BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Investigation into pricing of) unbundled network elements

Docket No. 990649A-TP

AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC. AND MCI WORLDCOM, INC.'S JOINT RESPONSES TO FPS STAFF'S THIRD SET OF INTERROGATORIES

AT\&T Communications of the Southern States, Inc. ("AT\&T") and MCI WorldCom, Inc. ("MCI"), pursuant to Rule 28-106.206, Florida Administrative Code and Rules 1.350 and 1.280, Florida Rules of Civil Procedure, hereby submit the following Responses to FPSC Staff's Third Set of Interrogatories to AT\&T and MCI.

INTERROGATORY NO. 22: Please refer to page 5, lines 16-19 of AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002. Please identify any and all documents that support your assertion that a realistic engineer-to-technician "span of control" is 1-to-6.

AT\&T/MCI's Response: As indicated in the relevant passage of Mr. Donovan's testimony, the 1 engineer to 6 outside plant technicians "span of control" is based on Mr. Donovan's $30+$ years of telecommunications experience, not on published documents. It may be noted that BellSouth's embedded costs indicate as much as a 1 to 5.2 "span of control".

INTERROGATORYNO.23: Referring to AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002, page 9, lines 14-15, please identify all reports, studies and documents that support that a smaller manhole cannot cost more than a larger manhole.

1
$(0+102)$ Entire
$(\rho+1$ of 2$) \begin{aligned} & \text { Entire } \\ & \text { document }\end{aligned}$
02487 MR RT

AT\&T/MCI's Response: Mr. Donovan's testimony does not state that an aberrant or inefficiently purchased smaller manhole could not ever cost more than a larger manhole just that such a pricing structure is illogical, based on his $30+$ years of hands-on telecommunications experience. His opinion is not based on published documents. As indicated in Mr. Donovan's Attachment JCD-10, manholes normally consist of precast concrete (cement). The cost of such structures are generally related to the amount of concrete, the number of steel reinforcing rods embedded in the concrete, and appropriate attached hardware. The difference between a smaller manhole and a larger manhole is simply that larger manholes are made with more concrete and more steel reinforcing rods. Manholes are certainly not high tech, such that miniaturization costs more. All are heavy, bulky, and low tech. Therefore, it is simply illogical that such low tech outside plant items cost as much as BellSouth claims, and it is illogical to accept that a smaller size manhole should cost more that a manhole more than twice its size. Exhibit JCD-10 indicates the amount of reinforced concrete by weight for various sized manholes. An additional diagram is being provided as an attachment to this response to provide the approximate weight of a 224 cubic-foot manhole. Weights, which should be proportional to cost are as follows:

Exhibit No.	Dimensions	Cubic Feet	Weight	BellSouth Claim
JCD-10.2	$3^{\prime} \times 5^{\prime} \times 3^{\prime}$	$45 \mathrm{cu} . \mathrm{ft}$.	$4,379 \mathrm{lbs}$.	N/A
JCD-10.1	$4^{\prime} \times 6.5^{\prime} \times 3{ }^{\prime}$	$78 \mathrm{cu} . \mathrm{ft}$.	$5,441 \mathrm{lbs}$.	$\$ 6,509(72 \mathrm{cu} . \mathrm{ft})$.
No. 23	$4.5^{\prime} \times 8.5^{\prime} \times 6.5^{\prime}$	$249 \mathrm{cu} . \mathrm{ft}$.	$15,552 \mathrm{lbs}$.	$\$ 19,337(224 \mathrm{cu} . \mathrm{ft})$.
Attachment				

See Attachment No. 23
INTERROGATORYNO. 24(a): Referring to AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002, page 10, lines 4-9, please explain how Exhibit JCD-10 shows the number of cables that can be accommodated by a given size manhole.

AT\&T/MCI's Response: One indicator as to the number of cables that can be accommodated by each of the 4 manholes diagramed in Exhibit/Attachment JCD-10 is by observing the number of cable openings in each manhole. Exhibit JCD-10.1 has been annotated and attached to this response to show the number of large cables that could enter each of the sides of the manhole in Exhibit JCD-10.1. Manhole manufacturers will provide as many knock-outs (cable entrance holes), and in any format, as may be ordered by a telecommunications company. The particular configuration shown in Exhibit JCD-10.1 allows for cables to enter the manhole via four 4-inch holes in one end, two 4-inch holes in at least one side, plus any number of cables entering the manhole via the 12 -inch by 28 -inch slot in one end and the 6 -inch by 28 -inch slot in the side of the manhole. I demonstrate how at least 18 cables could enter such a manhole.

Exhibit JCD-10.2 has been annotated and attached to this response to show the number of large cables that could enter each of the sides of the manhole in Exhibit JCD-10.2. The particular configuration shown in Exhibit JCD-10.2 allows for cables to enter the manhole via four 4-inch cable entrance conduit holes in each of three sides of the manhole,
plus two 4 -inch cable entrance conduit holes and a 6 -inch by 28 -inch slot in one side. I demonstrate how at least 18 cables could enter such a manhole.

Attachment JCD-10.3 shows a large 6 -foot wide by 7 -foot high by 12 -foot long 504 cubic-foot manhole, with twelve 4-inch cable entrance conduit holes in each of the four sides of the manhole - in effect allowing for 48 cables being able to enter such a manhole.

Attachment JCD-10.4 shows a small 3 -foot wide by 3 -foot high by 3 -foot long manhole, with nine 4 -inch cable entrance conduit holes in one side and a 24 -inch by 24 -inch square hole in an adjacent side. It may be assumed that such a manhole would allow for at least 18 cables to enter such a manhole.

Another requirement for manhole capacity is the space required for cylindrical splice enclosures (called "splice cases"). I have included information (AT\&T Outside Plant Engineering Handbook, August 1994, page 15-51) on splice case sizes as an attachment to this response that indicates splice case sizes vary from 2 -inches in diameter by 21.5 -inches long to 7 -inches in diameter by 28.5 -inches long, depending on the diameter of the cables being spliced. I have also included information as to how splice cases are frequently staggered in a manhole (AT\&T Outside Plant Engineering Handbook, August 1994, pages $8-50$ and $8-51$).

See Attachment No. 24a.
INTERROGATORYNO.24(b): Referring to AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002, page 10, lines 4-9, please identify the size and diameter of the cables assumed to be accommodated by the manholes shown in JCD-10.

AT\&T/MCI's Response: Cables diameters can vary from 0.49 inch (for fiber cable and
small pair count copper cable) to 3.35 inches (for the largest 4200-pair 26-guage cable). I have attached information regarding such cable sizes to this response (AT\&T Outside Plant Engineering Handbook, August 1994, pages 14-10, 14-19, 14-20, and 14-70).

See Attachments No. 24b.
INTERROGATORYNO.25: Referring to AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002, page 11, lines 6-11, please identify or otherwise demonstrate that BellSouth has double counted the costs described herein.

AT\&T/MCI's Response: BellSouth's reply to AT\&T/WorldCom's 1st Set of Interrogatories, Item No. 5 provides descriptions of those items included in the Exempt Material category that BellSouth applied as part of its 40% factor. Appropriate pages of that response are included as an attachment to this response. BellSouth's Exempt Material costs include items such as the following:

Collar Manhole (BST Response pg. 28 of 71)
Cover Handhole (BST Response pg. 32 of 71)
Cover Manhole (BST Response pg. 32 of 71)
Cover Manhole with Locking Bolts (BST Response pg. 32 of 71)

Frame \& Cover Manhole (BST Response pg. 36 of 71)
Frame Manhole (BST Response pg. 36 of 71)
Ring (Collar) Extension Manhole (BST Response pg. 55 of 71)
In addition, in response to AT\&T and MCI's 3rd Set of Interrogatories, Item No. 35, BellSouth admitted that,

Typically, manhole covers are provided by contractors and as such, the cost of the manhole covers is included in the total vendor
installation costs. In those cases where Bellsouth provides the manhole covers, the cost of the manhole covers is classified to exempt material. Manhole covers, when furnished by BellSouth, meet the definition of exempt material being of small value, generally not reused when recovered from plant, and impractical to report on an individual basis when placed or recovered.

