PROGRESS ENERGY FLORIDA

DOCKET NO. 050001-EI

Fuel and Capacity Cost Recovery Factors January through December 2006

DIRECT TESTIMONY OF JAVIER PORTUONDO

1	Q.	Please state your name and business address.
2	A.	My name is Javier Portuondo. My business address is Post Office Box 14042, St. Petersburg,
3		Florida 33733.
4		
5	Q.	By whom are you employed and in what capacity?
6	A.	I am employed by Progress Energy Service Company, LLC, in the capacity of Manager,
7		Regulatory Services - Florida.
8		
9	Q.	Have your duties and responsibilities remained the same since your testimony was last
10		filed in this docket?
11	A.	Yes.
12		
13	Q.	What is the purpose of your testimony?
14	A.	The purpose of my testimony is to present for Commission approval the levelized fuel and
15		capacity cost factors of Progress Energy Florida (PEF or the Company) for the period of
16		January through December 2006.
17		DOCUMENT NUMBER-DATE

08571 SEP-98

FPSC-COMMISSION CLERK

1 **Q**.

Q. Do you have an exhibit to your testimony?

2	Α.	Yes. I have prepared an exhibit attached to my testimony consisting of Parts A through F and
3		the Commission's minimum filing requirements for these proceedings, Schedules E1 through
4		E10 and H1, which contain the Company's levelized fuel cost factors and supporting data. Parts
5		A-C contain the assumptions which support the Company's cost projections. Part D contains the
6		Company's capacity cost recovery factors and supporting data. Part E contains the calculation
7		of depreciation and return on Hines 2 in accordance with the Stipulation and Settlement
8		Agreement in docket 050078-EI of PEF's base rate review proceeding. Part F contains the
9		calculation of the two tier inverted rate for residential service proposed by PEF in order to
10		promote energy efficiency and conservation.
11		
12		FUEL COST RECOVERY
12		
13	Q.	Please describe the levelized fuel cost factors calculated by the Company for the
12 13 14	Q.	Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period.
12 13 14 15	Q. A.	Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the
12 13 14 15 16	Q. A.	 Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The
12 13 14 15 16 17	Q. A.	 Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The basic factor consists of a fuel cost for the projection period of 4.53001 ¢/kWh (adjusted for
12 13 14 15 16 17 18	Q. A.	 Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The basic factor consists of a fuel cost for the projection period of 4.53001 ¢/kWh (adjusted for jurisdictional losses), a GPIF reward of 0.00133 ¢/kWh, and an estimated prior period true-up
12 13 14 15 16 17 18 19	Q. A.	Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The basic factor consists of a fuel cost for the projection period of 4.53001 ¢/kWh (adjusted for jurisdictional losses), a GPIF reward of 0.00133 ¢/kWh, and an estimated prior period true-up of 0.65988 ¢/kWh. Utilizing this basic factor, Schedule E1-D shows the calculation and
12 13 14 15 16 17 18 19 20	Q.	Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The basic factor consists of a fuel cost for the projection period of 4.53001 ¢/kWh (adjusted for jurisdictional losses), a GPIF reward of 0.00133 ¢/kWh, and an estimated prior period true-up of 0.65988 ¢/kWh. Utilizing this basic factor, Schedule E1-D shows the calculation and supporting data for the Company's final levelized fuel cost factors for service taken at
12 13 14 15 16 17 18 19 20 21	Q .	Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The basic factor consists of a fuel cost for the projection period of 4.53001 ¢/kWh (adjusted for jurisdictional losses), a GPIF reward of 0.00133 ¢/kWh, and an estimated prior period true-up of 0.65988 ¢/kWh. Utilizing this basic factor, Schedule E1-D shows the calculation and supporting data for the Company's final levelized fuel cost factors for service taken at secondary, primary, and transmission metering voltage levels. To perform this calculation,
12 13 14 15 16 17 18 19 20 21 22	Q .	Please describe the levelized fuel cost factors calculated by the Company for the upcoming projection period. Schedule E1, page 1 of the "E" Schedules in my exhibit shows the calculation of the Company's basic fuel cost factor of 5.195 ¢/kWh (before metering voltage adjustments). The basic factor consists of a fuel cost for the projection period of 4.53001 ¢/kWh (adjusted for jurisdictional losses), a GPIF reward of 0.00133 ¢/kWh, and an estimated prior period true-up of 0.65988 ¢/kWh. Utilizing this basic factor, Schedule E1-D shows the calculation and supporting data for the Company's final levelized fuel cost factors for service taken at secondary, primary, and transmission metering voltage levels. To perform this calculation, effective jurisdictional sales at the secondary level are calculated by applying 1% and 2%

