1		
1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3	4	OF
4		HOWARD T. BRYANT
5		
6	Q.	Please state your name, address and occupation.
7		
8	Α.	My name is Howard T. Bryant. My business address is 702
9		North Franklin Street, Tampa, Florida 33602. I am
10		employed by Tampa Electric Company ("Tampa Electric" or
11		"the company") as Manager, Rates in the Regulatory
12		Affairs Department.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	۹.	I graduated from the University of Florida in June 1973
18		with a Bachelor of Science degree in Business
19		Administration. I have been employed by Tampa Electric
20		since August 1981. My work has included various
21		positions in Customer Service, Energy Conservation
22		Services, Demand Side Management ("DSM") Planning, Energy
23		Management and Forecasting, and Regulatory Affairs. In
24		my current position, I am responsible for the company's
25		Energy Conservation Cost Recovery ("ECORGOUNG Hausen The T
		06212 JUN-13

FPSC-COMMISSION CLERK

Environmental Cost Recovery Clause ("ECRC"), and retail rate design.

- Q. Have you previously testified before the Florida Public Service Commission ("Commission")?
- A. Yes. I have testified before this Commission on conservation and load management activities, DSM goals setting dockets, DSM plan approval dockets, and other ECCR dockets since 1993, and various ECRC activities since 2001.
- 12

10

11

Q. What is the purpose of your testimony?

14

The purpose of my testimony is to present, for Commission Α. 15 review and approval, Tampa Electric's proposed numerical 16 DSM goals for 2005 - 2014. The goals are separated into 17 summer demand, winter demand and annual energy components 18 for both residential and commercial/industrial sectors. 19 In support of the proposed DSM goals, my testimony 20 Electric utilized describes the process Tampa to 21 establish reasonably achievable, cost-effective goals. 22 23

24 Q. Have you prepared an exhibit in support of your25 testimony?

A. Yes, under my direction and supervision, I have prepared an exhibit entitled, "Exhibit of Howard T. Bryant." It consists of four documents and has been identified as Exhibit No. (HTB-1).

5

6 2. Please describe the overall process Tampa Electric used
7 to develop its proposed DSM goals.

8

The overall process for Tampa Electric began with the Q ٩. list of end-use comprehensive identification of а 10 measures that met the requirements of Rule 25-17.0021. 11 In Docket No. 930551-EG, the Commission provided the 12 Fourth Order Establishing Procedure during the first DSM 13 goals setting process which established a comprehensive 14 baseline of measures to be evaluated for the development 15 These measures were from the Synergic of DSM goals. 16 "Electricity ("SRC") report, Corporation Resources 17 Conservation and Energy Efficiency in Florida: Technical, 18 Results, Final Report." Achievable Economic and 19 Subsequently, in Docket No. 971007-EG, the Commission 20 Staff proposed that this previously adopted baseline of 21 measures become the foundation for evaluations during the 22 second DSM goals setting process and it was utilized as 23 Due to its comprehensive nature and ability to such. 24 meet the intent of the Rule, Tampa Electric deemed it 25

appropriate for this list of DSM measures to again form the basis for evaluations necessary to establish the company's DSM goals for the next ten-year planning period.

The next step was to include any measures from the 6 7 company's existing DSM programs and other research and development ("R&D") activity that were not on the SRC 8 list. Finally, the cost-effectiveness evaluation of each 9 measure was performed, and after minimal screening using 10 11 empirical judgment, the proposed DSMqoals were established for the residential and commercial/industrial 12 13 sectors.

14

1

2

3

4

5

Q. Please provide additional detail as to why the SRC
 measures are an appropriate starting point for Tampa
 Electric's evaluation process?

18

The SRC measures and methodology for identifying their 19 **A**. evaluation characteristics are established and well known 20 the Commission from previous proceedings. 21 to Furthermore, SRC developed data for the DSM measures 22 specific to Tampa Electric's service area. Therefore, 23 all that was needed was updating the previous data set to 24 reflect inflation and measure costs. Finally, Rule 25-25

1		17.0021(3) requires that the utility a.) propose goals
2		reasonably achievable in both the residential and
3	ā	commercial/industrial market sectors; b.) consider
4		measures applicable for new and existing construction in
5		both market sectors; c.) assess major end-use categories
6		listed in the rule; and d.) address such issues as
7		overlapping measures, appliance efficiency standards,
8		interactions with building codes, rebound effects and the
9		utility's latest monitoring and evaluation data. The SRC
10		measures meet the preponderance of these requirements.
11		
12	Q.	Please describe the additional DSM measures Tampa
13		Electric considered and included in the goals setting
14		process.
15		
16	А.	The additional DSM measures Tampa Electric included in
17		the goals setting process included those measures
18		currently promoted through the company's existing
19		programs but not a part of the original SRC list. The
20		measures added included a heat pump replacing strip heat,
21		residential load management, commercial load management,
22		standby generator and direct expansion air-conditioning
23		replacement. The company also included the measures
24		previously identified by the Commission as Code/Utility
25		Evaluation ("CUE") measures. However, the CUE measures