This BellSouth admission substantiates the double counting claim asserted by Mr. Donovan in BellSouth's 100\% application of all Exempt Material loadings on top of Manhole Costs and even on top of Manhole Cover costs.

See Attachment No. 25.
INTERROGATORYNO.26: Referring to AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002, page 12, please identify the specific source of each of the values in the table at the top of the page.

AT\&T/MCI's Response: The values in the boxes of the table from Mr. Donovan's supplemental rebuttal testimony, as shown above, have been labeled with code letters to assist in this explanation.
\{a\} Contract unit cost of $\$ 16.90$ may be observed in several places within BellSouth's submission, including in the table on page 25 , near lines $21 \& 22$ of Ms. Caldwell's Surrebuttal Testimony as Amended January 28, 2002, as the cost per cubic foot for manholes greater than or equal to 351 cubic feet in size. Ms. Caldwell indicates that this "Per Cubic Foot [value is] based on M031B value in State Total sheet of the Contractor tables." This number was calculated by BellSouth as the total contractor cost for six 504 cu . ft . manholes divided by the total cubic feet for those six manholes ($3024 \mathrm{cu} . \mathrm{ft}$.). As discussed in Mr. Donovan's rebuttal testimony, this most cost effective number should be used to calculate manhole costs of any dimensions, not the more abhorrent number of $\$ 48.06$ cost per cubic foot as claimed by Ms. Caldwell for smaller manholes.
\{b\} Same explanation as for $\{a\}$, however there is no disagreement as to the cost per cubic foot for larger manholes.
\{c\} BellSouth now agrees with Mr. Donovan regarding the appropriate cost of a manhole cover, as discussed in Ms. Caldwell's Surrebuttal Testimony as Amended January 28, 2002. On page 26 , line 1 of that testimony, Ms. Caldwell states that, "Per Cover costs developed as the sum of total incurred cover costs divided by the number of covers using M045-M056 entries in the State Total sheet of the Contractor tables."

Other entries in the first table reflect AT\&T/WorldCom's position, as supported by Mr. Donovan's expert opinion and testimony, that the loading factors applied by BellSouth are inappropriate for this category.
\{d\} Per Ms. Caldwell's Surrebuttal Testimony as Amended January 28, 2002, page 26 table, a manhole capable of housing 1 cable is 72 cubic feet in size ($3^{\prime} \times 4^{\prime} \times 6^{\prime}=72$ cu. ft .). AT\&T agrees with this manhole size for one cable.
$\{\mathrm{e}\} \quad$ Same explanation as for $\{\mathrm{d}\}$, except that the capacity of the manhole is for one capable of housing 2 cables.
\{f\} Same explanation as for $\{d\}$, except that the capacity of the manhole is for one capable of housing 3 cables. AT\&T/WorldCom's position, as supported by Mr . Donovan's expert opinion and testimony, indicate the reasons why a 3 -foot by 4 -foot by 6 foot manhole of 72 cubic feet is perfectly capable of housing at least 3 or 4 cables. BellSouth disagrees, instead claiming that a very large 4 -foot by 8 -foot by 7 -foot manhole of 224 cubic feet is required for only 3 cables.
\{g\} AT\&T/WorldCom's position, as supported by Mr. Donovan's expert opinion and testimony, indicate the reasons why a 4 -foot by 8 -foot by 7 -foot manhole of 224 cubic feet is more than adequate to handle 5 or more cables.
\{h\} AT\&T/WorldCom's position, as supported by Mr. Donovan's expert opinion and testimony, is that BellSouth's alleged cost of $\$ 16.90$ per cubic foot without loadings, is the appropriate cost for all sizes of manholes.
\{i\} Same as $\{\mathrm{h}\}$.
\{j\} Same as $\{\mathrm{h}\}$.
$\{k\} \quad$ Same as $\{h\}$.
$\{1\} \quad$ Calculation of $72 \mathrm{cu} . \mathrm{ft} .\{\mathrm{d}\}$ times $\$ 16.90 / \mathrm{cu} . \mathrm{ft} .\{\mathrm{h}\}=\$ 1,216.88$
$\{\mathrm{m}\} \quad$ Calculation of $72 \mathrm{cu} . \mathrm{ft} .\{\mathrm{e}\}$ times $\$ 16.90 / \mathrm{cu} . \mathrm{ft} .\{\mathrm{i}\}=\$ 1,216.88$
$\{\mathrm{n}\} \quad$ Calculation of $72 \mathrm{cu} . \mathrm{ft} .\{\mathrm{f}\}$ times $\$ 16.90 / \mathrm{cu} . \mathrm{ft} .\{\mathrm{j}\}=\$ 1,216.88$
$\{\mathrm{o}\} \quad$ Calculation of $224 \mathrm{cu} . \mathrm{ft} .\{\mathrm{g}\}$ times $\$ 16.90 / \mathrm{cu} . \mathrm{ft} .\{\mathrm{k}\}=\$ 3,785.60$
\{p\} Cost of one manhole cover, as agreed to by BellSouth, see explanation under $\{c\}$ above, without loadings.
$\{q\} \quad$ Calculation of Manhole Cost $\$ 1,216.88\{1\}$ plus Manhole Cover Cost $\$ 246.48$ $\{p\}=\$ 1,463.36$
\{r\} Calculation of Manhole Cost $\$ 1,216.88\{\mathrm{~m}\}$ plus Manhole Cover Cost $\$ 246.48\{p\}=\$ 1,463.36$
\{s\} Calculation of Manhole Cost $\$ 1,216.88\{n\}$ plus Manhole Cover Cost $\$ 246.48\{p\}=\$ 1,463.36$
\{t\} Calculation of Manhole Cost $\$ 3,785.60\{0\}$ plus Manhole Cover Cost $\$ 246.48\{p\}=\$ 4,032.08$

INTERROGATORY NO.27:
Referring to AT\&T/WorldCom witness Donovan's supplemental rebuttal testimony filed February 11, 2002, page 15, lines 14-18, please identify all documents that support these statements.

AT\&T/MCI's Response: Please see the response to request No. 25 which provides additional evidence as to BellSouth's admissions that contractor costs normally include all exempt materials, such as manhole covers.

In addition, and typical of all of the contractor costs used by BellSouth in this proceeding, BellSouth states in response to AT\&T and MCI's 3rd Set of Interrogatories, Item No. 33:

M031A - Excavate and Place Pre-Cast Manhole that falls within the inside measurement of 151 cubic feet to 350 cubic feet. Manhole and associated hardware furnished and installed by contractor. Price per cubic foot.

M031B - Excavate and Place Pre-Cast Manhole that falls within the inside measurement of 351 cubic feet to 900 cubic feet. Manhole and associated hardware furnished and installed by contractor. Price per cubic foot.

BellSouth claims throughout its testimony that the contractor costs submitted in this proceeding are actual incurred costs placed on its investment books (whether efficient or not). Such costs are booked at full cost.

INTERROGATORY NO.28: For purposes of the following requests, please refer to AT\&T/WorldCom witness Donovan's Exhibit JCD-9.

General Response:

All of source cost data is based on the data submitted by BellSouth in its revised cost filing and its responses to WorldCom's 1st Interrogatories Item No. 2, in which BellSouth states, "The Cost Data Below is Based on an RTAP [ARGUS] Extract Of 1997 [1998] [1999] [2000] Florida Cable \& Wire Additions Data."

An Excel spreadsheet is being provided in response to this question which contains the costs provided by BellSouth on individual sheets by year in Tab 2 - Data, and accumulates those costs into Mr. Donovan's Exhibit JCD-9 in Tab 1 - $\underline{\text { Factor. }}$.

