Blanca Bayo，Director
Division of Records \＆Reporting
Public Service Commission
Capital Circle Office Center
2540 Shumard Oak Boulevard
Tallahassee，FL 32399－0850

Dear Ms Bayo：

Pursuant to the Florida Statute 186.801 ，enclosed please find 25 copies of JEA＇s 2002 Ten Year Site Plan．

If you have any questions，please contact me at（904）665－6216．

E1：II高 62 y期 20
y3lnzo honmadelo

03614 腊 29 哭

Ten Year Site Plan

Table of Contents

1.0 Introduction 1
2.0 Existing Facilities
2.1 Generation 2
2.2 Transmission 6
2.3 Demand Side Management 6
3.0 Fuel Price Forecast 9
4.0 Load and Energy Forecast 10
5.0 Facility Requirements
5.1 Unit Retirements 11
5.2 Combustion Turbines 11
5.3 Northside Units 1 and 2 12
5.4 Brandy Branch Combined Cycle Conversion 13
5.5 Future Resource Needs 13
5.6 Resource Plan 14
6.0 Project Status
6.1 Brandy Branch Combustion Turbines and Combined Cycle Conversion 16
6.2 Northside Units 1 and 2 Repowering 17
6.3 Other Environmental Considerations 19
7.0 Glossary 22

APPENDICES

A Load and Energy Forecast

B Ten Year Site Plan Schedules

Schedule 1 Existing Generation Facilities

Schedule 2.1 History and Forecast of Energy Consumption and Number of Customers by Class
Schedule 2.2 History and Forecast of Energy Consumption and Number of Customers by Class
Schedule 3 History and Forecast of Seasonal Peak Demand and Annual Net Energy for Load

Schedule 4	Previous Year Actual and Two-Year Forecast of Peak Demand and Net Energy for Load by Month
Schedule 5	Fuel Requirements
Schedule 6.1	Energy Sources - GWH
Schedule 6.2	Energy Sources - Percent
Schedule 7	Forecast of Capacity, Demand, and Scheduled Maintenance at Time of Peak
Schedule 8	Planned and Prospective Generating Facility Additions and Changes
Schedule 9	Status Report and Specifications of Proposed Generating Facilities Northside Units
	1\&2
Schedule 10.1	Status Report and Specifications of Proposed Directly Associated Transmission
	Lines - Brandy Branch CC (Commerce N - Duval)
Schedule 10.2	Status Report and Specifications of Proposed Directly Associated Transmission
	Lines - Northside (Center Park-Northside)
Schedule 10.2	Status Report and Specifications of Proposed Directly Associated Transmission
	Lines - Northside (New Center Park-Greenland)

List of Figures

2-1 System Transmission Map 8
5-1 Resource Needs After Committed Units 14
5-2 Reference Plan 15
6-1 View of Brandy Branch 20
6-2 View of Northside 21

1.0 Introduction

The objective of JEA's Ten-Year Site Plan is to develop an environmentally sound power supply strategy, which provides reliable electric service at the lowest practical cost. This report represents the 2002 Ten Year Site Plan for JEA covering a planning period from 2002 to 2011.

2.0 Existing Facilities

2.1 Generation

Electric System

JEA's electric service area covers all of Duval County and portions of Clay County and St. Johns County. JEA's service area covers approximately 900 square miles.

The generating capability of JEA's system currently consists of the Kennedy, Northside, and Brandy Branch generating stations, and joint ownership in St. Johns River Power Park and Scherer generating stations. The total net capability of JEA's generation system is 2,927 MW in the winter and 2,974 MW in the summer. Details of the existing facilities are displayed in TYSP Schedule 1.

JEA's transmission system consists of bulk power transmission facilities operating at 69 kV or higher. This includes all transmission lines and associated facilities where each transmission line ends at the substation's termination structure. JEA owns 634 circuitmiles of transmission lines at five voltage levels: $69 \mathrm{kV}, 115 \mathrm{kV}, 138 \mathrm{kV}, 230 \mathrm{kV}$, and 500 kV . JEA's transmission system includes a 230 kV loop surrounding JEA's service territory. The transmission system is shown in Figure 2-1. JEA is currently interconnected with Florida Power \& Light (FP\&L), Seminole Electric Cooperative (SECI), Florida Public Utilities (FPU) and the City of Jacksonville Beach. Interconnections with FP\&L are at 230 kV to the Sampson and Duval Substations. The interconnection to SECl is at 230 kV and 138 kV to FPU .

JEA and FP\&L jointly own two 500 kV transmission lines that are interconnected with Georgia Power Company. JEA, FP\&L, Florida Power Corporation (FPC) and the City of Tallahassee each own transmission interconnections with Georgia Power Company. JEA's ownership entitlement over these transmission lines is 1,228 out of 3,600 MW of import capability.

JEA's system is interconnected with the 500 kV transmission lines at FPL's Duval Substation.

Jointly Owned Generating Units

The St. Johns River Power Park (SJRPP) is jointly owned by JEA (80 percent) and FP\&L (20 percent). SJRPP consists of two nominal 638 MW bituminous coal fired units located north of the Northside Generating Station. Unit 1 began commercial operation in March of 1987 and Unit 2 followed in May of 1988. Both owners are entitled to 50 percent of the output of SJRPP. Since FP\&L's ownership is only 20 percent, the remaining 30 percent of capacity and energy output is reflected as a firm sale. The two units have operated efficiently since commercial operation. To reduce fuel costs and increase fuel diversity, a blend of petroleum coke and coal is currently being burned in the units.

JEA and FP\&L have purchased an undivided interest in Georgia Power Company's Robert W. Scherer Unit 4. Unit 4 is a coal-fired generating unit with a net output of 846 MW located in Monroe County, Georgia. JEA purchased 150 megawatts of Scherer Unit 4 in July 1991 and purchased an additional 50 megawatts on June 1, 1995. Georgia Power Company delivers the power from the unit to the jointly owned 500 kV transmission lines.

Power Purchases

Unit Power Sales (UPS)

Southern Company and JEA entered a unit power sales contract in which JEA purchases 200 MW of firm capacity and energy from specific Southern Company coal units through the year 2010. JEA has the unilateral option, upon three years notice, to cancel 150 MW of the UPS.

Enron Power Marketing, Inc.

In 1996, JEA contracted with Enron Power Marketing, Inc. ("Enron") for the purchase of 73 to 92 MW (which varied monthly) of firm capacity and energy through December 2002. In December 2001, Enron filed for protection from its creditors under Chapter 11 of the Federal Bankruptcy Code and is currently not delivering under this agreement. As such, Enron is in default of the contract. JEA will pursue legal actions for recovery of losses under this contract.

For winter 2002, TEA purchased energy on an "as-needed" basis to replace the energy that was to be delivered pursuant to the Enron purchase. JEA's reserve margin for
summer 2002 including the Enron purchase would be 382 MW or 15.5% after serving firm native load and firm sales agreements. Without the Enron purchase, JEA's reserve margin would be 290 MW or 12%. However, TEA on JEA's behalf is currently negotiating the terms and conditions of 75 MWs of replacement power to provide a 15% reserve margin for summer 2002.

The Energy Authority (TEA)

The Energy Authority (TEA), actively trades energy with a large number of counterparties throughout the southeastern states and is generally able to acquire capacity and energy from other market participants when any of TEA's members, including JEA, require additional resources.

TEA generally acquires the necessary short-term purchase prior to the season of need to ensure the best price and desired flexibility. TEA identifies a number of potential suppliers within Florida and Georgia. TEA has reserved firm transmission rights across the Georgia ITS to the Florida/Georgia border, therefore capacity from generating units located in Georgia should provide similar levels of reliability to capacity available within Florida. TEA, with input from JEA, selects the best offer. TEA then enters into a back to back power purchase agreement with the supplier and with the purchaser, JEA.

TEA's ability to acquire capacity and/or energy and TEA's firm transmission rights across the Georgia ITS gives JEA a degree of assurance that a plan which includes short-term unspecified purchases is viable. Over the past three years, TEA has purchased capacity and energy for JEA for five seasonal periods. Of these five seasons, approximately 65% of all the purchases were from out of state sources and approximately 35% from in state utilities.

JEA has entered into an agreement with TEA to purchase capacity to fill the 220 MW winter and 75 MW Summer 2002 needs. It is JEA's plan for TEA to fully fill all future short or long-term purchases needs.

Biomass Industries, Inc.

As part of JEA's Green Works initiative to supply 7.5 percent of its peak demand with renewable resources by 2015, JEA has contracted with Biomass Industries, Inc. (BII). JEA has purchased 70 MW peak and 35 MW off-peak of firm renewable energy from a
gasified biomass fueled electric generation plant proposed to be constructed by BII in South Florida. The proposed facility is to be fueled by an energy crop (bamboo and Egrass) to be grown by BII. The initial term of the purchase is for 15 years from the commercial operation date of the facility, and the parties, by mutual agreement, have the right to extend the initial term for two additional five-year periods, on terms to be agreed upon by the parties. The facility currently is scheduled to be in service in summer 2004. Under the contract, JEA will be obligated to take and pay for such energy as is produced by the facility, up to the limits stated above, at a fixed price stated in the contract (subject to periodic escalations). The facility is in the early stages of development.

Cogeneration

JEA has encouraged and continues to monitor opportunities for cogeneration. Cogeneration facilities reduce the demand from JEA's system and/or provide additional capacity to the system. JEA purchases power from four customer-owned qualifying facilities (QF's), as defined in the Public Utilities Regulatory Policy Act of 1978, having a total installed summer peak capacity of 17 MW and winter peak capacity of 19 MW . JEA purchases energy from these QF's on as-available (non-firm) basis.

The following JEA customers have Qualifying Facilities located within JEA's service territory.

Cogenerator Name	Unit Type	In-Service Date	Net Capability ${ }^{3}$ - MW Cummer	Winter
Anheiser Busch	COG ${ }^{1}$	Apr-88	8	
Baptist Hospital	COG	Oct-82	7	9
Ring Power Landfill	SPP 2	Apr-92	1	8
St Vincents Hospital	COG	Dec-91	$\frac{1}{2}$	1
			17	$\frac{1}{19}$
Notes:				
1 Cogenerator				
2 Small Power Producer				
3 Net generating capability, not net generation sold to the JEA				

Power Sales

JEA returned Kennedy Combustion Turbine Unit 4 (GT 4) to service from retirement status in March 1994. Concurrently, JEA is selling to SECI priority dispatch rights for one-seventh of the aggregate GT output capacity of JEA's older diesel fueled
combustion turbines, which include Kennedy Units 3, 4, and 5, and Northside Units 3, 4, 5, and 6. For planning purposes, JEA and SECI assume SECl's base committed capacity is 53 MW. Full entitlement sales began January 1, 1995 and were extended through May 21, 2004.

JEA also furnishes wholesale power to Florida Public Utilities Company (FPU) for resale in the City of Fernandina Beach in Nassau County, north of Jacksonville. JEA is contractually committed to supply FPU until 2007. Sales to FPU in 2001 totaled 453 GWh (3.67 percent of JEA's total system energy requirements).

2.2 Transmission

JEA continues to monitor and upgrade the bulk power transmission system as necessary to provide reliable electric service to its customers. JEA continually reviews needs and options for increasing the capability of the transmission system. JEA has set forth the following planning criteria for the transmission system:

- Plan to limit the loading of transmission lines and auto-transformers to provide safe and reliable transmission service under normal and single contingency conditions without undue expected loss of component life.
- Plan the transmission system to withstand single contingencies without loss of customer load.
- Plan the transmission system to operate within 5 percent of nominal voltage during normal and single contingency conditions.
- Plan the transmission system so that circuit breakers can interrupt the maximum available breaker fault current.
- Meet the Florida Reliability Coordinating Council's (FRCC) operation guidelines.

2.3 Demand Side Management

In 2000, JEA studied numerous DSM measures, evaluated the measures using the Commission approved Florida Integrated Resource Evaluator (FIRE) model and developed goals and a plan based upon these results. The Rate-Impact Measure or RIM test was used to determine the cost-effectiveness of the DSM alternatives appropriate for a municipal utility. Some investor-owned utilities in the state also use the RIM test to determine cost-effective DSM alternatives.

None of the alternatives tested were found to be cost-effective for JEA. The inability to find cost-effective DSM measures is primarily due to the low cost of new generation, high efficiency of new generation, low interest rates, low fuel price and low fuel price projections. On February 21, 2001, the PSC approved JEA's Plan for zero DSM goals for 2001-2010.

JEA agreed to continue several DSM programs, including the residential education seminars, residential energy audits, commercial educational programs, commercial energy audits, and community conservation initiatives. As promised, JEA continued these programs in 2001.

In addition, in 2001 JEA developed a solar reimbursement program to encourage the widespread application of renewable energy technology in its service territory. JEA implemented the solar reimbursement program in early 2002. Under the terms of the program, JEA reimburses customers for a portion of the installation cost of solar photovoltaic and solar hot water systems. JEA expects 50 customers to take advantage of the program in 2002 and expects demand reduction to total 3.25 MW by 2007. JEA will continue to monitor and evaluate this and other programs in order to determine the most cost-effective ways of encouraging customers to conserve energy.

Figure 2-1
JEA Transmission Map

3.0 Fuel Price Forecast

JEA's fuel price forecast is a major factor in the development of JEA's future resource plan. Due to JEA's fuel diversity, the forecast includes coal, natural gas, residual fuel oil, \#2 fuel oil, and petroleum coke. Sensitivity cases were considered based on high and low fuel price projections.

Specific price forecasts for St John's River Power Park (SJRPP) and Scherer Unit 4 were provided by SJRPP Fuels and Georgia Power respectively. Eastern and off-shore coals are the primary fuels burned at SJRPP. In addition, the SJRPP forecast is based on a 16 percent blend of petroleum coke and includes limestone and \#2 fuel oil components. Western coal is burned in Scherer Unit 4.

The fuel price forecast for JEA's natural gas supply takes into account commodity and transportation components. For natural gas, the transportation portion is based on JEA's purchase of $40,000 \mathrm{mmBtu} / \mathrm{day}$ of firm transportation on the Florida Gas Transmission Company (FGT) system under rate schedule FTS-1 and 14,000 $\mathrm{mmBtu} / \mathrm{day}$ under rate schedule FTS-2. The FTS-2 transport capacity begins with the completion of FGT's Phase V expansion, expected to be completed by April 2002. This expansion includes the looping of approximately 15 miles of FGT's Jacksonville Lateral beginning at Brooker, Florida. This looping was necessary to effectively support the new gas-fired combustion turbine units at the Brandy Branch Generating Station.

In 2001, TECO Peoples Gas completed construction of the Brandy Branch Lateral, approximately 18 miles of pipeline from the Jacksonville Lateral near Lawtey, Florida to Brandy Branch. In addition to the ability to transport natural gas through the FGT system, JEA receives $20,000 \mathrm{mmBtu} / \mathrm{day}$ of delivered gas volumes from El Paso Municipal (EPM). The EPM volume will increase to $61,000 \mathrm{mmBtu} /$ day in June 2004, coinciding with the completion of JEA's combined cycle conversion at Brandy Branch. The EPM volumes are currently supplied via the FGT system.

A blend of residual fuel oil and natural gas is burned in Northside Unit 3. The price forecast for residual fuel oil is based on the allowable sulfur level of 1.8 percent. Forecasts are also provided for high and low sulfur \#2 fuel oil. The 1970's-vintage combustion turbine units at Kennedy and Northside Generating Stations are permitted to burn high sulfur \#2 fuel oil. The new combustion turbine units at Brandy Branch and Kennedy are permitted to burn low sulfur \#2 fuel oil as a backup to natural gas. For
operational reasons, all Kennedy combustion turbine units currently burn low sulfur \#2 fuel oil.

As discussed in Section 6.2, JEA is in the process of completing the repowering of Northside Units 1 and 2. These units will run primarily on petroleum coke. Limestone is blended with the petroleum coke for SO_{2} removal. The price forecast for petroleum coke includes the limestone component and is based on a conservative estimate of the long term petroleum coke market.

4.0 Load and Energy Forecast

JEA's load and electrical characteristics have many similarities to other Peninsular Florida utilities. JEA's calendar year 2001 peak demand was 2,666 MW, occurring in January. The net energy for load (NEL) for 2001 was 12,322 GWH. Summer peak demand has increased at an compound annual rate of 3.1%, winter peak demand 4.4% and net energy for load 3.4\% over the period from 1991 through 2001.

The 2001 forecasts of electric power demand, energy consumption, and number of customers were prepared by JEA. These forecasts are based on trend analyses of historical electric load data for the JEA system. While impacts of retail wheeling and other results of deregulation on the loads served by JEA have not been explicitly forecasted, the high and low energy growth forecasts provide a range to bracket potential effects.

The electric power demand forecast is based on a trend analysis of historical data weather-normalized to typical ambient temperatures. Schedule 3 and 4 provides a summary of the basecase peak and energy forecasts for the Ten-Year Site Plan.

The energy consumption forecast represents a trend analysis of historical data for the aggregate customer base. Sales to ultimate customers by rate class were derived by multiplying the annual growth rate predicted for NEL to the actual 2001 sales for each rate class. Historical and forecast load factors were compared to check the reasonableness of the independently developed demand and energy forecasts. A detailed explanation of how the Load and Energy forecast is developed is included as Appendix A.

5.0 Facility Requirements

5.1 Unit Retirements and Shutdowns

The following JEA oil/gas steam units reached the end of their useful lifetime and were retired in the past year.

Unit	Commercial Operation Date		Change in Status	
Sate Retired				
Southside Unit 4	1958		Retirement	October 31, 2001
Southside Unit 5	1964	Retirement	October 31, 2001	

When retired, the units were in service for over 35 years. Retirement of these units allowed JEA the opportunity to replace the capacity with newer more efficient technology that will have lower emissions.

5.2 Combustion Turbines

JEA contracted with General Electric for the supply of four frame 7FA combustion turbines. One unit was installed at the Kennedy Generating Station, and began commercial operation in June 2000. The three additional units were installed on property owned by JEA at the Brandy Branch site near Baldwin, FL. The construction of the Brandy Branch units began in late 1999 with the completion of the first two units in May 2001 and the third unit in October 2001. Each simple cycle combustion turbine operates primarily on natural gas with \#2 distillate used as a backup fuel. The summer/winter output of each combustion turbine is $149,000 / 185,000 \mathrm{~kW}$, respectively, operating on natural gas and $159,000 / 191,000 \mathrm{~kW}$, respectively, operating on \#2 distillate.