were first screened for those that now exist in the 1 Florida Energy Efficiency Code for Building Construction. 2 1 Tampa Electric also considered measures that had been 3 historically promoted through the company's custom 4 incentive program and that had developed a consistent 5 demand and energy savings profile across one or more 6 commercial/industrial segments. Finally, R&D measures 7 that were demonstrated to be viable for the company's 8 potentially cost-effective 9 climate zone and were 10 considered. The comprehensive list of measures evaluated by Tampa Electric is shown in Document 1 of my Exhibit 11 No. (HTB-1). 12 13 Once Tampa Electric compiled its list of measures for 14 Q. evaluation, did any screening occur based on a measure's 15 16 cost-effectiveness results from any previous qoals 17 setting proceeding? 18 All measures on the list were evaluated regardless 19 No. Α. of their cost-effectiveness results from previous goals 20 setting proceedings. This was done even though the 21 avoided cost for combustion turbine generation 22 has dropped significantly since the last proceeding. 23 24 What impact did Tampa Electric's ongoing monitoring and 25 2.

1		evaluating efforts have on the process?
2	ł	
3	A. 🐔	Tampa Electric's monitoring and evaluating efforts
4		enabled the company to update certain demand and energy
5		savings, company costs and customer equipment costs for
6		measures that are integral to the company's current DSM
7		programs.
8		
9		Additionally, the company was able to identify the
10		shrinking market potential, residentially and
11		commercially, for measures that have had successful
12		penetration rates from the early 1980s forward.
13		
14	Q.	Please describe the cost-effectiveness analysis Tampa
15		Electric performed on the comprehensive list of measures.
16		
17	Α.	Consistent with previous goals setting proceedings, all
18		measures were evaluated using the Commission prescribed
19		cost-effectiveness methodology defined in Rule 25-17.008.
20		The SRC and/or company specific data for each measure was
21		input into the cost-effectiveness model (DSM_FIRE)
22		previously developed to meet the requirements of the
23		Rule. Cost-effective results were identified as those
24		measures that passed the Rate Impact Measure ("RIM")
25		Test, the Total Resource Cost ("TRC") Test, and the
	I	7

Participants' Test with a benefit-to-cost ratio ("BCR") 1 2 of 1.0 or greater. 2 3 For those measures with a BCR of 1.0 or greater, please 4 Q. additional analysis or screening that 5 describe any 6 occurred. 7 At this juncture, participation rates for the measures 8 Α. exhibiting a BCR of 1.0 or greater were analyzed. 9 In some cases, the rate was projected at a fairly aggressive 10 11 level due to the relative newness and moderate adoption rate of the measure thus far in the marketplace. The 12 13 duct repair measure for existing residential air is excellent example. 14 distribution systems an Conversely, some measures have been cost-effectively 15 penetrating the marketplace since the early 1980s and 16 their participation rates were projected at a more modest 17 Heat pump replacing strip heat and ceiling level. 18 insulation measures in the residential sector 19 are examples of these types of measures. Simply stated, it 20 21 is becoming increasingly more difficult to secure the next incremental participant for these maturing measures. 22 23 However, both of these residential measures, along with residential mature and commercial/industrial other 24 measures, are still cost-effective and their respective 25

contributions will continue to be counted toward the 1 2 company's DSM goals. 5 3 Measures that had a BCR of 1.0 or greater were also 4 screened for permanency, customer behavioral 5 characteristics, a measure's viability for inclusion in a 6 utility DSM program, marketplace availability and free 7 ridership. 8 9 Did all of the measures in Tampa Electric's current DSM 10 Q. programs maintain their cost-effectiveness? 11 12 Although there was a continuing overall decline in BCRs 13 Α. 14 due to decreasing costs for avoided combustion turbine generation, with the exception of Tampa Electric's 15 16 residential load management measure, all measures from the company's current DSM programs maintained their cost-17 For residential load management, effectiveness. 18 а significant effort was made to determine modifications 19 that could be made in order to preserve the measure. 20 A11 cost components were analyzed for potential reductions. 21 A seasonal approach in lieu of a year round offering and 22 23 а minimum requirement of two appliances for new participants were evaluated; however, no combination of 24 these alternatives provided a cost-effective solution. 25