INTERROGATORY NO. 28(a): Please identify the specific sources for each of the values in the columns labeled "Total 1997-2000, Labor" and "Total 1997-2000,

Engineering."

AT\&T/MCI's Response: The Total 1997-2000 Labor costs by Account are the sum of individual Total Labor costs provided by BellSouth for each of the four years (consisting of Telco Labor plus Vendor Labor).

The Total 1997-2000 Engineering costs by Account are the sum of individual Total Engineering costs provided by BellSouth for each of the four years (consisting of Telco Engineering plus Vendor Engineering).

INTERROGATORY NO. 28(b): Are the values in the columns referred to in (a) in dollars?

AT\&T/MCI's Response: Yes.
INTERROGATORY NO. 28(c): If the response to (b) is affirmative, please explain how a ratio of the number of engineers to technicians supported can be derived from such data.

AT\&T/MCI's Response: An estimate of the span of control of engineers to
technicians was derived based on the assumption that the cost per hour for an outside plant technician is approximately the same as for an engineer (BellSouth Worksheet 99Lab_xls indicates Directly Assigned labor rates of ***BEGIN PROPRIETARY \$38.51/hr. END PROPRIETARY*** for Outside Plant Construction technicians and ***BEGIN PROPRIETARY $\$ 39.52 / \mathrm{hr}$ END PROPRIETARY*** for Outside Plant Engineers). Based on labor rate date in BellSouth as well as in other ILECs, this appears to be a reasonable assumption supported by our expert outside plant witness, Mr. Donovan.

INTERROGATORY NO. 28(d): Please identify the specific sources for each of the values in the column labeled "TELRIC Engineering Cost."

AT\&T/MCI's Response: The TELRIC Engineering Cost is based on the presumption that one engineer should be able to keep 6 outside plant technicians busy, as supported by Mr. Donovan's rebuttal testimony. Therefore the TELRIC Engineering Cost shown in Exhibit JCD-9 is the product of the Total 1997-2000 Labor cost by Account times the TELRIC Ratio of Engineering to Labor @ 1:6 of 16.7\%.

INTERROGATORY NO. 28(e): Please identify the specific sources for each of the values in the column labeled "Total Less Engineering."

AT\&T/MCI's Response: The Total Less Engineering cost is the summation of BellSouth's submitted Telco Labor + Vendor Labor + Exempt Material + Non-Exempt Material + Other for years 1997 through 2000.

See Attachment No. 28e.
INTERROGATORY NO. 29: For the following questions, please refer to Exhibit BFP-18, pages one through six, and to the column on the far right of each page labeled "AT\&T-WCom Input."

INTERROGATORY NO. 29(a): Please identify the location in the witness' testimony, either in rebuttal, deposition, or supplemental rebuttal, where evidence or support is offered for each specific input.

AT\&T/MCI's Response: See Attachment No. 29.
INTERROGATORY NO. 29(b): Please identify the page and line number in the witness' testimony, either in rebuttal, deposition, or supplemental rebuttal, where evidence or support is offered for each specific input.

AT\&T/MCI's Response: See Attachment No. 29.
DATED this 4th day of March, 2002

Attorney for AT\&T Communications of the Southern States, Inc.
and
Donna McNulty, Esq. MCI WorldCom, Inc.
The Atrium Building, Suite 105
325 John Knox Road
Tallahassee, FL 32303

Acct	Asset	Total 1997-2000		Embedded Ratio of Engineering to Labor		TELRIC Ratio of Engineering to Labor@1:6	TELRIC Engineering Cost	Total Less Engineering	TELRIC BSTLM Engineering Factor Input
		Labor	Engineering						
822C	Aerial Fiber	9,274,574	1,795,914	19.4\%	$=1: 5.2$	16.7\%	1,545,762	23,393,488	7\%
5 C	Underground Copper	17,256,750	3,679,257	21.3\%	$=1: 4.7$	16.7\%	2,876,125	38,794,345	7\%
845 C	Buried Fiber	97,805,056	24,879,493	25.4\%	$=1: 3.9$	16.7\%	16,300,843	146,912,560	11\%
4C	Conduit	26,011,264	6,802,758	26.2\%	= $1: 3.8$	16.7\%	4,335,211	36,205,300	12\%
85 C	Underground Fiber	16,635,134	5,003,841	30.1\%	$=1: 3.3$	16.7\%	2,772,522	60,019,443	5\%
852 C	Intrabuilding Fiber	256,303	77,751	30.3\%	$=1: 3.3$	16.7\%	42,717	465,166	9\%
22 C	Aerial Copper	28,991,677	9,258,892	31.9\%	$=1: 3.1$	16.7\%	4,831,946	66,220,452	7\%
45C	Buried Copper	183,321,710	59,476,324	32.4\%	$=1: 3.1$	16.7\%	30,553,618	298,342,992	10\%
812C	Aerial Fiber Entrance	3,412,076	1,535,331	45.0\%	= $1: 2.2$	16.7\%	568,679	6,546,037	9\%
52 C	Intrabuilding Copper	1,626,613	954,038	58.7\%	$=1: 1.7$	16.7\%	271,102	3,450,039	8\%
1 C	Poles	6,304,347	3,717,327	59.0\%	$=1: 1.7$	16.7\%	1,050,725	11,166,845	9\%
12C	Aerial Copper Entrance	13,629,261	12,763,258	93.6\%	= $1: 1.1$	16.7\%	2,271,543	26,649,400	9\%
	Total	404,524,764	129,944,184	32.1\%	$=1: 3.1$	16.7\%	67,420,794	718,166,066	9.4\%

ENGINEERING FACTOR DEVELOPMENT

The Cost Data Below Is Based On An RTAP Extract Of 1997 Florida Cable \& Wire Additions Data

1 C																						
5 C	\$	3,940,418	\$	291,621	\$	4,232,039	\$	518,819	\$	495,923	\$	1,014,742	\$	1,886,928	\$	5,292,877	\$	7,179,805	\$	201,245	\$	12,627,831
12 C	\$	2,543,022	\$	212,690	\$	2,755,712	\$	1,095,629	\$	746,581	\$	1,842,210	\$	1,275,812	\$	1,916,026	\$	3,191,838	\$	$(307,265)$	\$	7.482,495
C	\$	5,479,112	\$	232,370	\$	5,711,482	\$	1,039,396	\$	941,346	\$	1,980,742	\$	2,724,139	\$	7,610,252	\$	10,334,391	\$	2,940,394	\$	20,967,009
45 C	\$	12,620,299	\$	29,018,923	\$	41,639,222	\$	4,650,260	\$	6,474,657	\$	11,124,917	\$	6,307,354	\$	26,510,871	\$	32,818,225	\$	4,182,733	\$	89,765,097
52 C	\$	286,372	\$	3,382	\$	289,754	+	62,849	\$	17,292	\$	80,141	\$	136,364	\$	701,679	\$	838,043	\$	$(108,672)$	\$	1,099,266
85 C	\$	4,301,849	\$	163,129	\$	4,464,978	\$	792,321	\$	604,435	\$	1,396,756	\$	1,920,668	\$	11,605,764	\$	13,526,432	\$	$(327,192)$	\$	19,060,974
812 C	\$	749,501	\$	34,316	\$	783,817	\$	150,772	\$	130,693	\$	281,465	\$	355,941	\$	264,688	\$	620,629	\$	$(7,602)$	\$	1,678,309
822 C	\$	1,083,164	\$	63,210	\$	1,146,374	\$	135,144	\$	138,616	\$	273,760	\$	535,478	\$	1,797,614	\$	2,333,092	\$	52,760	\$	3,805,986
845 C	\$	3,986,500	\$	8,781,871	\$	12,768,371	\$	892,320	\$	1,457,293	\$	2,349,613	\$	1,890,224	\$	6,934,890	\$	8,825,114	\$	172,951	\$	24,116,049
852 C	\$	19,052	\$		\$	19,052	\$	31,080	\$	1,302	\$	32,382	\$	8,580	,	8,903	\$	17,483	\$	$(3,874)$	\$	65,043