Each new combustion turbine utilizes a dry low NOx combustion system to regulate the distribution of fuel delivered to a multi-nozzle, total premix combustor arrangement. The fuel flow distribution is calculated to maintain unit load and fuel split for optimal turbine emissions. In addition, when operating on \#2 distillate, demineralized water is injected into the combustion chamber to reduce the firing temperature, which reduces the formation of NOx. The ratio of the flowrate of demineralized water to \#2 distillate is approximately equal. The NOx emissions when operating on natural gas and \#2 distillate will be controlled to 10.5 and 42 ppm , respectively.

5.3 Northside Units 1 and 2

On May 21, 1997, JEA approved a plan to move forward with the repowering of Northside Units 1 and 2. The project involves the installation of new circulating fluidized bed (CFB) boilers, burning petroleum coke and coal. The project has been identified as a Clean Coal Project by the Department of Energy, which will contribute $\$ 73.07$ million to the repowering of Northside Unit 2. During the first two years of operation, Unit 2 will burn coal and petroleum coke. Various coals and various coal / petroleum coke blends will be demonstrated over the two-year period.

The repowering project will include the following items:

- 2-265 net MW CFB boilers
- Limestone unloading, storage and reclaim system
- Fuel unloading, storage, and reclaim system
- Ash handling and storage system
- Baghouses
- Chimney
- Polishing scrubbers
- By-product storage area
- Refurbishment of existing Balance of Plant equipment

The repowering project will result in a plant wide (steam units) 10 percent reduction of $\mathrm{NO}_{\mathrm{x}}, \mathrm{SO}_{2}$, and particulate emissions and a 10 percent reduction in groundwater use, while providing 265 MW of additional electric supply capacity.

Construction began on Northside Unit 2 on July 27, 1999. The unit generated the first megawatts on February 19, 2002. To date, the unit has sustained load of approximately 150 MW and is scheduled to be at full load by early May.

Upon achieving full-load operation, a 30 day reliability test is scheduled to commence in May and be completed in June. During the 30 day reliability test the unit will be dispatchable at Bulk Power Operations' request and will maintain a minimum 96% availability. The only requirement of the reliability test is that the unit must stay on line. Because of the high availability of Northside 2 beginning with the 30 day reliability test, JEA has included Northside Unit 2 capacity for the full summer peak period.

Unit 1 will undergo its 30 day reliability test during the months of June and July. Over the course of the summer months, JEA is anticipating unit 1 to generate significant amounts of energy. However, JEA is not including Northside Unit 1's capacity until Winter 2003.

5.4 Brandy Branch Combined Cycle Conversion

On February 28, 2001, the Florida Public Service Commission issued an Order Granting Petition For Determination of Need for the Brandy Branch Combined Cycle Conversion. On March 12, 2002, JEA's site certification was approved. JEA is awaiting the governor's signature and DEP to issue the permits for construction.

JEA is converting two of the Brandy Branch simple cycle units into a combined cycle unit. The Brandy Branch Plant was designed with future expansion in mind, namely adding the steam turbine unit to the site. This expansion will occur in the northwest quadrant of the current plant, adjacent to the existing combustion turbines.

The conversion is accomplished by adding two heat recovery steam generators (HRSGs) to two of the three existing combustion turbines, one steam turbine generator, and balance of plant equipment. One HRSG will be added to each of the two combustion turbines and the two HRSGs will share the steam turbine generator. This conversion will create a one-block 2×1 combined cycle and is currently scheduled for commercial operation June 2004. The ISO rating of the steam turbine addition is assumed to be 173 MW. The total capacity of the Brandy Branch power plant, including the remaining simple cycle unit and the combined cycle unit after the conversion, will be 683 MW.

5.5 Future Resource Needs

Based on the peak demand and energy forecasts, existing supply resources and contracts, and transmission considerations, JEA has evaluated future supply capacity needs for the electric system. Table 5-1 displays the likely need for capacity when assuming the base case load forecast for JEA's system for a ten-year period beginning in 2002.

Table 5-1 Resource Needs After Committed Units Forecast of Capacity and Demand at Time Of Peak Summer																		
Year	Installed Capacity MW	Firm Capacity		QF MW	Available Capacity MW	Firm PeakDemandMW	Reserve Margin Before Maintenance		Capacity Required For 15\% Reserves MW									
		import	Export															
		MW	MW				MW -	Percent										
2002	2,981	282	435	0	2,828	2,461	367	15\%	2									
2003	3,246	207	435	0	3,018	2,544	475	19\%	0									
2004	3,431	277	435	0	3,273	2,627	646	25\%	0									
2005	3.431	277	383	0	3,326	2,712	613	23\%	0									
2006	3,431	277	383	0	3,326	2,799	526	19\%	0									
2007	3,431	277	383	0	3,326	2,887	438	15\%	0									
2008	3.431	277	383	0	3,326	2.977	348	12\%	98									
2009	3,431	277	383	0	3,326	3,069	257	8\%	203									
2010	3,431	70	383	0	3,119	3,162	(43)	-1\%	517									
2011	3,431	70	383	0	3,119	3,257	(138)	-4\%	627									
Winter																		
	InstalledCapacityMW	Firm Capacity		$\begin{gathered} \text { QF } \\ \mathrm{MW} \\ \hline \end{gathered}$	Available Capacity MW	$\begin{gathered} \text { Firm Peak } \\ \text { Demand } \\ \text { MW } \\ \hline \end{gathered}$	Reserve Margin Before Maintenance		Capacity Required For 15\% Reserves MW									
		Import MW	$\begin{aligned} & \text { Export } \\ & \text { MW } \end{aligned}$															
Year							MW	Percent										
2002	2,928	427	445	0	2,910	2,596	314	12\%	75									
2003	3,458	207	445	0	3,220	2,684	536	20\%	0									
2004	3,076	207	445	0	2,838	2,774	64	2\%	352									
2005	3,648	277	383	0	3,543	2.865	677	24\%	0									
2006	3,648	277	383	0	3,543	2,958	584	20\%	0									
2007	3,648	277	383	0	3,543	3,052	490	16\%	0									
2008	3,648	277	383	0	3,543	3,149	394	13\%	78									
2009	3,648	277	383	0	3,543	3,247	296	9\%	191									
2010	3,648	277	383	0	3,543	3,346	196	6\%	306									
2011	3,648	70	383	0	3,336	3,448	(112)	-3\%	630									
Committed Units:																		
1. TEA Purchase 220 MW Winter / 75 MW Summer 2002. 2. Northside Unit 1 - Outage for Fuel Conversion started Fall, 2001 3. Northside Unit 2 - Summer, 2002 4. Northside Unit 1 - Fall, 2002																		

5.6 Resource Plan

The analysis of JEA's electric system to determine the current plan included a review of existing electric supply resources, forecasts of customer energy requirements and peak demands, forecasts of fuel prices and availability, and an analysis of alternatives for resources to meet future capacity and energy needs.

Forecasts of system peak demand growth and energy consumption were utilized for the resource plan. A range of demand growth and energy consumption was reviewed, with the base case peak demand indicating a need for additional capacity to meet system reserve requirements beginning in the year 2008. This need encompasses the inclusion of existing supply resources, transmission system considerations, the Northside Units 1 and 2 CFB repowerings, the Biomass Industries purchase and the Brandy Branch Combined Cycle conversion.

Capacity alternatives were modeled using EPRI's Electric Generation Expansion Analysis System (EGEAS), an optimal generation expansion model, to determine the least-cost expansion plan. The least-cost plan was based on the total present worth costs over a twenty year planning horizon. Several sensitivity analyses were performed to determine the impact on the least-cost plan.

In addition to cost considerations, environmental and land use considerations were factored into the resource plans. This ensured that the least-cost plans selected were socially and environmentally responsible and demonstrated JEA's total commitment to the community.

Based on modeling of the JEA system, forecast of demand and energy, forecast of fuel prices and availability, and environmental considerations, Table 5-2 presents the leastcost expansion plan which meets strategic goals. The expansion plan demonstrates strength with small variance in supply alternatives over the numerous sensitivities.

Table 5-2 Reference Plan		
Year	Season	Expansion Plan
2002	Winter	Purchase 220 MW
	Summer	Northside 2 CFB Repowering
	Summer	Purchase 75 MW
2003	Winter	Northside 1 CFB Repowering
2004	Winter	Purchase 350 MW
	Summer	Convert 2 Brandy Branch CTs to Combined Cycle (186 Additional MWs)
	Summer	Purchase 70 MW Biomass Industries
2005		
2006		
2007		
2008	Winter	Build 1-323 MW Greenfield Combined Cycle
2009		
2010	Winter	Build 1-250 MW Greenfield CFB
2011	Summer	Build 1-174 MW Greenfield GT

6.0 Project Status

6.1 Brandy Branch Combustion Turbines And Combined Cycle Conversion

Site Description

JEA's Brandy Branch Generating Station consists of three gas/oil fired simple cycle combustion turbine electric generating units. These combustion turbines are GE PG7241 (FA) units with a nominal rating of 173 MW ISO each. The combustion turbines are dual fuel capable and will be operated with natural gas as the primary fuel and distillate oil as the backup fuel. These units were delivered to the Brandy Branch site in late 1999 and early 2000. Construction began in late 1999. The construction of the Brandy Branch units began in late 1999 with the completion of the first two units in May 2001 and the third unit in October 2001. The Brandy Branch site is shown on Figure 6-1.

Water Supply

Service and fire water for use at the generating station is normally supplied from onsite wells. Potable water, construction water, and a backup supply for service water will be provided from the City of Baldwin.

The service water will be demineralized using rental filtration and demineralizer equipment to provide high quality water for NO_{x} water injection.

Land Use

The plant site near the City of Baldwin. Baldwin is west of Jacksonville on Highway 301 a short distance north of Interstate 10. The plant site is a short distance north of Highway 90 east of Baldwin. The generation area will consist of the plant buildings, structures, and equipment required for the power plant.

Environmental Features

The combustion turbines selected for this project are state-of-the-art machines capable of firing natural gas and distillate oil.

Emissions

The combustion turbines utilize a dry low NO_{x} combustion system to regulate the distribution of fuel delivered to a multi-nozzle, total premix combustion arrangement.

The fuel flow distribution is calculated to maintain unit load and fuel split for optimal combustion turbine emissions. In addition, when operating on distillate oil, demineralized water is injected into the combustion chamber to reduce the firing temperature, which reduces the formation of NO_{x}. The ratio of the flow rate of demineralized water to No. 2 oil is approximately equal. Selective catalytic reduction (SCR) will be utilized to reduce NO_{x} emissions for the combined cycle configuration.

Fuel Storage

Natural gas will be the primary fuel for the Brandy Branch plant, with No. 2 oil as a backup fuel. Natural gas will be delivered to the site by a pipeline. JEA currently purchases natural gas transportation from Florida Gas Transmission Company (FGT) under FTS-1. FGT operates the 16 -inch Jacksonville Lateral through the Brandy Branch area. No. 2 oil will be delivered by truck and stored in the No. 2 oil tank. It is estimated that sufficient distillate oil will be stored on-site for 48 hours of fired operation for each combustion turbine located at Brandy Branch.

Noise

Various sound reduction methods are being utilized for this project. The combustion turbine manufacturer has guaranteed noise limits of 85 dBA for near field and 65 dBA for far field.

Certification Status

The installation of simple cycle combustion turbines is not regulated by the Power Plant Siting Act. Individual permits will be obtained for these projects in accordance with regulations.

6.2 Northside Units 1 and 2 Repowering

Site Description

The Northside Unit 1 and 2 repowering is under construction at the existing Northside Generating Station located at 4377 Hecksher Drive in Jacksonville, Florida, just south of the St. Johns River Power Park. The Northside Generating Station consists of three steam turbine and four combustion turbine units. The steam generator (boiler) for Northside Unit 2 was dismantled 1994/95. The Northside site consists of 754 total acres, of which 204 acres are currently in use. Figure 6-2 presents the Northside site.

Water Supply

JEA has committed to reduce the 1996 groundwater usage rate of 630,000 gallons per day (gpd) by at least 10 percent as part of the Northside Unit 1 and 2 repowering project. The water conservation measures implemented in the last five years at the Northside facility have reduced demands on the Floridan aquifer at the site by nearly 50 percent from previous levels. To achieve the 10 percent reduction from the baseline 1996 usage levels, which has been established as one of JEA's community commitments, the repowered facility will implement reuse and recycling as well as other water conservation measures to meet the daily groundwater usage level of $570,000 \mathrm{gpd}$.

Land Use

The Northside Generating Station is an existing site located in an industrial area on the north side of Duval County. It is surrounded by heavy industrial (IH), light industrial (IL), and industrial business park (IBP) zonings to the west and north and is bordered by the St. Johns River Power Park on the north. The Blount Island industrial port is located to the south. The St. Johns River and several of its tributaries border the Northside Generating Station and ancillary facilities to the west, south and east.

Environmental Features

The circulating fluidized bed (CFB) units to be utilized for this project have inherently low emissions. A polishing scrubber will also be utilized to meet JEA's community commitment to reduce $\mathrm{SO}_{x} 10$ percent from 1994/1995 baseline levels for the Northside steam units. The CFB units produce low nitrogen oxides $\left(\mathrm{NO}_{x}\right)$ due to relatively low combustion temperatures (approx. $1650^{\circ} \mathrm{F}$). In addition, selective non-catalytic reduction (SNCR) will be used to further reduce NO_{x} emissions in order to fulfill JEA's community commitment to reduce NO_{x} emissions by 10 percent from 1994/1995 levels for the steam units at Northside. Particulates will be controlled by fabric filters.

Emissions

The permitted emission rates for these units were determined by a Best Available Control Technology requirements (BACT) analysis. In addition, JEA has a community commitment to reduce annual emissions of $\mathrm{SO}_{\mathrm{x}}, \mathrm{NO}_{\mathrm{x}}$, and particulate matter (PM) by 10 percent for the steam units at Northside from the historical 1994/95 baseline. The community commitment was voluntarily included as a permit specific condition.

Fuel Storage

Coal and petroleum coke fuels for the repowered facility will utilize on-site covered storage. BACT for control of fugitive particulate emissions will be utilized and additional controls such as paving of existing dirt roads and planting of additional vegetation will be considered.

Noise

Because this is an existing site, noise levels are not expected to increase significantly due to the repowering project.

Certification Status

Since the Northside Units 1 and 2 repowering project will not increase output of the steam turbines, the project is not required to be licensed under the Power Plant Siting Act.

6.3 Other Environmental Considerations

Environmental Programs

JEA participates in the American Public Power Association's (APPA) nationwide Tree Power program. In addition, 400,000 trees have been planted through the JEA Future Tree and Free Tree programs.

JEA also participates in the Department of Energy (DOE) voluntary CO_{2} reporting program. Projects receiving CO_{2} reduction credits annually include the above mentioned programs as well as gas conversion projects at all three existing stations, landfill-gas utilization projects, free residential and non-residential energy audits, free new home construction workshops, heat rate improvements, and power factor improvements.

Figure 6-1
The Brandy Branch Site

Figure 6-2
Northside Site

7.0 Glossary

7.1 List of Abbreviations

Type of Generation Units

CC Combined Cycle
CT Combined Cycle - Combustion Turbine Portion
CW Combined Cycle - Steam Turbine Portion, Waste Heat Boiler (only)
GT Combustion Turbine
FC Fluidized Bed Combustion
IC Internal Combustion
ST Steam Turbine, Boiler, Non-Nuclear

Status of Generation Units

FC Existing generator planned for conversion to another fuel or energy source
M Generating unit put in deactivated shutdown status
P Planned, not under construction
RT Existing generator scheduled to be retired
RP Proposed for repowering or life extension
TS Construction complete, not yet in commercial operation
U Under construction, less than 50% complete
V Under construction, more than 50\% complete

Types of Fuel

BIT Bituminous Coal
FO2 No. 2 Fuel Oil
FO6 No. 6 Fuel Oil
MTE Methane
NG Natural Gas
SUB Sub-bituminous Coal
PC Petroleum Coke

Fuel Transportation Methods

PL Pipeline
RR Railroad
TK Truck
WA Water

2002 Ten Year Site Plan
Appendix A

Appendix A

Load and Energy Forecast

Forecasting Methods, Assumptions, and Data Sources

Introduction

JEA's 2002 Ten Year Site Plan (TYSP) is based on the results of JEA's 2001 Energy Production and Peak Demand Forecast. JEA's Energy Production Forecast is presented in TYSP forms 2.1, 2.2, 3.0, and 4.0. JEA's Peak Demand forecast is presented in TYSP forms 3.0 and 4.0. The following table summarizes the results of the forecast on a weather-normalized basis.

2002 Forecast Growth Rates

	Net Energy for Load
Years	$\triangle G W H$

Winter Peak Demand	
$\triangle M W$	CAGR

Summer Peak Demand	
$\triangle M W$	CAGR

Last 15	333	3.5%
Last 10	354	3.4%
Last 5	344	3.1%

79	4.0%
88	4.1%
91	3.8%

63	3.2%
68	3.2%
71	3.1%

Next 5	471	3.6%
Next 10	472	3.3%
Next 15	489	3.2%
Next 20	512	3.1%

92	3.2%
98	3.2%
103	3.1%
110	3.1%

92	3.4%
95	3.3%
99	3.1%
104	3.1%

Forecast Assumptions and Methodology

Energy Production, Sales, and Number of Customers (Forms 3.0 and 4.0)

The energy forecast represents a trend analysis of JEA's historical energy production excluding production for off-system sales. This is commonly referred to as Net Energy for Load, or NEL. For the purpose of calculating NEL, JEA assumes a loss factor of 3% for off-system sales. Monthly NEL projections are proportional to the historical average share of annual NEL for each month.

The methodology for the trend analysis of historical energy production splits the difference between a constant growth of 410 GWH per year and a
 constant growth rate of 3.4% per year, starting with a base of 11,944 GWH in fiscal year 2000. The forecast for fiscal year 2001 was adjusted for first quarter actual data. This methodology results in a
forecast of energy production that grows at an increasing number of GWH per year but grows at a decreasing growth rate (percentage) each year.

JEA uses an average loss rate of approximately 4% to convert its forecast of total energy production to total sales. Total sales represents the amount of electricity used by customers as measured at their meter. Sales are allocated to individual customer classes according to their historical share of the total. The number of customers is assumed to increase at a rate of 2% per year.

