
HANSELCC	2	48	9,817	46.24
HANSELIC	8	3	9,300	43.19
HANSELIC	14	2	9,300	43.23
HANSELIC	15	2	9,300	43.25
HANSELIC	16	2	9,300	43.25
HANSELIC	17	2	9,300	43.23
HANSELIC	18	2	No Significa	int Output
HANSELIC	19	3	No Significa	nt Output
HANSELIC	20	3	9,300	43.25
HARDEE	1	224	7,300	34.54
HARDEECT	1	74	9,732	45.33
HIGGNSGT	1	29	No Significa	nt Output
HIGGNSGT	2	29	No Significa	nt Output
HIGGNSGT	3	35	No Significa	nt Output
HIGGNSGT	4	35	No Significa	nt Output
HOOKERS	1	0	No Significa	nt Output
HOOKERS	2	0	No Significa	nt Output
HOOKERS	3	0	No Significa	nt Output
HOOKERS	4	0	No Significa	nt Output
HOOKERS	5	0	No Significa	nt Output
HOPKINGT	1	12	14,029	60.59
HOPKINGT	2	24	13,597	63.57
HOPKINS	1	75	11,357	47.25
HOPKINS	2	238	10,652	41.92
IND RIVR	1	88	10,033	42,34
IND RIVR	2	201	9,982	39.50
IND RIVR	3	319	10,469	41.65
INDRVRGT	1	37	11,540	52.40
INDRVRGT	2	37	11,540	52.51
INDRVRGT	3	108	11,100	50.84
INDRVRGT	4	108	11,100	50.84
INTER GT	1	47	No Significa	nt Output
INTER GT	2	47	No Significa	nt Output
INTER GT	3	47	No Significa	nt Output
INTER GT	4	47	No Significa	nt Output
INTER GT	5	47	No Significa	nt Output
INTER GT	6	47	No Significa	•
INTER GT	7	83	12,210	79.38
INTER GT	8	83	No Significa	
INTER GT	9	83	No Significa	nt Output
INTER GT	10	83	12,030	77.69

INTER GT	11	143	12,030	78.03
INTER GT	12	76	12,572	59.75
INTER GT	13	76	12,558	59.59
INTER GT	14	76	12,523	59.47
IVEY IC	1	4	9,300	42.70
IVEY IC	2	5	9,300	42.71
IVEY IC	3	9	12,280	54.15
IVEY IC	4	6	12,280	54.23
IVEY IC	5	4	9,300	42.70
IVEY IC	6	18	9,300	42.70
KELLY	7	23	16,441	68.60
KELLY GT	1	14	No Signific	
KELLY GT	2	14	No Signific	•
KELLY GT	3	14	No Signific	•
KENEDYGT	3	54	No Signific	•
KENEDYGT	4	54	No Signific	•
KENEDYGT	5	54	No Signific	•
KENEDYGT	7	153	11,380	56.05
KING	5	8	10,483	42.59
KING	6	17	12,842	51.73
KING	7	32	12,858	54.99
KING	8	50	12,710	52.43
KING DSL	1	5	No Significa	ant Output
KING GT	9	23	10,500	51.01
LARSEN	8	102	10,610	42.77
LARSENGT	2	10	No Significa	ant Output
LARSENGT	3	10	No Significa	ant Output
LAUDER T	1	36	15,908	66.47
LAUDER T	2	35	15,908	66.46
LAUDER T	3	35	15,908	66.53
LAUDER T	4	35	15,908	66.47
LAUDER T	5	35	15,908	66.54
LAUDER T	6	35	15,908	66.44
LAUDER T	7	35	15,908	66.55
LAUDER T	8	35	15,908	66.59
LAUDER T	9	35	15,908	66.62
LAUDER T	10	35	15,908	66,61
LAUDER T	11	35	15,908	66.70
LAUDER T	12	35	15,908	66.71
LAUDER T	13	35	16,227	67.94
LAUDER T	14	35	16,227	67.94
LAUDER T	15	35	16,227	67.92
LAUDER T	16	35	16,227	68.11
LAUDER T	17	35	16,227	68.09
LAUDER T	18	35	16,227	68.04

LAUDER T	19	35	16,227	68.02
LAUDER T	20	35	16,227	68.19
LAUDER T	21	35	16,227	68.28
LAUDER T	22	32	16,227	68.21
LAUDER T	23	32	16,227	68.15
LAUDER T	24	35	16,227	68.35
LAUDERCC	4	440	7,640	32.83
LAUDERCC	5	440	7,654	33.48
MANATEE	1	819	9,928	39.50
MANATEE	2	819	9,909	39.50
MARATHON	1	8	No Significa	int Output
MARATHON	2	5	9,300	42.70
MARATHON	3	8	12,280	54.18
MARTIN	1	814	8,904	36.37
MARTIN	2	816	8,939	36.16
MARTINCC	3	445	7,232	31.20
MARTINCC	4	445	7,235	31.08
MARTINCT	1	153	11,266	52.39
MARTINCT	2	153	11,266	52.38
MCINT GT	1	17	15,000	65.71
MCINT IC	1	5	No Significa	ant Output
MCINTOSH	1	87	10,815	43.98
MCINTOSH	2	103	10,274	40.96
MCINTOSH	5	310	7,262	30.03
NORTH GT	3	52	No Significa	ant Output
NORTH GT	4	52	No Significa	int Output
NORTH GT	5	52	No Significa	int Output
NORTH GT	6	52	No Significa	ent Output
NORTHSID	3	505	9,688	40.75
OLEAN GT	1	153	11,291	52.41
OLEAN GT	2	153	11,303	52.48
OLEAN GT	3	153	11,301	52.43
OLEAN GT	4	153	11,316	52.50
OLEAN GT	5	153	11,325	52.51
PHILLIPS	1	17	13,500	55.45
PHILLIPS	2	17	13,500	55.48
POLK CT	2	153	11,366	54.72
POLK CT	3	153	11,348	54.74
POLKIGCC	1	250	10,079	29.97
PURDOM	7	48	16,947	69.23
PURDOMGT	1	12	No Significa	int Output
PURDOMGT	2	12	No Significa	int Output
PUTNAMCC	1	249	9,115	39.31
PUTNAMCC	2	249	9,114	39.36
REEDYCRK	1	35	10,400	45.89

RIOPINGT	1	15	No Significant Output	
RIVIERA	_ 3	290	9,729	37.23
RIVIERA	4	290	9,729	37.52
SANFORD	3	153	8,877	40.06
SEM CT	1	153	11,357	54.83
SMITH	1	7	18,840	75.52
SMITH	2	7	18,822	75.58
SMITH	3	22	16,777	70.99
SMITH	4	32	16,798	71.08
SMITH D	1	9	No Significa	ant Output
SMITH CC	1	32	10,400	48,43
SMITH GT	1	26	No Significa	ant Output
SMITH ST	1	3	No Significa	ant Output
SMITH ST	2	2	No Significa	-
SMITH ST	3	6	No Significa	ant Output
ST CLOUD	1	4	No Significa	ant Output
ST CLOUD	2	6	No Significa	ant Output
ST CLOUD	3	6	No Significa	ant Output
ST CLOUD	4	12	10,696	73.23
STOCK DS	1	9	9,300	64.95
STOCK DS	2	9	9,300	65.06
STOCK GT	1	21	No Significa	ant Output
STOCK GT	2	16	No Significa	ant Output
STOCK GT	3	16	No Significa	ant Output
STOCK IC	1	6	No Significa	ant Output
SUWAN GT	1	54	No Significa	ant Output
SUWAN GT	2	54	No Significa	ant Output
SUWAN GT	3	54	No Significa	ant Output
SUWANNEE	1	33	11,729	51.07
SUWANNEE	2	32	11,733	51.09
SUWANNEE	3	80	11,750	51.17
SWOOPEIC	1	5	No Significa	ant Output
TIGERBAY	1	194	7,553	32.32
TURKEYIC	1	14	No Significa	ant Output
TURKEYPT	1	410	9,433	39.54
TURKEYPT	2	400	9,395	39.80
TURNERGT	1	15	No Signific	ant Output
TURNERGT	2	15	No Signific	
TURNERGT	3	65	No Signific	ant Output
TURNERGT	4	65	No Significa	ant Output
UNIV FLA	1	36	11,166	50.41
VERO BCH	1	13	13,041	52.60
VERO BCH	2	13	8,928	38.66
VERO BCH	3	33	13,141	54.47
VERO BCH	4	56	11,739	48.61
VERO BCH	5	35	11,171	45.71

<u>NUGs</u>		
AGRICHEM	_1	6
AS-AVAIL	1	63
BAY CTY	1	11
BIOENRGY	1	10
BROWARDS	1	54
BROWARDS	2	56
CARGILL	2	15
CEDARBAY	1	250
CFRBIOGN	1	74
DADE CTY	1	43
ELDORADO	1	114
FLASTONE	1	133
HILLSBOR	1	26
INDIANTN	1	330
LAKE CTY	1	13
LAKECOGN	1	110
LFC JEFF	1	9
LFC MADS	1	9
MULB-FPC	1	79
ORANGE	1	22
ORLANDO	1	79
PALMBCH	1	44
PASCO	1	109
PASCOCTY	1	23
PINELLAS	1	40
PINELLAS	2	15
RIDGE	1	40
ROYSTER	1	31
TAMPACTY	1	19
JEA-QFs		17

External Purchases

ENTERGY 1 23 SOUTHERN CO. 1615

Source: PROMOD IV(R) analyses prepared by Slater Consulting

EFFICIENCY AND COST-EFFECTIVENESS OF PENINSULAR FLORIDA GENERATING UNITS, 2008

Plant	Unit	Summer Capacity (MW)	Average Annual Heat Rate (Btu/kwh)	Average Annual Dispatch Cost (\$/MWh)
<u>Nuclear</u>				
CRYSTAL	3	805	Must Run at Maximu	m Available Capacity
STLUCIE	1	839		m Available Capacity
STLUCIE	2	839		m Available Capacity
TURKEYPT	3	697		m Available Capacity
TURKEYPT	4	697		m Available Capacity
Coal and Petro	leum Coke	2		
BIG BEND	1	421	10,017	34.67
BIG BEND	2	421	10,018	35.01
BIG BEND	3	428	9,998	32.60
BIG BEND	4	442	9,980	30.78
CRYSTAL	1	386	9,682	28.16
CRYSTAL	2	488	9,600	28.04
CRYSTAL	4	714	9,124	26.57
CRYSTAL	5	697	9,121	26.10
DEERHAVN	2	228	10,609	28.60
MCINTOSH	3	338	9,099	26.95
MCINTOSH	4	288	8,492	24.19
NORTHSID	1	265	9,786	26.49
NORTHSID	2	265	13,421	34.04
SCHERER	4	846	9,969	27.53
SEMINOLE	1	638	10,089	29.97
SEMINOLE	2	638	10,077	29,62
ST JOHNS	1	624	9,204	25.31
ST JOHNS	2	638	9,288	25.77
STANTON	1	442	9,782	27.70
STANTON	2	446	9,086	26.03

