BellSouth Telecommunications, Inc.
FPSC Dkt No 990649-TP
Staff's $8^{\text {th }}$ Set of Interrogatories
August 16, 2000
Item No. 145
Page 1 of 1
PROPRIETARY
REQUEST: For the purposes of the following request, please refer to page 13, lines 22-23 of BellSouth witness Miliner's direct testimony where he states that "...BellSouth is, and has been, providing sub-loop unbundling at technically feasible points of access."
a) Please identify the CLECs (excluding MediaOne) in Florida to which BellSouth has provided sub-loop elements.
b) Please identify the CLECs (excluding MediaOne) throughout its region to which BellSouth has provided sub-loop elements.

RESPONSE:a) Sprint.
b) None, other than Sprint.

RESPONSE PROVIDED BY: W. Keith Milner
Senior Director
675 W. Peachtree St.
Atlanta, Georgia 30375

BELLSOUTH TELECOMMUNICATIONS, INC.

FPSC DKT NO 990649-TP

STHFF'S $9^{\text {TH }}$ REQUEST FOR PRODUCTION OF DOCUMENTS

PODNO. \qquad

PROPRIETARY

DECLASSIFIED

7. Universal Service Data Request.

Request:

(1) Loops. For the year ending December 31, 1996, indicate how many of each of the following type of loops there are for each wire center in each of your study areas:
(a) Switched working loops
(i) Residential
(ii) Single-line business
(iii) Multi-line business
(b) Non-switched working loops
(c) Non-working loops
(d) Non-revenue loops (please explain why these loops do not generate revenue)

Please note that:
-- Working loops include loops used for all services: message and special, revenue and non-revenue.
-- Non-working loops include defective loops, loops reserved for some future activity, and loops with a pending connect status.
-- Switched loops should only be counted as part of the wire centers in which they are switched.
-- For non-switched services, count the actual number of subscriber loops used to provide the service, not the voice frequency equivalent. For example, DS1 service provided over two copper pairs would be counted as two subscriber loops.
-- Foreign exchange lines or trunks should be counted as non-switched in the wire center where the customer and subscriber loop is located.
-- For switched loops served via a concentrator or carrier system, count the actual number of customer lines served, not the transmission channels at the wire center.

Response: See Section 1, following.

Request:

(2) Loop length studies. Provide the most recent loop length study conducted by or for your company for each of your study areas. List loop lengths, and for each loop length, specify how many loops are that length. Include all statistical studies used to support that loop length study and a glossary defining all terms not commonly used by other LECs. Describe how
the study was performed. Indicate whether the study was performed using a stratified sample, and whether the stratification was based on density cells, study areas, or wire centers. Specifically indicate whether the study includes both working and non-working loops or only working loops. List any other modifications or assumptions made in obtaining your loop sample. (See definition of working and non-working loops provided in Question 1.)

Response: See Section 2, following.

Request:
(3) Subscriber line usage studies. Provide the most recent subscriber line usage study or equivalent performed by or for your company for each of your study areas. Indicate the dates over which the study was performed, the number of lines sampled by service category and the wire centers included in the study. Include a glossary defining all terms not commonly used by other incumbent LECs.

Response: See Section 3, following.
Request:
(4) Basic residential service offerings. For each basic residential service plan that includes a per-minute or per-call charge, provide the number of calls or minutes that are not charged on a per-call or per-minute basis, if any, that are included as part of the service plan.

Response: See Section 4, following.
(5) Apportionment of cable costs. Indicate the percentage attributable to buried cable (Account 2423), underground cable (Account 2422), and aerial cable (Account 2421) for each of the following: (a) gross investment in distribution plant; (b) gross investment in feeder plant; (c) distribution loop length (in miles or kilometers); and (d) feeder loop length (in miles or kilometers). Please provide this information on a wire center basis. If it is not available on a wire center basis, provide the information on a study area basis.

Response: See Section 5, following.

Request:

(6) Installation cost data for cable facilities. Provide all data on the cost of installing cable facilities that have been submitted to a federal or state commission in 1995 or 1996. Include a glossary defining all terms not commonly used by other incumbent LECs.

Response: See Section 6, following.

Request:
(7) Subscriber utilization studies. Provide the most recent subscriber cable utilization study performed by or for your company for each of your study areas and provide the information by wire center. Separately identify utilization by feeder and by distribution. Please define utilization as the ratio of working loops (as defined in Question 1 above) to total loops. Include a glossary defining all terms not commonly used by other LECs.

Response: See Section 7, following.
Request:
(8) Structure-sharing percentages. What percent of the structures that support your outside plant are shared with other companies? Provide the sharing percentage, by study area, for each of the following categories: (a) poles; (b) conduits; and (c) trenches. The sharing percentage is the proportion of investment that is assigned to the telephone company. Provide the information separately for interoffice (trunk) cable and subscriber cable.

Response: See Section 8, following.

Request:

(9) Multi-line residential customers. How many of your residential customers are multi-line customers, where multi-line means multiple communications channels and not multiple telephone numbers? Provide this line count on a study area and a wire center basis. Indicate the number of these channels that are served through a basic-rate ISDN service.

See Section 9, following.

Request:

(10) Poles. Provide the current cost of a 40 -foot class 4 treated southern pine pole and the average cost of installing such a pole in 1996.

Response: See Section 10, following.
Request:
(11) Detailed continuing property records.
(a) For the year ending December 31, 1995, provide the detailed continuing property record (DCPR) balance for USOA Account 2212 (digital electronic switching) for each wire center and the number of switched lines (not line numbers) working from the digital switches in that wire center.
(b) For the above account, summarize the material cost and the installed cost by wire center and by all characters of the equipment category code (EQCAT or ECN) used in your DCPR records. Provide translation tables for the EQCAT or ECN codes and for the location codes used in the account 2212 DCPR records. Provide the DCPR summaries in ASCII files on $31 / 2^{\prime \prime}$ floppy disks, DC2120 magnetic tape cartridges, Iomega ZIP disks, or Iomega JAZ disks for use on a PC platform.

Response: See Section 11, following.

Request:

(12) Digital switches. For all digital switches purchased in 1995 and 1996, provide the material and installed cost of each switch and the number of lines served by each switch at the end of its first twelve months in service. If a switch has not been in service for twelve months, state the length of service and the number of lines it serves at present.

Response: See Section 12, following.

Request:

(13) Contracts with switching manufacturers. For every switching manufacturer with which you currently have a contract:
(a) Provide a copy of that contract. Indicate if you consider the contract proprietary, and follow the instructions in para. 8 for filing confidential information.
(b) If not clearly defined in the contract, please provide definitions of the following terms as they were used in the contract: (i) new switch; (ii) growth to a new switch; (iii) growth to an embedded switch; (iv) remote switch; and (v) remote switching module.
(c) Does the contract price include the removal of the existing switch(es)?
(d) What time period does the contract cover?
(e) How many lines are you committed to install under the contract, if any?

Response: See Section 13, following.

Request:

(14) Digital line carrier devices. For all digital line carrier devices purchased in 1995 and 1996, provide the following:
(a) The material and installation cost of each device. (Provide the cost of common equipment separately from the cost of per-line equipment.)
(b) The number of lines served by each device at the end of its first twelve months in service.

Response: See Section 14, following.

Request:

(15) Drop lines. With regard to drop lines that you install for residential customers:
(a) Describe the number of copper pairs that you normally install per dwelling unit in both single family and multi-family dwellings.
(b) If multi-family dwelling units are served by fiber, provide the number of DS0 transmission channels per dwelling unit.
(c) If you install a different number of pairs depending on whether the drop is aerial or buried, indicate the difference in number.

Response: See Section 15, following.

Request:

(16) Maintenance expenses. With regard to maintenance expenses for switches, circuit equipment, and cable and wire facilities:
(a) Provide the most recent estimate of these expenses as incorporated into a forward-looking or economic cost study for each of your study areas that was filed with a state commission or the Federal Communications Commission. Indicate the date and docket number of each submission, and the commission(s) to which it was submitted.
(b) Explain the method used to determine these expenses and provide a copy of the calculations that support the expense estimate.
(c) Provide evidence, if possible, of any differences in maintenance expenses between fiber and copper cable.
(d) Provide evidence, if possible, of any differences in maintenance expenses among aerial, underground, and buried cable.

Response: See Section 16, following.

Request:

(17) Riser cable.
(a) Do you currently install riser cable in multi-unit residential housing or commercial buildings?
(b) If so, under what conditions do you consider this installed cable to be part of the regulated total plant in service?
(c) What percentage of the installed riser cable do you include in regulated total plant in service?

Response: See Section 17, following.

Request:

(18) Residential, single-line business, and multi-line business customers. For residential, single-line business, and multi-line business customers for June 1996, provide the following for each study area:
(a) The total local service revenue and the number of customers. Total local service revenue includes flat monthly charges, local usage charges, taxes, extended area service charges (mandatory and optional), local mileage and zone charges, local information charges, federal and state subscriber line charges, other mandatory surcharges, and optional services, such as touch tone, call waiting, and call forwarding.
(b) The sum of taxes and 911 surcharges.
(c) The total of your billings for toll service for which you provided the toll service.

Request (18) (Cont.)

(d) The total of your billings for which you billed for toll services provided by another carrier.
(e) For multi-line residential customers, where multi-line means multiple communications channels and not multiple telephone numbers, provide the revenue generated by the purchase of the additional lines.

Response: See Section 18, following.
Request:
(19) Miles served by wire center. Provide the number of square miles served by each wire center.

Response: See Section 19, following.
Request:
(20) Cost of land and buildings. For each wire center, provide the historical cost of the land and buildings. Indicate the number of switches in each wire center.

Response: See Section 20, following.

Request:

(21) Contracts with digital line carrier manufacturers. For every digital line carrier manufacturer with which you currently have a contract:
(a) Provide a copy of that contract. Indicate if you consider the contract proprietary, and follow the instructions in para. 8 for filing confidential information.
(b) What time period does the contract cover?

Response: See Section 21, following.

Section 1
Loops
The information requested has been provided in Excel workbooks. Summary level data, where appropriate, is contained in file bstr_mn.xls for each study area. Wire center level data is contained in files sbfl_1.xls, sbga_1.xls, sbnc_1.xls, sbsc_1.xls, scal_1.xls, scky_1.xls, scla_1.xls, scms_1.xls, and sctn_1.xls. Wire center level data is considered confidential as noted in the "Designation of Confidential Information" statement. A paper copy of the workbooks is also provided, with the file name appearing in the lower right hand corner of the page.

Section 2
Loop length studies

Following is an explanation of BST loop studies:
A statistically valid random sample of residence and business loops was selected. Then using BellSouth Outside Plant Engineering Records, a circuit layout is determined for each loop in the sample. The layout or make-up includes each item of plant from the central office to the customer premises and represent working loops. The type of information included is cable type (aerial, buried, underground, copper, fiber, etc.), cable size, cable gauge, cable length, bridge tap or end section, cross connect box/terminal size, feeder or distribution, etc.. Bridged tap or end section is any cable length that is not in the resistive path between the customer location and the central office. End section is the cable length beyond the location where a cable pair is served and the location where a cable pair ends.

The loop survey took place in stages beginning April of 1995 with Step 1 and ending in November of 1995 with Step 6 below. Explanations of each step follow:

1) Determine sample size through statistical reference -

Sample Size \quad Universe 4/95

	Residence	Business	Lines		\% Universe	
			Res	Bus	Res	Bus
AL	287	293	$1,259,227$	272,171	82.23%	17.77%
FL	174	175	$3,778,718$	$1,125,982$	77.10%	22.90%
GA	200	200	$2,237,610$	632,422	77.96%	22.04%
KY	250	250	800,217	177,958	81.80%	18.20%
LA	248	249	$1,492,912$	355,802	80.75%	19.25%
MS	300	298	834,208	186,778	81.71%	18.29%
NC	199	199	$1,365,254$	382,489	78.00%	22.00%
SC	247	245	896,751	194,158	82.20%	17.80%
TN	246	244	$1,685,485$	421,676	79.99%	20.01%

2) Identify universe using Customer Record Information System (CRIS) through appropriate USOCs by class of service - The universe includes residence and business lines. The universe of business lines consists of voice grade business access lines (small and large).
3) Randomly select Circuit IDs from universe (CRIS) based on sample size - The CRIS database is ordered by telephone number and was provided prior to the sampling process in that manner. Samples were pulled based on relevant USOC (residence and business) considering every nth working loop with a random start.

Section 2
4) Match Circuit ID with the Loop Maintenance Operations System (LMOS) data (add wire center, cable and pair and serving address) - Prior to accessing field records, additional information such as wire center, cross connect box and terminal address had to be added to the circuit ID information. The LMOS database was used to populate the information.
5) Access field records and manually populate loop make-up form - Loop design drawings were made for each loop in the sample.
6) Load loop make-up data into database - The drawings were entered into a database which became the loop make-up database contained in the loop model. The loop make-up includes class of service, size, gauge, cable length, cross connect box/terminal size, field reporting code, and description. The loop makeup data was again verified by employees knowledgeable in telephone plant engineering and sent back to the Network Planning Organization for verification prior to input into the database.
7) Verification of data -

Prior to input:
Verify that all surveys are received and accounted for
Check for duplicate surveys (paper and mechanized)
Check for and request missing surveys
Develop \log for recording survey input data (date, data entered, error report)

During Input to Access Model (built in checks):
Automatic calculation of loop miles checked with hand-calculated mileage
If mileage is off, review each input and cable segment length
Only valid sizes, gauges, descriptions, and field reporting codes are allowed
After Input to Access Model:
Record loop surveys input (date and data entered)
Send questions/errors back to field
Correct questions/errors
Review Access loop makeup tables for item class and description quality
Loop Model Investment Checks and Balances:
Mechanized loops are checked for correct cable size and description
Access database inputs are combined into one large Paradox database
Unfamiliar cable sizes and descriptions are reviewed and edited
Duplicate or odd data is reviewed and checked against original inputs

Section 2

All samples were statistically verified through an independent analysis. The files associated with the most recent statistical analysis are attached and provided on diskette. The files are in EXCEL format and contain the following fields:

State
Loop Number (from Sample)
Class of Service
Circuit ID
Loop Length (including Bridged Tap)
Loop Investment (cable, electronics and cross-
box/terminals)

The Excel workbook file bsloop1.xls contains sheets associated with each state and their associated vintage as listed below:

State	Sheet Name		
Alabama			
Study Date			
Florida	WAL2W		$7 / 97$
Georgia	FLSTATS		$6 / 96$
Kentucky	1GSTAT11		$6 / 97$
Louisiana	WKY2W		$7 / 97$
Mississippi	WLA2W		$7 / 97$
North Carolina	WMS2W		$7 / 97$
NCSTAT		$9 / 96$	
South Carolina	WSC2W	$7 / 97$	
Tennessee	TSTAT2W	$7 / 97$	

A paper copy of these files is also being provided, with the file name shown in the lower right hand corner of each page.

Section 3
Subscriber line usage studies

Summary level data is provided in an Excel workbook named bsslus.xls. Individual sheets in this workbook file shows the current data available for study areas in BST. Following is a glossary of terms:

Glossary:

Account Earning account number, usually based in a specific geographic location.
Categories Refers to geographic categories.
Accounts are categorized according to two classifications, (1) Local Calling Area Size and (2) Exchange Size.

Local Calling Areas are specified as follows:

	Number of Access Lines
Rural	<9000
Large Rural	$9000-25000$
\quad Non-Metro	$25000-50000$
Metro	$50000-178000$
Major Metro	>178000

Exchanges are specified as follows:

Small	<5000
Medium	$5000-25000$
Large	$25000-50000$
Extra Large	>50000

Lines \quad Refers to access lines, PBX trunk, or Network Access Registers depending on SLUS Class

Minutes Refers to conversation minutes

Toll Refers to intraLATA Toll

SLUS Class Refers to groupings of basic class of service, e.g. Residence Flat Rate
A paper copy of these files is also being provided, with the workbook and sheet name in the lower right hand corner of each page.

Section 4

Basic residential service offerings

The number of calls or minutes that are not charged on a per-call or per-minute basis, if any, that are included as part of the basic service plan are as follows:

ALABAMA

$$
\begin{array}{ll}
\text { Free Calls (no.) } & \text { N/A } \\
\text { Free Minutes (no.) } & \text { N/A }
\end{array}
$$

FLORIDA (Message Rate Service)
Free Calls (no.) $\quad 30$ calls to exchanges in the Extended Area Service (EAS) area
Free Minutes (no.) N/A
KENTUCKY
Free Calls (no.) N/A
Free Minutes (no.) N/A
GEORGIA (GCC - Georgia Community Calling)
Free Calls (no.) 30 calls to exchanges in the Basic Service Area
Free Minutes (no.) N/A
LOUISIANA
Free Calls (no.) N/A
Free Minutes (no.) N/A
MISSISSIPPI
Free Calls (no.) N/A
Free Minutes (no.) N/A
NORTH CAROLINA
Free Calls (no.) N/A
Free Minutes (no.) N/A
SOUTH CAROLINA
Free Calls (no.) N/A
Free Minutes (no.) N/A
TENNESSEE (Message Rate Service)
Free Calls (no.) $\quad 30$ calls to exchanges in the Basic Local Calling Area
Free Minutes (no.) N/A

Assumptions used in response include:
Grandfathered plans were excluded.
Only statewide plans were included.
All measured/message plans typically do not apply usage charges for calls to the Company Business Office, Repair Service, Directory Assistance, 911 or 976.

Attachment A
BellSouth Telecommunications, Inc.
DA 97-1433; CC Docket 96-45
August 15, 1997
Section 6
Apportionment of cable costs
Apportionment of cable costs is estimated from BST's loop study data. An Excel workbook file named bsloop2.xls contains the requested information by study area. A paper copy of the file is also being provided, with the file name displayed in the lower right hand corner.

Section 6

Installation cost data for cable facilities
Installation cost for cable facilities is captured in BST in-plant loading factors. Following is a brief explanation:

In Plant Loadings add engineering and installation labor and miscellaneous equipment to the material price and/or vendor installed Price; that is, the In Plant Loading converts the material price to an installed investment. The installed investment is the dollar amount that is recorded in the capital accounts. There are four types of in plant loadings:

1) Material Loading, which is applied to a material price,
2) Telco Loading, which is applied to the vendor installed investment,
3) Plug-In Loading, which is applied to the deferrable plug-in and common plugin material prices, and
4) Hardwired Loading, which is applied to the hardwired portion of an equipment material price.

An electronic copy of BST's In-Plant Loadings for outside plant is included in an Excel workbook file named bsload.xls, sheet INPLT OSP. A paper copy of this file is also being provided, with the file and sheet name appearing in the lower right hand corner.

Attachment A
BellSouth Telecommunications, Inc.
DA 97-1433; CC Docket 96-45
August 15, 1997

Section 7

Subscriber utilization studies
Utilization percentages for feeder and distribution plant will be provided on or before September 24, 1997, pursuant to the FCC's order released August 14, 1997 in this proceeding.

Attachment A
BellSouth Telecommunications, Inc.
DA 97-1433; CC Docket 96-45
August 15, 1997

Section 8

Structure sharing percentages
The following information shows data concerning structure sharing. Information is not available for interoffice and subscriber plant structures separately.

	POLES		
	BST on Power Poles	BST Owned	Assigned to
	Poles	Telco	
AL	683,492	405,974	37.26%
FL	667,423	449,979	40.27%
GA	$1,035,253$	371,811	26.42%
KY	342,172	315,453	47.97%
LA	446,095	296,650	39.94%
MS	709,804	280,897	28.35%
NC	439,000	248,291	36.13%
SC	219,000	144,886	39.82%
TN	802,919	435,078	35.14%
TOTAL	$5,345,158$	$2,949,019$	35.56%

Trenching

Assigned to

Telco

Shared

AL	0%	100%
FL	3%	97%
GA	28%	72%
KY	35%	65%
LA	0%	100%
MS	0%	100%
NC	2%	98%
SC	1%	99%
TN	5%	95%

Attachment A

DA 97-1433; CC Docket 96-45
August 15, 1997
Section 8
Conduit

	Miles of Duct Footage Leased		
AL-Plant as of			
AL	-	Year End 1996	

Section 9

Multi-line residential customers

The number of multi-line residential customers is shown by wire center in Excel workbook files sbfl_1.xls, sbga_1.xls, sbnc_1.xls, sbsc_1.xls, scal_1.xls, scky_1.xls, scla_1.xls, scms_1.xls, and sctn_1.xls. Summary level data for each study area is shown in file bstr_mn.xls.

Section 10

Poles

Following is the requested information for the cost of installing a 40 -foot pole:

	MATERIAL		LABOR		TOTAL	
AL	$\$$	254.75	$\$$	160.61	$\$$	415.36
FL	$\$$	213.82	$\$$	196.64	$\$$	410.46
GA	$\$$	210.05	$\$$	176.92	$\$$	386.97
KY	$\$$	247.82	$\$$	172.31	$\$$	420.13
LA	$\$$	204.35	$\$$	154.18	$\$$	358.53
MS	$\$$	209.56	$\$$	146.05	$\$$	355.61
NC	$\$$	211.10	$\$$	165.36	$\$$	376.46
SC	$\$$	233.68	$\$$	151.76	$\$$	385.44
TN	$\$$	212.73	$\$$	192.10	$\$$	404.83

Section 11
 Detailed continuing property records

Detailed continuing property records for the items requested is contained in an ASCII formatted file with comma delimiters as file bsdcpr.csv. A translation table of ECNDR codes is being provided as a sheet in Excel workbook bsdcpr.xls. This Excel workbook file also contains the same continuing property records data as provided in file bsdcpr.csv. A paper copy of these files is not being provided since a printout would be approximately 260 pages. This information is considered confidential as noted in the "Designation of Confidential Information" statement.

Section 12

Digital switches

The information regarding digital switches is being provided in an Excel workbook file bsswitch.xls. A paper copy of this file is also being provided, with the file name appearing in the lower right hand corner of each page. This information is considered confidential as noted in the "Designation of Confidential Information" statement.

Section 13

Contracts with switching manufacturers

A paper copy of contracts with switching vendors is being provided. This information is considered confidential as noted in the "Designation of Confidential Information" statement.

Section 14

Digital line carrier devices

Information concerning digital loop electronics equipment is being provided as an Excel spreadsheet named bsdle.xls for 1995 and 1995. The number of lines served after 12 months is not available since the database with this information is dynamic and no historical record is kept of line counts. A paper copy of this information is not being provided because of the extensive length of such a printout.

Section 15

Drop lines

BST has an engineering guideline published to aid Outside Plant Engineers in sizing drop facilities. The following is in response to questions posed.
(a) The copper pairs/living unit criteria can be found in Exhibit E (attached) of RL 92-08-012BT. This exhibit indicates that the average residential area (including multifamily dwelling) should be sized from 1.5 to 1.8 lines per ultimate living unit. Upscale developments may require 2 or more pairs per living unit, however, these represent only a small percentage of the total cable placements.
(b) Fiber DS0 transmission channels per/living unit is based on the same criteria as copper pairs. See Exhibit E of RL 92-08-012BT above for recommended sizing.
(c) The pair design criteria is the same for both aerial and buried plant.
distribution cable sizing
percentace of residential lines distributed by additional line penetration residential additional lines percentages

	0.5\%	5-10\%		10-15\%	15-20\%	20.30\%	30-40\%	40-60\%	60-80\%	80-100\%
AL	59.6\%	30.2\%		7.1\%	1.9\%	1.1\%	0.1\%	0.0\%	0.0\%	0.0\%
N FL	55.9\%	32.4\%		8.2\%	2.3\%	1.1\%	0.1\%	0.0\%	0.0\%	0.0\%
S FL	28.2\%	18.6\%		16.5\%	13.2\%	13.7\%	5.4\%	3.1\%	1.0\%	0.2\%
SE FL	39.6\%	24.8\%		15.3\%	7.4\%	8.2\%	2.7\%	1.4\%	0.1\%	0.5\%
ATL-GA	25.6\%	30.4\%		20.0\%	11.5\%	9.3\%	2.4\%	0.6\%	0.1\%	0.0\%
OS-GA	53.9\%	33.8\%	1	9.1\%	2.0\%	1.0\%	0.1\%	0.1\%	0.0\%	0.0\%
KY	81.9\%	13.8\%		2.7\%	1.3\%	0.3\%	0.1\%	0.0\%	0.0\%	0.0\%
LA	29.3\%	40.7\%		20.0\%	6.1\%	3.3\%	0.5\%	0.1\%	0.0\%	0.0\%
MS	72.2\%	22.8\%		3.8\%	0.7\%	0.4\%	0.1\%	0.0\%	0.0\%	0.0\%
NC	64.9\%	26.9\%		6.3\%	1.2\%	0.6\%	0.0\%	0.0\%	0.0\%	0.0\%
SC	48.9\%	33.1\%		11.1\%	3.9\%	2.6\%	0.3\%	0.1%	0.0\%	0.0\%
TN	44.6\%	33.2\%		13.0\%	5.5\%	3.0\%	0.5\%	0.2\%	0.0\%	0.0\%
BST	46.9\%	30.2\%		12.3\%	5.3\%	3.9\%	1.0\%	0.4\%	0.1\%	0.0\%
EXISTING ADD LINE USAGE	1.2	1.4		1.6	1.6	1.7	1.8	2.3	2.6	2.8
RECOMMENDED SIZING	1.5	1.6		1.8	1.8	2.0	2.0	2.5	2.8	3.0
UNITS PER 25 PAIRS	17	16		14	14	12	12	10	9	8

RECOMMENDED SIZING PROVIDES FOR 2 DEFECTIVE PLUS 1 REMAINING SPARE OVER THE EXISTING ADDITIONAL LINES USAGE.

Section 16

Maintenance expenses

Maintenance expenses are incorporated into BST's cost studies by using expense loading factors developed from accounting records. Following is a brief explanation of how maintenance expense factors are developed.

The Plant Specific Expense Factors are ratios of maintenance-type expenses by plant category to the respective plant investment. The factors are based on three years of projected expense and investment data. Rent expense is excluded from building expense; net rent (rent revenue less rent expense) is included in pole and conduit expenses. Right to use and service order-related expense were excluded since such expenses are recovered in a direct manner rather than through the use of a factor. Power expense loadings are then added to the factors for central office equipment investment. These plant specific expense factor calculations result in a factor for each category of plant representative of the average expense per investment expected in the future for each plant category.

The Excel workbook file bsload.xls contains a sheet labeled PLANT SPEC with the maintenance expenses loading factors used by BST. These loading factors, where applicable, were used in all costs studies submitted to the state commissions during the course of Section 271 proceedings. Since the maintenance loading factors themselves were not presented in state dockets, a list of the dockets is not being provided. If the Commission finds that a list of the Section 271 dockets would somehow aid in decisions being made in this proceeding, a list can be prepared upon request.

A paper copy of the Excel sheet containing the expense loading factors for outside plant is also included, with the name of the sheet and the Excel workbook file name appearing in the lower right hand corner.

Section 17

Riser cable

Following are answers to the riser cable questions:
a.) Riser cable is installed in multi-unit residential housing and commercial buildings when the property owner requests that network demarcation points be established within the leased premises.
b.) When riser cable is installed as noted above, 100% is considered part of the regulated total plant in service.

Attachment A
BellSouth Telecommunications, Inc. DA 97-1433; CC Docket 96-45

August 15, 1997

Section 18
Residential single-line business and multi-line business customers.

The response to this item will be provided on or before September 24, 1997, pursuant to the FCC's order in this proceeding, released August 14, 1997.

Section 19

Miles served by wire center
The number of miles served by wire center is contained in Excel workbook files sbfl_1.xls, sbga_1.xls, sbnc_1.xls, sbsc_1.xls, scal_1.xls, scky_1.xls, scla_1.xls, scms_1.xls, and sctn_1.xls.

Section 20

Cost of land and buildings

The cost of land and building by wire center and the number of switches is contained in Excel workbook files sbfl_1.xls, sbga_1.xls, sbnc_1.xls, sbsc_1.xls, scal_1.xls, scky_1.xls, scla_1.xls, scms_1.xls, and sctn_1.xls. The annual cost factors used in BST cost studies for each study area is contained in the Excel workbook file bsload.xls in a sheet named LAND \& BLDG.

A paper copy of these files has been provided, with the file and sheet name displayed in the lower right hand corner.

Section 21

Contracts with digital line carrier manufacturers
A copy of contracts with digital line carrier manufacturers is being provided under confidential cover, as noted in the "Designation of Confidential Information" statement.

Confidential Version

Charles Keller
Federal Communications Commission
2100 M Street, N.W.
Room 8918
Washington, D.C. 20554

Re: Federal-State Joint Board on Universal Service, CC Docket No. 96-45 Order, released July, 9, 1997 ("Data Request Order")

Dear Mr. Keller:
Provided herewith is the Data Response-Confidential Version of BellSouth Telecommunications, Inc. ("BellSouth") to the Commission's Data Request in the abovereferenced proceeding. With this letter, BellSouth respectfully requests pursuant to the Commission's rules, 47 C.F.R. Section 0.459 , that this information be treated as confidential, placed under seal and otherwise protected from public disclosure.

The documents and disc provided under this cover contain confidential business information which would not customarily be released to the public. Specifically, BellSouth is seeking confidential treatment of the information provided in response to Data Request Question Nos. 1, 9, 11, 12, 13, 14 and 21, as is explained in the "Designation of Confidential Information" form which is provided.

Thank you for your assistance. Should you have any questions concerning BellSouth's Data Response-Confidential Version, you may contact me at the number above.

Data Request Responses Designated Confidential

Data Request No. (1). BellSouth requests confidential treatment of the information provided in response to Data Request No. 1 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457 . The information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. Specifically, the information responsive to this request details our customer base by specifically identifying the geographical distribution of our base at the wire center level, the market segments represented at the wire center level and the line penetration of that base at the wire center level. Disclosure of such confidential information could substantially harm the competitive position of BellSouth by assisting competitors in analyzing market opportunities, and in preparing marketing strategies to use in direct competition with BellSouth.

Data Request No. (9). BellSouth requests confidential treatment of the information provided in response to Data Request No. 9 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457. The information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. Specifically, the information responsive to this request details our customer base by specifically identifying the geographical distribution of our base at the wire center level, the market segments represented at the wire center level and the line penetration of that base at the wire center level. Disclosure of such confidential information could substantially harm the competitive position of BellSouth by assisting competitors in analyzing market opportunities, and in preparing marketing strategies to use in direct competition with BellSouth.

Data Request No. (11). BellSouth requests confidential treatment of the information provided in response to Data Request No. 11 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457. The information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. Specifically, the information responsive to this request could substantially damage the competitive position of BellSouth as well as the vendors/suppliers who provide BellSouth with equipment and services. BellSouth's cost information can be discerned from the information provided in response to this request. BellSouth's competitors can use this information to develop marketing strategies to use in direct competition with BellSouth and to develop prices for competitive services. In addition, equipment vendors/suppliers generally do not disclose the prices for their equipment outside a confidential negotiating process. See, Letter Re: Freedom of Information Act Request Control Nos. 94-310, 325, 328, 9 FCC Rcd 6495 (1994). When products are sold at individually negotiated prices buyers receive a clear competitive advantage if they know the prices that other buyers have been charged. Competitive harm could also ensue if vendors/suppliers obtain information necessary to underprice their competition. Vendors/suppliers may choose to avoid doing business with entities that might subject their prices to public disclosure. If such prices are disclosed, BellSouth could also be handicapped in its ability to negotiate favorable prices in the future.

Data Request No. (12). BellSouth requests confidential treatment of the information provided in response to Data Request No. 12 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457. The information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. Specifically, the information responsive to this request could substantially damage the competitive position of BellSouth as well as the vendors/suppliers who provide BellSouth with equipment and services. BellSouth's cost information can be discerned from the information provided in response to this request. BellSouth's competitors can use this information to develop marketing strategies to use in direct competition with BellSouth and to develop prices for competitive services. In addition, equipment vendors/suppliers generally do not disclose the prices for their equipment outside a confidential negotiating process. See, Letter Re: Freedom of Information Act Request Control Nos. 94-310, 325, 328, 9 FCC Rcd 6495 (1994). When products are sold at individually negotiated prices buyers receive a clear competitive advantage if they know the prices that other buyers have been charged. Competitive harm could also ensue if vendors/suppliers obtain information necessary to underprice their competition. Vendors/suppliers may choose to avoid doing business with entities that might subject their prices to public disclosure. If such prices are disclosed, BellSouth could also be handicapped in its ability to negotiate favorable prices in the future.

Data Request No. (13). BellSouth requests confidential treatment of the information provided in response to Data Request No. 13 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457 . Specifically, the information responsive to this request could substantially damage the competitive position of BellSouth. BellSouth's cost information can be discerned from the information provided in response to this request. BellSouth's competitors can use this information to develop marketing strategies to use in direct competition with BellSouth and to develop prices for competitive services. In addition, the information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. The agreements/contracts responsive to this request, made between BellSouth and its network-related suppliers contain terms and conditions setting forth BellSouth's obligation to maintain information, contained in the agreement, in confidence using the same degree of care that BellSouth uses to protect its own information of like sensitivity. Furthermore, the information responsive to this request could substantially damage the competitive position of the equipment vendors/suppliers whose prices can be discerned from the information provided. Equipment vendors/suppliers generally do not disclose the prices for their equipment outside a confidential negotiating process. See, Letter Re: Freedom of Information Act Request Control Nos. 94-310, 325, 328, 9 FCC Rcd 6495 (1994). When products are sold at individually negotiated prices, buyers receive a clear competitive advantage if they know the prices that other buyers have been charged. Competitive harm could also ensue if vendors/suppliers obtain information necessary to underprice their competition. Vendors/suppliers may choose to avoid doing business with entities that might subject their prices to public disclosure. If such prices are disclosed, BellSouth could also be handicapped in its ability to negotiate favorable prices in the future.

Data Request No. (14). BellSouth requests confidential treatment of the information provided in response to Data Request No. 14 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457. The information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. Specifically, the information responsive to this request could substantially damage the competitive position of BellSouth as well as the vendors/suppliers who provide BellSouth with equipment and services. BellSouth's cost information can be discerned from the information provided in response to this request. BellSouth's competitors can use this information to develop marketing strategies to use in direct competition with BellSouth and to develop prices for competitive services. In addition, equipment vendors/suppliers generally do not disclose the prices for their equipment outside a confidential negotiating process. See, Letter Re: Freedom of Information Act Request Control Nos. 94-310, 325, 328, 9 FCC Rcd 6495 (1994). When products are sold at individually negotiated prices buyers receive a clear competitive advantage if they know the prices that other buyers have been charged. Competitive harm could also ensue if vendors/suppliers obtain information necessary to underprice their competition. Vendors/suppliers may choose to avoid doing business with entities that might subject their prices to public disclosure. If such prices are disclosed, BellSouth could also be handicapped in its ability to negotiate favorable prices in the future.

Data Request No. (21). BellSouth requests confidential treatment of the information provided in response to Data Request No. 21 pursuant to Section 0.457 of the Commission's rules, 47 CFR Section 0.457 . Specifically, the information responsive to this request could substantially damage the competitive position of BellSouth. BellSouth's cost information can be discerned from the information provided in response to this request. BellSouth's competitors can use this information to develop marketing strategies to use in direct competition with BellSouth and to develop prices for competitive services. In addition, the information provided in response to this request is commercially sensitive information which is proprietary and which would not be customarily released to the public. The agreements/contracts responsive to this request, made between BellSouth and its network-related suppliers contain terms and conditions setting forth BellSouth's obligation to maintain information, contained in the agreement, in confidence using the same degree of care that BellSouth uses to protect its own information of like sensitivity. Furthermore, the information responsive to this request could substantially damage the competitive position of the equipment vendors/suppliers whose prices can be discerned from the information provided. Equipment vendors/suppliers generally do not disclose the prices for their equipment outside a confidential negotiating process. See, Letter Re: Freedom of Information Act Request Control Nos. 94-310, 325, 328, 9 FCC Rcd 6495 (1994). When products are sold at individually negotiated prices, buyers receive a clear competitive advantage if they know the prices that other buyers have been charged. Competitive harm could also ensue if vendors/suppliers obtain information necessary to underprice their competition. Vendors/suppliers may choose to avoid doing business with entities that might subject their prices to public disclosure. If such prices are disclosed, BellSouth could also be handicapped in its ability to negotiate favorable prices in the future.

DESIGNATION OF CONFIDENTIAL INFORMATION

I hereby certify that the information designated as confidential in the attached response(s) to the Universal Service Data Request is protected by BellSouth Telecommunications, Inc. as confidential or financial information:

SIGNATURE: _Original signed by Richard Teel

TITLE: Vice President - Regulatory
ADDRESS: 4500 BellSouth Center 675 W Peachtree NE Atlanta, GA 30375

TELEPHONE: (404) 335-0770
FAX:
(404) 529-0332

On a separate sheet of paper, please list the responses designated confidential, by question number, a statement of the reasons for withholding the information from the public record, and the facts on which those reasons are based.

Approved by OMB 3060-0781
Expires 1/31/98
Burden hour per respondent: 488 average.

BELLSOUTH TELECOMMUNICATIONS, INC.

FPSC DKT NO 990649-TP

STAFF'S $9^{\text {TH }}$ REQUEST FOR PRODUCTION OF DOCUMENTS

PROPRIETARY

DECLASSIFIED

POD Item No. 81
Attachment No. 1
Installation and Maintenance (I\&M)
Special Services Installation \& Maintenance (SSIM)

NETWORK INSTALLATION OUTSIDE WORK GROUP - BUSINESS (NIOWGB)

This work group installs, removes, rearranges, and reconcentrates access lines for POTS from the local switch to the Network Interface (NI) including residential, business, coin and rural services.

They install, remove and rearrange:

- aerial and buried service wires
- grounds
- protectors
- network terminating wire
- network interface
- cross-connects
- jacks
- connecting blocks
- inside wiring.

These outside technicians also analyze and test circuitry and outside network equipment and perform installation tests.

The work time data detailed in this section relates to the work performed by the outside technicians to install business \& non-designed telephone services.

NETWORK INSTALLATION OUTSIDE WORK GROUP BUSINESS \& NON-DESIGN SPECIAL SERVICES NIOWGB

Not for use or disclosure outside BellSouth or any of its subsidiaries except under written agreement

NETWORK INSTALLATION OUTSIDE WORK GROUP BUSINESS \& NON-DESIGN SPECIAL SERVICES NIOWGB (cont'd)

PROPRIETARY
Not for use or disclosure outside BellSouth or any of its subsidiaries except under written agreement

NETWORK INSTALLATION OUTSIDE WORK GROUP BUSINESS \& NON-DESIGN SPECIAL SERVICES NIOWGB (cont'd)

INTRODUCTION

Subject Matter Experts (SME) have been used to provide the work time data in this document. These SME estimates have been collected from human estimation, work observations, CIMAP, WFA, self-reporting and various sizing models.

The following information is contained herein:
. Study Methodology
. Usage of This Work Time Data
. Selected Acronyms and Abbreviations
. Workflows, Worktimes and Probability Data
Reorganization, restructuring and re-engineering are three words that have become "business as usual" for most of us. The network cost group and its associated systems are also being restructured.

The Activity Based Information Structure (ABIS) is an activity-based costing system being developed to measure the cost and performance of activities and cost objects (products and services). Once this system is implemented, the detailed information provided in this document may no longer be available. However, ABIS will provide consistent and accurate cost information for all users. In the interim, this work time data will continue to reflect the network service provisioning operations in BellSouth.

Portions of this document will be updated as changes occur. Since changes may occur more frequently than resources are available to publish them, please contact the Network Cost Group before using this data in a study.

Any questions concerning this data or its application should be directed to Eusebia C. Sanderson (205) 977-7210.

Questions related to cost support for a specific product or service should be directed to Carolyn Kendrick, Manager - Network Cost Group. She can be reached at (205) 977-5046.

STUDY METHODOLOGY

Task Oriented Costing (TOC) provides detailed data which allows us to quantify and understand the relationship between operations expenses and lechnology, services, operating systems and architectures. The network elements are: (1) the work group and the service provisioning functions or steps performed by that group, (2) the average time in minutes it takes to perform each of those functions, (3) the probability that the particular function will be performed and (4) the Job Function Code (JFC) of the person performing the task. The JFC is used in determining the appropriate labor rate which is then used in the cost calculations for each work group. Each of those four network elements are included in this document.

Subject Matter Experts on the BellSouth Telecommunications network staff defined the discrete tasks which comprise the service provisioning functions performed by each network organization. These tasks were used to construct a flowchart that describes the beginning to end work flow of each network operation studied. The work flows were constructed to represent the provisioning processes in the network centers of the entire nine state region which makes up BellSouth Telecommunications, Inc. The Network field personnel have given this data their support and concurrence.

Work times for individual tasks in the flows were established using a mixture of actual time studies, estimations provided by a group of qualified estimators (a qualified estimator is defined as a worker with at least one year of experience on the job to be studied) or a Subject Matter Expert (SME) who is thoroughly familiar with that task. When group estimations were obtained, each worker was asked to give a "minimum" time estimate; a "most likely" time estimate and a "maximum" time estimate. These estimates were input into the Integrated TOC based Cost Analysis Program (ITCAP). Each estimator's three estimates per task were averaged to form a "pert mean" by using the following formula:

$$
\text { (the "minimum" }+(4 \mathrm{x} \text { the "most likely" })+\text { the "maximum")/6 }
$$

This method of estimating the average work time was also used by many of the SMEs.

STUDY METHODOLOGY (cont'd)

The estimated average work time furnished for each task herein has been rounded to the nearest minute unless otherwise noted.

Probability of occurrence data is necessary whenever tasks branch from a decision diamond of a work flow. This data is used to assign the weight to the times for the tasks on each branch: Any branching point in the work flow must be accounted for in the proper aggregation of the task times and costs.

Much of the probability of occurrence data could not be directly gathered from existing databases because the data needs pertain to aspects of the work process that usually are not directly monitored in the existing databases. This typically includes data related to interactions between work groups and organizations or the probability of test failures.

When the probability data could not be found in existing databases, estimations were provided for some of the decision blocks by a group of qualified estimators or a Subject Matter Expert (SME) who is thoroughly familiar with the work processes related to the probability of occurrence. Others probabilities will be provided by the appropriate SME when work time data is requested for a specific service.

USAGE OF THIS WORK TIME DATA

This work time data is presented as a guide for costing purposes only. These work times do not represent a performance goal or standard and should not be used as such.

Work times for each task in this study include only time from the beginning of the task until its end. WORKERS AND SMEs WERE ASKED SPECIFICALLY TO ESTIMATE HOW LONG IT TAKES TO PERFORM EACH TASK, NOT HOW LONG IT SHOULD TAKE TO PERFORM IT. Such things as interruptions (telephone calls, etc.), stretching, relief time, time between tasks and work time not directly attributable to a specific task are not included in the task work time. Refer to each task's activity profile for complete details.

When using TOC work time data to determine work times:

1. Choose only the task(s) that apply to the operation you wish to model. Read each task description carefully. The tasks have been constructed to allow the modeling of service additions, rearrangements and disconnects.
2. Consult the work flowcharts for the probability of certain tasks occurring and weigh the task's work time accordingly. For example, if an installer only encounters trouble on a circuit 20% of the time and the work time for resolving trouble is 10 minutes, then, on the average circuit you would add 2 minutes (20% of 10 minutes) for resolving trouble. IF you are only modeling situations where trouble is encountered, then you would use the entire 10 minute trouble resolution time.
3. Work group functions rather than center names are used in this study because the center name and the name of a work group performing a specific function may vary in some states within the region. Refer to the table of contents in Section 5 to determine the appropriate work functions to use in your model.

ORDER RECEIPT AND ANALYSIS

Item Description: Time spent in receiving and analyzing the local service order.

ACTIVITY PROFILE

Begins:

May Include:

Ends:

- With beginning
- Time spent on CAT and/or on phone

When
of order receipt process with IMC obtaining data on next technician job * is ready

- Time spent on analysis
- Time spent resolving discrepancies to proceed with field visit
- Time spent ordering equipment in connection with order

DOES NOT INCLUDE:

- Waiting for call backs
- Breaks or restroom time
* The time the technician spends securing information on his or her-next job often occurs in the middle of the time interval associated with closing out the previous job. (See Item "15). However, the actual time spent being dispatched on the next job is to be considered part of this Item.

AVERAGE TIME PER OCCURRENCE (Minutes)

Item
Number
1.00

PROPRIETARY
Not for use or disclosure outside BellSouth or any of its subsidiaries except under written agreement

Item Description:
Travel time to Cross box and/or BCT or LST Location.
ACTIVITY PROFILE

Begins:

- When
technician
is ready to begin travel to cross
box, pair change or BCT location

May Include:

- Checking vehicle for materials
- Actual driving time to cross box, pair change or BCT location

DOES NOT INCLUDE:

- Time spent on vehicle breakdowns
- Time spent resolving parts discrepancies
- Break or restroom time

Ends :

- When
technician
arrives at cross box,
pair change
or BCT
location

NOTE: Often procedures dictate that the technician visit the eustomer's premises before performing these work operations. However, so that the study will be consiatent across the zegion, please make estimates for this work operation as it is described above.