Winter and Summer Peak Demands and Non-Firm Load (Forms 3.0 and 4.0)

The winter and summer peak demand forecasts represents trend analyses of JEA's weather-normalized historical seasonal peak demands. The weather normalization methodology is presented in the next section. Monthly peak demand projections are proportional to the historical average share of seasonal peak demand for each month.

The methodology for the trend analysis of weather-normalized historical winter peak demands splits the difference between a constant growth of 91 MW per year and a constant growth rate of 3.4% per year, starting with a base of $2,655 \mathrm{MW}$ in 2001. The summer methodology splits the difference between a constant growth of 84 MW per year and a constant growth rate of 3.4% per year, starting with a base of 2,450 MW in 2000. This methodology results in forecasts of peak demand that grow at an increasing number of
 MW per year but grow at a decreasing growth rate (percentage) each year.

JEA adjusts historical peak demands to account for the amount of load that was not served to certain non-firm customers as a result of voluntary cutbacks by these customers during high load periods. The non-firm customers included in the analysis
were those customers who elected the rate option that offers a lower rate during most hours of the year, but a higher rate during high load periods. JEA's analysis of their load patterns shows that although these customers voluntarily reduced their load in response to high price signals during the first 18 months of the program, they are no longer doing so. Total non-firm load is assumed to grow at 3% per year over the forecast horizon.

Weather Normalization of Seasonal Peak Demands

JEA normalizes its winter peak demand to a daily low temperature of $23^{\circ} \mathrm{F}$ and its summer peak demand to a daily high temperature of $98^{\circ} \mathrm{F}$. These are based on more than 50 years of historical weather data for Jacksonville.

The normalization procedure is a seasonal model that relates daily peak demand to daily minimum temperature in the winter and daily peak demand to daily maximum temperature in the summer. The difference between the model's value at the temperature that actually occurred on the peak day and the model's value at typical temperature is the weather adjustment.

Forecast Accuracy

JEA tracks two indicators of forecast accuracy. The first shows forecast accuracy in the first year of the forecast and the other shows forecast accuracy in the first five years of the forecast. Both indicators compare forecasted NEL to historical NEL for the energy model and weather-normalized historical peak demand to forecasted peak demand for the peak demand models. The following chart demonstrates the first-year accuracy of last 10 JEA forecasts.

Forecast Year
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999

Total NEL - First 12		Months
Forecasted	Actual	Error
8,592	8,649	-0.7%
9,034	8,789	2.8%
9,212	8,979	2.6%
8,989	9,452	-4.9%
9,515	9,619	-1.1%
9,961	10,540	-5.5%
10,492	10,433	0.6%
10,954	10,731	2.1%
11,436	11,542	-0.9%
11,747	11,782	-0.3%

Winter Peak Demand		
Forecasted	Normal	Error
1,753	2,052	-14.6%
1,846	1,790	3.1%
1,876	1,916	-2.1%
1,880	1,905	-1.3%
1,930	2,073	-6.9%
2,087	2,211	-5.6%
2,307	2,187	5.5%
2,335	2,411	-3.2%
2,420	2,373	2.0%
2,566	2,544	0.9%

Forecast	Summer Peak Demand		
Year	Forecasted	Normal	Error
1990	1,746	1,756	-0.6%
1991	1,850	1,835	0.8%
1992	1,876	1,905	-1.5%
1993	1,880	1,979	-5.0%
1994	1,990	1,997	-0.4%
1995	2,047	2,112	-3.1%
1996	2,138	2,162	-1.1%
1997	2,226	2,253	-1.2%
1998	2,318	2,319	0.0%
1999	2,395	2,365	1.3%

First-Year Forecast Accuracy

As the chart indicates, first-year forecast accuracy has improved significantly since JEA began using the current trend analysis in 1996. In addition, the last two forecasts have been very accurate.

The five-year accuracy of the forecasts produced by the current trend analysis has also improved. The chart to the right illustrates this point. It compares the first five values from each of the last 10 forecasts with the weathernormalized winter peak demands since 1990. As the chart indicates, five-year forecast accuracy has improved significantly since JEA began
 using the current trend analysis in 1996. Based on the results of both the one-year and five-year accuracy indicators, JEA is confident that the 2001 forecast that was developed using its trending method fully meets its capacity planning needs.

Data Sources

JEA obtains most of its data from internal sources. These sources include the Energy Management System for hourly load data, financial reports for monthly off-system sales and total energy generated and purchased, the MV-90 metering and translation system

IEA

2002 Ten Year Site Plan
for hourly non-firm customer loads, and the billing system for customer class sales totals and number of customers. The National Oceanographic and Atmospheric Administration provides JEA's weather data.

Energy Production Forecast

JEA used the following data to produce its forecast of energy production.

Energy Data

Year		kWhGenerated\& Purchased	Interchange		Production For Sales kWh
	Q		Sales kWh	Losses (3\%)	
1980	1	1,448,746,250	45,475,000	1,364,250	1,401,907,000
1980	2	1,414,608,320	10,307,000	309,210	1,403,992,110
1980	3	1,909,253,948	36,300,000	1,089,000	1,871,864,948
1980	4	1,393,032,674	22,919,000	687.570	1,369,426,104
1981	1	1,453,707,112	23,166,000	694,980	1,429,846,132
1981	2	1,570,512,032	80,612,000	2,418,360	1,487,481,672
1981	3	1,810,397,496	45,901,000	1,377,030	1,763,119,466
1981	4	1,456,272,041	52,597,951	1,577,939	1,402,096,151
1982	1	1,417,373,658	48,107,260	1,443,218	1,367,823,180
1982	2	1,619,162,568	100,482,364	3,014,471	1,515,665,733
1982	3	1,811,489,722	20,339,432	610,183	1,790,540,107
1982	4	1,398,941,445	1,676,537	50,296	1,397,214,612
1983	1	1,484,208,872	(475.670)	(14,270)	1,484,698,812
1983	2	1,479,413,370	6,577,370	197,321	1,472,638,679
1983	3	1,950,641,578	16,327,578	489,827	1,933,824,173
1983	4	1,460,251,000	4,066,000	121,980	1,456,063,020
1984	1	1,524,846,284	2,954,000	88,620	1,524,803,664
1984	2	1,567,335,989	161,000	4.830	1,567,170,159
1984	3	1,848,601,759	334,000	10,020	1,848,257,739
1984	4	1,515,931,592	143,000	4,290	1,515,784,302

Year		kWhGenerated\& Purchased	interchange		Production For Sales kWh
	Q		Sales kWh	$\begin{gathered} \hline \text { Losses } \\ (3 \%) \\ \hline \end{gathered}$	
1985	1	1,621,098,898	1,573,000	47,190	1,619,478,708
1985	2	1,724,547,544	8,837,000	265,110	1,715,445,434
1985	3	2,020,770,702	53,778,000	1,613,340	1,965,379,362
1985	4	1,710,076,471	15,950,000	478,500	1,693,647,971
1986	1	1,618,535,709	2,977,000	89,310	1,615,469,399
1986	2	1,780,697,254	5,697,000	170,910	1,774,829,344
1986	3	2,245,444,468	11,464,000	343,920	2,233,636,548
1986	4	1,725,351,649	12,958,000	388,740	1,712,004,909
1987	1	1,768,906,087	28,573,000	857,190	1,739,475,897
1987	2	1,952,907,347	65,366,000	1,960,980	1,885,580,367
1987	3	2,416,812,010	45,135,000	1,354,050	2,370,322,960
1987	4	1,763,532,241	34,168,000	1,025,040	1,728,339,201
1988	1	1,934,258,068	3,821,000	114,630	1,930,322,438
1988	2	1,930,664,259	44,058,000	1,321,740	1,885,284,519
1988	3	2,610,031,553	212,972,000	6,389,160	2,390,670,393
1988	4	1,897,425,651	46,941,000	1,408,230	1,849,076,421
1989	1	1,949,557,756	126,045,000	3,781,350	1,819,731,406
1989	2	2,228,557,771	143,254,000	4,297,620	2,081,006,151
1989	3	2,548,387,124	82,697,000	2,480,910	2,463,209,214
1989	4	2,136,076,250	44,204,000	1,326,120	2,090,546,130

Energy Data (continued)

		kWh Generated \& Purchased	Interchange		Production For Sales kWh	
		Sales kWh	$\begin{gathered} \hline \text { Losses } \\ (3 \%) \end{gathered}$			
1990	1		1,836,709,941	49,225,000	1,476.750	1,786,008,191
1990	2	2,259,651,793	89,477,000	2,684,310	2,167,490,483	
1990	3	2,777,607,278	178,194,000	5,345,820	2,594,067,458	
1990	4	2,117,997,263	133,642,000	4,009,260	1,980,346,003	
1991	1	1,976,926,842	52,085,000	1,562,550	1,923,279,292	
1991	2	2,426,343,035	148,090,000	4,442,700	2,273,810,335	
1991	3	2,655,317,742	54,178,000	1,625,340	2,599,514,402	
1991	4	2,095,626,893	65,365,000	1,960,950	2,028,300,943	
1992		2,098,801,347	40,364,000	1,210,920	2,057,226,427	
1992	2	2,255,781,420	58,000,000	1,740,000	2,196,041,420	
1992	3	2,757,111,613	64,937,000	1,948,110	2,690,226,503	
1992	4	2,102,964,980	23,186,000	695,580	2,079,083,400	
1993	1	2,152,830,904	33,691,000	1,010,730	2,118,129,174	
1993	2	2,363,924,675	39,433,000	1,182,990	2,323,308,685	
1993	3	3,026,930,856	98,658,000	2,959,740	2,925,313,116	
1993	4	2,287,311,897	50,097,000	1,502,910	2,235,711,987	
1994	1	2,217,864,654	21,352,000	640,560	2,195,872,094	
1994	2	2,519,733,341	102,762,000	3,082,860	2,413,888,481	
1994	3	2,802,727,752	34,009,000	1,020,270	2,767,698,482	
1994	4	2,305,898,385	81,410,000	2,442,300	2,222,046,085	
1995	1	2,323,123,544	19,597,000	587,910	2,302,938,634	
1995	2	2,633,827,850	71,404,000	2,142,120	2,560,281,730	
1995	3	3,123,978,522	124,303,000	3,729,090	2,995,946,432	
1995	4	2,525,836,423	65,383.000	1,961.490	2,458,491,933	

		kWhGenerated\& Purchased	Interchange		$\begin{gathered} \hline \text { Production } \\ \text { For Sales } \\ \mathrm{kWm} \\ \hline \end{gathered}$	
		Sales kWh	$\begin{gathered} \text { Losses } \\ (3 \%) \end{gathered}$			
1996	1		2,552,210,682	52,569,000	1,577,070	2,498,064,612
1996	2	2,665,523,990	74,777,000	2,243,310	2,588,503,680	
1996	3	3,112,452,020	62,494,800	1,874,844	3,048,082,376	
1996	4	2,396,929,382	24,900,000	747,000	2,371,282,382	
1997	1	2,407,180,492	26,016,000	780,480	2,380,384,012	
1997	2	2,599,082,445	32,359,000	970,770	2,565,752,675	
1997	3	3,279,181,420	109,961,000	3,298,830	3,165,921,590	
1997	4	2,610,435,516	62,044,000	1,861,320	2,546,530,196	
1998	1	2,468,195,018	21,967,000	659,010	2,445,569,008	
1998	2	3,156,280,268	113,968,000	3,419,040	3,038,893,228	
1998	3	3,564,901,841	200,482,000	6,014,460	3,358,405,381	
1998	4	2,691,420,432	74,432,000	2,232,960	2,614,755,472	
1999	1	2,694,951,187	120,740,000	3,622,200	2,570,588,987	
1999	2	3,130,988,587	193,178,000	5,795,340	2,932,015,247	
1999	3	3,696,885,085	143,924,000	4,317,720	3,548,643,365	
999	4	2,729,120,394	12,032,000	360,960	2,716,727,434	
2000	1	2,715,191,386	18,401,000	552,030	2,696,238,356	
2000	2	3,096,331,467	78,883,000	2,366,490	3,015,081,977	
2000	3	3,585, 141,801	67,194,000	2.015,820	3,515,931,981	
2000	4	2,975,041.240	11,722.000	351,660	2,962,967,580	

Peak Demand Forecast
 JEA used the following data to produce its forecast of seasonal peak demand.

Winter Peak Demand Data

DATE	Hr	MW	MinT
$11 / 16 / 79$	8	830	35
$11 / 30 / 79$	8	950	28
$12 / 4 / 79$	9	963	34
$12 / 5 / 79$	9	898	34
$12 / 18 / 9$	8	976	33
$12 / 19 / 9$	8	955	32
$12 / 2079$	9	922	34
$12 / 27 / 79$	10	813	34
$12 / 2879$	10	839	38
$1 / 2 / 80$	9	955	34
$1 / 3 / 80$	8	988	30
$1 / 7 / 80$	8	998	29
$1 / 8 / 80$	8	848	44
$1 / 14 / 80$	9	922	46
$1 / 15 / 80$	8	839	42
$1 / 16 / 80$	8	819	42
$1 / 17 / 80$	8	785	48
$1 / 21 / 80$	8	822	38
$1 / 24 / 80$	8	952	31
$1 / 25 / 80$	9	848	41
$1 / 29 / 80$	8	869	37
$1 / 3080$	8	817	39
$2 / 4 / 80$	7	1,085	25
$2 / 6 / 80$	8	942	33
$2 / 780$	7	1,019	34
$2 / 8 / 80$	8	1,012	31
$2 / 11 / 80$	8	918	35
$2 / 12 / 80$	8	941	35
$2 / 14 / 80$	7	805	45
$2 / 15 / 80$	8	782	47
$2 / 19 / 80$	8	824	43
$2 / 20 / 80$	8	815	41
$2127 / 80$	8	1,018	29
$2 / 28 / 80$	8	848	38
$3 / 3 / 80$	8	1,143	23

DATE	Hr	MW	MinT
$3 / 4 / 80$	7	1,110	24
$3 / 5 / 80$	9	778	42
$11 / / / 80$	8	783	41
$12 / 1 / 80$	8	845	36
$12 / 4 / 80$	8	834	43
$12 / 5 / 80$	8	737	45
$12 / 8 / 80$	8	798	42
$12 / 12 / 80$	8	877	36
$12 / 15 / 80$	9	837	38
$12 / 17 / 80$	8	901	39
$12 / 18 / 80$	9	949	31
$12 / 19 / 80$	9	931	33
$12 / 29 / 80$	10	954	45
$12 / 30 / 80$	9	868	40
$12 / 31 / 80$	9	865	40
$1 / 2 / 81$	10	1,051	32
$1 / 6 / 81$	9	1,076	30
$1 / 8 / 81$	9	1,062	26
$1 / 1 / 81$	9	1,043	30
$1 / 13 / 81$	8	1,200	13
$1 / 14 / 81$	8	1,174	28
$1 / 15 / 81$	8	894	41
$1 / 16 / 81$	10	928	35
$1 / 19 / 81$	8	1,068	25
$1 / 23 / 81$	8	990	39
$1 / 26 / 81$	8	939	30
$1 / 27 / 81$	9	899	37
$1 / 29 / 81$	8	957	30
$1 / 30 / 81$	8	1,006	28
$2 / 4 / 81$	8	1,089	23
$2 / 5 / 81$	8	1,051	27
$2 / 6 / 81$	11	972	33
$2 / 9 / 81$	9	867	31
$2 / 10 / 81$	7	777	39
$2 / 25 / 81$	9	810	35

DATE	Hr	MW	MinT
$2 / 23 / 82$	7	863	35
$2 / 24 / 82$	8	785	43
$3 / 282$	8	913	38
$3 / 3 / 82$	8	824	39
$3 / 8 / 82$	7	922	34
$3 / 9 / 82$	8	916	36
$3 / 10 / 82$	8	766	46
$3 / 11 / 82$	9	778	47
$3 / 26 / 82$	11	690	45
$12 / 14 / 82$	8	985	35
$12 / 20 / 82$	10	925	33
$12 / 21 / 82$	9	915	33
$12 / 22 / 82$	9	984	28
$12 / 23 / 82$	9	879	35
$1 / 7 / 83$	10	931	33
$1 / 13 / 83$	8	1,159	26
$1 / 14 / 83$	9	1,150	26
$1 / 1783$	8	1,150	25
$1 / 20 / 83$	10	887	44
$1 / 24 / 83$	8	997	34
$1 / 25 / 83$	8	1,009	35
$11 / 26 / 83$	8	1,058	32
$1 / 28 / 83$	9	938	39
$1 / 31 / 83$	9	807	45
$2 / 1 / 83$	8	797	46
$2 / 4 / 83$	8	1,049	31
$2 / 8 / 83$	8	1,075	27
$2 / 9 / 83$	8	1,107	28
$2 / 10 / 83$	8	919	37
$2 / 14 / 83$	10	1,038	37
$2 / 15 / 83$	8	1,017	34
$2 / 17 / 83$	8	807	47
$2 / 18 / 83$	8	899	40
$2 / 24 / 83$	8	796	43
$2 / 25 / 83$	9	742	46

Winter Peak Demand Data (Continued)