23 metering reduction factors to primary and transmission sales, respectively (forecasted at meter

level). This is consistent with the methodology used in the development of the capacity cost 1 recovery factors. The final levelized fuel cost factor for residential service is 5.202 ¢/kWh. 2 Schedule E1-D shows the Company's proposed tiered rates which are developed in Part F. 3 4 Schedule E1-E develops the Time Of Use (TOU) multipliers of 1.342 On-peak and 0.848 Off-5 6 peak. The multipliers are then applied to the levelized fuel cost factors for each metering 7 voltage level which results in the final TOU fuel factors to be applied to customer bills during 8 the projection period. 9 10 Q. Does the Company's basic fuel cost factor for 2006 include the entire projected 2005 11 true-up under-recovery amount? 12 Α. Yes, however, the projected 2005 true-up under-recovery amount has been updated since my 13 August 9, 2005 testimony. Contemporaneously with this filing, I am filing supplemental testimony and a revised exhibit which update the re-projected 2005 under-recovery amount 14 15 presented in my August 9, 2005 filing based on actual fuel costs through July, 2005 and 16 updated natural gas and oil prices. As stated in my supplemental testimony, the amended 17 2005 true-up balance is \$264.9 million, made up of a \$93.6 million carryover from 2004 and a 18 \$171.3 million under-recovery for 2005. The Company is proposing to collect this entire 19 amount in 2006. 20 21 Q. What is the change in the levelized residential fuel factor for the projection period from 22 the fuel factor currently in effect?

A. The projected levelized fuel factor for 2006 of 5.202 ¢/kWh is an increase of 1.284 ¢/kWh or

33% from the 2005 levelized fuel factor of 3.918 ¢/kWh.

2

3

Q. Please explain the reasons for the increase in the levelized fuel factor.

The increase in the levelized fuel factor between 2005 and 2006 is mainly driven by escalating Α. 4 2006 fuel costs. 2006 estimated coal prices are 14.6% higher than 2005 estimates. 5 estimated heavy and light oil commodity prices are 39.4% and 45.8% above 2005 estimated 6 7 prices, respectively. 2006 natural gas commodity prices are 20.6% higher than 2005 estimates. Actual oil and gas prices continue to surge over projections due to limited excess 8 production and refining capacity. As discussed in more detail in the Direct Testimony of Pam 9 Murphy, the Company has entered into hedging contracts to mitigate some of the price risk 10 and volatility. 11

12

13 Q. Is the Company proposing any rate design changes for its proposed fuel factors?

14 A. Yes. In light of continually increasing fuel costs, the Company is proposing a new inverted rate 15 design for residential fuel factors to encourage energy efficiency and conservation. Specifically, the Company is proposing a two-tiered fuel charge whereby the charge for a customer's monthly 16 17 usage in excess of 1,000 kWh (second tier) is priced one cent per kWh more than the charge for 18 the customer's usage up to 1,000 kWh (first tier). The 1,000 kWh price change breakpoint is reasonable in that approximately 2/3 of all residential energy is consumed in the first tier and 1/3 19 20 of all energy is consumed in the second tier. The Company believes the one cent higher per 21 unit price, targeted at 1/3 of the residential class's energy consumption, will promote energy 22 efficiency and conservation. This type of inverted rate design was incorporated in the 23 Company's base rates approved in Order No. 02-0655-AS-EI.

- 4 -

Q. How will the rate design be implemented?

A. Part F to my exhibit shows the calculation of the levelized fuel cost factors for the two tiers of
residential customers. The two factors will be calculated on a revenue neutral basis so that the
Company will recover the same fuel costs as it would under the traditional levelized approach.
As shown on Part F, the two-tiered factors are determined by first calculating the amount of
revenues that would be generated by the overall levelized residential factor of 5.202¢/kWh
shown on Schedule E1-D. The two factors are then calculated by allocating the total revenues
to the two tiers for residential customers based on the total annual energy usage for each tier.

9

10 Q. What is included in Schedule E1, line 3, "Coal Car Investment"?

A: The \$10.4 million depicted on Line 3 represents depreciation expense, return on average investment, repair and maintenance expense, and property taxes on rail cars used to transport coal to Crystal River. These railcars are currently owned by Progress Fuels Corporation (PFC), and their related costs are included in the coal price charged to PEF by PFC. When coal procurement and transportation is consolidated, ownership of a locomotive, caboose and approximately 700 railcars will be transferred from PFC to PEF. In addition, PEF will lease approximately 200 railcars currently leased by PFC.

18

The \$10.4 million also includes the carrying cost of coal purchased but not yet delivered to Crystal River and fuel procurement O&M costs in accordance with the Stipulation and Settlement in Docket 050078-EI. As part of the consolidation of the coal procurement and transportation functions, ownership of the railcars and coal inventory in transit (approximately \$28.4 million) to Crystal River is expected to transfer to PEF on December 31, 2005.

