BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION DOCKET NO. 990649-TP

ORIGINAL

SUPPLEMENTAL REBUTTAL TESTIMONY OF JOSEPH P. RIOLO ON BEHALF OF BLUESTAR NETWORKS INC., COVAD COMMUNICATIONS COMPANY AND RHYTHMS LINKS INC.

DATED: August 28, 2000

DOCUMENT NUMBER-DATE 10608 AUG 288 FPSC-RECORDS/REPORTING

TABLE OF CONTENTS

.

	<u>Pa</u>	ge
I.	INTRODUCTION AND SUMMARY	1
п.	BST'S REVISED NONRECURRING COST STUDY CONTINUES TO ASSUME INEFFICIENT ENGINEERING PRACTICES	. 2
A.	THE COMMISSION SHOULD REJECT BST'S REVISED DISPATCH RATE ASSUMPTION FOR VOICE-GRADE LOOPS	2
B.	BST CONTINUES TO INFLATE LOOP "CONDITIONING" COSTS.	4
ш.	BST HAS INCORRECTLY MODELED UDC COSTS.	14

1 I. INTRODUCTION AND SUMMARY

¥

2	Q.	Please state your name, title and business address.
3	A.	My name is Joseph P. Riolo. I am an independent telecommunications
4		consultant. My business address is 102 Roosevelt Drive, East Norwich,
5		New York 11732.
6	Q.	Have you previously filed testimony in this proceeding?
7	A.	Yes. I filed testimony on July 31, 2000 in the current phase of this
8		proceeding. Exhibit(JPR-1) attached to my July 31 st testimony
.9		describes my qualifications and relevant experience.
10	Q.	What is the purpose of your supplemental rebuttal testimony?
11	A.	BlueStar Networks, Inc. ("BlueStar"), DIECA Communications, Inc. d/b/a
12		Covad Communications Company ("Covad") and Rhythms Links Inc.
13		("Rhythms") have asked me to address the revised direct testimony and
14		cost study presentations made by BellSouth Telecommunications, Inc.
15		("BST") and to provide technical support for cost witness Terry L.
16		Murray.
17	Q.	Please summarize the conclusions in your testimony.
18	A.	After reviewing BST's revised cost studies, I conclude that they still do
19		not reflect efficient engineering practices. The criticisms that I presented
20		in my July 31 st testimony continue to apply. In addition, BST's revised
21		studies present several new faulty assumptions.
		Page 1

-

•

1		First, BST's increased dispatch rate assumption for Service Level 1	
2		("SL-1") voice grade loops is unreasonably high and entirely unsupported.	
3		Second, as I explained at length in my July 31st testimony, nonrecurring	
4		"conditioning" charges for DSL-capable loops are inconsistent with	
5		current engineering practices. Even if the Commission allows BST to	
6		impose such charges, BST's proposed costs for its two new distribution	
7		sub-loop "conditioning" elements are vastly overstated relative to the cost	
8		it would actually incur using efficient outside plant management practices.	
9		Finally, BST has incorrectly modeled the costs of Universal Digital	
10		Channels, as it did for ISDN-capable loops.	
11 12	п.	BST'S REVISED NONRECURRING COST STUDY CONTINUES TO ASSUME INEFFICIENT ENGINEERING PRACTICES.	
13 14		A. The Commission Should Reject BST's Revised Dispatch Rate Assumption for Voice-Grade Loops.	
15	Q.	In its revised nonrecurring cost filing, BST has increased its dispatch	
15 16	Q.	In its revised nonrecurring cost filing, BST has increased its dispatch rate assumption for SL-1 voice-grade loops from 20% to 38%. Is this	
15 16 17	Q.	In its revised nonrecurring cost filing, BST has increased its dispatch rate assumption for SL-1 voice-grade loops from 20% to 38%. Is this increase appropriate?	
15 16 17 18	Q. A.	In its revised nonrecurring cost filing, BST has increased its dispatch rate assumption for SL-1 voice-grade loops from 20% to 38%. Is this increase appropriate? No. As Ms. Murray explains in her testimony, it is not appropriate to	
15 16 17 18 19	Q. A.	In its revised nonrecurring cost filing, BST has increased its dispatch rate assumption for SL-1 voice-grade loops from 20% to 38%. Is this increase appropriate? No. As Ms. Murray explains in her testimony, it is not appropriate to include any level of fieldwork costs in the nonrecurring charge for a SL-1	

1	fieldwork costs should be included in the nonrecurring charge, it should
2	reject BST's assumed dispatch rate increase.