AVERAGE TIME PER OCCURRENCE (Minutes)

Item	Work
Number	Time

Travel from work ctr to the PXJ, BCT, RXJ, LST location (first order of the day)

Travel time from last job to the PXJ, RXI, BCT, LST location
2.02
27.00
2.01

PROPRJETARY
Not for use or disclosure outside BellSouth or any of ifa subsidiaries except under written agreemeat

NETWORK NSTALLATION OUTSDE WORK GROUP - BUSNESS (NIOWGB)

Item \#3

INSTALL PROPER PLUG AT RT

Item Description: Install or replace plug-in at remote terminal
ACTIVITY PROFILE

Begins:

- When technician arrives at remote terminal *

May Include:

- Verification that proper - With verification plug is in place
- Set up time, including that necessary to insure ESD protection
- Rlacement or replacement of proper plug-in
- Ordering replacement plug

Ends:

DOES NOT INCLUDE:

- Vehicle breakdowns
- Time spent resolving parts discrepancies
- Break or restroom time
* Remote terminal is most often very close to the cross box and this Item should not come up unless it is necessary to visit the cross box.

AVERAGE TME PER OCCURRENCE
 (Minutes)

Item Work
Number Time
3.00
19.00

PROPRIETARY
Not for use or disclosure outside BellSouth or any of its subsidiaries except under written agreement

IETWORK DSSTALLATION OLTSDE WORK GROLP - BLSNESS (NIOWGB)

Item \#4

PLACE AND/OR PERFORM WORK PXJ, RXJ, BCT, LST AS REQUIRED

Item Description: Actual placement and/or removal of cross connect jumpers, performance of line and station transfer work, or breaking of connect through.

ACTIVITY PROFILE

Begins: May Include: Ends:

- On arrival - Set up time at job site preparing for at PXJ, RXJ, BCT or LST location
work operation:
- Tools, equipment
- Ladder, placing
- "Suiting up"
- Opening/closing cross box, ped.; terminal, etc.
- Performance of cross connect, LST or BCT work
- Coordination time
- "Dead time" waiting for assignments, Erame, etc. while unable to do other work

DOES NOT INCLUDE:

- Vehicle breakdowns
- Initial travel to work location or trip to customer's premises
- Break or restroom time

AVG. TIME FOR THIS TASK $=32.00$ Minutes
AVERAGE TIME PER OCCURRENCE (Minutes)
Item Work
Number . Time

PXI
BCT/RXJ
LST
4.01
16.00
4.02
28.00
4.03
60.00

PROPRIETARY
Not for use or diselosure outside BellSouth or any of its subsidiaries except under written agreement

NETWORK DSTALLATION OLTSIDE WORK GROLP - BLSNESS (NOWGB)

Item \#5

CHECK CONTINUITY AND/OR DIAL TONE

Item Description: Check loop pair(s) for continuity and/or dial tone before leaving cross box, LST, PXJ, RXJ, BCT location

ACTIVITY PROFILE

Begins:

- At completion oE PXJ, RXJ, BCT, LST operation

May Include:

- Checking for loop continuity to serving central office
- Checking for dial tone and/or ring back as required

Ends:

- With continuity established and dial tone verified, or with failure to achieve the above results

DOES NOT INCLUDE:

- Trouble resolution time
- Break or restroom time

AVERAGE TIME PER OCCURRENCE (Minutes)

Item Number	Work Time
5.00	15.00

TROUBLE RESOLUTION

Item Description: Attempt to resolve problems with continuity of the
loop or lack of dial tone

ACTIVITY PROFILE

Begins: May Include: Ends:

```
- with failure to
    establish circuit
    continuity or get
    dial tone
```

- Time spent testing through CAT of using test equipment
- Time spent on line with IMC or Central office trying to resolve problem
- Time spent by technician to obtain new pais
- "Dead time" spent waiting for new assignments and not doing any other office work
- Time spent making repairs or making changes in facilities to resolve problem

DOES NOT INCIUDE:

- Break or restroom time
- Time spent on other activity while waiting for new pair assignments
- With resolutior of loop probler or decision 50 refer resolutic of problem to other group anc complete the order at anothe time

.NETWORK NSTALLATION OUTSDE WORK GROUP • BLSSNESS (NOWGB)

Item "11
ESTABLISH AND CONDUCT TEST FROM THE NI

Item Description:	Time spent "hooking up" test equipment and performing
operational test from the network interface	

ACTIVITY PROFILE

Begins:

- With arrival of technician at customer premises or completion of drop and/or NI work if applicable

May Include:

- Time for "set up"
- Time to perform all necessary tests with CAT or test equipment
- Time spent storing test gear after use

Ends:

- With successful completion of tests or the need for trouble resolution

DOES NOT INCLUDE:

- Time for trouble resolution
- Break or restroom time

average TIME PER OCCURRENCE
 (Minutes)

Item Number	Work Time
11.00	20.00

PROPRIETARY
Not for use or disclosure oulside BellSouth or $2 n y$ of ${ }^{w}$ subsidiaries except under written agreement

NETWORK ENSTALLATION OUTSDE WORK GROUP - BLSENESS (NTOWGB)

Item \#12

TROUBLE RESOLUTION

Item Description: Time spent in trouble resolution following failure of test performed at the network interface

ACTIVITY PROFILE

Begins:

- With need to resolve problems which caused tests performed at the network interface to fail

May Include:

- All time spent resolving problems in:
- Cable facilities
- Drop, protector and/or NI
- Network terminating wire
- Time spent testing with, or securing additional information from IMC or other centers in resolving problems or making corrections to records
- Travel time associated with trouble resolution

DOES NOT INCLUDE:

- Break or restroom time

AVERAGE TIME PER OCCURRENCE
(Minutes)
Item
Number
12.00

PROPRIETARY

Not for use or disclosure outside BeilSouth or any of f ts subsidiaries except under written agreemeat

NETWORK NSSTALLATION OCTSDE WORK GROLP. BLSDESS NIOWGB)

Item \#16
TECHNICIAN COMPLETES SERVICE ORDER

Item Description: Technician closes out service order on CAT and/or on phone with the IMC

ACTIVITY PROFILE

```
Begine:
```

May Include:

- Placing call on Cat or to the IMC
- Entering close out information into CAT or relating that information to the IMC
- Calling IMC or other centers to correct records in connection with order
- Packing of gear, tools, etc.

DOES NOT INCLUDE:

- Time spent on CAT or on phone with IMC obtaining data on next job •
* While the time the technician spends secuting infotmation on the next job bs sight in the middie of the eime interval associated with this Item, it should not be considered part of this interval. It should be considered pare of Item I.

AVERAGE TIME PER OCCURRENCE

(Minutes)

Item	Work
Number	Tlme

$16.00 \quad 19.00$
PROPRETARY
Nos for use or disclocurs outside BellSouth
or say of its subadiarien excepx under writtea agreemeat
Tab 24


```
:こem 1
    30: James R, Mcczacken /m6,na:\6z
    BCC: Arbene Eredrickson/m3,mail3a; 2HONE=205-977-0391
Item 2
Jim, this is my understanding of our phone conversation:
Both ADSL-Compatible Loops and 2-inire Unbundled Copper Loops (designed circuit)
should contain the same worktime for SSIM technician. This worktime is taken
Erom the TOC study as follows:
AT THE CROSS-BOX
Place PXJ - 16 min.
Checx continuity and/or dial tone - 15 min.
Trouble resolution/testing - 23.5 (45 min. 30% of the time)
These times total 44.5 minutes
AT CUSTOMER PREM.
Testing from NI - 20 min.
Trouble cesolution/testing - 11.76 (56 min 21: of the time)
Service Order completion - 19 min.
These times total 50.76 min.
TOTAL OF TIME AT CROSSBOX AND CUSTOMER PREM: 95.26 minutes.
Do you see anything above that should be modified/changed/added/deleted? }
These times include sending tones when qualifying pairs, checking for load
coils and to see if there is bridge tap close to the customer. (Do these
functions fall under testing?) Yes
Also, there is no disconnect time for either UNE. (What about equipment
recovery?) CVo
Thanks for all your assi'stance.
Pam
205/977-5361
```



```
prowided
by \(g\). Mecrackew
\[
10 / 7 / q 9
\]
```



```
ここま":
```



```
BCC: Ariene Eredrickson /m3,mail3a; PHONE=205-977-0391
```

Item 2

Gerald，when gathering concurrences for SSIM worktimes，the subloop elements had not been fully developed．Adjustments were necessary due to the division of labor between feeder and distribution．For SSIM，we had received worktimes from Hulsey，which lumped everything together for Connect \＆Test．

Using the TOC Study（the only documented reference I had），I came up with the following times．Please review and advise if any corrections are needed or if I have missed something：

EOR EEEDER，First \＆Add Install：
Travel to crossbox： 20 min ．
Service Order：Order receipt and analysis： 20 min ．if
Place cross－connect： 16 min．
Check continuity and dial tone： 15 min ．－
Trouble Resolution： 13.50 min ．（ 45 min ． 30% of the time）
Completion of Service Order： 19
First \＆Add l Disconnect：
Remove cross－connect： 18 ＂mart．？\quad ru－
Completion of Service Order： 19 min ．

FOR DISTRIBUTION，First \＆Add Install：
Travel to cross－box（beginning of distribution）： 20 min ．
Travel from cross－box to premises（captured in Drop／NID）
Service Order：Order receipt and analysis： 20 min ．
Connect \＆Test：Test from NID： 20 min．
Trouble Resolution： 11.76 min ．（ 56 min 21 g of the time）
Completion of Order： 19 min
Disconnect list and Add：
，
For 4－wire elements，I have multiplied by 1.5 to capture the extra time necessary for 4 －wire as opposed to 2－wire．Do you agree？ $1 / e_{s}$
What happens at the crossbox？Another＂Place cross－connect＂at 16 min？ Where is continuity and dialtone checked？

I need a response ASAP．
Th x，
Pam

Item 1
TO: Arlene Fredrickson/m3, mail aa; PHONE =205-977-0391
CC: Gene A. Flyms/m3, mail la; PHONE =205-977-3096 Christopher Giusti/m3, malian Rick Johnson /mi, mail7a; PHONE=205-977-3099 Pan G. Williams/m3،mail3a; PHONE =205-977-5561

Item 2

Arlene.

I know that in Georgia and North Carolina there have been certain services Technicians designated to handle the xDSL uss services. I do not know if this

 singinat this time.

 as is". I verified this with Jim McCrackeri. jim is ore of our SSIM sirngmenthe Headquarters Staff.

Presently BST ia dispatching for facility purposes on stag argingorit service orders for Residence and Small Business finite. Last Year 37.7 of all N, T. and C orders for Residence and Small susfriess Inward service required facility dispatch.

I will provide you with a copy of the Company results sheets of the service Order and Visit frit Report for year end 1999. This report is what i used to come up with the above percentages.

If you have any questions please call, me at (205) 977-3096.
Thanks,
Gene

$$
\begin{aligned}
& \text { Lean } \\
& 1+m-N D \\
& 5 \sin -\text { Bes }
\end{aligned}
$$


```
%
```


mw N O I CE - MOT FOR USE On DISCLOSUAE OUTSIDE EELLSOUTH EXCEPT UNDEA WAITTEN AOREEMEMT MMM

POD Item No. 81
Attachment No. 2
Supporting Data for Sub-Loop Labor \& Material, UNTW Material. NID Material


```
ミミミミここ
```



```
Ereacor: Ar-ere Erearickson /m3,mai:3a
I=em 1
TO: Karen E. Fields /m7,mail7a; ?HCNE=205-977-1839
CC: W P. Beverly /m2,mail2a
Ray Macolly /m2,mail2a
Gerald E. Potts /m3,mail3a; PHONE=404-529-7567
Jane Raulerson/m3,mail3a; PHONE=205-977-3153
```

Item 2

Karen，
Had questions for Gerald／Ray／W．P．yesterday that were answered via interactive pager．I thought I would write these down for better access．Here goes：

A gemanderemand in the SPOI enviromment could be used for both new and retrofit applications．The stub is actually cable pairs that have been preterminated on the back of a connector field． The cable pairs in the case of a retrofit would go to NTWs that are terminated in the old BSBT closure．

Splicing the NTWs to the stubbed pairs throws the NTWs into the new SPOI．The same thing would apply for the CO pairs．The non－stubbed version would have application for a new job only． This would mean that NTWs would go straight into the SPOI and they would terminate on a pass through connector．You would still have a stubbed connector for the CO pairs．

Shielded cable is cable enclosed in a metal band．It is used in long distance applications between terminals so as not to create electrical interference on the circuits．Most of the time it is buried cable．

Based on discussion with Ray and Gerald yesterday and the equipment information provided by W．P．，I prepared the attached equipment cost worksheet．Some concerns／questions are：
－we have the same equipment for both WC and GT（same cost）
－final choice of vendors is not yet made（although leaning toward selection of two）
－cost more than doubled for WC scenario
－of stubbed and non－stubbed not available（used 90／10 as surrogate）
－don＇t have rate structure for adding 25 pair blocks in terminals when expansion is necessary；should I load SPOI with more than 100 pr？
－have cost of 200 pr housing（not separated by material price）and 100pr insides plus additional 25 pr block
－workpapers I am receiving are NOT marked proprietary／lock as should be for vendor material prices

Item 3
This item is of type MS EXCEI（obsolete filetype（4））and cannot be displayed as TEXT

100017328	101117315	101535383	010008258
010008233	101619336	100017334	100017342
100017359	100017367		

GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC，JACKETED WITH LOW FRICTION PVC． USED AS INSIDE WIRE ONLY．DE DENOTES CABLE THAT HAS TWO CONNECTORS，ONE CONNECTOR ON EACH CABLE END．GENERALLY USED AS AN EXTENSION CABLE． BSP 461－200－101

101117315 CABLE CONN B 25A 6＇DE GTES STOCK N NON－STOCK O9 11010 EA

GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC，JACKETED WITH LOW FRICTION PVC． USED AS INSIDE WIRE ONLY．DE DENOTES CABLE THAT HAS TWO CONNECTORS，ONE CONNECTOR ON EACH CABLE END．GENERALLY USED AS AN EXTENSION CABLE．

101535383 CABLE CONN B 25A 7＇DE
GTES STOCK N

NON－STOCK	09	1	1	2	6.87	EA

GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC，JACKETED WITH LOW FRICTION PVC． USED AS INSIDE WIRE ONLY．DE DENOTES CABLE THAT HAS TWO CONNECTORS，ONE CONNECTOR ON EACH CABLE END．GENERALLY USED AS AN EXTENSION CABLE．

010008258 CABLE CONN B 25A 8＇DE GTES STOCK N NON－STOCK $091 \quad 1 \quad 2 \quad 6.64$ EA
general use in communication system wring， 24 gauge annealed copper conductors insulated with COLOR CODED PVC．JACKETED WITH LOW FRICTION PVC． USED AS INSIDE WIRE ONLY DE DENOTES CABLE THAT KAS TWO CONNECTORS，ONE CONNECTOR ON EACH CABLE End．GENERALLY USED AS AN EXTENSION CABLE．

If you have complaints about a product，or an Item in I the Catalog，please use Form RF－1050，Exhlbit E， which is located in the front section of the Catalog．

[^0]

GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC，JACKETED WITH LOW FAICTION PVC． USED AS INSIDE WIRE ONLY DE denotes Cable that has two CONNECTORS，ONE CONNECTOR ON EACH CABLE
end．generally used as an extension cable．
100017334 CABLE CONN B 25A 15＇DE ，
gTES STOCK S

GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC．JACKETED WITH LOW FAICTION PVC． used as inside wire only de denotes cable that has two CONNECTORS，ONE CONNECTOR ON EACH CABLE
END．GENERALLY USED AS AN EXTENSION CABLE．
100017342
BTOS
GTES STOCK
NON－STOCK $091 \quad 1 \quad 2 \quad 9.71$ EA
GENERAL USE IN COMMUUNICATION SYSTEM WIRING， 24 gauge annealed copper conductors insulated with COLOR CODED PVC，JACKETED WITH LOW FAICTION PVC． USED AS INSIDE WIRE ONLY．DE DENOTES CABLE THAT HAS TWO CONNECTORS，ONE CONNECTOR ON EACH CABLE
END．GENERALLY USED AS AN EXTENSION CABLE．
100017359 CABLE CONN B 25A 60＇DE

GTES STOCK S

GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC，JACKETED WITH LOW FRICTION PVC． used as inside wire only．de denotes cable that has two CONNECTORS，ONE CONNECTOR ON EACH CABLE end．generally used as an extension cable．

100017367 CABLE CONN B 25A 100＇DE BTOS

GTES STOCK

NON－STOCK $091 \quad 1 \quad 2 \quad 23.06$ EA
GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC，JACKETED WITH LOW FRICTION PVC． used as inside wire only de denotes cable that has two CONNECTORS，ONE CONNECTOR ON EACH CABLE
END．GENERALIY USED AS AN EXTENSION CABLE．
102229192 CABLE CONN B 50A 15＇DE
GTES STOCK N
NON－STOCK $091 \quad 1 \quad 2 \quad 34.83$ EA
GENERAL USE IN COMMUNICATION SYSTEM WIRING， 24 GAUGE ANNEALED COPPER CONDUCTORS INSULATED WITH COLOR CODED PVC．JACKETED WITH LOW FRICTION PVC． USED AS INSIDE WIRE ONLY DE DENOTES CABLE THAT HAS TWO CONNECTORS，ONE CONNECTOR ON EACH CABLE
END．GENERALIY USED AS AN EXTENSION CABLE．
PID DESCRIPTION PA MOQ VOM INTV PAICEUNNTT

233002732
66 BLOCK, WTH 700 TYPE JACK, 25 PAIR, WITHOUT A BACKBOARD. PROVIDES NETWORK INTERFACE DEMARCATION. TO CHANGE THE TELEPHONE NUMBERS ON THE INSIDE COVER, USE FORM RF412, PID ${ }^{*}$: 71940905 . TO PLACE A WARNING ON THE OUTSIDE COVER, USE FOBMAREA2A, PID*: 611941543.
THIS ITEM IS SOMETIMES REFERRED TO AS A "RJ21X."
334911930
INTERFACE IS 25 PR GTES STOCK N NON-STOCK

334911930
INSIDE INTERFACE FOR 25 PAIR PROTECTED NETWORK INTERFACE FOR INSIDE APPLICATION EQUIPPED WITH INDIVIDUAL LOCKABLE COVERS USED AS A DEMARCATION POINT FOR MULTIPLE LINE APPLICATIONS.
RL: 91-06-040SV

331911933
INSIDE INTERFACE FOR 50 PAIR PROTECTED NETWORK INTERFACE FOR INSIDE APPLICATION EQUIPPED WITH INDIVIDUAL LOCKABLE COVERS USED AS A DEMARCATION POINT FOR MULTIPLE LINE APPLICATIONS. RL: 91-08-0405V

363001983 INTERFACE IS BLOCK MODULAR 8 BTOS

GTEs STOCK 3 NON-STOCK 09112.42 .96 EA

363001983
INSIDE INTERFACE, 88 OUICK CONNECT BLOCX WITH $8{ }^{\circ}$ MODULAR JACKS (RJ11), 6 POSITION, 4 CONTACT. PROVIDES INTERFACE DEMARCATION POINT.

Refer to the NEW PRODUCTS INDEX for an

 aphabotical llating of now products including the now P1D numbers, product names, and the pege numbers:If you noed to know the status of your ordor, use OrdorMastor, or call the GTES Customer Resource Conter (CRC) at 1-800-414-8095. Hours of operation are 7:30 A.M. • 6:00 p.m. Monday thru Friday:

Panel Materid Costs

Page PID Decription
P399 233-002-732 Interface Block 25 pr

Price
$\$ 11.83$

P167 402-537-757 50 BridgingClips $50 * 5 E=29.00$

$$
\frac{\$ 57.50}{100}=1.58
$$

P688, 354-000-820 Screw wo HexHD $8 \times \frac{3}{4} \quad 2 \times 1.18991=38$

$$
\frac{\$ 189,91}{1000}=\$ 18991
$$

P17 233-002-7-40 Metal Backboard (400 pr cipacity)

P688 746-8FE14. Screw WD HexHD $8 \times 1 \quad 4 * *, 0105=\$.04$

$$
\frac{x^{2}}{x} \frac{1.05}{100}=4.0105
$$

P675 $\quad 100-666-700 \quad$ Distributing Rings $\quad 5 * \$ 1.90={ }^{5} 9.50$

P688 354-000-820 Screw WD HexHD $8 \times \frac{3}{4} \quad 10 * 4.18991=1.90$

$$
\frac{\$ 189.91}{1000}=.18991
$$

(e) BELLLSOUTH

Supplying The Needs for Today and the Future

November I999
item, it will be indicated underneath the PID number.

Supply Chain Management is very interested in any feedback you may have on the products in this catalog. Please call Catalog Administration at (404) 420-6499 with any comments or concerns you may have. Each call will be responded to in a timely manner.

UNIT

The Price/Unit represents the price of an item per unit of issue. The unit of issue indicates the unit of measure used in ordering a product.

The letters C or M listed next to a price means that the price quoted is for 100 or 1000 units of issue, respectively.

For example, a Price/Unit listed as \$108.54C ea. indicates the price listed is $\$ 108.54$ per each 100 units or \$1.0854 for each unit.

For a listing of all of the unit abbreviations, see Exhibit H following these Instructions.

USAGE DESCRIPTIONS

Usage descriptions may describe the product, its measurements, primary usage, colors, and/or departments most likely to use it.

OSPCM is the acronym for Outside Plant Construction Management. The short description can be up to 15 characters long and will follow the words MACS MATL DESC located on the PIDS1P screen.

For Forms, the first line of the usage description is the actual Form Title.

4 ordering
 PRODUCTS
 AND

MATERIAL

GENERAL INFORMATION

There are three ways to order products. They are each discussed in detail later in the Ordering

Methods section.
[1] On-line via OrderMaster
[2] BellSouth Touchtone Ordering System
[3] Completing Form RF-2915
A REGIS Authority/BTOS Number (RAN) is required for all three methods. Details for obtaining a RAN are discussed later in this section. A terminal and log-on access is also required for accessing OrderMaster.

Almost all products with a PID number can be ordered via Touchtone or OrderMaster, with some exceptions. Exceptions must be ordered via RF-2915 (Exhibit B). You also can order nonPIDed products on OrderMaster. Exceptions are products that:

- Require special approval such as computer equipment, fumiture, etc.
- Have Pattern Account 98; however, items with PA 98 CAN be ordered through' OrderMaster with the use of an FC/FRC, business reason, AND AN MU OF 20.

Stationery and business cards: Use Form RF-7770-LP for standard requests and use RF-7770-LM for non-standard requests.

Forms: Use Form RF-3724 (Exhibit J) to order BellSouth and vendor documentation i.e., BSPs, IPs, TRs and RLs).

Computer Equipment: Computer hardware and software products must be approved by your Internal Provisioning Center (IPC), Desktop Services Division, at 803-733-7007.

HEADSETS: BellSouth uses Headsets from basically two manufacturers, GN Netcom and Plantronics. Both of these manufacturers provide dedicated product representatives to BellSouth. These product representatives are highly visible throughout BellSouth and provide a high level of product support. They refer their clients to the Headset website that is maintained by the Product Selection staff. The Headset website is kept current; as new items are added or changed, the

2	dESCRIPTION	PA	$\begin{aligned} & \text { DOM/ } \\ & \text { MOO } \end{aligned}$	VOM	INTV	PRICE/	
201067	CLIP BRANCH XAGA SM						
iTOS	GTES STOCK S NON.STOCK	09	1	1	2	2.74	EA
	$222001067 \quad 222001075 \quad 222001083$ KIT COMPONENT USED TO SEAL BRANCH CABLES ON A SIZE XAGA CLOSURES OR XAGA PRETERM CLOSURES. SMALL. RL: 85-02-018SV BSP633-500-900SV						
001075	CLIP BRANCH XAGA MED						
BTOS	GTES STOCK S NON-STOCK	09		1	2		EA

KIT COMPONENT USED TO SEAL BRANCH CABLES ON B SIZE XAGA CLOSURE INSTALLATIONS. MEDIUM.
RL: 85-02-018SV BSP633-500-900SV
001083 CLIP BRANCH XAGA LG
GTES STOCK S
NON.STOCK 0911017 EA
KIT COMPONENT USED TO SEAL BRANCH CABLES ON C AND O SIZE XAGA CLOSURE INSTALLATIONS. LARGE.
RL: 85-02-018SV BSP633-500-900SV
:537757 CLIP BRIDGING C
BTOS GTES STOCK S
NON-STOCK 091120 57.50 C PK

402537757
USED TO INTERCONNECT TERMINAL OF 688-3-50 AND
66ML-50 BLOCK TERMINALS. REPLACES: CUP, BRIDGING, B.
8SP 461-604-100
CLIP BRIDGING HUBSNAP BLOCK
GTES STOCK N
$\begin{array}{lllllll}\text { NON-STOCK } & 62 & 1 & 1 & 11 & 1.88 & \text { CT }\end{array}$
PROVIDES BAIDIGING CAPABIUTY TO A SINGLE
PAIR ON THE HUBSNAP IDC TERMINAL BLOCK. THESE BLOCKS ARE FOUND IN THE HUB IDC TERM XCONN CABINETS.
RL: 96-09-014BT

THE B ADHESIVE CLIP IS USED TO FASTEN STATION WRING WHERE IT IS UNDESIRABLE TO MAR SURFACES. HIGH TEMPERATURE MAY DETERIORATE B ADHESIVE CLIPS dURING STORAGE; THEREFORE, THOSE NOT USED BEFORE DATE ON CONTANER SHOULO BE TESTED FOR TACKINESS.

900190707 CLIP CABLE ADH 3/8" $\times \mathbf{2 "}^{\prime \prime}$
GTES STOCK 3
MOMSTOCK 0911120.70 CEA
THE B ADHESIVE CLIP IS USED TO FASTEN STATION WFING WHERE IT IS UNDESIRAELE TO MAR SURFACES. HIGH TEMPERATURE MAY DETERIORATE B ADHESIVE CLIPS dURING STORAGE; THEREFORE, THOSE NOT USED BEFORE DATE ON CONTANER SHOULD BE TESTED FOR TACKINESS.

401447651 CLIP CABLE ADH $5 / 18^{\prime \prime} \times 3 / 4^{\prime \prime}$
GTES STOCK N
NON-STOCK $09 \quad 100 \quad 100 \quad 23 \quad 158.88 \mathrm{MEA}$
THE E ADHESIVE CUP IS USED TO FASTEN STATION WRING WHERE IT IS UNDESIRABLE TO MAR SUAFACES. HIGH TEMPEPATURE MAY DETERIORATE B ADHESIVE CLIPS DURING STORAGE; THEREFORE, THOSE NOT USED BEFOAE DATE ON CONTANER SHOULD BE TESTED FOR TACKINESS.

401004635 CLIP CONN 284-1 AMPHENOL GTES STOCK $\$$
NON-STOCK 62112.39 EA
TAC TEST APPARATUS CONNECTOR PROVIDES ACCESS
TO QUICK-CLIP CONTACTS FOR TESTING. TAC IS
PUSHED ONTO DESIRED CONTACT PAR (ON 'E8 TMPE CONNECTING BLOCA: TEST EQUIPMENT OR HEAOPHONE IS ATTACHED TO TAC'S EXPOSED CONTACTS. DIMENSIONS: 1.375' LONG $X 1.437^{\circ}$ WDE $X .365^{\circ}$ HIOH. BASE

DIMENSIONS AT CONTACT: . $437 \times .366^{\prime}$ WITH .008" GAP BETWEEN CONTACTS.

PID DESCRIPTION PA MOO VOM INTV PRICE/UNIT

101412989 BACKBOARO MTG METAL 18381 BL

NON.STOCK	71	1	1	7	13.06 EA

101564649
CLOSET WIRING ARRANGEMENT, PERMITS CONNECTIONS OF KEY EQUIPMENT PAIRS TO THE NO. 66B4-25 CONNECTING BLOCK, DISTRIBUTING RINGS ARRANGED TO CROSS CONNECT BACKBOARD TO NO. 183 BACKBOARDS. $20^{\circ} \times 8.5^{\circ}$. MOUNTNG METAL, RED.
BSP 631-420-201
101412997 BACKBOARD MTG METAL 184B1 RD
NON-STOCK $81 \quad 1 \quad 1 \quad 7 \quad 55.56$ EA

FULL MODULE 17×20 INCHES EQUIPPED WITH FOUR 66B4-25 CONNECTING BLOCKS AND TWELVE DISTRIZUTING RINGS. USED TO TERMINATE BASIC KEY TELEPHONE SERVICES. MOUNTING METAL, RED. BSP 463-130-100 BSP 518-010-101
MOUNTING BACKBOARD CONSISTS OF A METAL PANEL DESIGNED TO ACCOMMODATE TWO NO. $89 B$ BRACKETS FOA MOUNTING TWO NO. 66 M1-50 WIRING BLOCKS. BLUE. $10^{\circ} \times 8.5^{\prime \prime}$.

For generic pictures of commonly used scrows, nuts, and bolts, please see the last six white pages located at the end of the PID numbers (product listings).

363001983
INSIDE INTERFACE, 68 QUICK CONNECT BLOCK WITH 8 MODULAR JACKS (RJ11), 6 POSITION, 4 CONTACT. PROVIDES INTERFACE DEMARCATION POINT.

If you need to know the status of your ordor, use OrderMastor, or call the GTES Customer Resource Centor (CRC) at 1-600-414-8095. Hours of operation are 7:30 A.M. - 6:00 p.m. Monday thru Friday.

Refor to the NEW PRODUCTS INDEX for an

 mphabetical Isting of now products inc/uding the now PID mumbers, product names, and the page numbers.NID Prices

Mio: Equipment
Pyo \# PIO Description
Pice
P891 461-961-641 4 pr insile stationwire $1.5 \times: 0508=4.0762$

$$
@^{18} \frac{30.49}{600^{\prime}}=\$.0508
$$

$$
\begin{aligned}
& \begin{aligned}
\text { P152 400-120-895 } & \begin{array}{l}
\text { Clamps } \\
\\
\\
@ \frac{67.85}{100}=4.6785
\end{array}, ~
\end{aligned} \\
& 2 \times 4.6785=\$ 1,3570 \\
& \text { Pil 400-003-315 Anchors } \quad 2 \times .0575=9.1150 \\
& \text { @ } \frac{15.75}{100}=\$.0575
\end{aligned}
$$

$$
\begin{gathered}
4.88 \quad \frac{\text { Screws }}{\text { a54-000-8.38 }} \frac{256.45}{1000}=\$.2565 \\
\text { Total } \quad 2 \times 4.2565=\$.5130
\end{gathered}
$$

PROPRIETARY

NIB Frive
1-\%. Line NID

$$
\begin{aligned}
& \text { Page \# PID } \\
& \text { Descrapt. } \\
& \text { Five } \\
& \text { P404 399-912-815 Total NID } \\
& 12.67 \\
& \text { P657 325-911-923 (Protetor) } \\
& \text { (@) } \frac{16.39}{5}=\$ 3.28 \quad 2 \times 3.28=6.56
\end{aligned}
$$

P40\% 909-912-495 Bridge
(a) \$4.55
$2 \times 4.55=7.10$

$$
\begin{aligned}
& \text { Housing } \quad 1 \times 4.84=4.84 \\
& 312.67-\$ 3.28-9.55=4=4.84 \\
& \text { Cost of Mac Loafed } 112 D
\end{aligned}
$$

$$
\begin{aligned}
& \text { 9E.5.5 F TIN pepropxiry }+1500
\end{aligned}
$$

$$
\begin{aligned}
& 89 \cdot 61-85 \cdot \varepsilon \times 9 \quad 87 \cdot \varepsilon_{5}=\frac{5}{6 \varepsilon \cdot 91} 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { IIN - - - 7-9-1 }
\end{aligned}
$$

THIS NAIL DRIVE ANCHOR IS COMPOSED OF A NAIL EMBEDOED IN THE TOP OF THE ANCHOR AND FASTENER BOOY. A LIGHT TO MEDIUM OUTY ANCHOR USED IN SOLID CONCRETE AND HOLLOW MASONFY SUCH AS BRICKS AND BLOCKS. ALSO USED FOR CABLE CLAMPS, STRAPS, AND MANHOLES. 100 PCS PER BOX.
8SP081.745-901SB
251003325 ANCHOR MASONRY N/DR $1 / 4 \times 11 / 4$ GTES STOCK N
$\begin{array}{llllll}\text { NON-STOCK } & 09 & 1 & 1 & 22 & 8.23 \\ \mathrm{BX}\end{array}$
THIS NAIL DRIVE ANCHOR IS COMPOSED OF A NALL EMBEDDED IN THE TOP OF THE ANCHOR AND FASTENER BCOY. A LGHT TO MEDIUM OUTY ANCHOR USED IN SOLIO CONCRETE AND HOLLOW MASONRY SUCH AS BRICKS AND BLOCKS. ALSO USED FOR CABLE CLAMPS, STRAPS, AND MANHOLES. 100 PCS PER BOX.
BSP081.745-901SB
400003257 ANCHOR PLSTC B 1/4" X 1 1/2"
GTES STOCK N
NON-STOCK $091 \quad 1 \quad 15 \quad 658.75 \mathrm{M} \mathrm{PK}$
THE B AND C PLASTIC ANCHORS ARE USED FOR MAKNG ATTACHMENTS TO MASONAY. THEY CONSIST OF A MOLDED WHITE NYION BOOY AND A ZINC-COATED STEEL NALL WHICH HAS A SLOTTED HEAD ANO A THREADED SHANK TO ADO IN REMOVAL. THE B ANCHOR HAS A FLATHEAD BOOY AND THE C ANCHOR HAS A ROUND-HEAD BOOY. 15 PER PACK.

401902994 ANCHOR PLSTC B $1 / 4^{\prime \prime} \times 2^{\prime \prime}$ GTES STOCK N NON-STOCK $0911 \begin{array}{llll} & 1 & 23 & 804.32 \mathrm{M} \mathrm{PK}\end{array}$
THE B AND C PLASTIC ANCHORS ARE USED FOR MAKING ATTACHMENTS TO MASONRY. THEY CONSIST OF A MOLDED WHITE NYLON SODY AND A ZINC-COATED STEEL NNL WHICH HAS A SLOTTED HEAD AND THREADED SHANK TO AID IN AEMOVAL. THE B ANCHOR HAS A FLAT.HEAD BOOY AND THE C ANCHOR HAS A ROUND-HEAD BOOY. 15 PER PACK.
CA08037

PROPRIETARY

NOT FOR USE OR DISClOSURE OUTSIDE OF BELLSOUTH SERVICES OR ITS AFFILLATED COMPANIES EXCEPT UNDER WRITIEN AGREEMENT

ANCHOR
PID DESCRIPTION PA MOQ VOM INTV PRICEUNIT

400003232

ANCHOR PLSTC $83 / 16^{\prime \prime} \times 1^{\prime \prime}$
GTES STOCK S
NON-STOCK 09112495.87 MPK
THE 3 AND C PLASTIC ANCHORS ARE USED FOR MAKING ATTACHMENTS TO MASONRY. THEY CONSIST OF A MOLDED WHITE NYLON BOOY AND A ZINC.COATED STEEL NAIL WHICH has a slotted head and a threaded shank to aid in REMOVAL. THE B ANCHOR HAS A FLATHEAD BODY AND THE C ANCHOR HAS A ROUND-HEAD BOOY 15 PER PACK.

400003299
ANCHOR PLSTC C 1/4" X 1 "
GTES STOCK S
NON-STOCK

$400003299 \quad 400003265 \quad 400003273 \quad 400003281$
THE B AND C PLASTIC ANCHORS ARE USED FOR MAKING ATTACHMENTS TO MASONRY. THEY CONSIST OF A MOLDED WHITE NYLON SODY AND A ZINC-COATED STEEL NAIL WHICH HAS A SLOTTED HEAD AND A THREADED SHANK TO AID IN REMOVAL. THE B ANCHOR HAS A FLAT.HEAD BODY AND THE C ANCHOR HAS A ROUNO-HEAD BOOY. 15 PER PACK.

400003265 ANCHOR PLSTC C $3 / 16^{\prime \prime} \times 3 / 4^{\prime \prime}$
GTES STCCX N
NON-STOCK 09113 13 13 M PK
THE 3 AND C PLASTIC ANCHORS ARE USED FOR MAKING ATTACHMENTS TO MASONAY. THEY CONSIST OF A MOLDED WHITE NYLON BODY AND A ZINC-COATED STEEL NAIL WHICH HAS A SLOTTED HEAD AND A THREADED SHANK TO AID IN REMOVAL. THE B ANCHOR HAS A FLAT-HEAD BODY ANO THE C ANCHOR HAS A ROUND.HEAD BODY. 15 PER PACK.

400003273 ANCHOR PLSTC C $3 / 16^{\prime \prime} \times 1$ 1"
GTES STOCK 3
NON-STOCK 09 1 1 2 495.87 M PK
THE B AND C PLASTIC ANCHORS ARE USED FOR MAKING ATTACHMENTS TO MASONRY. THEY CONSIST OF A MOLDED WHITE NMON BODY AND A ZINC-COATED STEEL NALL WHICH HAS A SLOTTED HEAD ANO A THREADED SHANK TO AIO IN REMOVAL. THE 3 ANCHOR HAS A FLATHEAD BODY AND
THE C ANCHOR HAS A ROUND-HEAD BOOY. 15 PER PACK.
400003281
ANCHOR PLSTC C 3/16" $\times 1$ 1/2"
GTES STOCK 3
NON-STOCK 091129 PK
THE B AND C PLASTIC ANCHORS ARE USED FOR MAKING ATTACHMENTS TO MASONRY. THEY CONSIST OF A MOLDED WHITE NYLON BODY ANO A ZINC-COATED STEEL NAIL WHICH HAS A SLOTTED HEAD AND A THREADED SHANK TO AIO IN REMOVAL. THE B ANCHOR HAS A FLAT-HEAD BODY AND THE C ANCHOR HAS A ROUND-HEAD BOOY. 15 PER PACK.

ANCHOR PLSTC D 10
GTES STOCK 3
NON-STOCK 09 1 1 2 5.75 C PK

$400003315 \quad 400003323 \quad 400003331$
THE D PLASTIC ANCHORS EOUIPPED WITH WOOD SCREWS ARE INTENDED FOR MAKING INDOOR OR OUTDOOR ATTACHMENTS TO MASONAY SURFACES. THEY ARE FURNISHED IN THREE SIZES, 10. 12 AND 16. 8 PER PACK.

GALVANIEED STEEL CLAMP USED FOR SUPPORTING CABLES. LIGHT OLVE GRAY, ENAMEL COATED CLAMP FOR INSIDE USE IN ATTACHING CABLE OR WRE TO BUILDINOS. 50 PER PACK.

402724512 CLAMP CABLE ENAMEI 8 ates stock N $\begin{array}{llllll}\text { NONSTOCK } & 09 & 20 & 20 & 17 & 754.38 \\ M\end{array}$
GALVANIZED STEEL CLAMP USED FOR SUPPORTING CABLES. LIGHT OLVE GRAY, ENAMEL COATED CLAMP FOR INSIDE USE IN ATTACHING CABLE OR WRE TO BUILDNAS. 50 PER PACK.

402724520 CLAMP CABLE ENAMES
GTES STOCK N
NOHSTOCK 09 1 1028 1.25 PK
GALVANIZED STEEL CLAMP USED FOR SUPPORTNNG CABLES. LIGHT OLIVE GRAY, ENAMEL COATED CLAMP FOA INSIDE USE IN ATTACHANG CABLE OA WRE TO BUILDINGS. REPLACES: CLAAP CAELE, WRE BE. 50 PEA PACK

402724538 CLMP CARLE ENAMEI 10
GTEs stoce N
NOHSTOCR 091128 . 15 PK
GALYANLED STEE CLAMP USED FOA SUPPOFTING CABLES. LGHT OLNE GRAY, ENAMEL COATED CLAMP FOR INSIDE USE IN ATTACHING CABLE OR WRE TO EUILDNCS. 25 PER PACK.

402724548 CLAMP CABLE ENAME1. 13 GTES STOCK N $\begin{array}{llllll}\text { NOH-STOCK } & 09 & 16 & 16 & 17 & 93.50 \mathrm{C} \mathrm{PK}\end{array}$

GALVANZED STEE CLAMP USED FOR SUPPORTING CABLES LGHT OLNE GRAY, ENAMEL COATED CLANP FOR WSIDE USE N ATTACHING CABLE OR WRE TO BULLDINGS. REPLACES: CLAMP CABLE, WRE B12. PACX OF 26.

PROPRIETARY

Page 1s? COAPPANIES EXCEPT UNDER WRITIEN AGREEMENT

PID	DESCRIPTION	PA	$\begin{aligned} & \text { DOM/ } \\ & \text { MOO } \end{aligned}$	VOM	INTV	PRICE/UN
402855183	CLAMP CABLE	LV				
BTOS	GTES STOCK S NON.STOCK	09	1	1	2	11.50 CF

402855183
ZINC-COATED STEEL CLAMP USED FOR ATTACHING CABLE OR WRE TO BUILDINGS. GALVANIZED, SIZE 1. 10 PER PACK.

060982402 CLAMP CABLE GALY SZ 2
BTOS GTES STOCK S
NON-STOCK 09112066

080982402
ZINC-COATED STEEL CLAMP USEO FOR ATTACHING
CABLE OR WIRE TO BUILDINGS. GALVANIZED, SIZE 2. 50 PEA PACK

CLAMP CABLE GALYSZ 3
GTES sTock 3
NON-STOCK 091126

400120896
ZNC-COATED STEEL CLAMP USED FOR ATTACHING CABLE OR WRE TO BUILOHNGS. GALVANZZED, SIZE 3. 50 PER PACK.

> Hyou have trouble finding an fitm in the Catalog, use the Aphebotical Index which lasts owery Itam and its page number, or use tho Numerical Indax which Ists awy P1O number and tis pege number.
PIO OESCAIPTION PA MOQ VOM INTV PRICEIUNIT
333911931 INTERFACE OS 25 PR
GTES STOCK N
NON-STOCK $091 \quad 1 \quad 22 \quad 494.88$ EA

333911931
OUTSIDE INTERFACE FOR 25 PAiR PAOTECTED NETWORK INTERFACE FOR INSIDE APPLICATION EQUIPPED WITH indivoual lockable covers. used as a demarcation POINT FOR MULTIPLE LINE APPLICATIONS. RL: 91.08-040SV
332911932 INTERFACE OS 50 PR
GTES STOCK N

GTES STOCK					
NON-STOCK	09	1	1	22	976.97
EA					

332911932
OUTSIDE INTERFACE FOR 50 PAN PROTECTED NETWORK INTERFACE FOR INSIDE APPLCATION EQUIPPED WITH INDIVIDUAL LOCKABLE COVERS. USED AS A DEMARCATION POINT FOA MULTIPLE UNE APPUCATIONS.
AL. $91-00-0485 V$
909912498
interface os ado Line 2acitac bTOS
GTES STOCK 3
$09 \quad 8 \quad 1 \quad 2 \quad 4.55 \mathrm{EA}$
SNAP IN BLOCK CONTANS FOUR SCREW TERMINATON POINTS FOR CUSTOMER INSIDE WIRE, CORD PLUG, AND JACK. USED TO ADO LINES TO INTERFACE OS 1 -AL 7840 ANO INTERFACE OS 1-2L 240.
RL: 92-03-02687:

PROPRIETARY

NOT FOR USE OR DISCLOSURE OUTSIDE OF BELLSOUITH SERYICES_OR_ITS AEEILHIED

289940421
OUTSIDE INTERFACE BRACKET USEED AT MARINA ANO m LOCATIONS. CONTAINS: (1) A SINGLE BRACKET USEO TC ATTACH A WEATHERPROOF OUTLET BOX PID\#: 4012483 ANO A 2.PAIR ONI PID: 399912815 ONTO A PROTECTIVE MOUNTING POST OR OTHER SURFACES. (2) A 3^{\cdot} PIECEC TUBING USED TO JOIN THE OUTLET BOX AND ONI TOGE AND PROVIDE A RACEWAY FOR STATION WIRE EETWEEN Two.