New Gas Comb	ined Cyc	<u>le</u>		
BAYSIDE	_ 1	707	7,221	34.15
BAYSIDE	2	715	7,186	34.01
BRANDY B	4	482	7,254	34.71
CANE IS	3	260	7,026	32.74
FT MYERS	3	1446	7,203	33.90
GREEN CC	1	260	6,979	32.57
HINES EC	1	470	7,082	32.95
HINES EC	2	520	7,005	32.69
HINES EC	3	520	7,016	32.67
HINES EC	4	520	7,020	32.74
KELLEY	4	113	8,536	43.43
MARTINCC	5	380	6,804	31.96
MARTINCC	6	380	6,804	31.96
N SMYRNA	1	520	6,992	32.62
OKEECHOB	1	260	6,978	32.44
OKEECHOB	2	260	6,977	32.56
OSPREY	1	520	6,984	32.57
PAYNECRK	3	520	7,037	32.76
PURDOM	8	260	7,009	32.69
SANFORD	14	964	7,276	34.17
SANFORD	15	964	7,282	34.17
SEMIN CC	4	260	7,010	32.67
SEMIN CC	5	260	7,011	32.67
UNKNOWCC	1	364	6,981	32.53
UNKNOWCC	2	364	6,990	32.63
Other Units				
ANCLOTE	1	503	11,581	90.11
ANCLOTE	2	503	11,378	89.16
BARTOW	1	115	9,971	46.89
BARTOW	2	117	10,003	46.60
BARTOW	3	208	9,978	46.05
BARTOWGT	1	46		ant Output
BARTOWGT	2	46	•	ant Output
BARTOWGT	3	46		ant Output
BARTOWGT	4	49		ant Output
BGBENDGT	1	12	No Signific	-
BGBENDGT	2	61	No Signific	•
BGBENDGT	3	61	No Signific	•
BRANDY B	3	153	11,464	65.79
CANE GT	1	30	11,166	59.41
CANE ISL	2	108	9,581	49.24

CAPECNVR	1	405	9,444	48.37
CAPECNVR	2	408	9,444	48.47
CUDJOE D	1	5	No Significan	
CUTLER	5	71	11,721	52.49
CUTLER	6	144	11,734	52.59
DEBARYGT	1	54	No Significan	t Output
DEBARYGT	2	54	No Significan	t Output
DEBARYGT	3	54	No Significan	t Output
DEBARYGT	4	54	No Significan	•
DEBARYGT	5	54	No Significan	t Output
DEBARYGT	6	54	No Significan	t Output
DEBARYGT	7	88	No Significan	t Output
DEBARYGT	8	88	No Significan	t Output
DEBARYGT	9	88	No Significan	t Output
DEBARYGT	10	88	No Significan	-
DEERHAVN	1	85	10,609	52.93
DRHVN GT	1	18	No Significan	t Output
DRHVN GT	2	18	No Significan	-
DRHVN GT	3	75	No Significan	•
EVERGL T	1	35	No Significan	•
EVERGL T	2	35	No Significan	t Output
EVERGL T	3	35	No Significan	-
EVERGL T	4	35	No Significan	·='
EVERGL T	5	35	No Significan	•
EVERGL T	6	35	No Significan	•
EVERGL T	7	35	No Significan	t Output
EVERGL T	8	35	No Significan	t Output
EVERGL T	9	35	No Significan	t Output
EVERGL T	10	35	No Significan	
EVERGL T	11	35	No Significan	•
EVERGL T	12	35	No Significan	•
EVERGLDS	1	221	-	44.78
EVERGLDS	2	221	9,551	44.71
EVERGLDS	3	375	9,897	45.90
EVERGLDS	4	410	9,892	45.91
FTMYER T	1	54	No Significan	
FTMYER T	2	54	No Significan	•
FTMYER T	3	54	No Significan	•
FTMYER T	4	54	No Significan	•
FTMYER T	5	54	No Significan	•
FTMYER T	6	54	No Significan	•
FTMYER T	7	54	No Significan	•
FTMYER T	8	54	No Significan	-
FTMYER T	9	54	No Significan	•
FTMYER T	10	54	No Significan	•
FTMYER T	11	54	No Significan	•
			~	•

FTMYER T	12	54	No Significa	ant Output
FTMYERCT	_ 13	153	11,343	61.30
FTMYERCT	14	153	11,355	61.33
GANNONGT	1	12	No Significa	
HANSELCC	2	48	9,777	53.15
HANSELIC	8	3	9,300	50.48
HANSELIC	14	2	9,300	50.50
HANSELIC	15	2	9,300	50.41
HANSELIC	16	2	9,300	50.51
HANSELIC	17	2	9,300	50.42
HANSELIC	18	2	No Significa	
HANSELIC	19	3	No Significa	-
HANSELIC	20	3	9,300	50.40
HARDEE	1	224	7,300	39.97
HARDEECT	1	74	9,732	52.50
HOPKINGT	1	12	No Significa	ant Output
HOPKINGT	2	24	No Significa	•
HOPKINS	1	75	11,386	54.86
HOPKINS	2	238	10,636	48.54
IND RIVR	1	88	10,026	49.15
IND RIVR	2	201	9,971	45.80
IND RIVR	3	319	10,463	48.23
INDRVRGT	1	37	11,540	60.96
INDRVRGT	2	37	11,540	61.06
INDRVRGT	3	108	11,100	59.03
INDRVRGT	4	108	11,100	59.15
INTER GT	1	47	No Significa	
INTER GT	2	47	No Significa	•
INTER GT	3	47	No Significa	•
INTER GT	4	47	No Significa	•
INTER GT	5	47	No Significa	•
INTER GT	6	47	No Significa	•
INTER GT	7	83	No Significa	•
INTER GT	8	83	No Significant Output	
INTER GT	9	83	No Significa	•
INTER GT	10	83	No Significa	
INTER GT	11	143	No Significa	•
INTER GT	12	76	12,568	69.17
INTER GT	13	76	12,583	69.28
INTER GT	14	76	12,567	69.23
IVEY IC	1	4	9,300	50.59
IVEY IC	2	5	9,300	50.60
IVEY IC	3	9	12,280	64.70
IVEY IC	4	6	No Significa	
IVEY IC	5	4	9,300	•
	9	-	9,300	50.58

KELLY	7	23	16,878	81.75
KELLY GT	1	14	No Significa	
KELLY GT	2	14	No Significa	•
KELLY GT	3	14	No Significa	•
KENEDYGT	3	54	No Significa	•
KENEDYGT	4	54	No Significa	•
KENEDYGT	5	54	No Significa	•
KENEDYGT	7	153	11,306	65.11
KING	5	8	10,479	49.55
KING	6	17	12,844	60.53
KING	7	32	12,942	64.15
KING	8	50	12,728	61.06
KING DSL	1	5	No Significa	
KING GT	9	23	10,500	59.26
LARSEN	8	102	10,610	49.95
LARSENGT	2	10	No Significa	nt Output
LARSENGT	3	10	No Significa	-
LAUDER T	1	36	No Significa	nt Output
LAUDER T	2	35	No Significa	nt Output
LAUDER T	3	35	No Significa	nt Output
LAUDER T	4	35	No Significa	nt Output
LAUDER T	5	35	No Significa	-
LAUDER T	6	35	No Significa	nt Output
LAUDER T	7	35	No Significant Output	
LAUDER T	8	35	No Significant Output	
LAUDER T	9	35	No Significa	nt Output
LAUDER T	10	35	No Significa	nt Output
LAUDER T	11	35	No Significa	nt Output
LAUDER T	12	35	No Significa	nt Output
LAUDER T	13	35	No Significa	nt Output
LAUDER T	14	35	No Significa	nt Output
LAUDER T	15	35	No Significa	nt Output
LAUDER T	16	35	No Significa	nt Output
LAUDER T	17	35	No Significa	nt Output
LAUDER T	18	35	No Significa	nt Output
LAUDER T	19	35	No Significa	nt Output
LAUDER T	20	35	No Significa	nt Output
LAUDER T	21	35	No Significa	nt Output
LAUDER T	22	32	No Significa	nt Output
LAUDER T	23	32	No Significa	nt Output
LAUDER T	24	35	No Significa	nt Output
LAUDERCC	4	440	7,667	38.21
LAUDERCC	5	440	7,680	38.95
MANATEE	1	819	9,857	46.72
MANATEE	2	819	9,695	45.92
MARATHON	1	8	No Significa	nt Output