1 ο. What Tampa Electric's plan for residential load is 2 management? 3 Tampa Electric recognizes the value of 4 Α. its existing residential load management resource and the potential 5 for incremental load t.hat. still exists in the 6 However, the company believes that a new 7 marketplace. approach must be taken in order to secure any portion of 8 9 that existing potential. Therefore, Tampa Electric is evaluating a type of load management that the utility 10 11 industry generically terms price responsive load management ("PRLM"). 12 13 PRLM has been demonstrated to be a viable and customer 14 accepted alternative offered by utilities in the United 15 16 States to their commercial/industrial sector of 17 customers. It is now emerging as an option for the residential sector as well. The success of PRLM is based 18 19 upon the premise that if a utility provides customers with high enough real-time pricing signals during periods 20 when traditional load management would be exercised, PRLM 21 22 customers will react to such higher priced signals and 23 alter their energy consumption patterns, thereby 24 providing demand reductions during a utility's peak

demand periods. In Florida, PRLM is being successfully demonstrated by Gulf Power Corporation.

examined for Tampa Electric has available data а 4 The initial potential PRLM program in its service area. 5 evaluation is guite promising; however, company specific 6 data is necessary for an informed decision to be made. 7 Therefore, Tampa Electric anticipates filing a request 8 with the Commission in August 2004 for a residential PRLM 9 pilot project of up to two years in duration to begin 10 field installation and data collection during the first 11 guarter of 2005. In the interim and until the completion 12 of the PRLM pilot, Tampa Electric will request that the 13 current residential load management program remain open 14 for new customer participation and that the company will 15 be able to count any modest incremental savings achieved 16 At the end of toward its goals for the current period. 17 the PRLM pilot, Tampa Electric will evaluate the long-18 term viability of PRLM, the cost-effectiveness of its 19 current load management program, and from those analyses, 20appropriate plans determine the for capturing the 21 residential load management potential that exists at that 22 23 time. The decision process and any necessary filings will be brought before the Commission. 24

25

1

2

3

4

	1	
1	Q.	Based on Tampa Electric's evaluation process, what are
2	,	the DSM goals the company is proposing for 2005 - 2014?
3	a.	
4	A.	For 2005 - 2014, Tampa Electric's cumulative proposed
5		residential goals are a 15.2 MW reduction in summer
6		demand, a 20.1 MW reduction in winter demand and a 43.5
7		GWH reduction in annual energy. The cumulative proposed
8		commercial goals are a 15.3 MW reduction in summer
9		demand, an 8.2 MW reduction in winter demand and a 41.5
10		GWH reduction in annual energy. Document 2 of my Exhibit
11		No (HTB-1) provides the cumulative proposed
12		residential goals for the period and Document 3 of my
13		Exhibit No (HTB-1) provides the cumulative proposed
14		commercial goals for the period.
15		
16	Q.	Please comment on Tampa Electric's resource planning
17		practices utilized in this current goals setting process?
18		
19	A.	Tampa Electric's resource planning process for this
20		current goals setting process is consistent with the
21		integrated approach approved by the Commission in the two
22		previous goals setting proceedings - Docket No. 930551-EG
23	1	and Docket No. 971007-EG. The process is also delineated
24		in the company's annual Ten-Year Site Plan filing.
25		

1	Q.	Please identify the avoided cost assumptions used for
2	,	measure analysis.
3	Ę.	
4	Α.	The avoided cost assumptions used for measure analysis
5		are contained in Document 4 of Exhibit No (HTB-1).
6		The data is consistent with information filed in the
7		company's most recent Ten-Year Site Plan.
8		
9	Q.	Please summarize your testimony.
10		
11	А.	Tampa Electric initiated its current DSM goals setting
12		process by utilizing a comprehensive list of measures
13		derived from previous goals setting proceedings.
14		Additional measures from company programs were added for
15		evaluation. Based upon ongoing monitoring and evaluating
16		conducted by the company, modifications to measure
17		characteristics where made where appropriate. All
18		measures were evaluated for cost-effectiveness. After
19		appropriate screening, measures that passed the
20		Commission prescribed cost-effectiveness tests with a BCR
21		of 1.0 or greater established the goals for 2005 - 2014.
22		The cumulative residential sector goals are 15.2 MW of
23		summer demand, 20.1 MW of winter demand and 43.5 GWH of
24		annual energy. The cumulative commercial/industrial

	1	
1		sector goals are 15.3 MW of summer demand, 8.2 MW of
2		winter demand and 41.5 GWH of annual energy.
3	ā	
4	Q.	Does this conclude your testimony?
5	A.	Yes.
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	i.	14

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. (HTB-1)

Tampa Electric Company

Exhibit of

Howard T. Bryant

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. ____ (HTB-1)

Tampa Electric Company

Document No.	Title	Page
1	DSM Measure Evaluation List	17
2	Proposed Residential Goals	25
3	Proposed Commercial/Industrial Goals	26
4	Avoided Cost Assumptions	27