400912812 INTERFACE OS C GROUND STRAP
BTOS GTES STOCK S
NON-STOCK $091 \quad 1 \quad 2 \quad 34$.
OUTSIDE INTERFACE REPLACEMENT C GROUND STRAP I WITH INTERFACE OS 1-GL 7GAO, PID*: 397912817. RL: $92-03-0288 \mathrm{~T}$

358912816 INTERFACE OS COCOT
BTOS GTES STOCK S
NONSTOCK 091

398912818
INCLUDES COIN LOCK ASSEMBLY FOR CUSTOMER OWNE OPERATED TELEPHONE (COCOTI ANO A 4 LINE ADD-A LUN KIT WTTH 4 WIRE JACK AND PLUG USED ON INTERFACE OS 1-2L2AO AND INTERFACE OS 1-6L 76AO.
RL: $92-08-028$ BT
i20 922601 INTERFACE OS GROMMET MLP RP521.
GTES STOCK N
NON-STOCK Og 10 10 22 108.2
AN OUTSIDE INTEAFACE REPLACEMENT TELCO ENTPANC GROMMET FOR INTERFACE OS 25 AND INTERFACE OS 50

402912810 INTERFACE OS GROMMET 2AG
GTES STOCK N
NOMSTOCK. OS ' 1

402912810
AN OUTSIDE INTEAFACE REPLACEMENT TELCO ENTRANCE GROMMET FOR INTERFACE OS $1.2 \mathrm{~L} 2 A 0$.
RL: $82-03-0288 T$

PID	DESCAIPTION	PA	$\begin{aligned} & \text { DOM/ } \\ & \text { MOO } \end{aligned}$	VOM	INTV	PRICEUUNIT
396912818	INTERFACE OS LOCK DOOR					
8TOS	GTES STOCK S nON-STOCK	09	1	1	2	23 EA

396912818
OUTSIDE INTERFACE LOCKABLE COVER FOR INTERFACE OS ADO LINE 76AO, AND 2AO. DOOR ALLOWS CUSTOMER TO PLACE LOCK ON ADO LINE 78AO, PID: 397912817. RL: 92-03-026BT

948931324 INTERFACE OS RETRO 1-2L 2BGU1A
BTOS
GTES STOCX
NON-STOCK

948931324
INTERFACE OS (OUTSIDE) 1.2 LINE USED FOR RETROFTT INSTALLATIONS ON THE ATAT B SERVICE CLOSURE AND THE 400 NIU BASE. EQUIPPED WITH ONE ENTRANCE BRIDGE. FOR NEW 1-2 UNE INSTALLATIONS ORDER PHD: 398912815.

399912815 NTERFACE OS 1-2L 2AC-HTA BTOS

399912815
INTERFACE OS (OUTSIDE) 1-2 UNE. EQUIPPED WITH ONE 350 AOAPTER, ONE ENTRANCE BRIDGE, ONE STATION PROTECTOR ANO EASE, TO ADO 2ND LNE, ORDEA INTERFACE OS AOO LUNE 2AOTVAO, PID: $90001240-5$ FOR RETROFTT APPLICATIONS, ORDER PID*: 948031324. REPLACES PIO 247009617, 332002393, 247010374, AND 49190291. THIS ITEM IS SOMETIMES REFERRED TO AS A 'CAC UNIT.' RL: 92-03-0268T

If you need to know the status of your order, use OrdorMaster, or call the GTES Customer Resource: Conter (CRC) at 1-800-414-8095. Hours of operation are 7:30 A.M. - 6:00 p.m. Monday thru Friday. PROPRIETARY
 COAPANES EXCEPT UNDER WRTITEN REREEMENTI

397912817
INTEAFACE OS (OUTSIDE) 1-6 LINE. EQUIPPED WITH THAEE 350 ADAPTERS, TWO C GROUNO STRAPS, ONE ENTRANCE BRIOGE ANO ONE STATION PROTECTOR. TO AOO EACH ADOITIONAL UNE UP TO SIX, ORDER PID": 900012486 . REPLACES PID.\#S: 342002235, 354000762, 354000770, 354000788, AND 332002187. RL: 92-03-0288T

706913035 INTERFACE OS 3L PREASM 150'BSW
BTOS GTES STOCK 3
NON-STOCK 0911266.59 En

708913035
1-6 UNE 78AO-E1A1 PREASSEMBLED OUTSIDE INTERFACE. EOUIPPED WITH 3 I.PAIR MOOULAR STATION PAOTECTORS, 150 FT. OF 5 PAR BURIED SERVICE WIRE, 3 ADD.A-LINE KTS, 12 FT. OF F 10 GROUNO WRE, H-1 CONNECTOR, GROUND TAG, MOUNTED ON 38 INCH PROTECTOR MOUNTING POST.

273972938 INTERFACE OS 3L PREASM 200'BSW GTES STOCX 3
NOA-STOCK 0911218
1.8 UNE TBAO-EIAI PREASSEMBLED OUTSTDE

INTERFACE. EOUIPPED WITH 3 I.PAIR MODULAR STATION
PROTECTORS 200 FT. OF 5 PAR BURIED SERVICE WRE. 3
ADD-A-LINE KTS, 12 FT. OF \# 10 GROUND WAE, H-1
CONNECTOA, GROUNO TAG, MOUNTED ON 36 INCH PROTECTOR MOUNTING POST.

352002377 NTERFACE OS 4000 PCA RP-007
ates stocx M
NON-STOCK $05 \quad 100$ 10 $22 \quad 531.25 \mathrm{ME}$
PRINTED CIRCUIT BOARO CARD SLOT 4OOOP9. ADUSTABLE BRACKET FOR INSTALATION OF ELECTRONIC CIRCUTT MOOULES. USED WITH CAC4COIU-1A AND CAC 4OOIU-2A.

Amer to the NEW PROOUCTS INDEX for an aphabeticed isting of now products inctuding the now PID numbers, product names, and the page numbers.

PID	DESCRIPTION	PA	$\begin{aligned} & \text { DOM/ } \\ & \text { MOO } \end{aligned}$	VOM	INTV	Palce
100399922	PROTECTOR STA 6PR 1178					
	GTES STOCK N NON-STOCK			1	23	38.38
	SIX PAIR MULTIPLE DAOP STATION PROTECTOR FOR INDOOR USE. BSP-461-610-400					
103623633	GTES STOCK SNON.STOCK				2	13469
		$\sqrt{0}$				
	103623633					
	25 PAIR BUILDIN EQUIPPED WITH STUB CABLE (28 ENTRY. OUTPUT PROTECTOR MO ONLY. MACS MATL DE	NTR PAIP AUGE TYP UES	ICE TE BAY PV SWIVEL CONNE RDER S C1-25/2	INAL INSU OR TOP ORS. AAAT		A SABLE OM PE RUSE
103623641	PROTECTOR S GTES STOCK 3 NON-STOCK	H18 09	C150	1	2	181.77
		-				
	103823841	823				
	50 PAIR BUILDING ENTRANCE TERMINAL WITH COVER EQUIPPED WTTH 50 PAR GRAY PVC INSULATED FUSEABLE STUB CABLE (2B GAUGE) SWIVEL FOR TOP OR BOTTOM ENTRY. OUTPUT 68 TYPE CONNECTORS. 3 AND 4 TYPE PROTECTOR MODULES ORDER SEPARATELY. INDOOR USE ONLY. MACS MATL DESC: $1808 C 1$-50/2S					
For geneic pictures of commonly used scrows, nute, and bolte, plases see the last str whits pages locatod at the end of the PID numbers (product listings).						

MO DESCRIPTION PA MOO VOM INTV PRICEUNIT

082893496
GRAY, FOUR-TWSTED PAIR WIRE FOR USE AS A LOW SMOKE, LOW FLAME SPREAD TELECOMMUNICATIONS CABLE IN AIR RETURN PLENUMS. 1000 FT. $=1$ BOX.
REPLACES 402806145
40458663 WRE PLENUM 4 PR 24GA GR
GTES STOCX N
NON-STOCK O9 $1 \quad 1 \quad 17 \quad 45.16$ BX
GRAY, FOUR-TMSTED PAIR WIRE FOR USE AS A LOW SMOKE. LOW FLAME SPREAD TELECOMMUNICATIONS CABLE IN AIR
RETURN PLENUMS. $1000 \mathrm{FT} .=1$ BOX.
CK22084
REPLACES 402806137
40258879 WRE PLENUM 6 PR 24GA GR
GTES STOCK N
NON-STOCK $09 \quad 1000 \quad 100022 \quad 191.25 \mathrm{M} \mathrm{FT}$
GRAY SIX-TWISTED PAIR WIRE FOR USE AS A LOW SMOKE.
LOW FLAME SPREAD TELECOMMUNICATIONS CABLEIN AIR RETURN PLENUMS. 1000 SPOOL.
CK22084
\$5 991896 WIRE RG11 OD SHLD 12PR 1000'RL
GTES STOCK N
NON-STOCK $60 \quad 1000 \quad 100021 \quad 377.19 \mathrm{M} \mathrm{FT}$
RG- 11 QUAD SHIELD AERLAL WIRE. CORROSION
RESISTANT, 12 PARA. 22 GAUGE, 1000° ROLL.
VPN: FIISS CRD 1222
45983034 WIRE RG110 OVRSHTH 12PR 1750°
GTES STOCK $\$$
$\begin{array}{lllll}\text { NON-STOCK } & 09 & 1750 & 1750 & 2\end{array}$ 411.17 MFT
12 PAIR, RG1 10 HIGH PERFORMANCE AERIAL WIRE IOENTFIES THE COAXIAL CABLE USED. THE OVERSHEATH IS REQUIRED FOR THE FIBER AND COAXIAL.

Not all products are in the catalog. Please call the Catalog Hotine at 404-420-6499 if the item you neod is not in the catalog.

NOT FOR USE OR DISCLOSURE OUTSIDE OF AODARAUS BELISEUTH-SERVICER OR ITS AFFILHTED Equipment \& Toois

```
れきここかここ
Suょうec5: pare- na=erial Es= ser-ip
Creacor: Zam G.Nilliams/m3,mail3a
EEem 1
    TO: Leon Armstrong/m6,mail6a; ?HONE=205-977-0374
    CC: Arlene Fredrickson/m3,mail3a; FHONE=205-977-0391
```

Item 2
Leon，we will reduce the OSPC time by 1 hour since the CLFC is now bringing their 25 pr cable in and splicing it．This is for TN and LA．
The material will mot be changed until we file in $K Y$ ．
Th x．
Pam

$$
\begin{aligned}
& \text { Mat } l \text { zydatel } \\
& \text { in } 7 l \text {. refiling. }
\end{aligned}
$$

- nitimy
 CLASsI
 FIED

POD Item No. 81
Attachment No. 9
Complex Resale Support Group (CRSG)

Per CRSG/Account Team SME. 7/28/99:
Total Worktime (min)

Instl	Disc.	
$1^{\text {st }}$	Ea. Addl	$1^{\text {st }}$

$\left(50 \%\right.$ of $\left.1^{s t}\right)$ | (excl Sl$)\left(50 \%\right.$ of $\left.1^{\text {st }}\right)$ |
| :--- |

1. CRSG/Acct Team receives LSR \& 10* 5* 2* 1* SI in "in-tray" from CLEC
2. CRSG/Acct Team screens LSR (2 min) and SI
$5 \quad 2.5$
5
2.5
3. calls customer to acknowledge receipt \& enters start date into BRITE (CRSG tracking system) And completes folder information
4. Prepares SI transmittal \& faxes 105

N/A N/A
to OSPE; confirms FAX receipt \& updates BRITE folder
5. Receives SI response (2 min), $2010 \quad 18 \quad 9$ prepares LSCS transmittal and FAX; confirms logged on LON (LCSC service order tracking sys), sends CLEC notification; closes out folder and BRITE

TOTAL
*Manual Svc Order (screening LSR):
**Assumes perfect flow:

- "clean" order from CLEC - no clarification
- SI received and processed within commitment time - no follow-up required
- SI response is "Facilities Available"
- LCSC does not reject LSR

Incremental work efforts for order complications

| 1. SI not processed within | 6.6 | 3.3 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| commitment - followup required, | | | | |
| including telephone calls, re- | | | | |
| faxing, add'l documentation | | | | |

allow for "estimate" for OSPE
to perform work to make
available, e.g., clear pairs or
run new pairs - requires
negotiation with OSPE \& CLEC (30 min ${ }^{\bullet} 24 \% 1^{\text {st }}$ Instl)
3. LCSC rejects or doesn't log $\quad 5 \quad 2.5 \quad 2.5 \quad 1.25$
to LON within 2 hrs - requires followup \& add'I time to reformat and/or resend ($20 \mathrm{~min}{ }^{*} 25 \%$ $1^{\text {st }}$ Instl)

TOTAL

63.8	31.9	27.5	13.75
2.0	1.0	2.0	1.0
61.8	30.9	25.5	12.75 (elec. LSR)

- Worktimes reflect a manual process
- CRSG is a dedicated center which volunteered to handle as of 4/99 all UNE orders requiring SI

```
E-: =
```



```
=こ#
```



```
    Dee Gonzalez /m2,mail2a; 2HONE=40--E.. --506)
    Pam G. Williams /m3,mall3a; PHONE=&?..7--5こう1
Item 2
Does the attached file help any? Deb T.
Item 3
This item is of type MS EXCEL iobsolete {i_etype (4)) and cannot be displayed as
    TEXT
```


PRIVATE / PROPRIETARY:
CONTAINS PRIVATE AND / OR PROPRIETARY INFORMATION.
MAY NOT BE USED OR DISCLOSED OUTSIDE THE BELLSOUTH COMPANIES
EXCEPT PURSUANT TO A WRITTEN AGREEMENT.

[^1]

```
三: =
```



```
こここ=
    70: Sandra Harris /m7,mani``; こ!0Nこ=`"-."-5600
    CC: Diann Hammond /m7,mail7a; EMONE=2, - --72-
    Pat A. Rand /m6,mail6a; 2HONE=20--4,-7358
Item 2
Sandra,
Sorry this has taken me so long. I hope it is what you need. Please advise if
you require addtional information.
I have a-so attached a separate Salary Eile as it seems to confuse some people
when we reference "JG56" on compensation. The Sales Titles on compensation are
on a different salary structure than the sonporate scale. So for cost Study
purposes, this has seemed important to know.
Thank you,
Debbie Timmons
205.321.4990
Item 3
This item is of type MS EXCEL (obsolete E:Ivtvpe (4)) and cannot be displayed as
    TEXT
Item 4
This item is of type MS EXCEL (obsolete filetype (4)) and cannot be displayed as
TEXT
```

```
    Cosi Mこ」
        CRSG AcCOL-t Team
    for
Switched Comvo Environment
```

Switched Combo Headcount Allocation - CRSG

All Management Job Grades are on compensation.

Functions Performed	Performed by
LSR Rcpt \& logging \& folder preparation	Contractor
Eackend folder ciose out \& filing	WS 10
See each product	JG56 SD1 on Sales Compensation FDC

\% Allocation Assumption:
The colume headed \% Resale Work lists the people doing RESALE work today. I do not know how to forecast how RESALE will diminish $\&$ how much Swiched Combo will appear. Have the Prod Mgrs. Provided any forcasts? If so, I guess their factors should be applied.

Name	JG/Cont	$\%$ Resale Work	Type of Work or Comments
Janie Norris	Contractor	100%	Process orders
Barbara Jones	Contractor	100%	Process orders
Kristy Seagle	JG 56	100%	Process orders
Tiffany Dillard	JG 56	100%	Process orders
David Reynolds	JG 56	100%	Process orders
Vivian Smith	JG 56	100%	Process orders
Jonathan Ryer	JG 56	100%	Process orders
Brian Bradley	JG 56	100%	Process orders
Susan Daniel	JG 56	100%	Process orders
Sonia Johnson	Contractor	75%	Data management / admin
Lillie Lawson	Contractor	75%	Data management / admin
Mary McCoy	WS 10 CIk	80%	Clerical / admin
Chanotte Donion	JG 56	75%	lssue resolution / CRSG operational support
Monica Dodge	JG 56	75%	Customer care
Titania Alexander	JG 56	50%	Special construction estimates
Brenda Gibson	JG58	75%	Supervision \& information management
Tracey Morant	JG58		85%
Mitzi Link	Supervision \& customer relationship		

This represents just one Sales AVP (JG61) work group that is a part of Interconnections Sales that would have work time related to the UNE environment in generai

There are 2 other Sales AVP groups in Birmingnam, 5 in Atlanta
I couldn't begin to predict what \% of who works on UNE customers
The total Sales Entity is under Kenneth Ray JG64
It is next to impossible to further divide to the specific product level, e.g. UCL, UNTW, XdsI I think that would be driven by the customer sets and their business plans, and what their sales success ratios are and what the ultimate volumes would be. I think that would have to come from the Product Managers.

Name	JG/Cont	\% UNE Work	Type of Work or Comments	Unit
Cathey, Marc	61	50\%	Sales AVP	Acct. Team
Alvis, Rick	56	50\%	Systems Designer 1	Acct. Team
Bonner, Denise	58	50\%	Systems Designer II	Acct. Team
Burgess, Kelli	58	50\%	Systems Desinner II	Acct. Team
Callahan, Leslie	K3	50\%	Account Manager	Acct. Team
Carmichael, Rita	58	50\%	Systems Designer il	Acct. Team
Cames, Wayne	K3	50\%	Account Manager	Acct. Team
Christian, Scott	K3	50\%	Account Manager	Acct. Team
Clark, Susan M. (Terri)	58	50\%	Systems Designer II	Acct. Team
Contey, Susan	WS 10	50\%	C, erical	Acct. Team
Davies, Kathy	58	50\%	Systems Designer II	Acct. Team
Denham. Sharon	58	50\%	Systems Designer II	Acct. Team
Douglas, F.W (Buck)	58	50\%	Systems Designer it	Acct. Team
Ferreiro, Gene	K2	50\%	Account Nialueger	Acct. Team
French, Bill	K8	50\%	Saies Director	Acct. Team
Griffin, Scott	K2	50\%	Account Manager	Acct. Team
Hammond, Diann	58	50\%	Systems Designer II	Acct. Team
Hartley, Donna	K3	50\%	Account Vianeger	Acct. Team
Hodges, Cynthia	58	50\%	Systems Eeesigner II	Acct. Team
Hogg, Scott	K2	50\%	Account Manager	Acct. Team
Johnson, Wade	58	50\%	Systems Deswizer 11	Acct. Team
Kizziah, Glenda	WS10	50\%	Clerical	Acct. Team
Kunze, Scott	K2	50\%	Account Nianager	Acct. Team
Laszlo, Joe	58	50\%	Systems [hegrer il	Acct. Team
McElroy, Roger	58	50\%	Systems Vesigner II	Acct. Team
McRae, Bob	58	50\%	Systems [lesiaturl]	Acct. Team
Moore, Debbie	52	50\%	Sales AVF Ȧmin Assist	Acct. Team
Morrison, Bill	K3	50\%!	Account vanager	Acct. Team
Parker, Paul	K8	50\%	Siales Diructio:	Acct. Team
Pierce, Daphne	58	50\%	Systems jesioner II	Acct. Team
Ratiliff, Rick	58	50\%	Systems Destan 11	Acct. Team
Ratliff, Wayne	58	50\%	Systems nasigner II	Acct. Team
Ray, John	K3	50\%	Account vianaci	Acct. Team
Reid, Kim	58	50\%	S'/stems	Acct. Team
Robbins, Mark	K3	50\%	Acsoun lianayei	Acct. Team
Ryer, Kurt	56	50\%	Systerns	Acct. Team
Temple, Gretchen	58	50\%	Systems Desimeril	Acct. Team
Timmons, Debbie	59	50\%	Sales Supoir: $\mathrm{D}_{\text {rector }}$	Acct. Team
Washington, Darryl	K3	50\%	A courit iv alincer	Acct. Team
Wilbum, Mike	K8	50\%'	Sales Liftean	Acct. Team
Wilder, Shamron	56	50\%	Systems Jes ie:1	Acct. Team

Information submitted by:

DID Design - Switch as Is

Description	Function	Job Function Code	Install	Additional	$\begin{gathered} \text { Previous } \\ \text { Input } \end{gathered}$	Total	Reconciled	Reconciled By	Total	Difference
LCSC	ISSNG N/D Orderd	2300-SR	1.5 (first)	. 1112 / trunk	1.0000		3.5000	Phyllis Rogers		
		wsio - Clerk	1.0000		0.2500					
AFIG	Assign OSP CA/PR	400x FAS (W320)	0.0035		0.0035					
CO	NA	'na	NA		0.0000					
CPG - TRUNK TRANSLATIONS	NA	NA	NA		0.0000					
	Resolve RMAs from SO process design CKT Word									
CPG - Design	doc	4N4X	0.1200	0.1042	0.1517		0.1517	Dianne Martin		
CTG	NA	'NA	NA		NA					
RCMAG	NA	NA	NA		NA					
WMC	NA	NA	NA		NA					
L8N	NA	NA	NA		00333		00000	Ruby Pills		
SStar M	NA	: iA	:NA		IIA					
UAEC	Wra Completion	taxX-ET	0.2500		0.0000					
Based on SAl goes to LCSC, no CRSG work times included.DDT										

DID - Now Cust DN Exist

Assumption for SSIM -
Includes processing service
order request, placing cross
connect at $x \rightarrow$ box, checks
consinuaty / dilal-tone
resolven troubles, performs
test from MMD and complets
order, includes travel

2W DID Subsequent - Add Trunks

Assumptions for L \& N -	Assumption-CRSG
	It is assumed the CRSG will not handle additions to
Based on 10\% fallout	Trunk Group
	If this changes; use cost for NEW

Description	Function	Job Function Code	Add AddI Num. Add Addl Grp.	Additional	Disconnect	Additional
LCSC	Issue Order	2300	2.25000			
AFIG	NA	NA			!	
CTG	NA	NA			$!$	
CO	NA	NA			1	
CPG - Trunk Translations	NA	NA				
CPG - Designed	NA	NA			I	
RCMAG	Tranlate Num to RTI	4210	0.01670	0.00830	,	
L \& N	NA	NA	i		i	
SSI ${ }^{\text {a }}$ M	NA	NA	'			
UNEC	NA	NA				
OSPE	NA	NA				
CRSG	See below	See below				
WMC	'NA	NA				
			,		1	
	Assumption-CRSG It is assumed the CRSG will not handle additions to Trunk Group If this changes; use cost for NEW			\because		

2W DID Subseiquent-Reserve TNs

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
LCSC	Issue Order	2300	3.25000/ord			
	1					
AFIG	NA	NA				
CTG	NA	MA				
	1	$: \quad$				
co	NA	NA				
CPG - Trunk Transiations	NA	NA				
	1			1		
CPG - Designed	NA	NA				
RCMAG	NA	NA				
	-			1		
LEN	NA	NA				
	\|					
SSI 8M	NA	NA				
	1	-		-		
UNEC	NA	NA				
				1		
OSPE	NA	NA				
CRSG	Sece below	See below				
WMC	NA	NA				

Assumption-CRSG

It is assumed the CRSG will not handle subsequent			
TN Reservations.			
If this changes; use cost this cost:	If this changes; use cost		
Rcv, log. acknowledge customer \& assign	Contractor DDT		20 min
post tracking. prepare \&	JG56-Sales		
submit to LCSC	Compensation.ddt		25 min
	FDC 2210	SD1-	
Notify CLEC order sent to	JG56-Sates		
LCSC	Compensation.ddt		15 min
Back end folder close out	WS10 clerk		15 min

PBX Convers Line Side

|Based on PBX goes to LCSC, no CRSG work times
included.DDT

PBX Line Side Subsequent

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
LCSC	Issue Order	2300 SR	1.08333			
		WS 10 Clk	0.50000			
					1	
AFIG	HML TE Arrange	400x	0.04160/ord			
					!	
CTG	NA	NA				
CO	NA	NA				
					I	
CPG - Trunk Translations	NA	NA				
CPG-Design	I Design CKT (HML only)	4N4X	0.08000	0.05000	!	
RCMAG	Rearrange HML	4210	0.00175	0.00175/tn	।	
	1)				;	
L8N	NA	NA				
	1				:	
SSI \& M	NA	NA				
UNEC	WFF. Curaplation	4AXX WS32	0.25000			
OSPE	NA	NA				
	;					
CRSG	See below	See below				
	,					
WMC	NA	NA				
	1			\because	i	
Based on PBX goes to LCSC, no CRSG work times included.DDT				-		

PBX Line Side New

Assumptions for SSIM -	Assumptions for CRSG
Includes processing service	
order request, placing cross connect at x-box, checks	
continuaty / dial-tone	
resolves troubles, performs	Based on PBX goes to
test from NID and complets	LCSC, no CRSG work order, includes travel
times included.DDT	

Combo-FX-FCO Naw

Assumption for CO-	Aesumptions for CRSG
This service requires work in 2 central ofilices	This product is under
	consideration to be moved to LCSC
	The cost information provided above is in the event if remains with CRSG
	FOC \& Proect Mgy will
	MOT be handiled by
	CRSG

[^2]Combo - FX-FCO Conversion

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
$\overline{\text { LCSC }}$	Issue Order	2300 SR	1.00000			
		WS10 Clk	0.50000	0.16667		
AFIG	Assign OSP Cable Pair	400x	.00350/ord			
CTG	NA	NA				
CO	NA	NA				
	1					
CPG - Trunk Translations	NA	NA				
CPG - Design	SO RMA Design CKT	4N4X	0.15170	0.10420/line		
	1					
RCMAG	Translate Line	4210	0.00175			
	1					
L8N	NA	NA				
	1				- !	
SSI 8 M	NA	NA				
UNEC	Cumpreaion	4AXX WS32	0.25000			
OSPE	NA	NA				
	$!$					
CRSG	See below	See below				
	!				i	
WMC	NA	NA				
	1			\because		
Assumptions for CRSG						
\|Based on SAI goes to LCSC today in Resale environment, no CRSG work times included.DDT						

PBX DPA Only OSNC CKT-New

PBX DPA Conversion

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
LCSC	$2{ }^{\prime \prime} \mathrm{C}^{\prime \prime}$ Orders	2300 SR		0.50000		
		WS 10 Clk	0.50000			
AFIG	Assign OSP Cable Pair	400X	0.00500			
CTG	, NA	NA				
CO	NA	NA				
CPG - Trunk Translations	NA	NA				
CPG - Design	Design CKT	4N4X	0.15170	0.10420		
RCMAG	NA	NA				
	$!$				1	
L8N	NA	NA				
SSI 8. M	NA	NA				
UNES.	T:u:1 , j, Tcal, Complete	: $3 \times$ 人 WS32	0.25000			
OSPE	NA	NA				
	1					
CRSG	See below	See below				
WMC	NA	NA				
	!			\cdots		
Assumptions for CRSG						
Based on SAl goes to LCSC today in Resale environment, no CRSG work times included.DDT		\therefore.		-		

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
LCSC	Issue Order	2300 SR	0.66700	0.25000	0.33300	
		WS10 CIk	0.50000			
AFIG	Assign OSP Cable Pair	400x	0.00583		0.00233	
CTG		NA		,		
CTG	NA	NA				
CO	Run Jumper	431X	0.10000	0.10000	0.05000	0.05000
CPG - Trunk Translations	NA	NA				
CPG - Design	NA	NA				
	,	.				
RCMAG	Assign In	4N10	0.00175	0.00175	0.00175	
					,	
L8N	NA	NA				
18. ${ }^{\text {m }}$	Install and test	?	3.04810	1.00850	0.33330	0.20000
BRMC	NA	NA				
OSPE	NA	NA				
CRSG	See below	See below				
WMC	NA	NA				

Assumptions for CRSG
 Based on Resale
 Ordering Matrix in the
 CLEC Ordering Guide
 for RESALE, this goes
 to LCSC today, no
 CRSG work times
 included.DDT

Assumptions for 18 M -

Includes processing service order request, placing cross connect at x-box, checks continuaty $/$ dial-tone resolves troubles, performs test from NID and complets order, includes travel

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
LCSC	Issue Order	2300 SR	0.50000			
		WS10 Clk	0.50000			
	(eable Pair					
AFIG	Assign OSP Cable Pair		0.00350			
CTG	NA	- NA				
					-	
CO	NA	NA				
CPG - Trunk Translations	NA	NA				
CPG - Design	NA	NA				
RCMAG	Assign In	4N10	0.00175			
L. N	NA	NA				
	$!$					
18.0	NA	NA				
BRH:C	NA	NA				
OSPE	NA	NA				
CRSG	See below	See below				
WMC	NA	NA				
	;			\because		
Assumptions for CRSG						
Based on SAl goes to LCSC today in Resale environment, no CRSG work times included.DDT		-				

IFR-IFB Coin - Subsequent

Description	Function	Job Function Code	Install	Additional	Disconnect	Additional
LCSC	Issue Order	2300 SR		0.16800		
		WS10 Clk	0.50000			
AFIG	Assign OSP CAPR	400x	0.00116	0.00000	0.00233	0.00000
1						
CTG	¡NA	NA				
CO	NA	NA				
CPG - Trunk Translations	NA	NA				
' ${ }^{\text {CPG - Design }}$						
CPG - Design	NA	NA				
	1	.				
RCMAG	Assign	4N10	0.00175	0.00175		
		.				
L8N	NA	NA				
	1					
18 M	NA	NA				
BRMC	NA	NA				
		-				
OSPE	NA	NA				
	I					
CRSE	See below	See below				
WMC	NA	NA				
Assumptions for CRSG	1			':		
Based on Resale Ordering Matrix in the CLEC Ordering Guide for RESALE, this goes to LCSC today, no CRSG work times included.DDT		\cdot				

IFR-IFB DPA Non Designed -New

Includes processing service
order request, placing cross
connect at x-box, checks
continuaty / dial-tone
resolves troubles, performs
test from NID and complets order, includes travel

IFR-IFB DPA Non D-Conversion

DDITS 4 Way - New

MegaLink Charnel Lineside - New

MegaLink Channel Lineside-Conv

MegaLink Channel Service - Now

Includes processing service order request, placing cross connect at x box. checks continuaty / dial-tone resolves troubles, performs lest from NMD and complets order, includes travel

BellSouth Customer Markets Division

Interconnection Services
Professional Sales
2000 Salary Structure


```
ミ_, - =
```



```
:こご
```



```
    CC: Arlene Eredrickson /m3,mai_3a; ごGNE=\05-977-139!
        Pam G. Williams/m3,mail3a; PHONE:2,5-:- -5551
Item 2
Noody,
As promised here is the information I have developed Eor the Line Sharing Cost
Input. Dlease let me know what additional information you need, and PIEASE
EEEI EREE TO CALI ME AT HOME IE NE NEED TO TAIK THROUGH ANY OE THE INEO!
This took me MUCH longer to complete than I expected, so if you need to call me
tonight, it really is ok. HOME: 205-979-3748 Tomorrow I will be in Account
Team Training sessions all day, but you can dial my office number, hit zero,
and have my office assistant get me out of the session. Office is
205-321-4990.
Thank you,
Debbie Timmons
Item 3
This item is of type MS EXCEL lobsolete filetype (4); and cannot be displayed as
    TEXT
Item 4
This item is of type MS EXCEL (obsolete file=ype (4)) and cannot be displayed as
    TEXT
```


PRIVATE I PROPRIETARY:
CONTAINS PRIVATE AND / OR PROPRIETARY INFORMATION.
MAY NOT BE USED OR DISCLOSED OUTSIDE THE BELLSOUTH COMPANIES
EXCEPT PURSUANT TO A WRITTEN AGREEMENT.

PRIVATE / PROPRIETARY:
CONTAINS PRIVATE AND / OR PROPRIETARY INFORMATION.

Line Sharing

SD $=$ Systems Designer LSOD = Line Sharing Order Document					
$\begin{gathered} \text { Cost } \\ \text { Element } \end{gathered}$	Cost Element Component	Functions Performed by CRSG	Function Performed By	INSTALL (Mours)	$\begin{gathered} \text { DISC } \\ \text { (Hours) } \end{gathered}$
	Line Sharing Splitter per System	LSOD receivd from CLEC by email: print \& email to SD	Contractor	0.17	0.17
	All of the time asteps shown apply on a PER LSOD basis For the CRSG, it doesn't matter what size system, or jumpers or what Quantity, all work steps 8 times will be the same. Also. after I laid out the steps, it became apparent to me that even for the EU order when Loop Modification applies. the same steps \& times will apply. However, the Loop Mod + EU LSR will be simultaneously. therefore, the time SHOULD NOT be duplicated in the cost for both Line Sharing AND Loop Modification - so do not include with Line Sharing, but assume it is included in Loop Modification.	Logged to BRITE tracking system	Contractor	0.05	0.05
		Assemble printed documents; prepare folder $\boldsymbol{\&}$ hand-off to SD	WS10 Clerical or Contractor	0.12	0.12
		LSOD reviewed \& amended, document folder \& BRITE	JG56 SD or Contractor	0.25	0.25
		LSOD faxed to CCM	WS10 Clerical or Conltactor	0.05	0.05
		LSOD receivd from CCM by fax; acknowledged \& delivered to SD	WS10 Clerical or Contractor	0.17	0.17
		LSOD reviewed, document folder \& BRITE \& prepare LCSC Hand-off	JG56 SD or Contractor	0.25	0.25
		LSOD faxed to LCSC	WS10 Clerical or Contractor	0.05	0.05
		Verify LSOD received in LCSC; close BRITE \& folder	JG56 SD or Contractor	0.17	0.17
		Folder verified \& filed in archive	WS10 Clerical or Contractor:	0.13	0.13
				24 min	hr. 24 min

for
LINE SHARING Eาvironment

Line Sharing Headcount Allocation - CRSG		
All Management Job Grades are on Sa	ales Compensation.	\% Allocation Assumption:
Functions Performed	Performed by	people doing UNE work today. I do not
LSR Rcpt \& logging \& folder preparation	Contractor	know how to forecast how much Line Sharing
Backend folder close out \& filing	WS10	will diminish the existing UNE work being done.
See the product specific sheet tab	JG56 SD1 on Compensation FDC2210	Has the Prod Mgr. Provided any forecast? If so, I guess their factors should be applled.

Contractor Average Hourly Rate	$\$ 42.00$

CRSG - UNE Headcount Allocation			
Name	JG/Cont	\% UNE Work	Type of Work or Comments
Ruby Neely	58	100\%	Team Lead
Cheryl Lewis	58	100\%	Team Lead
Joanie Mahan	Contractor	100\%	Process orders
Cathy Compton	Contractor	100\%	Process orders
Barbara Jones	Contractor	100\%	Process orders
Leesona Neims	Contractor	100\%	Process orders
Jonathan Ryer	56	102\%	P-ocess orders
Kristy Seagle	56	100\%	Process orders
Lillie Lawson	Contractor	100\%	Process orders
Rose Morris	Contractor	40\%	Procass orders
Sonja Johnson	Contractor	75\%	Data management / admin
Janie Norris	Contractor	75\%	Data management / admin
Mary McCoy	WS 10 Clk \|	25\%	Clerical / admin
Sandy Lang	Contractor	100%	Clerical / admin
Charlotte Donlon	56	60\%	Issue resolution / CRSG operational support
Monica Dodge	56	60\%	Customer care
Titania Alexander	56	5ก\%	Sjecial construction estimates
Brenda Gibson	58	25\%	Supenvision \& information management
Tracey Morant	58	10\%	Supervision \& customer relationship
Mitzi Link	59	9n\%	Supervision \& leadership of CRSG

RED BOLD entries indicate a change since last submitted to Arlene Fredrickson \& Pam Williams

```
This represents |ust one Sales AVP (JG61) work group that is a merm if Interconnections Sales
that would have work time related to the UNE environment n gemer al
```

There are 2 other Sales AVP groups in Birmingham， 5 in Atlanta I couldn＇t begin to predict what \％of who works on UNE customers
The total Sales Entity is under Kenneth Ray JG64
It is next to impossible to further divide to the specific product level．e．g．UCL．UNTW，Xdsi I think that would be driven by the customer sets and their business plars，and what their sales success ratios are and what the ultimate volumes would be．I think that would have to come from the Product Managers．

Name	JG／Cont	\％UNE Work	Type of Work or Comments	Unit
Cathey，Marc	61	50\％	Sales AVP	Acct．Team
Alvis，Rick	56	50\％	Systems Designer I	Acct．Team
Bonner，Denise	58	50\％	Systems Designer II	Acct．Team
Burgess，Kelli	58	50\％	Systems Desizner II	Acct．Team
Callahan，Leslie	K3	50\％	Account Manager	Acct．Team
Carmichael，Rita	58	50\％	Systems Uesigner II	Acct．Team
Carnes，Wayne	K3	50\％	Account ivianaver	Acct．Team
Christian，Scott	K3	50\％	Account Manager	Acct．Team
Clark，Susan M．（Terri）	58	50\％	Systems Designer II	Acct．Team
Corley，Susan	WS 10	50\％	Clerical	Acct．Team
Davies，Kathy	58	50\％	Systems Desizner II	Acct．Team
Denham，Sharon	58	50\％	Systems Designer II	Acct．Team
Douglas，F．W（Buck）	58	50\％	Systems Diesigner II	Acct．Team
Ferreiro，Gene	K2	50\％	Account Valuser	Acct．Team
French，Bill	K8	50\％	Sales Directror	Acct．Team
Griffin，Scott	K2	50\％	Account Maracer	Acct．Team
Hammond，Diann	58	50\％	Systems Desig ler ！	Acct．Team
Hartley，Donna	K3	50\％	Account Mianacei	Acct．Team
Hodges，Cynthia	58	50\％	Systems neugnor！	Acct．Team
Hogg，Scott	K2	50\％	Account Manager	Acct．Team
Johnson，Wade	58	50\％	Systems Deil jner II	Acct．Team
Kizziah，Glenda	WS10	50\％	Clericai	Acct．Team
Kunze．Scott	K2	50\％	Account Maneger	Acct．Team
Laszlo，Joe	58	50\％	Sustems cenmer il	Acct．Team
McElroy，Roger	58	50\％	Systens inexingil	Acct．Team
McRae，Bob	58	50\％		Acct．Team
Moore，Debbie	52	50\％	Sales AVP in in Assist	Acct．Team
Morrison，Bill	K3	50\％	Account Alas e：	Acct．Team
Parker，Paul	K8	50\％	Sales Eir－w．．．	Acct．Team
Pierce，Daphne	58	50\％	；Systeris exidier il	Acct．Team
Ratliff，Rick	58	50\％	Systerms Jén uter in	Acct．Team
Ratliff，Wayne	58	50\％	Systems nesion ler ：	Acct．Team
Ray，John	K3	50\％	Ancouri viarie ei	Acct．Team
Reid，Kim	58	50\％	Systerrs Jem，－ieil	Acct．Team
Robbins．Mark	K3	50\％	Accounivialme：	Acct．Team
Ryer，Kurt	56	50\％	Sjsteris sesw	Acct．Team
Temple，Gretchen	58	50\％	Srstems Desicrier 1	Acct．Team
Timmons，Debbie	59	50\％	Sales Supacit jiestor	Acct．Team
Washington，Darryl	K3	50\％	Acjount valider	Acct．Team
Wilbum，Mike	K8	50\％	Sales Lirmotor	Acct．Team
Wilder，Shamron	56	50\％	S＇steris zesioner：	Acct．Team

Information submitted by：
Debbie Timmons

```
そこここここき
```



```
こ七em:
    TO: Diann Hammond /m7,mail7a; RHONE=2Gシ-i2:-7727
        Sandra Harris /m7,mail7a; PHONE=205-9---5600
        Pat A. Rand /m6,mail6a; PHONE=20S-402--368
Item 2
Ladies,
Attatched is an email that has some files aこtached that get at some early Time
Per Task efforts for traditioral complex resale products. I hope this is what
you need; please advise if it is not.
JUST DON'T USE ANYTHING YOU SEE FOR UNES, THAT IS IN A SEPARATE DOCUMRNT THAT
IS MORE CURRENT THAT I WILL SEND YOU IF YOU WANT, BUT I HAVE BEEN WORKING
DIRECTIY WITH ARLENE FRHDRICKSON ON THOSE COST STUDIES.
```

Item 3
MESSAGE
Subject: Time Per Task Info
Dated: 7/21/99 at 8:53
Contents: 4
Creator: Debbie D. Timmons /m7,mailia
Item 3.1
TO: Debby B. Feir /m2,mail2a; PHONE=770-936-3752
Item 3.2
Hope this is what you're looking for. There are 2 messages attached; 1 from
March did not have validated UNE infor, the 1 from June provides the UNE.
component. Also, please pay very special aこtention to assumptions! we can
discuss next week. Debbie Timmons
Item 3.3
MESSAGE Dated: 3/31/99 at 16:49
Subject: CRSG Business Case Input
Contents: 4
Creator: Debbie D. Timmons /m7, mail7a
Item 3.3.1
TO: Marcus B. Cathey /m6,mail6a; PHONE=205-321-4900
William A. Schneider /m7, mail7a; PHONE=205-321-4904
CC: Brenda T. Gibson /m2,mail2a; PHONE=205-321-7765
Mitzi Link/m2,mail2a; PHONE=205-321-2991
Ered P. Monacelli/m7,mail7a; PHONE=205-321-7700
Tracey L. Morant /m2,mail2a; PHONE=205-321-3192
Item 3.3.2
Marc \& William:
Please find attached 2 Excel spreadsheets that provide the results of our
interviews \& other points for consideration.
The file named BC MAR`1.xla contains 3 sheet tabs: Time per Task, Time per LSR, Assumptions \& comments. The file names bcDera` $1 . x l$ e contains mary sheet tabs: They are basically the
interview detail per individual interviewed.
William: Please let us know your availability to finalize this information and
its incorporation in to the final presentation. Tracey Morant is available to


```
know that the final count for March is 583 LSRs! This is the highest LSR count
```



```
Please let us know what other informatizn you zequire
Thanks, Debbie Timmons
"ERING IT ON!!!"
```

Item 3.3.3
This item is of type MS EXCEL (obsolete finetype (4)) and cannot be displayed as
TEXT
Item 3.3.4
This item is of type MS EXCEL (obsolete filetype (4)) and cannot be displayed as
TEXT
Item 3.4

```
MESSAGE
Subject: CRSG Headcount Estimate Based or LNE Eorecast
Dated: 6/14/99 at 9:32
                                    Contents: 3
Creator: Debbie D. Timmons/m7,mail7a
Item 3.4.1
    TO: Marcus B. Cathey /m6,mail6a; PHONE=205-321-4900
            Fred P. Monacelli /m7,mail7a; PHONE=205-321-7700
Item 3.4.2
Fred & Marc,
The attached spreadsheet contains some information relative to the subject.
There are several sheet tabs so you may want to look at them all.
I think we are probably going to need to discuss it real time. I tried to make
my assumpitions & calculations clear, but this kind of thing is usually hard to
digest when it is cold. I also realize that it is only part of the picture; I
need to do this for the entire load...I'm working on it!
I did want to get this in front of you though; I really don't know what
approach we are wanting to take with McDougle.
Just let me know what questions you have o: when you would like to discuss it.
Thanks, Deb
Item 3.4.3
This item is of type MS EXCEL (obsolete filetype (4)) and cannot be displayed as
    TEXT
```

```
ミここうこ
```



```
こここ%
```



```
Item 2
Hope this is what you're looking for. There are 2 messages attached; 1 from
March did not have validated UNE infor, the 1 from June provides the UNE
component. Also, please pay very special attention to assumptions! we can
discuss next week. Debbie Timmons
Item 3
MESSAGE CRGG Business Case Input Dated: 3/31/99 at 16:49
Subject: CRSG Business Case Input 
Item 3.1
    TO: Marcus B. Cathey /m6,mail6a; PHONE=205-321-4900
        Wiiliam A. Schneider /m7,mail7a; PHONE=205-321-4904
    CC: Brenda T. Gibson /m2,mail2a; PHONE=205-321-7765
        Mitzi Link /m2,mail2a; PHONE=205-32i-2991
        Ered P. Monacelli /m7,meil7a; PHONE=205-321-7700
        Tracey L. Morant /m2,mail2a; PHONE=205-321-3192
Item 3.2
Marc & William:
Please find attached 2 Excel spreadsheets that provide the results of our
interviews & other points for consideration.
The file named BC MAR`1.xls contains 3 sheet tabs: Time per Task, Time per LSR,
Assumptions & comments.
The file names BCDETA`1.xls contains mary sheet tabs: They are basically the
interview detail per individual interviewed.
William: Please let us know your availability to finalize this information and
its incorporation in to the final presentation. Tracey Morant is available to
review & discuss when you are ready. Again, we are looking to you to take the
raw data and perform the trending analysis. You will be most interested to
know that the final count for March is 583 LSRs! This is the highest LSR count
since our beginning. Please use this amended number in your calculations.
Brenda has sent you under a separate message the information for March 99,
specifically the break down by Type of Service (TOS).
Please let us know what other information you require.
Thanks, Debbie Timmons
"BRING IT ON!!!"
Item 3.3
This item is of type MS EXCEL (obsolete filezype (4)) and cannot be displayed as
    TEXT
Item 3.4
This item is of type MS EXCEL (obsolete filetype (4)) and cannot be displayed as
    TEXT



```

IEem 4.1
TO: Marcus B. Cathey /m6,mas15a; PHONE=2:5-321-4900
Ered P. Monacelli /m7,mail7a; PHONE= %.5-321-7700
Item 4.2
Ered \& Marc,
The attached spreadsheet contains some information relative to the subject.
There are several sheet tabs so you may want so look at them all.
I think we are probably going to need to discuss it real time. I Eried to make
my assumpitions \& calculations clear; but this kind of thing is usually hard to
digest when it is cold. I also realize that it is only part of the picture; I:
need to do this for the entire load... I'm working on it!
I did want to get this in front of you though; I really don't know what
approach we are wanting to take with McDougle.
Just let me know what questions you have cr wnen you would like to discuss it.
Thanks, Deb
Item 4.3
This ifem is of type MS EXCEL (oosolete filetype (4)) and cannot be displayed as
TEXT

```
```