$\begin{array}{cccccc}\$ 35,009,289 & \$ 38,801,512 & \$ 73,810,801 & \$ & 9,368,590 & \$ 11,008,138 \\ \text { Below Is Based On An RTAP Extract Of } 1998 \text { Florida Cable \& Wire Additions Data }\end{array}$
The Cost Data Below Is Based On An RTAP Extract Of 1998 Florida Cable \& Wire Additions Data

C	\$	596,247	\$	1,452,456	\$	2,048,703	\$	18,479	\$	1,528,1	\$	66,591	\$	18,5	\$
5 C	\$	4,758,15	\$	395,760	\$	5,153,916	\$	94,99	\$	0,4	\$	895,4	\$	2,462,9	\$
12 C	\$	3,261	\$	124,830	\$	3,386,774	\$	1,195,943	\$	2.145,27	\$	3,341,220	\$	1,700,01	\$
22 C	\$	5,552,	\$	145,5	\$	5,697,	\$	177.125	\$	1,506,736	\$	1,683,861	\$	2,892,888	\$
45 C	\$	12,763,450	\$	31,672,858	\$	44,436,308	\$	14,49	\$	13,968,096	\$	14,482,592	\$	6,477.403	\$
52 C	\$	412,30	\$	16,093	\$	428,401	\$	222,20	\$	55,39	\$	277,599	\$	220,892	\$
85 C	\$	4,045,1	\$	243,18	\$	4,288,32	\$	07,96	\$	1,100,6	\$	1.408,611	\$	1,846,926	\$
812 C	\$	754,78	\$	61,908	\$	816,692	\$	79,62	\$	200,87	\$	380,49	\$	407,33	\$
822 C	\$	1,389,227	-	24,595	\$	1,413,822	\$	21,84	\$	336,08	\$	357,92	\$	654,04	\$
845 C	\$	3,583,749	\$	11,123,809	\$	14,707,558	\$	128,877	5	5.924,130	\$	6,053,007	\$	1,611,419	\$
852 C	\$	41,912	\$		\$	41,912	\$	2.074	\$	4,993	\$	7,067	\$	22.710	\$
4 C	\$	1,375,177	\$	9,446,104	\$	10,821,281	\$	2,822	\$	2,601,129	\$	2,603,951	\$	737,025	\$
otal		38,534,30	$\$$	54,707,174	\$	93,241,477	\$	2,866.45	\$	30,171,917	\$	33,038,367	\$	19,352,1	

The Cost Data Below Is Based On An RTAP Extract Of 1999 Florida Cable \& Wire Additions Data

1 C	\$	730,336	\$	1,559,832	\$	2,290,168	\$	492,777	\$	784,907	\$	1,277,684	\$	409,756	\$	1,475,842	\$	1,885,599	\$	$(430,819)$	\$	5,022,631
5 C	\$	3,597,831	\$	395,728	\$	3,993,559	S	349,093	\$	463,139	\$	812,232	\$	2,073,687	\$	2,223,257	\$	4,296,944	\$	$(124,219)$	\$	8,978,516
12 C	\$	3,542,205	\$	166,969	\$	3,709,174	\$	2,226.136	\$	1,545,608	\$	3,771,744	\$	1,984,406	\$	1,934,373	\$	3,918,779	\$	$(228,311)$	\$	11,171,387
22 C	d	12,382,345	\$	121,783	\$	12,504,128	\$	1,310,639	\$	1,060,527	\$	2,371,166	\$	7,065,775	\$	2,376,618	\$	9,442,39	\$	$(6,717)$		24,310,970
45 C	\$	23,783,586	\$	34,285,353	\$	58,068,939	\$	6,197,264	\$	8,361,749	+	14,559,013	\$	15,008,811	\$	8,753,121	\$	23,761,932	\$	1,430,387		97,820,270
52 C	\$	416,906	\$	4,324	\$	421,231	\$	287,693	\$	69,437	\$	357,130	\$	218,317	\$	136,835	\$	355,151	\$	$(20,009)$	\$	1,113,503
85 C	\$	3,343,668	\$	259,497	\$	3,603,165	\$	343,666	\$	858,213	\$	1,201,879	\$	1,516,96	\$	6,817,316	\$	8,334,27	\$	$(117,328)$		13,021,993
812C	\$	886,548	\$	37,305	\$	923,853	\$	289,942	\$	159,194	\$	449,136	\$	500,938	\$	391,878	\$	892,81	\$	$(27,677)$		2,238,12
822 C	\$	4,158,029	\$	55,347	\$	4,213,376	\$	482,989	\$	501,086	\$	984,076	\$	2,094,286	\$	2,659,589	\$	4,753,874	\$	175,878	\$	10,127,204
845C		6,125,835	\$	30,053,749	\$	36,179,584	\$	3,913,644	\$	4,741,532	\$	8,655,176	\$	3,619,947	\$	11,306,295	\$	14,926,242	\$	723.631	\$	60,484,633
852 C		67,897	\$		\$	67,897	\$	7,434	\$	9,816	\$	17,250	\$	32,465	\$	15,552	\$	48,016	\$			133,164
4 C	\$	1,102,711	\$	7.158,274	\$	8,260,985	\$	831,844	\$	1,191,387	\$	2,023,231	\$	617,563	\$	3,354,753	\$	3,972,316	\$	68,533		14,325

Based On ARGUS Extract of 2000 Florida Cable \& Wire Additions Data
1C $\quad \$ \quad 561$ Extract 2000 Florid

\$	561,986	\$	1,403,490	\$	1,965,476	\$	587,985	\$
\$	3,574,479	\$	302,757	\$	3,877,236	\$	696,117	\$
\$	3,596,650	\$	180,951	\$	3,777,601	\$	2,782,738	\$
\$	5,011,166	\$	67,120	\$	5,078,286	\$	2,442,658	\$
\$	12,151,906	\$	27,025,335	\$	39,177,241	\$	10,635,669	\$
\$	483.798	\$	3.429	\$	487,227	\$	234.970	\$
\$	3,949.303	\$	329,358	\$	4.278,662	\$	384.505	\$
\$	847.283	\$	40,430	\$	887,714	\$	376,080	\$
\$	2,406,245	\$	94,757	\$	2,501,002	\$	122,866	\$
\$	5,070,595	\$	29,078,949	\$	34,149,543	\$	3,951,823	\$
\$	126,211	\$	1,230	\$	127,442	\$	21,052	\$
\$	1,555,929	\$	5,373,069	\$	6,928,998	\$	1,224,217	\$
	39,335,551	\$	63,900,876		03,236,427	\$	23,460,	\$

305,067	$\$$	893,052	$\$$	344,332	$\$$
260,724	$\$$	956,841	$\$$	$3,198,040$	$\$$
$1,025,346$	$\$$	$3,808,084$	$\$$	$2,008,733$	$\$$
780,465	$\$$	$3,223,123$	$\$$	$4,863,560$	$\$$
$8,674,133$	$\$$	$19,309,802$	$\$$	$15,221,512$	$\$$
4,199	$\$$	239,168	$\$$	277,157	$\$$
612,090	$\$$	996,595	$\$$	$2,050,199$	$\$$
48,151	$\$$	424,231	$\$$	489,399	$\$$
57,285	$\$$	180,151	$\$$	$1,640,350$	$\$$
$3,869,875$	$\$$	$7,821,697$	$\$$	$2,975,719$	$\$$
$9-$	$\$$	21,052	$\$$	82,049	$\$$
951,359	$\$$	$2,175,576$	$\$$	902,025	$\$$
$16,588,693$	$\$$	$40,049,372$	$\$ 34,123,074$	$\$$	