Index

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 1 of 9

Residential Existing Construction Measures Evaluated

Appliance Efficiencies

CW-1	HIGH EFFICIENCY CLOTHES WASHER
FR-1	BEST CURRENT FREEZER (FROST-FREE)
FR-2	BEST CURRENT FREEZER (MANUAL)
FR-3	REMOVE SECOND FREEZER
LT-1	COMPACT FLUORESCENT
LT-2	EFFICIENT INCANDESCENT
LT-3	HIGH PRESSURE SODIUM (OUTDOOR)
LT-4	4'-34W FLOUR LAMPS/ELECTRONIC BALLASTS (#2)
PP-1	HIGH EFFICIENCY POOL PUMP
RF-1	BEST CURRENT REFRIGERATOR (FROST-FREE)
RF-2	BEST CURRENT REFRIGERATOR (MANUAL)
RF-3	REMOVE SECOND REFRIGERATOR

Building-Envelope Efficiencies

RSC-10A	CEILING INSULATION (RO-R19)
RSC-10B	CEILING INSULATION (RO-R19)
RSC-11A	CEILING INSULATION (R11-R30)
RSC-11B	CEILING INSULATION (R11-R30)
RSC-12A	CEILING INSULATION (R19-R30)
RSC-12B	CEILING INSULATION (R19-R30)
RSC-13A	CEILING INSULATION (R30-R38)
RSC-13B	CEILING INSULATION (R30-R38)
RSC-15A	WEATHERSTRIP/CAULK W/BLOWER DOOR
RSC-15B	WEATHERSTRIP/CAULK W/BLOWER DOOR
RSC-16A	WINDOW FILM/REFLECTIVE GLASS
RSC-16B	WINDOW FILM/REFLECTIVE GLASS
RSC-17A	LOW EMISSIVTY GLASS
RSC-17B	LOW EMISSIVTY GLASS
RSC-18A	SHADE SCREENS
RSC-18B	SHADE SCREENS
RSC-19A	REFLECTIVE ROOF COATINGS
RSC-19B	REFLECTIVE ROOF COATINGS
TECO-R1	TECO CEILING INSULATION

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 2 of 9

HVAC Systems

RSC-01	HIGH EFFICIENCY AIR SOURCE HEAT PUMP
RSC-02	GROUND SOURCE HEAT PUMP
RSC-03	TWO SPEED HEAT PUMP
RSC-05A	REDUCED DUCT LEAKAGE
RSC-05B 👘 👘	REDUCED DUCT LEAKAGE
RSC-07A	SETBACK/PROGRAMMABLE THERMOSTAT
RSC-07B	SETBACK/PROGRAMMABLE THERMOSTAT
RSC-21A	HIGH EFFICIENCY CENTRAL AC
RSC-22A	TWO SPEED CENTRAL AC
RSC-23A	WHOLE HOUSE FANS
RSC-23B	WHOLE HOUSE FANS
RSC-24A	HIGH EFFICIENCY ROOM AC
RSC-25A	AIR CONDITIONING/HEAT PUMP MAINTENANCE
RSC-25B	AIR CONDITIONING/HEAT PUMP MAINTENANCE
RSC-29	RESIDENTIAL HIGH EFFICIENCY HEAT PUMP
TECO-R2	TECO HEATING AND COOLING SEER 12
TECO-R3	TECO DUCT REPAIR

Water Heating Systems

WH-1 HIGH EFFICIENCY ELECTRIC RESISTANCE WATER HEAT	ER
WH-2 INTEGRAL HEAT PUMP WATER HEATER	
WH-4 HEAT RECOVERY WATER HEATER (DESUPERHEATER)	
WH-5 ADD-ON HEAT PUMP WATER HEATER	
WH-6 DHW HEATER TANK INSULATION	
WH-7 DHW PIPE INSULATION	
WH-8 DHW HEAT TRAP	
WH-9 LOW FLOW SHOWERHEAD	

Peak Load Shaving

PP-3	DLC OF POOL PUMPS
RSC-8A	LOAD CONTROL FOR RESIDENTIAL HEAT
RSC-8B	LOAD CONTROL FOR RESIDENTIAL HEAT
RSC-26A	DLC OF CENTRAL AC
RSC-26B	DLC OF CENTRAL AC
WH-10	DLC OF ELECTRIC WATER HEATER
TECO-R4	TECO LOAD MANAGEMENT

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 3 of 9

Solar Energy and Renewable Energy Sources

WH-3 SOLAR WATER HEATER

Residential New Construction Measures Evaluated

Appliance Efficiencies

5

CW-1	HIGH EFFICIENCY CLOTHES WASHER
FR-1	BEST CURRENT FREEZER (FROST-FREE)
FR-2	BEST CURRENT FREEZER (MANUAL)
LT-1	COMPACT FLUORESCENT
LT-2	EFFICIENT INCANDESCENT
LT-3	HIGH PRESSURE SODIUM (OUTDOOR)
LT-4	4'-34W FLOUR LAMPS/ELECTRONIC BALLASTS (#2)
RF-1	BEST CURRENT REFRIGERATOR (FROST-FREE)
RF-2	BEST CURRENT REFRIGERATOR (MANUAL)