ソここここご

```


```

Zさきに;
TO: Marcus B. Cathey/mb,mai-6a; 25CNJ=2:5-521-4900
William A. Schneider/m7,mai_7a; EHONE=205-32:-4904
CC: Brenda T. Gibson /m2,mai12a; PHONE=20j-32:-7765
Mitzi Link /m2,mail2a; PHONE=205-32i-2991
Ered P. Monacelli /m7,mail7a; PHONE=205-321-7700
Tracey L. Morant /m2,mail2a; OHONE=205-321-3192
Item 2
Marc \& william:
Please Eind attached 2 Excel spreadsheets that provide the results of our
interviews \& other points for consideration.
The file named BC MAR`I.xls contains 3 sheet tabs: Time per Task, Time per LSR, Assumptions & comments. The file names BCDemA`1.xls contains many sheet tabs: They are basically the
interview detail per individual interviewed.
William: Please let us know your availability to Einalize this information and
its incorporation in to the final presentation. Tracey Morant is available to
review \& discuss when you are ready. Again, we are looking to you to take the
raw data and perform the trending analysis. You will be most intereated to
know that the final count for March is 583 LSRs! This is the higheat LSR count
since our beginning. Please use this amended number in your calculations.
Brenda has sent you under a separate message the information for March 99,
specifically the break down by Type of Service (TOS).
Please let us know what other information you require.
Thanks, Debbie Timmons
'BRING IT ON!!!'
Item 3
This item is of type MS EXCEI (obsolete filetype (4)) and cannot be displayed as
TEXT
Item 4
This item is of type MS EXCEL (obsolete filetype (4)) and cannot be displayed as
TEXT

```



\section*{Assumption Set}
\begin{tabular}{|ll|}
\hline Original Assumption Set: & \\
& \begin{tabular}{ll} 
Rec'd by acct. team from VSC (DCSC or other \\
ordering entity) electronically and forwarded to \\
customer via Fax.
\end{tabular} \\
FOC & \begin{tabular}{l} 
No billing explanations or clarifications.
\end{tabular} \\
Billing & \begin{tabular}{l} 
Originally no rework, misdirected orders or account \\
however, on May 28, 1997, an error factor of 12\% was \\
added to the equivalent headcount.
\end{tabular} \\
Rework & Fully trained personnel. \\
Personnel & No project mgt. or customer status function. \\
\hline
\end{tabular}
\begin{tabular}{|l|}
\hline Reality \\
Electronic FOC's are forwarded to CIS.CRSG mailbox. Sonja \\
Johnson opens, prints, sorts, retrieves from printer; stamps w/ \\
receive date; puts in yellow FOC folder; delivers to SD. Usually 3 - \\
5 days to receive FOC. We do not receive all electronically. \\
\hline CRSG is involved in billing explanations involving disputes. \\
Specifically. any disputes resulting from Complex Service requests \\
handed by the CRSG are resolved by the CRSG. \\
\hline
\end{tabular} \begin{tabular}{l} 
Approximately \(30 \%\) of all complex orders received in the CRSG are \\
placed into clarification. Thus, additional handling is required. \\
Additionally, roughly \(12 \%\) of orders received are misdirected. \\
\hline Takes 6 - 12 mos. To have fully trained personnel capable of \\
handling more detailed specific complex orders. The group is a \\
sourcing pool for Acct. Teams; turned 50\% of the group in 1998. \\
\hline \begin{tabular}{l} 
SD's do perform PM tasks by tracking orders to completion. Also. \\
CRSG is continuousty statusing CLECs on PON's. Average 2 \\
status calls from CLEC per LSR.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Additional Assumptions:} \\
\hline Special Assemblies & 50\% of MegaLink orders require special assemblies. \\
\hline UNE Orders & The Service Inquiry portion for UNE ADSL/HDSL loops. Generally, this process takes approximately 20 , minutes to complete. \\
\hline Interval Guide / Expedites & CLECs often submit orders with the requested Due Date less than Interval Guide stated criteria. A review of KMC \& e.spire LSRs for 1Q99 showed \(19 \%\) \& 11\% EXPEDITED, 8. 63\% \& 77\% Less than Interval Guide, respectively. These conditions add to handling time \\
\hline Large Sales & The CRSG supports large sale projects involving high volume concentration of certain complex products l.e.. Intermedia Communication's Stale of Georgia Y2K project \\
\hline Type of Service & The Type of Service being ordered by TOP 5 CLECs include: Frame Relay, ISDN-BRI, ISDN-PRI, ESSX/MS, and Megalink \\
\hline ESSX/Centrex Station Line & The average station size per ESSX/Centrex is 25 stations. \\
\hline
\end{tabular}

\section*{Faxed LSR's}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Administrative - Receiving LSR's via Fax} \\
\hline \multicolumn{3}{|l|}{Per Sherry Parsons \& Sonja Johnson General Assumption: Order is} \\
\hline Action & Time in Minutes & Assumptions \\
\hline \multicolumn{3}{|l|}{Sherry receives LSR via FAX.} \\
\hline \multicolumn{3}{|l|}{Picks up tax, verify \# pages, stamp it. Create LSR acknowledgement and faxes to originator. Gets confirmation back and staples to original.} \\
\hline Sherry puts LSR in Receive Tray on Sonja's desk.. & 2 & \\
\hline Sonja takes it out of tray. Makes sure you have LSR. EU page. & 2 & All info provided that is needed. \\
\hline Sonja starts logging into BRITE and assigns to SD. Sonja stamps w/date \& who assigned to. & 5 & . \\
\hline Sonja turns to manual log and log. giving date, CLEC, PON: TOS, \& SD. & 3 & \\
\hline \multicolumn{3}{|l|}{Sonja gets folder, puts project ID \(\boldsymbol{\#}\) on it, takes that order, places it in folder, if expedite puts in red folder, then detivers to SD's desk to their} \\
\hline "in" tray. & 3 & \\
\hline & 20 min . & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Administrative - E-Mail receipt of LSR.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Per Sonja Johnson \\
General Assumption: BRITE database is accessible and workload is running on the average.
\end{tabular}}} \\
\hline & & \\
\hline Action & Time in Minutes & Assumptions \\
\hline First thing in a.m. SJ goes to CIS.CRSG mail box in open mail to see if received any LSR's. & & PC already on, already logged on, etc. \\
\hline SJ opens LSR message \& start printing it out. Order usually consists of 3 attachments: LSR, EU, Resale page: Ordering Document: and Diagram. & 5 & Receipt of 1 order. \\
\hline Prints it. Has to sort out copies at printer and separate from everyone else's stuff Makes sure has all pages. & 2 & \\
\hline Returns to desk. Stamps w/receipt date stamp. & 2 & \\
\hline Then SJ does "reply to message" back to customer via E-mail that it has been received \(\&\) informs CLEC of assigned SD or informs CLEC that they'll be contacted by the assigned SD. & 2 & \\
\hline Sonja starts logging into BRITE and assigns to SD. Sonja stamps w/date \& who assigned to. & 5 & \\
\hline Sonja turis to manual log and log, giving date, CLEC, PON\#, TOS, \& SD. & 3 & \\
\hline Sonja gets folder, puts project ID \# on it, takes that order. places it in folder, if expedite puts in red folder, then delivers to SD's desk to their "in" tray.. & 3 & \\
\hline & 22 min . & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Administrative - Filing/Archival of Completed Folders} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{Per Sherry Parsons General Assumptions: Order is completed \& placed in SD's "completed" tray.}} \\
\hline & & \\
\hline & & \\
\hline Action & Time in Minutes & Assumptions \\
\hline & & Folder been handed off to SD. Order has been completed SD has either placed in "completed" tray or the SD \\
\hline \multicolumn{3}{|l|}{Sherry goes around to each SD's desk several times/day to retrieve folders.} \\
\hline \multicolumn{3}{|l|}{Sherry pulls BRITE SD screen to verify that everything needed in BRITE has been populated. Then verifies CPX date is same as due date.} \\
\hline \multicolumn{3}{|l|}{If everything is verified in BRITE to be completed, Sherry stamps w/"verified" stamp and places in "to be filed" tray at her desk.} \\
\hline \multicolumn{3}{|l|}{If it hasn't, Sherry fills oul query sheet indicating missing fields and takes it w/folder back to SD's "in tray".} \\
\hline Sheriy files the cumpleted folders by morith, by CLEC in alpha order, by PON's iir numeric order under CLEC. If CLEC doesn't already have a folder in file cabinet, Sherry has to create one. & 30 & Slierry usually collects a day's worth of folders and files them all logether. \\
\hline Archiving - After 6 months of filing, Sherry removes the first month's folders and moves to archives. This is done by 5 th of ea. mo. & 150 & \\
\hline & 3 hours; 11 min. & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Detailed Process Analysis of New Centrex Service} \\
\hline \multicolumn{3}{|l|}{Per Judy Woods} \\
\hline \multicolumn{3}{|l|}{General Assumptions: New Centrex Order received from the CLEC ultizing the New Centrex Product offering. Assumption is that CLEC provides a clean order including. matrix of features, orderng document and signed service agreement. CRSG does not assign} \\
\hline Actions & Time in Minutes & Assumptions: \\
\hline \multicolumn{3}{|l|}{} \\
\hline Prepare folder. & 5 & \\
\hline Screen the LSR, EUI, DLR, Ordering Document and all other necessary documents provided. & 75 & \\
\hline Log Start Date in BRITE and notify CLEC of assignment. & 5 & \\
\hline Validate address and premise information via BOCRIS/ORION & 5 & \\
\hline Prepare rate quote via Quote Expert. & 15 & \\
\hline \multicolumn{3}{|l|}{Prepare the transmittal form, attach other forms including ordering document. LSR, elc. and fax to the CRSC and} \\
\hline Project Manager & 25 & \\
\hline Update BRITE and folder with pertiment order information. & 5 & \\
\hline Indeate watting on FOC and place in "Waitung on FOC" tray & 5 & \\
\hline When FOC is received from Center. print a copy of the Service order to scan for errors. & 10 & \\
\hline \multicolumn{3}{|l|}{If no errors, then send FOC to CLEC and Project Manager using the FOC form found on the M:IDive. Type FOC} \\
\hline Note FOC information on forder and in BRITE. & 5 & \\
\hline Place folder in "Holding for Completion" tray on desk. & 5 & \\
\hline Follow up on due dates by checking pending service order in BOCRIS for completion. & , & \\
\hline Once complete, print another copy of service order from BOCRIS and place in the folder. & 5 & \\
\hline Update foider and BRIIE will CPX intormation. & 5 & \\
\hline Put "C' on folder and place in out tray for pickup by Sherry Parson's. & 5 & \\
\hline & \[
\begin{gathered}
185 \\
3 \text { hours, } 5 \mathrm{~min} .
\end{gathered}
\] & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Detail Process Analysis for MegaLink} \\
\hline \multicolumn{3}{|l|}{Per Glenda Cook} \\
\hline Steps & Time in Minutes & Assumptions \\
\hline & & Assumption is that this is a "clean" order, \\
\hline Received LSR in "in tray". & & requiring a contract. \\
\hline \multicolumn{3}{|l|}{Take out of folder. Screen for obvious necessary fields. Is looking at LSR, EU, \& ordering document \(\&\) other required} \\
\hline information. & 15 & \\
\hline \multicolumn{3}{|l|}{Call customer to acknowledge receipt \& enter start date into} \\
\hline Brite. & 5 & \\
\hline Go to BOCRIS \& pull Q acct \& prints. Begin filling out folder & 15 & \\
\hline Goes to ORION to verily addresses. Print that, continuing to update folder, placing copy in folder and enters start date into & & \\
\hline BRITE. & 10 & - \\
\hline \multicolumn{3}{|l|}{Pulls contract 8 prepares. Faxes CLEC a copy of blank contract and puts LSR in "clarification" at that time, stating that contract needs to be filled out, signed, and returned} \\
\hline \multicolumn{3}{|l|}{While waiting for contract to be returned. goes into SOCS, ducuments order number, go to ATLAS \& get circuit ID} \\
\hline \multicolumn{3}{|l|}{Contract is received back from CLEC. Takes order out of} \\
\hline Cianfication, updates BRITE that oul of clarification and updates PM info and any other necessary info is added Goes to Quote Expert and completes price quote. Compares quote w/Contract and makes & 20 & \\
\hline Prepare transmittal form and faxes to appropriale center and project manager (attaches all necessary pages, usually total of 8 pages). & 15 & - \\
\hline Updates BRITE \& folder, indicating faxing of transmittal forms, elc. Places folder in "pending FOC" tray. & 10 & \\
\hline Receives FOC. Pulls folder. Goes into BOCRIS and prints pending service order, goes back over transmittal, checks service order for errors 8 verifying due date. If due date not what customer requested, advises CLEC of the new due date. If an earlier d & 20 & ! \\
\hline Proactively ensures order is completed. Checks BOCRIS looking for order. & 10 & \\
\hline Once order is completed, goes into BRITE \& updates CPX date and also notes folder of CPX'd info. Puls 'C' on folder and places in outbasket for filing & 5 & \\
\hline & 150 & - - \\
\hline
\end{tabular}

Trạfic St
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Detail Process Analysis of Traffic Studies} \\
\hline \multicolumn{3}{|l|}{Per Randy Ray} \\
\hline Actions & Time in minutos & Assumptions \\
\hline \multicolumn{3}{|l|}{Receive.} \\
\hline Review info for all data. Look up Q account. Update folder & 15 & \\
\hline \multicolumn{3}{|l|}{Creale fax transmiltal where we restate all he basic} \\
\hline Send to Center. & 15 & \\
\hline Log into BRITE \& update folder. & 5 & \\
\hline \multicolumn{3}{|l|}{After 10 days, if haven'l received anything, will follow up.} \\
\hline \multicolumn{3}{|l|}{Once info received, transmit info to customer via regular mail.} \\
\hline \multicolumn{3}{|l|}{Complete service Iransmittal to send to appropriate CRSC for record order to bill} \\
\hline \multicolumn{3}{|l|}{Upon receipt of FOC from the center for the biling record, send FOC to CLEC.} \\
\hline  & 5 & \\
\hline \multicolumn{3}{|l|}{Update BRITE \& note folder. Make copy of BRITE screen, place in folder, and put folder in "out" tray.} \\
\hline Screen, place in folder, and put folder in "ourt tray. & \({ }_{85}^{5}\) & \\
\hline
\end{tabular}

Term. Lia.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Detail Process Analysis for Termination Liability} \\
\hline \multicolumn{3}{|l|}{Per Judy Woods} \\
\hline \multicolumn{3}{|l|}{General Assumptions: CLEC will assume termination liability.} \\
\hline Action & Time in Minutes & Assumptions \\
\hline Prepare folder, screen the LSR, EU form. Verify info sent on termination liability \& compare to the tariff charges. Notify CLEC of assignment. & 30 & \\
\hline Log info into BRITE. & 5 & \\
\hline Prepare Assumption Agreement and tax to CLEC. & 25 & \\
\hline Receivce Assumption Agreement back from CLEC. Prepare transmittal and fax to CRSC. & 10 & \\
\hline Update BRITE & 5 & \\
\hline Go to folder and close. Place folder in "to be filed" tray. & 5 & \\
\hline
\end{tabular}

\section*{Details Process Analysis on EBRU}

Per Judy Woods
General Assumptions: We have received the EBRU disputed charges.
Ave. Station Size Per Essx \(=25\) lines.

\section*{Steps}

Time
Assumptions
Prepare folder and put info in BRITE.
Review discrepancy that was sent with the customer service record in BOCRIS. Print and compare to the discrepancy.
Call CLEC and go through each piece of the dispute and explain it - type of credit. overbilling, underbilling, etc. Usuaily have to give this info to someone other than the decision maker.
Receive follow-up call from CLEC acknowledging receipt of info on dispute and authorizing us to go ahead and process, etc. Fax ari authorization to EBRU telling them to go ahead and process order.

Wait for EBRU to do their thing. EBRU forwards FOC to SD. FOC indicates that adjusiment has been made to customer's record. Call made to customer notitying them that adjustments have been made. Update BRITE.60

30

60

10

10
2 hours; 5 min .
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Detail Process Analysis of Frame Relay Orders} \\
\hline \multicolumn{3}{|l|}{Per Janie Norris General Assumptions: Fractional T-1 in BellSouth Territory.} \\
\hline Actions & Time in Minutes & Assumptions \\
\hline Receives LSR from Sonja. & & \\
\hline Reviews LSR package to ensure all documents are there. These are LSR, EU. FR Ord. Doc., diagram. Checks for accuracy on these items on billing, speeds, any info on ordering doc or LSR that tolls what they are ordering. & 15 & Assuming good clean order. \\
\hline Begins folder preparation with PON, EU complete address, start date, atc. & 10 & \\
\hline Notily CLEC of receipl and start. & 5 & \\
\hline Validate " Q " account. Validate address in ORION. Go into SAP on "m" drive and deterine Cascade SWC and ICO mileage if needed. & 25 & Assuming BellSouth-served \\
\hline Request CLLI code by faxing to CLLI code coordinator Update folder. & 10 & \\
\hline Validate the site code in BOCRIS. Go to ATLAS to assign circuit ID\#. Go to SOCS to request a preassigned order number and update folder accordingly. & 20 & \\
\hline Make BRITE updates with start date. Project Mgr., RESH code, circuil tD wifo. \# orders being issued, TOS info, Order \#. and makes notation in remarks that CLLI code has been requested \& date & 20 & - \\
\hline Itpon rea -ipt of Clilicode prepare Service Inquiry Fax to approprate CCM. SCM. \& OSPE, approximately 3 pages each. Note folder \& BRITE w/date being sent & 25 & \\
\hline Upon receipt of responses to Service Inquiry, note folder \& BRITE. & 5 & \\
\hline Prepare package for transittal to DCSC. Includes fax cover sheet, service transmittal form, last package ordering document - total of 5 pages, plus first page of service inquiry form, the service inquiry responses from each dept. and the diagram, map or & 20 & \\
\hline \multicolumn{3}{|l|}{Receives FOC from DCSC via e-mail format. Go to BOCRIS and print pending orders, reviewing for accuracy and matching against previously gathered info. Puts billing \# assigned on folder \(\&\) in BRITE.} \\
\hline Prepare FOC 8 send to CLEC \(\&\) project mgr. Update folder \(\&\) BRITE w/assigned due date, FOC to cust., FOC from center. & 5 & \\
\hline One business after due date, go to BOCRIS print CPx'd order. Goes to folder \& updates CPX dale, marks folder w/"c" and goes to BRITE and update with CPX date. Puts printed copy of order in folder, places folder in tray for Sherry to pick up. & 10 & . \\
\hline & 175 & \\
\hline & 2hours; 55 min & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Detail Process Analysis for BRI} \\
\hline \multicolumn{3}{|l|}{Per Randy Ray} \\
\hline Step¢ & Time & Assumptions \\
\hline \multicolumn{3}{|l|}{Sonja delivers LSR to SD.} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Ensure "clean order" Check DD. ensure w/in reason w/interval guide, check to see if expedite. Go to EU form, is in legible, is local contact populated. Go to Ordering document . . Is il complete? Check to ensure DLR form is correct. \(\qquad\)}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{Begin filled out top part of fite folder w/necessary info. And populates receive date - start date.} \\
\hline \multicolumn{3}{|l|}{Go to BOCRIS, book up "O" acct., validate the \(\mathbf{Q}\) acct. \& print. Go to ORION to validate address of EU \& print out. Go to Netscape intramet for ISDN availability and verily whether or not ANSA is involved and switch type.} \\
\hline \multicolumn{3}{|l|}{Call cuslumer \& acknowledge receipt of order, obtain any further info needed, and let the know you are one working on it.} \\
\hline \multicolumn{3}{|l|}{Go to BRITE \& complete necessary fields/steps.} \\
\hline \multicolumn{3}{|l|}{Pull up transmittal form from WORD. Complete form. Print out and complete tax cover sheet} \\
\hline \multicolumn{3}{|l|}{fax to DCSC \& to Proj. Myr. Typically 8 pages. Wait on confirmation. Go back to file fokder 8 update.} \\
\hline \multicolumn{3}{|l|}{Puls flay on forder indticaling date sent and place folder in "watting on FOC" tray.} \\
\hline \multicolumn{3}{|l|}{Watting on DCSC to send FOC. Proactive follow-up to DCSC. fax thas to be created and fotlow-up performed by fax.} \\
\hline \multicolumn{3}{|l|}{FOC delivered to SD via Sherry. Look up order in BOCRIS, print order, verify details (order \#. the two telephone H's. \& due date, \& cracuit ID info).} \\
\hline \multicolumn{3}{|l|}{Create an FOC transmittal form from WORD based on information acquired and fax to project mgr. and to CLEC.} \\
\hline Go to BRITE \& populate w/appropriate info. gathered. & 10 & \\
\hline Update folder w/same. & 5 & \\
\hline \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
Put file in "waiting for completion" tray on desk. Three - five days after DO, to check BOCRIS to see if order has been CPX'd. If so, print copy of order, place in file. Update file folder. Update BRITE \& \(\begin{array}{ll}\text { print copy of BRITE screen. Place BRITE scre } & 10\end{array}\) \\
Orders don't always CPX win 3-5 day interval. Estimate is \(20 \%\) do not. This means the 10 minute step has to be repeated.
\end{tabular}}} \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