*		
2	Q:	Why is Progress Energy combining its coal procurement and transportation functions?
3	A:	Combining PEF's and PEC's coal procurement and transportation functions is intended to
4		leverage fuel purchasing power, optimize transportation contracts and assets, improve
5		coordination across functional groups and reduce costs while increasing customer service.
6		
7	Q:	Will the combined organization be a separate entity or part of Progress Energy?
8	A:	The combined organization will be part of Progress Energy Carolinas (PEC) similar to oil and
9		natural gas procurement functions and related transportation services.
10		
11	Q:	Is PEF requesting recovery of all costs associated with coal procurement and
12		transportation through the fuel clause?
13	A:	Yes. Currently, PEF's affiliate PFC procures all coal and related transportation services for
14		PEF. PFC includes the commodity cost of coal along with transportation costs (barge and rail),
15		depreciation, repair/maintenance and administrative expenses, taxes and a return on regulated
16		assets in the cost per ton of coal billed to PEF. PEF recovers this cost per ton through the fuel
17		clause.
18		
19		Consistent with established FPSC policy, certain costs will continue to be recovered through
20		the fuel clause. See Order No. 95-1089-FOF-EI. Such costs (approximately \$4.3 million)
21		include depreciation, repair and maintenance expenses, applicable taxes and a return on
22		average investment at the authorized rate of return. In accordance with the Stipulation and
23		Settlement Agreement in Docket 050078-EI, the carrying costs of fuel inventory (approximately

- 6 -

1	\$3.7 million) and administrative costs (approximately \$2.4 million) associated with fuel
2	procurement and transportation will also be recovered through the fuel clause. Any other costs
3	recovered through the fuel clause will be in accordance with FPSC Order No. 14546.

5 Q. What is included in Schedule E1, line 4, "Adjustments to Fuel Cost"?

A. The \$38.3 million on Line 4 represents \$36.6 million of depreciation and return associated with
 Hines 2 in accordance with the Stipulation and Settlement Agreement in Docket 050078-EI
 and the annual payment of \$1.7 million to the Department of Energy for the decommissioning
 and decontamination of their enrichment facilities.

10

11 Q. What is included in Schedule E1, line 6, "Energy Cost of Purchased Power"?

The \$114.1 million on Line 6 represents the projected energy costs for a 70 MW purchase 12 Α. power contract with Tampa Electric Company and a 414 MW purchase under a Unit Power 13 Sales (UPS) agreement with Southern Company. The capacity payments associated with the 14 UPS contract are based on the original contract of 400 MWs. The additional 14 MWs are the 15 16 result of revised SERC ratings for the five units involved in the unit power purchase, providing 17 a benefit to PEF in the form of reduced costs per MW. Both of these contracts have been 18 approved for cost recovery by the Commission. As further discussed below and in the Direct 19 Testimony of Samuel S. Waters, Line 6 also includes a contract for the purchase of 133 MW 20 coal-based energy and capacity from Central Power & Lime beginning in December 2005. The capacity costs associated with these purchases are included in the capacity cost recovery 21 22 factor.

23

1 Q. What is included in Schedule E1, line 8, "Energy Cost of Economy Purchases"?

The \$55.6 million on Line 8 consists primarily of economy purchases from within or outside the 2 A. state. This amount also includes energy costs for purchases from Seminole Electric 3 Cooperative, Inc. (SECI) for load following and off-peak hydroelectric purchases from the 4 5 Southeast Electric Power Agency (SEPA). The SECI contract is an ongoing contract under which the Company purchases energy from SECI at 95% of its avoided fuel cost. Purchases 6 7 from SEPA are on an as-available basis. There is no capacity payment associated with either 8 of these purchases. Other purchases may have non-fuel charges, but since such purchases 9 are made only if the total cost of the purchase is lower than the Company's cost to generate the energy, it is appropriate to recover the associated non-fuel costs through the fuel 10 11 adjustment clause rather than the capacity cost recovery clause.