Building-Envelope Efficiencies

RSC-19A	REFLECTIVE ROOF COATINGS
RSC-19B	REFLECTIVE ROOF COATINGS

HVAC Systems

RSC-01	HIGH EFFICIENCY AIR SOURCE HEAT PUMP
RSC-02	GROUND SOURCE HEAT PUMP
RSC-03	TWO SPEED HEAT PUMP
RSC-05A	REDUCED DUCT LEAKAGE
RSC-05B	REDUCED DUCT LEAKAGE
RSC-07A	SETBACK/PROGRAMMABLE THERMOSTAT
RSC-07B	SETBACK/PROGRAMMABLE THERMOSTAT
RSC-21A	HIGH EFFICIENCY CENTRAL AC
RSC-22A	TWO SPEED CENTRAL AC
RSC-24A	HIGH EFFICIENCY ROOM AC
RSC-29	RESIDENTIAL HIGH EFFICIENCY HEAT PUMP

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 4 of 9

Water Heating Systems

WH-1		HIGH EFFICIENCY ELECTRIC RESISTANCE WATER HEATER
WH-2		INTEGRAL HEAT PUMP WATER HEATER
WH-3		SOLAR WATER HEATER
WH-4		HEAT RECOVERY WATER HEATER (DESUPERHEATER)
WH-5	5	ADD-ON HEAT PUMP WATER HEATER
WH-6		DHW HEATER TANK INSULATION
WH-8		DHW HEAT TRAP
WH-9		LOW FLOW SHOWERHEAD

Peak Load Shaving

PP-3	DLC OF POOL PUMPS
RSC-8A	LOAD CONTROL FOR RESIDENTIAL HEAT
RSC-8B	LOAD CONTROL FOR RESIDENTIAL HEAT
RSC-26A	DLC OF CENTRAL AC
RSC-26B	DLC OF CENTRAL AC
WH-10	DLC OF ELECTRIC WATER HEATER
TECO-R4	TECO LOAD MANAGEMENT

Residential CUE Measures Evaluated

PP-1	HIGH EFFICIENCY POOL PUMP
PP-2	DOWN-SIZED POOL PUMPS W/OVERSIZED PLUMBING
RSC-06A	REDUCED DUCT HEAT TRANSFER - NEW CONSTRUCTION
RSC-06B	REDUCED DUCT HEAT TRANSFER - NEW CONSTRUCTION
RSC-09A	CEILING INSULATION - NEW CONSTRUCTION
RSC-09B	CEILING INSULATION - NEW CONSTRUCTION
RSC-28A	CEILING FANS
RSC-28B	CEILING FANS

Commercial Existing Construction Measures Evaluated

Appliance Efficiencies

CD-18	CONVECTION OVENS
CD-19	ENERGY EFFICIENT ELECTRIC FRYERS

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 5 of 9

Lighting Efficiencies

LD-01	4'-34W FLOUR LAMPS/HYBRID BALLASTS (#1)
LD-02	4'-34W FLOUR LAMPS/HYBRID BALLASTS (#2)
LD-03	4'-34W FLOUR LAMPS/ELECTRONIC BALLASTS (#1)
LD-04	4'-34W FLOUR LAMPS/ELECTRONIC BALLASTS (#2)
LD-05 🏛	8'-60W FLOUR LAMPS/ELECTRONIC BALLASTS (#1)
LD-06	8'-60W FLOUR LAMPS/ELECTRONIC BALLASTS (#2)
LD-07	T8 LAMPS/ELECTRONIC BALLASTS (#1)
LD-08	T8 LAMPS/ELECTRONIC BALLASTS (#2)
LD-09	REFL/DELAMP INSTALL 4'-40W FLOUR LAMPS/EE BALLAST
LD-10	REFL/DELAMP INSTALL 4'-34&40W FLOUR LAMPS/EE BALLAST
LD-11	REFL/DELAMP INSTALL 8'-75W FLOUR LAMPS/EE BALLAST
LD-12	REFL/DELAMP INSTALL 8'-60W FLOUR LAMPS/EE BALLAST
LD-13	REFL/DELAMP INSTALL 4'-34&40W FLOUR LAMPS/HYBD BALL
LD-14	REFL/DELAMP INSTALL 4'-34&40W FLOUR LAMPS/HYBD BALL
LD-15	REFL/DELAMP INSTALL 4'-34&40W FLOUR LAMPS/ELEC BALL
LD-16	REFL/DELAMP INSTALL 4'-34&40W FLOUR LAMPS/ELEC BALL
LD-17	REFL/DELAMP INSTALL 8'-60W FLOUR LAMPS/ELEC BALL
LD-18	REFL/DELAMP INSTALL 8'-60W FLOUR LAMPS/ELEC BALL
LD-19	4'X34W FLOUR LAMPS/DIMMING BALLAST(#1)
LD-20	4'X34W FLOUR LAMPS/DIMMING BALLAST(#2)
LD-21	HIGH PRESSURE SODIUM (70/100/150/250W)
LD-22	HIGH PRESSURE SODIUM (70/100/150/250W -W/ES BALLAST)
LD-23	HIGH PRESSURE SODIUM (35W)
LD-24	METAL HALIDE (32W)
LD-25	COMPACT FLOURESCENT LAMPS (15/18/27W)
LD-26	TWO LAMP COMPACT FLOURESCENT (18W)
LD-27	ENERGY MANAGEMENT SYSTEM FOR LIGHTING
LD-28	OCCUPANCY SENSORS
TECO-C1	TECO INDOOR LIGHTING