MARATHON _3 8 12,280 64.24 MARTIN 1 814 8,941 42.10 MARTINC 3 445 7,283 36.26 MARTINCC 4 445 7,285 36.26 MARTINCT 1 153 11,327 61.28 MARTINCT 1 153 11,327 61.28 MARTINCT 1 153 11,327 61.28 MARTINCT 1 17 No Significant Output MCINTOST 1 17 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 3 52 No Significant Output MCINTOSH 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 5 52 No Significant Output	MARATHON	2	5	9,300	50.59
MARTIN 2 816 8,970 42.34 MARTINCC 3 445 7,263 36.26 MARTINCT 1 153 11,327 61.28 MARTINCT 1 153 11,327 61.28 MARTINCT 2 153 11,335 61.29 MCINT GT 1 17 No Significant Output MCINT GT 1 87 10,814 50.91 MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,480 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 1 153 11,364 61.32	MARATHON	3	8	12,280	64.24
MARTINCC 3 445 7,283 36.26 MARTINCC 4 445 7,285 36.26 MARTINCT 1 153 11,327 61.28 MARTINCT 2 153 11,325 61.29 MCINT GT 1 17 No Significant Output MCINT GT 1 17 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,460 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output	MARTIN	1	814	8,941	42.10
MARTINCC 4 445 7,265 36.26 MARTINCT 1 153 11,327 61.28 MARTINCT 2 153 11,335 61.29 MCINT GT 1 17 No Significant Output MCINT GT 1 5 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,460 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 7 1 153 11,364 61.32 OLEAN GT 1 153 11,364 61.32 OLEAN GT 2 153 11,365 61.24 OLEAN GT 3 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 POLK CT 2 153 11,368 63.94 POLK CT 2 153 11,368 63.94 POLK CT 4 153 11,368 63.94 POLK CT 5 153 11,368 63.95 POLK CT 5 153 11,368 63.85 POLK CT 6 153 11,368 63.85 POLK CT 6 153 11,368 63.85 POLK CT 6 153 11,368 63.85 POLK CT 7 48 18,726 87.88 PURDOMGT 1 0 No Significant Output PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PURDOMGT 2 12 No Significant Output PURDOMGT 3 35.35 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 11,333 64.07 SEM CT 1 153 11,335 64.07 SEM CT 2 153 11,357 64.01 SMITH 1 7 No Significant Output SMITH 1 7 No Significant Output No Significant Output	MARTIN	2	816	8,970	42.34
MARTINCT 1 153 11,327 61.28 MARTINCT 2 153 11,335 61.29 MGINT GT 1 17 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,480 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 1 153 11,364 61.32 OLEAN GT 1 153 11,345 61.24 <tr< td=""><td>MARTINCC</td><td>3</td><td>445</td><td>7,263</td><td>36.26</td></tr<>	MARTINCC	3	445	7,263	36.26
MARTINCT 2 153 11,335 61.29 MCINT GT 1 17 No Significant Output MCINT IC 1 5 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,460 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 1 153 11,364 61.32 OLEAN GT 1 153 11,364 61.32 OLEA	MARTINCC	4	445	7,265	36.26
MARTINCT 2 153 11,335 61.29 MCINT GT 1 17 No Significant Output MCINT CS 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,460 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 1 153 11,364 61.32 OLEAN GT 1 153 11,367 61.24 OLE	MARTINCT	1	153	11,327	61.28
MCINT GT 1 17 No Significant Output MCINT IC 1 5 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,480 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 1 153 11,364 61.32 OLEAN GT 1 153 11,364 61.32 OLEAN GT	MARTINCT	2	153		
MCINT IC 1 5 No Significant Output MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,480 35.57 MCINTOSH 5 310 7,480 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 6 52 No Significant Output NORTH GT 1 153 11,345 61.24 OLEAN GT 1 153 11,345 61.24 OLEAN	MCINT GT	1	17	•	
MCINTOSH 1 87 10,814 50.91 MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,480 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 6 52 No Significant GT 6 53 11,364 61.32 61.24 61.	MCINT IC	1	5	-	•
MCINTOSH 2 103 10,282 47.50 MCINTOSH 5 310 7,460 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 61.34 11,364 61.32 OLEAN GT 1 153 11,367 61.24 OLEAN GT 3 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 P	MCINTOSH	1	87		
MCINTOSH 5 310 7,460 35.57 NORTH GT 3 52 No Significant Output NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NOEAN GT 1 153 11,364 61.32 OLEAN GT 3 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 POLK CT	MCINTOSH	2	103	·	47.50
NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTHSID 3 505 9,653 50.48 OLEAN GT 1 153 11,364 61.32 OLEAN GT 2 153 11,345 61.24 OLEAN GT 3 153 11,352 61.25 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 POLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 <td>MCINTOSH</td> <td>5</td> <td>310</td> <td>•</td> <td></td>	MCINTOSH	5	310	•	
NORTH GT 4 52 No Significant Output NORTH GT 5 52 No Significant Output NORTH GT 6 53 50.48 OLEAN GT 1 153 11,364 61.32 OLEAN GT 3 153 11,367 61.24 OLEAN GT 4 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT	NORTH GT	3	52	No Significa	ant Output
NORTH GT 5 52 No Significant Output NORTH GT 6 52 No Significant Output NORTHSID 3 505 9,653 50.48 OLEAN GT 1 153 11,364 61.32 OLEAN GT 2 153 11,345 61.24 OLEAN GT 3 153 11,367 61.24 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 POLK CT 2 153 11,366 61.31 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,368 63.99 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,3	NORTH GT	4	52	-	•
NORTH GT 6 52 No Significant Output NORTHSID 3 505 9,653 50.48 OLEAN GT 1 153 11,364 61.32 OLEAN GT 2 153 11,345 61.24 OLEAN GT 3 153 11,352 61.25 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK CT 6 153	NORTH GT	5	52	-	· ·
NORTHSID 3 505 9,653 50.48 OLEAN GT 1 153 11,364 61.32 OLEAN GT 2 153 11,345 61.24 OLEAN GT 3 153 11,352 61.25 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 1 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 3 153 11,393 64.00 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK CT 6 153 11,345 63.89 POLK CT 6 153	NORTH GT	6		•	•
OLEAN GT 1 153 11,364 61.32 OLEAN GT 2 153 11,345 61.24 OLEAN GT 3 153 11,352 61.25 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK CT 6 153 11,336 63.85 POLK CT 6 153 11,336 63.85 POLK CT 6 153 11,376 87.68 PURDOMGT 1 0	NORTHSID	3		_	
OLEAN GT 2 153 11,345 61.24 OLEAN GT 3 153 11,352 61.25 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK CT 6 153 11,376 87.68 PURDOMGT 1 0	OLEAN GT	1			61.32
OLEAN GT 3 153 11,352 61.25 OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK GC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 1		2			
OLEAN GT 4 153 11,367 61.24 OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 4 290 9					
OLEAN GT 5 153 11,366 61.31 PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK GC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 1 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,73					
PHILLIPS 1 17 13,500 65.92 PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLK GC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 11,383				·	
PHILLIPS 2 17 13,500 65.92 POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,383 64.07 SEM CT 2 153 11,375 64.01 SMITH 1 7 No Significant Output No Significant Output No Significant Output					
POLK CT 2 153 11,353 63.94 POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383				·	
POLK CT 3 153 11,368 63.99 POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,375				·	
POLK CT 4 153 11,393 64.00 POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,375 64.01 SMITH 1 7 No Significant Outpu					
POLK CT 5 153 11,345 63.89 POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output <				·	
POLK CT 6 153 11,336 63.85 POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output </td <td></td> <td></td> <td></td> <td></td> <td></td>					
POLKIGCC 1 250 10,267 35.35 PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				·	
PURDOM 7 48 18,726 87.68 PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output					
PURDOMGT 1 0 No Significant Output PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output					
PURDOMGT 2 12 No Significant Output PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output	•				
PUTNAMCC 1 249 9,114 45.67 PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				_	-
PUTNAMCC 2 249 9,110 45.70 REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				•	•
REEDYCRK 1 35 10,400 53.12 RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				•	
RIVIERA 3 290 9,728 43.93 RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				•	
RIVIERA 4 290 9,738 44.25 SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output					
SANFORD 3 153 8,877 47.44 SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output					
SEM CT 1 153 11,383 64.07 SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				· ·	
SEM CT 2 153 11,422 64.21 SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output					
SEM CT 3 153 11,375 64.01 SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output					
SMITH 1 7 No Significant Output SMITH 2 7 No Significant Output				·	
SMITH 2 7 No Significant Output				•	
• · · · · · · · · · · · · · · · · · · ·					· ·
	SMITH	3	22	16,685	82.15

SMITH	4	32	16,495	81.24
SMITH D	_ 1	9	No Significan	
SMITH CC	1	32	10,400	56.17
SMITH GT	1	26	No Significan	t Output
SMITH ST	1	3	No Significan	t Output
SMITH ST	2	2	No Significan	t Output
SMITH ST	3	6	No Significan	•
ST CLOUD	1	4	No Significan	t Output
ST CLOUD	2	6	No Significan	t Output
ST CLOUD	3	6	No Significan	t Output
ST CLOUD	4	12	No Significan	t Output
STOCK DS	1	9	No Significan	t Output
STOCK DS	2	9	No Significan	t Output
STOCK GT	1	21	No Significan	t Output
STOCK GT	2	16	No Significan	t Output
STOCK GT	3	16	No Significan	t Output
STOCK IC	1	6	No Significan	t Output
SUWAN GT	1	54	No Significan	t Output
SUWAN GT	2	54	No Significan	t Output
SUWAN GT	3	54	No Significan	t Output
SWOOPEIC	1	5	No Significan	t Output
TIGERBAY	1	1 94	7,577	37.45
TURKEYIC	1	14	No Significan	t Output
TURKEYPT	1	410	9,406	46.87
TURKEYPT	2	400	9,420	46.90
TURNERGT	3	65	No Significan	t Output
TURNERGT	4	65	No Significan	t Output
UNIV FLA	1	36	11,166	58.41
VERO BCH	1	13	13,115	61.76
VERO BCH	2	13	8,931	42.62
VERO BCH	3	33	13,164	63.46
VERO BCH	4	56	11,785	56.74
VERO BCH	5	35	11,183	53,25
<u>NUGs</u>				
AS-AVAIL	1	63		
BAY CTY	1	11		
BROWARDS	1	54		
BROWARDS	2	56		
CARGILL	2	15		
CEDARBAY	1	250		
CFRBIOGN	1	74		
DADE CTY	1	43		
ELDORADO	1	114		
HILLSBOR	1	, 26		

INDIANTN	1	330
LAKE CTY	1	13
LAKECOGN	1	110
LFC JEFF	1	9
LFC MADS	1	9
MULB-FPC	1	79
ORANGE	1	22
ORLANDO	1	79
PALMBCH	1	44
PASCO	1	109
PASCOCTY	1	23
PINELLAS	1	40
PINELLAS	2	15
RIDGE	1	40
ROYSTER	1	31
TAMPACTY	1	19
JEA-QFs		17

External Purchases

ENTERGY 1 23 SOUTHERN CO. 1615

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

PENINSULAR FLORIDA SUMMARY OF EXISTING CAPACITY AS OF JANUARY 1, 2000

	NET CAPABILITY			
UTILITY	SUMMER	WINTER		
FLORIDA KEYS ELECTRIC COOPERATIVE ASSOC., INC 1/	22	22		
FLORIDA MUNICIPAL POWER AGENCY 2/	488	513		
FLORIDA POWER CORPORATION 2/	7,659	8,267		
FLORIDA POWER & LIGHT COMPANY 2/	16,444	17,234		
FORT PIERCE UTILITIES AUTHORITY 1/	119	119		
GAINESVILLE REGIONAL UTILITIES 2/	550	563		
CITY OF HOMESTEAD 1/	60	60		
JACKSONVILLE ELECTRIC AUTHORITY 2/	2,629	2,734		
UTILITY BOARD OF THE CITY OF KEY WEST 1/	52	52		
KISSIMMEE UTILITY AUTHORITY 2/	172	188		
CITY OF LAKELAND 2/	614	649		
CITY OF LAKE WORTH UTILITIES 1/	95	105		
UTILITIES COMMISSION OF NEW SMYRNA BEACH 2/	24	24		
OCALA ELECTRIC UTILITY 1/	11	11		
ORLANDO UTILITIES COMMISSION 2/	1,024	1,071		
REEDY CREEK IMPROVEMENT DISTRICT 1/	48	49		
SEMINOLE ELECTRIC COOPERATIVE INC. 2/	1,331	1,345		
CITY OF ST. CLOUD 1/	22	21		
CITY OF TALLAHASSEE 2/	429	449		
TAMPA ELECTRIC COMPANY 2/	3,469	3,608		
CITY OF VERO BEACH 1/	150	155		
TOTALS				
FRCC UTILITIES EXISTING CAPACITY	35,412	37,239		
NONLLITH ITV CENEDATING EACH PURC (FIRM)	1 762	1,763		
NON-UTILITY GENERATING FACILITIES (FIRM)	1,763	1,763		
NON-UTILITY GENERATING FACILITIES (NON-FIRM)	97	119		
TOTAL PENINSULAR FLORIDA EXISTING CAPACITY	37,272	39,121		

Data Source:

Florida Reliability Coordinating Council

- 1/ 1999 Regional Load & Resource Plan, Peninsular Florida, July 1999
- 2/ The net capability values for the summer and winter of 2000 were taken from Schedule 1 of the respective utilities' ten-year site plans filed in April 2000.