12

13 Q. How was the Gain on Other Power Sales, shown on Schedule E-1, Line 15a, developed?

- A. The total gain on non-separated sales for 2006 is estimated to be \$5,856,036 which is below
 the three-year rolling average for such sales of \$5,972,207 by \$116,171. The total gain will be
 distributed to customers based on the sharing mechanism approved by the Commission in
 Order No. PSC-00-1744-PAA-EI.
- 18

Q. How was Progress Energy's three-year rolling average gain on economy sales determined?

- A. The three-year rolling average of \$5,972,207 is based on calendar years 2003 through 2005
 and was calculated in accordance with Order No. PSC-00-1744-PAA-EI.
- 23

Please explain the entry on Schedule E1, line 17, "Fuel Cost of Stratified Sales." 1 Q. 2 Α. PEF has several wholesale contracts with SECI. One contract provides for the sale of supplemental energy to supply the portion of their load in excess of SECI's own resources 3 (586 MW in 2006). The fuel costs charged to SECI for supplemental sales are calculated 4 5 on a "stratified" basis in a manner which recovers the higher cost of intermediate/peaking generation used to provide the energy. There are other SECI contracts for fixed amounts 6 of base, intermediate and peaking capacity. PEF is crediting average fuel cost of the 7 8 appropriate strata in accordance with Order No. PSC-97-0262-FOF-EI. The fuel costs of wholesale sales are normally included in the total cost of fuel and net power transactions 9 10 used to calculate the average system cost per kWh for fuel adjustment purposes. 11 However, since the fuel costs of the stratified sales are not recovered on an average 12 system cost basis, an adjustment has been made to remove these costs and the related kWh sales from the fuel adjustment calculation in the same manner that interchange sales 13 14 are removed from the calculation. This adjustment is necessary to avoid an over-recovery 15 by the Company which would result from the treatment of these fuel costs on an average 16 system cost basis in this proceeding, while actually recovering the costs from these 17 customers on a higher, stratified cost basis. Line 17 also includes the fuel cost of sales 18 made to the City of Tallahassee in accordance with Order No. PSC-99-1741-PAA-EI, a 19 70MW sale made to Reedy Creek and a 15 MW sale made to the City of Homestead. 20 21 Q. Please explain the procedure for forecasting the unit cost of nuclear fuel. 22 Α. The cost per million BTU of the nuclear fuel which will be in the reactor during the projection 23 period (Cycle 15) was developed from the unamortized investment cost of the fuel in the

- 9 -

1 reactor. Cycle 15 consists of several "batches" of fuel assemblies which are separately 2 accounted for throughout their life in several fuel cycles. The cost for each batch is determined 3 from the actual cost incurred by the Company, which is audited and reviewed by the 4 Commission's field auditors. The expected available energy from each batch over its life is 5 developed from an evaluation of various fuel management schemes and estimated fuel cycle 6 lengths. From this information, a cost per unit of energy (cents per million BTU) is calculated 7 for each batch. However, since the rate of energy consumption is not uniform among the 8 individual fuel assemblies and batches within the reactor core, an estimate of consumption 9 within each batch must be made to properly weigh the batch unit costs in calculating a 10 composite unit cost for the overall fuel cycle.

11

Q. How was the rate of energy consumption for each batch within Cycle 15 estimated for
 the upcoming projection period?

A. The consumption rate of each batch has been estimated by utilizing a core physics computer
 program which simulates reactor operations over the projection period. When this
 consumption pattern is applied to the individual batch costs, the resultant cost of Cycle 15 is
 \$.35 per million BTU.

18

Q. Please give a brief overview of the procedure used in developing the projected fuel cost
 data from which the Company's basic fuel cost recovery factor was calculated.

A. The process begins with a fuel price forecast and a system sales forecast. These forecasts are
 input into the Company's production cost simulation model, PROSYM, along with purchased
 power information, generating unit operating characteristics, maintenance schedules, and

other pertinent data. PROSYM then computes system fuel consumption and fuel costs and
 purchased power. This information is the basis for the calculation of the Company's levelized
 fuel cost factors and supporting schedules.

4

5

Q. What is the source of the system sales forecast?

A. The system sales forecast is made by Corporate Planning using population projections from
 the Bureau of Economic and Business Research at the University of Florida and economic
 assumptions from the Economy.Com. The assumptions for the projection period are explained
 in Part A of my exhibit.

10

Q. Is the methodology used to prepare the sales forecast for this projection period the
same as previously used by the Company?

- A. Yes. The methodology employed to produce the forecast for the projection period is consistent
 with the Company's most recent filings and was developed with an econometric forecasting
 model.
- 16

17 Q. What is the source of the Company's fuel price forecast?

A. The fuel price forecast for natural gas and fuel oil (residual #6 and distillate #2) comes from
 observable market data in the industry. The fuel price forecast for natural gas and fuel oil is
 jointly prepared by the Company's Enterprise Risk Management section and Regulated Fuels
 Department.