Refrigeration Equipment

MULTIPLEX AIR-COOLED/NO SUBCOOLING
MULTIPLEX AIR-COOLED/AMBIENT SUBCOOLING
MULTIPLEX AIR-COOLED/MECHANICAL SUBCOOLING
MULTIPLEX AIR-COOLED/AMBIENT & MECHANICAL SUBCOOL
MULTIPLEX AIR-COOLED/EXTERNAL LIQUID SUCTION HX
OPEN DRIVE REFRIGERATION SYSTEM (ASD)
ANTI-CONDENSATE HEATER CONTROLS
HIGH R-VALUE GLASS DOORS
REFRIGERATION ENERGY MANAGEMENT SYSTEM (EMS)
DUAL PATH AIR CONDITIONING

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 6 of 9

HVAC Systems

SCD-01		HIGH EFFICIENCY CHILLER
SCD-02		HIGH EFFICIENCY CHILLER W/ASD
SCD-03		HIGH EFFICIENCY DX AC
SCD-04		HIGH EFFICIENCY ROOM AC UNITS
SCD-05	A.	COOL STORAGE
SCD-06		HEAT PIPE ENHANCED DX AC
SCD-08		HOTEL OCCUPANCY SENSORS
SCD-10		A/C MAINTENANCE-CHILLER
SCD-11		A/C MAINTENANCE-DX AC
SCD-12		HVAC AIR DUCT/WATER PIPE INSULATION-CHILLER
SCD-13		HVAC AIR DUCT/WATER PIPE INSULATION-DX AC
SCD-16		TEMPERATURE SETUP/SETBACK-CHILLER
SCD-17		TEMPERATURE SETUP/SETBACK-DX AC
VD-01		LEAK FREE DUCTS DX AC
VD-03		VAV SYSTEMS W/INLET VANES-DX AC
VD-04		ASD VENTILATION CONTROL W/VAV-DX AC
VD-05		ASD VENTILATION CONTROL W/VAV-CHILLERS
VD-06		TIME/PROGRAM VENTILATION CONTROL-CHILLERS
VD-07		TIME/PROGRAM VENTILATION CONTROL-DX AC
VD-10		SEPARATE MAKEUP AIR/EXHAUST HOODS-CHILLERS
VD-11		SEPARATE MAKEUP AIR/EXHAUST HOODS-DX AC
TECO-C2	2	TECO DX AC REPLACEMENT

Building-Envelope Efficiencies

SCD-18	ROOF INSULATION-CHILLER
SCD-19	ROOF INSULATION-DX AC
SCD-22	WINDOW FILM-CHILLER
SCD-23	WINDOW FILM-DX AC
SCD-26	LIGHT COLORED ROOFS-CHILLER
SCD-27	LIGHT COLORED ROOFS-DX AC

Power Equipment/Motor Efficiencies

SCD-09	2-SPEED MOTOR FOR COOLING TOWER
VD-08	HIGH EFFICIENCY MOTORS-CHILLERS
VD-09	HIGH EFFICIENCY MOTORS-DX AC

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 7 of 9

Water Heating

WD-11		HEAT PUMP WATER HEATER
WD-13		HEAT RECOVERY WATER HEATER
WD-14		DHW HEATER INSULATION
WD-15		DHW HEAT TRAP
WD-16	1	LOW FLOW VARIABLE FLOW SHOWERHEAD
WD-17		DWH RECIRCULATION PUMPS