3 Q. Why should the Commission reject BST's dispatch rate assumption?

4 A. A dispatch rate of 38% is simply too high. Local exchange companies 5 have long understood that dispatch is costly and to be avoided to the 6 greatest extent possible. They have designed their plant under "Cut-Through" design to avoid the need for field dispatches to lay in a simple 7 cross connection at the Serving Area Interface ("SAI"), and have pre-8 connected more than one pair of drop wire conductors at the Drop 9 Terminal and the Network Interface Device ("NID"). Internally, local 10 exchange carriers typically measure their success in avoiding field 11 dispatches via a performance measure referred to as the "NPV" rate (i.e., 12 "No Premises Visit"). In my experience, successful operations normally 13 operate at an NPV rate between 85% and 90% (which corresponds to a 14 15 dispatch rate of 10% to 15%.). Improvements in outside plant engineering design and operating practices have been steadily lowering the need for 16 17 the actual dispatch of a technician. Even BST's original rate of 20% was 18 high. Therefore, instead of increasing that rate, BST's forward-looking 19 analysis should show decreasing dispatch rates.

Unfortunately, BST has filed no evidence or supporting material
that would allow me to analyze how it arrived at its dubious 38%
conclusion. Indeed, BST has not even supported its original dispatch rate
assumption of 20%. Mr. James R. McCracken, one of BST's subject

•

,

1		matter experts for the Installation & Maintenance ("I&M") and Special
2		Services Installation & Maintenance ("SSI&M") work groups, admitted
3		that he doesn't know the source of the dispatch percentages and further
4		that he doesn't have any experience with SL-1 loop installation. [See
5		Deposition of James R. McCracken, July 28, 2000, Tr. at 81-83.]
6		For all of these reasons, if the Commission decides to allow any
7		nonrecurring dispatch charge, BST's original estimate of a 20% dispatch
8		rate is a much more reasonable, and even a generous, proxy for field visits
9		than its revised, unsupported estimate of 38%.
10		B. BST Continues to Inflate Loop "Conditioning" Costs.
11	Q.	In its revised cost study filing, BST has proposed two additional
12		"conditioning" elements: "2W/4W Copper Distribution Load
13		Coil/Equipment Removal" and "2W/4W Copper Distribution
14		Bridged Tap Removal." Do the nonrecurring charges that BST has
15		proposed for these elements reflect efficient engineering practices?
16	A.	No. As Ms. Murray and I have both testified, it is inappropriate to apply
17		any nonrecurring charges for loop "conditioning" because the outmoded
18		design that has created such a situation was made obsolete 20 to 30 years
19		ago. [See Riolo Direct and Rebuttal, at 65-80.] Bellcore Notes on the
20		Networks, December 1997, page 12-5 states, "All CSA loops must be
21		unloaded and should consist of no more than two gauges of [copper]
22		cable."

Page 4

٠

1	In addition, distribution plant, frequently referred to as "the last
2	mile," is not likely to contain load coils. In fact, transmission design
3	standards require that no load coils may exist in the last 3,000 feet closest
4	to the customer's location, and that there may be between 3,000 feet and
5	12,000 feet of a copper loop between the last load coil and the customer's
6	location. [See Bellcore Telecommunications Transmission Engineering,
7	Volume 3, Networks and Services, 1990, at 106.] This situation exists, of
8	course, unless an engineering design error has occurred.
9	Furthermore, BST has inflated the costs for removing these
10	elements by assuming that distribution "conditioning" jobs would be
11	performed on only one pair at a time. As I explained in my July 31 st
12	testimony [at 81-90], it is a standard efficient engineering practice to
13	deload and unbridge more than one loop at a time. Indeed, it is important
14	to prevent multiple re-entries into outside plant splices because multiple
15	re-entries can cause serious deterioration in the wire insulation that will
16	cause telephone wires to break or short out. It is standard engineering
1 7	practice to attempt to maintain "binder group integrity," that is, to splice
18	and otherwise treat all of the pairs in a given binder group as a unit.
19	Single pair splicing, <i>i.e.</i> , splicing only one or a few of the pairs in a given
20	binder group for some purpose, has been avoided for decades.

21 Q. What would be a reasonable number of distribution pairs to

"condition" at one time?