	\$					
1,978,680	\$	5,1	\$	(201,81		
1,822,865	\$	3,901		$(405,458)$		11,08
2,111,17	\$	6,974,7	\$	(210,8		15,0
10,368,74	\$	25,590,25	\$	1,901,09		
209,86	\$	487	\$	$(37,958)$		
11,58	\$	9,161,7	\$	$(242,726)$		14,19
9,9	\$	979,3	\$	18,765)	\$	
846,586	\$	3,486.9	\$	249,984	\$	6,4
865,170	\$	11,840,8	\$	98,81		4.7
34,189	\$	116.23	\$	$(1,980)$	\$	
552,541	\$	3,45	\$	1,6		
841,724				2.072,8		

Agareqate for 1997 through 2000

1 C	$\$$	$1,888,569$	$\$$	$4,415,778$	$\$$	$6,304,347$
5 C	$\$$	$15,870,884$	$\$$	$1,385,866$	$\$$	$17,256,750$
$\$$						
12 C	$\$ 12,943,821$	$\$$	685,440	$\$ 13,629,261$	$\$$	
22 C	$\$ 28,424,832$	$\$$	566,845	$\$ 28,991,677$	$\$$	
45 C	$\$$	$61,319,241$	$\$ 122,002,469$	$\$ 183,321,710$	$\$$	
52 C	$\$$	$1,599,384$	$\$$	27,228	$\$$	$1,626,613$

\$	1,099,241	\$	2,618,086	\$	3,717,327	\$	1,072,655	\$
\$	1,659,028	\$	2,020,229	\$	3,679,257	\$	9.621,579	\$
\$	7,300,446	\$	5,462,812	\$	12,763,258	\$	7,038,962	\$
\$	4,969,818	\$	4,289,074	\$	9,258,892	\$	17,546,362	\$
\$	21,997,689	\$	37,478,635	\$	59,476,324	\$	43,015,080	\$
\$	807,719	\$	146,320	\$	954,038	\$	852,730	\$
\$	1,828,457	\$	3,175,384	\$	5,003,841	\$	7,334,754	\$
\$	996,415	\$	538,916	\$	1,535,331	\$	1,753,609	\$
\$	762,841	\$	1,033,072	\$	1,795,914	\$	4,924,155	\$
\$	8.886,664	\$	15,992,830	\$	24,879,493	\$	10,097,309	\$
\$	61,640	\$	16,111	\$	77,751	\$	145,804	\$
\$	2,058,883	\$	4.743,875	\$	6,802,758	\$	2,256,613	\$
S	52,428,840	\$	77,515,343	\$	129,944,184		105,659,611	\$

4,430,822	\$	5,503,478	\$	$(640,979)$		14,884,172
12,134,628	\$	21,756,207	\$	$(218,612)$	\$	42,473,602
7,289,900	\$	14,328,862	\$	$(1,308,724)$		39,412,658
14,626,960	$\$$	32,173,321	\$	5,055,453		75,479,343
58,672,898		101,687,977	\$	13,333,305		357,819,316
1,191,737	\$	2,044,466	\$	(221.040)	\$	4,404,077
36,420,770	\$	43,755,524		$(371,214)$	\$	65,023,284
1,445,907	\$	3,199,515	\$	$(65,554)$	\$	8,081,368
8,570,867	\$	13,495,021	\$	623,893		25,189,402
36,441,602	\$	46,538.911	\$	2,568,592		171,792,053
68,913	\$	214,716	\$	$(5,854)$	\$	542,917
,502,063		9,758,676	\$	435,360		43,00

ins bellsouth promatary

BEFORE THE FLORIDA PUBLIC SERVICE COMMHSSION x^{2}

In re: Investigation into pricing of) unbundled network elements

Docket No. 990649A-TP

AT\&T COMMUNICATIONS OF THE SOUTHERN STATES, INC. AND MCI WORLDCOM, INC.'S JOINT RESPONSES TO FPSC STAFF'S THIRD REQUEST FOR PRODUCTION OF DOCUMENTS

AT\&T Communications of the Southern States, Inc. ("AT\&T") and MCI WorldCom, Inc. ("MCI"), pursuant to Rule 28-106.206, Florida Administrative Code and Rules 1.350 and 1.280, Florida Rules of Civil Procedure, hereby submit the following Responses to FPSC Staff's Third Request for Production of Documents to AT\&T and MCI.

DOCUMENT REQUESTS:
REQUEST NO. 23: Please provide all documents identified in response to Interrogatory No. 22.

AT\&T/MCI's Response: \quad The response to Interrogatory No. 22 indicates that the relevant passage of Mr. Donovan's testimony, the 1 engineer to 6 outside plant technicians "span of control" is based on Mr. Donovan's $30+$ years of telecommunications experience, not on published documents.

REOUEST NO. 24: Please provide all documents identified in response to Interrogatory No. 23.

AT\&T/MCI's Response:

The response to Interrogatory No. 23 indicates that Mr.

Donovan's testimony does not state that a smaller manhole could not ever cost more than a larger manhole - just that such a pricing structure is illogical, based on his $30+$ years of hands-on telecommunications experience. His opinion is not based on published documents $(P+20 f 2)$

Appropriate documents support the response are attached to that response, or have been supplied in testimony.

REQUEST NO. 25: Please provide all documents identified in response to Interrogatory No. 24(b).

AT\&T/MCI's Response: A copy of the AT\&T Outside Plant Engineering Handbook, August 1994, pages 14-10, 14-19, 14-20, and 14-70 have been provided as an attachment to Interrogatory No. 24(b).

REOUEST NO. 26: Please provide all documents identified in response to Interrogatory No. 25.

AT\&T/MCI'sResponse: Appropriate pages from BellSouth's rēply to AT\&T/WorldCom's 1st Set of Interrogatories, Item No. 5, have been provided as an attachment to Interrogatory No. 25.

REQUEST NO. 27: Please provide all documents identified in response to Interrogatory No. 27.

AT\&T/MCI's Response: All calculations are described in the response to Interrogatory No. 27. The only documents required in support of those calculations were provided in testimony and are specifically identified for each appropriate cell in the table. There are no additional documents.

REQUESTNO.28: Referring to AT\&T/WorldCom witness Donovan's Exhibit JCD9:

REQUEST NO. 28(a): Please provide any and all work papers that support this exhibit, including any underlying spreadsheet files.

AT\&T/MCI's Response: Work papers consist of the Excel spreadsheets that were provided in response to Interrogatory No. 27. There are no additional documents.

REQUEST NO.28(b): To the extent not self-evident in the work papers provided in response to (a), please indicate the specific calculations performed.

AT\&T/MCI's Response: AT\&T/WorldCom believes that the information provided in response to Interrogatory No. 28 provides adequate information to indicate the specific calculations performed. Those calculations simply sum the four years of data provided by BellSouth for 1997 through 2000, and provide straightforward arithmetic calculations. Mr. Donovan can be reached on 516-739-3565 if there are any questions about a calculation.

REQUEST NO. 28(c): Please provide all documents identified in response to Interrogatory No. 28. To the extent that any such documents have been previously provided in this proceeding, please identify in which request it was provided. AT\&T/MCI's Response: The response to Interrogatory No. 28 references an Excel Workbook file provided as an attachment to that response. In addition, the assumption that a span of control for engineers to construction technicians can be derived via a ratio of engineering dollars to construction direct labor dollars, because the labor rates are nearly identical refers to Directly Assigned labor rates provided by BellSouth in this proceeding as Worksheet 99Lab_xls, as indicated in the response to Interrogatory No. 28.

REQUEST NO. 29: BFP-15 attached to witness Pitkin's February 11, 2002, Supplemental Rebuttal Testimony, page 3 of 12, shows a comparison of BellSouth's Forecast of Telephone Plant Indexes as filed by BellSouth, updated for 1998-2001 actuals and new BellSouth projections, and updated for material-only actuals 19982001 and new BellSouth projections. The source for the 1998-2001 actuals is noted as

RL:01-11-005BT, Attachment 3, pages 1 and 2, BellSouth's "November 2001 Forecast of \% Cost Change." This attachment indicates 2000, actual percent change but not 2001. Provide the source document for the 2001, actuals shown in BFP-15.