22

1		The nuclear fuels forecast uses known values of remaining balances of current fuel batches,								
2		projected costs of future batches, and projected batch energy production to determine a cost								
3		rate that is reported on a cost per unit of energy production basis (cents per million BTU). The								
4		projection for costs of future batches uses projections for each fuel component. Each fuel								
5		component projection is based on contract portfolio and market projections in effect for that								
6		component. Fuel requirements and individual batch energy forecasts are derived from core								
7		physics models that incorporate energy production forecasts and operating/refueling outage								
8		strategies. Nuclear Fuel Management & Safety Analysis is responsible for all aspects of the								
9		forecast.								
10										
11		The coal price forecast is prepared by PFC based on projected deliveries to Crystal River								
12		supplied by Systems Planning and Operations. The pricing is based on contracts that								
13		Progress Fuels has procured on behalf of PEF for deliveries to Crystal River.								
14		The assumptions for the 2006 projection period are shown in Part B of my exhibit. The								
15		forecasted prices for each fuel type are shown in Part C.								
16										
17		CAPACITY COST RECOVERY								
18	Q.	How was the Capacity Cost Recovery factor developed?								
19	A.	The calculation of the capacity cost recovery (CCR) factor is shown in Part D of my exhibit.								
20		The factor allocates capacity costs to rate classes in the same manner that they would be								
21		allocated if they were recovered in base rates.								
22										
23	Q.	Please provide a brief explanation of Part D to your exhibit.								

- 12 -

A. <u>Pages 1 and 2: Projected Capacity Payments.</u> These pages contain system capacity
 payments for UPS, TECO, Chattahoochee, Central Power & Lime, summer and winter peaking
 contracts and QF purchases. The retail portion of the capacity payments is calculated using
 separation factors as agreed to in the Stipulation and Settlement Agreement under Docket
 050078 as detailed in the Rebuttal Testimony of William C. Slusser Jr.

- Pages 3 and 4: Estimated/Actual True-Up. These pages are included in my supplemental direct testimony and exhibits for the 2005 estimated/actual true-up filing, which as I explained above are being filed contemporaneously with this filing. They present the actual ending true-up balance as of July 2005 and re-forecast the over/(under) recovery balances for August through December 2005 to derive an ending balance for the current period. This estimated/actual balance of \$14.6 million is then carried forward to Page 1, to be collected during January through December 2006.
- 14

6

Page 5: Development of Jurisdictional Loss Multipliers. The same delivery efficiencies and
 loss multipliers presented on Schedule E1-F.

17

Page 6: Calculation of 12 CP and Annual Average Demand. The calculation of average 12
 CP and annual average demand is based on 2003 load research data and the delivery
 efficiencies on Page 3.

21

Page 7: Calculation of Capacity Cost Recovery Factors. The total demand allocators in
 column (7) are computed by adding 12/13 of the 12 CP demand allocators to 1/13 of the

1		annual average demand allocators. The CCR factor for each secondary delivery rate class in
2		cents per kWh is the product of total jurisdictional capacity costs (including revenue taxes) from
3		Sheet 1, times the class demand allocation factor, divided by projected effective sales at the
4		secondary level. The CCR factor for primary and transmission rate classes reflects the
5		application of metering reduction factors of 1% and 2% from the secondary CCR factor.
6		
7	Q.	Please explain the increase in the CCR factor for the projection period compared to the
8		CCR factor currently in effect.
9	A.	The projected average retail CCR factor of .886 ϕ /kWh is 14.8% higher than the 2005
10		factor of 0.772 ¢/kWh. The increase in the factor is primarily due to the carry-over of prior
11		period under-recoveries, increases in the annual QF and firm purchase power capacity
12		payments and a 133MW firm purchase with Central Power & Lime beginning in December
13		2005.
14		
15	Q.	Has Progress Energy included incremental security charges in the 2006 projected
16		capacity amount?
17	A.	Yes. PEF has included \$3.8 million of estimated incremental security for 2006 in accordance
18		with the Stipulation and Settlement Agreement in Docket 050078-EI.
19		
20		OTHER MATTERS
21	Q.	Has PEF entered into any new contracts since the time of the last fuel filing?
22	A:	The Company is in the final stages of negotiating a contract with Central Power & Lime. An
23		executed contract is expected fall 2005. The contract provides for the purchase of 133 MW of

energy and capacity from December 1, 2005 through December 31, 2010. This purchase will
 contribute to PEF meeting a 20% reserve margin during the contract term and, more
 importantly, provide a source of coal-based energy to the system. This purchase has been
 modeled in the projection of system fuel costs, and results in a savings to customers when
 compared to other purchase alternatives.