DATE	Hr	MW	MinT												
3/2/83	8	829	43	1/25/85	8	978	43	2/2/87	8	913	49	12/21/88	8	1,033	48
3/11/83	8	999	35	1/28/85	8	1,004	38	2/3/87	8	985	47	12/22/88	8	976	48
3/14/83	8	872	37	1/30/85	8	1,092	31	2/9/87	8	t,197	32	1/5/89	8	1.340	32
3/22/83	8	861	36	2/5/85	8	913	47	2/10/87	8	1,368	29	1/17/89	. 8	1,041	40
3/23/83	8	907	34	2/8/85	8	1,098	29	2/11/87	8	1,333	30	1/18/89	8	1,106	40
3/25/83	8	909	36	2/11/85	8	965	41	2/12/87	8	1,153	40	1/19/89	8	1,124	37
3/29/83	8	803	38	2/13/85	8	1,258	31	2/13/87	8	981	43	1/20/89	8	974	49
3/30/83	8	833	38	2/14/85	8	1,226	30	2/18/87	8	1.032	47	1/23/89	8	1,198	44
11/14/83	9	821	40	2/15/85	8	1,042	31	2/19/87	8	1,084	41	1/24/89	8	1,167	40
11/17/83	8	901	33	2/18/85	8	951	35	2/24/87	8	1,035	45	1/25/89	8	1,191	36
11/18/83	8	948	32	2/19/85	8	956	43	2/27/87	8	963	49	1/26/89	8	1,055	45
11/22/83	8	785	43	2/21/85	8	886	49	3/3/87	8	1,042	40	219/89	8	1,170	35
11/30/83	9	836	36	2/22/85	8	860	47	3/4/87	8	938	40	2/10/89	8	1,404	29
12/1/83	8	862	40	3/18/85	8	910	37	3/5/87	8	1.046	37	2/13/89	8	1,155	37
12/2/83	8	795	46	3/19/85	7	1,061	32	3/6/87	8	1,000	47	2/24/89	7	1,657	27
12/8/83	8	957	32	3/20/85	8	937	38	3/13/87	8	1,156	35	3/10/89	8	1,421	35
12/9/83	8	989	33	+1/6/85	7	896	44	3/16/87	8	932	46	11/17/89	8	1,214	37
12/14/83	8	833	47	11/7/85	8	848	46	11/12/87	8	1,121	33	11/20/89	8	1,204	38
12/16/83	8	947	38	12/4/85	8	947	42	11/13/87	8	1,249	31	11/22/89	8	990	47
12/22/83	9	867	43	12/9/85	8	890	44	11/23/87	8	1.011	45	11/24/89	9	1,036	37
12/26/83	10	1,205	13	12/16/85	8	1,205	30	1211/87	8	1,065	39	11/30/89	-	1,201	35
12/27/83	9	1,072	24	12/17/85		1,162	32	12/2/87	8	1,162	34	12/1/89	8	1,278	35
1/2/84	10	977	33	12/18/85	8	1,121	36	12/3/87	8	1,222	33	12/4/89	8	1,536	27
1/3/84	8	1,047	30	12/20/85	8	1,143	34	12П/87	8	1,007	49	125/89	8	1,430	33
1/4/84	8	1,110	30	12/23/85	9	1,133	34	12/17/87	8	1,370	29	12/6/89	8	1,218	38
1/5/84	7	1,012	33	12/26/85	10	1,411	20	12/18/87	8	1,387	28	127/89	8	1,089	47
1/6	8	1,036	34	12/27/85		1,298	27	12/23/87	,	969	43	12/11/89	8	1,419	33
1/9/84	8	1,005	34	12/30/85	9	1.097	32	12/30/87	9	1,229	31	12/12/89	8	1,289	38
1/23/84	9	979	45	12/31/85	9	1,156	29	1/26/88	7	1,391	31	12/14/89	8	1,543	29
1/30/84	8	935	37	1/6/86	d	1,204	30	1/27/88	7	1.504	26	12/15/89	8	1,553	30
211/84	8	1,123	30	1/13/86	8	1,097	35	1/28/88	8	1,633	25	12/21/89	10	1,308	38
2/2/84	8	1,063	31	1/14/86	8	1,253	29	1/29/88	7	1,473	28	12/26/89	9	1,628	29
2/3/84	8	861	45	1/15/86	8.	1,125	36	2/8/88	7	1,178	40	12/27/89	9	1,567	29
26/84	9	1,039	31	1/16	8	1,027	42	2/9/88	7	1,224	39	12/28/89	9	1,242	38
27/84	7	1,233	25	1/17/86	8	910	47	2/10/88	7	1,205	38	12/29/89	9	1,342	35
2/8/84	8	1,154	25	1/20/86	9	971	40	2/16/88	7	1,299	36	1/2/90	8	1,319	35
2/9/84	8	1,069	33	1/21/86	-	1,080	37	2/17/88	8	1,389	30	1/4/90	8	1,072	47
2/10/84	8	909	38	1/22	8	1,056	38	2/22/88	7	1,336	33	1/10/90	8	1,147	46
2/15/84	8	829	42	1/23/86	8	900	48	2/23/88	7	1,153	40	1/11/90	8	1,217	40
2/16/84	8	816	46	1/28/86	8	1,640	16	2/24/88	7	999	44	1/12/90	8	1,049	43
2/17/84	8	828	46	1/29	8	1,367	29	2/25/88		1,214	33	1/15/90	9	1,186	37
2/29/8	7	1,115	34	1/31/86	8	1,175	32	2/26/88	7	1,259	34	1/16/90	-	1,114	45
3/1/84	7	1,149	29	2/3/86		943	44	2/29/88	7	1,212	34	1/17/90		1,056	45
3/2/84	8	1,136	31	2/4/86	8	875	49	3/2/88	7	1,028	40	1/19/90	8	952	49
3/8/84	8	952	37	$2 / 12$	8	1,054	34	$37 / 88$	7	974	46	1/23/90	8	1,288	34
3/9/84	8	883	40	2/13/86	8	1,166	32	3/8/88	8	966	47	1/24/90	8	1,126	43
3/12/84	8	833	40	2/14/86	8	1,261	30	3/11/88	,	1,030	41	1/29/90	8	1,027	48
3/22/84	8	756	43	2/24/86	8	837	46	3/15/88	8	1,223	34	2/6/90	8	1,102	42
3/30	9	765	41	2/26/86	8	1,045	34	3/16/88	8	1,302	30	2/12/90	8	1,108	43
11/9/84	8	845	46	3/3/86	8	1,035	40	3/17/88	8	1,290	32	2/13/90	8	1,151	40
11/13/84	8	977	34	3/5/86	8	1,010	38	3/18/88	8	1,068	40	2/26/90	8	1,204	37
11/14/84	8	1,033	31	3/6/8		1,086	38	3/21/88	8	1,071	42	2/27/90		1,125	43
11/15/84	8	929	39	3/7/86	8	1,040	37	11/8/88	7	1,000	41	2/23/90	8	1,011	49
11/16/84	8	830	46	3/24/86	8	990	36	11/24/88	11	871	49	3/1/90	8	1,007	47
11/23/84	10	95	40	12/4/86	8	1,040	40	11/29/88	8	1,205	35	3/5/90	-	1,023	44
11/29/84	8	976	35	12/5/86		1,041	44	12/2/88	7	1,304	34	3/9/90	8	970	49
11/30/84	8	1,066	31	12/19/88	8	931	47	12/5/88	7	1,131	38	3/21/90	8	1,167	36
12/7/84	8	1,226	26	12/22/86	11	1,015	44	12/6/88	7	1,235	33	3/22/90	8	1,122	38
12/10/84	8	1.004	36	12/30/86	11	1,033	44	12/8/88	8	1,060	45	3/23/90	8	955	46
12/13/84	8	868	47	12/31/86	10	985	43	12/13/88	7	1,526	27	11/19/90	8	1,171	36
1/7/85	8	1.102	31	1/2/87	10	1.101	34	12/14/88	7	1.488	31	11/20/90		1,187	38
1/8/85	8	974	36	1/5/87	8	1,132	41	12/15/88	7	1,221	37	11/21/90		f,123	42
1/9/85	8	1.063	30	1/6/87	8	1.145	38	12/19/88	8	1,542	24	11/30/90		1.157	40
1/10/85	8	887	40	1/787		1,107	40	12/20/88	8	1,344	31	1215/90	8	1,400	29
1/11/85	8	851	44	1/8/87	8	1,004	43	12/31/87	9	1,051	38	12/6/90	8	1,365	33
1/14/85	8	1,079	34	1/9/87		1,022	41	1/5/88	8	1,345	30	1277190	8	1.142	44
1/15/85	8	1,111	31	1/12/87	,	1.367	31	1/6/88	8	1,400	31	12/10/90	8	1,473	32
1/16/85	8	1,201	27	1/13/87	-	1,216	38	1/8/88	8	1,308	35.	12/11/90	8	1,352	35
1/17/85	8	880	42	1/14/87	8	1,197	34	1/11/88	8	1.324	33	12/12/90	8	1,302	41
1/21/85	8	1,586		1/23/87	8	1,371	29	1/12/88	8	1,482	29	12/13/90	8	1,197	42
1/22/85	8	1,558	16	1/27/87	8	1,439	29	1/13/88	8	1,264	37	12/14/90	8	1,093	47
1/23/85	8	1,346	26	1/28/87	8	1,430	29	1/15/88	8	1,373	32	12/26/90	10	1,065	43
1/24/85	8	1,286	25	1/29/87	8.	1,260	32	1/22/88	8	1,154	39.	1/10/91	8	1,141	48

Winter Peak Demand Data (Continued)

DATE	Hr	MW	MinT												
1/14/91	8	1,482	31	12/15/92	8	1,261	45	3/18/94	8	1,249	41	1/26/96	8	1,432	38
1/15/91		1,157	44	1/15/93	8	1,214	45	11/24/94	10	1,175	37	1/29/96	8	1,455	42
1/17/91	8	1,163	41	1/18/93	9	1,247	42	11/25/94	9	1,002	45	1/30/96	8	1,327	46
1/18/91	8	1,329	36	1/19/93	8	1,265	44	12/14/94	8	1,327	47	2/5/96	8	2,401	19
1/21/91	9	1,172	43	1/27/93	8	1.625	37.	12/19/94	9	1,444	38	2/6/96	8	2,153	25
1/22/91	8	1,403	32	1/28/93	8	1,672	32	12/20/94	8	1,353	41	27/96	8	2,025	27
1/23/91	8	1.530	31	1/29/93	8	1,349	40	12/27/94	9	1,290	43	2/8/96	8	1,675	35
2/1/91	8	1,175	45	2/1/93	8	1,361	45	12/28/94	9	1,332	41	2/13/96	8	1,773	29
2/11/91	8	1,182	42	2/3/93	8	1,556	32	12/29/94	9	1,333	41	2/14/96	8	1.668	36
2/12/91	8	1,261	37	2/4/93	8	1,324	42	1/5/95	8	1,709	34	2/49/96		1,491	37
218/91		1,145	43	2/9/93	8	1,333	41	1/6/95	8	1,576	37	3/4/96	8	1.428	38
2/27/91	8	1,250	36	2/15/93	8	1,317	38	1/9/95	8	1,696	35	3/5/96		1,242	45
2/28/91	8	1,110	46	2/18/93	8	1,406	37	1/10/95	8	1,413	43	3/11/96	8	1,816	37
3/5/91	8	1,284	40	2/19/93		1,768	26	1/11/95	8	1,383	43	3/12/96	8	1,697	34
3/11/91		1.344	35	2/23/93	8	1,399	40	1/12/95	8	1,282	47	3/13/96		1.739	32
3/12/91	8	1,264	39	2/24/93	8	1,466	36	1/17/95	8	1,455	42	3/14/96	8	1,515	38
3/20/9	8	1,058	43	2/25/93	8	1,379	38	1/18/95	8	1,431	42.	3/15/96	8	1,298	43
11/5/94	8	1,279	39	2/26/93		1,099	46	1/20/95	8	1,438	39	3/20/96	8	1,445	40
11/6/91	8	1,134	46	3/1/93	8	1,475	36	1/23/95	8	1,438	38	3/21/96	8	1,669	37
11/7/91	8	1,058	43	3/2/93	8	1,388	38	1/24/95	8	1,755	33	3/22/96	8	1,552	35
11/8/91	8	1,218	39	3/5/93	8	1,190	46	1/25/95	8	1,814	29	11/8/96	11	1,278	47
11/11/91	8	1,251	39	3/8/93	8	1,178	47	1/28/95	8	1,635	35	11/11/96	9	1,354	37
11/12/91	8	1,355	36	3/12/93	8	1,040	48	1/27/95	8	1,544	37	11/12/96	8	1,522	36
11/13/91	8	1,276	38.	3/15/93	8	1,791	27	1/31/95	8	1.761	32	11/13/96		1,319	44
11/14/91	8	1,206	40	3/16/93	8	1,382	38	2/1/95	8	1,755	30	11/14/96	8	1,258	47
11/25/91	8	1,438	30	11/1/93	8	1,537	33	2/2/95	8	1,511	40	11/27/96		1,407	40
11/26/91	8	1,525	29	11/2/93	7	1,425	35	2/6/95		1,784	30	11/28/96	10	1,209	41
11/27/91	8	1,226	43	11/8/93	8	1,237	45	27/95	8	1,727	32	12/3/96	8	1,377	37
11/28/91	11	934	43	11/11/93	8	1,234	42	2/9/95	8	2,190	20	12/4/96	8	1,381	38
12/5/91	8	1,497	30	11/12/93	8	1,157	48	2/10/95	8	1,614	39	12/9/96		1,484	34
12/6/9	8	1,292	40	11/29/93	8	1,363	38	2/13/95	8	1,379	45	12/10/96	8	1,686	30
12/16/91	8	1,439	31	11/30/93	8	1,453	36	2/14/95	8	1,329	46	12/11/96	8	1,429	39
12/17/91	8	1,563	29	12/6/93	8	1,217	44	2/21/95	8	1.367	39	12/12/96	8	1,274	48
12/18/91	8	1,462	33	12/7/93	8	1,292	40	2/22/95	8	1,544	34	1214/96	8	1,427	37
12/20/91	9	1,262	40	12/8/93	8	1,270	39	2/23/95		1,585	34	12/20/96	9	2,084	25
12/23/91	9	1,117	44.	12/9/93	8	1,362	41	2/24/95	8	1,240	49	12/23/96	8	1,388	41
12/31/91	8	1,223	40	12/10/93	8	1,166	48	3/3/95	8	1,332	44	1/10/97	8	1,524	37
1/6/92	8	1,165	46	12/13/93	8	1,611	31	3/19/95		1,333	40	1/13/97	8	1.722	34
17192	8	1,369	34	12/44/93	8	1,206	43	3/10/95	8	1,438	35	4/14/97	8	1.528	42
1/8/92	8	1,327	37	12/16/93	8	1,461	40	11/9/95	8	1,347	36	1/15/97	8	1,406	42
1/15/92	8	1,513	33	12/17/93	8	1,467	37	11/10/95	8	1,192	44	1/17/97	8	1,928	28
1/16/92	8	1,589	28	12/20/93	8	1,391	39	11/13/95	8	1,421	39	1/20/97		1,779	30
1/17/92	8	1,883	24	12/22/93	10	1,456	35	11/15/95	8	1,584	33	1/21/97		1.784	33
1/20/92	9	1,560	33	12/23/93	11	1,497	38	11/16/95	8	1,620	33	1/22/97	8	1,431	43
1/21/92	8	1.710	29	12/27/93		1,685	31	11/17/95	8	1,301	43	1/23/97	-	1,314	46
1/22/92	8	1,560	32	12/28/93	8	1,447	37	11/20/95	8	1,240	45	1/27/97	8	1,408	43
1/24/92	8	1,219	36	12/29/93	9	1,239	44	11/22/95	8	1,429	36	1/31/97	8	1,512	42
1/27/92	8	1,223	32	12/31/93	9	1,530	33	11/23/95	,	1,369	33	2/3/97	8	1,274	49
2/3/92	8	1,407	38	1/5/94	8	1,678	32	11/24/95	9	1,096	43	27197	8	1,242	49
2/4/92	8	1,423	36	1/6/94	8	1,799	30	11/27/95	8	1,356	42	2/11/97	8	1,439	38
27/92	8	1,358	43	1/7194	8	1,376	42	1211/95	8	1,348	43	2/12/97		1,716	33
2/11/92	8	1,273	48	1/10/94	8	1,479	37	12/8/95	8	1,208	49	2/13/97	8	1,319	48
2/12/92	8	1,268	42	1/11/94	8	1,343	48	12/11/95	8	1,984	27	2/17/97	8	1,479	37
2/13/92	8	1,113	48	1/14/94	8	1,458	43	12/12/95	8	1,912	30	2/18/97	8	1,318	44
2/14/92	8	1,159	47	1/17/94	9	1,359	41	12/13/95	8	1,541	36	2/19/97	8	1,291	45
2/21/92	8	1,179	45	1/19/94	8	1,911	26	12/21/95	8	1,763	31	3/7/97	8	1,279	38
2/28/92	8	1,248	42	1/20/94	8	1,805	33	12/22/95	9	1,627	38	11/5/97	8	1,314	44
3/2/92	8	1,077	46	1/21/94	8	1,788	30	12/26/95	-	1,724	30	11/40/97	8	1,363	44
3/12/92	8	1,288	41	1/24/94	8	1,496	40	12/27/95	9	1,859	28	11/17/97	8	1,726	32
3/13/92	8	1,194	46	1/25/94	8	1,391	40	12/28/95	10	1.777	33	11/18/97	7	1,506	40
3/17/92	8	1,441	31	1/26/94	8	1,237	47	12/29/95	9	1,675	34	11/20/97	8	1,415	42
3/24/92	8	1,084	45	211/94	8	1,547	36	1/4/96	8	1,811	32	11/25/97	8	1,454	42
3/26/92	8	1,043	49	212/94	8	1,570	31	1/5/96	8	1,803	32	11/26/97	8	1,358	43
3/27/92	8	1.030	47	2/3/94	8	1,942	26	1/8/96		2,278	27	11/27/97	11	1.136	47
11/17/92	8	1,251	40	2/4/94	8	1,678	32	1/9/96		2,276	23	12/2/97	8	1,333	46
11/30/92	8	1.520	33	2/8/94	8	1,144	48	1/10/96	8	1,733	36	12/8/97	8	1,840	32
12/2/92	8	1,442	34	2/15/94	8	1,360	39	1/11/96	8	1,944	30	12/16/97	8	1,791	42
12/3/92	8	1,444	35	2/25/94	8	1,304	39	1/15/96	9	1,480	38	12/17/97	8	1.672	39
12/4/92	8	1,451	36	3/3/94	8	1,324	46	1/16/96	d	1,414	41	12/18/97	8	1,694	39
12/7/92	8	1,180	47	3/4/94	8	1,418	39	1/22/96	8	1.617	33	12/19/97	8	1,629	38
12/9/92	8	1,426	36	3/11/94	8	1,400	37	1/23/96	8	1,370	46	12/30/97	9	1,748	36
12/11/92	8	1,306	44	3/15/94	8	1,133	46	1/24/96	8	1,201	48	12/31/97	8	1,556	36
12/14/92	8	1,428	38	3/17/94	8	1,269	33	1/25/96	8	1,650	36	1/2/98	8	1,617	35

Winter Peak Demand Data (Continued)