AT\&T/MCI's Response: The 2001 actuals for material and labor combined shown in Attachment BFP-15 are located in BellSouth's response to AT\&T / WorldCom Item 36 Attachment 2 pages 2-3. For material only, the actuals shown in Attachment BFP-15 are located in BellSouth's response to AT\&T / WorldCom Item 36 Attachment 2 pages 4-6. (The relevant pages from this discovery response are included as pages $4-12$ of BFP Attachment 15.) The note "RL:01-11-005BT, Attachment 3, pages 1 and 2 " refers to BellSouth's projections.

REQUEST NO. 30: For each AT\&T/WorldCom updated input shown on BFP-18, provide all workpapers, LOTUS spreadsheets, and calculations showing the step-bystep development of each input.

AT\&T/MCI's Response: See file included in response to Staff Interrogatory No. 29
("Attachment to Interrogatory No. 29.xls").
DATED this $4^{\text {th }}$ day of March, 2002

Attorney for AT\&T Communications of the Southern States, Inc.
and
Donna McNulty, Esq. MCI WorldCom, Inc.
The Atrium Building, Suite 105
325 John Knox Road
Tallahassee, FL 32303

CORRECTION OF BELLSOUTH'S INFLATION FORECASTS AND USE OF MATERIAL - ONLY INFLATION FACTORS

		BellSouth As Filed	Actuals	Actuals With New BS Proj	Material With New BS Proj
Poles	1C	7.68	3.06	2.63	(3.84)
Aerial Ca - Metal	22C	8.22	2.14	0.79	(3.75)
Buried Ca - Metal	45C	7.15	3.49	2.80	0.98
Conduit Systems	4C	7.00	5.50	4.72	6.93
Intrbld Network - Metal	52C	9.26	1.43	0.09	(4.85)
Underground Ca - Metal	5C	9.26	2.28	0.60	(2.65)
Aerial Ca - Fiber	822C	2.01	0.58	0.58	(2.11)
Buried Ca - Fiber	845C	4.05	1.87	1.87	(2.11)
Intrbld Network - Fiber	852C	4.05	1.44	1.44	(2.11)
Underground Ca - Fiber	85C	-	(0.43)	(0.43)	(2.11)
Digital Sub Pair Gain	257C	(2.00)	(5.64)	(6.26)	N/A
Digital Electronics	377C	2.01	2.02	1.68	N/A
		BellSouth As Filed	Actuals	Actuals With New BS Proj	Material With New BS Proj
Poles	1C	7.68	(4.62)	(5.05)	(11.52)
Aerial Ca - Metal	22C	8.22	(6.08)	(7.43)	(11.96)
Buried Ca - Metal	45C	7.15	(3.66)	(4.35)	(6.17)
Conduit Systems	4C	7.00	(1.50)	(2.28)	(0.07)
Intrbld Network - Metal	52C	9.26	(7.83)	(9.17)	(14.11)
Underground Ca - Metal	5C	9.26	(6.97)	(8.66)	(11.91)
Aerial Ca - Fiber	822C	2.01	(1.44)	(1.44)	(4.13)
Buried Ca - Fiber	845C	4.05	(2.18)	(2.18)	(6.17)
Intrbld Network - Fiber	852C	4.05	(2.62)	(2.62)	(6.17)
Underground Ca - Fiber	85C	-	(0.43)	(0.43)	(2.11)
Digital Sub Pair Gain	257C	(2.00)	(3.64)	(4.26)	N/A
Digital Electronics	377C	2.01	0.00	(0.34)	N/A

Poles	1 C	3.7	3.8	3.8	1.037340	1.076310	1.116846	3.230496	1.076832
Aerial Ca-Metal	22C	4.0	4.0	4.0	1.040000	1.081600	1.124864	3.246464	1.082155
Buried Ca - Metal	45C	4.0	3.0	3.0	1.040000	1.071200	1.103336	3.214536	1.071512
Conduit Systems	4C	3.2	3.7	3.5	1.032193	1.069996	1.107775	3.209964	1.069988
Intrbld Network - Metal	52 C	5.0	4.0	4.0	1.050000	1.092000	1.135680	3.277680	1.092560
Underground Ca - Metal	5 C	5.0	4.0	4.0	1.050000	1.092000	1.135680	3.277680	1.092560
Aerial Ca-Fiber	822C	1.0	1.0	1.0	1.010000	1.020100	1.030301	3.060401	1.020134
Buried Ca - Fiber	845 C	2.0	2.0	2.0	1.020000	1.040400	1.061208	3.121608	1.040536
Intrbld Network - Fiber	852 C	2.0	2.0	2.0	1.020000	1.040400	1.061208	3.121608	1.040536
Underground Ca - Fiber	85C	0.0	0.0	0.0	1.000000	1.000000	1.000000	3.000000	1.000000
Digital Sub Pair Gain	257C	-2.0	0.0	0.0	0.980000	0.980000	0.980000	2.940000	0.980000
Digital Electronics	377C	1.0	1.0	1.0	1.010000	1.020100	1.030301	3.060401	1.020134

Updated BellSouth For Actuals

Poles	1C	0.8	1.5	3.8	1.008047	1.022677	1.061193	3.091917	1.030639
Aerial Ca - Metal	22 C	-0.1	1.3	4.0	0.999127	1.012227	1.052716	3.064070	1.021357
Buried Ca - Metal	45 C	1.5	1.4	3.0	1.015451	1.029185	1.060060	3.104695	1.034898
Conduit Systems	4 C	2.9	2.0	3.5	1.029234	1.049395	1.086447	3.165076	1.055025
Intrbld Network - Metal	52C	-0.6	1.1	4.0	0.993648	1.004537	1.044719	3.042904	1.014301
Underground Ca-Metal	5C	0.3	1.0	4.0	1.002710	1.012647	1.053153	3.068509	1.022836
Aerial Ca-Fiber	822C	-0.4	1.0	1.0	0.995646	1.005806	1.015864	3.017315	1.005772
Buried Ca - Fiber	845 C	0.3	1.3	2.0	1.003476	1.016222	1.036547	3.056246	1.018749
Intrbld Network - Fiber	852 C	-0.1	1.3	2.0	0.998658	1.012081	1.032322	3.043060	1.014353
Underground Ca - Fiber	85C	-1.0	0.8	0.0	0.990323	0.998387	0.998387	2.987097	0.995699
Digital Sub Pair Gain	257C	-4.0	-2.5	0.0	0.959854	0.935523	0.935523	2.830900	0.943633
Digital Electronics	377C	-0.2	2.8	1.0	0.997990	1.026131	1.036392	3.060513	1.020171

Updated BellSouth For Actuals and New BellSouth Projections

Poles	1C	0.8	1.5	2.5	1.008047	1.022677	1.048244	3.078969	1.026323
Aerial Ca - Metal	22C	-0.1	1.3	0.0	0.999127	1.012227	1.012227	3.023581	1.007860
Buried Ca - Metal	45C	1.5	1.4	1.0	1.015451	1.029185	1.039476	3.084112	1.028037
Conduit Systems	4 C	2.9	2.0	1.3	1.029234	1.049395	1.063037	3.141666	1.047222
Intrbld Network - Metal	52 C	-0.6	1.1	0.0	0.993648	1.004537	1.004537	3.002722	1.000907
Underground Ca - Metal	5 C	0.3	1.0	-1.0	1.002710	1.012647	1.002520	3.017877	1.005959
Aerial Ca-Fiber	822C	-0.4	1.0	1.0	0.995646	1.005806	1.015864	3.017315	1.005772
Buried Ca - Fiber	845C	0.3	1.3	2.0	1.003476	1.016222	1.036547	3.056246	1.018749
Intrbld Network - Fiber	852 C	-0.1	1.3	2.0	0.998658	1.012081	1.032322	3.043060	1.014353
Underground Ca - Fiber	85 C	-1.0	0.8	0.0	0.990323	0.998387	0.998387	2.987097	0.995699
Digital Sub Pair Gain	257C	-4.0	-2.5	-2.0	0.959854	0.935523	0.916813	2.812190	0.937397
Digital Electronics	377C	-0.2	2.8	0.0	0.997990	1.026131	1.026131	3.050251	1.016750