```

ミこミここ

```


```

こ=m

```


```

Item 2
Please let me know what additional informa-inn you require.
Thank you,
Debbie Timmons
205.321.4990
Item 3
This item is of type MS EXCEL (obsolete Einezype (4)| and cannot be displayed as
TEXI

```

CRSG / Account Team

\section*{xDSL 'JCL UNE Environment}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{UNE Headcount Allocation} \\
\hline \multicolumn{4}{|l|}{All Management Job Grades are on compensation.} \\
\hline Name & JG/Cont & \% UNE Work & Type of Work or Comments \\
\hline Ruby Neely & 58 & 100\% & Team Lead \\
\hline Cheryl Lewis & 58 & 100\% & Team Lead \\
\hline Joanie Mahan & Contractor & 100\% & Process orders \\
\hline Cathy Compton & Contractor & 100\% & Process orders \\
\hline Cheryl Brown & 56 & 100\% & Process orders \\
\hline Laura Stephens & 56 & 100\% & Process orders. \\
\hline Sonja Johnson & Contractor & 20\% & Data management / admin \\
\hline Lillie Lawson & Contractor & 20\% & Data management / admin \\
\hline Mary McCoy & WS 10 Clk & 20\% & Clerical / admin \\
\hline Sandy Lang & Contractor & 100\% & Clerical / admin \\
\hline Terri Clark & 58 & 20\% & Engineering Interface \\
\hline Charlotte Donlon & 56 & 60\% & Issue resolution / CRSG operational support \\
\hline Monica Dodge & 56 & 60\% & Customer care \\
\hline Titania Alexander & 56 & 50\% & Special construction estimates \\
\hline Account Manager & K3 & 100\% & Account management \\
\hline Sales Support - Direct & 58 & 10, \% & Support: Acct Team, CRSG \& custorniers \\
\hline Sales Support - Direct & 59 & & Support: Acct Team, CRSG \& customers \\
\hline Sales Support - Dept & 58 & & Support: Acct Team \& Interdepartmetal POC \\
\hline Brenda Gibson & 58 & & Supervision \& information management \\
\hline Account Team SDII & 53 & 103\% & Account management \\
\hline Tracey Morant & 58 & 10\% & Supervision \& customer relationship \\
\hline Mitzi Link & 59 & 99\% & Supervision \& leadership of CRSG \\
\hline
\end{tabular}

Information prepared by:
Jan. 2000June
Contractor/Temp ..... 2000
Johnson, Sonja ..... \(\$ 41.00\)
Nelms, Leesona
\(\$ 36.50\)
Norris, Janie
\(\$ 38.00\)
Jones, Barbara ..... \$ 37.50
Lawson, Lillie ..... \$ 52.00
Mahan, Joanie ..... \(\$ 49.00\)
Compton, Cathy ..... \$ 49.00
Lang, Sandy ..... \(\$ 20.00\)

UNE volurte is.00
\begin{tabular}{|lrrl|}
\hline Month \(U C L\) & xDSL & \multicolumn{2}{c|}{ TC:Gl } \\
& & & \\
Apr-99 & 0 & 24 & 24 \\
May-99 & 1 & 41 & 42 \\
Jun-99 & 0 & 63 & 63 \\
Jul-99 & 43 & 91 & 134 \\
Aug-99 & 125 & 300 & 425 \\
Sep-99 & 78 & 568 & 646 \\
Oct-99 & 708 & 476 & 1184 \\
Nov-99 & 1009 & 529 & 1538 \\
Dec-99 & 1119 & 700 & 1819 \\
Jan-00 & 1258 & 502 & 1760 \\
Feb-00 & 75 & 22 & 97 As of 12Noon 2/4 \\
& 4416 & 3316 & 7732 \\
\hline
\end{tabular}

\section*{Phople
atelassuryed}

POD Item No. 81
Attachment No. 15
Supporting Data for CNAM \& LNP

\title{
CNAM LNP
}

Calling Name Database Local Number Portability



In response to your request for information, I have altempted to define the required work activities and times for implementation of CNAM. All of the work is assigned to a Specialist. JFC 4320. However, all of the Global Title Translations work is currently being done by the Engineering Assistants. They receive a differential for the time spent on this activity.

I am also including some time for my coordination activities. JFC 4324, associated with the implementation of new service. I'm not sure that information has over been included in previous attempts to define costs for this service. Use your best judgment on including this in your response.

I am splitting the work requirements up according to the interconnection status of the customer. Today we have several different types of CNAM interconnections. The most common are:
- ITCs and CLECs with small networks (small STPs or SSP only interconnection on our LSTPs)
- Large Interconnections with other RBOCs / Independents
- MTP routing for an ITC / CLEC with names in another provider's database*
*Thus far, these have been relatively small customers - 1-10 offices.
Small Networks - BST Database
\begin{tabular}{|c|c|c|}
\hline Activity & Time Requlrad & \(1{ }^{56}\) \\
\hline Up-front coardination activities & 2 nr . & 4324 \\
\hline Up-front coordination activities & 5 hr . & 4320 \\
\hline Establishment of initial point codes) (STP hosting CNAM SCPS) & 1 hr . & 4320 \\
\hline Establishment of additional point codes (STPs hosting CNAM SCPs) & 7 hr . \({ }^{\text {N"F }}\) & 4320 \\
\hline Establishment of initial point code (CNAM SCPs) & 4.5 hr. & 4320 \\
\hline Establishment of additional point codes (CNAM SCPs) & None (provided cluster is the same) & 4320 \\
\hline Global title additions/changes & \(1.5 \mathrm{hr}{ }^{\circ}{ }^{\circ}\) & 4320 \\
\hline Gateway screening to allow queries & \({ }^{4} \mathrm{hr}\). & 4320 \\
\hline SMS Changes - NPANXX definitions & 30.80 min . & 4320 \\
\hline
\end{tabular}
"Based on the current\# of STPs hosting CNAM SCPs
*Based on the current\# of Gateway STPs
**Besed on the current \# of CNAM SCPs. This number is expected to increase over time.
Large Customers - BST Database (average based on provious interconnections)
\begin{tabular}{|l|l|c|}
\hline \multicolumn{1}{|c|}{ Activlty } & \multicolumn{1}{|c|}{ TIme Required } & JFC \\
\hline Up-front coordination activities & 10 hr. & 4324 \\
\hline Up-front coordination activities & \(10-20 \mathrm{hr}\). & 4320 \\
\hline \begin{tabular}{l} 
Establishment of initial point codes (RSTP) \\
including gateway screening
\end{tabular} & \(16-24 \mathrm{hrs}\). & 4320 \\
\hline \begin{tabular}{l} 
Establishment of additicilal routing (STPs hosting \\
CNAM SCPs)
\end{tabular} & \(28 \mathrm{hrs}\). & 4320 \\
\hline Establishment of point code (CNAM SCPs) & \(40 \mathrm{hrs}\). per SCP pair &. \\
\hline Global title additions/changes & \(40 \mathrm{hrs}\). & 4320 \\
\hline SMS Changes - NPANXX definitions & \(5 \mathrm{hrs}\). & 4320 \\
\hline
\end{tabular}

> "Based on the current \# of STPs hosting CNAM SCPs
"Based on the current \# of Gateway STPs
"Based on the current \# of CNAM SCPs. This number is expected to increase over time.
(n)

MTP routing for ITC/ CLECe with names in another provider's database
\begin{tabular}{|c|c|c|}
\hline Activity & Time Required & JFC \\
\hline Up-front coordination activities & 5.10 hr & 4324 \\
\hline Up-front coordination activities & 5 hrs . & 4320 \\
\hline Establishment of initial point codes (STP hosting the customers). Gateway screening & 1.2 hr . & 4320 \\
\hline Establishment of additional point codes (STPs hosting CNAM SCPs) & 1-2 hrs.* & 4320 \\
\hline Establishment of point code(s) (CNAM SCPs) & 4.5 hrs. \({ }^{\text {dow }}\) & 4320 \\
\hline Global titte additions/changes (chgs. Made at Regional / Gateway STPs) & \(1.5 \cdot 3\) nrs. (depending on the number of GTTs) \({ }^{* * *}\) & 4320 \\
\hline Gateway screening to allow queries (RSTP) to allow response mersages & 1 hr . & 4320 \\
\hline SMS Changes - NPANXX definitions & 15-30 min (average). & 4320 \\
\hline
\end{tabular}
"Based on the current \# of STPs hosting CNAM SCPs
"Based on the current\# of Gateway STPs
**Based on the current \# of CNAM SCPs. This number is expected to increase over time.

\section*{Additional point codes for existing customers:}

Although the coordination time is not necessarily as long, the addition of new point codes for existing customers is along the same lines as adding a new point code for a small network. This can turn into a huge work effort all it's own. There have been many difficulties getting these customers working without a major troubleshooting effort. This is especially true with MTP routing arrangements since multiple companies are involved.

\section*{Maintenance of GTT Tables:}

This is an ongoing effort in INSAC. The GTT tables must be updated monthly to account for new NPA-NXXs. This effor takes about 6-10 hours a month to keep up with NPA-NXX changes and additions. This work effort will increase as BellSouth interconnects with additional customers and database providers.

\footnotetext{
Ms we discussed on the phone, there are several scenarios that might be considered a "disconnect" of CNAM service with BellSouth, but it is doubtful that a customer would actually terminate CNAM service altogether. In most cases, the "disconnect" will actually be a change in routing for a customer. The only circumstances that might warrant the term "disconnect" would be the retirement of a central office. Even in that situation, the NPA-NXXs would continue to exist and require some type of routing treatment.

It is unlikely that large eustomers, who have their own databases, would initiate changes of this nature, so I will primarily address small ITCs and CLECs. The only situation that comes to mind regarding large customers involves massive routing and screening changes. This could happen if a CNAM provider/customer changes HUB providers or decides to install, or remove, direct links into BellSouth. The scope of this project is impossible too difficult to define. Since it is unlikely, I would suggest that time requirements would need to be calculated on a case by case basis.
}

\section*{Small ITC / CLEC Behind BST's Network Changing CNAM Providers}

This would require a coordinated cutover of the customer's existing service to the new CNAM provider. The customer may elect for BST to continue launching their CNAM queries, but direct their NPA-NXXs to the new database. However, it is also a possibility that the customer may choose to have the new CNAM provider launch their queries. Either situation requires changes to the routing and screening of the customer's queries and responses.

If the ITC/CLEC elects to have EST continue to launch their queries, the NPA-NXXs would be directed to the new provider's database. Assuming that BST is already connected to the new provider, this scenario is not a ot of work on our part. It requires that INSAC redirect the global titles to the new provider's database. The coordination required is minimal if the new provider has already been receiving some queries from the ITC/CLEC as part of the current interconnection agreement. This whole process shouldn't take more than \(5-6\) hours, per office (4-8 NXXs each) once the paperwork is received from the new provider. That includes some up-front coordination with the customer and the new provider.

Things get more complicated if the ITC/CLEC wants the new CNAM provider to launch all of their queries. Changes would be required in the following locations:

ITC/CLEC switch(es) to start querying the new provider
BST STP pair connecting the customer to our network
Gateway STP pair connecting BST to the new CNAM provider
The new database provider to allow the ITC/CLEC to address their capability code.
The actual cutover would need to be coordinated between the ITC/CLEC, BST and the new CNAM provider. Past experience with arrangements of this type indicates that at least some time would be required for troubleshooting the new arrangement. It would be rare if all the pieces of the puzzle were actually in place at the time of the cutover. Here's my best guess on the time requirements:
\begin{tabular}{|c|c|c|}
\hline A \({ }^{\text {ctichem }}\) & & TFC \\
\hline Up-front coordination actlvities & 1 hr . & 4324 \\
\hline Up-front coordination activities & 2 hr. & 4320 \\
\hline Screening and routing changes in associated BST STPs to allow queries to the new provider & 1 hr . & 4320 \\
\hline Olonal tifle changes & \(1.5 \mathrm{nr} .{ }^{\circ}\) & 4320 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
Gateway screening to allow queries and \\
responses from the new provider for the \\
customer. (Gateway STPs w/ connection to new
\end{tabular} & 1 hr. & 4320 \\
\hline providen
\end{tabular}

\section*{LECLASSIFIED}

POD Item No. 81
Attachment No. 17
Supporting Data for Interoffice Facilities, Local Channel, Loop Concentration, Various Local Loops, and Feature Activation

INPUTS
Interoffice Facility @ OC-3
\begin{tabular}{|c|}
\hline eremith \\
\hline Nutwork \\
\hline Neturk \\
\hline Nenwort \\
\hline Metmork \\
\hline Nemuort \\
\hline Networn \\
\hline atemork \\
\hline Metwart \\
\hline Mexwork \\
\hline Metwork \\
\hline Network \\
\hline \\
\hline Natmodk \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Laber Egponse Demertption ginninde? Kheretind & \[
\begin{gathered}
\text { neci } \\
\text { Evthand }
\end{gathered}
\] &  & \[
\begin{aligned}
& \text { First } \\
& \text { inconone } \\
& \text { Tinn } \\
& \text { then }
\end{aligned}
\] & Additional installation Tine (Hpury & Additional Disconnect Tina Houn \\
\hline Servica Order & 2300 & 4.0000 & 0.0000 & 0.0000 & 0.0000 \\
\hline Servica Order & 2300 & 0.0500 & 0.0500 & 0.0500 & 0.0500 \\
\hline Service Orem & \(474 x\) & 0.6800 & 0.1800 & 00600 & 0.1400 \\
\hline Sevicr Orter & \(470 \times\) & 01118 & 0.0412 & 00000 & 00000 \\
\hline Service Order & 401x & 0.2656 & 0.2666 & 0.2666 & 0.2586 \\
\hline Sersion Orrter & \(430 x\) & 0.1333 & 0.1166 & 0.0033 & 0.188 \\
\hline Enginesing & 31xX & Saseo & 0.0000 & 0.0000 & 0.0000 \\
\hline Eagimaering & 341 x & 0.0333 & 0.0333 & 0.0000 & 0.0000 \\
\hline Carnecte Test & 431 x & 3.7300 & 1.5968 & 3.7300 & 15066 \\
\hline Connect e Teut & 470x & 1.6640 & 0.2688 & 1.6640 & 0.2686 \\
\hline Commeat \({ }^{\text {a }}\) Teat & 471 x & 1.9000 & 0.0000 & 1.8000 & 0.0000 \\
\hline Servios Onder & 2300 & 1.1458 & 0.4775 & 1.1458 & 0.4775 \\
\hline
\end{tabular}


MMPUTS

\section*{Interoffice Facility @ OC-12}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \({ }^{-}\) & Source & Mr.armers & \begin{tabular}{l}
Inbor Enpanae Decritption \\

\end{tabular} & \[
\begin{gathered}
\text { FFC } \\
\text { Pecten }
\end{gathered}
\] &  & Finet moonsec Trum Hone & \[
\begin{aligned}
& \text { Additional } \\
& \text { therammion } \\
& \text { Itime } \\
& \text { thous) }
\end{aligned}
\] & adratonal Discomnect Tine Hon \\
\hline 18 & Nemeqtis & CUSTOMER PONT OFCONTACT (LCSC)Senve laqui & Service Order & 2300 & 4.0000 & 0.0000 & 00080 & 0.0000 \\
\hline 1 & Naturatk & CUSTOMER POWT OF COMTACT (LCSC) & Sandie Order & 2300 & 0.0500 & 0.0500 & 0.0500 & 0.0600 \\
\hline 2 & Network & AOCESS CUSTO - IATMOCATE CENYER (ACAC) & Service Order & 473x & 0.0600 & 0.1000 & 0.0800 & 0.1800 \\
\hline 3 & Natwork & CARCUTT PROWMOM CROUP (CPG) & Service Order & 470x & 01116 & 0.0412 & 0.0000 & 00000 \\
\hline 4 & Natwort & INETAULTIOM S ETEE CENTER (MC) & Servina Order & 401x & 02568 & 0.2666 & 02665 & 0.2666 \\
\hline 5 & Natuort & CO MESTAL B MTCEESNTCH EOUP & Service Order & 430x & 0.1333 & 0.1166 & 0.0833 & 0.1966 \\
\hline 7 & Network & NETMORK 4 ENGM EERMNG PLANMMNG (FC20) & Engineering & 31xX & 129090 & 0.0000 & 0.0000 & 0.0000 \\
\hline 6 & Mesmora &  & Enjinearing & 341x & 0.0333 & 0.0333 & 0.0000 & 0.0000 \\
\hline 9 & Network & CO \#STFAL 8 mTCEOKT \& FAC (NTEL) & Commeat 2 Test & 431x & 37300 & 15086 & 37300 & 1.5066 \\
\hline 10 & Mnemork & CIPCUIT PROVEMOMNG GROUP (CPG) & Commear Test & 470x & 1.6340 & 0.2626 & 16640 & 0.2626 \\
\hline 11 & Netrous & ACCESS CUSTOMER ADYOCATE CENTER (UPE) & Connmal 8 Test & 471x & 1.0600 & 0.0000 & 1.9000 & 0.0000 \\
\hline 12 & Namant & CUSTONER POWT OF CONTACT (CSC) & Servine Order. & 2300 & 1.1450 & 0.4775 & 1.1450 & 0.4775 \\
\hline 13 & & - & & & & & & \\
\hline 14 & & & & & & & & \\
\hline 15 & Nemeork &  & & & & & & \\
\hline 16 & & & \multicolumn{6}{|l|}{For LCSC wowk timestonger thon the efundurd hall hour the manal work tros below apply.} \\
\hline 17 & & & & & & & & \\
\hline 18 & & & 1.1958-.05= & 1.1450 & & & & \\
\hline 10 & & & .5275-05 = & 0.4775 & & & & \\
\hline 20 & & & 1.1958-.05 = & 1.1458 & & & & \\
\hline 21 & & & . 5275 .05 = & 0.4775 & & & & \\
\hline
\end{tabular}


02.1 - 2.2

Interaffiti.
\[
0^{3} \cdot{ }^{2}
\]


ㄴ． 0.5 ：\(=269\) 320
matizemilk

150

\(\stackrel{y}{5}\)
Sindin
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & A & B & C & D & E & \(F\) \\
\hline 98 & \multicolumn{6}{|c|}{NOMRECURRING LABOR} \\
\hline 100 & \multicolumn{6}{|c|}{AWIRE 081 DIGITAL LOOP} \\
\hline 107 & & \multicolumn{3}{|c|}{FIRST} & \multicolumn{2}{|r|}{ADDITIONAL} \\
\hline 102 & & JFC/ & \multicolumn{2}{|l|}{WORKTIMES (HRS)} & \multicolumn{2}{|l|}{WORKTIMES (HRS)} \\
\hline 103 & OESCRIDTION & Prybund & INSTAU & DISCOMNECI & MSTA & DISCONNFCT \\
\hline 104 &  & & & & & \\
\hline 108 & CUSTOMER POINT OF CONTACT (ICSC) & 2300 & \multicolumn{4}{|c|}{SEE BELOW} \\
\hline 108 & CIRCUIT PROYEIONING CENTER (CPO) & 470x & 0.1333 & 0.0333 & 0 & 0 \\
\hline 107 & NETWORK PLUG-IN ADMINISTRATION (PICS) & \(341 \times\) & 0.0333 & 0 & 0 & 0 \\
\hline 108 & WONK MMMAGEMENT CENTER MMC) & 4Wxx & 0.7333 & 0.25 & (1) 0 & 0 \\
\hline 109 & ACCESS CUSTOMER ADVOCATE CENTER (ACAC) & 471x & ala opros & 10 nomen & 0.001 & 10 200033 \\
\hline 110 & INSTALL A MTCE-8PEC SVCS (SSIM) & 411x & 0.25 & 0.1807 & 0.1687 & 0.0833 \\
\hline 111 & WORK MANAGEMENT CENTEA MMC) & \(4 \mathrm{H} \times \mathrm{x}\) & 0.1007 & 0 & 0 & 0 \\
\hline 112 & ACCESS CUSTOMER AOVOCATE CENTER (ACAC) & 471X & 0.33331 & 0 & 0 & 0 \\
\hline 113 & CUST PT OF CONT (ICSC)(MANUAL VS ELECT.) & 2300 & & & & \\
\hline 414 & WORK MWWAOEMENT CENTER (WMC) &  & 0.1637 & 0 & 0 & 0 \\
\hline 115. & ACEESS CUSTOMER ADVOCATE CENTER (ACAC)' & \(471 \times\) & 0.3339 & 0 & 0 & 0 \\
\hline 116 &  & & & & & \\
\hline TTY & ADDRE8S CACIUTY INVENTORY (AFIG) & coax & 0.0167 & 0.0167 & 0.0467 & 0.0167 \\
\hline 910 & CIRCUIT PROVIIONINO CENTER (CPG) & 470 x & 0.4097 & 0.026 & 0.4097 & 0.033 \\
\hline 170 & OUTBIOE PLANT ENGNEERINO (FO30) & \(32 \times x\) & 3 & 72 & 3 & T- \\
\hline & [C\%MCTMTIT & & & & & \\
\hline 121 & CO MESTAL E WTCE FIELDCIRCUIT S FAC & 4312 & 0.4167 & 0.333 & 0.1607 & 0.0339 \\
\hline 12k & ACCES8 CUSTOMER AOVOCATE CENTER (ACAC) & 4717 & \(7 \times\) & 0 & 14.0 & 0 \\
\hline 12k & IINSTALG WTC B-SPICSVES (BSIM) & 4118 & \(\longrightarrow\) 3.E.77 & 0.6 & 1.26 & 0.0035 \\
\hline 12ㅣㅣ & STAM & & & & & \\
\hline 129 & INTYAL 1 MTCESPECSVCS (BSIM) & 611x & 0.3 & 0.3 & 0 & 0 \\
\hline 123 &  & CNTM & \(7 \quad 0.375\) & 0 & 0 & 0 \\
\hline 127 & & & & & & 0 \\
\hline 12.1 & CUST FIOF CONT (1CSC) TOTAL TME & 2500 & 0 & 0.3333 & 0, 0.30 & 0.050 \\
\hline 130] & WORK MME ELECTM MNUL AOOITVE & & 0.4600 & 0.2606 & 0.2000 & 0.0000 \\
\hline 131 & & & & & & \\
\hline 132 & & & & & & \\
\hline 133 & \({ }^{\circ}\) Order Coordinedon - Specined Corvirtion Trie & & & & & \\
\hline 134 & Assumes inersmental manual ordor peordinetion repuree when & non an OL & apuerint a partier & der eonvermion tha & & \\
\hline 138 & Actumes 75\% of centrol omioes are net menned very dey & and 50\% of & - & all ipocity convor & riton & \\
\hline 138 & It a smo when tre central oflice is not menned. & & & & & \\
\hline 137 & Leep will be ordered vie en eloutenic inferfece. & & & & & \\
\hline 138 & & & & & & \\
\hline 139 & Cost ElEMBTULA M MONTM8 & 42 & & & & \\
\hline
\end{tabular}

\section*{CO－POP}


\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{NONRECURRING LABOR} \\
\hline \multicolumn{6}{|l|}{LOCAL CHANNEL - DEDICATED DS1} \\
\hline & & \multicolumn{2}{|r|}{INSTALL} & \multicolumn{2}{|l|}{DISCONNECT} \\
\hline & JFCl & \multicolumn{4}{|l|}{WORKTIMES (MRS) WORKTIMES \({ }^{\text {(HRA }}\)} \\
\hline DESCRIPTION & paybano & FlR6T & ADOTL & EIRSI & ADOT \\
\hline \multicolumn{6}{|l|}{SERVICEORPER} \\
\hline CUST PTOF CONT (ICSC) & 2300 & \multicolumn{4}{|c|}{SEE BELOW} \\
\hline COINSTALL \(\%\) MTCE FIELD & 431 X & 0.0417 & 0.0000 & \multicolumn{2}{|l|}{} \\
\hline ACC CUST ADV CTR (ACAC) & \(471 \times\) & 000035 & \(0^{6} 000000\) & \multicolumn{2}{|l|}{} \\
\hline CKT PROV GRP (CPG) & 470x 9 & 0.1333 & -0.0000 & 0.0333 & 0.0000 \\
\hline WORK MGT CTR (WMC) & 4 WXX & 0.3577 & 0.1720 & 0.0000 & \multirow[t]{2}{*}{0.0000} \\
\hline INST 8 MTCE-SP SVC (SSIM) & 411 x & 0.3072 & 0.0000 & 0.1687 & \\
\hline CUST PT OF CONT (ICSC)(MANUAL VS ELECT.) & 2300 & \multicolumn{4}{|c|}{SEE 8ELOW} \\
\hline EMCINEFRIMG & & \multicolumn{3}{|l|}{下} & 4 \\
\hline OSP ENG (FG30) & \(32 \times x\) & 3.0000 & 3.0000 & 0.0000 & 0.0000 \\
\hline CKT PROV GRP (CPG) & 470X & 0.4917 & 0.4097 & 0.0250 & 0.0250 \\
\hline ADO \& FAC INVENT (AFIG) & 400 X & 0.0183 & 0.0165 & 0.0000 & 0.0000 \\
\hline NTWK PLUG-IN ADMIN (PICS) & \(341 \times\) & 0.0500 & 0.0000 & 0.0000 & 0.0000 \\
\hline \multicolumn{6}{|l|}{CONNECT STAT} \\
\hline CO INSTALL 8 MTCE FIELD & \(431 \times\) & 0.4167 & 0.4187 & 0.1867 & 0.1687 \\
\hline INST I MTCE-SP SVC (SSIM) & 411X & 2.1333 & 2.1333 & 0.3333 & 0.3333 \\
\hline ACC CUST ADV CTR (ACAC) & 479X & 0re9 & 0 OTCN & 0.0000 & 0.0000 \\
\hline & & 4 & 1 & & \\
\hline 1RAYS & & & & & \\
\hline INST \& MTCESP SVC (SSIM) & 411 X & 0.3000 & 0.0000 & 0.0000 & 0.0000 \\
\hline CUST PT OF CONT (ICSC) TOTAL TMM & 2300 & 1.1007 & 0.0417 & 0.5333 & 0.0417 \\
\hline WORK TIME ELECTRONIC INTERFACE & & 0.0600 & 0.0500 & 0.0600 & 0.0600 \\
\hline MANUAL ADDITIVE & & 1.0507 & 0.0000 & 0.4833 & 0.0000 \\
\hline & & & & & \\
\hline COST ELEMENT LIFE IN MONTHE & 42 & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{} & & & & & & \\
\hline & －－ & & & & & & & & & & \\
\hline & － & － & \[
-1
\] & & & & & & & & \\
\hline & & & & & & & & & & & \\
\hline & & & & & Sclio & ＝90．520s & & & & & 12 \\
\hline & & & & & esprit & \(=50-85611\) & & & & & 02 \\
\hline & & & & & sliva & ＝ 90 celcs & & & & & 01 \\
\hline & & & & 7 & Tosbil & \(=50-8581 \%\) & & & & & 0 \\
\hline \multicolumn{7}{|l|}{\multirow[t]{2}{*}{}} & & & & & 21 \\
\hline & & & & & & & & & yomyay & & \(\stackrel{9}{\text { si }}\) \\
\hline \multirow[t]{2}{*}{\[
\cdots
\]} & & & 1 & & & &  & & Woman & & \({ }^{\text {si }}\) \\
\hline & & & & & & & & & & & 6 \\
\hline \multirow[t]{4}{*}{} & & \({ }^{195411}\) & sturo & 05111 & 0082 & repor mives &  & & nomen & & 21 \\
\hline & 100000 & 00061 & 00000 & 00061 & X122 & 18917 penuog & （3Nn）831N3J 3ivjonav y3morsmoss3jor & & Momyow & & 11 \\
\hline & STg 0 & 100981 & gaszo & 100991 & － 024 & 1891780000 &  & & Homyon & & 01 \\
\hline & 99651 & cocie & 99651 & 100ELE & XIEE & 15917 ponico &  & & Womay & & 6 \\
\hline \multirow[t]{2}{*}{－－} & 00000 & 00000 & ercoo & IEEEOO & \(\times\) & Bupovibu &  & & Nomuen & & 0 \\
\hline & 00000 & 00000 & 00000 & looszz & XXIL & Expoevtiby &  & & nomvem & & 2 \\
\hline \multirow[t]{2}{*}{－－－} & 00000 & Es80\％ & 00000 & ；E8802 & XXEE， & －buvoundia &  & & \％омтет & & 9 \\
\hline & 9940 & E8800 & 99110 & Ececio & XOCH！ & －roporames &  & & yompen & & 5 \\
\hline \multirow[t]{2}{*}{} & 99980 & Sosto & 99320 & 998\％ 0 & XIOP1 & 1 epposeques & （ONI）83INE3 3 SIM 8 HOUVTIVISM & & womven & & \\
\hline & 00000 & 00000 & 2ıroo & 91410 & XOLD！ & 1 180000wses &  & & Nompen & & E \\
\hline \multirow[t]{3}{*}{…－} & 00810 & 00500 & 00810 & 00900 & X1241 & reporeaves &  & & yomyen & & 2 \\
\hline & 00500 & 00000 & 00500 & 00500 & 0082； & ；eporamis & J（055）15V1100 to imiod yemoisno & & yomem & & \\
\hline & 00000 & \begin{tabular}{l}
\(00000^{\circ}\) \\
［TNOHT
\end{tabular} & 00000 &  &  & ［1－ &  & & Wownw & & \(\bar{\square}\) \\
\hline \multirow[t]{2}{*}{} & inot & （anom） & EInom & （cimil & prequid &  & amber & & Hinos & & \\
\hline & mancoma & － & coll & cent & 10r & uopdpowa mudiry rock & & & & & \\
\hline \multirow[t]{2}{*}{} & Vuowpp & monelly & 2500003 & ropancran & & & & & & & \\
\hline & & Nevopupy & Jant & St & & & & & & & \\
\hline \multirow[t]{2}{*}{} & & & & & & & & & & & \\
\hline & & & & & ESC & （1）d0071200781 & әu4eप 18007 & & & & \\
\hline \multirow[t]{2}{*}{} & & & & & & & & & \multicolumn{3}{|c|}{\multirow[t]{2}{*}{}} \\
\hline & \multicolumn{6}{|r|}{sindNI} & & & & & \\
\hline
\end{tabular}



\footnotetext{
6612
}
E. \(\quad 7\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline 7 & & & LC :12 & & & & & & 121199 \\
\hline \multicolumn{9}{|c|}{NPMTS} & \\
\hline & & & & & & & 1 & & \\
\hline \multicolumn{10}{|c|}{Local Channel 8 Local Loop d OC-12} \\
\hline & & & & & & & ! & & \\
\hline & & & & & & & & & \\
\hline & & & & & Finst & Fhet & adamionel & Additorm & \\
\hline & & & & & Instelintion & 4remineq & Instatiotion & Binconnmet & \\
\hline & & & Ltor Enperae Omerdrdan & SFCl & Tmion & 7me & Trum & Tino & \\
\hline & Sonfor & coplersp &  & Eramat & A-n题 & Atrem & Herser &  & \\
\hline 18 & N-tant & CUSTOUER PONT C OONTACT (LCSC)Senvio tray & Servion Qydar & 2300 & 4.0000 & 0.0000 & 0.0000 & 0.0000 & \\
\hline 1 & Noturnt & CUSTOMER POTTOFCONTMCT (LCSC) & Senion Ordar & 23.01 & 0.0500 & 0.0600 & 0.05009 & -0.0500 & \\
\hline 2 & Noturnt & ACCESSCUSTOMFINMOCATE CENJER (ACAC) & Sencioe Onder & 4718 & 0.0000 & 0.1800 & 0.00091 & 0.1000 & \\
\hline 3 & Netepotr & CIRCUTPRONPOMNGERDUP(CPG) & Sentos Order & \(470 x\) & 0.1118 & 0.0412 & 0.0010 & 0.0000 & \\
\hline 4 & Notment & MSTA1ATON M NTCECENIER ( \({ }^{\text {COM }}\) ) & Surive Order & 4018 & 0.2066 & 0.2006 & 0.2506 & 0.2006 & \\
\hline 5 & AMenuer & COWSTALI Q MTCESWTCHEOUP & Servico Oriar & 43015 & 0.1333 & 0.1105 & 0.0833 & 0.1866 & \\
\hline 6 & Alummert & OUTEDEPLMT ENGMEENO (FGSO) & Enrineoding & 3200 & 2.0033 & 0.0000 & 2.08331 & 0.0000 & \\
\hline 7 & Numert &  & Exramering & \(3110 x\) & 22500 & 0.0000 & 0.0009 & 0.0000 & \\
\hline 8 & Matmont & NETMOPKPLNMVE ENG EERMG (PMCS) & En memin & 3418 & 0.0333 & 0.0333 & 0.0083 & 0.0000 & \\
\hline 8 & Preverin & COMSTALL EMTCE ONT A FAC (NTEH) & Comneat Teed & 4318 & 3.7300 & 1.5006 & 3.7300 & 1.5468 & \\
\hline 10 & Anewert & CRCUIT PROMSIOMIG GROUP (CPG) & Commeate Teed & \(470 x\) & 1.6840 & 0.2508 & 166901 & 02826 & \\
\hline 11 & Prevart & ACCESS CUSTON ER ADVOCATE CENIER (UNE & Connectaten & 471x & 1.000 & 0.0008 & 1.8000 & 0.0000 & \\
\hline 12 & Notmart & CUSTOMER PONT OF CONTACT LCSC & Senvion Order & 2300 & 1.1450 & 0.4775 & 1.1450 & 0.4775 & \\
\hline 13 & & & & & & & & & \\
\hline 14 & & & & & & & & & \\
\hline 15 & Namart & Cant elanort Lito (Mantin) \(=\) & 42] & & & & & & \\
\hline 16 & & & \multicolumn{6}{|l|}{} & \\
\hline 17 & & & & & & & & & \\
\hline 10 & & & 1.1950-.05x & 1.8458 & & & & & \\
\hline 18 & & & 5775-06= & 0.4775 & & & & & \\
\hline 20 & & & 1.1850-.05 \(=\) & 1.1458 & & & & & \\
\hline 21 & & & .575-05= & 0.4775 & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & Marimmp of &  & Codemermal & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Tr & & & FEA _DS3 & & & & & & 1/21/99 \\
\hline \multicolumn{9}{|c|}{INPUTS} & \\
\hline & & & & & & & & & \\
\hline \multicolumn{10}{|c|}{FEATURE ACTIVATION@ DS3} \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & Fine & Frat & Adtrationd & Addritional & \\
\hline & & & & & In mitition & meonrea & matration & Dieconnmex & \\
\hline & & &  & \({ }_{5} \mathrm{CO}\) & Timo & T-0 & Time & Timo & \\
\hline & Souma & Netaque & Ammatos ethatital & Rextrum & (tever & Hour & (H) & Hoym & \\
\hline 1 & Networt & CUSTOMER NONT OFCONTACT (LCSC) & Senvice Order & 2300 & 0.0500 & 0.0500 & 0.0500 & 0.0500 & \\
\hline 2 & Networt & ACCESSCUSTO, ADOOCATE CENIER (ACAC) & Service Order & 471X & 0.0500 & 0.1600 & 0.0600 & 0.1800 & \\
\hline 3 & Notuort & CIRCUTV PROMOMOCROUP (CPG) & Service Order & 470 X & 0.1119 & 0.0412 & 0.0000 & 0.0000 & \\
\hline 4 & Nemorit & WSTALLATION E MTEECENIER (MC) & Service Order & 401 x & 0.2689 & 0.2666 & 0.2606 & 02606 & \\
\hline 5 & Ninemort & OOMESTML MTCESNTICHEOWM & Senvina Ordar & 430 X & 0.1333 & 0.1168 & 0.0033 & 0.1166 & \\
\hline & & & & & & & & & \\
\hline 7 & Meterork & NETMORXE ENGNEERMG PLANTMG (FG20) & Engimearing & \(31 \times \mathrm{X}\) & 2.2500 & 0.0000 & 0.0000 & 0.0000 & \\
\hline 6 & Notmort &  & Engmeoring & 341 X & 0.0033 & 0.0333 & 0.0000 & 0.0000 & \\
\hline 9 & Netrock & COMSTAL P MTCECKT A FAC (MIE) & Corneal \({ }^{\text {a }}\) Tea & 431 X & 3.7300 & 1.5066 & 3.7300 & 1.5968 & \\
\hline 10 & Nomeort & CIRCUIT PRONISIONIVG GROUP (CPG) & Carnaci 8 7ed & \(470 \times\) & 1.6540 & 02686 & 1.6540 & 0.2626 & \\
\hline 11 & Antroor & ACCESSCUSTOMER ADVOCATE CESTER (UNE) & Dorneals Ted & 471 X & 1.900 & 0.0000 & 1.9000 & 0.0000 & \\
\hline 12 & Nemort & CUSTONER POWT OF COWTACI (CSC) & Semice Order & 2300 & 1.1458 & 0.4775 & 1.t450 & 0.4775 & \\
\hline 13 & & & & & & & & & \\
\hline 14 & & & & & & & & & \\
\hline 15 & Metwouk &  & \multicolumn{7}{|l|}{\multirow[b]{2}{*}{}} \\
\hline 16 & & & & & & & & & \\
\hline 17 & & & & & & & & & \\
\hline 16 & & & 1.1850-. 85 & 1.1450 & & & & & \\
\hline 19 & & & .5275-05 \(=\) & 0.4775 & & & & & \\
\hline 20 & & & 1.1950-.05= & 1.1458 & & & & & \\
\hline 21 & & & .5276-05 \(=\) & 0.4715 & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & & & & & \\
\hline & & & & & Madmux of & 25 eritioe & Compenme & - & \\
\hline
\end{tabular}


\[
\text { POD NO. } \underline{85}
\]

\section*{PROPRIETARY}

> DECLASSIFIED


\title{
700-, 701-, AND 702-TYPE CONNECTORS WIRE JOINING
}

Footnote: NOTICE: This document is either AT\&T - Proprietary, or WESTERN ELECTRIC - Proprietary

\section*{1. GENERAL}
1.01 This section describes the method of joining aluminum or copper conductors, pulp, paper or PIC paired cable of any gauge or combination of gauges without stripping the insulation using the 700 -, 701-, and 702 -type connectors pressed with the E or H connector presser as outlined in Section 081-852-130. When splicing ten pairs or less, the G longnose pliers may be used as outlined in Section 081-020-133. In addition to paired cable, these connectors may be used to join conductors in the type of wires listed below:

D station wire
SK station wire
D and E inside wiring cable
\(B\) service wire
C (2-pair) service wire (BSW-2/22-C)
C (5-pair) service wire (BSW-5/22-C)
E armored service wire (BSW-2/22-GRE)
D underground wire (strip insulation)
D and E rural wire (strip insulation)
E buried wire (strip insulation, BSW-1/19-GRE).
1.02 This section is reissued to include the 700-3BR connector which is a flame resistant unfilled connector for bridging pulp or PIC insulated cable. Revision arrows are used to emphasize the more significant changes.
1.03 The 700-type connectors may be used for joining aluminum to aluminum, aluminum to copper, or copper to copper conductors. The 701-and 702 -type connectors are used for joining copper or copper-steel conductors only. The 700-3BR \(\rightarrow\) and \(700-3 B R T \leftarrow\) connectors are not approved for joining aluminum conductors.

NOTE: \(\quad\) The \(\rightarrow 700-3 B R, 700-3 B R T, \leftarrow 701-2 A R, 701-2 A R T, 702-2 A R\), and \(702-2 A R T\) connectors are for wire joining in pulp or paper cable and in building and entrance facilities requiring flame retardant materials.
1.04 These connectors are used in any of the following wire joining tasks:
1. Straight-splice foldback method described in Section 632-115-101
2. Butt-splice method described in Section 632-055-201
3. Bridge-tap splice method described in this section
4. Bridge-splice foldback method described in Section 632-115-101
5. For other wire joining tasks, refer to the practice covering the enclosure to be used.
1.05 Generally, the \(700-, \rightarrow 701\)-, and 702 -type \(\leftarrow\) connectors should not be used to splice cables larger than 25 pairs since modular connectors are more economical.

WARNING: These connectors shall not be exposed to solvents or solvent fumes, such as B cleaning fluid, acetone, etc. Such solvents can damage or destroy the plastic connector parts.

\section*{2. DESCRIPTION}

700-, 701-, and 702-Type Connectors
2.01 All 700-, 701-, and 702-type connectors (Fig. 1) consist of the following:
1. A plastic body with:
a. Two or three holes for inserting the conductors; one conductor per hole
b. Flexible fingers which position the conductors and provide strain relief after pressing.
2. A plastic cap with:
a. A metallic insert for contacting and joining the conductors.
b. A filling compound for sealing (except \(\rightarrow 700-3 B R, 700-3 B R T, \leftarrow 701-2 A R, 701-2 A R T\), 702-2AR, and 702-2ART).
c. A test point for contacting the joint without piercing the conductor insulation. This test point is covered with a thin plastic membrane which is punctured with the test pick to make contact with the back side of the metallic insert as shown in Fig. 2.

Important: This puncture must be resealed with B sealant AT-8502 to fully restore the original integrity of the connector (required for filled codes only).
700-3B and 700-3BT Connectors
2.02 The 700-3B connector differs from the general description as follows:
1. A removable side wall to open a through slot to receive the through wire when bridge-tap splicing
2. Plastic parts are clear and untinted.

Fig. 1-700-Type Connector


Fig. 2-Contacting Joint

2.03 The \(700-3 B\) connectors are provided in boxes of 300 for use with \(E\) connector presser.
2.04 The 700-3B connector is used \(\rightarrow\) as listed inTable \(A \leftarrow\).
2.05 The 700-3BT connectors are identical to 700-3B except they are mounted on tape strips, 16 connectors to the strip, for use with the H connector presser. They cannot be used for half-tapping when inserted in the H connector pressers. 700-3BR and \(700-3 B R T\) Connectors
\(2.06 \rightarrow\) The \(700-3 B R\) and \(700-3 B R T\) connectors are identical to the \(700-3 B\) and \(700-3 B T\) connectors except:
1. The plastic parts are yellow tinted.
2. They do not contain sealant.
3. They are fire retardant and are for use in buildings for bridging pulp and PIC cable.
4. They are not approved for use on aluminum conductor cable. \(\leftarrow\)

\section*{701-2B and 701-2BT Connectors}
2.07 The plastic parts of the 701-2B and 701-2BT connectors are clear with blue tinted caps.
2.08 The 701-2B connectors are provided in boxes of 300 for use with the E connector presser. The 701-2BT connectors are mounted on tape strips, 20 connectors to the strip, for use with the H connector presser.
2.09 The 701-2B and 701-2BT connectors are used \(\rightarrow\) as listed in Table \(\mathrm{A} \leftarrow\). 701-2AR and 701-2ART Connectors
2.10 The 701-2AR and 701-2ART connectors are identical to the 701-2B except:
1. The plastic parts are yellow tinted.
2. They do not contain sealant.
3. They are fire retardant and are for use in buildings and entrance facilities requiring fire retardant materials.
4. They are not for nonpressurized cable use or for use on aluminum conductor cable.
5. The 701-2ART connectors are mounted on tape strips for use in the H connector presser.
\(\rightarrow\) TABLE A \(\leftarrow\) APPLICATION OF 700-TYPE CONNECTOR

\section*{CONNECTOR}

ION
700-3B 700-3BT 700-3BR00-3BRT 701-2B 701-2AF01-2ART 701-2BT
702-2B 702-2AR02-2A
per-steel conductors
\begin{tabular}{l|c|c|c|c|c|c|c|c|c|c}
\hline \begin{tabular}{c}
\(17-26\) \\
ga
\end{tabular} & 17-26 ga & & & & & & & & & \\
\hline
\end{tabular}

\section*{CONNECTOR}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Universal & \multirow[t]{4}{*}{} & \multirow[t]{4}{*}{\begin{tabular}{l}
Flame \\
retardant - \\
unsealed
\end{tabular}} & Preferred & Flame & Preferred for & Half tapping & \multirow[t]{4}{*}{\begin{tabular}{l}
Flame \\
retardant \(\qquad\) \\
unsealed
\end{tabular}} \\
\hline \begin{tabular}{l}
Connector \\
Sealed
\end{tabular} & & & \begin{tabular}{l}
for \(2-\) \\
wire
\end{tabular} & \begin{tabular}{l}
retardant - \\
unsealed
\end{tabular} & 2 wire & \[
\begin{gathered}
\text { of } \\
\text { copper }
\end{gathered}
\] & \\
\hline & & & splicing & & splicing & sealed & \\
\hline & & & \begin{tabular}{l}
copper \\
sealed
\end{tabular} & & copper sealed & & \\
\hline
\end{tabular}

\section*{702-2B and 702-2BT Connectors}
2.11 The 702-2B connector differs from the general description as follows:
1. It has one hole for inserting the conductor and one through slot for bridge tap splicing.
2. The plastic parts are clear with blue tinted caps.

\subsection*{2.12 The 702-2B connector is used \(\rightarrow\) as listed inTable \(A \leftarrow\). \\ 702-2BT Connector}
2.13 The 702-2BT connectors are the same as the 702-2B connectors except that they are taped twenty to a strip for use with the H connector presseronly. 702-2AR and 702-2ART Connectors
2.14 The 702-2AR connector is identical to 702-2B except:
1. The plastic parts are yellow tinted.
2. It does not contain sealant.
3. It is fire retardant and for use in buildings and entrance facilities requiring fire retardant materials.
4. It is not for use on aluminum conductor cables.
5. The 702-2ART connectors are mounted on tape strips for use in the H connector presser.

\section*{E Connector Presser}
2.15 The E connector presser (Fig. 3) is specially designed for pressing all \(700-, \rightarrow 701-\), and 702 -type \(\leftarrow\) connectors. Proper use of this tool assures that good joints will be made under all conditions of conductor size and number, as well as temperature.
2.16 The E connector presser consists of:
1. A visegrip toggle action linkage which indicates a complete press
2. A pick-pin for removing the sidewall of the connector body
3. A stop to aid in positioning the connector prior to pressing.
2.17 The presser is factory adjusted to provide long life under normal field usage and wear. It is not designed for field adjustment and should be handled with care.

Fig. 3-E Connector Presser


Checking the E Connector Presser
2.18 Check tool as shown in Fig. 4. Press weekly or immediately after being dropped or severely struck by other tools or equipment. Maintenance
2.19 No maintenance other than cleaning followed by lubricating with light oil is required. KS-7860 petroleum spirits or other equivalent solvents may be used for cleaning.

Fig. 4-Checking E Connector


\section*{H Connector Presser}
2.20 The H connector presser (Fig. 5) is a magazine-fed tool for hand pressing the 700-3BT, \(\rightarrow 700-3 B R T \leftarrow 701-2 A R T, 701-2 B T, 702-2 A R T\), and \(702-2 B T\) taped connectors.

Fig. 5-H Connector Presser


NDTE'
TMt ofill both why tofing widegt geparation,
2.21 Connectors on tapes (Fig. 6) are loaded into the magazine as follows:

Fig. 6-Connector on Tapes

1. Pull the follower back and push down to lock (Fig. 7).

Fig. 7-Pull Back Follower and Lock

2. Load connector as shown in Fig. 8.
3. Release the follower to position behind the connectors.

Fig. 8—Loading H Connector Presser


\section*{3. RECOMMENDED APPLICATIONS}
3.01 Recommended applications of 700-, 701-, and 702-type connectors and E and H connector pressers are shown in Table A.

\section*{4. FORMING AND JOINING CONDUCTORS}

NOTE: The cable sheath opening should be prepared in accordance with the type of closure to be used. This information is covered in the practice that describes the installation of the various closures for aerial, underground, and buried cables.

\section*{Straight-Splice Using Foldback Method}
4.01 Form the splice core and conductors as outlined in Section 632-115-101 and as shown inFig. 9 . Do not wrap the core of waterproof cable. Half hitching the group binders is sufficient for binder group identification when splices are made in below ground closures. On closures where reentry is anticipated, such as pedestal closures, etc, binder group identification is accomplished with scrap wire having the same color insulation as the group binders, or by using commercially available color coded ties.

\section*{Fig. 9—Splice Core Prepared for Straight Splice—Foldback Method}

4.02 Join the conductors of the matched long and short units using 700- or 701-type connectors and E connector presser as follows. The use of the H connector presser is outlined in paragraph 4.03. A more detailed description is outlined in Section 081-852-130.
A. Select the pairs to be spliced, then separate the tip and ring of the pairs matching ring to ring and tip to tip.
B. \(\rightarrow\) Cut the matched wires evenly and visually check the ends to assure that the wire and
insulation are the same length. This is extremely important due to the insulation on waterproof cable conductors stretching during removal of waterproof compound. Fully insert the wires in the holes of the connector (Fig. 10) and visually check that the wire extends all the way into the connector. \(\leftarrow\)

Fig. 10-Placing Conductors Into Connector

C. Using the E connector presser, press the connector (Fig. 11). If paper insulated, twist the wires together after pressing to prevent unraveling.
4.03 Load the H connector presser with the appropriate connector listed in Table A as outlined in paragraph 2.21.
4.04 If the H connector presser was loaded with connectors for splicing, as listed in Table A, proceed as outlined in (a) through (c). If loaded with half-tapping connector, proceed to paragraph 4.13.
A. Select the pairs to be spliced, then separate the tip and ring of the pairs, matching ring to ring and tip to tip.

Fig. 11—Pressing Connector

B. \(\rightarrow\) Cut the matched pairs evenly and visually check the ends to assure that the wire and insulation are the same length. This is extremely important due to the insulation on waterproof cable conductor stretching during removal of waterproof compound. Fully insert the wires in the holes of the connector (Fig. 12) and visually check that the wire extends all the way into the connector. \(\leftarrow\)

Fig. 12-Inserting Conductors in Holes of Connector

C. Press the handle of the presser to complete the splice.
D. The pressed connector will eject from the tool when the handle is released (Fig. 13). If the connector does not slide out of the tool easily, repress the handle.

Fig. 13-Ejected Pressed Connector

4.05 \(\rightarrow\) Splice the 25 -pair unit in 10 -, 10 -, and 5 -pair staggered clusters and tie them to the splice core as shown in Fig. 14. Then splice the other pairs of the cable in 10-, 10-, and 5 -pair staggered clusters and tie to splice core as shown in Fig. 15. Test through splice to verify joints. \(\leftarrow\)
4.06 Wrap the completed splice as outlined in the Bell System Practice covering the splice closure to be used.

Fig. 14—Half of Units Spliced and Tied to Core


Fig. 15-Completed Splice


\section*{Butt-Splice Method}
4.07 Form the cable as outlined in Section 632-055-201 and as shown in Fig. 16.
4.08 Use 700- or 701-type connectors as described in paragraph 4.02 or 4.03 .
4.09 Splice in staggered clusters to minimize the buildup on the bundle size. Test through the splice to verify joints.
4.10 Wrap the completed splice as outlined in the Bell System Practice covering the splice closure to be used.

Fig. 16-Cable Prepared for Butt Splice


\section*{Bridge-Tap/Half-Tap Splice Method}

\subsection*{4.11 Form the cable as shown in Fig. 17.}
4.12 Join the conductors of the through cable and the branch cable using connectors listed in Table A, and E connector presser as follows. (When using H connector presser, proceed to paragraph 4.13.)

Fig. 17—Cable Prepared for Splice

A. Using the pick-pin on the E connector presser, remove the sidewall from the 700-type connector as shown in Fig. 18. The 702-2B connector has a through slot for the through wire.
B. Select the pairs to be bridged from the through cable and the branch cable. Separate the tip and ring conductors.

Fig. 18—Removing Side Wall From 700-3B Connector

C. Position the ring wire from through cable in the slot of the connector as shown in Fig. 19. Fig. 19-Positioning Through Conductors in Slot

D. Trim the tip and ring wires from the selected pair of the branch cable evenly and fully insert the ring wire in the vacant wire hole of the connector (Fig. 20). Using the E connector presser, press the connector. Assure the through wire is properly positioned in the through slot before pressing connector. After pressing, but before releasing the tool, push the bridged ring wire into the slots of the wire fingers.
E. Bridge the tip wire of through cable and the tip of the branch cable using the same procedure as outlined above. Fig. 21 illustrates a bridged pair.

Fig. 20—Bridged Top Joint


Fig. 21—Bridged Pair

F. \(\rightarrow\) Repeat Steps (a) through (e) for all pairs to be joined. \(\leftarrow\)
4.13 Half-tap the branch cable to the through cable using 702-2BT connector as follows:
1. Select the pairs to be half-tapped from the through cable and the branch cable. Separate the tip and ring conductors.
2. Position ring wire from the through cable in the slot of the connector as shown in Fig. 22.
3. Position the ring wire from the branch cable into the hole of the connector.
4. Press the handle of the presser to complete the half-tap.
5. Repeat (b), (c), and (d) for the tip wire of the selected pair.
6. Repeat (a), (b), (c), (d), and (e) for each pair of the through cables and branch cable to be half-tapped.

Fig. 22—Half-Tapped Conductors Using H Connector Presser

4.14 Beginning at the opposite end of the sheath opening from which the branch cable enters, stagger the connectors into eight rows approximately \(3 / 4\) inch apart in the direction of the bridging cable as shown in Fig. 23.

Fig. 23-Row of Bridged Pair

4.15 After the first eight pairs of conductors are bridged, repeat the operation for bridging the next eight pairs in the same manner, and continue until all pairs are bridged. Figure 24 illustrates all pairs bridged in cable. Test splice to verify joints.
4.16 Wrap the completed splice as outlined in the Bell System Practices covering the splice closure to be used

Fig. 24-Completed Bridge Half-Tap Splice


Three-Wire Bridge-Splice Method
4.17 Form the cable as outlined in Section 632-115-101 and as shown in Fig. 25.
4.18 Join the conductors of the main cable and the branch cable, as described in paragraphs 4.02 or 4.04 , using 700 -type connectors.

Fig. 25-Splice Core Prepared for Three-Wire Bridge Splice-Foldback Method

4.19 Splice the 25 -pair unit in 10 -, 10 -, and 5 -pair staggered clusters and tie them to the splice core as shown in Fig. 26. Figure 27 illustrates a completed splice. Test splice to verify joint.
4.20 Wrap the completed splice as outlined in Bell System Practices covering the splice closure to be used.

\section*{5. BRIDGE-TAP/HALF-TAP WIRE REMOVAL}
5.01 A wire may be removed from the pressed joint by cutting the wire off close to the plastic body and tucking the wire stub deep inside the cavity in the cap of \(700-3 \mathrm{~B}\). Otherwise protect wire ends as outlined in Section 632-055-205.

NOTE: There must be no bare wire end exposed outside of the plastic portion of the body. This wire cavity must be resealed with a dab of B sealant AT-8502 to fully restore the integrity of the connector (required for filled codes only).

Fig. 26—Spliced Units Tied to Splice Core


Fig. 27-Completed Bridge Splice


\title{
WIRE JOINING 710 CONNECTOR SYSTEM
}

\section*{Footnote: Copyright ©1986 AT\&T All Rights Reserved}

\section*{1. GENERAL}
1.01 This practice covers the description and use of the tools and connectors that make up the 710 connector system. The 710 connector system is used to make modular splices in any combination of 19-through 26-gauge copper conductors with PIC, pulp, or paper insulation.
1.02 This practice is reissued to delete reference to items that are rated DA (Discontinued Availability) or manufacture discontinued, to revise the listing of available connectors, and to update illustrations and text throughout the practice. Since the changes constitute a general revision, arrows ordinarily used to indicate changes have been omitted.
1.03 This practice provides information necessary for the proper use of the 710 connector system, connectors and tools, and the proper application of splicing configurations. The following areas are covered:
- 710 connector codes and connector application.
- Description, use, and maintenance of the tools, tool mountings, and tool supports.
- Operation of the pair verification test set to verify splices.
- Splice configurations such as foldback and in-line; branch, facility, and junction splices; half-taps, loading and unloading, rearrangement, and reentry.
- Special applications such as building use and setup for vertical splices.
1.04 When preparing to make a splice, any of the following methods can be used for binder group identification:
1. Secure binders in the 710 connectors:
- Binders from first cable under wires in index strip
- Binders from second cable over wires and under cap
2. Wire ties
3. Felt marker
4. Plastic color-coded ties
5. Prenumbered tags.

\section*{2. 710 CONNECTORS—DESCRIPTION AND USE}
2.01 There are three types of 710 connectors-the splicing connectors, the bridge connectors, and the half-tap connectors. Each type is available in 25-pair and 5 -pair sizes (Fig. 1 and 2 Fig. 1 and 2). The splicing connectors consist of an index strip, a splicing module, and a cap. The bridge connectors consist of a bridge module and a cap. The half-tap connectors consist of an index strip, a half-tap module, and a cap.

Fig. 1-710 Connector (25 Pair)


Fig. 2-710 Connector (5 Pair)
2.02 The index strip holds the pairs from the first or through cable. Peaked projections on the index strip separate the conductors when they are placed in the strip. Wire grippers hold the conductors in place and orient the index strip in the tool. Index strips are illustrated in Fig. 3 Fig. 3.
2.03 The connector module and half-tap module (Fig. 4 Fig. 4) fit into the index strip. A slotted beam contact element in the bottom of each module slices through the insulation of the conductors in the index strip to make metal-to-metal contact. The top of each module provides conductor separators and wire grippers like the index strip. Slots in the sides of the connector modules and half-tap modules accept the bridge module.
2.04 The bridge module has an exposed slotted beam contact element for metal-to-metal contact in the connector and half-tap modules. Conductor separators and wire grippers on the bridge module are the same as those on the connector and half-tap modules.

Fig. 3—Index Strips
R

Fig. 4-710 Modules

2．05 The caps（Fig． 5 Fig．5），when seated on the modules，provide wire retention for the conductors in the modules．Metal－to－metal contact of the conductors is through the slotted beam contact element in the module．The ACE（accessible contact element）cap provides the means for testing and transferring pairs without service interruption．See MODULAR TRANSFERS－PLUG AND UNPLUG in Part 14 of this practice．