6

7 Are any additional new purchases included in the 2006 projection of system fuel costs? Q. 8 Α. Yes. The company is currently pursuing the purchase of approximately 200 MW for the 9 summer of 2006, and approximately 450-500 MW for the period December 2005 through 10 February, 2006. These purchases will be required to maintain a 20% reserve margin for those 11 periods. PEF is currently in discussions with potential suppliers of this capacity, which is 12 expected to be supplied from peaking resources. These purchases have been included in the 13 projection of system fuel costs. The summer, 2006 purchase of 200 MW has been modeled 14 after a similar purchase made for the summer of 2005 from The Energy Authority (TEA). The 15 purchase beginning in December, 2005 has also been modeled after the TEA agreement. 16

17 Q. Does this conclude your testimony?

18 A. Yes.

Docket No. 050007-El Progress Energy Florida, Inc. Witness: J. Portuondo Exhibit No. __ (JP-1P)

REDACTED

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

ON BEHALF OF PROGRESS ENERGY FLORIDA

Fuel Capacity Cost Recovery Factor January Through December 2006

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

Fuel and Capacity Cost Recovery Factor January Through December 2006

PART A - SALES FORECAST ASSUMPTIONS

Progress Energy Florida Docket No. 050001-EI Witness: J. Portuondo Part A Sheet 1 of 3

SALES FORECAST ASSUMPTIONS

- This forecast of customers, sales and peak demand was developed for use in the 2006 budget and 2006 2010 five-year Business Plan. This forecast was prepared in mid-2005 and replaces the July 2004 Corporate Forecast of Customers, Energy & Demand.
- 2. Normal weather conditions are assumed over the forecast horizon using a sales-weighted average of conditions at the St. Petersburg, Orlando and Tallahassee weather stations. For kilowatt-hour sales projections, normal weather is based on a historical thirty-year average of service area weighted billing month degree days. Seasonal peak demand projections are based on a thirty-year historical average of system-weighted temperatures at time of seasonal peak.
- 3. The population projections produced by the Bureau of Economic and Business Research at the University of Florida as published in "Florida Population Studies Bulletin No. 141 (February 2005) provide the basis for development of the customer forecast. State and national economic assumptions produced by Economy.Com in their national and Florida forecasts (March, 2005) are also incorporated.
- Within the Progress Energy Florida (PEF) service area, the phosphate mining industry is the dominant sector in the industrial sales class. Four major customers accounted for over 30% of the industrial class MWh sales in 2004. These energy intensive customers mine and process phosphate-based fertilizer products for the global marketplace. Both supply and demand conditions for their products are dictated by global conditions that include, but are not limited to, foreign competition, national/international agricultural industry conditions, exchange-rate fluctuations, and international trade pacts. Load and energy consumption at the PEF-served mining or chemical processing sites depend heavily on plant operations which are heavily influenced by the state of these global conditions as well as local conditions. After years of excess mining capacity and weak product pricing power, the industry has consolidated down to fewer players in time to take advantage of better market conditions. A weaker U.S currency value on the foreign exchange is expected to help the industry in two ways. First, U.S. farm commodities will be more competitive overseas and lead to higher crop production at home. This will result in greater demand for fertilizer products. Second, a weak U.S. dollar results in U.S. fertilizer producers to become more price competitive relative to foreign producers. Going forward, energy consumption is expected to increase slightly. A significant risk to this projection lies in the continued high price of natural gas which is a major factor of production. Operations at several sites in the U.S. have already scaled back or shutdown due to profitability concerns caused by high energy prices. The energy projection for this industry assumes no major reductions or shutdowns of operations in the service territory.
- 5. PEF supplies load and energy service to wholesale customers on a "full", "partial" and "supplemental" requirement basis. Full requirements customers' demand and energy is assumed to grow at a rate that approximates their historical trend. Cities served on this basis include Bartow, Chattahoochee, Mt Dora, Quincy and Williston. Partial requirements (PR) customer load is assumed to reflect the current contractual obligations received by PEF in an annual "declaration letter" as of May 31, 2005. The forecast of energy and demand to PR customers reflect the nature of the stratified load they have contracted for, plus their ability to receive dispatched energy from power marketers any time it is more economical for them to do so. Contracts for PR service included in this forecast are with FMPA, the cities of New Smyrna Beach, Tailahassee and Homestead, and other utilities such as Reedy Creek Utilities.

Progress Energy Florida Docket No. 050001-EI Witness: J. Portuondo Part A Sheet 2 of 3

A significant majority of PEF's wholesale load is served to Seminole Electric Cooperative, Inc. (SECI) under several contracts. PEF's arrangement with SECI is to serve "supplemental" service over and above stated levels they commit to supply themselves. SECI's projection of their system's requirements in the PEF control area provides the basis for the level of service needed to be supplemented by PEF. This forecast also incorporates two firm bulk power contracts with SECI. The first is a 300 MW stratified intermediate demand contract starting in June 2006 (150MW) and December 2006 (150MW). The second is a full requirement s contract that has been added to the forecast starting in 2010.