DATE	Hr	MW	MinT
$1 / 12 / 98$	8	1,596	39
$1 / 20 / 98$	8	1,689	34
$1 / 21 / 98$	8	1,445	42
$1 / 26 / 98$	8	1,609	40
$1 / 28 / 98$	8	1,541	44
$1 / 29 / 98$	8	1,617	38
$1 / 30 / 89$	8	1,524	41
$2 / 5 / 88$	8	1,733	40
$2 / 6 / 98$	8	1,741	37
$2 / 1 / 98$	8	1,588	40
$2 / 10 / 98$	8	1,685	36
$2 / 11 / 98$	8	1,425	45
$2 / 12 / 98$	8	1,287	46
$2 / 13 / 98$	8	1,479	40
$2 / 19 / 98$	8	1,297	46
$2 / 24 / 98$	8	1,494	47
$2 / 25 / 98$	8	1,403	44
$2 / 26 / 98$	8	1,352	47
$3 / 3 / 98$	8	1,505	39
$3 / 4 / 98$	8	1,726	34
$3 / 5 / 98$	8	1,511	41
$3 / 10 / 98$	8	1,554	39
$3 / 11 / 98$	8	1,820	32
$3 / 12 / 98$	8	1,868	33
$3 / 13 / 98$	7	1,938	32
$3 / 16 / 98$	8	1,311	45
$3 / 23 / 98$	8	1,424	41
$3 / 2498$	8	1,392	43
$3 / 25 / 98$	8	1,229	46
$11 / 6 / 98$	8	1,301	45
$12 / 16 / 98$	8	1,743	36
$12 / 17 / 98$	8	1,684	36
$12 / 18 / 98$	8	1,757	29
$12 / 28 / 98$	10	1,335	49
$12 / 31 / 98$	8	1,829	30
$1 / 4 / 99$	8	1,985	30
$1 / 5 / 99$	8	2,230	23

DATE	Hr	MW	MinT
$1 / 6 / 99$	8	2,420	22
$1 / 7 / 99$	8	2,184	27
$1 / 8 / 99$	8	1,653	38
$1 / 11 / 99$	8	2,047	29
$1 / 12 / 99$	8	1,916	32
$1 / 13 / 99$	8	1,576	41
$1 / 20 / 99$	8	1,408	43
$1 / 25 / 99$	8	1,466	41
$1 / 26 / 99$	8	1,504	43
$2 / 5 / 99$	8	1,325	46
$2 / 15 / 99$	8	1,818	29
$2 / 16 / 99$	8	1,588	39
$2 / 22 / 99$	8	1,921	31
$2 / 23 / 99$	8	2,048	30
$2 / 24 / 99$	8	1,607	39
$2 / 25 / 99$	8	1,791	33
$2 / 26 / 99$	8	1,425	47
$3 / 1 / 99$	8	1,472	42
$3 / 2 / 99$	8	1,413	40
$3 / 4 / 99$	8	1,667	35
$3 / 5 / 99$	8	1,794	32
$3 / 9 / 99$	7	1,382	44
$3 / 11 / 99$	8	1,471	41
$3 / 12 / 99$	8	1,333	42
$3 / 16 / 99$	7	1,823	33
$3 / 47 / 99$	8	1,457	41
$3 / 23 / 99$	8	1,401	39
$11 / 4 / 99$	8	1,677	34
$11 / 5 / 99$	7	1,364	48
$11 / 16 / 99$	8	1,409	41
$11 / 17 / 99$	8	1,481	40
$11 / 18 / 99$	8	1,386	46
$11 / 29 / 99$	8	1,445	43
$12 / 2 / 99$	8	2,091	26
$12 / 3 / 99$	7	1,798	33
$12 / 7 / 99$	8	1,641	35
$12 / 8 / 99$	7	1,491	42

DATE	Hr	MW	MinT
$12 / 15 / 99$	8	1,581	37
$12 / 17 / 99$	8	1,709	37
$12 / 27 / 99$	9	1,731	33
$12 / 28 / 99$	9	1,624	34
$12 / 29 / 99$	8	1,714	35
$12 / 30 / 99$	8	1,818	32
$12 / 31 / 99$	8	1,388	42
$1 / 6 / 00$	8	1,443	40
$1 / 12 / 00$	8	1,492	41
$1 / 13 / 00$	8	1,499	43
$1 / 18 / 00$	8	1,376	47
$1 / 21 / 00$	8	1,935	30
$1 / 25 / 00$	8	2,151	32
$1 / 26 / 00$	8	2,328	26
$1 / 27 / 00$	8	2,483	24
$1 / 28 / 00$	8	2,037	30
$1 / 31 / 00$	8	1,837	36
$2 / 1 / 00$	8	2,141	31
$2 / 2 / 00$	8	1,806	35
$2 / 3 / 00$	8	1,950	32
$2 / 4 / 00$	8	1,865	36
$2 / 7 / 00$	8	2,083	31
$2 / 8 / 00$	8	1,706	38
$2 / 9 / 00$	8	1,590	43
$2 / 10 / 00$	8	1,798	34
$2 / 11 / 00$	8	1,596	43
$2 / 16 / 00$	8	1,564	39
$2 / 21 / 00$	9	1,523	35
$2 / 22 / 00$	8	1,535	39
$2 / 23 / 00$	8	1,483	42
$2 / 25 / 00$	8	1,327	48
$2 / 29 / 00$	8	1,364	45
$3 / 13 / 00$	8	1,461	35
$3 / 14 / 00$	8	1,350	43
$11 / 15 / 00$	8	1,610	33
$11 / 16 / 00$	8	1,618	36
$11 / 21 / 00$	8	1,860	32
2	8		

DATE	Hr	MW	MinT
$11 / 22 / 00$	8	2,201	25
$11 / 23 / 00$	9	1,837	28
$11 / 24 / 00$	8	1,344	40
$11 / 27 / 00$	8	1,587	41
$11 / 28 / 00$	8	1,721	36
$11 / 30 / 00$	8	1,651	37
$12 / 1 / 00$	8	1,866	34
$12 / 4 / 00$	8	2,033	34
$12 / 5 / 00$	8	2,108	31
$12 / 6 / 00$	8	2,247	28
$12 / 7 / 00$	8	2,024	31
$12 / 8 / 00$	8	1,796	38
$12 / 18 / 00$	8	2,164	26
$12 / 20 / 00$	9	2,614	21
$12 / 21 / 00$	9	2,527	23
$12 / 22 / 00$	9	1,920	31
$12 / 26 / 00$	9	1,672	35
$12 / 27 / 00$	9	1,638	38
$12 / 29 / 00$	10	1,917	35
$1 / 2 / 01$	8	2,486	22
$1 / 3 / 01$	8	2,656	24
$1 / 4 / 01$	8	2,602	23
$1 / 5 / 01$	8	2,604	25
$1 / 8 / 01$	8	1,634	43
$1 / 10 / 01$	8	2,582	23
$1 / 11 / 01$	7	2,200	30
$1 / 12 / 01$	8	1,514	47
$1 / 15 / 01$	9	1,488	43
$1 / 16 / 01$	8	1,488	47
$1 / 22 / 01$	8	2,056	31
$1 / 23 / 01$	7	1,933	34
$1 / 24 / 01$	8	2,202	29
$1 / 25 / 01$	8	1,969	30
$1 / 26 / 01$	8	2,345	26
$1 / 29 / 01$	8	1,703	40

Summer Peak Demand Data

Date	Hr	MW	MaxT
6/2/80	18	907	88
6/3/80	17	993	92
6/4/80	18	1,121	96
6/9/80	17	893	84
6/11/80	16	1,013	91
6/13/80	17	901	85
6/16/80	19	1,129	94
6/17/80	18	1,147	95
6/18/80	18	1,115	95
6/24/80	17	1,052	91
6/25/80	18	854	89
6/27/80	18	978	91
6/30/80	17	1,104	93
7/1/80	19	1,186	93
7/4/80	18	1,044	94
77180	18	1,163	94
7/9/80	17	1,208	95
7/10/80	17	1,277	99
7/11/80	18	1,260	100
7/16/80	17	1,200	92
7/17/80	17	1,142	92
7/21/80	18	1,243	91
7/22/80	18	1,131	91
7/23/80	17	1,171	94
7/28/80	17	1,213	95
7/30/80	17	1,167	95
7/31/80	18	1,243	96
8/1/80	18	1,226	97
8/4/80	18	1,242	96
8/5/80	18	1,273	94
8/6/80	16	1,224	92
87/80	18	1,195	92
8/8/80	17	1,232	93
8/11/80	18	1,215	94
8/12/80	18	1,200	94
8/14/80	21	952	89
8/15/80	19	1,152	94
8/19/80	18	1,183	92
8/20/80	17	1,292	99

Date	Hr	MW	MaxT
8/21/80	17	1,261	97
8/25/80	17	991	88
8/27/80	19	1,059	88
8/28/80	17	1,120	90
8/29/80	18	1,068	90
9/1/80	21	930	91
9/2/80	16	1,085	92
9/5/80	17	1,119	90
9/9/80	18	1,133	90
9/10/80	19	1,101	90
9/11/80	18	1,085	89
9/12/80	17	1,055	89
9/15/80	19	1,198	96
9/16/80	17	1,165	95
9/18/80	16	1,101	90
9/19/80	16	1,133	92
9/22/80	18	1,188	91
9/23/80	18	1,203	92
9/24/80	17	1,162	91
9/25/80	17	1,131	92
9/26/80	19	1,145	93
9/29/80	16	996	88
9/30/80	17	1,083	90
6/1/81	17	1,078	96
6/2/81	17	1,092	92
6/9/81	19	1,181	98
6/10/81	17	1,114	94
6/16/81	19	1,259	102
6/17/81	17	1,263	99
6/18/81	17	1,256	99
6/19/81	17	1,201	95
6/22/81	18	1,213	97
6/24/81	17	1,235	95
6/29/81	18	988	89
6/30/81	18	1,013	90
7/1/81	18	840	84
7/2/81	18	978	90
7/3/81	18	990	94
7/7/81	19	1,225	100

MW3pm	MW5pm
1,152	1,261
951	991
1,023	1,054
1,024	1,120
1,025	1,063
881	898
1,030	1,073
1,098	1,119
1,059	1,078
1,009	1,031
1,058	1,081
912	1,055
1,040	1,141
1,112	1,165
989	1,013
1,044	1,087
1,140	1,164
1,055	1,114
1,091	1,162
1,059	1,131
1,086	1,133
975	992
979	1,083
1,029	1,078
1,058	1,092
1,128	1,155
1,077	1,114
1,220	1,244
1,167	1,263
1,183	1,256
1,114	1,201
1,082	1,171
1,155	1,235
912	962
932	1,007
810	830
918	970
918	977
1,157	1,208

Date	Hr	MW	MaxT	MW3pm	MW5pm
7/9/81	18	1,134	95	1,083	1,121
7/10/81	18	1,153	96	1,105	1,137
7/13/81	16	1,218	101	1,180	1,210
7/14/81	19	1,285	102	1,240	1,281
7/15/81	18	1,306	102	1,247	1,275
7/23/81	17	1,150	95	1,120	1,150
7/24/81	18	1,149	95	1,105	1,140
7/27/81	17	1,217	95	1,167	1,217
7/28/81	17	1,173	96	1.153	1.173
7/29/81	17	1,236	95	1,205	1.236
7/31/81	18	1,102	89	1,052	1,095
8/3/81	18	1.115	92	1,055	1,107
8/4/81	19	1,027	90	988	1.019
8/5/81	18	1,144	94	1,099	1,129
8/6/81	18	1,228	95	1,142	1,205
8/10/81	18	1,198	94	1,152	1,195
8/11/81	17	1,120	92	1,100	1,120
8/14/81	17	1.081	89	1,061	1,081
8/17/81	18	1,169	92	1,130	1.163
8/19/81	17	1,031	87	884	1,031
8/21/81	17	876	82	846	876
8/24/81	18	941	83	851	930
8/25/81	17	1,020	87	969	1,020
8/26/81	18	1,004	87	953	999
8/31/81	19	973	85	942	970
9/1/81	18	1,077	89	1,027	1,070
9/2/81	17	1,079	89	1,043	1,079
9/3/81	18	1,089	89	1.003	1,077
9/4/81	18	970	88	942	969
97/81	21	828	87	725	759
9/8/81	21	989	93	909	929
9/9/81	18	1,073	92	977	1,067
9/11/81	16	1,027	89	992	1,027
9/14/81	18	1,066	93	996	1,046
9/15/81	17	1,144	93	1,048	1,144
9/16/81	19	934	86	832	909
9/18/81	17	762	82	735	762
9/22/81	19	774	87	589	624
9/23/81	18	969	92	897	957

Summer Peak Demand Data (Continued)

Date	Hr	MW	MaxT
9/25/81	17	805	84
9/28/81	17	933	90
9/29/81	18	960	89
9/30/81	17	960	89
6/1/82	18	924	88
6/2/82	17	1,087	91
67/82	18	1,134	91
6/8/82	18	1,190	95
6/9/82	19	1,228	99
6/10/82	17	1,237	97
6/14/82	18	1,114	93
6/15/82	17	1,186	94
6/16/82	17	1,192	95
6/18/82	19	837	83
6/21/82	18	1,225	95
6/29/82	18	9,189	96
711/82	18	1,217	97
7/2/82	16	1,183	91
715/82	18	1,130	97
716/82	18	1,114	90
7/9/82	17	1,124	92
7/12/82	17	1,136	93
7/13/82	17	1.191	93
7/14/82	18	1,160	92
7/15/82	17	1,180	91
7/16/82	17	1,029	88
7/20/82	13	969	89
7/21/82	18	1,166	92
7/28/82	18	1,212	91
7/29/82	18	1,155	91
7/30/82	17	1,179	95
8/2/82	18	1,037	91
8/3/82	19	1,157	92
8/4/82	18	1,160	91
8/5/82	17	1,160	91
8/10/82	17	1,137	92
8/11/82	18	1,196	92
8/12/82	18	1,230	95
8/47/82	17	1,116	89
8/19/82	17	970	84
8/20/82	16	1,084	91
8/24/82	20	1,215	95
8/25/82	17.	1,238	95
8/27/82	16	1,216	93
8/30/82	18	1,131	89
8/31/82	17	1,121	88
9/1/82	18	1.145	90
9/2/82	18	1,121	92
9/3/82	17	1,176	96
9/6/82	17	842	87
9/7/82	16	1,001	88
9/13/82	17	1,114	90
9/14/82	18	1,092	89
9/15/82	17	1,025	90
9/16/82	17	1,127	91
9/20/82	18	1,135	92
9/22/82	16	851	83
9/28/82	18	1,032	85
9/29/82	17	1,034	84
9/30/82	17	1,024	78
6/1/83	17	1,018	88
6/2/83	17	987	82
6/3/83	18	1,046	87
6/8/83	18	816	74
6/9/83	17	953	83
6/14/83	17	1,003	83
6/15/83	19	968	87
6/16/83	18	1,045	85
6/17/83	18	1,059	86
6/20/83	18	1,056	86
6/21/83	13	900	79
6/24/83	18	983	85
6/28/83	17	1,153	89
6/29/83	17	1,148	91
7/5/83	19	1.196	52
7/6/83	18	1,209	89
7ก/83	17	1,197	91
7/11/83	18	1,246	92
7/12/83	18	1,227	92
7/13/83	18	1,263	93
7/14/83	17	1,285	94
7/15/83	17	1,119	95
7/18/83	18	1,381	96
7/19/83	17	1,311	98

MW3pm	MW5pm
790	805
908	933
910	945

Date	Hr	MW	MaxT	MW3pm	MW55m
7/20/83	18	1,350	96	1,291	1,317
7/21/83	19	1,375	95	1,259	1,300
7/22/83	18	1,334	98	1,294	1,331
7/29/83	17	1,174	88	1,155	1,174
8/1/83	18	1,273	90	1,184	1,241
8/3/83	17	1,219	90	1,177	1,219
8/4/83	14	1,147	88	1.044	1,061
8/5/83	18	1,195	89	1,164	1,193
8/9/83	17	1,278	94	1,232	1,278
8/10/83	18	1,291	93	1,246	1,278
8/15/83	18	1.100	87	1.050	1,094
8/16/83	17	1,125	87	1,090	1,125
8/17/83	17	t.198	89	1,114	1,198
8/18/83	17	1,227	91	1,187	1,227
8/19/83	18	1,300	94	1,195	1,263
8/23/83	17	1,361	95	1,284	1,361
8/24/83	18	1,343	94	1,286	1,342
8/25/83	17	1,257	90	1,233	1,257
8/26/83	17	1,255	91	1,219	1,255
8/31/83	18	1,292	93	1,237	1,280
9/5/83	18	1,166	93	1,089	1.157
9/6/83	17	1,340	93	1,257	1.340
9/7/83	18	1,323	93	1,213	1,290
9/9/83	17	1,271	92	1,226	1,271
9/14/83	18	1,003	83	933	992
9/15/83	18	976	82	907	953
9/22/83	18	819	77	758	794
6/1/84	17	774	80	749	774
6/4/84	18	1,201	94	1,057	1,144
6/5/84	19	1.203	92	1,114	1.165
6/6/84	17	1,189	88	1,092	1,189
6/7/84	18	1,100	85	1,023	1,081
6/8/84	16	1,098	86	1,003	1,061
6/11/84	18	1,038	85	955	1,027
6/12/84	18	1,121	86	1,024	1,069
6/14/84	19	1,031	87	993	1,019
6/15/84	16	1.105	87	1,053	1.090
6/18/84	19	1,197	90	1,127	1,154
6/19/84	18	1,234	93	1,203	1,224
6/22/84	19	1,110	85	1.012	1,068
6/25/84	17	1,173	91	1,087	1,173
6/26/84	17	1,182	88	1,143	1,182
6/28/84	19	1,109	88	1,064	1,091
7/3/84	16	1,104	88	1.019	1,064
7/4/84	18	1,022	89	890	967
7/5/84	17	1,204	90	1,136	1,204
7/6/84	17	1,184	90	1.130	1,184
7/9/84	17	1,226	91	1,206	1,226
7/10/84	16	1,229	90	1,188	1,210
7/11/84	17	1,261	92	1,209	1,261
7/12/84	18	1,293	93	1,228	1,290
7/16/84	18	1,257	92	1,181	1,228
7117184	17	1,282	91	1,205	1,282
7/20/84	16	952	82	929	948
7/23/84	19	1,151	86	1,066	1,103
7/24/84	19	1,231	88	1.090	1,142
7/25/84	17	1.252	89	1.117	1,252
7/26/84	18	1,177	91	1,146	1,161
7/27/84	16	1,249	90	1,107	1,183
8/1/84	19	1,231	89	1,088	1,126
8/3/84	17	1,184	89	1,142	1,184
8/7/64	17	1,299	93	1,223	1,298
8/8/84	18	1,335	94	1.252	1,321
8/9/84	18	1,295	92	1.236	1,293
8/10/84	16	1,320	93	1,254	1,286
8/14/84	16	1,315	93	1,243	1,301
8/15/84	17	1,244	93	1,199	1,244
8/16/84	18	1,306	94	1,264	1,305
8/17/84	17	1,315	94	1,266	1,315
8/22/84	17	941	79	894	94
8/23/84	19	900	82	779	826
8/24/84	16	1.125	89	1,078	1,107
8/27/84	18	1,089	85	1,023	1,086
8/28/84	19	1,081	85	1.018	1,047
8/29/84	18	1,134	88	1,014	1,126
8/30/84	18	1,194	90	1,108	1,154
8/31/84	17	1,223	92	1,143	1,223
9/3/84	19	1,058	90	983	1,03
9/5/84	21	939	79	894	915
9/10/84	18	888	81	832	872
9/11/84	18	1,050	85	986	1,039
9/12/84	19	1,198	89	1,093	1,15
9/13/84	17	1,230	91	1,151	1,230
9/14/84	16	1.216	92	1,173	1,193