2．06 Connectors are available with modules and caps either filled（with sealant for moisture protection）or dry（without sealant）．When splicing PIC cable，filled modules and caps are recommended except in buildings and cable entrance facilities where fire－retardant connectors（which are dry）are required．Dry 710 modular connectors may be used in encapsulated splice applications when using either D encapsulant，AT－8735，or D1000 encapsulant as supplied by AT\＆T Technologies，Inc．

2．07 Filled connectors provide effective protection against troubles caused by moisture．However，if some unusual condition should cause moisture trouble in a splice，the defective connectors should be cut out and replaced．

2．08 Dry connectors，whether used in an encapsulated splice or not，should be cut out and replaced if they become defective because of moisture in the splice．

2．09 The 710 connectors are coded for identification as shown in Fig． 6 Fig． 6.
Fig．5－710 Caps

\section*{圈}

Fig．6－710 Connector Coding

\section*{㸗}

\section*{3． 710 CONNECTORS—APPLICATIONS}

3．01 The available 710 connectors and their applications are given in Table A Table A for 25 －pair connectors and Table B Table B for 5 －pair connectors． Guidelines for use of filled or dry connectors are given inTable C Table C． Applications for caps and index strips are given in Table D Table D．

3．02 A filler strip for the 710 splice and half－tap modules is available to prevent
the bridge ports of the modules from being clogged with encapsulant as the splice closure is filled. If bridge ports are clogged and the splice must be reentered to make a transfer, to load or unload, etc., the encapsulant must be removed from each port or connections made

TABLE A 710 CONNECTORS-25 PAIR
\begin{tabular}{|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
CONNECTOR \\
CODES
\end{tabular} & \begin{tabular}{c} 
TYPE \\
SPLICE
\end{tabular} & COLOR(S) & CONDUCTOR & \begin{tabular}{c} 
TYPE OF \\
INSULATION \\
(NOTE 1)
\end{tabular} & FILLED & GAU \\
\hline
\end{tabular}

NOTE: 1. Excluding 19-gauge solid PP (polypropylene) or HDPE (high densi polyethylene) insulated conductors for WP (waterproof) and LOCAP* cable
* Trademark of AT\&T.
\(\dagger\) Fire-resistant connectors. For use in all dry and/or fire-resistant applications.
\(\ddagger\) Connector is supplied with 710-CAB-25 cap (Accessible Contact Element).
§ The 19-gauge wires may be placed in the top of the connector module when splicing 19-gauge cable to building cables; however, the 700-3B-type connector is suggested instea
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 710-BB1-25 & Bridge & Green & Copper & Pulp or paper & No & 19-2 \\
\hline 710-BC1-25 & Bridge & Green & Copper & PIC & Yes & 19-2 \\
\hline 710-BD1-25 \(\dagger\) & Bridge & Gray & Copper & PIC, PVC, pulp, or paper & No & 19-2 \\
\hline 710-SB1-25 & \begin{tabular}{l}
Straight or \\
Half-Tap
\end{tabular} & Green & Copper & Paper or pulp & No & 22-2 \\
\hline 710-SC1-25 & Straight & Green & Copper & PIC & Yes & 22-2 \\
\hline 710-SCL-25 & Straight & Green/Blue & Copper & PIC & Yes & 19-2 \\
\hline 710-SD1-25 \(\dagger\) & Straight or Half-Tap & Gray & Copper & \[
\begin{gathered}
\text { PIC, PVC, } \\
\text { pulp, }
\end{gathered}
\] & No & 22-2 \\
\hline 710-TCL-25 & Half-Tap & Green/Blue & Copper & PIC & Yes & 19-2 \\
\hline 710-TC1-25 & Half-Tap & Green & Copper & PIC & Yes & 22-2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
CONNECTOR \\
CODES
\end{tabular} & \begin{tabular}{c} 
TYPE \\
SPLICE
\end{tabular} & COLOR(S) & CONDUCTOR & \begin{tabular}{c} 
TYPE OF \\
(NOLATION
\end{tabular} & FILLED & GAU \\
\hline
\end{tabular}

NOTE: 1. Excluding 19-gauge solid PP (polypropylene) or HDPE (high densi polyethylene) insulated conductors for WP (waterproof) and LOCAP* cable
* Trademark of AT\&T.
\(\dagger\) Fire-resistant connectors. For use in all dry and/or fire-resistant applications.
\(\ddagger\) Connector is supplied with 710-CAB-25 cap (Accessible Contact Element).
§ The 19-gauge wires may be placed in the top of the connector module when splicing 19-gauge cable to building cables; however, the 700-3B-type connector is suggested instea
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \(710-\) SBA-25 \(\ddagger\) & \begin{tabular}{l} 
Straight \\
or \\
Half-Tap
\end{tabular} & Green & Copper & Pulp & No & \(22-2\) \\
\(710-\) BBA-25 \(\ddagger\) & Bridge & Green & Copper & Pulp & No & \(22-2\) \\
\hline
\end{tabular}

TABLE B 710 CONNECTORS—5 PAIR
\begin{tabular}{|c|c|c|c|c|c|c}
\hline \begin{tabular}{c} 
CONNECTOR \\
CODES
\end{tabular} & \begin{tabular}{c} 
TYPE \\
SPLICE
\end{tabular} & COLOR(S) & CONDUCTOR & \begin{tabular}{c} 
TYPE OF \\
INSULATION \\
(NOTE 1)
\end{tabular} & FILLED & GAU \\
\hline
\end{tabular}

NOTE: 1. Excluding 19-gauge solid PP (polypropylene) or HDPE (high densi polythylene) insulated conductors for WP (waterproof) and LOCAP* cable.
* Trademark of AT\&T.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 710-BAL-5 & Bridge & Green & Aluminum or Copper & PIC & Yes & 19- \\
\hline 710-BC1-5 & Bridge & Green & Copper & PIC & Yes & 19- \\
\hline 710-BD1-5 \(\dagger\) & Bridge & Gray & Copper & PIC, PVC, pulp, or paper & No & 19- \\
\hline 710-SAL-5 & Straight & Green/Blue & Aluminum or Copper & PIC & Yes & 19- \\
\hline 710-SC1-5 & Straight & Green & Copper & PIC & Yes & 22- \\
\hline 710-SD1-5 \(\dagger\) & Straight or Half-Tap & Gray & Copper & PIC, PVC, pulp, or paper & No & 22- \\
\hline 710-TAL-5 & Half-Tap & Green/Blue & Aluminum or Copper & PIC & Yes & 19- \\
\hline 710-TC1-5 & Half-Tap & Green & Copper & PIC & Yes & 22- \\
\hline
\end{tabular}

TABLE C GUIDELINES FOR FILLED OR DRY CONNECTOR USE
\begin{tabular}{|l|l|}
\hline WHEN SPLICING & \multicolumn{1}{c|}{ USE } \\
\hline PIC to PIC & \begin{tabular}{l} 
Filled \\
connectors
\end{tabular} \\
PIC to Pulp & Dry connectors \\
Pulp to Pulp & Dry connectors \\
PIC or Pulp to & \begin{tabular}{l} 
Dry, \\
fire-resistant \\
Connectors
\end{tabular} \\
\begin{tabular}{l} 
PIC or Pulp in \\
Buildings
\end{tabular} & \\
\hline
\end{tabular}

TABLE D 710 CAPS AND INDEX STRIPS
\begin{tabular}{|c|c|c|c|c|c|}
\hline CODE & ITEM & COLOR & FILLED & TYPE OF INSULATION & GAUGE \\
\hline \multicolumn{6}{|l|}{* CBA cap is ACE (Accessible Contact Element) cap.} \\
\hline 710-CA-25 & CAP & White & Yes & PIC & \\
\hline 710-CB-25 & CAP & White & No & Pulp & \\
\hline 710-CD-25 & CAP & Pink & No & PIC, Pulp, PVC & \\
\hline 710-CAL-25 & CAP & Green & Yes & PIC & \\
\hline 710-CB1-25 & CAP & Green & No & Pulp & \\
\hline 710-CD1-25 & CAP & Gray & No & \[
\begin{aligned}
& \text { PIC, Pulp, } \\
& \text { PVC }
\end{aligned}
\] & \\
\hline 710-CBA-25* & CAP & Green & No & Pulp & \\
\hline 710-CA1-5 & CAP & Green & Yes & PIC & \\
\hline 710-CD1-5 & CAP & Gray & No & Pulp, PVC, PIC & \\
\hline 710-ISL-25 & Index Strip & Blue & No & - & 19-24 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ CODE } & ITEM & COLOR & FILLED & \begin{tabular}{c} 
TYPE OF \\
INSULATION
\end{tabular} & GAUGE \\
\hline *CBA cap is ACE (Accessible Contact Element) cap. \\
\(710-\) IS1-25 & \begin{tabular}{l} 
Index \\
Strip
\end{tabular} & Green & No & - & \(22-26\) \\
\(710-\) WD2-25 & \begin{tabular}{l} 
Index \\
Strip
\end{tabular} & Gray & No & - & \(22-26\) \\
\(710-\) WH2-25 & \begin{tabular}{l} 
Index \\
\\
Strip
\end{tabular} & Green & No & - & \(22-26\) \\
\hline
\end{tabular}
will not be reliable. Thoroughly clean the encapsulant from the ports with an orange stick, cotton swab, or by other similar means. An example of how to install a filler strip is given in Fig. 7 Fig. 7. Filler strips may be ordered in lots of 100 as:

710-FS-25 Filler Strip—Comcode 103671269
3.03 The filler strip is made of very soft plastic and therefore provides a cushion between the hard plastic bridge rails and the insulated wires in the splice bundle. It is recommended that filler strips be used in all splices of 3000 pairs or larger, filled and unfilled, to prevent compression faults by providing a cushion between the bridge rails and the wire insulation.

Fig. 7-Seating a Filler Strip

\section*{4. TOOL MOUNTING DEVICES}

\section*{710A TOOL MOUNTING}
4.01 The 710A tool mounting includes the items illustrated in Fig. 8 Fig. 8. The various items are used to support splicing tools in the correct position for constructing modular splices with 710 connectors. All of the 710A tool mounting items can be ordered separately.

Fig. 8-710A Tool Mounting
邆

4．02 The 710A1 tool mounting and 710A2 tool mounting，when combined，make up the 710B tool mounting（Fig． 9 Fig．9）．The 710B tool mounting is designated as such for identification purposes only．To get a 710B tool mounting，order it as two parts；the 710A1 and 710A2 tool mountings．

Fig．9－710B Tool Mounting

4．03 When assembling parts of the 710A tool mounting，start with the 710A5 vise clamp or the 710A1 base．The vise clamp can be attached to any secure object in the work area as shown in Fig．10，11，and 12 Fig．10，11，and 12. The base must be mounted on a flat surface，such as a side of the splicers tool box，as shown inFig． 13 Fig． 13 ．Other tool mountings are then attached to the base as shown in Fig． 14 and 15 Fig． 14 and 15.

Fig．10—Vise Clamp Secured to Manhole Rack

\section*{通}

Fig．11－Vise Clamp Secured to Closure
園
Fig． 12 －Vise Clamp Secured to Splicers Box
圈

Fig． 13 －Base Attached to Splicers Box圈

Fig． 14 －Tool Clamp Attached to Base畋

Fig． 15 －90－Degree Mount Attached to Base

4．04 Typical tool setups utilizing the vise clamp are shown in Fig．16，17，18， and 19 Fig．16，17，18，and 19

Fig． 16 －Tool Setup on Splicers Box
通

Fig． 17 －Tool Setup at Pedestal

\section*{園}

Fig． 18 －Tool Setup in Manhole or Splice Pit


Fig． 19 －Method of Setting Up Splicing Tool on Strand

\section*{B SUPPORT FRAME ASSEMBLY}

4．05 The B support frame assembly（Fig． 20 Fig．20）consists of a support tube and two belt－type clamps．The clamps are attached to the cable so the support tube will be positioned at the splice location．A traverse mount assembly，with either a short or long horizontal bar attached，is mounted on the support tube．A cutter－presser can then be mounted on the horizontal bar．

Fig． 20 －B Support Frame Assembly

4．06 The B support frame and traverse mount assembly are installed as shown in Fig． 21 and 22 Fig． 21 and 22.

Fig． 21 －Installation of Support Tube on Cable

Fig． 22 －Installing Traverse Mount Assembly on Support Tube

\begin{abstract}
4．07 To improve the stability of the support tube when operating a cutter－presser，a second traverse mount assembly with a long horizontal bar may be mounted near the end of the support tube and a B leg swivel（Fig．23 Fig．23）
attached to the horizontal bar．The telescoping tube of the B leg swivel then can be extended to a firm support to provide additional support for the cutter－presser．

4．08 The B support frame assembly also may be mounted on cable hooks as shown in Fig． 24 Fig． 24 or mounted in a vertical position as shown in Fig． 25 Fig． 25.
\end{abstract}

Fig． 23 －B Leg Swivel

逼

Fig． 24 －B Support Frame Installed on Cable Hook
通

Fig． 25 －B Support Frame Mounted in Vertical Position on Frame
逗

\section*{709A TOOL MOUNTING}

4．09 The 709A tool mounting（Fig． 26 Fig．26）is for aerial use with an Eladder support as shown inFig． 27 Fig． 27.

Fig． 26 －709A Tool Mounting
通

Fig． 27 －709A Tool Mounting on E Ladder Support

\section*{5. 890A AND 890B TOOLS}
5.01 The 890A tool, Fig. 28 Fig. 28, is a manually-operated tool used for assembling 25-pair, 710 connectors. The 890B tool is similar to the 890A tool except that the test feature has been omitted. All of the references in the remainder of Part 5 will be to the 890A tool but will also apply to the 890B tool, except for testing. The hand-operated lever actuates a cam/hydraulic system that provides the power for assembling the connectors. The 890A tool is wired for use with a 152A test set, or other pair verification test set, allowing pairs to be tested in the index strip.

Fig. 28 -890A Tool

\section*{園}

\section*{SETUP AND USE}
5.02 Typical tool setups utilizing the 710 A tool mounting are shown in Fig. 17 through 19 Fig. 17 through 19 . When mounting the 890A tool on a B support frame assembly, a press clamp assembly is required to secure the tool to the horizontal bar. The press clamp assembly is not provided as a part of the 890A tool but may be ordered as a separate item, Comcode No. 842702045.
5.03 A typical setup showing the 890A tool mounted on a B support frame assembly is illustrated in Fig. 29 Fig. 29. To mount the tool on the horizontal bar:
1. Slide the press clamp assembly, with the knob to the left, onto the horizontal bar.
2. Place the 890A tool into the press clamp and move the clamp and tool to the desired position. Tighten the clamp.
Fig. 29 - 890A Tool Mounted on B Support Frame Assembly
5.04 The use of the 890A tool to assemble 710 connectors is covered in paragraphs 5.05 through 5.20 . When in-line splicing two sections of cable, secure the groups in the group slack holder, placing theshortest section of cable in the index strip. This enables testing of the splice using a pair verification test set as covered in Part 12 of this practice.
5.05 Place the index strip as follows (Fig. 30 Fig. 30):
1. With the arched wire grips facing the T-bar, place index strip into connector holding bracket assembly. Assure ends of index strips are placed into the end key.
2. Push down on index strip. If necessary, push in on button to secure index strip underneath the L-spring located on back of tool. This prevents bowing of index strip during wire dressing.
3. Secure binder groups with the group slack holder, if necessary.

Fig. 30 - Placing Index Strip
5.06 Place conductors into index strip as follows (Fig. 31 Fig. 31):
1. Using the thumb and forefinger of each hand, grasp a pair from the binder group. Separate the tip and ring conductors on the colored peaked projections of the index strip, tip side to the left and ring side to the right.
2. Dress the conductors into the wire grips leaving approximately \(3 / 8\)-inch slack behind index strip for 24 through 26 gauge and 1 inch for 17 through 22 gauge. When dressing pulp or noncolor-coded PIC conductors, select the pairs at random and place them into the index strip starting at end of tool nearest cable being placed. When dressing PIC, select the pairs at random and place them into the strip in proper color-code sequence using color-code strip and colored peak projections as a guide.

Fig. 31 - Placing Conductor Into Index Strip

5.07 Check placed conductors as follows (Fig. 32 Fig. 32):
1. When the 25 pairs have been placed in the index strip, use the error-tector to check for splicing errors such as two conductors in one slot, vacant slots, tip and ring reversals, or transposed pairs.
2. Place the error-tector over the index strip and slide to the left-only the tip conductors should show. Slide the error-tector to the right-only ring conductors should show. If an error is found, make the correction and check the conductors again with error-tector.

Fig. 32-Checking Placed conductors
5.08 Place T-bar over index strip as follows (Fig. 33 Fig. 33):
1. Gently separate conductors around T-bar and clear of the pressure release valve.
2. Position T-bar over the index strip.

Fig. 33—Placing T-Bar Over Index Strip
5.09 Position tool for cutting operation (Fig. 34 Fig. 34) by pushing down on T-bar for proper positioning over the index strip.

Fig. 34-Positioning Tool for Cutting Operation
5.10 Seat and cut conductors as follows (Fig. 35 Fig. 35):
1. With T-bar held in down position, pull lever down until it hits the stop.
2. All conductors should now be cut. Check to be sure.

Fig. 35-Seating and Cutting conductors
5.11 Remove cut conductors as follows (Fig. 36 Fig. 36):
1. With T-bar in down position, remove cut conductors.
2. If all conductors are not cut, blade may be dull. Refer to paragraphs 5.23 through 5.29.

Fig. 36—Removing Cut Conductors
逢
5.12 Test pairs using the pair verification test set (Fig. 37 Fig. 37) as outlined in Part 12.

Fig. 37-Testing Pairs With Pair Verification Test Set
5.13 Return T-bar to horizontal position as follows (Fig. 38 Fig. 38):
1. Push hand lever back to its original latched position.
2. Raise T-bar to its full upright position.
3. Pull T-bar back to horizontal position.

Fig. 38—Returning T-bar to Horizontal Position

주ํ
5.14 Place connector module as follows (Fig. 39 Fig. 39):
1. With the arched wire grips of connector module facing T-bar, place connector module into tool keeping it parallel to the index strip.
2. Push connector down until the latches on connector partially engage in slots on index strip.

Fig. 39—Placing Connector Module

\subsection*{5.15}

WARNING: If the connector module is not lowered parallel into the index strip, the module may be damaged causing opens, shorts, or crosses in end pair positions 1 and 2, or 24 and 25.

Seat connector module as follows (Fig. 40 Fig. 40):
1. Position T-bar over the connector module and push down on T-bar to position it on the connector module. Then, while holding down on T-bar, pull the hand lever to seat connector module.

\section*{Fig. 40-Seating Connector Module}

NOTE: If the connector module is not properly seated, return lever to the latched position, pull T-bar back, then push down on connector module until the latches on connector partially engage slots on index strip. Repeat (1) above. If the module becomes damaged, replace it.
5.16 The seated connector module with the T-bar returned to the horizontal position is illustrated in Fig. 41 Fig. 41.

Fig. 41—Seated Connector Module
\(\square\)
5.17 Place conductors in connector module as follows (Fig. 42 Fig. 42):
1. Select the 25 -pair conductor group that matches the group previously placed in the index strip. Place them into the connector module following the same procedure used for the index strip.
2. Using error-tector, check the placed conductors.
3. Gently separate conductors around T-bar and clear of pressure release valve, then position T-bar over connector module.
4. Pull the lever down to cut the conductors. With the lever in the down position, test the pairs.

Fig. 42-Conductors Placed in Connector Module

風
5.18 The module with the conductors seated and cut and the T-bar returned to the horizontal position is shown in Fig. 43 Fig. 43.

Fig. 43-Conductors Seated and Cut
5.19 Place cap on connector module as follows (Fig. 44 Fig. 44):
1. With latches facing T-bar, place cap on connector module. Then, using fingers, partially seat the cap on connector module by pressing down on cap and running fingers across length of cap.
2. Seat the cap by placing T-bar over the cap and then, while pushing forward and down on T-bar, pull the hand lever to seat cap on connector module. Return T-bar to horizontal position.

\section*{Fig. 44-Placing Cap on Connector Module}
5.20 Remove the completed module as follows (Fig. 45 Fig. 45):
1. Push the button to release completed connector. Remove connector from tool.

Fig. 45-Removing Completed Module

Fig. 46—Releasing T-Bar Lock
2. Using felt marker, mark unit number onunfilled connector. For filled connector, identify unit number with binder group identification tie placed approximately 3 inches from connector.

\section*{MAINTENANCE}
A. General
5.21 The procedures for cleaning and lubricating the 890A tool are the same as for the F cutter-presser. Refer to paragraphs 7.13 through 7.17.
B. Unlocking T-Bar
5.22 If, when raising the T-bar to the vertical position, it will not clear the end post, return the \(T\)-bar to the horizontal position and push the pressure release valve to release the T-bar lock (Fig. 46 Fig. 46). The T-bar will not clear the end post if the T-bar lock is engaged.

\section*{C. Replacing the Knife Blade}

\subsection*{5.23}

DANGER: Exercise care when handling the knife blade. The blade is very sharp.

The knife blade should be replaced when it becomes dull or damaged. Incomplete or ragged cutting of the conductors indicates a need for blade replacement.

NOTE: A sharp knife blade may not cut through pulp or paper insulation or through 17- or 19-gauge conductors. Unless conductors show ragged cutting, the blade probably does not need to be replaced.
5.24 Procedures for replacing the knife blade in the 890A tool are outlined in the following paragraphs.
5.25 Loosen the screws for the blade holder as follows (Fig. 47 Fig. 47):
1. Push T-bar to the upright position.
2. Using the allen wrench set, loosen but do not remove the four allen-head screws on the back of the T-bar. The screws secure the blade holder and blade in place. If the screws are removed while the T-bar is in the up position, the holder assembly and blade will fall out.

Fig. 47—Loosening Screws

5.26 Remove the blade as follows (Fig. 48 Fig. 48):
1. Pull the T-bar back to its horizontal position and remove the four allen-head screws.
2. It may be necessary to loosen (do not remove) the screws securing the wire cover to the T-bar to relieve pressure on the blade.
3. Push down the knife blade guard and slide the old blade and the holder out the side of the T-bar. Be careful not to drop any other parts of the T-bar.

Fig. 48—Removing Blade
5.27 Place the knife blade assembly in the holder as shown in Fig. 49 Fig. 49. Fig. 49-Placing Blade in Knife Blade Holder
5.28 Replace knife blade and holder in T-bar as follows (Fig. 50 Fig. 50 ):
1. Slide holder into space provided until knife blade is centered.

Fig. 50-Replacing Knife Blade and Holder
2. Replace allen-head screws in the T-bar andfinger tighten. Blade has to be aligned before tightening with allen wrench.
5.29 Align the blade as follows (Fig. 51 Fig. 51):
1. Insert an index strip into holder of cutter-presser with arched wire grip facing T-bar. Be sure index strip is secure beneath the L -spring in the center of the holder.
2. Push T-bar to the upright position.
3. Pull lever down until it hits the stop. This brings the blade in contact with the index strip and aligns the blade properly.
4. With the T-bar in the down position, tighten all four allen screws snugly until the lock washers around the screws are fully compressed. Do not overtighten. The plastic guide could be damaged.
5. Push lever back to the latched position, then check index strip. A slight knife cut must be visible.
6. Tighten screws to secure wire cover.

Fig. 51-Aligning Blade

\section*{D. Replacing Handle Pin}
5.30 If no cutting or seating pressure occurs when pulling the lever to the down position, replace the handle pin as follows (Fig. 52 Fig. 52):
1. With T-bar in full upright position, use a screwdriver to rotate the cam until slot of cam is in alignment with holes in handle collar.
2. With a hammer and punch, knock the pin out about halfway and then drive in a new pinflush with the collar. The new pin will drive out the broken pieces of the old pin. The tool should now be checked to see if it functions properly. Ordering information for the pin is:
GROOVED PIN: 1/8-inch diameter \(\times 3 / 4\)-inch long— Comcode 900523663
Fig. 52—Replacing Handle Pin

\section*{6. D, E, AND F CUTTER-PRESSERS—ALTERNATE 710 CONNECTOR ASSEMBLY TOOLS}
6.01 The \(D\) cutter-presser (Fig. 53 Fig. 53) is operated by a pneumatic/hydraulic system that requires an air source (bottled air or a compressor) at 80 to 100 psi .

Fig. 53—D Cutter-Presser

\subsection*{6.02 The E cutter-presser (Fig. 54 Fig. 54) is operated by a} pneumatic/hydraulic system. The tool is for use with the B modular tool kits. The presure relief setting of the hydraulic pump (ENERPAC

Footnote: Registered trademark of ENERPAC, Butler, Wisc.
unit) must be made at ENERPAC service centers or a preset capsule valve, SPL-1338, available from ENERPAC dealers, must be installed.
6.03 The F cutter-presser (Fig. 55 Fig. 55) is hydraulically operated with a hand pump.

Fig. 54-E Cutter-Presser

Fig. 55-F Cutter-Presser

\section*{7. SETUP AND USE OF CUTTER-PRESSERS}
7.01 The D, E, and F cutter-pressers can be mounted on any of the tool mounting devices described in Part 4 of this practice. A typical setup with a cutter-presser mounted on the \(B\) support frame assembly is shown in Fig. 56 Fig. 56. To mount the tool (D, E, or F cutter-presser) on the B support frame assembly:
1. Slide the press clamp assembly, with the knob to the right, onto the horizontal bar.
2. Place the tool into the press clamp assembly and move the clamp and tool to the desired position. Tighten the clamp.

\subsection*{7.02}

DANGER: Keep fingers clear of the knife blade when operating the cutter-presser. When handling the \(T\)-bar, do not place fingers under the \(T\)-bar. When handling the cutter-presser, place hand on front portion only. Refer to Fig. 57 Fig. 57.

The D, E, and F cutter-pressers are operated the same way. Use of the cutter-pressers to assemble 710 connectors is covered in the following paragraphs. When splicing two lengths of cable, the shortest length of cable must be placed in the index strip. This enables testing of the splice using a 152A test as covered in Part 12.

\subsection*{7.03 Place the index strip in the tool as follows (Fig. 58 Fig. 58):}
1. With the arched wire grips of the index strip facing the T-bar, place the index strip into the connector holding device. Be sure the ends of the index strip are keyed into the end springs.
2. Push down on the index strip to secure it beneath the L-spring on the back of the tool. This prevents bowing of index strip during wire dressing.

Fig. 56—Cutter-Presser Mounted on B Support Frame Assembly


Fig. 57-Handling the Cutter-Presser

\section*{Fig. 58-Placing Index Strip}

夏
7.04 Place conductors into the index strip (Fig. 59 Fig. 59) by using the thumb and forefinger of each hand and grasping a pair from the binder group to be spliced. Separate the tip and ring conductors on the colored peaked projection of the index strip, tip side to the left and ring side to the right. Dress the conductors into the wire grips leaving approximately \(3 / 8\)-inch of slack behind the index strip for 24 to 26 gauge and 1 inch for 19 to 22 gauge (including T2, 22-gauge LOCAP

Footnote: Trademark of AT\&T.
cable).
NOTE: When dressing pulp and noncolor-coded PIC conductors, select the pairs at random and place them into the index strip starting at the end of the tool nearest the cable being placed. When dressing PIC, select the pairs at random and place them into the strip in proper color-code sequence using color-code strip and peaked projections as a guide.
7.05 When the 25 pairs have been placed in the index strip (Fig. 60 Fig. 60), use the error-tector to check for splicing errors such as two conductors in one slot, vacant slots, tip and ring reversals, or transposed pairs. Use the error-tector in the following way:
1. Place the error-tector over the index strip and slide to the left; only the tip conductors should show. Slide the error-tector to the right; only the ring conductors should show.
2. If an error is found, correct it and check the conductors again with the error-tector.
7.06 Seat and cut the conductors in the index strip as follows (Fig. 61 Fig. 61):
1. Gently separate conductors around the T-bar.
2. Position the T-bar over the index strip. Before operating the cutter-presser, apply slight downward pressure with the hand on the conductors behind the index strip. This will hold the conductors in place and keep the index strip from shifting until the tool engages the index strip. Keep fingers clear of the knife blade.

Fig. 59—Placing Conductor Into Index Strip

\section*{Fig. 60-Checking Placed Conductors}

\section*{Fig. 61-Seating and Cutting the Conductors}
3. Operate the hydraulic pump to cut the conductors. Remove cut conductors with the T-bar in the down position. It may be necessary to gently tug the conductors to remove them from the cutter-presser. Do not pull on the conductor ends until the pump reaches full pressure. The index strip could be damaged or the conductors could be pulled out of the index strip. Release pressure and pull the T-bar back to its original position.
7.07 Place connector module on index strip as follows (Fig. 62 Fig. 62):
1. With the arched wire grips of the connector module facing the T-bar, place the connector module into the cutter-presser.
2. Keep the module parallel to the index strip.

Fig. 62—Placing Connector Module

\section*{䍚}
7.08

WARNING: If the connector module is not positioned parallel to the index strip, the module may be damaged and cause trouble in pair positions 1 and 2 or 24 and 25.

To seat the connector module (Fig. 63 Fig. 63), close the T-bar and operate the pump to seat the module. Do not release pressure or pull back the T-bar until the conductors have been tested.
7.09 Test the conductors as follows (Fig. 64 Fig. 64):

1．Operate the test set to test the conductors．
2．Release pressure and pull the T－bar back to its original position．

\title{
Fig．63－Seating Connector Module
}

\section*{圈}

Fig．64－Testing the Conductors
園

7．10 Place conductors into the connector module as follows（Fig． 65 Fig．65）：
1．Select the conductors from the corresponding group of the second cable and dress them into the connector module．Bring each pair across the top of the module and separate the tip and ring conductors on the peaked projections． Tip conductors go to the left and ring conductors to the right．Leave approximately \(3 / 8\)－inch of slack behind connector module for 24 through 26 gauge and 1 inch for 19 through 22 gauge．
2．Use error－tector to check the conductors．Position the T－bar over the connector module．
3．Gently separate the conductors around T－bar．For 19 through 22 gauge，apply light downward pressure with the hand on conductors behind the connector module to keep conductors from bowing and the module from rocking forward when the T－bar moves down．Operate the hydraulic pump to seat and cut the conductors．Do not pull on the conductors while operating the pump．This will pull the connector module under the cutting blade and damage the connector module．With the T－bar in the full down position，it may be necessary to tug gently on the cut ends of the conductors to remove them from the cutter－presser．
4．Test the conductors and then release pressure and pull the T－bar back to the original position．

Fig．65—Placing Conductors

\section*{園}

7．11 Place the cap on the connector module as follows（Fig． 66 Fig．66）：
1．With the latches of the cap facing the T－bar，place the cap on the connector module．
2. Partially seat the cap on the connector module by pressing down and running the finger across the length of the cap.
3. Seat the cap by closing the T-bar over the cap and operating the hydraulic pump. Release the hydraulic pressure and pull the T-bar back to its original position.
4. If connector module or cap is damaged during assembly, remove the damaged part and replace with a new one.
7.12 Remove the spliced unit as follows (Fig. 67 Fig. 67):
1. Push the button to release completed connector. Remove the connector from the cutter-presser.
2. Using a felt marker, mark the unit identification number on unfilled connectors. Identify filled connectors by applying a binder group identification tie approximately 3 inches from the connector.

\section*{MAINTENANCE OF CUTTER-PRESSERS}
7.13

WARNING: Disconnect air pressure and release hydraulic pressure from cutter-presser to prevent accidental activation of tool while performing maintenance.

\section*{A. Cleaning}
7.14 Clean the cutter-presser after splicing with filled connectors. Check to be sure the tool is clean before splicing with unfilled connectors.
7.15 Clean the end springs as follows (Fig. 68 Fig. 68):
1.

> WARNING: Do not use B cleaning fluid or other unapproved fluids to clean the tool as some residue can remain on the tool and cause damage to the connectors and cutting blade.

Spray the end springs with KS-21446 solvent or KS-7860 petroleum spirits. With the brush, work the solvent behind the end springs to be sure the springs are thoroughly cleaned. Problems can be caused by buildup of compound behind the end springs.
2. Depress the springs several times to loosen the buildup, then wipe clean and dry with a clean cloth.

Fig. 66—Placing Cap

Fig. 67—Removing Spliced Unit䊮

Fig. 68-Cleaning End Spring
7.16 Clean the guide and blade assembly as follows (Fig. 69 Fig. 69):
1. Pull the T-bar back to the horizontal position.
2. Spray the knife blade and guide area with solvent.
3. Brush the guide and blade thoroughly to clean and remove all wire scraps left in the guide area. False defective pair indications can occur when using the pair verification test set if wire scraps are in the guide area.
4.

DANGER: Extreme caution must be taken when cleaning and drying the guide assembly. The blade is very sharp. Wipe the blade and guide area clean and dry with a clean, dry cloth.

Fig. 69-Cleaning Guide and Blade Assembly漣

\section*{B. Lubricating}
7.17 If operation of the T-bar becomes difficult, apply grease to the flat closing spring of the cutter-presser. The grease is provided with the tool kit.
7.18 Lubricate the cutter-presser as follows (Fig. 70 Fig. 70):
1. Insert a screwdriver between the \(T\)-bar and spring to deflect the spring \(1 / 16\) inch.
2. Place lubricant into opening.

Fig. 70—Lubricating Cutter-Presser
C. Replacing the Knife Blade
7.19 The knife blade should be replaced when it becomes dull or damaged. Ragged or incompletecutting of the conductors indicates a need for blade replacement. A sharp blade may not cut through pulp or paper insulation or through 17- or 19-gauge conductors. Unless the conductors show ragged cutting, the blade probably does not need to be replaced.
7.20 Procedures for replacing the knife blade in the D, E, and F cutter-pressers are outlined in the following paragraphs.
7.21 Loosen the screws as follows (Fig. 71 Fig. 71):
1. Push the T -bar to the upright position.
2. Using the allen wrench set, loosen but do not remove the four allen-head screws on the back of the T-bar. The screws secure the blade holder and blade in place. If the screws are removed while the T-bar is in the up position, the holder assembly and blade will fall out.

Fig. 71—Loosening Screws
7.22 Remove the blade and blade holder as follows (Fig. 72 Fig. 72):
1. Pull the T-bar back to its horizontal position and remove the four allen-head screws.
2. It may be necessary to loosen (do not remove) the screws securing the wire cover to the T-bar to relieve pressure on the blade.
3. Push down the knife blade guard and slide the old blade and the holder out of the side of the T-bar. Be careful not to drop any other parts of the T-bar.

Fig. 72—Removing Blade
7.23 Place the new knife blade in the blade holder as illustrated in Fig. 73 Fig.

Fig. 73—Placing Blade in Knife Blade Holder
7.24 Replace the knife blade and holder as follows (Fig. 74 Fig. 74):
1. Slide the holder into the space provided until the blade is centered.
2. Replace the allen-head screws into the T-barfinger tight. The blade must be aligned before tightening the screws with an allen wrench.

Fig. 74—Replacing Knife Blade and Holder
7.25 The blade is aligned as follows (Fig. 75 Fig. 75):
1. Insert an index strip into the holder of the cutter-presser with the arched wire grip facing the T-bar. Be sure the index strip is secure beneath the L-spring in the center of the holder.
2. Push the T-bar to the upright position. Connect the air pressure.
3. Operate the hydraulic pump. This brings the blade in contact with the index strip and aligns the blade properly.
4. With the T-bar in the down position, tighten all four allen screws snugly until the lock washers around the screws are fully compressed. Do not overtighten. The plastic guide could be damaged.
5. Release the hydraulic pump and then check the index strip to ensure a slight knife cut is visible. Disconnect the air pressure.
6. Tighten the screws that secure the wire cover.

Fig. 75—Aligning Blades

\section*{8. MAINTENANCE OF "ENERPAC" UNIT}

\section*{A. Checking Oil Level and Lubricating}
8.01 Check all hydraulic and air connections to be sure they are tight and are not leaking. Loose or leaking connections may cause erratic operation or loss of operation altogether. Procedures for checking oil level and lubrication are covered in the following paragraphs.
8.02 Check the oil level in the air pump as follows (Fig. 76 Fig. 76):
1. Disconnect the air and turn the pump upside down.
2. Keeping the hydraulic hose end down, remove the filler plug and check the oil level.
3.

CAUTION: Use only high quality hydraulic fluid. Do not use brake fluid or other types of oil. They can damage the pump. Hydraulic oil should be changed after every 50 hours of use. In dusty areas, change hydraulic oil more frequently. If oil is required, fill the pump with ENERPAC hydraulic fluid (HF-100 series) or equivalent. Be sure pump is completely filled (oil overflows).
8.03 Check the oil level in the hand pump as follows (Fig. 77 Fig. 77):
1. Place the pump in a vertical position.
2. Remove the dip stick and check the oil level.
3. If oil is required, fill the pump with ENERPAC fluid (HF-100 series) or equivalent. Be sure pump is completely filled (oil overflows).

Fig. 76-Checking Oil Level (Air Pump)


Fig. 77—Checking Oil Level (Hand Pump)
8.04 Fill the filter lubricator as follows (Fig. 78 Fig. 78).
1. Remove the plug and fill the cylinder with air-motor lube, KS-19519 oil, or equivalent.
2. Check the filter lubricator level weekly and refill as required.
8.05 Lubricate the air motor as follows (Fig. 79 Fig. 79):
1. Remove \(F\) pressure valve fitting. If the fitting is a quick-connect fitting, it is not necessary to remove it.
2. Using air-motor lubricating oil or KS-19519,L1 lubricating oil, lubricate the air motor by placing the oil directly into the quick-connect fitting or into the fitting hole until the motor is flooded.
3. Replace the pressure valve fitting. Connect the air hose and apply air. The air piston should cycle.

NOTE: If the hydraulic hose is disconnected from the pump, be sure the end of the hose is covered with a \(1 / 4\) NPT cap. When reconnecting the hose, the hydraulic system must be purged.

Fig. 78-Filling Filter Lubricator

Fig. 79—Lubricating Air Motor

\section*{圊}

\section*{B. Troubleshooting the ENERPAC Unit}
8.06 Table E Table E identifies some problems that may be experienced with the ENERPAC unit if air or dirt enters the system or if air is not completely purged from the unit.

TABLE E "ENERPAC" TROUBLESHOOTING GUIDE
\begin{tabular}{|c|c|l|}
\hline PROBLEM & PROBABLE CAUSE & \begin{tabular}{|c|}
\hline CORRECTING \\
PROCEDURE
\end{tabular} \\
\hline \begin{tabular}{c} 
Air motor operates (putting \\
sound) but no hydraulic \\
pressure
\end{tabular} & \begin{tabular}{c} 
1. Release valve may be \\
out of adjustment, or \\
2. Air may be in the \\
hydraulic pump
\end{tabular} & \begin{tabular}{l} 
Par. 8.08 \\
Par. 8.09
\end{tabular} \\
\hline \begin{tabular}{c} 
Hydraulic pressure builds up \\
but will not hold (T-bar \\
creeps open after closing)
\end{tabular} & \begin{tabular}{c} 
Release valve is out of \\
adjustment
\end{tabular} & Par. 8.08 \\
\hline \begin{tabular}{c} 
Air motor fails to operate (no \\
putting sound or operates \\
slowly)
\end{tabular} & \begin{tabular}{c} 
Dirt has entered the air \\
motor and gummed up the \\
air piston ring
\end{tabular} & Par. 8.05 \\
\hline \begin{tabular}{c} 
No movement of T-bar
\end{tabular} & Air in cutter-presser & \begin{tabular}{l} 
Par. 8.08 and \\
8.10 \\
if necessary
\end{tabular} \\
\hline
\end{tabular}
8.07 Purge air from the cutter-presser head as follows (Fig. 80 Fig. 80):
1.

> WARNING: Do not operate the hydraulic pump upside down or with the hydraulic hose end down.

Hold the pump above the cutter-presser and operate the treadle valve several times. This should force any air in the system to the pump reservoir.
2. Check the hydraulic fluid level and add fluid if any is needed.
8.08 Adjust the release valve of the ENERPAC PA131-SP unit as follows (Fig. 81 Fig. 81) (No adjustment is required for the ENERPAC PA136-SP unit):
1. Use a \(5 / 16\)-inch wrench to remove the screw that secures the adjustment arm.
2. Rotate the adjustment arm \(1 / 3\) turn counterclockwise.
3. Attach the air source to the pump.
4. Depress the treadle. If the release valve was out of adjustment, hydraulic pressure should build up as the treadle is depressed.
5. With pressure built up, rotate the adjustment arm clockwise until the hydraulic
pressure releases. Mark the point of release on the pump. Repeat Steps (2) and (4). With pressure built up again, rotate the adjustment arm clockwise to a point of resistance just before reaching the point where pressure releases.
Replace the screw and lock washer in the adjustment arm and secure in place.
Fig. 80—Bleeding Air From Head of Cutter-Presser
6. Operate the pump a few times to ensure the setting is correct.

NOTE: If the pump is badly out of adjustment, it may be necessary to remove the arm and relocate it so the locking screw aligns with one of the tapped holes in the fixed plate.

Fig. 81—Adjustment of Release Valve

\section*{娄}
8.09 Purge air from the ENERPAC PA131-SP pump as follows (Fig. 82 Fig. 82):
1. Use a \(5 / 16\)-inch wrench to remove the screw that secures the adjustment arm.
2. Rotate the adjustment arm \(1 / 3\) turn counter-clockwise.
3. Turn the pump on its side so the adjustment arm is down and the treadle bearing is up.
4. Use a \(5 / 8\)-inch wrench to loosen the treadle bearing three turns.
5. Attach the air supply and operate the pump. Some air and hydraulic fluid should leak from the base of the treadle bearing. If no fluid is detected, it may be necessary to loosen the treadle bearing in 1/4-turn increments until hydraulic fluid is seen. Continue to operate the pump until hydraulic pressure builds to the point where the T-bar of the cutter-presser closes and only hydraulic fluid, no air, is seen coming from the base of the treadle bearing.
6. Retighten the treadle bearing while the pressure is built up and adjust the release valve as previously outlined.
7. Purge the air from the head of the cutter-presser.

Fig. 82—Purging Air From Pump (ENERPAC PA 131-SP)

8.10 Purge air from the cutter-presser (ENERPAC PA136-SP) as follows (Fig. 83 Fig. 83):
1. Position the cutter-presser higher than the pump.
2. Remove the setscrew on side of the tool.
3. Attach the air hose to the pump.
4. Depress the treadle. Air and hydraulic fluid should leak from the cutter-presser. Repeat this operation until no air comes from the cutter-presser and then replace the set screw.
5. Check the oil level in the pump and fill, if necessary.

Fig. 83-Purging Air From Cutter-Presser

\section*{9. 835A TOOL}
9.01 The 835A tool is a manually operated cutter-presser that uses a lever system for power to assemble 25 -pair, 710 connectors. The 835A tool is shown in Fig. 84 Fig. 84.
9.02 The 835A tool is wired for use with a 152A test set for testing pairs as the splice is made. Testing can be done after the module (connector, bridge, or half-tap) is assembled on the index strip. Note that with the 835A tool, testing is done on the module. With the modified 835A tool and the 890A tool, testing is done on the index strip.
SETUP AND USE
9.03

DANGER: Exercise care when operating the 835A tool. The knife blade is very sharp.

The 835A tool can be mounted on the 710-type tool mountings and the B support frame assembly in the same manner as the 890A tool. Refer to Parts 4 and 5 of this practice.
9.04 Use of the 835A tool to assemble 710 connectors is covered in the following paragraphs. When splicing two sections of cable together, theshortest section of cable must be placed in the index strip to enable testing the splice with a 152A test set.

Fig. 84-835A Tool
9.05 Place the index strip in the tool as follows (Fig. 85 Fig. 85):
1. With the arched wire grips facing the T-bar, place the index strip into the connector holding bracket assembly. Be sure the ends of the index strip are keyed into the end springs.
2. Push down on the index strip. If necessary, push in on the button to secure the index strip under the \(L\)-spring located on the back of the tool. This prevents bowing of the index strip during wire dressing.

Fig. 85-Placing Index Strip
造
9.06 Place conductors into the index strip as follows (Fig. 86 Fig. 86):
1. Use the thumb and forefinger of each hand to grasp a pair from the binder group. Separate the tip and ring conductor on the colored peaked projections of the index strip, tip side to the left and ring side to the right.
2. Dress the conductors into the wire grips leaving approximately \(3 / 8\)-inch slack behind the index strip for 24 through 26 gauge and 1 inch for 19 through 22 gauge. When dressing pulp and noncolor-coded PIC conductors, select the pairs at random and place them into the index strip starting at the end of the tool nearest the cable being placed. When dressing PIC, select the pairs at random and place them into the strip in proper color-code sequence using color-code strip and and colored peak projections as a guide.

Fig. 86—Placing Conductor Into Index Strip

9.07 When the 25 pairs have been placed in the index strip (Fig. 87 Fig. 87), use the error-tector to check for splicing errors such as two conductors in one slot, vacant slots, tip and ring reversals, or transposed pairs. Use the error-tector in the following way:
1. Place the error-tector over the index strip and slide to the left; only the tip conductors should show. Slide the error-tector to the right; only the ring conductors should show.
2. If an error is found, correct it and check the conductors again with the error-tector.

Fig. 87-Checking Placed Conductors
9.08 Place the T-bar over the index strip as follows (Fig. 88 Fig. 88):
1. Gently separate the conductors around the T-bar.
2. Place the T-bar over the index strip.

Fig. 88—Placing T-Bar Over Index Strip
9.09 Position the tool for proper cutting by pushing down on the T-bar (Fig. 89

Fig. 89).
Fig. 89—Positioning Tool for Cutting Operation
9.10 Seat and cut the conductors as follows (Fig. 90 Fig. 90):
1. Hold the T-bar in the down position.
2. Grasp the hand lever and pull it until it hits the stop. All conductors should now be cut.

Fig. 90—Seating and Cutting Conductors

\section*{樯}
9.11 With the hand lever in the down position, tug gently on the cut conductors to remove them (Fig. 91 Fig. 91). If all conductors are not cut, the blade may need replacing.
NOTE: The pairs are normally tested after the connector module is installed; however, on modified versions of the 835A tool, pairs may be tested on the index strip.
9.12 Return T-bar to the horizontal position as follows (Fig. 92 Fig. 92):
1. Push the hand lever back to its original latched position.
2. Pull the T-bar back to the horizontal position.

Fig. 91—Removing Cut Conductors
遙

Fig. 92-Returning T-Bar to Horizontal Position
9.13 Place the connector module as follows (Fig. 93 Fig. 93):
1.

WARNING: If the connector module is not lowered parallel to the index strip, it may be damaged causing faults in end pair positions 1 and 2 or 24 and 25.

With the arched wire grips of the conductor module facing the T-bar, place the connector module into the tool. Keep the module parallel to the index strip.
2. Push the connector down until latches on the connector partially engage in slots on the index strip.

Fig. 93—Placing Connector Module

9.14 Seat the connector module as follows (Fig. 94 Fig. 94):
1. Position the T-bar over the connector module and push down on the T-bar.
2. While holding the T-bar in position over the connector, pull the hand lever to seat the connector module.

NOTE: If the connector module is not properly seated, return the lever to the latched position, pull the T-bar back, and push down on the module until it latches on the index strip. Repeat 1 and 2 above. If the connector module is damaged, discard it and use a new one.

Fig. 94-Seating Connector Module

9．15 With the lever in the down position，test the pairs with a pair verification test set（Fig． 95 Fig．95）．

Fig．95－Testing Pairs With Pair Verification Test Set

9．16 Return the T－bar to the horizontal position（Fig． 96 Fig．96）．
Fig．96－T－Bar Returned to Horizontal Position

9．17 Place conductors in the connector module as follows（Fig．97 Fig．97）：
1．Select the 25 －pair group of conductors that match the group placed in the index strip and place the selected group in the connector module．Use the same procedure as used for the index strip．
2．Use the error－tector to check for errors in conductor placement in the connector module．
3．Gently separate the conductors around the T－bar and then position the T－bar over the connector module．
4．Cut the conductors by pulling the lever down．With the lever in the down position，remove the cut conductors．Test the pairs using pair verification test set．

Fig．97－Conductors Placed in Connector Module匋

9．18 Return the T－bar to the horizontal position（Fig． 98 Fig．98）．
Fig．98－T－Bar in Horizontal Position
9.19 Place and seat the cap on the connector module as follows (Fig. 99 Fig. 99):
1. With latches facing the T-bar, place a cap on the connector module. Partially seat the cap on the connector module by pressing down on the cap and running the fingers across the length of the cap.
2.

WARNING: If resistance is met when pulling the lever down, stop and check to be sure the cap is in the proper position. If the cap is damaged, discard it and use a new one.

Seat the cap by placing the T-bar over the cap and, while pushing forward on the T-bar, pull the hand lever down to seat the cap on the connector module. Return the T-bar to the horizontal position.

Fig. 99—Placing Cap on Connector Module
9.20 Remove the completed module as follows (Fig. 100 Fig. 100):
1. Push the button to release the completed module. Remove the module from the tool.
2. With a felt marker, mark the unit number onunfilled modules. For filled modules, use a binder group identification tie placed about 3 inches from the connector.
Fig. 100—Removing Completed Module Trouble Shooting Chart for 835A Tool

\section*{MAINTENANCE}
9.21 Blade replacement and cleaning procedures for the 835A tool are identical to those for the \(\mathrm{D}, \mathrm{E}\), and F cutter-pressers except that the T-bar is manually operated.
9.22 Adjustments and troubleshooting are out-lined in the troubleshooting chart,

Table F Table F, and in the troubleshooting guide packaged with the tool.
9.23 Adjust the slide mechanism as follows (Fig. 101 Fig. 101):