Solar Energy and Renewable Energy Sources

WD-12 SOLAR WATER HEATER

Peak Load Shaving

TECO-C3	TECO COMMERCIAL LOAD MANAGEMENT
TECO-C4	TECO STANDBY GENERATOR

Commercial New Construction Measures Evaluated

Appliance Efficiencies

CD-18	CONVECTION OVENS
CD-19	ENERGY EFFICIENT ELECTRIC FRYERS

Lighting Efficiencies

LD-05	8'-60W FLOUR LAMPS/ELECTRONIC BALLASTS (#1)
LD-08	T8 LAMPS/ELECTRONIC BALLASTS (#2)
LD-11	REFL/DELAMP INSTALL 8'-75W FLOUR LAMPS/EE BALLAST
LD-12	REFL/DELAMP INSTALL 8'-60W FLOUR LAMPS/EE BALLAST
LD-17	REFL/DELAMP INSTALL 8'-60W FLOUR LAMPS/ELEC BALL
LD-18	REFL/DELAMP INSTALL 8'-60W FLOUR LAMPS/ELEC BALL
LD-21	HIGH PRESSURE SODIUM (70/100/150/250W)
L.D-22	HIGH PRESSURE SODIUM (70/100/150/250W -W/ES BALLAST)
LD-23	HIGH PRESSURE SODIUM (35W)
LD-25	COMPACT FLOURESCENT LAMPS (15/18/27W)
LD-26	TWO LAMP COMPACT FLOURESCENT (18W)
LD-27	ENERGY MANAGEMENT SYSTEM FOR LIGHTING
LD-28	OCCUPANCY SENSORS
LD-29	DAYLIGHTING DESIGN

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 8 of 9

Refrigeration Equipment

RD-01	MULTIPLEX AIR-COOLED/NO SUBCOOLING
RD-02	MULTIPLEX AIR-COOLED/AMBIENT SUBCOOLING
RD-03	MULTIPLEX AIR-COOLED/MECHANICAL SUBCOOLING
RD-04	MULTIPLEX AIR-COOLED/AMBIENT & MECHANICAL SUBCOOL
RD-05	MULTIPLEX AIR-COOLED/EXTERNAL LIQUID SUCTION HX
RD-06	OPEN DRIVE REFRIGERATION SYSTEM (ASD)
RD-07	ANTI-CONDENSATE HEATER CONTROLS
RD-08	HIGH R-VALUE GLASS DOORS
RD-09	REFRIGERATION ENERGY MANAGEMENT SYSTEM (EMS)
RD-10	DUAL PATH AIR CONDITIONING

HVAC Systems

SCD-01	HIGH EFFICIENCY CHILLER
SCD-02	HIGH EFFICIENCY CHILLER W/ASD
SCD-03	HIGH EFFICIENCY DX AC
SCD-04	HIGH EFFICIENCY ROOM AC UNITS
SCD-05	COOL STORAGE
SCD-09	SPEED CONTROL FOR COOLING TOWERS
SCD-12	HVAC AIR DUCT/WATER PIPE INSULATION-CHILLER
SCD-13	HVAC AIR DUCT/WATER PIPE INSULATION-DX AC
SCD-16	TEMPERATURE SETUP/SETBACK-CHILLER
SCD-17	TEMPERATURE SETUP/SETBACK-DX AC
VD-01	LEAK FREE DUCTS DX AC
VD-04	ASD VENTILATION CONTROL W/VAV-DX AC
VD-05	ASD VENTILATION CONTROL W/VAV-CHILLERS
VD-06	TIME/PROGRAM VENTILATION CONTROL-CHILLERS
VD-07	TIME/PROGRAM VENTILATION CONTROL-DX AC
VD-10	SEPARATE MAKEUP AIR/EXHAUST HOODS-CHILLERS
VD-11	SEPARATE MAKEUP AIR/EXHAUST HOODS-DX AC
TECO-C2	TECO DX AC REPLACEMENT

Building-Envelope Efficiencies

SCD-18	ROOF INSULATION-CHILLER
SCD-19	ROOF INSULATION-DX AC
SCD-26	LIGHT COLORED ROOFS-CHILLER
SCD-27	LIGHT COLORED ROOFS-DX AC