Date	Hr	MW	Maxt	MW3pm	MW5pm
9/17/84	13	842	72	809	839
9/18/84	17	815	76	797	815
9/20/84	18	925	81	875	904
9/21/84	17	958	84	923	958
9/24/84	17	1,017	84	991	1,017
9/25/84	17	1,038	84	969	1,038
9/26/84	18	1,074	85	1.011	1,057
6/3/85	19	1.455	100	1.416	1,452
6/4/85	17	1,479	100	1,402	1,479
6/6/85	17	1,442	99	1,330	1,442
6/7/85	17	1,395	99	1,336	1,395
6/11/85	17	1,375	96	1,331	1,375
6/17/85	18	1,204	90	1,083	1,178
6/18/85	18	1,357	91	1,255	1,335
6/19/85	17	1,323	93	1.267	1,323
6/21/85	17	1,090	84	1,048	1,090
6/24/85	18	1,214	89	1,149	1,209
6/26/85	18	1,228	90	1,161	1,210
7/1/85	18	1,092	87	1,035	1,085
7/2/85	17	1,177	91	1,158	1,177
7/3/85	17	1,213	89	1,194	1,213
7/4/85	18	1,080	92	970	1,048
7/8/85	18	1,299	91	1,236	1,290
7/9/85	18	1,343	93	1,265	1,333
7/10/85	18	1,394	95	1,321	1,348
7/16/85	18	1,241	89	1,167	1,220
7/18/85	17	1,198	88	1,138	1,198
7/19/85	16	1,182	89	1,150	1,176
7/23/85	18	1,273	89	1,209	1,269
7/25/85	18	1,117	85	981	1,064
7/26/85	19	1,110	87	1,048	1,095
7/30/85	18	1,222	92	1,154	1,213
8/2/85	17	1,192	89	1,138	1.192
8/5/85	18	1,193	90	1,138	1,188
8/9/85	18	1,144	88	1,084	1.136
8/13/85	18	1,240	91	1,160	1,226
8/15/85	18	1,208	90	1,145	1,198
8/16/85	18	1,278	93	1,239	1,276
8/21/85	17	1,223	90	1,160	1,223
8/26/85	18	1,355	93	1,261	1,338
8/28/85	18	1,232	89	4,154	1,218
9/2/85	21	1.024	89	927	987
9/3/85	17	1,279	90	1,195	1,279
9/5/85	17	1,170	90	1,133	1,170
9/6/85	15	1,132	90	1,114	1,129
9/9/85	17	1,351	93	1,240	1,351
9/10/85	19	1,319	93	1,254	1,289
9/12/85	17	1,078	89	1,057	1.078
9/13/85	17.	1,023	85	1,006	1.023
9/16/85	20	860	77	830	855
9/18/85	17	937	86	915	937
9/19/85	18	1,007	86	965	1,006
9/20/85	17	932	84	916	932
9/23/85	18	1,144	86	1,081	1,130
9/24/85	18	1,225	92	1,136	1,218
9/25/85	18	1,206	89	1,143	1,204
9/26/85	18	1,139	86	1,045	1,131
9/27/85	17	1,135	84	1,100	1,135
9/30/85	17	953	85	936	953
6/3/86	17	1,230	89	1,177	1,230
6/4/86	18	1,174	86	1,146	1,170
6/5/86	17	1,229	87	1,181	1,229
6/6/86	18	1,223	90	1,142	1,208
6/9/86	18	1,429	97	1,385	1,427
6/11/86	17	1,332	92	1,302	1,332
6/16/86	17	1,302	92	1,261	1,302
6/18/86	17	1,257	91	1,197	1,257
6/23/86	18	1,277	88	1,234	1,274
6/24/86	18	1,361	93	1,277	1,356
6/25/86	18	1,444	97	1,363	1,429
6/27/86	17	1,405	94	1,358	1,405
7/1/86	18	1,229	91	1,160	1,183
7/4/86	18	1,162	90	1,113	1,158
7/7/86	18	1,386	90	1,322	1,374
7/8/86	18	1,465	96	1,372	1,446
7/986	18	1,525	97	1,427	1.516
7/10/86	17	1,510	95	1,457	1,510
7/14/86	18	1,518	98	1,445	1.510
7/16/86	17	1,523	97	1,468	1,523
7/17/86	17	1,403	97	1,342	1,403
7/18/86	17	1,398	97	1,370	1,398
7/21/86	18	1,430	93	1,374	1,419
7/28/86	17	1,361	91	1,309	1,36
7/29/86	18	1,463	94	1.357	1.462

Summer Peak Demand Data (Continued)

Date	Hr	MW	MaxT
7/30/86	18	1,553	97
7/31/86	16	1,534	99
8/7/86	18	1.414	94
8/14/86	18	1,196	8
8/18/86	17	1,415	93
8/19/86	17	1,343	90
8/21/86	16	1,313	92
8/22/86	17	1,325	91
8/25/86	17	1,485	92
8/26/86	18	1,429	92
8/27/86	17	1,503	94
9/1/86	18	1,106	86
9/2/86	17	1,293	89
9/3/86	17	1,306	89
9/4/86	17	1,369	89
9/8/86	18	1,247	86
9/10/86	18	1,041	85
9/11/86	17	1,308	92
9/15/86	18	1,335	88
9/16/86	18	1,354	89
9/17/86	17	1,257	86
9/18/86	18	1,168	84
9/19/86	17	1,205	86
9/23/86	18	1,295	91
9/24/86	18	1,369	93
9/25/86	17	1,365	93
9/26/86	17	1,302	92
9/29/86	18	1,336	89
6/1/87	18	1,329	90
6/2/87	18	1,387	94
5/3/87	18	1,423	95
6/5/87	18	1,252	88
6/8/87	18	1,252	86
6/9/87	18	1,300	89
6/10/87	17	1,376	95
6/11/87	17	1,345	94
6/12/87	17	1,406	95
6/15/87	18	1,389	94
6/16/87	17	1,414	93
6/24/87	17	1,414	93
6/29/87	17	1,397	91
711/87	17	1,449	90
7/6/87	17	1,456	95
77/87	17	1,503	95
7/8/87	17	1,491	95
7/13/87	18	1,605	99
7/16/87	17	1,432	93
7/17/87	17	1,385	89
7/21/87	18	1,483	90
7/22/87	18	1,462	93
7/23/87	17	1,555	99
7/24/87	17	1,513	92
7/27/87	18	1,543	95
7/28/87	18	1,585	6
7/29/87	16	1,523	4
8/3/87	17	1,504	94
8/6/87	17	1.591	98
8/7/87	17	1.628	98
8/10/87	17	1,615	99
8/11/87	17	1,583	96
8/13/87	13	1,986	86
8/17/87	18	1,531	94
8/18/87	18	1,588	95
8/19/87	17	1,588	95
8/20/87	18	1,462	95
8/21/87	18	1,430	90
8/24/87	17	1,596	99
8/25/87	18	1,580	95
8/28/87	17	1,552	96
9/3/87	21	1,093	82
9/4/87	17	1,117	82
97/87	18	1,268	91
9/8/87	18	1,424	92
9/9/87	18	1,498	92
9/10/87	18	1,504	94
9/14/87	18	1,489	93
9/15/87	17	1,421	91
9/16/87	17	1,405	92
9/17/87	18	1,462	93
9/18/87	17	1,468	93
9/21/87	18	1,358	88
9/22/87	18	1,161	87
9/23/87	17	1,106	84
9/24/87	18	1,176	85

MW3pm	MW5pm	Date	Hr	MW	MaxT	MW30m	MW5pm
1,474	1,545	9/25/87	17	1,147	86	1,075	1,147
1.514	1.530	9/28/87	47	1,273	88	1,219	1,273
1,330	1,409	9/29/87	18	1,292	87	1,229	1,267
1,152	1,193	9/30/87	18	1,118	80	1,049	1.097
1,350	1,415	6/1/88	18	1,291	87	1,204	1,274
1,304	1,343	6/2/88	18	1,383	96	1,275	1,373
1,273	1,311	6/3/88	17	1,405	95	1,343	1,405
1,301	1,325	6/8/88	18	1,356	89	1,258	1,340
1,428	1,485	6/9/88	18	1,352	89	1,229	1,335
1,391	1,426	6/13/88	18	1,115	83	1,071	1,104
1.409	1,503	6/14/88	17	1,200	84	1,164	1,200
1,053	1,096	6/15/88	18	1,184	84	1,128	1.175
1,255	1,293	6/16/88	18	1,263	86	1,189	1,249
1,244	1,306	6/17/88	17	1.346	92	1,289	1,346
1,312	1.369	6/20/88	17	1.301	86	1,266	1,301
1,201	1,218	8/21/88	17	1,344	89	1,302	1,344
997	1,021	6/22/88	17	1,480	97	1,401	1,480
1,225	1,308	6/23/88	17	1,522	97	1,470	1.522
1,259	1,331	6/24/88	18	1,572	99	1,518	1,558
1,286	1,349	6/27/88	18	1,555	96	1,482	1.551
1,229	1,257	6/28/88	18	1,207	85	1,170	1,187
1,120	1,165	6/29/88	18	1,469	89	1,400	1,465
1.160	1,205	6/30/88	17	1,519	94	1,485	1.518
1.227	1,289	7/4/88	17	1,122	87	1,106	1,122
1.290	1,361	7/6/88	17	1,271	86	1,218	1,271
1,307	1,365	$7 / 7 / 88$	17	1,262	86	1,246	1,262
1,230	1,302	718/88	17	1,351	87	1,295	1,351
1,284	1,316	7/12/88	18	1,486	95	1,446	1,472
1,234	1,312	7/15/88	17	1,553	98	1.536	1.553
1,301	1,346	7/19/88	18	1,474	93	1,383	1,473
1,343	1,417	7/20/88	17	1,551	92	1,514	1,551
1,176	1,240	7/25/88	17	1,487	94	1,381	1,487
1.185	1,248	7/26/88	17	1,460	93	1,381	1,460
1,220	1,293	7/27/88	17	1,499	94	1,447	1,499
1,310	1,376	7/28/88	17	1,513	94	1,474	1,513
1,317	1,345	7/29/88	16	1,487	93	1,452	1,474
1,354	1,406	8/1/88	17	1,546	95	1.451	1,546
1,312	1,380	8/2188	17	1,488	95	1,396	1,488
1,366	1,414	8/9/88	17	1,491	92	1,369	1,491
1,380	1,414	8/10/88	17	1,510	93	1,475	1,510
1,345	1,397	8/11/88	17	1,466	90	1,424	1,466
1,419	1,449	8/12/88	17	1,453	91	1,432	1.453
1,432	1,456	8/15/88	18	1,390	90	1,354	1,389
1,463	1,503	8/17/88	17	1,523	92	1,452	1.523
1,465	1,491	8/18/88	16	1,554	94	1,516	1,554
1,552	1,593	8/19/88	16	1,589	96	1,565	1,584
1,369	1,432	8/22/88	18	1,655	96	1.615	1,651
1,350	1,385	8/24/88	17	1,627	94	1.560	1,627
1,400	1,472	8/29/88	17	1.533	92	1,490	1,533
1.400	1.456	8/31/88	17	1.469	90	1,430	1,469
1,492	1,555	9/1/88	20	1,221	88	1,130	1,181
1,480	1,513	9/5/88	20	1,046	82	957	998
1.473	1,538	9/6/88	19	1,144	79	1,117	1.132
1,505	1,563	9/8/88	20	1,031	75	975	999
1,465	1,500	9/9/88	17	1,406	91	1,381	1,406
1,440	1,504	9/12/88	17	1.479	89	1,455	1,479
1.528	1,591	9/13/88	17	1.420	86	1,376	1,420
1.572	1.628	9/14/88	17	1,491	89	1,425	1,491
1,590	1,615	9/20/88	17	1,500	94	1,436	1,500
1,548	1,583	9/21/88	17	1,544	94	1,499	1,544
1,126	1,159	9/22/88	17	1,510	93	1,448	1,510
1,462	1,524	9/23/88	16	1,426	92	1,404	1,425
1,514	1.585	9/27/88	17	1,245	82	1.211	1,245
1,548	1,588	9/28/88	17	1,292	86	1,239	1,292
1,383	1,438	9/29/88	17	1,356	86	1,302	1.356
1.402	1.425	9/30/88	16	1,252	85	1,229	1,252
1.547	1,596	6/1/89	18	1,510	94	1,430	1,507
1,499	1,561	6/2/89	17	1,602	97	1,532	1,602
1,489	1,552	6/7189	17	1,384	90	1,336	1,384
1,034	1,059	6/8/89	17	1,152	80	1,092	1,152
1,070	1,117	6/12/89	18	1,615	95	1,551	1,614
1,174	1,257	6/13/89	17	1,595	95	1,544	1,595
1,382	1.408	6/14/89	18	1,645	96	1.568	1,644
1,403	1.492	6/15/89	17	1,627	96	1,595	1.627
1,417	1,500	6/46/89	16	1.550	94	1.513	1.531
1,419	1.480	6/22/89	17	1.429	89	1,374	1.429
1,377	1.421	6/26/89	17	1.512	94	1,464	1,512
1,372	1,405	6/27/89	17	1,560	92	1,510	1,560
1,410	1,459	6/28/89	17	1,605	95	1,562	1,605
1,414	1,468	7/3/89	17	1,491	94	1,450	1,491
1,280	1,340	7/5/89	17	1,567	93	1,523	1.567
1,082	1,145	716/89	17	1,536	92	1,455	1.536
1,057	1,106	77/89	18	1,537	93	1,448	1.534
1,095	1,169	7/11/89	17	1.687	96	1,621	1,687

Date	Hr	MW	MaxT
$7 / 12 / 89$	17	1,714	97
$7 / 18 / 89$	19	1,350	88
$7 / 19$			

Summer Peak Demand Data (Continued)

Summer Peak Demand Data (Continued)