1. Unlock the T-bar by inserting a screwdriver through the grommet on the right side of the housing and pushing the slide to the left.
2. Remove the eleven screws from the cover and remove the cover from the housing.
3. Tilt the tool back slightly. Do this to keep the slide from jumping out of its track.
4. Push the T-bar down and pull the handle down to move the slide to the right and gain access to the adjusting screw.
5. Loosen the locking nut on the adjusting screw. Using a trial-and-error method, turn the screw in the required direction to position the left end of the slide to within 0.010/0.030 inch (approximate thickness of 24-gauge wire) of the inside wall of the housing when the handle is in the closed position. Turn screw counterclockwise to move slide to the right. Turn screw clockwise to move slide to the left.
6. After the adjustment has been made, secure the adjusting screw in place with the locking nut. Recheck the clearance. Replace the cover on the housing and install the screws. The four short screws go along the top of the cover.
9.24 Replace the roll pin as follows (Fig. 102 Fig. 102).
1. Before attempting to remove the roll pin, check to see if the holes in the handle collar and the cam shaft are aligned. Pull the handle down and insert a wire into the roll pin. If the wire does not go through, rotate the handle on the shaft until the wire does go all the way through.
2. If the holes cannot be aligned, remove the cover. Place a screwdriver into the mechanism on the opposite end of the cam shaft to prevent the shaft from rotating when the handle is moved. Now rotate the handle until the hole in the handle collar is lined up with the pin on the opposite end of the shaft.

TABLE F 835-TYPE TOOL TROUBLESHOOTING GUIDE

\title{
NOTE: The T-bar not being properly positioned while seating a cap can c the slide to be out of adjustment, a bent or broken roll pin, or a burred bl knife support.
}
\begin{tabular}{lll}
\begin{tabular}{l} 
A. T-bar will not spring back to \\
upright \\
position after the cutting and \\
pressing \\
operation
\end{tabular} & Slide out of adjustment & Adjust slide mechanism \\
\begin{tabular}{ll} 
Problem persists or there is no \\
more \\
travel left on the adjusting screw
\end{tabular} & Bent or broken roll pin & Replace roll pin. \\
\begin{tabular}{ll} 
B. T-bar will not move up and \\
down \\
freely
\end{tabular} & Burred knife blade holder & \begin{tabular}{l} 
Remove knife blade ho \\
from \\
down freely the T-bar. \\
Lightly file \\
the burs until the part i \\
able to \\
slide freely in the end p
\end{tabular} \\
slots. Replace holder. \\
the knife blade hol
\end{tabular}
\begin{tabular}{|lll}
\hline PROBLEM & CAUSE & REMEDY \\
\hline & \\
NOTE: The T-bar not being properly positioned while seating a cap can c \\
the slide to be out of adjustment, a bent or broken roll pin, or a burred bl \\
knife support.
\end{tabular}

Fig. 101—Adjusting Slide Mechanism

Fig. 102—Replacing Roll Pin
6. When the wire can be inserted through the roll pin, remove the screwdriver.
7. Pull the handle down all the way and put a screwdriver underneath it for support. Do not remove the pin with the handle in this position because the tool could be damaged.
8. With a hammer and punch, knock the pin out about halfway and drive in one of the new pins supplied with the tool until it is flush with the groove in the collar. The new pin will drive out the broken pieces of the old pin. The tool should now be checked to see if it functions properly. If the slide needs adjusting, follow adjusting procedure in preceding paragraphs. Order pin as: Roll Pin, 420 stainless steel, 0.125 -inch diameter by 0.75 -inch long, Comcode No. 900477514.

NOTE: An alternative to Step (5) is to use an 835 roll pin replacement tool instead of the punch. The tool is used as a punch but also can be used to hold the new pin while driving the old pin out. In most cases, it is not necessary to remove the cover to replace a pin if the roll pin replacement tool is used. The tool, with three roll pins, is available from Muschong Metal and Manufacturing Company, 2056 Happy Lane, St. Louis, MO 63125.
9.25 Remove shims from the knife support pocket as follows (Fig. 103 Fig. 103):

NOTE: For removal and replacement of the knife support assembly, use the procedures given for the \(\mathrm{D}, \mathrm{E}\), and F cutter-pressers.
1. Remove the knife support assembly from the tool and take the knife blade out of the support assembly.
2. Remove any brass shims that are in the knife support pocket. Replace the knife blade in the assembly and the assembly in the support. Replace the support in the tool.

Fig. 103—Removing Shim From Knife Support
1. Remove the connector holding bracket assembly from the tool by unscrewing the two attaching screws and lifting it straight up. There should be a thin brass shim and a thick brass shim remaining on top of the tool (if there is only one shim and blade breaking is severe, return the tool for repair). Remove the thin shim and attach the holding bracket to the tool. Assemble a connector module to an index strip. Cut and press 25 pairs of 22 -gauge wire on the connector module. If the wires are not completely cut, additional shims must be added. Remember that pulp insulation probably will not be cut all the way through even with a new, properly-adjusted blade.
2. Peel a few layers off of the thinner shim, which is laminated, and reinstall it
with the thick shim. Make a new test cut to check for completeness of cut. Add or remove shims and make test cuts until all wires are cut completely.

\section*{Fig. 104—Adjusting Height of Connector Holding Bracket}

\section*{囷}
9.27 Lubricate the stuffers of the pressing tool as follows (Fig. 105 Fig. 105):
1. Apply petroleum jelly across the length of an index strip and operate the T-bar on and off of the index strip several times to transfer some of the petroleum jelly to the stuffer blades. Remove and discard the index strip.
2. An alternative method for lubricating is to apply KS-21446 solvent to the stuffer blades. Do not use any other solvent.

Fig. 105—Lubricating Stuffers of Pressing Tool


\subsection*{10.945A TOOL}
10.01 The 945A tool (Fig. 106 Fig. 106) is a manually operated tool used to assemble 25-pair or 5 -pair 710 connectors. The tool is equipped with a mounting rod for aerial mounting. The 945A tool can be used with any of the 710A tool mounting setups.

Fig. 106-945A Tool
邅

\section*{USE}
10.02 Five press/cut positions are provided along the length of a 25 -pair module holder to allow positioning of the presser so five pairs at a time can be pressed and cut over the length of the module.
10.03 A 5-pair module holder is provided for assembling 5-pair connectors.
10.04 Installation of a 25 -pair and a 5 -pair module holder on a strand is illustrated in Fig. 107 and 108 Fig. 107 and 108, respectively. The 5 -pair module holder also can be hand held as shown in Fig. 109 Fig. 109. Since the use of the 945 A tool is the same for assembling the 25 -pair and the 5 -pair connectors, except that the 5 pair requires only one press, only the 25 -pair connector is illustrated in the
instructions that follow．The index strip is placed in the holder as follows（Fig． 110 Fig．110）：

1．With the arched wire grips of the index strip facing to the front of the module holder，place the index strip into the module holder．Be sure the ends of the index strip are keyed into the side posts．
2．Push down on the center of the index strip to secure the index strip under the spring located on the back of the module holder．Be sure the L－spring has latched over the groove in the index strip．

Fig．107－25－Pair Module Holder Mounted on Strand

\title{
園 \\ Fig．108—5－Pair Module Holder Mounted on Strand
}邅

Fig．109—5－Pair Module Holder Held in Hand


Fig．110—Placing Index Strip㽬

10．05 Place conductors into the index strip as follows（Fig． 111 Fig．111）：
1．Using the thumb and forefinger of each hand，grasp a pair from the binder group．Separate the tip and ring conductor on the colored peaked projections of the index strip，tip side to the left and ring side to the right．
2．Dress the conductors into the wire grips leaving approximately \(3 / 8\)－inch slack behind index strip．When dressing pulp or noncolor－coded PIC conductors，select the pairs at random and place them into the index strip starting at end of tool nearest cable being placed．When dressing PIC，select the pairs at random and place them into the strip in proper color－code sequence using color－code strip and colored peak projections as a guide．

10．06 Check placed conductors as follows（Fig． 112 Fig．112）：
1．When the 25 pairs have been placed in the index strip，use the error－tector to
check for splicing errors such as two conductors in one slot，vacant slots，tip and ring reversals，or transposed pairs．
2．Place the error－tector over the index strip and slide to the left－only the tip conductors should show．Slide the error－tector to the right－only ring conductors should show．If an error is found，make the correction and check the conductors again with error－tector．

10．07 Adjust the tool for seating and cutting the conductors in the index strip by pushing the button down and pulling the adjustment slide forward（Fig． 113 Fig．113）．

10．08 Cut the conductors in the index strip as follows（Fig． 114 Fig．114）：
1．Position the tool in the groove underneath the module holder and slide the tool forward until it hits the stop．The tool will key in holes in the module holder．
2．Press handle to seat and cut conductors．Remove the cut conductors by gently pulling them，if necessary．
3．Release handle and remove the tool from the module holder．Repeat Steps （1）and（2）until all conductors are cut．

NOTE：There is no recommended sequence for cutting and pressing conductors．

10．09 After cutting all of the conductors，remove the tool from the module holder （Fig． 115 Fig．115）．

Fig．111—Conductors Placed Into Index Strip

通

Fig．112－Checking Placed Conductors
畋

Fig．113－Adjusting Tool for Seating and Cutting Conductors From Index Strip

迕

Fig．114－Cutting Conductors From Index Strip


\section*{Fig. 115-Conductors Cut and Tool Removed}
10.10 Place the connector module on the index strip as follows (Fig. 116 Fig. 116):
1.

WARNING: If the connector module is not lowered parallel to the index strip, the module may be damaged and cause trouble in pair positions 1 and 2 or 24 and 25.

Place the connector module between the end keys of the base with the arched wire grip facing to the front of the module holder. Guide the module down on the end springs keeping the module parallel to the index strip.

Fig. 116—Place Connector Module
2. Pull the slide back to raise the head of the presser.
3. Seat the connector module on the index strip by indexing across for five presses following a procedure similar to that used for cutting the conductors from the index strip.
10.11 Place the conductors into the connector module as follows (Fig. 117 Fig. 117):
1. Place the conductors from the matching binder group of the second cable into the slots of the connector module.
2. Use the error-tector to check the conductors placed in the connector module.
10.12 Seat and cut the conductors following the same procedures used for the index strip. Keep the height adjustment slide in the rear position (Fig. 118 Fig. 118).

Fig. 117-Conductors Placed in Connector Module

\section*{Fig. 118-Seating and Cutting Conductors}
10.13 Place the cap on the connector module as follows (Fig. 119 Fig. 119):
1. With the latches of the cap facing the tool, place the cap on the connector module. Using the finger, partially seat the cap on the connector module by running the finger along the length of the cap.
2. Seat the cap on the module by pressing five times along the length of the cap. The tool is not required to be inserted fully into the module holder while seating the cap.

NOTE: To keep the cap from rising during the seating, press one end of the cap and then the other end. Make intermediate presses after the ends are seated.

Fig. 119—Placing Cap

娄
10.14 Remove the completed module as follows (Fig. 120 Fig. 120):
1. Remove the tool. Push the spring to release the module and remove the completed module.
2. Using felt marker, mark unit number onunfilled connector. For filled connector identify unit number with binder group identification tie placed approximately 3 inches from connector.
MAINTENANCE
10.15 Periodic cleaning of the 945A tool is required, especially when splicing with filled connectors. Clean the tool as follows (Fig. 121 Fig. 121):
1. Spray the knife blade and guide area with KS-21446 solvent and then brush thoroughly. Repeat as required until clean.
2.

DANGER: Extreme caution must be taken when cleaning and drying the guide assembly. The blade is very sharp.

Wipe the guide area and knife blade with a clean, dry cloth.
Fig. 120—Removing Completed Module
10.16 When the knife blade becomes dull, replace the knife blade as follows (Fig. 122 Fig. 122):
1. Remove the two screws and remove clamp plate, guide, knife blade, and knife blade holder.
2. Remove the old knife blade from holder and replace with new blade. Reassemble.

Fig. 121-Cleaning Knife Blade
rer
Fig. 122—Knife Blade Replacement
娄

\section*{11. HAND TOOLS AND ACCESSORIES}
11.01 In addition to the cutter-pressers, a number of hand tools and accessories are available as a part of the 710 modular splicing system.
11.02 The following items, some of which are shown in Fig. 123 Fig. 123, are available for use with the 710 system:
A. D Insertion Cutting Tool: This tool is used for seating and cutting a single pair of conductors. It can be used with all 710 modules.
B. C Bridge Removal Tool: This tool is for removing bridge modules from all 710 connectors.
C. L Connector Presser: This tool is used to join a BSM (bottomless splice module) to an index strip and to other 710 connector combinations (Fig. 124
Fig. 124). The L connector presser can be used only when 22-, \(24-\), and 26 -gauge conductors are in the index strip. Use the 890A tool or 835 A tool to seat a BSM on an index strip that contains 19-gauge conductors.

Fig. 123-Hand Tools and Accessories

圈

Fig. 124-Using the L Connector-Presser

\section*{通}
D. F Module Support: The F module support is used to protect contacts on a 25-pair connector module when preterminating a stub cable.
E. 710-CM5 Module Support: The 710-CM5 module support is used to protect contacts on 5 -pair connector modules when preterminating a stub cable.
F. E Module Support: The E module support is used to protect contacts on bridge modules when preterminating stub cable.
G. 710-BM5 Module Support: The 710-BM5 module support is used to protect the contacts on 5 -pair bridge modules when preterminating a stub cable.
H. B Tagging Tape: This tape is for recording the identification number of pulp-insulated conductors in a connector.
I. Male Contact Cover: This is a protective cover for preterminated bridge modules-Comcode number 842931271 from Dandee Plastics.
J. Connector Module Contact Cover: This is a protective cover for preterminated BSMs-Comcode number 842209215 from Dandee Plastics.
K. Close Cutting Insulated Pliers: These pliers are for cutting out working pairs that have been half-tapped-Proto 453, Ecelite GC-73, or equivalent.
L. 840A Tool: This tool is for cutting out working pairs that have been half-tapped.
M. 710B1 Cover: This cover protects exposed conductors remaining after cutoff in a half-tapped, 25 -pair connector module.
N. 71085 Cover: This cover protects exposed conductors remaining after cutoff in a half-tapped, 5 -pair connector module.
O. 55A Group Slack Holder: This tool can be added to the D, E, or F cutter-presser and the 835A tool for securing a binder group in position for in-line splicing. A group slack holder is a component of the 890A and the 890B tools.
P. W2HM Cord: The W2HM cord is a single pair test probe used with the test set for testing any pair in either 5 -pair or 25 -pair connectors.
Q. 710-FS-25 Filler Strip: The filler strip is a soft plastic devise that blocks the
bridge ports of 25 -pair, 710 splice and half-tap modules preventing the ports from being clogged with \(D\) encapsulant during the filling of splice closures.

\section*{12. SPLICE TESTING WITH THE PAIR VERIFICATION TEST SET}
12.01 The pair verification test set can be used with the cutter-pressers and the 835A and the 890A tools covered in this practice. The 152A test set will automatically test 25 cable pairs accessed through the modules. Cable faults such as opens, shorts, crosses, grounds, splits, and splice backs are detected. SETUP AND USE
12.02 Clear the ends of the cables to be spliced.
12.03 Check the operation of the test set by following the instructions on the decal on the inside of the test set cover.
12.04 Position the test set near the splice (Fig. 125 Fig. 125) and connect the test set cord to the connector on the T-bar of the cutter-presser. Connect a ground lead from the test set to the cable sheath.

Fig. 125-Setting Up 152A Test Set

12.05 Position the switches as follows (Fig. 126 Fig. 126):
1. The PIC-PULP switch is set to the type of insulation on the conductors being spliced.
2. The 5-REF-22 switch is set to either 5 or 22.
3. The PAIR ACCESS switch is set to scan.
12.06 Place 25 pairs from the shortest section of cable into the index strip. Check wire placement with the error-tector before cutting because the test set does not detect reversals or transpositions. Place the connector module over the index strip and press in place leaving the T-bar in the down position to test the 25 pairs.
NOTE: Do not test on working pairs. Do not test through more than one load coil. Test on the index strip only when using the 890A tool.
12.07 Depress the START/STEP switch. Some diagnostic lights may light momentarily but then go out. The RUN lamp will light and the PAIR NUMBER display readout will indicate which pair is being tested. When a defective pair is encountered, the scan will stop, the PAIR NUMBER readout will display the pair number for 2 seconds, the audible alarm will sound and the appropriate fault
indicator lamp will light. To verify defective pairs, reverse the 5-REF-22 switch and repeat the test. A pair must test faulty against both reference pairs (5 and 22) to be a true fault. (Refer to the troubleshooting chart in Table G Table G.) If a voltage in excess of 3.5 volts is on the pair, the NO TEST lamp will light indicating the pair cannot be tested. Clear faults as they are found by using spare pairs to substitute for faulty pairs.

Fig. 126-152A Test Set

\section*{展}

TABLE G TROUBLESHOOTING DEFECTIVE PAIRS DETECTED WITH 152A TEST SET
\begin{tabular}{|l|l|l|}
\hline PROBLEM & \begin{tabular}{l} 
ACTION IF PAIRS DRESSED \\
INTO INDEX STRIP (NOTE 1)
\end{tabular} & \begin{tabular}{l} 
ACTION IF PAIRS DRESSED \\
INTO CONNECTOR MODULE
\end{tabular} \\
\hline & & \\
\begin{tabular}{ll} 
NOTE: \\
When \\
using
\end{tabular} & \\
890A \\
tool \\
and \\
testing \\
on \\
index \\
strip, \\
pairs \\
that
\end{tabular}\(\quad\)\begin{tabular}{l} 
are \\
indicated \\
to \\
be \\
defective \\
can \\
be \\
removed \\
for \\
single \\
pair \\
test \\
and \\
spare \\
pair \\
replacement.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PROBLEM & ACTION IF PAIRS DRESSED INTO INDEX STRIP (NOTE 1) & ACTION IF PAIRS DRESSED INTO CONNECTOR MODULE \\
\hline \begin{tabular}{l}
NO \\
W \\
us \\
89 \\
too \\
an \\
tes \\
on \\
ind \\
str \\
pa \\
th \\
are \\
inc \\
to \\
be \\
de \\
ca \\
be \\
re \\
for \\
sin \\
pa \\
tes \\
an \\
sp \\
pa \\
rep
\end{tabular} & \begin{tabular}{l}
g \\
ated \\
tive \\
ved \\
cement.
\end{tabular} & \\
\hline Cross & \begin{tabular}{l}
Visually check module to determine if \\
spliceback or possible cross. If cross, \\
remove defective pair. Select and test spare pair and splice externally.
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & ACTION IF PAIRS DRESSED \\
PROBLEM & & \begin{tabular}{c} 
ACTION IF PAIRS DRESSED \\
INTO INDEX STRIP (NOTE 1)
\end{tabular} \\
\hline & & \\
INTO CONNECTOR MODULE
\end{tabular}

Close
T-bar and run test again.
\begin{tabular}{|c|c|c|}
\hline PROBLEM & ACTION IF PAIRS DRESSED INTO INDEX STRIP (NOTE 1) & ACTION IF PAIRS DRESSED INTO CONNECTOR MODULE \\
\hline \begin{tabular}{l}
NO \\
Wh \\
usin \\
890 \\
too \\
and \\
tes \\
on \\
ind \\
stri \\
pai \\
tha \\
are \\
ind \\
to \\
be \\
def \\
can \\
be \\
rem \\
for \\
sing \\
pai \\
test \\
and \\
spa \\
pair \\
rep
\end{tabular} & \begin{tabular}{l}
: 1. \\
g \\
ated \\
tive \\
ved \\
cement.
\end{tabular} & \\
\hline Open & Visually check to determine if split, open, or spliceback. If open, remove defective pair, select and test spare pair, and splice externally. & Visually check to determine if split, open, or spliceback. If open, remove defective pair, replace with spare pair, close T-bar, and run the test again. \\
\hline Split & Visually check to determine if split, open, or spliceback. If split, remove pairs and splice to pairs of other cable externally. & Visually check to determine if split, open, or spliceback. If split, remove pairs and redress in module. Run test again. \\
\hline Spliceback & \begin{tabular}{l}
Visually check to determine if spliceback. \\
Remove pairs and splice to pairs of other cable externally.
\end{tabular} & \begin{tabular}{l}
Visually check to determine if spliceback. \\
Remove pairs and redress in module. Run the test again.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline PROBLEM & ACTION IF PAIRS DRESSED INTO INDEX STRIP (NOTE 1) & ACTION IF PAIRS DRESSED INTO CONNECTOR MODULE \\
\hline \multicolumn{2}{|r|}{\begin{tabular}{l}
NOTE: 1. \\
When \\
using \\
890A \\
tool \\
and \\
testing \\
on \\
index \\
strip, \\
pairs \\
that \\
are \\
indicated \\
to \\
be \\
defective \\
can \\
be \\
removed \\
for \\
single \\
pair \\
test \\
and \\
spare \\
pair \\
replacement.
\end{tabular}} & \\
\hline & \begin{tabular}{l}
(When removing pairs from the index \\
strip and splicing externally, remember \\
to leave those pair positions vacant in the connector module.)
\end{tabular} & \\
\hline
\end{tabular}

NOTE: When the cable being tested is less than 200 feet in length, only the left-hand diagnostic lights will indicate a real fault (short or ground). The right-hand diagnostic lights (split, open, cross, splice back) should be disregarded.
12.08 Select 25 pairs from the corresponding cable group in the other cable and place these pairs into the connector module. Check the placement of the pairs in the connector with the error-tector before cutting the wires. Leave the \(T\)-bar in the down position. Repeat the test procedures and again refer to the troubleshooting chart.

\subsection*{12.09 DEFECTIVE REFERENCE PAIRS}

Indication of a SHORT or GROUND on theselected reference pair means that the reference pair is defective and should be changed before using the test results on any other pair. When several pairs test defective, it suggests that the reference pair may be bad, even though the test set does not indicate a fault on the reference pair. If this occurs, change to the alternate reference pair.

\subsection*{12.10 CHANGING REFERENCE PAIRS}

To change the reference pair, move the 5-REF-22 switch to its opposite position. If it is believed that both reference pairs ( 5 and 22) are defective, an external reference pair must be used. The reference pair selected must be the same length as the pair being tested. Position the 5-REF-22 switch to the REF PAIR (center) position. Insert the cord plug into the REF PAIR jack. Connect the cord to a good pair to be tested. The reference pair is now changed and testing may proceed.

\subsection*{12.11 SINGLE PAIR TEST}

With the test set grounded to the cable sheath, select a reference pair with the same length as the pair to be tested. The reference pair may be pair 5 or 22 accessed through the cutter-presser head or may be any other pair that has been accessed through the REF PAIR jack. Insert a test cord into the TEST PAIR jack and connect the test cord to the pair to be tested. Depress the START/STEP switch. Some diagnostic lamps may light momentarily but will immediately go out indicating that the pair being tested is good. If the pair is defective, the appropriate diagnostic lamp will light and the audible alarm will sound for approximately 2 seconds and then turn off.

\section*{NOTE: Remember that the diagnostic lamps may be incorrect if the reference pair is bad. The reference pair is not being tested.}

\subsection*{12.12 PAIR ACCESS TO EXTERNAL TEST EQUIPMENT}

Ground the test set to the cable sheath. Place the 5-REF-22 switch in the center position. While in the SCAN mode, depress the START/STEP switch. When the defective pair appears in the PAIR NUMBER display, flip the switch from the SCAN position to the ACCESS PR position and press and release the START/STEP switch until the desired pair is displayed in the PAIR NUMBER display. Connect a volt-ohmmeter, a 145A test set, or equivalent set to the TIP and RING terminals on the test set to the pair. The pair is now connected to the external test equipment through the cutter-presser head and the TIP and RING terminals.

NOTE: Do not apply breakdown voltage through these terminals. To conserve the battery, remove the test set from the access PR mode as soon as external testing is complete.

\subsection*{12.13 2-PERSON SPLICING—ONE 152A TEST SET}

The test set can be used with two cutter-pressers (Fig. 127 Fig. 127) using a W-100A cord. However, only one splice can be tested at a time. Both T-bars cannot be in the down position when testing.

NOTE: Refer to the instruction book provided with the test set or to Practice 634-400-530 for detailed testing instructions.

\section*{13. CABLE PREPARATION AND SPLICING}

NOTE: Requirements for sheath opening, core preparation, and connector location are based on the use of a 2-type closure.
13.01 Place tarpaulins, etc., to protect the proposed splice from dirt and moisture.

Fig. 127-2-Person Setup for Splicing and Testing
\(\qquad\)

IN-LINE CONFIGURATION—STRAIGHT SPLICE
A. General
13.02 Prepare the cable sheath, align the cable groups, and bond as required for the splice closure being used. It is important to determine at this time the number of banks of connectors required for the splice so the proper size closure can be selected.

\section*{B. Single-Bank In-Line Splice-Cable Layout}
13.03 Mark the outer layer for a single-bank in-line splice as follows (Fig. 128 Fig. 128):
1. Wrap a length of scrap wire around each cable at a point 8 inches from the butt of the cable.
2. Use the wire wrap as a guide and mark each unit in the outer layer at the wire wrap. Remove the wire wrap.

Fig. 128-Marking Outer Layer for Single-Bank In-Line Splice園
13.04 Mark the inner layers for a single-bank in-line splice as follows (Fig. 129 Fig. 129):
1. Fold the outer layer back over the sheath.
2. Wrap a length of scrap wire around each cable at a point 7 inches from the butt of the cable.
3. Use the wire wrap as a guide and mark each unit in the inner layer(s). Remove the wire wrap.
13.05 A typical setup for making a splice is illustrated in Fig. 130 Fig. 130.

Fig. 129-Marking Inner Layer(s) for Single-Bank In-Line Splice

\section*{逼}

Fig. 130—Cutter-Presser Setup for In-Line Single-Bank Splice

\section*{춥}
13.06 The procedure for making a single-bank in-line splice when the sheath opening is 19 inches or less is as follows (Fig. 131 Fig. 131):
1. Position the tool in the center of the sheath opening, 1 inch in front of the cable sheath, and \(1-1 / 2\) inches above the unit to be spliced. The marks on the cable units should be inside the end posts.
2. Remove and tie off the unit binders. Start at the bottom rear and work to the top, splicing the rear outer units.
3. To splice units in the center of the cable, position the tool away from the sheath approximately the distance of a unit diameter (about \(1 / 2\) inch).
4. To splice units in the front outer layer, move the tool out about \(1 / 2\) inch and proceed as in Steps (1) and (2).

Fig. 131—Position Tool for Splicing
13.07 Place bags of \(C\) desiccant in completed splices in paper- or pulp-insulated cable (Fig. 132 Fig. 132).

Fig. 132—Placing Bag of Dessicant
13.08 When necessary, rotate the splice to reduce the amount of slack (Fig. 133 Fig. 133). Tie the splice bundle and enclose the splice using the appropriate technique for the splice case used.

Fig. 133—Rotating Splice
譄

\section*{C. 2-Bank In-Line Splice-Cable Layout}
13.09 Mark the outer layers for a 2-bank in-line splice as follows (Fig. 134 Fig. 134):
1. Wrap a length of scrap wire around each cable at positions 5 and 12 inches from the butt of each cable.
2. Use the wire wraps as guides to mark each unit in the outer layer at the 5 - and 12 -inch positions. Remove the wire wraps from the cable.

NOTE: On filled cable, wire ties may be used to mark the cable. Fig. 134-Marking Outer Layer for 2-Bank In-Line Splice

娄
13.10 Mark the inner layer(s) for a 2-bank in-line splice as follows (Fig. 135 Fig. 135):
1. Fold the outer layer back over the cable sheath.
2. Wrap a length of scrap wire around each cable at locations 4 and 12 inches from the butt of each cable.
3. Use the wire wraps as guides to mark each unit in the inner layer(s) at the 4-
and 12 -inch positions. Remove the wire wraps from the cable.
13.11 Set up the tool for making a 2-bank in-line splice as follows (Fig. 136 Fig. 136):
1. Set up the tool in a position so the slack length mark on the short cable unit is on the inside of an end post. Secure the unit in the slack group holder.
2. Position the long cable unit so the mark is on the inside of the other end post. Secure this unit in place with a group slack holder or hold it in place until several pairs are dressed into place.
3. Splice a multiunit starting at the lower rear.
13.12 Move the tool to the opposite side of the sheath opening as follows (Fig. 137 Fig. 137):
1. After a multiunit has been spliced, move the tool to the opposite side of the sheath opening.
Fig. 135-Marking Inner Layer(s) for 2-Bank In-Line Splice

\section*{Fig. 136—Positioning Tool for Splicing}
2. Position the tool so the marks on the units are on the inside of each end post. Remove the unit binder and tie off primary unit binders at the mark near the end post. Then, splice the units starting at the lower rear unit and working toward the front, keeping the mark on the unit next to the end post.
3. Continue splicing outside rear, inside, and outside front units at opposite ends until all units are spliced.
4. Apply desiccant, tie, wrap, etc., as appropriate for the type of cable and closure.
Fig. 137-Tool Moved to Opposite Side of Sheath Opening逼

\section*{D. 3-Bank In-Line Splice-Cable Layout}
13.13 Mark the outer layer for a 3-bank in-line splice as follows (Fig. 138 Fig. 138):
1. Wrap a length of scrap wire around each cable at 5,12 , and 20 inches from the butt of the cable.
2. Use the wire wraps as guides to mark each unit in the outer layer at the 5-, 12-, and 20 -inch positions. Remove the wire wraps.

NOTE: Wire ties can be used on waterproof cable to mark the cable.
13.14 Mark the inner layer(s) for a 3-bank in-line splice as follows (Fig. 139 Fig. 139):
1. fold the outer layer back over the cable sheath.
2. Wrap a length of scrap wire around each cable at positions 4,12 , and 20 inches from the butt of the cable.
3. Use the wire wraps as guides to mark each unit at the 4-, 12-, and 20-inch positions. Remove the wire wraps from the cable.
Fig. 138—Marking Outer Layer(s) for 3-Bank In-line splice


Fig. 139—Marking Inner Layer(s) for 3-Bank In-Line Splice

13.15 Position the tool for making the 3-bank in-line splice as follows (Fig. 140 Fig. 140):
1. Set up the tool and position it so the marks on the units are on the inside of each end post. Remove the unit binders and tie off primary unit binders at the mark near the end post. Then, splice the units by starting at the lower rear unit and working toward the front, keeping the mark on each unit next to the end post.
2. After a multiunit has been spliced, move the tool to splice the center bank of connectors and repeat the procedure in Step (1) above.
3. After the multiunit in the center bank has been spliced, move the tool to splice the end bank and repeat the procedure in Step (1) above.
4. After all units are spliced, apply desiccant, tie, wrap, etc., as appropriate for the type of cable and closure.

\section*{Fig. 140—Positions of Tool for 3-bank Splice}

\section*{E. 4-Bank In-Line Splice-Cable Layout}
13.16 Mark the outer layer for a 4-bank in-line splice as follows (Fig. 141 Fig. 141):
1. Wrap a length of scrap wire around each cable at \(5,12,20\), and 28 inches from the butt of the cable.
2. Use the wire wraps as guides to mark each unit in the outer layer at the 5 -, \(12-, 20\)-, and 28 -inch marks. Remove the wire wraps.

NOTE: On waterproof cable, wire ties may be used to mark the cable. Fig. 141-Marking Outer Layer for 4-Bank In-Line Splice
13.17 Mark the inner layer(s) for a 4-bank in-line splice as follows (Fig. 142 Fig. 142):
1. Fold the outer layer back over the cable sheath.
2. Wrap a length of scrap wire around each cable at 4, 12, 20, and 28 inches from the butt of the cable.
3. Use the wire wraps as guides to mark each unit in the inner layer(s) at the 5 -, \(12-, 20\)-, and 28 -inch marks. Remove the wire wraps.
13.18 Set up the tool for making a 4-bank in-line splice as follows (Fig. 143 Fig. 143):
1. Position the tool so marks on the cable are on the inside of each end post. Remove the unit binders and tie off primary unit binders at the mark near the end post. Then, splice the units starting at the lower rear unit and working toward the front. Keep the mark on each unit next to the end post.
2. After a multiunit has been spliced, move the tool to splice the left center bank of connectors. Splice the left center multiunit.
3. After the multiunit has been spliced in the left center bank, move the tool and splice the right center bank.
4. After the multiunit has been spliced in the right center bank, move the tool and splice the right bank.
5. Continue splicing, following the same sequence until all units are spliced.

Fig. 142-Marking Inner Layer(s) for 4-Bank In-Line Splice

Fig. 143-Positions of Tool for 4-Bank Splice
6. Apply desiccant, tie, wrap, etc., as appropriate for the type of cable and closure.

\section*{FOLDBACK CONFIGURATION—STRAIGHT SPLICE}

\section*{A. General}
13.19 Prepare the cable sheath and bond as required for the splice closure being used. It is important to determine at this time the number of banks of connectors required for the splice so the proper size closure can be selected.

\section*{B. 2-Bank Foldback Splice-Cable Layout}
13.20 To prepare the core of the splice, bring the first unit from the right cable across the opening to the left cable. Match this unit with the first unit of the left cable and tie them together where they meet (Fig. 144 Fig. 144). Keep the ties 2 inches or less from the sheath.
13.21 Take the second unit from the left cable and move it across the opening to the right cable. Match this unit with the second unit of the right cable and tie them together where they meet.
13.22 Repeat the procedure for each unit, tying the odd numbered units on the left side of the sheath opening and the even numbered units on the right, until the core is complete.
13.23 Wrap the core with the same material that will be used for the completed splice. Do not wrap the core of waterproof cable.
13.24 Mark the core for a 2-bank splice as follows (Fig. 145 Fig. 145):
1. Measure across the sheath opening to find the center of the opening. Mark the center and place a 1 -inch wide piece of vinyl tape over the mark. The tape will be used to position each connector.

Fig. 144-Prepared Cable
2. Set up the cutter-presser and position it at the right-hand end of the splice opening.
3. Take the first unit from the left side of the opening and lay it along the core. Then, using a piece of wire, mark the unit at the point that coincides with the right edge of the vinyl tape. This is important. It keeps the connectors from overlapping in the center of the splice.

Fig. 145—Marking Unit To Be Spliced
圈
13.25 Align the tool for splicing as follows (Fig. 146 Fig. 146):
1. Move the cutter-presser so the wire marker on the unit aligns with the inside edge of the vertical post on the tool. Position the tool so the index strip will be 1-1/2 inches above the level of the unit to be spliced.
2. Secure the unit binders near the end post. Splice the 25 -pair unit.
3. Repeat Steps (1) and (2) for each unit from the left-hand cable. Then move the cutter-presser to the left-hand side of the splice and splice the units from the right-hand cable. Begin splicing with the lower rear units and work up and to the front to avoid having to work around completed connectors.
13.26 After all units have been spliced, fold the units to the core (Fig. 147 Fig. 147).

Fig. 146—Align Tool
圈

Fig. 147-Folding Units Into Core

\section*{-}

13．27 Tie the units to the core（Fig． 148 Fig．148）and apply desiccant，wrap，etc．， as appropriate for the type of cable and closure．

Fig．148－Splicing Completed

\section*{C．3－Bank Foldback Splice－Cable Layout}

13．28 Prepare the core for a 3－bank foldback splice as follows（Fig． 149 Fig．149）：
1．Make a \(27-1 / 2\) inch sheath opening．
2．Tie off the even units on the right side and the odd units on the left side（same as for the 2－bank splice）．
3．Wrap the cable core．

13．29 Mark the core for a 3－bank splice at 9－1／2 inches from each end of the sheath opening（Fig． 150 Fig．150）．

13．30 Place tape markers by placing one turn of 1 －inch wide vinyl tape around the core at each mark．The tape should be centered on the marks（Fig． 151 Fig． 151）．

Fig．149—Cable Prepared for Three Banks of Connectors

坡

Fig．150—Sheath Prepared for 3－Bank Splice
邁

Fig．151－Tape Marker Placed on Cable Core
通

13．31 Mark the cable units for a 3－bank splice as follows（Fig． 152 Fig．152）：
1. Use a piece of wire to mark each odd numbered unit for the center bank of the splice. Place the wire marker at the right edge of the piece of tape that is to the left of the center of the splice.
2. Use a piece of wire to mark each even numbered unit for the center bank of the splice. Place the wire marker at the left edge of the piece of tape that is to the right of the center of the splice.
3. The pair counts of units for the center bank are given in Table H Table H.

Fig. 152—Marking Cable Unit for 3-Bank Splice

\section*{畨}

TABLE H PAIR COUNTS FOR MULTIUNITS IN CENTER BANK (NOTE 1)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{c} 
CABLE \\
SIZE
\end{tabular} & \begin{tabular}{c} 
COUNTS FOR \\
EVEN MULTIUNITS
\end{tabular} & \begin{tabular}{c} 
COUNTS FOR \\
ODD MULTIUNITS
\end{tabular} \\
\hline \begin{tabular}{c} 
NOTE: \\
Pair \\
counts \\
are \\
in \\
100s.
\end{tabular} & & \\
\hline 2400 & \(2,8,22,24\) & \(1,7,9,23\) \\
2700 & \(2,10,12,20\) & \(1,3,7,15,25\) \\
3000 & \(2,10,12,28,30\) & \(1,9,11,27,29\) \\
3600 & \(2,4,14,16,34,36\) & \(1,3,13,15,33,35\) \\
4200 & 2,4 & 1,3 \\
\hline
\end{tabular}
13.32 Set up the cutter-presser and splice all units for the center bank (Fig. 153 Fig. 153). When connectors have been installed, lay the center bank units back along the cable on the sides from which they came.
13.33 Mark the outer units (Fig. 154 Fig. 154). Then, splice the units by completing splicing on one side of the splice before moving the tool to the other side.

\section*{Fig. 153-Spliced Center Bank}

Fig. 154-Marking Outer Banks

\begin{abstract}
13.34 Position the center bank of connectors and tie them to the cable core (Fig. 155 Fig. 155). Lay the outer banks of connectors on each side of the center bank and tie them in place.

NOTE: It may be necessary to tie small groups of connectors to the cable core to make the connectors easier to handle.
\end{abstract}
13.35 Prepare the splice bundle for wrapping (Fig. 156 Fig. 156) by:
1. Placing outer ties around the splice bundle.
2. Cutting and removing ties from inside the bundle.
3. Cutting and removing ties securing the center bank of connectors.

Fig. 155-Tying Banks to Core of Cable
通

Fig. 156—Preparing Splice Bundle for Wrapping
13.36 Wrap the splice by starting at the edge of one of the outer ties (Fig. 157

Fig. 157). As wrapping progresses, remove the ties.
13.37 Enclose the splice using the methods prescribed for the closure being used (Fig. 158 Fig. 158).
D. 4-Bank Foldback Splice-Cable Layout
13.38 Prepare the cable for a 4-bank foldback splice as follows (Fig. 159 Fig.
159):
1. Prepare the cable sheath for a sheath opening of 36 inches for a C-length 2-type closure.
2. Tie the units off with the even units on the right and the odd units on the left (the same as for the 2-bank foldback).
3. Wrap the core in the same manner as for the 2-bank foldback.
4. Mark the core as illustrated placing one turn of 1-inch wide vinyl tape around the core at each mark. The tape should be centered on the mark.

Fig. 157-Wrapping Splice
音

Fig. 158—Completed Splice

Fig. 159—Cable Core Marked for Four Banks of Connectors 툽
13.39 Mark and splice the center units of the 4-bank splice as follows (Fig. 160 Fig. 160):
1. Use pieces of wire to mark the units for the center banks of connectors at a point that corresponds with the edges of the tape in the center of the splice opening.

NOTE: The same number of units are to be spliced in each bank and evenly placed around the core. The units in the two center banks should come from the cores of the odd and even numbered units.
2. Set up the cutter-presser so the wire marker on the unit to be spliced is aligned with the inside edge of the vertical post. Splice all units in that position and then set up and splice all the units that will be positioned on the opposite side of the center tape marker. Lay the completed connectors back on the cable on the side from which they came.

Fig. 160-Marking Cable Center Units and Splicing Four Banks of Connectors

13．40 Mark and splice the outer units of the 4－bank splice as follows（Fig． 161
Fig．161）：
1．Mark the units for the outer banks at a position that corresponds with the outer edges of the tape．
2．Set up the cutter－presser at one end and splice all the units that will be in that outer bank．Move the tool to the other outer bank and complete the splicing in that position．
Fig．161－Marking Cable Units for Outer Banks of Connectors䲢

13．41 Fold the connectors for the center banks around the core and tie them in place（Fig． 162 Fig．162）．

13．42 Fold the outer banks of connectors around the core and tie them in place （Fig． 163 Fig．163）．
NOTE：It may be necessary to tie small groups of connectors to the cable core to make them easier to handle．

Fig．162－Tying Center Banks of Connectors to Core of Cable

\section*{冨}

Fig．163－Tying Outer Banks of Connectors to Core of Cable圈

13．43 Position the four banks of connectors around the core and tie them in place （Fig． 164 Fig．164）．

13．44 Wrap the splice by starting at the edge of one of the outer ties（Fig． 165 Fig．165）．As wrapping progresses，remove the ties．

Fig．164－Banks of Connectors Tied in Place

\section*{Fig. 165-Wrapping Splice}

圈

\subsection*{13.45 Enclose the splice using the method prescribed for the closure being used. BRANCH CABLE IN FOLDBACK SPLICE}
13.46 Prepare the cable sheath and bond as required for the type of closure being used.
13.47 To prepare the core of the through cable, bring the first unit from the right end across the opening to the left end. Match this unit with the first unit of the left end and tie them together where they meet. Keep the ties \(\mathbf{2}\) inches or less from the sheath.
13.48 Take the second unit from the left end and move it across the opening to the right end. Match this unit with the second unit of the right end and tie them together where they meet.
13.49 Repeat the procedure for each unit, tying the odd numbered units on the left side of the sheath opening and the even numbered units on the right, until the core is complete.
13.50 Wrap the core with the same material that will be used for the completed splice. Do not wrap the core of waterproof cable.
13.51 Prepare the core for a straight foldback splice with a branch cable as follows (Fig. 166 Fig. 166):
1. Mark the core with vinyl tape as appropriate for the number of banks to be used. Tie the branch cable units to the matching units of the through cable.
2. Tie a branch cable multiunit to the prepared core of the through cable.

Fig. 166—Cable Prepared for Straight Splice With Multiple Using Foldback Method

\section*{A. Adding Branch Cable-Using Cutter-Presser}
13.52 Set up the splicing tool and install a connector on a unit of through cable pairs. Remove the through cable connector from the splicing tool and rotate the connector so the bridge slots are facing upward (Fig. 167 Fig. 167).
NOTE: A branch cable may be added to an existing splice using a D insertion-cutting tool, a 945A tool, or other tool. It is not necessary to use a cutter-presser.

Fig. 167-Through Cable Spliced Removed From Splicing Tool
13.53 Insert a bridge module into the connector as follows (Fig. 168 Fig. 168):
1. Clear the wires away from the bridge slot area. With the arched wire grips on a bridge module facing the \(T\)-bar, insert the bridge module into the cutter-presser so the bridge module contacts enter the bridge slots on the connector.
2. Operate the tool to seat the bridge module into the connector.

Fig. 168—Inserting Bridge Module Into Connector Module
13.54 Place conductors into the bridge module as follows (Fig. 169 Fig. 169):
1. Dress 25 pairs from the branch cable unit into the bridge module.
- When adding a pulp or noncolor-coded PIC branch to pulp through cables, identify units and dress the pairs randomly starting at the side of the cutter-presser nearest the stub unit.
- When adding a PIC branch to PIC through cables, identify units and select the pairs at random. Dress them into the module in their proper color-code sequence.
- If the branch unit is PIC and the through cable is pulp, one of two options can be used. The first one is to place B tagging tape on the connector to identify the pulp pairs before dressing the branch unit. Next, dress the PIC pairs into the bridge module not in color-code sequence but according to the numbers called for on the tagging tape. Then, place the numbered tagging tape over the color-coded strip or on the connector cap. The second option is to identify the pulp pairs and place them in a tag board before starting to splice. Then as the splice is made, place the pulp pairs in the module in sequence.
2. After each 25 -pair unit is placed in the module, check with the error-tector.
13.55 Complete the splice as follows (Fig. 170 Fig. 170):
1. Gently dress the conductors to the side of the T-bar and then position the T-bar over the bridge module. Operate the tool to seat and cut the conductors. With the T-bar down, test the pairs with a pair identification test set.
2. Place and seat a cap on the bridge module. Remove completed bridge from splicing tool and identify unit with tape or marking pencil.
3. Complete all connectors. Fold the units into the core and tie them in place. Wrap the splice and install the closure in accordance with procedures prescribed for the closure being used.

Fig. 169—Pairs From Cable Placed in Bridge Module

\section*{畿}

Fig. 170—Completed Straight With Multiple

\section*{B. Branch Cable Added to Existing Splice}
13.56 Open the splice. If the main cable is pulp and the branch cable is color coded, identify the involved pairs of the main cable on B tagging tape.
13.57 Set up a splicing tool. The tool will be used only for terminating the bridge modules on the stub cable. The bridge modules will be seated by hand in the through connectors. This will eliminate rearranging the existing splice for enough slack to use a cutter-presser. The tool must be set up so the bridge module, when inserted into the connector module, will match up for tip/ring and pair orientation.
13.58 Tie off the branch cable units into a foldback configuration. Position the cutter-presser so the bridge modules, when installed, can be placed in with the first bank of connector modules. This will allow the terminated bridge modules to be inserted into the splice connectors. See paragraphs 13.69 through 13.71 for foldback lengths recommended for 2-, 3-, and 4-bank splices.
13.59 To protect the contacts on the bridge module while the wires are being dressed and seated, install an E module support on the cutter-presser. Be sure the module support is secure under the L-spring.
13.60 Install the E module support in the cutter-presser with the word FRONT facing the T-bar (Fig. 171 Fig. 171).

Fig. 171—Installing E Module Support Into Cutter-Presser
13.61 Insert the bridge module into the module support. The bridge module is seated by hand into the module support. It is not necessary to seat the bridge module into the module support with the cutter-presser (Fig. 172 Fig. 172).

Fig. 172-Inserting Bridge Module Into E Module Support
13.62 Dress a 25 -pair unit into the bridge module (Fig. 173 Fig. 173).
- When adding a pulp or noncolor-coded PIC branch to pulp through cables, identify units and dress the pairs randomly starting at the side of the cutter-presser nearest the stub unit.
- When adding a PIC branch to PIC through cables, identify units and select the pairs at random. Dress them into the module in their proper color-code sequence.
- If the branch unit is PIC and the through cable is pulp, one of two options can be used. The first is-before dressing the branch unit, place B tagging tape on the connector to identify the pulp pairs. Second, dress the PIC pairs into the bridge module not in color-code sequence but according to the numbers called for on the tagging tape. Then place the numbered tagging tape over the color-coded strip or on the connector cap. The second option is to identify the pulp pairs and place them in a tag board before starting to splice. Then as the splice is constructed, place the pulp pairs in the splice connector in the correct pair number sequence. Color-coded pairs can then be dressed into the bridge module in proper color-code sequence.

Fig. 173—Dress Conductors Into Bridge Module