PENNINSULAR FLORIDA, HISTORICAL AND PROJECTED SUMMER AND WINTER FIRM PEAK DEMANDS

1999-2012

ACTUAL PEAK DEMAND (MW)

	1991	1992	1993	1994	1995	1996	1997	1998
SUMMER	27,662	28,930	29,748	29,321	31,801	32,315	32,924	37,153
WINTER	28,179	27,215	28,149	32,618	34,552	34,762	30,932	35,907

PROJECTED FIRM PEAK DEMAND (MW)

	1999	2000	2001	2002	2003	2004	2005	2006
SUMMER	34,023	34,703	35,380	36,157	36,988	37,804	38,638	39,597
WINTER	35,977	36,819	37,793	38,749	39,663	40,566	41,450	42,476

PROJECTED FIRM PEAK DEMAND (MW)

	2007	2008	2009	2010	2011	2012
SUMMER	40,443	41,266	42,181	43,117	44,073	45,050
WINTER	43,374	44,286	45,274	46,284	47,316	48,372

Data Source:

Florida Reliability Coordinating Council, 1991-2008 values, 1999 Regional Load & Resource Plan, Peninsular Florida, July 1999. 2009-2012 values extrapolated at the FRCC projected average annual compound growth rates for 2005-2008.

PENINSULAR FLORIDA, HISTORICAL AND PROJECTED NET ENERGY FOR LOAD AND NUMBER OF CUSTOMERS

1991-2012

			••••						
	1991	1992	1993	1994	1995	1996	1997	1998	
ENERGY	146,786	147,728	153,269	159,353	168,982	173,327	175,534	187,868	
LOAD FACTOR	59.46%	58.13%	58.82%	55.77%	55.83%	56.76%	60.86%	57.72%	
CUSTOMERS	6,155,380	6,269,358	6,410,797	6,550,760	6,687,155	6,812,603	6,948,888	7,091,803	
PROJECTED NET ENERGY FOR LOAD (GWH)									
	1999	2000	2001	2002	2003	2004	2005	2006	
ENERGY	186,374	196,094	200,772	203,922	208,800	213,424	217,791	222,299	
LOAD FACTOR	59.25%	60.63%	60.64%	60.08%	60.10%	59.89%	59.98%	59.74%	
CUSTOMERS	7,232,307	7,375,121	7,518,019	7,657,962	7,795,163	7,930,202	8,062,647	8,194,144	
PROJECTED NET ENERGY FOR LOAD (GWH)									
	2007	2008	2009	2010	2011	2012			
ENERGY	226,565	230,447	234,645	238,924	243,289	247,742			
LOAD FACTOR	59.63%	59.24%	59.16%	58.93%	58.70%	58.31%			
CUSTOMERS	8,325,881	8,458,099	8,594,181	8,732,452	8,872,947	9,015,703]		

Data Source:

Florida Reliability Coordinating Council,

1991-1999 Energy values, 1999 Regional Load & Resource Plan, Peninsular Florida, July 1999.
2000-2012 Energy values obtained from PROMOD IV(R) analyses prepared by Slater Consulting.
Load factor values were calculated from these energy values and the peak demand values in Table 4.
1991-2008 Customer values, 1999 Regional Load & Resource Plan, Peninsular Florida, July 1999.
2009-2012 Customer values extrapolated at the FRCC projected average annual compound growth rates for 2005-2008.

FPSC Docket No. 000442-£1
Calpine Construction Finance Co., L.P.
Witness: Slater
Exhibit _____ (KJS-8)

OSPREY ENERGY CENTER SUMMARY OF PROJECTED OPERATIONS 2003-2012

	PROJECTED GENERATION	ANNUAL CAPACITY
<u>Year</u>	<u>(GWH)</u>	FACTOR %
2003	2,624	95.5%
2004	4,379	92.7%
2005	4,293	91.1%
2006	4,279	90.8%
2007	4,333	92.0%
2008	4,254	90.0%
2009	4,172	88.6%
2010	4,301	91.3%
2011	4,070	86.4%
2012	4,389	92.9%

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

Note: The Project is scheduled to come into service on June 1, 2003. The annual capacity factor reported for 2003 is calculated on the basis of the Project's operations for the period June 1 - December 31, 2003.

OSPREY ENERGY CENTER SUMMARY OF PROJECTED OPERATIONS, 2003-2012 HIGHER NATURAL GAS PRICE SENSITIVITY ANALYSIS

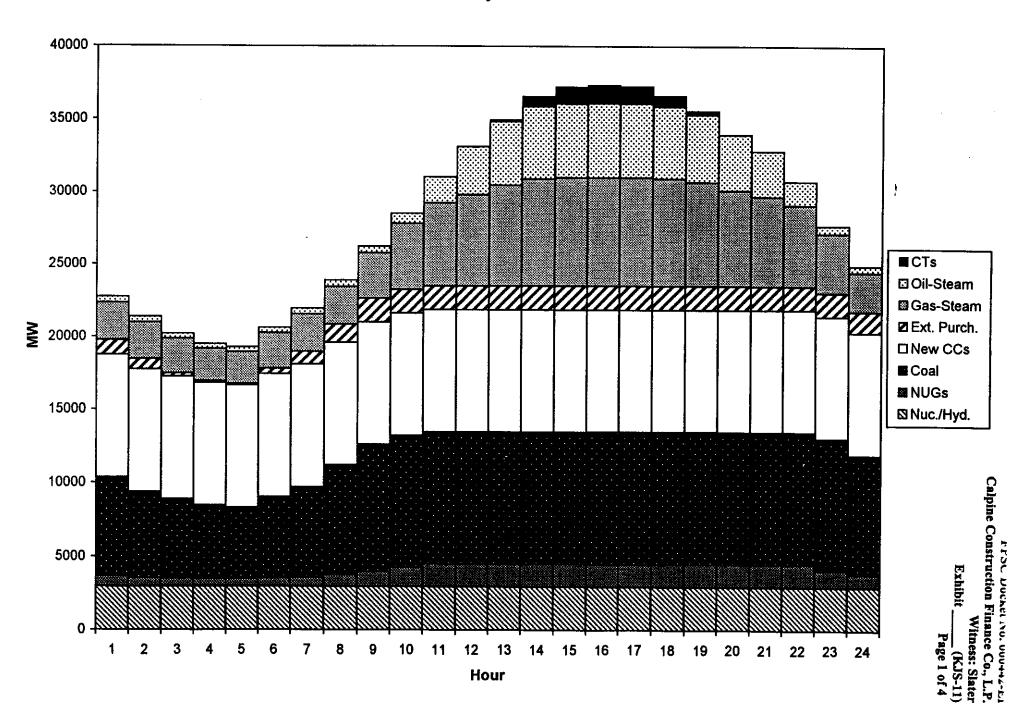
	PROJECTED GENERATION	ANNUAL CAPACITY
<u>Year</u>	(GWH)	FACTOR %
2003	2,616	95.1%
2004	4,351	92.1%
2005	4,264	90.5%
2006	4,229	89.8%
2007	4,266	90.6%
2008	4,149	87.8%
2009	4,066	86.3%
2010	4,161	88.3%
2011	3,935	83.5%
2012	4,265	90.3%

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

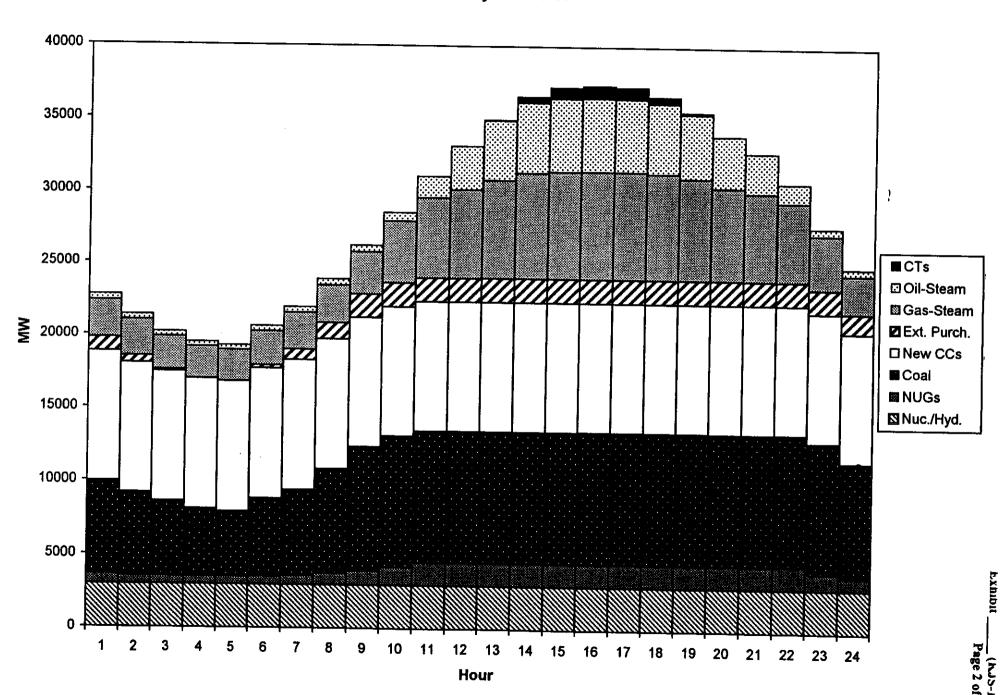
Notes: (1) The Project is scheduled to come into service on June 1, 2003. The annual capacity factor reported for 2003 is calculated on the basis of the Project's operations for the period June 1 - December 31, 2003.

(2) The Base Case fuel price projections were developed by Slater Consulting based on actual data and the U. S. Energy Information Administration's 2000 Annual Energy Outlook Reference Case Forecast, but with the natural gas price escalations moderated to be more in keeping with the Standard & Poor's DRI forecast, which was included in the EIA's publication as a comparison forecast. The fuel prices for this sensitivity case were the same as for the Base Case except that the prices of natural gas were projected to escalate at the growth rates projected in the EIA Reference Case Forecast.