 This forecast assumes that PEF will successfully renew all future franchise agreements but does remove from the retail forecast the load and energy once served to the City of Winter Park

7. This forecast incorporates demand and energy reductions from PEF'S dispatchable and non-dispatchable DSM programs required to meet the approved goals set by the Florida Public Service Commission.

8. Energy and demand reductions from ongoing self-service cogeneration sites are also included in this forecast. PEF will supply the supplemental load of self-service cogeneration customers. While PEF offers "standby" service to all cogeneration customers, the forecast does not assume an unplanned need for standby power.

9. This forecast assumes that the regulatory environment and the obligation to serve our retail customers will continue throughout the forecast horizon. The ability of wholesale customers to switch suppliers ends PEF's obligation to serve these customers beyond their contract life. As a result, PEF does not plan for generation resources unless a long-term contract is in place. Current "full requirements" customers are assumed to not renew their contracts with PEF. Current "partial requirements" contracts are projected to terminate as terms reach their expiration date. Deviation from these assumptions can occur as information from the Energy Ventures RCO department indicates that a wholesale customer has limited options in the marketplace to replace PEF capacity more economically.

10. The economic outlook for this forecast was developed early in 2005 as energy prices were hitting record highs around the world. The general consensus was that the U.S. economy, which was growing at a reasonable rate, would not slip into recession due to the higher cost of energy. A described "soft patch" in economic activity was obvious at the time of this forecast development as high gasoline prices had been reducing consumer confidence levels. Short term interest rates, controlled mostly by Federal Reserve Board (FED) policy decisions, have increased significantly in the last 12 months as hints of inflation have filtered through the reported price indexes. The days of 40-plus year lows in interest rates have ended. The FED had moved to increase rates eight times at this point – no longer seeing the need to stimulate the national economy from the post September 11th weakness that occurred. The national economy had bounced back significantly (except for job growth statistics). Economists were not in complete agreement about where monetary policy would go from here. Most thought that the FED was much closer to ending its "tightening" policy of gradually raising interest rates than those who believed that inflationary fears would require many more rate increases.

Consensus opinion also feels that the economic stimulus supplied by the three federal tax cuts and the refinancing boom had pretty much run their course. Additional stimulus from these two phenomena is not in the cards going forward. One item believed to become a positive factor for future economic momentum is the weaker U.S. currency. Up to this point it had not supplied the punch assumed in the last forecast. This is due to several major U.S. trading partners, mainly China, having their currencies pegged to the Dollar. The Mexican Peso has actually weakened against the Dollar. This has kept the typical advantages of a weaker currency from helping U.S. manufacturers. Also, European economies have not been robust enough to fuel added imports of U.S. products. Going forward, it is expected that economic and political pressures will force the Chinese to de-link their currency and allow it to appreciate in value. This will make American-produced products more competitive with imported Chinese goods around the globe.

Progress Energy Florida Docket No. 050001-El Witness: J. Portuondo Part A Sheet 3 of 3

The housing sector has continued on an amazing and unprecedented pace. All signs are pointing to an industry that just cannot maintain this level of growth. Long term interest rates (and mortgage rates) have not increased at the same pace as short term rates allowing the momentum to continue. At some point the demand for housing pushed by new household formations must weaken. The demand for second homes could fall as interest rates finally rise. The rapid rise in real estate prices have priced many out of the market and more will fall off as rates rise.

The Florida economy has faired much better than the nation, especially when it comes to job growth. The tourism industry, which has bounced back from the the terrorism fears of 2001, will now have to juggle the impact of high oil prices on the travel industry. One bullet recently dodged was the result from the Pentagon's Base Realignment and Closing Commission which left Florida in good shape.

Growth in energy consumption is directly tied to the levels of economic activity in the State, nation and around the world, but demographic forces play a major role as well. Factors that influence in-migration rates to Florida impact residential customer growth, especially since the difference between births and deaths contribute little to Florida's growing population. Obviously, many factors influence the pace of in-migration to Florida but there is one broad, demographically created influence one can expect during the next few years. The University of Florida's latest population projection (February 2005) shows a return to more normal levels of growth in Florida population as we move into the mid-decade. This is due to economy-related conditions and characteristics of the age cohorts reaching retirement age this decade.

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

Fuel and Capacity Cost Recovery Factor January Through December 2006

PART B - FUEL PRICE FORECAST ASSUMPTIONS

Progress Energy Florida Docket No. 050001-El Witness: J. Portuondo Part B Sheet 1 of 1

FUEL PRICE FORECAST ASSUMPTIONS

A. Residual Oil and Light Oil

The oil price forecast is based on expectations of normal weather and no radical changes in world energy markets (OPEC actions, governmental rule changes, etc.). Prices are based on expected contract structures, specifications and market conditions during 2005 and 2006.