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 1 Page 9 of 9

Power Equipment/Motor Efficiencies

SCD-08	2-SPEED MOTOR FOR COOLING TOWER
VD-08	HIGH EFFICIENCY MOTORS-CHILLERS
VD-09	HIGH EFFICIENCY MOTORS-DX AC

Water Heating 💰

WD-11	HEAT PUMP WATER HEATER
WD-13	HEAT RECOVERY WATER HEATER
WD-14	DHW HEATER INSULATION

Solar Energy and Renewable Energy Sources

WD-12 SOLAR WATER HEATER

Peak Load Shaving

TECO-C3	TECO COMMERCIAL LOAD MANAGEMENT
TECO-C4	TECO STANDBY GENERATOR

Commercial CUE Measures Evaluated

LD3	4'-34W FLOUR LAMPS/ELECTRONIC BALLASTS (#1)
RD1	MULTIPLEX AIR-COOLED/NO SUBCOOLING
RD2	MULTIPLEX AIR-COOLED/AMBIENT SUBCOOLING
RD3	MULTIPLEX AIR-COOLED/MECHANICAL SUBCOOLING
RD4	MULTIPLEX AIR-COOLED/AMBIENT & MECHANICAL SUBCOOL
RD5	MULTIPLEX AIR-COOLED/EXTERNAL LIQUID SUCTION HX
RD6	OPEN DRIVE REFRIGERATION SYSTEM (ASD)
RD7	ANTI-CONDENSATE HEATER CONTROLS
RD8	HIGH R-VALUE GLASS DOORS
RD9	REFRIGERATION ENERGY MANAGEMENT SYSTEM (EMS)
SCD08	2-SPEED MOTOR FOR COOLING TOWER
SCD09	SPEED CONTROL FOR COOLING TOWERS
SCD18	ROOF INSULATION-CHILLER
SCD19	ROOF INSULATION-DX AC
SCD20	WALL INSULATION-CHILLER
SCD21	WALL INSULATION-DX AC
SCD22	WINDOW FILM-CHILLER
SCD23	WINDOW FILM-DX AC
SCD24	SPECIALLY SELECTIVE WINDOWS-CHILLERS
SCD25	SPECIALLY SELECTIVE WINDOWS-DX AC

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 2 Page 1 of 1

Proposed Residential Goals 2005 - 2014

a.

			Annual
	Summer	Winter	Energy
	Goal	Goal	Goal
Year	(MW)	(MW)	(GWH)
2005	2.4	4.0	7.0
2006	4.4	6.7	12.6
2007	6.2	9.1	17.9
2008	7.9	11.4	22.7
2009	9.5	13.4	27.2
2010	10.9	15.2	31.2
2011	12.2	16.7	34.9
2012	13.3	18 .1	38.2
2013	14.3	19.2	41.0
2014	15.2	20 .1	43.5

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 3 Page 1 of 1

Proposed Commercial/Industrial Goals 2005 - 2014

The second state of the se				
			Annual	
	Summer	Winter	Energy	
	Goal	Goal	Goal	
Year	(MW)	(MW)	(GWH)	
2005	2.1	1.0	6.7	
2007	6.0	2.9	18.4	
2008	7.7	3.8	23.4	
2009	9.3	4.7	27.8	
2010	10.7	5.5		
6.2				
2012	13.3	6.9	37.7	
2013	14.3	7.6	39.9	
2014	15.3	8.2	41.5	

Avoided Unit Information 2005 Base Year

Tampa Electric Company Docket No. 040033-EG Witness: Bryant Exhibit No. _____ (HTB-1) Document No. 4 Page 1 of 1 BAYSIDE UNIT 3A

(2)	CAPACITY A. SUMMER B. WINTER	160 180
(3)	TECHNOLOGY TYPE	COMBUSTION TURBINE
(4)	ANTICIPATED CONSTRUCTION TIMING A. FIELD CONSTRUCTION START DATE B. COMMERCIAL IN-SERVICE DATE	JUL 2006 JAN 2008
(5)	FUEL A. PRIMARY FUEL B. ALTERNATE FUEL	NATURAL GAS DISTILLATE OIL
(6)	AIR POLLUTION CONTROL STRATEGY	DRY LOW NO _X BURNER
(7)	COOLING METHOD	N/A
(8)	TOTAL SITE AREA ¹	APPROXIMATELY 213 ACRES
(9)	CONSTRUCTION STATUS	PROPOSED
(10)	CERTIFICATION STATUS ³	N/A
(11)	STATUS WITH FEDERAL AGENCIES	N/A
(12)	PROJECTED UNIT PERFORMANCE DATA PLANNED OUTAGE FACTOR (POF) FORCED OUTAGE RATE (FOR) EQUIVALENT AVAILABILITY FACTOR (EAF) RESULTING CAPACITY FACTOR (2008) AVERAGE NET OPERATING HEAT RATE (ANOHR) ²	1.9 4.8 93 5.5% 10,600 Btu/kWh
(13)	PROJECTED UNIT FINANCIAL DATA BOOK LIFE (YEARS) TOTAL INSTALLED COST (IN-SERVICE YEAR \$/kW) DIRECT CONSTRUCTION COST (\$/kW) AFUDC AMOUNT (\$/kW) ESCALATION (\$/kW) FIXED O&M (\$/kW – Yr) VARIABLE O&M (\$/MWH) K FACTOR	26 254.97 ⁴ 230.18 ⁵ 3.28 19.48 2.74 8.76 1.6926

- ¹ REPRESENTS TOTAL GANNON OR BAYSIDE SITE.
- ² BASED ON IN-SERVICE YEAR.

(1)

. . .

PLANT NAME AND UNIT NUMBER

- ³ CERTIFICATION NOT REQUIRED.
- 4 AFUDC COSTS REVISED INCREASING TOTAL COSTS FROM 247.77 TO 254.97.
- ⁵ DIRECT CONSTRUCTION COSTS REVISED TO REFLECT BASE YEAR OF 2005 vs. 2004.

Tampa Electric Company Ten-Year Site Plan 2004