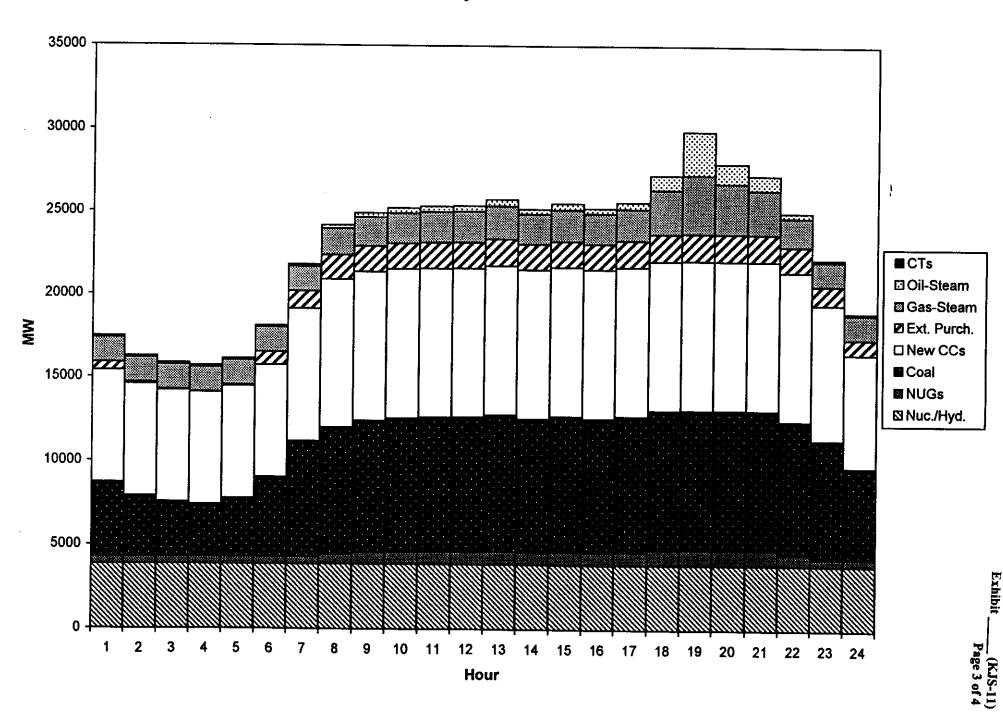
OSPREY ENERGY CENTER SUMMARY OF PROJECTED OPERATIONS LOAD GROWTH SENSITIVITY ANALYSES, 2003-2012

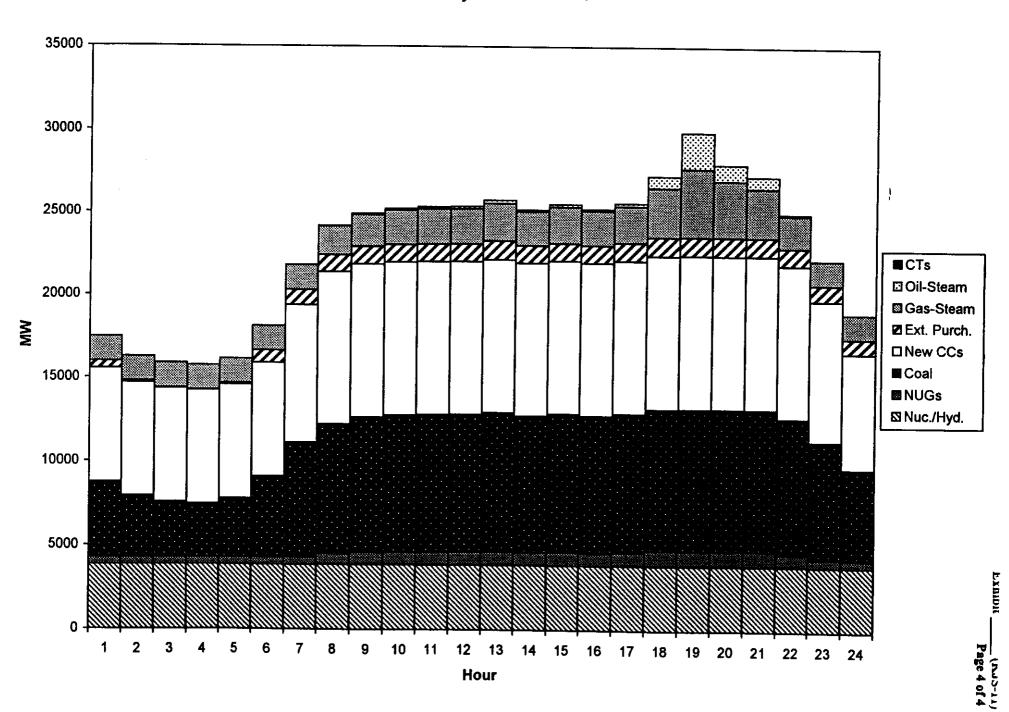

	LOW LOAD GROWTH		BASE	LOAD	HIGH LOAD GROWTH	
	PROJECTED	ANNUAL	PROJECTED	ANNUAL	PROJECTED	ANNUAL
	GENERATION	CAPACITY	GENERATION	CAPACITY	GENERATION	CAPACITY
<u>Year</u>	<u>(GWH)</u>	FACTOR %	(GWH)	FACTOR %	<u>(GWH)</u>	FACTOR %
2003	2,622	95.4%	2,624	95.5%	2,633	95.8%
2004	4,364	92.4%	4,379	92.7%	4,400	93.1%
2005	4,279	90.8%	4,293	91.1%	4,307	91.4%
2006	4,270	90.6%	4,279	90.8%	4,214	89.4%
2007	4,139	87.9%	4,333	92.0%	4,441	94.3%
2008	4,402	93.2%	4,254	90.0%	4,032	85.4%
2009	4,065	86.3%	4,172	88.6%	4,365	92.7%
2010	4,357	92.5%	4,301	91.3%	4,267	90.6%
2011	4,216	89.5%	4,070	86.4%	4,284	90.9%
2012	4,190	88.7%	4,389	92.9%	4,455	94.3%

Source: PROMOD IV(R) analyses prepared by Slater Consulting.


Assumptions: The Base Case scenario was developed by Slater Consulting based on actual data and consideration of published sources, including the 1999 FRCC Regional Load & Resource Plan and Florida utilities' 2000 ten-year site plans.

The Low Load Growth scenario reflects growth rates 0.5 percent per year less than in the Base Case. The High Load Growth scenario reflects growth rates 1.0 percent per year greater than in the Base Case.


PENINSULAR FLORIDA GENERATION - WITHOUT OSPREY Weekday June 2005


PENINSULAR FLORIDA GENERATION - WITH OSPREY Weekday June 2005

PENINSULAR FLORIDA GENERATION - WITHOUT OSPREY Weekday December 2005

PENINSULAR FLORIDA GENERATION - WITH OSPREY Weekday December 2005

			MC	NTHLY TRE	NDS		Year Ago	JANUAR	Y through E	ECEMBER	1998-1999	
NERC Re	gion		Oct. 1999	Nov. 1999	Dec. 1999	Dec. 1998	Percent Change	1997	1998	1999	Percent Change	
NPCC	A	Electric Generation (gWh)	16,900	17,277	18,876	14,917	26.54%	182,537	182,468	231,281	26.75%	
		Production Costs («/kWh)	2.41	2 35	2.28	2.36	3.22%	2.48	2.30	2.39	3.65%	
		Retail Rates (c/kWh)	10.19	9.83	9.65	10.09	-2.58%	10.81	10.45	10.11	-3.25%	
MAAC	-0	Electric Generation (gWh)	18,924	18,925	18,789	19,777	-5.00%	210,399	228,685	252,746	10.52%	
		Production Costs (¢/kWh)	2.28	2.19	2.21	1.83	20.45%	2.11	1.91	2.23	16.60%	
	CX	Retail Rates (c/kWh)	7.53	7.35	7.41	8.18	-10.15%	8.86	8.69	8.09	-6.90%	
SERC	~-/ 7 4	Electric Generation (gWh)	62,249	58,045	65,901	61,472	7.20%	734,118	763,603	793,411	3.90%	
		Production Costs (¢/kWh)	1.76	1.77	1.72	1,72	0.06%	1.79	1.78	1.76	-0.96%	
		Retail Rates (¢/kWh)	5.71	5.50	5.53	5.49	0.18%	5.81	5.77	5.71	-1.04%	
FRCC	C.Z.	Electric Generation (gWh)	14,169	12,328	12,908	11,963	7.90%	141,111	160,611	173,061	7.75%	
	$=\{\underbrace{1}{1},\underbrace{1}{1}\}$	Production Costs (¢/kWh)	2.89	2.76	2.43	2.33	4.37%	2.67	2.39	2.59	8.40%	
		Retail Rates (¢/kWh)	6.88	6.90	6.85	7.06	-2.27%	7.30	7.13	6.96	-2.38%	
ECAR	rša.	Electric Generation (gWh)	44,321	43,829	48,515	44,598	8.78%	529,312	526,524	560,974	6.54%	
	7	Production Costs (¢/kWh)	2.17	2.14	2.13	1.87	13.63%	1.86	1.87	2.12	13.83%	
	¥ 2 -)	Retail Rates (¢/kWh)	5.97	5.91	5.86	5.89	0.34%	6.03	5.98	6.01	0.50%	
MAIN	حتاجهم	Electric Generation (gWh)	19,231	18,992	20,268	19,895	1.88%	216,491	222,092	252,018	13.47%	
	(m)	Production Costs (c/kWh)	1.87	1.88	1.79	1.99	-10.12%	2.09	2.05	1.84	-10.42%	
		Retail Rates (¢/kWh)	6.22	5.98	5.93	6.40	-6.56%	6.78	6.75	6.43	-4.74%	
MAPP (_	Electric Generation (gWh)	13,282	12,703	14,241	13,496	5.52%	151,337	153,972	161,491	4.88%	
,		Production Costs (c/kWh)	1.35	1.37	1.39	1.44	-3.41%	1.50	1.51	1.42	-5.77%	
		Retail Rates (c/kWh)	5.50	5.57	5.62	5.49	1.46%	5.68	5.75	5,79	0.70%	
ERCOT		Electric Generation (gWh)	22,973	20,370	22,048	17,796	23.89%	226,751	240,026	287,310	19.70%	
-11001	7	Production Costs (c/kWh)	2.54	2.40	2.33	1.98	18.18%	2.13	2.12	2.41	13.62%	
		Retail Rates (c/kWh)	6.50	5.88	5.75	5.75	2.26%	6.18	6.12	6.09	-0.49%	
SPP	L-(Electric Generation (gWh)	15,144	14,715	16,133	13,562	18.95%	164,934	174,334	200,862	15.22%	
-		Production Costs (c/kWh)	2.12	2.08	2.06	1.80	14.33%	1.98	1.89	2.11	11.14%	
	7	Retail Rates (c/kWh)	5.45	5.08	5.07	5.11	-0.59%	5.60	5.58	5.52	-1.08%	
WSCC		Electric Generation (gWh)	51,552	49,931	53,929	48,391	11.44%	561,608	551,533	628,226	13.91%	
		Production Costs (c/kWh)		1.67	1.58	1.47	7.28%	1.56	1.50	1.60	6.87%	
	7	Retail Rates (c/kWh)	7.30	6.64	6.75	6.56	7.11%	7.18	6.95	6.89	-0.86%	

Source: POWERdat Database. POWERdat is a registered trademark of Resource Data International Inc. (RDI) • Boulder, Colo. • 303-444-7788. © 2000 All rights reserved. Note: Monthly production costs are estimated using current fuel prices and most recently reported nonfuel O&M costs for all regulated companies (IOUs, munis, co-ops & federal).