22

•

1	Α.	As I explained in my July 31 st testimony [at 83-84], for cables serving
2		customers less than 18,000 feet from the central office, it would always be
3		appropriate to remove all load coils when a dispatch occurs. Even if
4		embedded plant might have one or more load coils on a loop, they should
5		not be there for POTS lines either. It is entirely irrelevant if those coils are
6		on feeder or distribution plant — load coils do not belong on POTS lines
7		of less than 18,000 feet, and the existence of such load coils degrades the
8		speed of plain old analog modems. The ubiquitous removal of all load
9		coils on loops containing less than 18,000 feet of copper would be
10		appropriate, even if it involved only a single 25-pair binder group
11		designated to provide POTS service.
12		Copper cables closer to the central office normally consist of larger
13		cable sizes. Those cables closer to the central office are typically
14		administered, and should be deloaded, in groups of 300 pairs, because all
15		copper cables of 600 pair and larger are manufactured in 300-pair
16		increments (such as 600-pair, 900-pair, and 1200-pair cables).
17		Distribution cable is, however, normally farther from the central
18		office. Whereas 100 to 300 pairs, or even more, would easily be
19		conditioned at one time on a cable close to the central office, it might not
20		be possible to condition that many pairs on smaller distribution cables
21		farther from the central office. Hence, when the conditioning effort is
22		limited to distribution, the total number of lines that could efficiently be
23		conditioned at one time would be smaller than for loops looked at in total

.

1		(i.e., considering feeder and distribution). That does not, however, change
2		the fact that it is clearly inefficient to condition only one pair at a time.
3		An engineer would endeavor to maintain binder group integrity wherever
4		possible, thereby supporting my opinion that costs should be based on no
5		more than $1/25^{\text{th}}$ of the cost of the dispatch and work to condition loops at
6		one site.
7	Q.	Is it logical to adjust the number of loops conditioned at one time to
8		account for very small cables?
9	Α.	No. BST has gone on record in Florida as stating that it does not utilize
10		cables smaller than 25 pairs. [See for example, BST's copper cable
11		material prices in Florida Order No. PSC 99-0068-FOF-TP.] In addition,
12		transmission design dictates that load coils must be pushed back a
13		minimum of 3,000 feet from the customer's location. The smallest cables
14		in the loop will be adjacent to the customer premises; the cables closer to
15		the central office will typically be larger size (fatter) cables. Load coils
16		would not be found on the smallest cables, rather they will be found closer
17		to the central office on those fatter cables. (Remember that as much as
18		12,000 feet of end section between the last load coil and the customer's
19		location is appropriate transmission design. [See Bellcore
20		Telecommunications Transmission Engineering, Volume 3, Networks and
21		Services, 1990, at 106.])

•

٠

1	Q.	Do the task and task time assumptions underlying BST's proposed
2		costs for these new distribution "conditoning" elements reflect
3		efficient practices?
4	A.	No. BST's proposed costs for these two new elements reflect the same
5		inefficient tasks and work times that BST used in its other "conditioning"
6		elements.
7	Q.	If the Commission were to award BST the right to charge for load
8		coil removal from a distribution sub-loop, what task and task time
9		assumptions would be appropriate?
10	A.	If the Commission elects to permit the BST to impose such charges
11		which it should not — then such charges should be based on practices
12		generally employed in the telecommunications industry and on reasonably
13		efficient task time estimates.
14		As I explained in my previous testimony, usually only three load
15		coils would appear on a loop at 6,000-foot intervals (for example, at 3,000
16		feet, 9,000 feet, and at 15,000 feet). Two of these would typically be in
17		the underground portion of the loop. Typically that would leave one load
18		coil in the aerial or buried portion of the loop. Even if the last load coil
19		were to appear in the "last mile" distribution portion of the loop, BST has
20		unaccountably assumed that on average 1.2 load coils will appear in that
21		distribution portion. This is particularly odd given BST's assumption that
22		a loop will contain 2.1 load coils on average. Thus, BST appears to be
23		saying that more than half of the load coils on a loop occur in the

Page 8

•

1	distribution portion, which is clearly suspect. I have assumed that where
2	loaded distribution cable is involved, only one load coil would appear in
3	that distribution portion of a loaded loop, on average.
4	It is likely that very little, if any, of the distribution portion will be
5	underground. (Total actual sheath kilometers of cable as reported in the
6	FCC's ARMIS database indicates only 11.5% underground for both feeder
7	and distribution plant — available at http://gullfoss.fcc.gov:8080/cgi-
8	bin/websql/prod/ccb/armis1/forms/43-08/frame1a.hts.) However, I have
9	conservatively used BST's assumption that 10% of the distribution load
10	coils would actually appear in underground facilities. I have also
11	conservatively assumed that 45% of the time the load coils would be at an
12	aerial location and 45% of the time the load coil would be at a buried
13	location. The Commission can use the following work steps and
14	conservative time estimates to develop the costs involved in removing an
15	interfering load coil from a distribution sub-loop:

•

.