Date	Hr	MW	MaxT	MW3pm	MW5pm	Date	Hr	MW	MaxT	MW3pm	MW5pm	Date	Hr	MW	MaxT	MW3pm	MW5pm
9/23/94	17	1,455	84	1,419	1,455	7/3/36	16	1,973	94	1,944	1,962	8/22/97	17	1,850	88	1,827	1,890
9/26/94	18	1,518	86	1,387	1,502	7/8/96	17	1,852	93	1,797	1,852	8/25/97	18	1,681	85	1,641	1,685
9/27/94	17	1,466	84	1,410	1,466	7/9/96	19	1,612	85	1,445	1,557	8/26/97	18	1,759	85	1,671	1,748
9/28/94	17	1,506	87	1,453	1,506	7/10/96	17	1,929	92	1,876	1.929	8/27/97	18	1,657	84	1,592	1,636
9/29/94	17	1,623	94	1,541	1,623	7/11/96	16	1,752	88	1,711	1,750	8/28/97	18	1,947	92	1,828	1,936
9/30/94	17	1,559	86	1.512	1,559	7/15/96	18	1,987	93	1,941	1,973	8/29/97	17	2,007	93	1,952	2,007
6/1/95	17	1,810	94	1,759	4,810	7/16/96	18	1,835	89	1,741	1,819	9/1/97	18	1,692	89	1,648	1,680
6/5/95	18	1,585	86	1,513	1,581	7/17/96	17	1,933	90	1,862	1,933	9/2/97	17	1,814	89	1,751	1,814
6/6/95	18	1,796	93	1,673	1,780	7/18/96	18	1,953	91	1,869	1,946	9/3/97	18	1,934	91	1,814	1,911
6/7/95	18	1,887	93	1,789	1,877	7/19/96	17	1,994	93	1,931	1,994	9/5/97	17	1,610	81	1,566	1,610
6/8/95	18	1,918	95	1,838	1,910	7/22/96	18	2,033	92	1,953	2,020	9/8/97	17	1,764	86	1,674	1,764
6/9/95	17	1,979	100	1,940	1,979	7/23/96	17	2,063	94	2,024	2,063	9/9/97	18	1,816	89	1,718	1,815
6/13/95	17	1,573	86	1.510	1,573	7/25/96	16	1,987	94	1,948	1,970	9/11/97	18	1,864	91	1,832	1,858
6/14/95	17	1,510	86	1,456	1,510	7/26/96	17	1,932	89	1,864	1,932	9/12/97	17	1,886	90	1,834	1,886
6/15/95	17	1,561	85	1,450	1,561	7/29/96	17	2,023	94	1,939	2,023	9/15/97	18	1,905	88	1,831	1,902
6/19/95	17	1,594	87	1,493	1,594	7/30/96	17	2,014	92	1,954	2,014	9/16/97	17	1,921	90	1,866	1,921
6/20/95	17	1,621	89	1,529	1,621	7/31/96	17	2,016	92	1,952	2,016	9/17/97	17	1,931	88	1,857	1,931
6/21/95	16	1.616	88	1,588	1,615	8/2/96	17	1,628	85	1,564	1.628	9/18/97	17	1,911	90	1,852	1,911
6/22/95	18	1,664	87	1,568	1.653	8/5/96	17	1,948	91	1,882	1.948	9/19/97	17	1,917	90	1,872	1.917
6/23/95	17	1,823	93	1,760	1,823	8/8/96	18	1,803	87	1,764	1,800	9/22/97	18	1,840	87	1,746	1,833
6/28/95	16	1,841	95	1,801	1,817	8/9/96	17	1,861	89	1,797	1,861	9/23/97	18	1,831	87	1.733	1,827
7/4/95	17	1,695	96	1,626	1,695	8/15/96	17	1,724	90	1,638	1,724	9/24/97	17	1,959	91	1,866	1,959
7/5/95	17	1,928	97	1,862	1,928	8/16/96	17	1,767	87	1,727	1,767	9/29/97	18	1,758	87	1,668	1,750
7/6/95	17	1,923	95	1,860	1,923	8/19/96	17	1,884	88	1,847	1,884	9/30/97	18	1,750	88	1.656	1,748
7/11/95	17	1,873	96	1,822	1,873	8/20/96	17	1,808	88	1,752	1,808	6/1/98	18	2,173	95	2.012	2,145
7/12/95	18	1,877	92	1,794	1,840	8/21/96	18	1,734	87	1,694	1.723	6/2/98	18	2,301	98	2,210	2,277
7/13/95	17	1,886	92	1.833	1,886	8/22/96	17	1,838	87	1,766	1,838	6/3/98	18	2,310	98	2,164	2,277
7/14/95	17	1,858	94	1,811	1,858	8/23/96	17	1,810	87	1,743	1,810	6/4/98	18	2.297	97	2,199	2,269
7/17/95	18	1,480	85	1.444	1,479	8/26/96	17	1.643	86	$\uparrow .548$	1,643	6/5/98	17	2,247	98	2,193	2,244
7/18/95	18	1,760	88	1,592	1,751	8/27/96	18	1,886	90	1,777	1,869	6/8/98	18	1,788	83	1,708	1,784
7/19/95	17	1,901	93	1,814	1,901	8/28/96	17	1,945	90	1,846	1,945	6/9/98	18	1,889	88	1,818	1,888
7/20/95	17	1,978	98	1,924	1,978	8/29/96	17	1.820	86	1,738	1,820	6/10/98	18	2,114	95	2,015	2,106
7/24/95	17	2,034	96	1,972	2,034	9/3/96	18	1,835	90	1,746	1,825	6/11/98	17	2,207	97	2,129	2,207
7/26/95	17	1,893	93	1,811	1,893	9/4/96	17	1,798	89	1,718	1,798	6/12/98	17	2,238	99	2,150	2,226
7/28/95	18	1,728	89	1,691	1,719	9/5/96	18	1,788	88	1,611	1,761	6/15/98	17	2,287	101	2,205	2,262
8/4/95	17	1,790	88	1.759	1,790	9/6/96	16	1.888	90	1,851	1,884	6/16/98	17	2,269	100	2,169	2,253
8/2/95	17	1,586	84	1.507	1,586	9/11/96	17	1,642	87	1,578	1,642	6/17/98	17	2,278	99	2,212	2,256
8/3/95	18	1,668	88	1,534	1,632	9/12/96	18	1,763	88	1,682	1,762	6/18/98	17	2,315	100	2,267	2,299
8/4/95	17	1,856	89	1,811	1,856	9/13/96	17	1,781	90	1,757	1,781	6/19/98	16	2,284	103	2,237	2,257
8/7/95	17	1,989	94	1.928	1,989	9/17/96	18	1,687	88	1,547	1,643	6/22/98	17	2,264	97	2,192	2,231
8/9/95	17	1,747	86	1,701	1,747	9/18/96	17	1,800	87	1,735	1,800	6/23/98	16	2,245	99	2,179	2,220
8/10/95	18	1,739	88	1,680	1,730	9/20/96	17.	1,507	82	1,461	1,507	6/24/98	18	2,248	97	2,117	2,226
8/11/95	16	1,847	92	1,814	1,843	9/23/96	18	1,580	87	1,447	1,566	6/26/98	17	2,064	90	1,970	2,047
8/14/95	18	2,067	96	2.015	2,066	9/24/96	18	1,632	87	1,508	1,627	6/29/98	17	2,332	100	2,276	2,319
8/16/95	17	2,001	93	1.940	2,001	9/25/96	18	1,644	86	1,555	1,642	6/30/98	17	2,313	99	2,225	2,301
8/17195	17	2,038	94	1,991	2,038	9/26/96	17	1.698	85	1,617	1,698	711/98	18	2,341	99	2,279	2,328
8/21/95	18	1,689	86	1,603	1,680	9/27/96	17	1,678	87	1,651	1,678	7/2/98	17	2,272	98	2,229	2,262
8/22/95	18	1,659	87	1,562	1,645	9/30/96	17	1,593	84.	1,568	1,593	7/3/98	17	2,072	95	2,010	2,063
8/23/95	17	1,783	87	1,732	1,783	6/2/97	17	1,620	84	1,556	1,620	7/7/98	18	2,082	90	1,971	2,056
8/25/95	18	1,460	84	1,378	1,441	6/3/97	18	1,616	84	1,557	1,614	7/8/98	17	2,246	96	2,173	2,238
8/28/95	17	1,937	90	1,869	1,937	6/10/97	18	1,456	79	1,397	1,442	7/9/98	17	2,315	97	2,258	2,310
8/29/95	17	1.543	83	1,497	1,543	6/11/97	17	1,553	83	1,526	1,553	7/10/98	18	2,154	94	2,081	2,149
8/30/95	17	1.735	86	1,704	1.735	6/16/97	18	1.854	88	1,780	1,844	7/43/98	17	1,589	83	1,548	1.576
8/31/95	18	1,752	86	1,701	1,740	6/18/97	14	1,809	91	1,715	1,798	7/14/98	18	1,720	82	1,611	1.713
9/1/95	17	1,631	86	1,564	1,631	6/19/97	17	1,886	89	1,817	1,886	7/17/98	13	1,862	88	1,743	1,765
9/4/95	21	1,381	84	1,275	1,347	6/20/97	18	1,730	87	1,651	1,712	7/20/98	17	2,069	92	2,001	2,069
9/6/95	17	1,436	82	1,367	1,436	6/23/97	17	1,891	90	1,863	1,891	7/21/98	18	1,925	89	1,732	1,916
9/8/95	17	1,610	85	1,551	1,610	6/25/97	18	1,970	89	1,886	1,968	7123/98	17	2,169	94	2,088	2,169
9/11/95	17	1,715	87	1,675	1,715	6/27/97	17	1,966	91	1,896	1,966	7/27/98	17	2,184	94	2,135	2,184
9/12/95	18	1,674	86	1,628	1,657	7/1/97	18	1,986	91	1,863	1,962	7/29/98	17	2,206	95	2,106	2,206
9/13/95	16	1,805	91	1,760	1,794	7/2/97	18	2,030	94	1,934	2,021	7/30/98	17	2,208	94	2,123	2,208
9/14/95	17	1,864	91	1,793	1,864	7/3/97	17	2,077	97	2.025	2,077	7/31/98	18.	2,132	93	2.041	2,131
9/15/95	17	1,680	86	1,607	1,680	7/8/97	18	1,961	90	1,872	1,948	8/3/98	18	1,782	85	1.722	1,773
9/18/95	17	1,812	88	1,785	1,812	7/9/97	17	1,991	90	1,927	1,991	8/4/98	17	1,892	87	1,835	1,892
9/19/95	47	1.671	84	1,635	1,671	7/10/97	18	2,006	92	1,919	1,993	8/5/98	17	1,887	86	1,827	1,887
9/20/95	48	1,565	83	1,501	1,539	7/14/97	17	1,894	89	1,817	1,894	8/10/98	18	1,884	90	1,773	1,841
9/21/95	18	1,693	86	1,643	1,686	7/15/97	17	1,996	91	1,919	1,996	8/11/98	18	2,142	94	2,078	2,135
9/22/95	17	1,810	90	1,737	1,810	7/17/97	17	1,989	92	1,950	1,989	8/12/98	17	2,206	95	2,147	2,206
9/25/95	20	1,418	81	1,270	1,377	7/21/97	17	2,009	92	1,947	2,009	8/14/98	16	2,014	91	1.984	1,999
9/26/95	17	1,584	88	1,557	1,584	7/22/97	18	2,061	92	1,992	2.059	8/19/98	18	1,984	89	9,856	1,975
9/28/95	17	1,480	81	1.450	1.480	7/23/97	18	2,092	93	2,030	2,079	8/20/98	17	1,937	87	1,877	1,937
6/3/96	18	1,495	80	1.440	1.466	7/24/97	17	2,091	94	2,033	2,091	8/24/98	18	2,018	89	1,944	2,017
6/4/96	18	1,635	88	1.568	9,624	7/28/97	18	2,131	93	1,938	2,022	8/25/98	17	2.032	92	1,972	2,032
6/5/96	18	1,728	90	1,672	1.725	7/29/97	17	2,048	92	2,026	2,048	8/26/98	18	2,144	94	2,021	2,132
6/6/96	17	1,790	89	1,734	1,790	8/1/97	17	1,444	78	1,415	1.444	8/27/98	18	2,211	96	2,102	2,176
6/12196	17	1,880	91	1,762	1,880	8/4/97	18	1,960	89	1,808	1.937	8/28/98	17	2,211	95	2,160	2,211
6/17/96	17	1,754	86	1,694	1.754	8/5/97	17	2,034	92	1,963	2,034	9/2/98	21	1,544	82	1,488	1,517
6/18/96	18	1,811	87	1.720	1,805	8/6/97	17	1,978	92	1,942	1,978	9/4/98	17	2,007	92	1,908	2,007
6/21/96	17	1,859	91	1,786	1,859	8/8/97	17	1,805	86	1,777	1,805	9/8/98	17	1,875	89	1,827	1,875
6/25/96	18	2,114	96	2,041	2,108	8/11/97	18	1,627	86	1,564	1,594	9/10/98	17	1,517	80	1,478	1,517
6/27/96	19	1,509	84	1,413	1,487	8/12/97	16	1,915	89	1,882	1,899	9/11/98	17	1,670	83	1,634	1,670
6/28/96	17	1,570	83	1,526	1,570	8/14/97	17	2,096	94	2,032	2,096	9/14/98	18	1,892	86	1,812	1.890
7/1/96	18	1,962	93	1.875	1,954	8/18/97	17	2,127	94	2,051	2,127	9/15/98	17	1,967	88	131.917	1.967
7/2/96	17	2,008	95	1.959	2,008	8/20/97	17	2.098	95	2,018	2.098	9/17/98	18	1.714	83	1.620	1,703

2002 Ten Year Site Plan

Summer Peak Demand Data (Continued)

Date	Hr	MW	MaxT	MW3pm	MW5pm	Date	Hr	MW	MaxT	MW3pm	MW5pm	Date	Hr	MW	MaxT	MW3pm	MW5pm
9/22/98	16	1,970	91	1,896	1,950	8/18/99	17	2,338	95	2,258	2,338	7/18/00	17	2,283	98	2,252	2,277
9/23/98	17	1,860	87	1,842	1,860	8/19/99	17	2,262	94	2,206	2,262	7/19/00	18	2,364	101	2,267	2,319
9/25/98	17	1,765	84	1,736	1,765	8/23/99	17	2,184	89	2,106	2,184	7/21/00	17	2,285	99	2,211	2,280
9/28/98	17	1,918	89	1,871	1,918	8/24/99	17	2,207	91	2,108	2,207	7/24/00	13	1,780	84	1,622	1,718
9/30/98	20	1,518	80	1,465	1,499	8/26/99	18	2,204	92	2,149	2,186	7/25/00	17	2,063	89	1,941	2,063
6/1/99	18	1,854	86	1,765	1,850	8/27/99	16	2,249	94	2.209	2,244	7/26/00	17	2,114	88	2,028	2.114
6/2/99	18	1.903	87	1,747	1,874	8/30/99	18	2,195	93	2,135	2,185	7/27/00	18	2,093	88	2,036	2,078
6/3/99	16	1,989	92	1,963	1,984	8/31/99	17	1,991	85	1,930	1,991	7/31/00	18	2,171	92	2,112	2,169
6/4/99	17	2,147	94	2,013	2,147	9/1/99	17	1,956	87	1,871	1,956	8/1/00	17	2,201	91	2,111	2,201
6/8/99	17	1,965	87	1,890	1,965	9/2/99	18	1,998	90	1,856	1,970	8/2/00	17	2,249	92	2,196	2,249
6/9/99	18	1,941	87	1,852	1,895	9/3/99	18	2,127	93	2,009	2,126	8/7/00	18	2,24 4	92	2,187	2,235
6/11/99	17	1,884	85	1,775	1,884	9/7/99	17	2,172	93	2,120	2,172	8/8/00	17	2,246	93	2,199	2,245
6/14/99	17	2,114	90	2,024	2,114	9/9/99	17	2,089	90	2,023	2.089	8/9/00	18	2,241	94	2,124	2,198
6/15/99	17	2,099	91	1,996	2,099	9/10/99	17	2,017	88	1,941	2.017	8/10/00	17	2,282	93	2,224	2,282
6/18/99	17	1,716	82	1,686	1.716	9/13/99	17	1,854	85	1,813	1,854	8/11/00	17	2,307	95	2,279	2,304
6/21/99	18	1,819	83	1,724	1,798	9/15/99	21	1,141	78	840	905	8/14/00	17	2,195	93	2,128	2,193
6/22/99	17	1,971	85	1,928	1,971	9/16/99	18	1,884	90	1,746	1,876	8/15/00	18	2,099	92	2,063	2,087
6/23/99	17	1,967	84	1,885	1,967	9/17/99	17	1,900	86	1,852	1,900	8/16/00	18	2,209	91	2,112	2,188
6/24/99	17	1,862	85	1,774	1,862	9/21/99	18	1,733	84	1,629	1,728	8/17/00	17	2,245	94	2,142	2,245
6/30/99	17	2,017	90	1,741	2,017	9/23/99	21	1,465	78	1.377	1,445	8/18/00	17	2,256	96	2,226	2,256
7/2/99	17	1,946	86	1,874	1,946	9/24/99	18	1,697	83	1,622	1,696	8/22/00	18	2,007	88	1,909	1,993
7/5/99	18	1,898	89	1,787	1.874	9/28/99	17	1,916	89	1,899	1,916	8/23/00	18	2,184	88	2,073	2,182
7/6/99	17	2,153	92	2,084	2,153	9/29/99	17	2,048	89	1,968	2,048	8/24/00	47	2,204	91	2,116	2,204
7/8/99	17	2,185	94	2,121	2,185	9/30/99	17.	1,622	79	1,553	1,622	8/28/00	17	2,267	94	2,180	2,267
7/12/99	17	2,210	93	2,135	2,210	6/1/00	18	2,011	88	1,857	2,002	8/29/00	17	2,060	88	2,007	2,060
7/13/99	17	2,166	91	2,093	2,166	6/2/00	17	2,108	93	2,048	2,108	8/30/00	18	1,921	87	1,807	1,882
7/15/99	17	2,079	88	2,022	2,079	6/6/00	18	1,997	90	1,939	1,994	8/31/00	17	2,078	88	2,013	2,078
7/16/99	17	2,073	90	2,005	2,073	6/7/00	18	1,795	81	1,751	1,794	9/1/00	17	1,975	88	1,920	1,975
7/19/99	18	2,015	89	1,891	2,000	6/8/00	17	1,894	85	1,826	1,894	9/4/00	17	1,961	90	1,904	1,961
7/20/99	17	2,253	94	2,162	2,253	6/9/00	17	1,865	85	1,812	1,865	9/6/00	19	1,611	79	1,515	1,567
7/21/99	17	2,289	95	2,210	2,261	6/12/00	18	2,002	89	1,938	1,999	9/7/00	21	1,698	81	1,553	1,595
7/22/99	17	2,299	95	2,191	2,274	6/13/00	17	2,168	93	2,102	2,168	9/11/00	17	1,995	86	1,920	1,995
7/23/99	17	2,294	95	2,222	2,264	6/16/00	18	2,108	92	2,063	2,083	9/12/00	18	1,954	87	1,830	1,915
7/26/99	18	2,305	95	2,188	2,294	6/19/00	18	2,214	94	2,118	2,191	9/13/00	18	2,093	90	2,006	2,083
7/27/99	17	2,376	99	2,288	2,344	6/22/00	17	1,896	89	1,773	1,896	9/14/00	16	2,136	91	2,089	2,133
7/28/99	17	2,394	98	2,326	2,368	6/26/00	17	1,829	89	1,689	1,829	9/15/00	17	2,106	91	2,032	2,106
7/29/99	18	2,353	97	2,284	2,324	6/28/00	16	1,901	88	1,835	1,881	9/19/00	21	1,640	81	1,548	1,593
7/30/99	17	2,376	99	2,338	2,376	7/3/00	18	1,892	87	1,855	1,891	9/20/00	17	1,760	87	1,638	1,780
8/3/99	17	2,165	91	2,110	2,165	7/4/00	18	1,855	89	1,796	1,847	9/25/00	17	2,178	91	2,102	2,178
8/4/99	19	1,763	85	1.676	1,741	7/5/00	17	2,191	96	2,171	2,191	9/26/00	17	1,862	81	1,793	1,862
8/5/99	18	2,110	88	2,035	2,089	7/10/00	18	2,185	95	2,119	2,167	9/28/00	17	1,665	80	1,626	1,665
8/6/99	17	2,226	92	2,180	2,226	7/11/00	18	2,337	98	2,270	2,336						
8/9/99	18	2,034	88	1,889	2,016	7/12/00	18	2,112	87	1,963	2,054						
8/11/99	17	2,222	94	2,127	2,222	7/13/00	18	2,305	95	2,216	2,298						
8/17/99	17	2,234	92	2,200	2,234	7/17/00	17	2,357	98	2,229	2,357						

Non-Firm Customer Load Data

The average of the top 10 peak days per season (excluding the highest and lowest values) in FY 2000 are the base-line coincident peak demand estimates for non-firm customer load.

System Winter Peak Days

Fiscal Year		Hour	Peak	Effect of Peaking Prices	
	Date				Adjusted Peak
1999	1/6/99	8	2,403	17	2,420
2000	1/27/00	8	2,478	5	2,483

Coincident Peak Demand			
$81 / C$ Load	EOPP	Adj Load	Typical
81	17	98	
137	5	142	141

System Summer Peak Days

Fiscal Year				Effect of Peaking Prices	Adjusted Peak
	Date	Hour	Peak		
1998	7/1/98	18	2,338	3	2,341
1999	8/2/99	16	2,427	0	2,427
2000	7/20/00	14	2,380	0	2,380

Coincident Peak Demand			
I/C Load	EOPP	Ad Load	Typical
94	3	97	
130	0	130	
151	0	151	149

FY 2000 Top 10 Peak Days Per Season

Appendix B
 Ten-Year Site Plan
 Schedules

IEA
 2002 Ten Year Site Plan
 Ten-Year Site Plan Schedules

The following Appendix presents the schedules required by the Florida Public Service Commission to be included as part of the Ten-Year Site Plan.