PENINSULAR FLORIDA, IMPACTS OF OSPREY ENERGY CENTER ON AVERAGE ELECTRICITY GENERATION HEAT RATES AND TOTAL FUEL CONSUMPTION, 2003-2012

	Average Heat Rate (btu/kwh)			Total Primary Ene	ergy (1000*mmbtu)	Osprey Net Energy
	Without	With		Without	With	<u>Savings</u>
<u>Year</u>	Osprey	<u>Osprey</u>	Difference	<u>Osprey</u>	<u>Osprey</u>	(1000*mmbtu)
2003	8,864.4	8,837.4	27.0	1,850,893	1,845,257	5,636
2004	8,781.6	8,737.8	43.7	1,874,198	1,864,864	9,334
2005	8,747.8	8,707.6	40.2	1,905,197	1,896,431	8,766
2006	8,662.8	8,626.6	36.2	1,925,724	1,917,686	8,038
2007	8,606.0	8,567.4	38.7	1,949,829	1,941,069	8,760
2008	8,576.2	8,540.5	35.7	1,976,351	1,968,125	8,226
2009	8,536.7	8,512.4	24.3	2,003,095	1,997,395	5,700
2010	8,546.1	8,518.9	27.3	2,041,883	2,035,372	6,511
2011	8,553.6	8,517.0	36.6	2,081,005	2,072,094	8,911
2012	8,575.3	8,540.2	35.1	2,124,464	2,115,761	8,703

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

PENINSULAR FLORIDA FUEL CONSUMPTION IMPACTS OF OSPREY ENERGY CENTER, 2003-2012

(All Values in MMBtu)

		<u>Nuclear</u>		Coal and	Other So	lid Fuels	ٳ	Natural Ga	<u>ıs</u>		No. 6 Oil			<u>No. 2 Oil</u>	
	Without	With	Differ-	Without	With	Differ-	Without	With	Differ-	Without	With	Differ-	Without	With	Differ-
<u>Year</u>	Osprey	<u>Osprey</u>	<u>ence</u>	<u>Osprey</u>	<u>Osprey</u>	<u>ence</u>	<u>Osprey</u>	Osprey	ence	<u>Osprey</u>	<u>Osprey</u>	<u>ence</u>	Osprey	<u>Osprey</u>	ence
2003	295,404	295,404	0	769,940	766,231	3,709	663,815	669,766	(5,951)	118,105	110,713	7,392	3,629	3,143	486
2004	321,616	321,616	0	754,909	740,695	14,214	704,970	723,490	(18,520)	89,530	76,408	13,122	3,173	2,655	518
2005	316,996	316,996	0	751,478	743,067	8,411	745,061	755,649	(10,588)	88,372	77,868	10,504	3,290	2,851	439
2006	303,928	303,928	0	743,161	733,395	9,766	791,044	801,777	(10,733)	84,927	76,126	8,801	2,664	2,460	204
2007	312,117	312,117	0	716,668	705,680	10,988	829,301	846,518	(17,217)	89,310	74,427	14,883	2,433	2,327	106
2008	326,697	326,697	0	711,361	703,313	8,048	863,388	874,371	(10,983)	72,295	61,396	10,899	2,610	2,348	262
2009	294,962	294,962	0	716,748	712,157	4,591	897,024	905,427	(8,403)	91,584	82,485	9,099	2,777	2,364	413
2010	321,069	321,069	0	716,779	708,527	8,252	917,233	927,076	(9,843)	84,616	76,538	8,078	2,186	2,162	24
2011	316,945	316,945	0	723,043	709,318	13,725	937,705	952,935	(15,230)	100,807	90,683	10,124	2,505	2,213	292
2012	331,247	331,247	0	734,896	723,896	11,000	946,332	957,427	(11,095)	108,899	100,566	8,333	3,090	2,625	465

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

FFSC Docket No. 000442-b.1
Calpine Construction Finance Co., L.P.
Witness: Slater
Exhibit ______(KJS-14)

PENINSULAR FLORIDA, FUEL CONSUMPTION IMPACTS OF OSPREY ENERGY CENTER, 2003-2012

(All Values in GWh)

	<u>Nuclear</u>			Coal and Other Solid Fuels		Natural Gas			No. 6 Oil			No. 2 Oil			
	Without	With	Differ-	Without	With	Differ-	Without	With	Differ-	Without	With	Differ-	Without	With	Differ-
<u>Year</u>	<u>Osprev</u>	<u>Osprey</u>	<u>ence</u>	<u>Osprey</u>	<u>Osprey</u>	<u>ence</u>	Osprey	<u>Osprev</u>	<u>ence</u>	Osprey	<u>Osprey</u>	<u>ence</u>	Osprey	<u>Osprev</u>	ence
2003	28,539	28,539	0	79,879	79,444	435	87,441	88,664	(1,223)	12,061	11,331	730	357	311	46
2004	31,071	31,071	0	78,413	76,929	1,484	94,014	96,914	(2,900)	9,169	7,831	1,338	310	263	47
2005	30,625	30,625	0	78,211	77,290	921	99,111	101,185	(2,074)	9,076	7,995	1,081	318	278	40
2006	29,362	29,362	0	77,429	76,407	1,022	106,125	108,042	(1,917)	8,702	7,840	862	262	243	19
2007	30,153	30,153	0	74,651	73,490	1,161	111,992	114,720	(2,728)	9,139	7,641	1,498	242	231	11
2008	31,562	31,562	0	74,029	73,254	775	116,868	118,757	(1,889)	7,394	6,328	1,066	256	232	24
2009	28,496	28,496	0	74,744	74,131	613	121,351	122,947	(1,596)	9,385	8,471	914	271	234	37
2010	31,018	31,018	0	74,622	73,742	880	124,057	125,815	(1,758)	8,652	7,832	820	209	204	5
2011	30,620	30,620	0	75,216	73,803	1,413	126,515	129,017	(2,502)	10,292	9,271	1,021	235	207	28
2012	32,001	32,001	0	76,502	75,472	1,030	127,443	129,382	(1,939)	11,093	10,254	839	291	247	44

Source: PROMOD IV(R) analyses perpared by Slater Consulting.

PENINSULAR FLORIDA, SUMMARY OF PROJECTED WHOLESALE ENERGY COST SAVINGS DUE TO OSPREY ENERGY CENTER, BASE CASE, 2003-2012

YEAR	FRCC NET ENERGY FOR LOAD (GWH)	AVERAGE ANNUAL MARGINAL ENERGY COST WITH OSPREY (\$/MWH)	AVERAGE ANNUAL MARGINAL ENERGY COST WITHOUT OSPREY (\$/MWH)	WHOLESALE PRICE SUPPRESSION (\$/MWH)	ESTIMATED SAVINGS FROM OSPREY (\$MILLION)	CUMULATIVE NPV @ 10% 2000 DOLLARS (\$MILLION)
2003	208,800	32.83	33.37	0.54	113	85
2004	213,424	31.81	32.55	0.74	158	193
2005	217,791	32.92	33.67	0.75	163	294
2006	222,299	33.36	33.96	0.60	133	369
2007	226,565	33.75	34.48	0.73	165	454
2008	230,447	34.34	34.96	0.62	143	521
2009	234,645	35.85	36.60	0.75	176	595
2010	238,924	36.77	37.51	0.74	177	664
2011	243,289	38.81	39.65	0.84	204	735
2012	247,742	40.27	41.02	0.75	186	794

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

PENINSULAR FLORIDA, SUMMARY OF PROJECTED WHOLESALE ENERGY COST SAVINGS DUE TO OSPREY ENERGY CENTER, HIGHER FUEL PRICE SENSITIVITY CASE, 2003-2012

YEAR	FRCC NET ENERGY FOR LOAD (GWH)	AVERAGE ANNUAL MARGINAL ENERGY COST WITH OSPREY (\$/MWH)	AVERAGE ANNUAL MARGINAL ENERGY COST WITHOUT OSPREY (\$/MWH)	WHOLESALE PRICE SUPPRESSION (\$/MWH)	ESTIMATED SAVINGS FROM OSPREY (\$MILLION)	CUMULATIVE NPV @ 10% 2000 DOLLARS (\$MILLION)
2003	208,800	32.88	33.43	0.55	115	86
2004	213,424	31.92	32.59	0.67	143	184
2005	217,791	33.06	33.81	0.75	163	285
2006	222,299	33.71	34.35	0.64	142	366
2007	226,565	34.49	35.22	0.73	165	451
2008	230,447	35.43	36.09	0.66	152	522
2009	234,645	37.29	38.03	0.74	174	595
2010	238,924	38.76	39.53	0.77	184	666
2011	243,289	41.04	41.87	0.83	202	737
2012	247,742	42.63	43.51	0.88	218	806

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

Note: The Base Case fuel price projections were developed by Slater Consulting based on actual data and the U. S. Energy Information Administration's 2000 Annual Energy Outlook Reference Case Forecast, but with the natural gas price escalations moderated to be more in keeping with the Standard & Poor's DRI forecast, which was included in the EIA's publication as a comparison forecast. The fuel prices for this sensitivity case were the same as for the Base Case except that the prices of natural gas were projected to escalate at the growth rates projected in the EIA's Reference Case Forecast.

PENINSULAR FLORIDA, SUMMARY OF PROJECTED WHOLESALE ENERGY COST SAVINGS DUE TO OSPREY ENERGY CENTER, LOW LOAD GROWTH SENSITIVITY CASE, 2003-2012

	~D00	AVERAGE ANNUAL	AVERAGE ANNUAL			,
	FRCC	MARGINAL.	MARGINAL	WHOLESALE	ESTIMATED	CUMULATIVE
	NET ENERGY	ENERGY COST	ENERGY COST	PRICE	SAVINGS FROM	NPV @ 10%
	FOR LOAD	WITH OSPREY	WITHOUT OSPREY	SUPPRESSION	OSPREY	2000 DOLLARS
YEAR	(GWH)	<u>(\$/MWH)</u>	<u>(\$/MWH)</u>	(\$/MWH)	(\$MILLION)	(\$MILLION)
2003	205,684	32.46	32.69	0.23	47	36
2004	209,187	30.97	31.62	0.65	136	128
2005	212,400	32.10	32.84	0.74	157	226
2006	215,713	32.26	32.85	0.59	127	298
2007	218,754	32.58	33.14	0.56	123	361
2008	221,389	33.09	33.56	0.47	104	409
2009	224,295	34.12	34.75	0.63	141	469
2010	227,242	34.96	35.56	0.60	136	522
2011	230,238	36.64	37.08	0.44	101	557
2012	233,280	37.46	38.40	0.94	219	627

Source: PROMOD IV(R) analyses prepared by Slater Consulting.