13.63 Use the error-tector to check for placement errors and then seat and cut the conductors.
13.64 Complete the installation of the bridge module as follows (Fig. 174 Fig. 174):
1. Place and seat a cap on the bridge module and then remove the module from the cutter-presser.
2. When terminating several 25 -pair units into bridge modules before installing them into splicing connectors, protect the bridge module contacts with male contact covers.
13.65 Install the completed bridge module into the through cable splice connector as follows (Fig. 175 Fig. 175):
1. Clear the through cable pairs from the bridge area of the through cable splice connector. Carefully insert the bridge module into the through cable connector. The latches of the connector cap should face the cap of the through cable connector. Do not force the bridge module into the through cable connector. If resistance is felt, remove the module and check the contacts. If any contacts are bent or broken, replace the module.
2. With a D insertion-cutting tool, a 945A tool, or an L connector presser, seat the bridge module. Work across the module from one end to the other pressing in about six places.

Fig. 174—Preterminated Stub Cable Unit

\section*{Fig. 175-Inserting Bridge Module Into Through Cable Splice Connector}

\begin{abstract}
書

\section*{C. Adding Branch Cable-Using Hand Tool}
\end{abstract}
13.66 Make a branch splice using a D insertion-cutting tool or a 954A tool as follows (Fig. 176 Fig. 176):
1. Open the splice. If the main cable is pulp and the branch cable is prior coded, identify with \(B\) tagging tape the pairs of the through cable that will be involved in the splice.
2. Use a D insertion-cutting tool or 945A tool to seat a bridge module in the through cable connector. Keep the tool perpendicular to the connector and bring the peaked projection of the bridge module up to the tool cutting
head. Press the module from end to end in about 5 or 6 places.
Fig. 176—Branch Splice Using Hand Tool

園

\title{
13.67 Place the branch cable pairs into the bridge module as follows (Fig. 177 Fig. 177): \\ 1. Dress the branch pairs into the bridge module. \\ 2. Seat and cut the branch pairs with a D insertion-cutting tool or a 945A tool. \\ 13.68 Use a D insertion-cutting tool or a 945A tool to place and seat a cap on the bridge module (Fig. 178 Fig. 178). \\ Fig. 177—Dressing Branch Cable Pairs Into Bridge Module
}

Fig. 178—Placing Cap on Bridge Module

\section*{CREATING A JUNCTION SPLICE}
13.69 Figure 179 Figure 179 illustrates positions for installing splice connectors on the CO (central office) side of the splice. When creating a junction splice, make a 2-bank or 4-bank in-line splice.
13.70 Figure 180 Figure 180 illustrates positions for installing unilength foldback bridge modules on the field side of a junction splice.
Fig. 179-Positions for Installing Connector Modules on CO Cable
空

Fig. 180—Block Diagram Showing Location of Bridge Connector on Field Cable
13.71 Figure 181 Figure 181 illustrates routing of unilength preterminated bridge modules to splice modules in a junction splice.

Fig. 181—Routing Unilength Bridge Connector Unit to Splice Connector

\section*{CREATING A FACILITY SPLICE (RICS)}
13.72 The facility splice (Fig. 182 Fig. 182) is constructed similarly to the junction splice with line splice connectors on the CO side, and unilength foldback with bridge modules on the field side. When a noncolor-coded PIC 12-type stub enters the facility splice, the unit count must be determined and the pairs placed into the index strip in numerical sequence.
13.73 A 10- or 12-type PIC stub cable is intended to be used between a multiple straight splice and a facility splice. The 12 -type stub is a dual sheath stub treated as a single sheath cable.

Fig. 182—Diagram of Facility Splice
適

\section*{LOADING AND UNLOADING USING PLUG AND UNPLUG METHODS}

\section*{A. Loading Using Two Connectors for Shunt Unloading}
13.74 Figure 183 Figure 183 illustrates the plug and unplug method of loading using two connectors and unloading using a shunt.

Fig. 183-Loading and Unloading Using Connectors
13.75 The procedure for loading with the capability of unloading with the shunt method is as follows (Fig. 184 Fig. 184):
1. Place an \(F\) module support in the holder of the splicing tool.
2. Place a connector module in the \(F\) module support.
3. Select the load coil pairs to be spliced to the shortest section of cable and
place these pairs in the connector module.
4. Check the pairs with the error-tector. Seat and cut the pairs and with the T-bar in the down position, operate the test set to test the conductors.
5. Release pressure and pull the T-bar back to its original position. Do not place a cap on the connector module at this time.
6. Remove the connector module and the F module support from the splicing tool.
7. Place an index strip in the holder of the splicing tool.
8. Place the pairs from the shortest section of cable into the index strip. Check the placed conductors with the error-tector. Seat and cut the conductors.
9. Place the connector module containing the load coil pairs on the index strip and seat with the tool. While the T-bar is down, test the conductors. After testing, release pressure and pull the T-bar back to its original position.
10. Place a cap on the connector module and seat with the tool.
11. Repeat Steps (1) through (10) until all load coil pairs and short cable section pairs have been spliced.
12. Repeat Steps (1) through (10) for the other load coil pairs and the long cable section pairs. Remember that load coil pairs are placed in the connector module and cable pairs are placed in the index strip.

Fig. 184—Loading Using Two Connectors

\section*{B. Unloading Using a Shunt}

\begin{abstract}
13.76 Assemble a shunt when unloading a 25-pair complement. When unloading less than 25 pairs, select the modules containing the pairs to be unloaded and install bridge modules. Shunt the conductors in these modules in the same way branch pairs are added. Assemble a shunt by using two bridge connectors and a length of 25-pair PIC cable (Fig. 185 Fig. 185).
\end{abstract}

Fig. 185—Assembling a Shunt
13.77 Install the shunt as follows (Fig. 186 Fig. 186):
1. Install the shunt between the CO cable and the field cable. Seat the bridge connectors with a D insertion-cutting tool or a 945A tool.
2. With the shunt installed, the load coils are electrically out of the circuit. It is not necessary to remove the conductors from the connector.

Fig. 186-Installed Shunt

\title{
13.78 If the load coils and the IN and OUT load coil stub pairs are to be removed, use 8 -inch side cutting pliers to remove the caps from the connector modules that contain IN and OUT load coil stub pairs (Fig. 187 Fig. 187).
}

Fig. 187-Removing Cap From Connector Module

圕
13.79 Pull the conductors from the connector module (Fig. 188 Fig. 188 ).
Fig. 188 -Removing Load Coil Conductor From Connector Module

通
13.80 Install a new cap on the connector module (Fig. 189 Fig. 189).

Fig. 189—Installing New Cap on Connector Module

\section*{C. Loading and Unloading Using Two Splice Connectors and Two Bridge Connectors}
> 13.81 The plug and unplug method of loading and unloading using two splice connectors and two bridge connectors is illustrated in Fig. 190 Fig. 190. Bridge splices are used on both the CO side and the field side. This method facilitates unloading by making it possible to unplug the load coil module and plug in the field side module.
> Fig. 190-Loading and Unloading Using Two Connectors and Two Bridge Connectors

HALF-TAPPING UNIT OR MULTIUNIT CABLE FOR CUTOVER
13.82 Prepare cable and half-tap stub for splicing unit or multiunit cable as follows (Fig. 191 Fig. 191):
1. Remove cable sheath in accordance with the type of closure to be used and the amount of slack required to permit dressing the through cable groups into the cutter-presser. In general, allow 5 inches for cables with less than 900 pairs, 5 to 7 inches for cables with 900 to 1800 pairs, and 7 to 9 inches for cables with more than 1800 pairs.
2. Pull slack until sheath opening is correct for the closure being used.
3. Install temporary bond to maintain continuity across sheath opening.
4. Identify and tag all cable units. Attach tags loosely so they can be repositioned easily later, if necessary.
5. Prepare the stub cable to be bridged. The far end of the cable must be cleared.
Fig. 191—Cable Prepared for Half-Tap Splicing of Unit or Multiunit Cable

\author{
書
}
13.83 Install the splicing tool at the back of the cable sheath opening on the stub cable side (Fig. 192 Fig. 192). Make the splice in the following sequence; when one-fourth of the modules are complete on the stub side, move the tool to the other side and complete an additional one-fourth. When that has been done, move the tool to the front of the splice on the stub side and then to the other side.
NOTE: It may be necessary to install longer cable hooks at the splice location so the cable can be moved forward to provide space for mounting the tool behind the cable.
13.84 Tie the stub cable units to the through cable units as follows (Fig. 193 Fig. 193):
1. From the through cable, select the top multiunit nearest the splicing tool. Push the remaining units down and away from the working area.
2. Match the stub cable multiunit with the through cable multiunit and loosely tie them together.
Fig. 192—Splicing Tool Installed in Rear of Sheath Opening

Fig. 193-Tying Stub Cable Unit to Through Cable Unit
13.85 Place the through cable unit into the index strip as follows (Fig. 194 Fig. 194):
1. Place the index strip in the splicing tool with the arched wire grips facing the \(T\)-bar.
2. Select 25 pairs from the rear of the group. Push the remaining pairs down next to the tool and pull the selected 25 pairs up over the other pairs and place the 25 pairs into the index strip. Tip conductors go to the right and ring conductors to the left as viewed from the T-bar. Check conductor placement with the error-tector.

NOTE: Do not seat and cut the conductors at this time. Once the stub cable is added, one side of the through cable will be cut out. When assembled, this side of the connector is flat and lends itself to easy cutting. The back side of the connector has the bridge rails and does not lend itself to easy cutting.

Fig. 194-Through Cable Unit Placed Into Index Strip

\subsection*{13.86 Place a half-tap module on the index strip with the the arched wire grips} facing the T-bar (Fig. 195 Fig. 195). Seat the half-tap module.

Fig. 195—Placing Half-Tap Module
13.87 Place 25 pairs from stub cable multiunit as follows (Fig. 196 Fig. 196):
1. Select 25 pairs from the rear of the multiunit of the stub cable and bring them under the rest of the pairs. This will allow a clear working area.
2. Dress the 25 pairs into the top of the connector module. Tip goes to the left and ring to the right as viewed from the \(\boldsymbol{T}\)-bar. Remember, the pairs will be cut off on the T-bar side.
3. Check the placed conductors with the error-tector.
4. Seat and cut the conductors.
13.88 Complete the half-tap as follows (Fig. 197 Fig. 197):
1. Place a cap over the connector module and seat.
2. Remove the connector from the tool and mark the unit number on the completed connector.
3. Repeat the procedure for each 25 -pair unit. Keep in mind which side of the through cable will be cut out. When one-fourth of the modules are completed on the stub side, move the tool to the opposite side. Complete one-fourth of the modules at that position and then move the tool to the front of the splice. Complete one-fourth on the stub side and then on the other side.
Fig. 196-Selecting 25 Pair From Rear of Stub Cable Multiunit

\section*{要}

\section*{Fig. 197—Completed Half-Tap}

\section*{通}
13.89 Cut off through conductors that will no longer be used as follows (Fig. 198

Fig. 198):
1. The preferred method to cut off the through conductors is to use an 840A tool. Place the tool on the connector so the tool will be pulled in a direction opposite to the direction the wires lay. For example, if the wires lay to the right, place the tool on the right end of the connector and pull to the left to cut the conductors.
2. An alternative method is to use close cutting pliers to cut the conductors. Start at one end of the connector and cut from the front side of the half-tap module. Cut one conductor at a time being sure not to short two conductors with the pliers.

\section*{Fig. 198-Cutting Conductors From Through Cable That Are No Longer Needed}
13.90 Protect the ends of the cut conductors as follows (Fig. 199 Fig. 199):
1. On filled modules, place \(B\) sealant over the exposed conductor ends and then snap a 710B1 cover on the connector. Use a new cover. The 710B1 covers should not be reused.
2. On unfilled (dry) connectors, place the 710B1 cover on the connector without adding \(B\) sealant. Use a new cover.

Fig. 199—Protecting Exposed Conductor Ends

\section*{HALF-TAPPING LAYERED CABLE FOR CUTOVER}
13.91 Prepare layered cable for half-tapping as follows (Fig. 200 Fig. 200):
1. Remove sheath from the cable. To have enough slack, remove sufficient sheath for the closure plus 1 inch for each 100 pairs within the cable. For example, a 900-pair cable would require that 9 inches of sheath be removed to allow for the number of cable pairs and 19 inches be removed for a standard opening for a total of 28 inches.
2. Pull slack to position the sheath ends the proper distance apart for the closure to be used.

Fig. 200—Preparing Layered Cable for Half-Tapping
13.92 Prepare the cables for splicing as follows (Fig. 201 Fig. 201):
1. Divide each layer into 25 -pair groups toward the side that will not be cut out.
2. Divide the highest count unit of the stub cable into 25 -pair groups and position the groups in approximately the same configuration as the layered cable.
3. Work the twist out of the layered cable leaving the twist buildup on the side that will be cut off.
4. Place loose ties around the 25 -pair groups in the layered cable.

Fig. 201—Preparing Cables for Splicing

13.93 Set up the splicing tool and make the splice as follows (Fig. 202 Fig. 202):
1. Set up the tool behind the cable. Center the tool in the opening for a single-bank splice. Complete half of the splice and then move the tool to the front of the splice and complete the other half. Follow the procedures previously outlined for half-tapping unit or multiunit cable.
2. Cut the conductors that will no longer be needed and install 710B1 covers.

Fig．202—Splicing Tool Setup

\section*{娄学}

\section*{SPLICING IN PEDESTALS}

13．94 Prepare the cable sheath for splicing as outlined in the practice covering the pedestal being used．Set up the splicing tool．Mark the binder group with a wire marker at the bottom crossmember of the splicing ladder（Fig．203 Fig．203）．
NOTE：If the splice requires two banks of connectors，use the middle crossmember of the splice support as a marking guide for the second bank．

13．95 Position the splicing tool as follows（Fig．204 Fig．204）：
1．Position the splicing tool so the wire marker lines up with the inside edge of the end post．
2．Splice the groups using the method suitable for the splicing tool being used．
Fig．203－Marking Cable Unit

Fig．204—Position Splicing Tool

13．96 When splicing is complete，use cable ties to secure each bundle to a crossmember of the ladder．A completed splice is illustrated in Fig． 205 Fig． 205.

Fig．205－Splicing Complete

\section*{通}

\section*{14．CABLE TRANSFERS}

14．01 Cable transfers may be carried out 1 pair at a time or 25 pairs at a time． The cable transfer administration plan outlined in Practice 620－050－020 should be followed．
TRANSFERRING ONE PAIR AT A TIME
14.02 Remove the splice closure and expose the splice.
14.03 Identify the affected connectors as follows (Fig. 206 Fig. 206):
1. Locate the connector module containing the through cable pairs to be identified (the to count). Attach a piece of B tagging tape to the front of this connector. Identify the cable pair and mark the pair number on the tagging tape.
2. Locate the connector containing the cable pairs of the stub cable to be identified (thefrom count). Attach a piece of B tagging tape to the front of this connector. Identify the cable pair and mark the pair number on the tagging tape.

Fig. 206-Tagging Units
14.04 Insert a bridge module into the through cable connector containing the to count. Seat the bridge module with a D insertion-cutting tool or a 945A tool (Fig. 207 Fig. 207).

Fig. 207-Seating Bridge Module
14.05 Remove the pair to be transferred as follows (Fig. 208 Fig. 208):
1. Select the pair from the bridge module containing the from count. Make a temporary bridge with a B transfer cord or use a cut-close test set.
2. Cut the from count pair to be transferred from the bridge module. Cut as close to the module as possible to conserve conductor length.
14.06 Seat the transferred pair into the bridge module as follows (Fig. 209 Fig. 209):
1. Move the from count pair to the new bridge and place the pair in the proper position according to the pair number on the tagging tape. Use a D insertion-cutting tool or a 945A tool to press and cut the conductor.
2. Remove the transfer cord and repair the conductor insulation. Repeat the procedure for each pair to be transferred.

Fig. 208—Removing Pair To Be Rearranged

\title{
Fig. 209—Seating Transferred Pair Into Bridge Module
}

\section*{遃}

\subsection*{14.07 When all pairs have been transferred, place a cap on the module. Seat the cap with the 945A tool or a D insertion-cutting tool (Fig. 210 Fig. 210).}

Fig. 210—Placing Cap on Module
14.08 When all pairs of the from count have been removed, remove the old bridge using the C bridge removal tool (Fig. 211 Fig. 211).
TRANSFERRING 25 PAIRS AT A TIME
14.09 Where a number of pair units are to be transferred, it may be easier to transfer 25 pairs at a time.
14.10 Begin the transfer procedure for 25 pairs as follows (Fig. 212 Fig. 212):
1. Find the connectors containing the cable pairs to be transferred (the from count) and the pairs to which the transfer is to be made (the to count).
2. Terminate 25 noncolor-coded PIC pairs, that are at least 50 inches long, into a bridge module.

Fig. 211—Removing Old Bridge
3. Plug the bridge module into the connector containing the to count.
14.11 Identify the 25 noncolor-coded cable pairs and place them in a tag board (Fig. 213 Fig. 213).
14.12 Place a half-tap module on the 25 pairs of the stub to be transferred. Identify pulp or noncolor-coded PIC pairs with B tagging tape (Fig. 214 Fig. 214). Position the half-tap module so it will not overlap banks of modules when the splice is closed.

14．13 Place the to pairs from the tag board into the half－tap module．Seat and cut the conductors and place a cap on the module（Fig． 215 Fig．215）．

Fig．212－Locating Connector Module Involved in Transfer

\section*{甩}

Fig．213－Noncolor－Coded PIC Pairs Identified and Placed in Tag Board

通

Fig．214－Place Half－Tap Module on 25 Pair of Stub Cable
譄

Fig．215—Placing Pairs From Tag Board Half－Tap Module on Stub Cable

\section*{通}

14．14 Complete the transfer as follows（Fig． 216 Fig．216）：
1．Remove the bridge connector from the old count．Do not let the bridge contacts short out on the cutter－presser，tool mounting，etc．
2．Cut the conductors from the half－tap module with an 840 A tool or close cutting pliers．Do not short the conductors while cutting them．Install a 710 B 1 cover on the half－tap module．

\section*{RETRANSFERRING PAIRS}

14．15 Locate the connector that contains the pairs to be transferred（the from count）and the connector to which the transfer will be made（the to count）（Fig． 217 Fig．217）．

14．16 Begin the retransfer of 25 pairs as follows（Fig． 218 Fig．218）：
1．Terminate 25 pairs of noncolor－coded PIC pairs，that are at least 50 inches long，into a bridge module．
2．Plug the bridge module that contains the PIC pairs into the connector with the to count．

3．Identify the PIC pairs and place them in a tag board．
Fig．216—Transferred 25 Pairs

\section*{瓷}

Fig．217—Identify From and To Counts


Fig．218—Pairs From Stub Cable Preterminated

\section*{迤}

14．17 Connect the to pairs to the stub cable as follows（Fig． 219 Fig．219）：
1．Place a bridge module into the half－tap connector on the stub cable．
2．Place the conductors of the to cable from the tag board into the top of the bridge module maintaining pair identification．Check with the error－tector and seat and cut the conductors．
3．Place and seat a cap on the bridge module．
14．18 Remove the old bridge from the from pairs as follows（Fig． 220 Fig．220）：
1．With a C bridge removal tool，remove the bridge connector from the splicing connector that contains the from pairs．
2．With a pair of 8 －inch side－cutting pliers，remove the cap from the half－tap module that contains the from pairs．Cut out the old conductors．
3．Place a new cap on the half－tap module．
Fig．219—Placing Bridge Module Into Half－Tap Module

\section*{匃}

Fig．220—Removing Old Bridge

\section*{WORKING CABLE TRANSFER IN FACILITY SPLICE (RICS)}
14.19 There is a limited number of transfers that can be made using the following method because of the slack required. If the transfer cannot be made using this method, use the method for transferring 25 pairs at a time.
14.20 To make a transfer in a facility splice, install a splicing connector on the new count in the CO cable (Fig. 221 Fig. 221). Rotate the connector in the tool and with the bridge rail up, seat an empty bridge module in the splicing connector.
14.21 Place the existing connector about 1 inch in front of the new bridge module. Dress the existing field cable pairs into the new bridge. Press and cut. Use the bridge removal tool to remove the old bridge module (Fig. 222 Fig. 222). MODULAR TRANSFERS—PLUG AND UNPLUG
14.22 Practice 632-400-216, Modular Cable Transfers, describes the method of converting existing nonmodular splices to modular facility splices with the cable pairs spliced in sequential order in 710-type connectors. The use of 710-type connectors allows cable transfers to be made 25 pairs at a time by unplugging the transferring cable pairs from the old count (from count) and plugging them into the new count (to count).
14.23 Transferring and testing in modular facility splices made with unfilled (dry) 710 connectors can be done without service interruption by using the 710 ACE (accessible contact element) test shoe and an in-service transfer test set equipped with suitable connectors. Before starting transfers in splices where the 710 connectors were not equipped with ACE caps, replace the existing caps with ACE caps.

Fig. 221—Typical Splice Old and New Count


Fig. 222—Placing New Bridge Module
通
14.24 The 710 ACE test shoe consists of a \(B\) test shoe (used with bridge modules), a C test shoe (used with connector modules) (Fig. 223 Fig. 223), and the following items:
- Spare Probe pins
- Pin setting tool
- Instruction sheet
- Carrying case.

Fig. 223-B and C Test Shoes

\begin{abstract}

14.25 The plug and unplug method is used with the Cable Transfer Administration Plan (Practice 620-050-020) and Modular Splicing Engineering Administration (Practice 935-111-402). Converting existing nonmodular splices to modular splices will mean that cable transfers eventually will be plug and unplug with no wire work.
\end{abstract}
14.26 To begin a cable transfer using the 710 ACE test shoe and an in-service transfer test set, set up the equipment as illustrated in Fig. 224 Fig. 224.
14.27 Select the connector/bridge module from thefrom count. Install the B test shoe on the bridge module as follows (Fig. 225 Fig. 225):
1. Hold the connector so the guide tabs are aligned with the grooves on the ends of the bridge module and the slot on the bridge module is on the "SLOT SIDE" of the shoe.
2. Push the module into the test shoe with the guide tabs in the grooves in the ends of the module.
3. Firmly press the spring clips (marked "PRESS") on both sides of the test shoe. This raises the clip feet.
4. Push the module into the test shoe and release the spring clips. The clip feet must latch into the slot on the bridge module.
5. Push the slide back (on each side of the test shoe) to its lock position to keep the clips in place.

Fig. 224—Setup for Making Transfer

\section*{譄}

Fig. 225-Installing B Test Shoe

14.28 Select the connector module from the to count. Install the \(C\) test shoe on the connector module (Fig. 226 Fig. 226) in the same manner as the B test shoe.
14.29 With the test shoes installed and connected to the test set, the bridge module can now be removed from the connector module. Use a screw-driver with a wide blade to separate the bridge module from the connector module (Fig. 227 Fig. 227). Work from one end of the bridge module to the other to keep from damaging the module contacts.

Fig. 226—Installing C Test Shoe
䍖

Fig. 227—Removing Bridge Module
14.30 Transfer the bridge module, with the B test shoe attached, to the connector module on the to count. Plug the bridge module into the connector module while engaging the \(B\) and \(C\) test shoes (Fig. 228 Fig. 228).
Fig. 228-Connecting Bridge Module to Connector Module With Test Shoes Installed

14.31 Use the 895A tool (Fig. 229 Fig. 229) to seat the bridge module in the connector module.

Fig. 229—895A Tool
圈
14.32 Position the 895A tool with the moving jaw over the B test shoe and the connector module on the platform of the tool (Fig. 230 Fig. 230). Firmly press the bridge module along its length until the module is correctly seated. Be sure all of the conductors are out of the way so they will not prevent proper seating of the modules. The setup with the module transferred with the test shoe attached is illustrated in Fig. 231 Fig. 231.

Fig. 230—Using The 895A Tool

\subsection*{14.33}

\section*{CAUTION: Remove the B test shoe first.}

Push the slide locks on the \(B\) test shoe to their unlocked position. Press the spring clips and remove the B test shoe. After the B test shoe has been removed, remove the \(C\) test shoe in the same way.

Fig. 231-Transferred Module Setup

20

\section*{15. SPECIAL APPLICATIONS}

\section*{CLEARING CABLE ENDS}
15.01 Ends may be cleared using a cap, an index strip, and a connector module.
15.02 With the sheath removed and the splicing tool set up, the ends may be cleared as follows (Fig. 232 Fig. 232):
1. Place and secure the index strip in the cutter-presser.
2. Dress the pairs from the binder group to be cleared into the index strip. Separate the tip and ring conductors on the colored peaked projections of the index strip, tip to the left and ring to the right.
3. Use the error-tector to check for placing errors.
4. Position the T-bar over the index strip and cut the conductors. Pull the T-bar back to its original position.
5. Place a connector module into the cutter-presser keeping it parallel to the index strip.
6. Position the T-bar over the connector module and seat the module. Return the T-bar to its original position.
7. Place and seat a cap on the connector module.
8. Remove the assembled connector from the cutter-presser.
9. Repeat the procedure for each 25 -pair group to be cleared.

\section*{VAULTLESS CENTRAL OFFICE OR BUILDING SPLICES}
15.03 Tip to feeder splices may be rack mounted on a wall in vaultless central offices or in other buildings. This type of splice should not be used with pulp or paper insulated cable or with filled cable.
15.04 The following materials are required to construct a tip to feeder splice that will be rack mounted:
- Filler strip, 710-FS-25 (1 required for each splicing connector)
- Fire-retardant splicing connector, 710-SD1-25 (1 required for each 25 pairs)
- Bracket, 710A1 (see Table ITable I)
: Cover assembly, 710A2 (see Table ITable I)
- Retainer, 710A1 (2 required for each splicing connector)
- C presser support frame assembly, AT-8820.
15.05 The framing channel installation required for mounting the 710A1 brackets is illustrated in Fig. 233 Fig. 233.

Fig. 232—Cleared Cable End
遌

TABLE I QUANTITY OF BRACKETS AND COVERS REQUIRED FOR CONNECTOR MOUNTING RACK
\begin{tabular}{|l|c|c|c|c|c|}
\hline & \multicolumn{5}{|c|}{ QUANTITY REQUIRED } \\
\hline \begin{tabular}{l} 
COMPONENTS \\
CABLE PAIRS
\end{tabular} & 900 & 1800 & 2700 & 3600 & 4500 \\
\hline 710A1 Bracket & 2 & 3 & 4 & 5 & 6 \\
710A2 Cover & 1 & 2 & 3 & 4 & 5 \\
\hline
\end{tabular}

Fig. 233-Installing Frame Channel for Bracket
15.06 Begin the bracket installation as follows (Fig. 234 Fig. 234):
1. Attach cable ties to the 710A1 bracket.
2. Position the bracket on the back panel with the flange of the bracket under the panel. Secure the bracket with the screws provided.

3．Secure the assembled bracket and panel to the framing channel．
Fig．234－Installing 710A1 Bracket
國

15．07 Complete the bracket installation as follows（Fig． 235 Fig．235）：
1．Attach cable ties to the second bracket．
2．Position the bracket on the back panel with the flange of the bracket under the panel．
3．Install two alignment bars between the two brackets．Be sure the brackets are aligned．Tighten the screws to secure the right side to the framing channel．Be sure the alignment bars move freely from top to bottom．
4．Secure the back panel to the bracket with the screws provided．

15．08 Prepare the tip cables for splicing as follows（Fig． 236 Fig．236）：
1．Identify and mark the tip cables．
2．Remove the required amount of sheath from the ends of the tip cables．Install D bond clamp and bond strap on the tip cables．Attach the bond strap to frame ground．
3．Fan out the tip cables and secure to the left bracket with cable ties．

15．09 Prepare the main cable as follows（Fig． 237 Fig．237）：
1．Remove required sheath from the main cable and route the cable up the right side of the bracket．Install a D bond clamp and a bond strap．Connect the bond strap to the frame ground．
2．Tie the tip cable stubs to the matching units of the main cable for splicing．
Fig．235－Installed Bracket
還

Fig．236—Prepared Tip Cables
園

Fig．237—Prepared Cables
15.10 Install the C presser support frame assembly as follows (Fig. 238 Fig. 238):
1. Loosen the knobs on the \(C\) presser support frame assembly and install the frame assembly by engaging the the slots on the 710A1 brackets.
2. Tighten the knobs to secure the \(C\) presser support frame assembly in place.

Fig. 238-Installed C Presser Support Frame Assembly
15.11 Install the splicing tool on the C presser support frame and center the tool between the 710A1 brackets (Fig. 239 Fig. 239).

Fig. 239-Installed Splicing Tool

\section*{这}
15.12 Splice the conductors with fire-retardant connectors. After each 100 pairs has been spliced, move the splicing tool down to the next position (Fig. 240 Fig. 240).

Fig. 240—Repositioned Splicing Tool

15.13 Install the completed connectors on the 710A1 brackets as follows (Fig 241 Fig 241):
1. Remove the completed splicing connector from the tool.
2. Place a 710A1 retainer on each end of the completed connector.
3. Snap the retainers into the slots on the brackets.

Fig. 241—Installing 25-Pair Splice on 710A Bracket

15.14 Complete the splice as follows (Fig. 242 Fig. 242):
1. Install the top and bottom cover brackets using the screws provided.
2. Fill all voids between the cables and the cover brackets with the sealing putty. This is required for fire protection.

Fig. 242—Completed Splice
3. Install neoprene foam strips across the top and bottom to provide air seals and fire protection.
15.15 Complete the installation by installing the cover (Fig. 243 Fig. 243).
15.16 Remove the cover by pulling the handle outward to release the latch at the base and then lifting the cover upward to disengage the clips at the top. Be careful not to strike the top connector when removing the cover.

Fig. 243-Enclosed Splice

\section*{VERTICAL SPLICES}
15.17 To set up for making a vertical splice, install a B support frame or 710A tool mounting in a vertical position. Prepare the cables for splicing using the foldback method.
15.18 Begin by marking the top units to be spliced as follows (Fig. 244 Fig. 244):
1. Measure across the sheath opening to find the center. Mark this spot and center a 1 -inch wide piece of vinyl tape over the mark. The tape will be used to position each module.
2. Install the splicing tool on the horizontal bar so the tool can be moved vertically.
3. Take the first cable unit from the top of the opening and lay it along the core. With a piece of wire, mark the unit at the point that coincides with the edge of the tape toward the bottom of the splice opening. This is necessary to keep the completed connectors from overlapping in the center of the splice.

Fig. 244-Marking Top Units To Be Spliced
15.19 Splice the top units as follows (Fig. 245 Fig. 245):
1. Position the cutter-presser so:
2. The wire marker aligns with the inside edge of the vertical post.
3. The cutter-presser is aligned with the unit to be spliced.
4. The index strip is 1-1/2 inches above the sheath opening.

Fig. 245-Align Tool to Splice Top Units
5. Remove the binder units and tie off near the end post of the tool. Install the connector and test the unit.
6. Repeat the procedure for each unit from the top of the splice. Start with the units in the back of the splice to avoid having to work around completed connectors as splicing progresses.
15.20 To mark the bottom units, take the first cable unit from the bottom side of the opening and lay it along the core (Fig. 246 Fig. 246). Use a piece of wire to mark the unit at the point that coincides with the top edge of the vinyl tape. It is important to do this to keep the completed connectors from overlapping in the center of the splice.

\section*{Fig. 246-Marking Bottom Units To Be Spliced}
15.21 Splice the bottom units as follows (Fig. 247 Fig. 247):
1. Position the cutter-presser so:
2. The wire marker aligns with the inside edge of the vertical post.
3. The cutter-presser is aligned with the unit to be spliced.
4. The index strip is \(1-1 / 2\) inches above the sheath opening.
5. Remove the unit binder and tie off near the end post of the tool. Install the splicing connector and test the unit.
6. Repeat the procedure for each unit from the bottom of the splice. Start with the units in the back of the splice to avoid having to work around completed connectors as splicing progresses.
15.22 After all units have been spliced, fold the units into the core and enclose the splice following procedures previously described.

Fig. 247—Align Tool to Splice Bottom Units

\section*{娄}

\section*{CREATING A BSM (BOTTOMLESS SPLICE MODULE)}
15.23 The BSM (bottomless splice module) is created for mating with the WHIS (wire holding index strip). To assemble a BSM, proceed as follows (Fig. 248 Fig. 248):
1. Set up the splicing tool and the cable for splicing.
2. Place an F module support in the head of the splicing tool.
3. Place a connector module in the F module support. Seat the connector module by hand. Do not use the T-bar to seat the connector mod-F61
15.24 Complete the BSM as follows (Fig. 249 Fig. 249):
1. Place the conductors into the connector module. Use the error-tector to check for placing errors.
2. Seat and cut the conductors and test. Place and seat a cap on the connector module.
15.25 Protect the contacts as follows (Fig. 250 Fig. 250):
1. Remove the completed BSM from the F module support.
2. Place a connector male contact cover on the module to protect the contacts on the bottom of the module.

Fig. 248—Place F Module Support and Connector Module


Fig. 249—Completed BSM

Fig. 250—Completed BSM Removed From F Module Support通

\section*{16. REPLACEMENT PARTS}
16.01 Replacement parts and tools are as follows:
\begin{tabular}{|l|l|}
\hline COMCODE & PART \\
\hline 401792478 & Bar, Alignment, B (AT-8841) \\
\hline 841732373 & Book, Instruction, 152A Test Set \\
\hline 102988284 & Bracket, 117A \\
\hline 900306903 & Brush \\
\hline 842330458 & Blade, 1A (5 Pair) \\
\hline 102632668 & Cap, dry, 710-CB-25 \\
\hline 103257507 & Cap, dry, green 710-CB1-25 \\
\hline 102632650 & Cap, filled, 710-CA-25 \\
\hline 103212916 & Cap, filled, 710CAL (25) \\
\hline 102632676 & Cap, flame retardant, 710-CD-25 \\
\hline 103274544 & Cap, flame retardant, 710-CD1-25 \\
\hline 103748323 & Cap, flame retardant, 710-CD1-5 \\
\hline 103748315 & Cap, filled, 710-CAL-5 \\
\hline 10326184 & Connector, 710-BAL-5 \\
\hline 103257515 & Connector, 710-BB1-25 \\
\hline 103274569 & Connector, 710-BD1-25 \\
\hline 103062109 & Connector, 710-BC1-25 \\
\hline 103262150 & Connector, 710-BC1-5 \\
\hline 103628418 & Connector, 710-SCLL-25 \\
\hline 103262192 & Connnector, 710-SAL-5 \\
\hline 103257523 & Connnector, 710-SB1-25 \\
\hline 103316964 & Connector, 710-BD1-5 \\
\hline 103062717 & Connector, 710-SC1-25 \\
\hline 103262168 & Connector, 710-SC1-5 \\
\hline 103628418 & Connector, 710-SCL-25 \\
\hline 103628426 & Connector, 710-TCL-25 \\
\hline 103274577 & Connector, 710-SD1-25 \\
\hline 103316972 & Connector, 710-SD1-5 \\
\hline 103628426 & Connnector, 710-TCL-25 \\
\hline 103262200 & Connector, 710-TAL-5 \\
\hline 103062725 & Connector, 710-TC1-25 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 103262176 & Connector, 710-TC1-5 \\
\hline 102604808 & Cord, W100A \\
\hline 103067716 & Cover, 710B1 \\
\hline 103316998 & Cover, \(710 \mathrm{B5}\) \\
\hline 842931271 & Cover, Contact, Male \\
\hline 401496328 & Cutter-Presser, D \\
\hline 103156261 & T001, 890A \\
\hline 104040555 & Tool, 890B \\
\hline 401134291 & Error-tector \\
\hline 401117742 & Frame, Support, B \\
\hline 401802442 & Frame, Support, Presser C \\
\hline 401474523 & Guard, Knife, B \\
\hline 842209207 & Guard, Index, WHIS \\
\hline 842209215 & Guard, Module, Connector \\
\hline 402383467 & Head, Cutting, Insertion D \\
\hline 103119178 & Index Strip (green) 710-ISI-25 \\
\hline 103119194 & Index Strip (blue) 710-ISL-25 \\
\hline 840376164 & Key spring guide, long \\
\hline 401495492 & Key spring guide, short \\
\hline 402384390 & Knife, C, Assembly \\
\hline 401926803 & Leg, B, Swivel \\
\hline 400492971 & Lubricant \\
\hline 102988284 & Mounting Tool, 709A \\
\hline 102974805 & Mounting Tool, 710A, Complete Tool Assy. \\
\hline 103059077 & Mounting Tool, 710A1, Base \\
\hline 103059085 & Mounting Tool, 710A2, Tool Clamp \\
\hline 103059093 & Mounting Tool, 710A3, Swivel Bar \\
\hline 103293893 & Mounting Tool, 710A4A, Tube Clamp \\
\hline 103059119 & Mounting Tool, 710A5, Vise \\
\hline 103059127 & Mounting Tool, 710A6, Swivel Bar \& Knob \\
\hline 103239901 & Mounting Tool, 710A7A, Tubel Tool Clamp \\
\hline 103059143 & Mounting Tool, 710A8, 90 degree Mount \\
\hline 103059150 & Mounting Tool, 710A9, Carrying Case \\
\hline & \begin{tabular}{l}
Oil, Hydraulic, ENERPAC HF100 \\
Series or equivalent
\end{tabular} \\
\hline 900477514 & Pin, Roll for 835-Type Tool \\
\hline & Pliers, cutting, flush, Proto Tool \# 453 or equivalent \\
\hline 401496211 & Press Clamp Assembly (AT-8687) \\
\hline 402490064 & Presser, L, Connector \\
\hline 401799143 & Pump, B, Hand (AT-8827) \\
\hline 103319471 & Slack Group Holder, 55A \\
\hline 401495492 & Strip, Color Code \\
\hline 402029367 & Support, Module, E (AT-8809) \\
\hline 402398077 & Support, Module, F (AT-8917) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 103317640 & Support, Module 710BM5 \\
\hline 103317657 & Support, Module 710CM5 \\
\hline 401473038 & Tape, Insulating, B (AT-8751) \\
\hline 401473046 & Tape, Tagging, B (AT-8752) \\
\hline 102478716 & Test Set, 152A \\
\hline 402321590 & Tool, Bridge Removal, C \\
\hline 402383343 & Tool, Insertion-Cutting, D \\
\hline 103176400 & T00, 840A \\
\hline 103289765 & Tool, 945A (Complete) \\
\hline 103551511 & Tool, 945A1 \\
\hline 103551529 & T001, 945A2 \\
\hline 103551537 & T00, 945A3 \\
\hline 103551545 & T001, 945A4 \\
\hline 103551552 & Tool, 945A5 \\
\hline 103551560 & T001, 945A6 \\
\hline 103556015 & T001, 945A7 \\
\hline 900582925 & Wrench, Set, Allen \\
\hline 103671269 & Strip, Filler, 710-FS-25 \\
\hline 401548292 & Solvent, Cleaning, 1 Gal. (AT-21446) \\
\hline 401548300 & Solvent, Cleaning, 5 Gal. (AT-21446) \\
\hline 400823811 & Support, Ladder, E \\
\hline 103886529 & Kit of Parts, D181186 (Harness Assembly) \\
\hline 103161691 & Kit of Parts, D180978 (Pin, Clip, Decal) \\
\hline 103161683 & Kit of Parts, D180985 (Blade Holder) \\
\hline 103886531 & Kit of Parts, D181231 (Velcro) \\
\hline 104214705 & Kit of Parts, D181298 (Double-L Clip) \\
\hline 104214713 & Kit of Parts, D181299 (Handle-890A) \\
\hline 103267977 & 835A Replacement Parts Kit, F79AK8515 \\
\hline
\end{tabular}

\section*{WIRE JOINING 710 CONNECTOR SYSTEM}

\section*{1. GENERAL}
1.001 This addendum supplements AT\&T Practice 632-205-220, Issue 4. Place this pink sheet ahead of Page 1 of the practice.
1.002 This addendum is issued for the following reasons:
1. To move information on testing procedures (text and figure)
2. To delete optional testing information.

\section*{2. CHANGES TO PRACTICE}
2.001 On Page 30, remove paragraph 5.12 and Fig. 37 Fig. 37.
2.002 On Page 32, delete subparagraph 5.15(2).
2.003 On Page 32, insert paragraph 5.12 and Fig. 37 Fig. 37 (removed from Page 30) between paragraphs 5.15 and 5.16.

RL: \(\quad 97-10-009 B T\)

PRIVATE
PROPRIETARY
CONTAINS PRIVATE AND/OR PROPRIETARY INFORMATION. MAY NOT BE USED OR DISCLOSED OUTSIDE THE BELLSOUTH COMPANIES EXCEPT PURSUANT TO A WRITTEN AGREEMENT.
\begin{tabular}{|c|c|}
\hline file code: & 248.0800 \\
\hline subject: & PSI U710 Connector System \\
\hline type: & Product Announcement \\
\hline date: & October 22, 1997 \\
\hline distribution list: & ND0, ND1, ND2, ND3, ND5, TR1 \\
\hline related letters: & None \\
\hline other: & Vendor Documentation \\
\hline to: & Managers - BellSouth Network \& Technology Group \\
\hline entities: & BellSouth Telecommunications \\
\hline from: & Director - I\&M/Special Services Support \\
\hline & Director - Network Planning \& Provisioning \\
\hline & Director - Supply Chain Management \\
\hline description: & Announces Approval of the PSI U710 Universal Connector System as Replacement for the Lucent 710 Connector System. \\
\hline * & * * \\
\hline
\end{tabular}

Lucent Technologies has notified BellSouth that as of October 1, 1997 they will begin phasing out manufacturing of the 710 Series Splicing Connector. This portion of their business has been sold to PSI Telecom.

A technical review of the PSI U710 Universal Connector System was performed to verify the acceptability of this connector system for use in BellSouth. Verification has shown that the PSI connector meets current specifications for this type connector and
is, in fact, an exact clone of the Lucent connectors. The only distinguishing differences between the Lucent connector and PSI connector is the color of the connector. All PSI connectors are gray in color and are made from a fire retardant material.

The PSI U710 is an Insulation Displacement Device for making electrical connections using metallic contact elements that displace the wire insulation thereby creating a contact between the wire conductor and contact element. The connectors are available in 5 \& 25-pair configurations. There are versions available for performing straight, half-tap and bridge splicing. The connectors may be used to splice 19 to 26 AWG conductors. All PSI U710 connectors are manufactured from fire retardant material and are available in either dry or filled. A fungicide is added to the waterproof filling compound. The U710 connectors will work with all currently approved splicing tools.

Ordering information for all connectors will remain the same. Existing stock of the Lucent 710 connectors will be depleted before shipment of the PSI connectors is started. As the Lucent stock is depleted, the PSI connector will be substituted to fill the order.

The PSI part numbers carry a U" designation at the beginning of the vendors part number. To distinguish between a dry or filled connector, the vendors part number will carry either an S" or SD" behind the pair size of the connector. A dry connector will carry the SD" designation, and a filled connector will carry an S" designation behind the pair size of the connector.

Attached is a matrix for use in cross referencing the Lucent designation to the new PSI equivalent. Also provided is the assigned PID number which has not changed.

Technical question about this product should be directed to W. P. Beverly, I\&M Staff, (205)977-2985 or Keith Gibson, Construction Staff, (770)391-2973 Procurement questions should be directed to Kermit Simerson at (404)420-6016.
J. T. Moore

Director-
I \& M/Special Services Support

\section*{S. A. Lindabury}

Director-

\section*{Supply Chain Management}

\section*{Attachment}

RL: 97-08-002BT

PRIVATE
PROPRIETARY
CONTAINS PRIVATE AND/OR PROPRIETARY INFORMATION. MAY NOT BE USED OR DISCLOSED OUTSIDE THE BELLSOUTH COMPANIES EXCEPT PURSUANT TO A WRITTEN AGREEMENT.
\begin{tabular}{|c|c|}
\hline file code: & 245.0814 \\
\hline subject: & AMP Tel-Splice Connectors \\
\hline type: & Product Announcement \\
\hline date: & August 1, 1997 \\
\hline distribution list: & ND0, ND1, ND2, ND3, ND4, ND5 \\
\hline related letters: & None \\
\hline other: & None \\
\hline to: & Managers - BellSouth Network \& Technology Group \\
\hline entities: & BellSouth Telecommunications \\
\hline from: & Director - Network Planning \& Provisioning \\
\hline & Director - FWGMMC \\
\hline & Director - Supply Chain Management \\
\hline description: & This Region Letter Announces the Approval of the AMP Tel-Splice Connectors as the Replacement for the Lucent 700 Series Splicing Connectors. \\
\hline * & * * \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{Recently Lucent Technologies notified BellSouth that they would discontinue manufacturing of the 700 Series Splicing Connectors (discrete connector) as of June 1, 1997. The machinery used to manufacture the 700 type connector is no longer serviceable. Lucent's decision to exit the business was based on the inability to repair the machinery and deliver this product to BellSouth. Therefore it became urgent to select a new connector vendor and bring the new product on-line for BellSouth as soon}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}
as possible. After review of several vendor's products, a selection was made focusing on quality, quantity of production, cost and the least amount of field transition problems. The AMP Tel-Splice Connector most closely meet these requirements.

The AMP Tel-Splice incorporates an insulation displacement type connector in a polypropylene housing which offer excellent dielectric characteristics and are highly resistant to chemical attack and moisture. Flame retardant connectors, with clear polycarbonate housings are also available. The Tel-Splice will handle any combination of solid copper wire, 26-19 AWG can be terminated in one (2- or 3- wire, Half-Tap, or Clear \& Cap) connector. Straight bridge, and half-tap splices can be made with these connectors. The terminals are manufactured from tin-plated phosphor bronze for maximum electrical continuity.

The Tel-Splice Connectors are available in either loose piece or cartridge versions. The connector can be spliced using \(\mathrm{G}^{\prime \prime}\) Long Nose Pliers or any parallel jaw presser. Cartridge connectors will require the purchase of the Presser Connector (Vendor Part \# 230722-1) , see ordering information provide below.

Attached is a chart that cross references the old Lucent connector and PID to the new AMP Tel-Splice connector and PID. AMP connectors are available from stock and packaged for ordering as follows:

> All two wire, three wire, and half-tap bulk connectors are packaged 1,000 per case and should be ordered in multiples of 1000 connectors each. All two wire cartridge connectors are packaged 72 connectors per cartridge with 25 cartridges per case, and should be ordered in multiples of 1,800 connectors each. All three wire cartridge connectors are packaged 56 connectors per cartridge with 25 cartridge per case, and should be ordered in multiples of 1,400 connectors each.

Attached is a chart that cross references the old Lucent connector and PID to the new AMP Tel-Splice connector and PID. AMP connectors are available from stock and packaged for ordering as follows:

\section*{NOTE:}

\section*{Existing stock of 700 Connectors will be depleted before shipment of the AMP Tel-Splice Connector is started.}

\section*{Ordering Information}
\begin{tabular}{|c|c|c|c|c|}
\hline PID & ITEM DESCRIPTION & *PRICE & PA & FC/FRC \\
\hline \(670-971-423\) & Presser Connector & \(\$ 55.00\) & 61 & 540 M \\
\hline
\end{tabular}

> \begin{tabular}{l|l}  *NOTICE: & \(\begin{array}{l}\text { The price quoted for this product is an approximate price at the time this } \\ \text { Region Letter was prepared and is not warranted to be accurate beyond } \\ \text { that time. It is provided for planning purposes only and is not warranted } \\ \text { to be the exact price to be billed for the product. The next issue of the } \\ \text { Bell South Distribution and Outside Plant Approved Products Catalog, } \\ \text { following the publication of this RL, should be consulted for the current } \\ \text { price of this product. }\end{array}\) \end{tabular}

\section*{Training Information}

Training on the AMP Tel-Splice Product Line may be obtain by contacting Del Wilson, AMP Account Representative, at 1-800-331-9858, extension 07886. A training video is also available, at no charge, by calling AMP at 1-800-553-0938 and requesting Video Part\# 198145.

Technical question concerning this product should be referred to Keith Gibson, Construction Staff, 770/391-2973, W. P. Beverly, I\&M Staff, 205/977-2985. Questions regarding the procurement of this product should be referred to Kermit Simerson on 404/420-6016.
\begin{tabular}{lll} 
K. W. Marlin & J. T. & S. A. Lindabury \\
Moore & \\
Director & Director & Director \\
\begin{tabular}{l} 
Network Planning \& \\
Provisioning
\end{tabular} & FWG/WMC & \begin{tabular}{l} 
Supply Chain \\
Management
\end{tabular}
\end{tabular}

\section*{Attachment}```


[^0]:    レーーンーーーーーーーーーーーーー」

[^1]:    
    

[^2]:    includes procassing service
    order request, placing cross
    conmect at $x$-box, chacks
    continuaty I dall tone
    resolvos troubles, pertoms
    lest from NID and completis
    order, includes traval