Schedule 2.1 History And Forecast of Energy Consumption and Number of Customers By Class									
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	Rual and Residential			Commercial			Industrial		
Calendar Year	$\begin{aligned} & \hline \text { GWH } \\ & \text { Sales } \end{aligned}$	Average No. of Customers	Average kWh/ Customer	$\begin{aligned} & \hline \text { GWH } \\ & \text { Sales } \end{aligned}$	Average No. of Customers	Average kWh/ Customer	$\begin{aligned} & \hline \text { GWH } \\ & \text { Sales } \end{aligned}$	Average No. of Customers	Average kWh/ Customer
1991	3,602	262,376	13,730	874	28,995	30,133	3,590	2,477	1,449,326
1992	3,696	266,219	13,883	873	29,144	29,945	3,660	2,596	1,409,926
1993	3,830	270,818	14,143	862	29,378	29,327	3,889	2,670	1,456,427
1994	3,909	278,682	14,027	897	29,571	30,324	4,048	2,731	1,482,265
1995	4,137	283,551	14,589	937	29,972	31,269	4,174	2,742	1,522,385
1996	4,391	288,947	15,195	937	30,162	31,079	4,353	2,975	1,463,160
1997	4,165	295,916	14,075	949	30,709	30,903	4,526	3,025	1,496,198
1998	4,643	301,883	15,380	1,035	31,297	33,070	4,835	3,094	1,562,702
1999	4,529	305,917	14,805	1,036	31,873	32,504	5,130	3,203	1,601,623
2000	4,701	312,103	15,062	1,079	32,351	33,353	5,205	3,309	1,572,983
2001	4,884	319,532	15,284	1,104	32,990	33,476	5,411	3,450	1,568,311
2002	5,070	325,728	15,564	1,146	33,065	34,670	5,616	3,537	1,588,068
2003	5,233	332,276	15,748	1,183	33,502	35,320	5,797	3,652	1,587,592
2004	5,399	338,957	15,929	1,221	33,945	35,967	5,982	3,770	1,586,475
2005	5,569	345,772	16,106	1,259	34,394	36,613	6,170	3,893	1,584,759
2006	5,742	352,724	16,278	1,298	34,849	37,257	6,361	4,020	1,582,485
2007	5,918	359,816	16,447	1,338	35,310	37,900	6,556	4,150	1,579,692
2008	6,098	367,050	16,613	1,379	35,777	38,542	6,756	4,285	1,576,415
2009	6,281	374,430	16,776	1,420	36,250	39,183	6,959	4,425	1,572,690
2010	6,469	381,958	16,935	1,463	36,729	39,824	7,166	4,569	1,568,550
2011	6,660	389,637	17,092	1,506	37,215	40,466	7,378	4,717	1,564,026

Schedule 3 History And Forecast of Seasonal Peak Demand and Annual Net Energy For Load														
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	Summer Peak Demand @ Generator - MW					Annual Net Energy for Load (GWH)				Winter Peak Demand @ Generator - MW				
Calendar Year	Retail	Wholesale	Total	Interruptible	Net Firm Demand	Retail	Wholesale	Total	$\begin{gathered} \text { Load Factor } \\ \% \\ \hline \end{gathered}$	Retail	Wholesale	Total	Interruptible	Net Firm Demand
1991	1,709	47	1,756	0	1,756	8,611	224	8,835	57	1,661	64	1,725	0	1,725
1992	1,825	56	1,881	0	1,881	8.719	309	9,028	55	1,812	69	1,881	0	1,881
1993	1,938	60	1,998	0	1,998	9,270	339	9,609	55	1,725	66	1,791	0	1,791
1994	1,865	53	1,918	0	1.918	9,305	304	9,609	56	1,872	70	1,942	0	1,942
1995	2,001	66	2,067	0	2,067	9,987	339	10,326	54	2,108	82	2,190	0	2,190
1996	2,050	64	2,114	0	2,114	10,151	363	10,515	50	2,313	88	2,401	0	2,401
1997	2,061	70	2,131	0	2,131	10,282	383	10,665	57	2,012	72	2,084	0	2,084
1998	2,252	86	2,338	0	2,338	11,032	438	11,470	56	1,907	68	1,975	0	1,975
1999	2,335	92	2,427	0	2,427	11,328	454	11,782	55	2,310	93	2,403	0	2,403
2000	2,287	93	2,380	0	2,380	11,708	482	12,190	56	2,373	105	2,478	0	2,478
2001	2,293	96	2,389	0	2,389	11,869	453	12,322	53	2,557	109	2,666	0	2,666
2002	2,362	100	2,461	158	2,619	12,512	508	13,019	54	2,484	113	2,596	150	2,746
2003	2,441	103	2,544	163	2,706	12,915	530	13,445	54	2,568	116	2,684	154	2,838
2004	2.521	107	2,627	168	2,795	13,326	553	13,879	54	2,653	121	2,774	159	2,933
2005	2,602	110	2,712	173	2,885	13,745	576	14,320	54	2,740	125	2,865	163	3,029
2006	2,685	114	2,799	178	2,977	14,172	598	14,770	54	2,829	129	2,958	168	3,126
2007	2,769	118	2,887	183	3,071	14,607	621	15,228	54	2,919	134	3,052	173	3,226
2008	2,855	122	2,977	189	3.166	15,051	644	15,695	54	3,010	138	3,149	179	3,327
2009	2,942	127	3,069	194	3,263	15,504	666	16,170	54	3,103	143	3,247	184	3,431
2010	3,031	131	3,162	200	3,362	15,966	689	16,655	54	3,198	148	3,346	189	3,536
2011	3,122	135	3,257	206	3,463	16,438	712	17,150	52.	3,399	153	3,551	201	3,753

Schedule 4 Previous Year Actual and Two Year Forecast of Peak Demand And Net Energy For Load By Month						
(1)	(2)	(3)	(4)	(5)	(6)	(7)
	Actual 2001		Forecast 2002		Forecast 2003	
Month	Peak Demand (MW)	Net Energy For load (GWH)	Peak Demand (MW)	Net Energy For load (GWH)	Peak Demand (MW)	Net Energy For load (GWH)
January	2,666	1,133	2,596	1,073	2,684	1,108
February	1,981	834	2,343	931	2,423	961
March	1,833	908	1,961	931	2,029	961
April	1,915	910	1,707	905	1,764	934
May	2,201	1,065	2,027	1,073	2,094	1,108
June	2,308	1,147	2,338	1,215	2,416	1,255
July	2,372	1,227	2,461	1,344	2,543	1,388
August	2,389	1,276	2,401	1,357	2,481	1,402
September	2,200	1,029	2,249	1,202	2,324	1,241
October	1,987	957	2,145	1,014	2,216	1,047
November	1,616	879	1,895	934	1,958	965
December	2,223	955	2,276	1,041	2,351	1,075
Total		12,322		13,019		13,445

Schedule 5 Fuel Requirements														
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
	Fuel			Actuals										
	Requirements	Type	Units	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011
(1)	NUCLEAR		TRILLION BTU	0	0	0	0	0	0	0	0	0	0	0
(2)	COAL		1000 TON	2,421	3,067	2,563	2,274	2,251	2,389	2,476	2,537	2,638	2,517	2,462
(3) (4) (5) (6)	RESIDUAL	STEAM CC CT/GT TOTAL:	$\begin{aligned} & 1000 \mathrm{BBL} \\ & 1000 \mathrm{BBL} \\ & 1000 \mathrm{BBL} \\ & 1000 \mathrm{BBL} \end{aligned}$	$\begin{array}{r} 4,252 \\ 0 \\ 0 \\ 4,252 \end{array}$	592 0 0 592	$\begin{array}{r} 1,457 \\ 0 \\ 0 \\ 1,457 \end{array}$	$\begin{array}{r} 1.059 \\ 0 \\ 0 \\ 1,059 \end{array}$	657 0 0 657	758 0 0 758	915 0 0 915	855 0 0 855	927 0 0 927	1,021 0 0 1,021	1,322 0 0 1,322
$\begin{array}{r} (7) \\ (8) \\ (9) \\ (10) \end{array}$	DISTILLATE	STEAM CC CT/GT TOTAL:	1000 BBL 1000 BBL 1000 BBL 1000 BBL	0 0 172 172	0 0 91 91	0 0 66 66	0 0 127 127	0 0 74 74	0 0 97 97	0 0 117 117	0 0 48 48	0 0 66 66	0 0 78 78	0 0 84 84
$\begin{aligned} & (12) \\ & (13) \\ & (14) \\ & (15) \end{aligned}$	NATURAL GAS	STEAM CC CT/GT TOTAL:	$\begin{aligned} & 1000 \mathrm{MCF} \\ & 1000 \mathrm{MCF} \\ & 1000 \mathrm{MCF} \\ & \mathbf{1 0 0 0} \mathrm{MCF} \end{aligned}$	$\begin{array}{r} 6,093 \\ 0 \\ 5,192 \\ 11,285 \end{array}$	$\begin{array}{r} 4,739 \\ 0 \\ 5,762 \\ 10,501 \end{array}$	$\begin{array}{r} 4,364 \\ 0 \\ 4,566 \\ \mathbf{8 , 9 3 0} \end{array}$	$\begin{array}{r} 3,654 \\ 8,831 \\ 2,487 \\ 14,972 \end{array}$	$\begin{array}{r} 3,345 \\ 14,759 \\ 1,276 \\ 19,380 \end{array}$	$\begin{array}{r} 3,550 \\ 14,835 \\ 1,573 \\ 19,958 \end{array}$	$\begin{array}{r} 3,789 \\ 15,024 \\ 1,611 \\ 20,424 \end{array}$	$\begin{array}{r} 3,859 \\ 19,229 \\ 666 \\ 23,754 \end{array}$	4,008 20,240 980 25,228	$\begin{array}{r} 4,108 \\ 21,618 \\ 1,161 \\ 26,888 \end{array}$	$\begin{array}{r} 3,788 \\ 23,335 \\ 2,020 \\ \mathbf{2 9 , 1 4 4} \end{array}$
(16)	PETROLEUM COKE		1000 TON	0	478	1,579	1,542	1,530	1,536	1,535	1,540	1,535	1,203	1,446
(20)	OTHER (SPECIFY)		TRILLION BTU	20	13	11.	11	10	10	11	11	12	5	0
1. Coal includes JEA's share of SJRPP and Scherer 4 and Northside Units 2 Coal testing. 2. Other is JEA's net interchange.														

Schedule 7

Forecast of Capacity, Demand, and Scheduled Maintenance at Time Of Peak
Winter

Year	Installed Capacity MW	Firm Capacity		$\begin{aligned} & \text { QF } \\ & \text { MW } \end{aligned}$	Available Capacity MW	Firm Peak Demand MW	Reserve Margin Before Maintenance		Scheduled Maintenance MW	Reserve Margin After Maintenance	
		Import MW	Export MW								
							MW	Percent		MW	Percent
2002	2,928	427	445	0	2,910	2,596	314	12\%	0	314	12\%
2003	3,458	207	445	0	3,220	2,684	536	20\%	0	536	20\%
2004	3,014	560	383	0	3,191	2,774	417	15\%	0	417	15\%
2005	3,648	277	383	0	3,543	2,865	677	24\%	0	677	24\%
2006	3,648	277	383	0	3,543	2,958	584	20\%	0	584	20\%
2007	3,648	277	383	0	3,543	3,052	490	16\%	0	490	16\%
2008	4,000	277	383	0	3,895	3,149	746	24\%	0	746	24\%
2009	4,000	277	383	0	3,895	3,247	648	20\%	0	648	20\%
2010	4,250	277	383	0	4,145	3,346	798	24\%	0	798	24\%
2011	4,440	70	383	0	4,128	3,448	680	20\%	0	680	20\%

Summer

Year	Installed Capacity MW	Firm Capacity		$\begin{aligned} & \text { QF } \\ & \text { MW } \end{aligned}$	Available Capacity MW	Firm Peak Demand MW	Reserve Margin Before Maintenance		Scheduled Maintenance MW	Reserve Margin After Maintenance	
		Import MW	Export MW								
							MW	Percent		MW	Percent
2002	2,976	282	430	0	2,828	2,461	367	15\%	0	367	15\%
2003	3,241	207	430	0	3,018	2,544	475	19\%	0	475	19\%
2004	3,426	277	430	0	3,273	2,627	646	25\%	0	646	25\%
2005	3,431	277	383	0	3,326	2,712	613	23\%	0	613	23\%
2006	3,431	277	383	0	3,326	2,799	526	19\%	0	526	19\%
2007	3,431	277	383	0	3,326	2,887	438	15\%	0	438	15\%
2008	3,726	277	383	0	3,621	2,977	643	22\%	0	643	22\%
2009	3,726	277	383	0	3,621	3,069	552	18\%	0	552	18\%
2010	3,976	70	383	0	3,664	3,162	502	16\%	0	502	16\%
2011	4,134	70	383	0	3,822	3,257	565	17\%	0	565	17\%

Commilted Units:

1. TEA Purchase 220 MW Winter / 75 MW Summer 2002.
2. Northside Unit 1 -- Outage for Fuel Conversion started Fall, 2001
3. Northside Unit 2 - Summer, 2002
4. Northside Unit 1 - Fall, 2002

Schedule 8.0

Planned and Prospective Generating Facility Additions and Changes

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
Plant Name	Unit	Location	Unit Type	Fuel	Type	Fuel Tr	Alternate	$\begin{array}{\|c\|} \hline \text { Construction } \\ \text { Start } \\ \text { Date } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Commercial } \\ \text { In-Service } \\ \text { Date } \\ \hline \end{array}$	Expected Retirement	Gen Max Nameplate kW		pability Winter MW	Status
Northside	2	12-031	FC	PC	Coal	WA	WA	07/27/99	Summer 02		297,000	265	265	RP
Northside	1	12-031	FC	PC	Coal	WA	WA	09/15/99	Winter 03		297,000	265	265	FC
Brandy Branch	4	Brandy Branch	CC	NG	FO2	PL	TK		06/01/04			501	573	U
Combined Cycle		Greenfield	CC	NG	FO2	PL	TK		01/01/08			295	352	P
CFB		Greenfield	FC	PC	Coal	WA	WA		06/01/10			250	250	P
CT		Greenfield	GT	NG	FO2	PL	TK		01/01/11		195,280	158	191	P

Schedule 9		
Status Report and Specifications of Proposed Generating Facilities		
(1)	Plant Name and Unit Number:	Northside Units 1 and 2
(2)	Net Capacity:	
(3)	Summer MW	265
(4)	Winter MW	265
(5)	Technology Type:	Circulating Fluidized Bed
(6)	Anticipated Construction Timing:	
(7)	Field Construction Start-date:	07/27/1999
(8)	Commercial In-Service date:	Summer 2002 Unit 2
		Winter 2003 Unit 1
(10)	Primary	Petroleum Coke
(11)	Alternate	Coal
(12)	Air Pollution Control Strategy:	CFB with Dry Scrubber, Bag House and SNCR
(13)	Cooling Method:	Once Through Flow
(14)	Total Site Area:	200 acres
(15)	Construction Status:	Active
(16)	Certification Status:	Not Required
(17)	Status with Federal Agencies:	Construction Permit Recieved
(18)	Projected Unit Performance Data:	
(19)	Planned Outage Factor (POF):	7.35 percent
(20)	Forced Outage Factor (FOF):	2.50 percent
(21)	Equivalent Availability Factor (EAF):	90.15 percent
(22)	Resulting Capacity Factor (\%):	90.00 percent
(23)	Average Net Operating Heat Rate (ANOHR):	$9946 \mathrm{Btu} / \mathrm{kWh}$
(24)	Projected Unit Financial Data:	
(25)	Book Life:	30 years
(26)	Total Installed Cost (In-Service year $\$ / \mathrm{kW}$):	
(27)	Direct Construction Cost ($\$ / \mathrm{kW}$):	\$1,205
(28)	AFUDC Amount ($\$ / \mathrm{kW}$):	Included in direct construction cost
(29)	Escalation (\$/kW):	Included in direct construction cost
(30)	Fixed O\&M (\$/kW-yr):	7.07
(31)	Variable O\&M (\$/MWh):	1.74

	Schedule 10.1Status Report and Specifications of Proposed Directly Associated Transmission LinesBrandy Branch Combined Cycle (Commerce N-Duval)	
(1)	Point of Origin and Termination	Commerce N - Duval \& Commerce N Steelbald
(2)	Number of Lines	Loop existing line through new Commerce N 230 kV Substation
(3)	Right of Way	May require new ROW
(4)	Line Length	5.1 Miles
(5)	Voltage	230 kV
(6)	Anticipated Construction Time	19 Months(ISD: May, 2004)
(7)	Anticipated Capital Investment	\$1,500,000
(8)	Substations	Duval, Steelbald \& Commerce N 230 kV
(9)	Participation with Other Utilities	FPL (at Duval Substation)

Schedule 10.2

Status Report and Specifications of Proposed Directly Associated Transmission Lines Northside (Center Pk-Northside)

(1)	Point of Origin and Termination	Convert Center Pk-Northside to 230 kV
(2)	Number of Lines	One (1) line
(3)	Right of Way	Line Length
(5)	Voltage	No new ROW Required
(6)	Anticipated Construction Time	11.03 Miles
(7)	Anticipated Capital Investment	230 kV
(8)	Substations	18 Months (ISD: May, 2003)
(9)	Participation with Other Utilities	$\$ 2,000,000$

Schedule 10.3
Status Report and Specifications of Proposed Directly Associated Transmission Lines Northside (New Center Pk-Greenland)

(1)	Point of Origin and Termination	New Center Pk-Greenland 230 kV Line
(2)	Number of Lines	One (1) line
(4)	Line Length	New ROW Required
(5)	Voltage	19.3 Miles
(6)	Anticipated Construction Time	230 kV
(7)	Anticipated Capital Investment	37 months (ISD: May, 2003)
(8)	Substations	$\$ 6,000,000$
(9)	Participation with Other Utilities	Line terminations at Center Pk and Greenland