Note: This Low Load Growth scenario reflects growth rates 0.5 percent

per year less than in the Base Case.

FPSC Docket No. 000442-E
Calpine Construction Finance Co., L.F
Witness; Slate
Exhibit

PENINSULAR FLORIDA, SUMMARY OF PROJECTED WHOLESALE ENERGY COST SAVINGS DUE TO OSPREY ENERGY CENTER, HIGH LOAD GROWTH SENSITIVITY CASE, 2003-2012

YEAR	FRCC NET ENERGY FOR LOAD (GWH)	AVERAGE ANNUAL MARGINAL ENERGY COST WITH OSPREY (\$/MWH)	AVERAGE ANNUAL MARGINAL ENERGY COST WITHOUT OSPREY (\$/MWH)	WHOLESALE PRICE SUPPRESSION (\$/MWH)	ESTIMATED SAVINGS FROM OSPREY (\$MILLION)	CUMULATIVE NPV @ 10% 2000 DOLLARS (\$MILLION)
2003	215,127	34.16	34.57	0.41	88	66
2004	222,089	33.44	34.29	0.85	189	195
2005	228,900	35.07	35.99	0.92	211	326
2006	235,976	35.94	36.75	0.81	191	434
2007	242,907	36.59	37.43	0.84	204	539
2008	249,539	38.02	39.04	1.02	255	657
2009	256,627	40.26	41.26	1.00	257	766
2010	263,921	42.51	43.51	1.00	264	868
2011	271,429	46.36	47.63	1.27	345	989
2012	279,162	49.17	50.64	1.47	410	1,119

Source: PROMOD IV(R) analyses prepared by Stater Consulting.

Note: This High Load Growth scenario reflects growth rates 1.0 percent

per year greater than in the Base Case.

COMPARISON OF PENINSULAR FLORIDA PLANNED AND PROPOSED GENERATING UNITS

PLANNED &	IN-	SUMMER			ALTERNATE	HEAT	EQUIVALENT	TOTAL	DIRECT	TECHNOLOGY
		CAPACITY		FUEL	FUEL	RATE	AVAILABILITY		CONSTRUCTION	TYPE
UTILITY/UNIT 1/	YEAR	MW	MW			(Btu/kWH)	FACTOR %	COST (\$/KW) 3/	COST (\$/KW) 3/	
DUKE/NSBPP 2/	2002	476	548	GAS	NONE	6,832	96	N/A	\$325	COMBINED CYCLE
OLEANDER 3/	2002	777	910	GAS	NO. 2	9,700	97	N/A	\$235	COMBUSTION TURBINE
OSPREY ENERGY 2/	2003	496	578	GAS	NONE	6,800	94	N/A	\$357	COMBINED CYCLE
OKEECHOBEE 2/	2003	508	552	GAS	NO. 2	6,650	93	N/A	\$34 5	COMBINED CYCLE
FPL/MARTIN CT	2001	298	362	GAS	NO, 2	10,450	98	\$ 371	\$323	COMBUSTION TURBINE
FPL/FT.MYERS	2002	930	1,073	GAS	NONE	6,830	96	\$ 557	\$ 502	COMB. CYCLE/REPOWER
FPL/SANFORD 4-5	2002	1,132	1,342	GAS	NONE	6,860	96	\$703	\$591	COMB. CYCLE/REPOWER
FPL/FT.MYERS CT	2003	298	362	GAS	NO. 2	10,450	98	\$378	\$323	COMBUSTION TURBINE
FPL/MARTIN 5-6	2006	788	858	GAS	NO. 2	6,346	96	\$679	\$484	COMBINED CYCLE
FPL/UNSITED	2007	394	429	GAS	NO. 2	6,830	96	\$783	\$552	COMBINED CYCLE
FPL/UNSITED	2008	394	429	GAS	NO. 2	6,830	96	\$798	\$552	COMBINED CYCLE
FPL/UNSITED	2009	394	429	GAS	NO. 2	6,830	96	\$812	\$552	COMBINED CYCLE
TALLAH/PURDOM 8	2000	233	262	GAS	NO. 2	6,940	NR	\$483	\$434	COMBINED CYCLE
FPC/INTRCSS 12-14	2000	240	282	GAS	NO. 2	13,272	91	NOT REPORTED	NOT REPORTED	COMBUSTION TURBINE
FPC/HINES 2	2003	495	567	GAS	NO. 2	7,306	91	NOT REPORTED	NOT REPORTED	COMBINED CYCLE
FPC/HINES 3	2005	495	567	GAS	NO. 2	7,306	91	NOT REPORTED	NOT REPORTED	COMBINED CYCLE
FPC/HINES 4	2007	495	567	GAS	NO. 2	7,306	91	NOT REPORTED	NOT REPORTED	COMBINED CYCLE
FPC/HINES 5	2009	495	567	GAS	NO. 2	7,306	91	NOT REPORTED	NOT REPORTED	COMBINED CYCLE
TECO/POLK 2	2000	155	180	GAS	NO. 2	10,580	94	NOT REPORTED	NOT REPORTED	COMBUSTION TURBINE
TECO/POLK 3	2002	155	180	GAS	NO. 2	10,580	94	NOT REPORTED	NOT REPORTED	COMBUSTION TURBINE
TECO/BAYSIDE 1	2003	698	796	GAS	NO. 2	7,080	91	NOT REPORTED	NOT REPORTED	COMBINED CYCLE
TECO/BAYSIDE 2	2004	711	802	GAS	NO. 2	7,050	91	NOT REPORTED	NOT REPORTED	COMBINED CYCLE
TECO/POLK 4-6	2005	465	540	GAS	NO. 2	10,580	94	NOT REPORTED	NOT REPORTED	COMBUSTION TURBINE
TECO/UNSITED	2009	155	180	GAS	NO. 2	10,580	94	NOT REPORTED	NOT REPORTED	COMBUSTION TURBINE
GVLLE/J.R. KELLY	2001	110	110	GAS	NO. 2	8,000	84	\$ 375	\$368	COMBINED CYCLE
SEC/PAYNE CRK 4/	2002	488	572	GAS	NO. 2	6,170	93	\$412	\$378	COMBINED CYCLE
FMPA-KUA CANE 3	2001	244	267	GAS	NO. 2	6,815	92	\$430	\$320	COMBINED CYCLE
LKLAND McINTSH 5	2002	337	384	GAS	NO. 2	6,523	91	\$749	\$671	COMBINED CYCLE
LKLAND McINTSH 4	2004	288	288	PET.COKE	COAL	8,452	81	\$1,617	\$1,317	PRESSURE FLUID BED
LKLAND McINTSH 6	2009	32	46	GAS	NO. 2	10,624	98	\$992	\$742	COMBUSTION TURBINE
JEA KENNEDY CT 7	2000	149	186	GAS	NO. 2	11,120	97	NOT REPORTED	\$261	COMBUSTION TURBINE
JEA BANDY CT 1-3	2001	149	186	GAS	NO. 2	11,120	97	NOT REPORTED	\$264	COMBUSTION TURBINE
JEA NORTHSID 1-2	2002	265	265	ET, COK		9,946	90	NOT REPORTED	\$658	CIRCULATING FLUID BED

DATA SOURCES:

1/ TOTAL INSTALLED COST AND DIRECT CONSTRUCTION COST DATA IS REPORTED DIRECTLY FROM THE INDIVIDUAL UTILITY'S 2000 TEN-YEAR SITE PLAN, SCHEDULE 9.
2/ DUKE/NSBPP, OSPREY ENERGY CENTER, AND OKEECHOBEE GENERATING CO. DATA ARE BASED ON INFORMATION FROM NEED DETERMINATION AND TEN-YEAR SITE

Calpine Construction Finance Co., L
Witness: Slat
Exhibit (KJS-1

^{2/} DUKE/NSBPP, OSPREY ENERGY CENTER, AND OKEECHOBEE GENERATING CO. DATA ARE BASED ON INFORMATION FROM NEED DETERMINATION AND TEN-YEAR SITE PLAN FILINGS AND INCLUDE THE COSTS OF DIRECTLY ASSOCIATED TRANSMISSION LINES. HEAT RATE IS CALCULATED BASED ON HIGHER HEATING VALUE (HHV).

3/ OLEANDER POWER PROJECT DATA IS BASED ON INFORMATION FILED IN THE APRIL 2000 TEN-YEAR SITE PLAN, AND INCLUDES THE COST OF DIRECTLY

ASSOCIATED TRANSMISSION LINES.

^{4/} SEMINOLE ELECTRIC COOPERATIVE'S HEAT RATE FOR THE PAYNE CREEK UNIT 3 IS REPORTED BASED ON LOWER HEATING VALUE (LHV).

SUMMARY OF PENINSULAR FLORIDA CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF SUMMER PEAK WITHOUT OSPREY ENERGY CENTER

Year	INSTALLED CAPACITY	- *******	PROJECTED FIRM NET TO GRID FROM NUG	TOTAL AVAILABLE CAPACITY	TOTAL PEAK DEMAND	RESERVE MA W/O EXERCIS LOAD MGMT	SING	LOAD MGMT. & INT.	FIRM PEAK DEMAND	WITH EX	E MARGIN ERCISING GMT. & INT.
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW) !	% OF PEAK	(MW)	(MW)	(MW)	% OF PEAK
1999	36,125	1,640	2,076	39,841	36,788	3,053	8.30	2,765	34,023	5,818	17.10
2000	36,664	1,755	2,076	40,495	37,541	2,954	7.87	2,838	34,703	5,792	16.69
2001	39,047	1,682	2,076	42,805	38,223	4,582	11.99	2,843	35,380	7,425	20.99
2002	41,372	1,658	2,055	45,085	38,959	6,126	15.72	2,802	36,157	8,928	24.69
2003	44,148	1,566	2,055	47,769	39,781	7,988	20.08	2,793	36,988	10,781	29.15
2004	45,646	1,566	2,055	49,267	40,593	8,674	21.37	2,789	37,804	11,463	30.32
2005	46,002	1,566	2,045	49,613	41,433	8,180	19.74	2,795	38,638	10,975	28.40
2006	47,590	1,566	1,912	51,068	42,398	8,670	20.45	2,801	39,597	11,471	28.97
2007	48,363	1,566	1,906	51,835	43,252	8,583	19.84	2,809	40,443	11,392	28.17
2008	49,547	1,566	1,891	53,004	44,066	8,938	20.28	2,800	41,266	11,738	28.44

- 1/ 476 MW OF DUKE-NEW SMYRNA CAPACITY ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002
- 2/ 514 MW OF OKEECHOBEE GENERATING PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2003
- 3/ 777 MW OF OLEANDER POWER PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002
- 4/ INSTALLED CAPACITY INCLUDES UPDATED ADDITIONS FROM THE 2000 TEN-YEAR SITE PLANS OF FPL, FPC, & TECO

SUMMARY OF PENINSULAR FLORIDA CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF SUMMER PEAK WITH OSPREY ENERGY CENTER, 496 MW IN 2003