	Underground Cable Load Coil Removal from Distribution in a Manhole (10% occurrence)		
Cton	Description	Task	
Step	Description	(min.)	
1	Travel time to underground splice location	20	
2	Set up work area protection and underground work site	5	
3	Pump and ventilate manhole	15	
4	Buffer cable / Rerack cable / set up splice	5	
5	Open splice case	5	
6	Identify pairs to be deloaded	5	
7	Bridge binder group for service continuity (if necessary)	5	
8	Remove / sever connection from main cable to load "in" & "out" taps	3	
9	Rejoin / splice pairs through main cable	5	
10	Remove bridging modules from Step 7	2	
11	Clean, reseal, and close splice case	10	
12	Rack cables, pressure test cables in manhole	10	
13	Close down manhole, stow tools, break down work area protection	10	
	Total Minutes	100	
	Total Hours	1.67	
	No. Technicians	2	
	Total Timesheet Hours	3.33	
	No. Locations	0.10	
	Total Hours	0.33	
	Pairs deloaded	25	
	Weighted Average Minutes per pair	0.80 min.	

,

•

Aerial Cable Load Coil Removal from Distribution at a Pole (45% occurrence)		
0.	Description	Task
Step	Description	(min.)
1	Travel time to aerial splice location from underground splice location	10
2	Set up work area protection	5
3	Set up ladder or bucket truck	10
4	Open splice case	5
5	Identify PIC pairs to be deloaded	2
6	Bridge binder group for service continuity (if necessary)	5
7	Remove / sever connection from main cable to load "in" & "out" taps	3
8	Rejoin / splice pairs through main cable	5
9	Remove bridging modules from Step 6	2
10	Clean, reseal, and close splice case	10
11	Secure splice case to strand and clean up work area	10
12	Close down aerial site, stow tools, break down work area protection	10
	Total Minutes	77
	Total Hours	1.28
	No. Technicians	1
	Total Timesheet Hours	1.28
	No. Locations	0.45
	Total Hours	0.58
	Pairs deloaded	25
	Weighted Average Minutes per pair	1.39 min.

Buried Cable Load Coil Removal from Distribution at a Pedestal (45% occurrence)		
Step	Description	Task
	Description	
1	Travel time to buried splice location from underground splice location	10
2	Set up traffic cone at rear bumper of truck	1
3	Walk to site & open splice pedestal	2
5	Identify PIC pairs to be deloaded	2
6	Bridge binder group for service continuity (if necessary)	5
7	Remove / sever connection from main cable to load 'in' & 'out taps	3
8	Rejoin / splice pairs through main cable	5
9	Remove bridging modules from Step 6	2
10	Secure splice within buried pedestal and clean up work area	3
11	Close down buried site, stow tools and traffic cone	5
	Total Minutes	38
	Total Hours	0.63
	No. Technicians	1
	Total Timesheet Hours	0.63
	No. Locations	0.45
	Total Hours	0.29
	Pairs deloaded	25
	Weighted Average Minutes per pair	0.68 min.

. .

•

1	Q.	If the Commission were to award BST the right to charge for load
2		coil removal from a distribution sub-loop, what charges would be
3		appropriate?
4	A.	The Commission should use work steps and time estimates I have listed,
5		along with the labor rates it adopts for BST, to estimate the costs involved
6		in removing load coils. I have estimated that the total average time for
7		removing the load coil from a distribution sub-loop as just under 3 minutes
8		per average pair. For example, at a labor rate of \$45 per hour, a load coil
9		removal charge of \$2.15 per pair would apply.
10	Q.	If the Commission were to award BST the right to charge for
11		bridged tap removal from a distribution sub-loop, what task and
12		task time assumptions would be appropriate?
13	A.	Again, if the Commission elects to permit BST to impose such charges —
14		which it should not — then such charges should be based on reasonably
15		efficient practices generally employed in the telecommunications industry.
16		Using the same criteria as stated earlier, I would conservatively
17		assume that a single case of bridged tap, if it occurs, would occur 50% of
18		the time at an aerial location and 50% of the time at a buried location.
19		Accordingly, the Commission can use the following work steps and
20		conservative time estimates to estimate the costs involved in removing
21		bridged tap from a distribution sub-loop:

٠

	Aerial Cable Bridged Tap Removal from Distribution at a Pole (50% occurrence	e)
0.4.00	Description	Task
Step	Description	(min.)
1	Travel time to aerial splice location	20
2	Set up work area protection	5
3	Set up ladder or bucket truck	10
4	Open splice case	5
5	Identify PIC pairs for bridged tap removal	2
6	Remove bridging modules or cut & clear pairs	2
7	Clean, reseal, and close splice case	10
8	Secure splice case to strand and clean up work area	10
9	Close down aerial site, stow tools, break down work area protection	10
	Total Minutes	74
	Total Hours	1.23
	No. Technicians	1
	Total Timesheet Hours	1.23
	No. Locations	0.5
	Total Hours	0.62
	Pairs Unbridged	25
	Weighted Average Minutes per pair	1.48 min

	Buried Cable Bridged Tap Removal from Distribution at a Pedestal (50% occurre	nce)
Step	Description	Task
	Description	
1	Travel time to buried splice location	20
2	Set up traffic cone at rear bumper of truck	1
3	Walk to site & open splice pedestal	2
4	Identify PIC pairs for bridged tap removal	2
5	Remove bridging modules or cut & clear pairs	2
6	Secure splice within buried pedestal and clean up work area	3
7	Close down buried site, stow tools and traffic cone	5
	Total Minutes	35
	Total Hours	0.58
	No. Technicians	1
	Total Timesheet Hours	0.58
	No. Locations	0.5
	Total Hours	0.29
	Pairs Unbridged	25
	Weighted Average Minutes per pair	0.70 min.

1 Q. If the Commission were to award BST the right to charge for

2 bridged tap removal from a distribution sub-loop, what charges

3 would be appropriate?

•

.

1	A .	Again, the Commission should use the work steps and time estimates I
2		have listed, along with the labor rates it adopts for BST, to estimate the
3		costs involved in removing bridged tap. I have estimated that the total
4		average time for removing a bridged tap from a distribution sub-loop is
5		just under one and a half minutes per pair. For example, at a labor rate of
6		\$45 per hour, a bridged tap removal charge of \$1.63 would apply.
7	ш.	BST HAS INCORRECTLY MODELED UDC COSTS.
8	Q.	In its revised cost study filing, BST has proposed an additional loop
9		element, the "Universal Digital Channel." Do you have any
10		comments on this element?
11	A.	As Ms. Murray explains in her testimony, it is difficult to comment on
12		BST's so-called "Universal Digital Channel" ("UDC") because BST has
13		not provided a definition of this element and nor explained how BST
14		imagines it would differ from an ISDN-capable loop, if at all. However, it
15		is my understanding that a UDC has the same exact technical
16		specifications as an ISDN loop.
17	Q.	Since a UDC apparently has the technical specifications of an ISDN
18		loop, is it necessary for a UDC to be "designed" or engineered?
19	A.	No. As I explained in my July 31 st testimony [at 53 and 62-64], ISDN can
20		be provided over standard loop facilities. This holds also for a UDC. In
21		fact, Mr. James R. McCracken, one of BST's subject matter experts for the

٠

٠

1		Special Services Installation & Maintenance ("SSI&M") work group,
2		admitted that BST does not "design" ISDN loops in Georgia. [Deposition
3		of James R. McCracken, July 28, 2000, Tr. at 31.]
А	0	How do the costs of IDC differ from voice-grade loops?
4	٧٠	now do the costs of eDe unter from voice grade roops.
5	A.	UDCs use the same facilities as ISDN-capable loops. Therefore, my July
6		31 st comments regarding the incremental costs of ISDN-capable loops
7		versus voice-grade loops apply to UDCs as well. [See Riolo Direct and
8		Rebuttal, at 50-53.] Over copper loops, there is no difference. Because
9		the plug-in card required for ISDN provided over fiber/Digital Loop
10		Carrier is more expensive than the plug-in card required to support basic
11		voice grade service, longer ISDN loops cost somewhat more than
12		comparable basic voice service loops. I agree with Ms. Murray that
13		recurring charges for ISDN/UDC loops should be set at the recurring
14		charge for basic loops, plus an increment to account for the higher cost of
15		an ISDN card at the remote terminal as compared to a POTS card,
16		weighted by the percentage of fiber feeder in the forward-looking
17		network.

- 18 Q. Does this conclude your testimony?
- 19 A. Yes, it does.