Updated BellSouth For Material-Only Actuals and New BellSouth Projections

Poles	1C	-4.2	0.3	0.6	0.957746	0.960712	0.966476	2.884934	0.961645
Aerial Ca-Metal	22C	-2.0	0.3	-5.9	0.979744	0.982942	0.924949	2.887635	0.962545
Buried Ca-Metal	45C	2.3	0.3	-4.6	1.023429	1.026624	0.979399	3.029453	1.009818
Conduit Systems	4 C	7.1	1.8	-4.0	1.071006	1.090237	1.046627	3.207870	1.069290
Intrbld Network - Metal	52 C	-2.9	-0.1	-5.7	0.970652	0.969565	0.914300	2.854517	0.951506
Underground Ca - Metal	5 C	-0.8	0.1	-5.9	0.992248	0.993355	0.934748	2.920351	0.973450
Aerial Ca - Fiber	822 C	-2.1	0.5	-1.0	0.979021	0.983683	0.973846	2.936550	0.978850
Buried Ca - Fiber	845C	-2.1	0.5	-1.0	0.979021	0.983683	0.973846	2.936550	0.978850
Intrbld Network - Fiber	852C	-2.1	0.5	-1.0	0.979021	0.983683	0.973846	2.936550	0.978850
Underground Ca - Fiber	85C	-2.1	0.5	-1.0	0.979021	0.983683	0.973846	2.936550	0.978850

CONTAINS BELLSOUTH PROPRIETARY INFORMATION
$2004 \quad 2$
2006
2007
$2008+$
$\begin{array}{llllllll}1994 & 1995 & 1996 & 1997 & 1998 & 1999 & 2000 & 2001\end{array}$

As Filed by BellSouth														
	ACTUAL	ACTUAL	Actual											
1 C	8.5	1.7	2.6	4.0	3.4	3.7	3.8	3.8	3.8	3.8	3.8	3.9	3.9	4.0
22C	10.0	2.2	1.8	-1.0	1.0	4.0	4.0	4.0	4.0	3.0	3.0	4.0	4.0	4.0
45C	5.7	2.0	3.0	1.0	2.0	4.0	3.0	3.0	3.0	3.0	3.0	4.0	4.0	3.0
4 C	8.9	1.3	2.2	1.5	2.5	3.2	3.7	3.5	3.4	3.4	3.4	3.5	3.5	3.0
52 C	8.6	3.1	-2.1	-3.0	0.0	5.0	4.0	4.0	3.0	3.0	3.0	3.0	3.0	3.0
5 C	11.5	1.7	-0.2	-2.0	0.0	5.0	4.0	4.0	3.0	3.0	3.0	3.0	4.0	3.0
822 C	-2.3	1.2	0.8	1.0	1.0	1.0	1.0	1.0	-1.0	1.0	1.0	2.0	2.0	2.0
845 C	0.5	2.1	1.5	2.0	2.0	2.0	2.0	2.0	1.0	2.0	2.0	3.0	3.0	2.0
852C	-3.2	1.6	1.7	1.0	1.0	2.0	2.0	2.0	1.0	2.0	2.0	2.0	3.0	2.0
85 C	-3.2	0.9	0.1	0.0	0.0	0.0	0.0	0.0	-2.0	0.0	1.0	1.0	1.0	1.0
257C	-0.4	-2.0	1.1	-3.0	0.0	-2.0	0.0	0.0	0.0	-1.0	-2.0	-2.0	-2.0	0.0
377C	0.8	10.5	-0.4	-2.0	-1.0	1.0	1.0	1.0	2.0	0.0	0.0	-1.0	-1.0	1.0

Updated BellSouth For Actuals

	ACTUAL	ACTUAL
1C	8.5	1.7
22C	10.0	2.2
45C	5.7	2.0
4C	8.9	1.3
52C	8.6	3.1
5C	11.5	1.7
822C	-2.3	1.2
845C	0.5	2.1
852C	-3.2	1.6
85C	-3.2	0.9
257C	-0.4	-2.0
377C	0.8	10.5

Updated BellSouth For Actuals and New BellSouth Projections

	ACTUAL						
1 C	8.5	1.7	2.6	2.5	1.6	0.8	1.5
22C	10.0	2.2	1.8	-0.9	-0.5	-0.1	1.3
45C	5.7	2.0	3.0	0.2	0.6	1.5	1.4
4 C	8.9	1.3	2.2	0.5	0.0	2.9	2.0
52C	8.6	3.1	-2.1	-1.0	0.5	-0.6	1.1
5 C	11.5	1.7	-0.2	-1.0	2.8	0.3	1.0
822 C	-2.3	1.2	0.8	-4.7	-5.9	-0.4	1.0
845 C	0.5	2.1	1.5	-2.0	-1.8	0.3	1.3
852 C	-3.2	1.6	1.7	-1.9	-4.0	-0.1	1.3
85C	-3.2	0.9	0.1	-5.8	-7.3	-1.0	0.8
257C	-0.4	-2.0	1.1	-1.1	-5.2	-4.0	-2.5
377 C	0.8	10.5	-0.4	-2.8	-4.6	-0.2	2.8

Updated BellSouth For Material-Only Actuals and New BellSouth Projections

	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL
1C	17.3	0.0	-0.2	0.7	0.0	-4.2
22C	21.7	1.7	-1.0	-5.6	-2.9	-2.0
45C	12.2	-0.9	1.7	-5.6	-2.1	2.3
4C	13.5	-8.2	-1.2	-6.2	-5.3	7.1
52C	15.2	3.2	-5.6	-6.2	0.9	-2.9
5C	24.5	0.5	-4.4	-4.4	4.0	-0.8
822C	-7.1	0.0	-1.5	-8.9	-10.8	-2.1
845C	-7.1	0.0	-1.5	-8.9	-10.8	-2.1
852C	-7.1	0.0	-1.5	-8.9	-10.8	-2.1
85C	-7.1	0.0	-1.5	-8.9	-10.8	-2.1

ACTUAL BS Proi Attachment 3, Page 5

UAL	BS Proj						
0.3	0.6	0.6	2.4	0.6	0.6	4.2	1.9
0.3	-5.9	0.8	4.0	2.5	2.0	2.0	2.4
0.3	-4.6	1.2	3.2	2.3	1.9	1.8	2.1
1.8	-4.0	2.7	2.1	2.2	2.3	2.3	2.4
-0.1	-5.7	0.8	4.0	2.5	2.0	2.0	2.4
0.1	-5.9	1.0	4.2	2.5	2.2	2.4	2.8
0.5	-1.0	-3.0	-2.5	-2.5	-5.0	-.5	-2.5
0.5	-1.0	-3.0	-2.5	-2.5	-5.0	-2.5	-2.5
0.5	-1.0	-3.0	-2.5	-2.5	-5.0	-2.5	-2.5
0.5	-1.0	-3.5	-5	-2.5	-5	-5	-25

Source: Attachment 2, Page 2-3
$\begin{array}{lllll}131.3 & 134.6 & 136.7 & 137.8 & 139.8\end{array}$ $\begin{array}{llllll}16.1 & 115.1 & 114.5 & 114.4 & 115.9\end{array}$ $\begin{array}{llllll}15 . & 115.1 & 114.5 & 114.4 & 115.9 \\ 15.6 & 115.8 & 116.5 & 118.3 & 119.9\end{array}$ $\begin{array}{lllll}98.7 & 992 & 99.2 & 1021 & 104.1\end{array}$ $\begin{array}{llllll}10.8 & 1097 & 1102 & 1095 & 110.7\end{array}$ 10.81077110 .7111 .0112 .1 $\begin{array}{llll}76.8 & 732 & 68.9 & 68.0\end{array} 693$ $\begin{array}{lllll}76.8 & 73.2 & 68.9 & 68.6 & 69.3\end{array}$ $\begin{array}{lllll}79.1 & 77.9 & 74.5 & 74.4 & 75.4\end{array}$ $\begin{array}{lllll}79.1 & 71.6 & 74.5 & 7.4 & 75.4\end{array}$ $\begin{array}{lllllllllll} & 87.7 & 86.7 & 62.0 & 61.4 & 61.9\end{array}$ $\begin{array}{rrrrr}87.7 & 86.7 & 82.2 & 88.9 & 76.9 \\ 107.3 & 104.3 & 99.5 & 99.3 & 102.1\end{array}$