Year	INSTALLED CAPACITY	INTERCHG	TO GRID FROM NUG	TOTAL AVAILABLE CAPACITY	DEMAND	RESERVE I W/O EXERC LOAD MGM	CISING IT. & INT.	LOAD MGMT. & INT.		WITH EX	E MARGIN ERCISING GMT. & INT.
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	% OF PEAK	(MW)	(MW)	(MW)	% OF PEAK
1999	36,125	1,640	2,076	39,841	36,788	3,053	8.30	2,765	34,023	5,818	17.10
2000	36,664	1,755	2,076	40,495	37,541	2,954	7.87	2,838	34,703	5,792	16.69
2001	39,047	1,682	2,076	42,805	38,223	4,582	11.99	2,843	35,380	7,425	20.99
2002	41,372	1,658	2,055	45,085	38,959	6,126	15.72	2,802	36,157	8,928	24.69
2003	44,644	1,566	2,055	48,265	39,781	8,484	21.33	2,793	36,988	11,277	30.49
2004	46,142	1,566	2,055	49,763	40,593	9,170	22.59	2,789	37,804	11,959	31.63
2005	46,498	1,566	2,045	50,109	41,433	8,676	20.94	2,795	38,638	11,471	29.69
2006	48,086	1,566	1,912	51,564	42,398	9,166	21.62	2,801	39,597	11,967	30.22
2007	48,859	1,566	1,906	52,331	43,252	9,079	20.99	2,809	40,443	11,888	29.39
2008	50,043	1,566	1,891	53,500	44,066	9,434	21.41	2,800	41,266	12,234	29.65

- 1/ 476 MW OF DUKE-NEW SMYRNA CAPACITY ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002
- 2/ 514 MW OF OKEECHOBEE GENERATING PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2003
- 3/ 496 MW OF OSPREY ENERGY CENTER ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2003
- 4/ 777 MW OF OLEANDER POWER PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002
- 5/ INSTALLED CAPACITY INCLUDES UPDATED ADDITIONS FROM THE 2000 TEN-YEAR SITE PLANS OF FPL, FPC, & TECO
- SOURCES: Florida Reliability Coordinating Council, 1999 Regional Load & Resource Plan, Peninsular Florida, July, 1999 Calpine Construction Finance Company, L.P.

SUMMARY OF PENINSULAR FLORIDA CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF WINTER PEAK WITHOUT OSPREY ENERGY CENTER

		NET	PROJECTED								
		CONTRACT	FIRM NET	TOTAL	TOTAL	RESERVE I	MARGIN	LOAD	FIRM	RESERV	E MARGIN
	INSTALLED	FIRM	TO GRID	AVAILABLE	PEAK	W/O EXERC	CISING	MGMT.	PEAK	WITH EX	ERCISING
Year	CAPACITY	INTERCHG	FROM NUG	CAPACITY	DEMAND	LOAD MGM	IT. & INT.	& INT.	DEMAND	LOAD MO	GMT. & INT.
	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	% OF PEAK	(MW)	(MW)	(MW)	% OF PEAK
1999/00	37,803	1,772	2,129	41,704	39 989	1,715	4.29	4,012	35,977	5,727	15.92
2000/01	39,662	1,694	2,129	43,485	40,929	2,556	6.24	4,110	36,819	6,666	18.10
2001/02	41,952	1,671	2,129	45,752	41,865	3,887	9.28	4,072	37,793	7,959	21.06
2002/03	44,146	1,566	2,108	47,820	42,808	5,012	11.71	4,059	38,749	9,071	23.41
2003/04	47,543	1,566	2,108	51,217	43,726	7,491	17.13	4,063	39,663	11,554	29.13
2004/05	48,892	1,566	2,098	52,556	44,651	7,905	17.70	4,085	40,566	11,990	29.56
2005/06	50,233	1,566	1,965	53,764	45,553	8,211	18.03	4,103	41,450	12,314	29.71
2006/07	50,823	1,566	1,959	54,348	46,600	7,748	16.63	4,124	42,476	11,872	27.95
2007/08	52,584	1,566	1,944	56,094	47,502	8,592	18.09	4,128	43,374	12,720	29.33
2008/09	52,555	1,566	1,944	56,065	48,441	7,624	15.74	4,155	44,286	11,779	26.60
2001/02 2002/03 2003/04 2004/05 2005/06 2006/07 2007/08	41,952 44,146 47,543 48,892 50,233 50,823 52,584	1,671 1,566 1,566 1,566 1,566 1,566 1,566	2,129 2,108 2,108 2,098 1,965 1,959 1,944	45,752 47,820 51,217 52,556 53,764 54,348 56,094	41,865 42,808 43,726 44,651 45,553 46,600 47,502	3,887 5,012 7,491 7,905 8,211 7,748 8,592	9.28 11.71 17.13 17.70 18.03 16.63 18.09	4,072 4,059 4,063 4,085 4,103 4,124 4,128	37,793 38,749 39,663 40,566 41,450 42,476 43,374	7,959 9,071 11,554 11,990 12,314 11,872 12,720	21.06 23.41 29.13 29.56 29.71 27.95 29.33

- 1/ 548 MW OF DUKE-NEW SMYRNA CAPACITY ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002/03
- 2/ 561 MW OF OKEECHOBEE GENERATING PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2003/04
- 3/ 910 MW OF OLEANDER POWER PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002/03
- 4/ INSTALLED CAPACITY INCLUDES UPDATED ADDITIONS FROM THE 2000 TEN-YEAR SITE PLANS OF FPL, FPC, & TECO

SUMMARY OF PENINSULAR FLORIDA CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF WINTER PEAK WITH OSPREY ENERGY CENTER, 578 MW IN 2003/04

Year	INSTALLED CAPACITY (MW)	NET CONTRACT FIRM INTERCHG (MW)	TO GRID	TOTAL AVAILABLE CAPACITY (MW)	TOTAL PEAK DEMAND (MW)	RESERVE I W/O EXERC LOAD MGM (MW)	CISING	LOAD MGMT. & INT. (MW)	FIRM PEAK DEMAND (MW)	WITH EX	E MARGIN ERCISING GMT. & INT. % OF PEAK
1999/00	37.803	1.772	2.129	41.704	39.989	1.715	4.29	3.784	35.977	5.727	15.92
2000/01	39,662	1.694	2.129	43,485	40.928	2,557	6.25	3.955	36.819	6.666	18.10
2001/02	41,952	1,671	2,129	45,752	41,865	3,887	9.28	4.078	37,793	7.959	21.06
2002/03	44,146	1,566	2,108	47,820	42,808	5,012	11.71	4,153	38,749	9,071	23.41
2003/04	48,121	1,566	2,108	51,795	43,726	8,069	18.45	4,232	39,663	12,132	30.59
2004/05	49,470	1,566	2,098	53,134	44,651	8,483	19.00	4,307	40,566	12,568	30.98
2005/06	50,811	1,566	1,965	54,342	45,553	8,789	19.29	4,335	41,450	12,892	31.10
2006/07	51,401	1,566	1,959	54,926	46,600	8,326	17.87	4,365	42,476	12,450	29.31
2007/08	53,162	1,566	1,944	56,672	47,502	9,170	19.30	4,392	43,374	13,298	30.66
2008/09	53,133	1,566	1,944	56,643	48,441	8,202	16.93	4,415	44,286	12,357	27.90

- 1/ 548 MW OF DUKE-NEW SMYRNA CAPACITY ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002/03
- 2/ 561 MW OF OKEECHOBEE GENERATING PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2003/04
- 3/ 578 MW OF OSPREY ENERGY CENTER ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2003/04
- 4/ 910 MW OF OLEANDER POWER PROJECT ADDED TO THE INSTALLED CAPACITY COLUMN STARTING IN 2002/03
- 5/ INSTALLED CAPACITY INCLUDES UPDATED ADDITIONS FROM THE 2000 TEN-YEAR SITE PLANS OF FPL, FPC, & TECO
- SOURCES: Florida Reliability Coordinating Council, 1999 Regional Load & Resource Plan, Peninsular Florida, July, 1999 Calpine Construction Finance Company, L.P.

PÉNINSULAR FLORIDA UTILITIES' IDENTIFIED BUT UNCOMMITTED CAPACITY NEEDS, 2003-2009

_	<u>UTILITY</u>	MW NEED	TYPE OF CAPACITY	IN-SERVICE YEAR	Field Construction Start Date
	ouc	481	Combined Cycle	2003	9/2001
-		146	Combustion Turbine	2007	6/2006
	Lakeland	288	Pressurized Fluidized Bed Coal	2004	6/2002
-		32	Combustion Turbine	2009	10/2008
	JEA	158	Combustion Turbine	2003	6/2003
_		250	Combined Cycle	2006	6/2006
		168	Combustion Turbine	2009	6/2009
	Seminole	153	Combustion Turbine	2002	11/2000
		244	Combined Cycle	2004	6/2002
		153	Combustion Turbine	2005	6/2003
		244	Combined Cycle	2006	11/2004
		153	Combustion Turbine	2007	6/2005
	FPL	298	Combustion Turbine	2003	2002
		788	Combined Cycle	2006	2004
		394	Combined Cycle	2007	2005
		394	Combined Cycle	2008	2006
		394	Combined Cycle	2009	2007
_	FPC	495	Combined Cycle	2003	8/2000
	11.0	495	Combined Cycle	2005	
_		495 495	Combined Cycle Combined Cycle	2005	8/2002 8/2004
		495 495	Combined Cycle	2007	8/2004
_					
	TECO	698	Combined Cycle	2003	10/2001
		711	Combined Cycle	2004	8/2002
_		155	Combustion Turbine	2005	1/2003
		155	Combustion Turbine	2006	1/2004
		155	Combustion Turbine	2008	1/2006
_		155	Combustion Turbine	2009	1/2007
	Tatal BRAI	0.747			

Total MW 8,747

Data Source: 2000 Ten-Year Site Plans

PENINSULAR FLORIDA EMISSIONS IMPACTS OF OSPREY ENERGY CENTER, 2003-2012

(All Values in 1000's lbs)

	Sulfur I	<u>Dioxide</u>	Nitrogen Oxides			
	Without	With	Without	With		
<u>Year</u>	<u>Osprev</u>	<u>Osprev</u>	<u>Osprey</u>	<u>Osprey</u>		
2003	759,691	767,350	458,702	452,861		
2004	702,289	669,806	426,740	412,805		
2005	695,946	674,697	423,137	413,850		
2006	677,817	654,902	417,541	405,467		
2007	658,449	632,952	405,652	392,771		
2008	639,130	611,603	391,615	382,230		
2009	669,806	660,623	408,957	401,142		
2010	679,140	657,030	410,514	400,657		
2011	702,883	677,446	418,612	407,683		
2012	743,653	720,617	437,591	426,875		

Source: PROMOD IV(R) analyses prepared by Slater Consulting.