Source: Attachment 2, Page 2-3

$$
\begin{array}{rrrrr}
131.3 & 134.6 & 136.7 & 137.8 & 139.8 \\
116.1 & 115.1 & 114.5 & 114.4 & 115.9 \\
115.6 & 15.8 & 116.5 & 118.3 & 119.9 \\
98.7 & 99.2 & 99.2 & 102.1 & 104.1 \\
110.8 & 109.7 & 110.2 & 109.5 & 110.7 \\
108.8 & 107.7 & 110.7 & 111.0 & 112.1 \\
76.8 & 73.2 & 68.9 & 68.6 & 69.3 \\
89.7 & 87.9 & 86.3 & 86.6 & 87.7 \\
79.1 & 77.6 & 74.5 & 74.4 & 75.4 \\
71.0 & 66.9 & 62.0 & 61.4 & 61.9 \\
87.7 & 86.7 & 82.2 & 78.9 & 76.9 \\
107.3 & 104.3 & 99.5 & 99.3 & 102.1
\end{array}
$$

Source: Attachment 2, Page 4-6
$\begin{array}{llllllll}114.5 & 134.3 & 134.3 & 134.0 & 134.9 & 134.9 & 129.2 & 129.6\end{array}$ $\begin{array}{lllllll}83.5 & 101.6 & 103.3 & 102.3 & 96.6 & 93.8 & 91.9 \\ 92.2\end{array}$ $\begin{array}{llllllll}89.8 & 100.8 & 99.9 & 101.6 & 95.9 & 93.9 & 96.1 & 96.4\end{array}$ $\begin{array}{llllllll}73.9 & 83.9 & 77.0 & 76.1 & 71.4 & 67.6 & 72.4 & 73.7\end{array}$ $\begin{array}{llllllll}86.6 & 99.8 & 103.0 & 97.2 & 91.2 & 92.0 & 89.3 & 89.2 \\ 75.9 & 94.5 & 950 & 90.8 & 86.8 & 90.3 & 89.6 & 89.7\end{array}$ $\begin{array}{llllllll}75.9 & 94.5 & 95.0 & 90.8 & 86.8 & 90.3 & 89.6 & 89.7 \\ 57.7 & 53.6 & 53.6 & 52.8 & 48.1 & 42.9 & 42.0 & 42.2\end{array}$ $\begin{array}{llllllll}57.7 & 53.6 & 53.6 & 52.8 & 48.1 & 42.9 & 42.0 & 42.2 \\ 57.7 & 53.6 & 53.6 & 52.8 & 48.1 & 42.9 & 42.0 & 42.2\end{array}$ $\begin{array}{llllllll}57.7 & 53.6 & 53.6 & 52.8 & 48.1 & 42.9 & 42.0 & 42.2 \\ 57.7 & 53.6 & 53.6 & 52.8 & 48.1 & 429 & 420 & 42.2\end{array}$

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and correct copy of AT\&T and MCI Joint Responses to FPSC Staff's Third Request for Production of Documents in Docket 990649A-TP has been served on the following parties by Hand Delivery (*) and/or U. S. Mail this 4th day of March, 2002.

Jason Fudge, Esq.*
Division of Legal Services, Room 370
Florida Public Service Commission 2540 Shumard Oak Blyd.
Tallahassee, FL 32399-0850
Nancy B. White
c/o Nancy H. Sims
BellSouth Telecommunications, Inc.
150 South Monroe Street, Suite 400
Tallahassee, FL 32301
Claudia Davant-DeLoach, Esq.
AT\&T
101 N. Monroe St., Suite 700
Tallahassee, FL 32301
Virginia Tate, Esq.
AT\&T
1200 Peachtree St., Suite 8068
Atlanta, GA 30309
Jeffrey Whalen, Esq.
John Fons, Esq.
Ausley Law Firm
P.O. Box 391

Tallahassee, FL 32302
Michael A. Gross
Vice President, Regulatory Affairs
\& Regulatory Counsel
Florida Cable Telecommunications Assoc., Inc.
246 E. $6^{\text {th }}$ Avenue
Tallahassee, FL 32301
Kimberly Caswell
Verizon Select Services
P.O. Box 110 (FLTC0007)

Tampa, FL 33601-0110
Donna McNulty, Esq.
WorldCom
The Atrium Building, Suite 105
325 John Knox Road
Tallahassee, FL 32303
Mr. Brian Sulmonetti
WorldCom, Inc.
6 Concourse Parkway, Suite 3200
Atlanta, GA 30328

Marc W. Dunbar, Esq.
Pennington, Moore, Wilkinson, Bell \&
Dunbar, P.A.
P.O. Box 10095

Tallahassee, FL 32302-2095
Charles J. Rehwinkel
Sprint-Florida, Incorporated
MC FLTHOO 107
P.O. Box 2214

Tallahassee, FL 32399-2214
Mark Buechele
Supra Telecom
1311 Executive Center Drive, Suite 200
Tallahassee, FL 32301
Carolyn Marek
Vice President of Regulatory Affairs
Southeast Region
Time Warner Communications
233 Bramerton Court
Franklin, TN 37069
Ms. Wanda Montano
US LEC of Florida, Inc.
6801 Morrison Blvd
Charlotte, NC 28211-3599.
Vicki Kaufman, Esq.
Joe McGlothlin, Esq.
McWhirter, Reeves, McGlothlin,
Davidson, Rief \& Bakas, P.A.
117 S. Gadsden Street
Tallahassee, FL. 32301
Patrick Wiggins
Charles Pellegrini
Katz, Kutter Law Firm
106 East College Avenue, $12^{\text {th }}$ Floor
Tallahassee, FL 32301
Richard D. Melson
Hopping Green Sams \& Smith, P.A.
P.O. Box 6526

Tallahassee, FL 32314
BlueStar Networks, Inc.
Norton Cutler/Michael Bressman 5 Corporate Centre
801 Crescent Centre Drive, Suite 600 Franklin, TN 37067

Mr. John Spilman
Broadslate Networks of Florida, Inc.
675 Peter Jefferson Parkway, Suite 310
Charlottesville, VA 22911
Ms. Catherine F. Boone
Covad Communications Company
10 Glenlake Parkway, Suite 650
Atlanta, GA 30328-34 $\overline{9} 5$
Florida Digital Network, Inc.
390 North Orange Avenue, Suite 2000
Orlando, Florida 32801
Mr. Don Sussman
Network Access Solutions Corporation
Three Dulles Tech Center
13650 Dulles Technology Drive
Herndon, VA 20171-4602
Rodney L. Joyce
Shook, Hardy \& Bacon LLP
$60014^{\text {th }}$ Street, NW, Suite 800
Washington, DC 20005-2004
Michael Sloan
Swidler \& Berlin
3000 K Street, NW \#300
Washington, DC 20007-5116
George S. Ford
Z-Tel Communications, Inc.
601 S. Harbour Island Blvd.
Tampa, FL 33602-5706
Lisa Korner Butler
Vice President Regulatory \& Industry Affairs
Network Plus, Inc.
41 Pacella Park Drive
Randolph, MA -2368
Andrew O. Isar
Miller Isar, Inc.
7901 Skansie Avenue, Suite 240
Gig Harbor, WA 98335