PEF Residual Fuel Oil (#6) and Distillate Fuel Oil (#2) prices were derived from PIRA Energy Group forecasts and current observed market information.

The oil prices listed on Part C do not include transportation costs to individual plant locations.

B. Coal

Coal price projections are provided by Progress Fuels Corporation (PFC) and represent an estimate of the price to Progress Energy Florida (PEF) for coal delivered to the plant sites in accordance with the delivery schedules projected. The forecast is consistent with the coal supply and transportation agreements which PFC has, or expects to have, in place during 2005 and 2006. PFC's current contracts cover PEF's projected burns for 2005 through 2006. It assumes environmental restrictions on coal quality remain in effect as per current permits: 2.1 lbs. per million BTU sulfur dioxide limit for Crystal River Units 1 and 2, and, 1.2 lbs. per million BTU sulfur dioxide limit for Crystal River Units 4 and 5.

C. Natural Gas

The natural gas price forecast is based on the expectation of average normal weather conditions and a steady trend in supply and demand. Prices are based on expected contract structures and spot market purchases for 2005 and 2006. Gas supply prices were derived from PIRA Energy Group forecasts and current observed market information.

Transportation costs for Florida Gas Transmission and Gulfstream pipeline firm transportation services are based on expected tariff rates and/or negotiated rates. Interruptible transportation rates and availability are based on expected tariff rates and market conditions.

The natural gas prices listed on Part C do not include transportation costs to individual plant locations.

D. Nuclear Fuel

The Nuclear Fuel Forecast uses known values of remaining balances of current fuel batches, projected costs of future batches, and projected batch energy production to determine a cost rate that is reported on a cost per unit of energy production basis (e.g., cents per million BTU). The projection of costs of future batches uses projections for each of the several components of nuclear fuel, and each component's projection is based on the contract portfolio and market projections in effect for that component for 2005 and 2006. The contract portfolio/market mix is determined by the procurement strategy in effect for each fuel component. Fuel requirements and individual batch energy forecasts are derived from core physics models that incorporate energy projection forecasts and operating/refueling outage strategies for 2005 through 2006. Nuclear Fuel Management & Safety Analysis is responsible for all aspects of the forecast.

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

Fuel and Capacity Cost Recovery Factor January Through December 2006

PART C - FUEL PRICE FORECAST

Progress Energy Floride Docket No. 050001-El Witness: J. Portuondo Part C Sheet 1 of 2

FUEL PRICE FORECAST #6 OII

	1.()%	1.5	5%	2.5%		
Month	\$/barrel (1)	\$/mmbtu	\$/barrel (1)	\$/mmbtu	\$/barrel (1)	\$/mmbtu	
Jan 2006	58.18	8.95	56.16	8.64	52.52	8.08	
Feb 2006	58.57	9.01	56.62	8.71	53.04	8.16	
Mar 2006	58.70	9.03	56.75	8.73	53.11	8.17	
Apr 2006	58.24	8.96	55.97	8.61	51.87	7.98	
May 2006	58.11	8.94	56.16	8.64	52.65	8.10	
Jun 2006	57.98	8.92	56.23	8.65	52.91	8.14	
Jul 2006	63.18	9.72	61.56	9.47	58.63	9.02	
Aug 2006	63.12	9.71	61.56	9.47	58.76	9.04	
Sep 2006	63.12	9.71	61.36	9.44	58.24	8.96	
Oct 2006	62.86	9.67	61.17	9.41	58.18	8.95	
Nov 2006	62.34	9.59	60.39	9.29	56.94	8.76	
Dec 2006	62.21	9.57	59.80	9.20	55.38	8.52	

Transportation costs are not included in #6 oil prices.

(1) 6.5 mmbtu/bbl

FUEL PRICE FORECAST #2 OII

Month	\$/barrel (2)	cents/gallon (2)	\$/mmbtu
Jan 2006	95.93	228.41	16.54
Feb 2006	96.40	229.51	16.62
Mar 2006	95.93	228.41	16.54
Apr 2006	90.36	215.15	15.58
May 2006	88.51	210.73	15.26
Jun 2006	87.41	208.11	15.07
Jul 2006	87.58	208.52	15.10
Aug 2006	88.28	210.18	15.22
Sep 2006	89.15	212.25	15.37
Oct 2006	89.84	213.91	15.49
Nov 2006	93.84	223.44	16.18
Dec 2006	94.60	225.23	16.31

Transportation costs are not included in #2 oil prices.

(2) 5.8 mmbtu/bbl & 42 gal/bbl

Progress Energy Florida Docket No. 050001-El Witness: J. Portuondo Part C Sheet 2 of 2

1

Month	\$/mmbtu
Jan 2006	10.38
Feb 2006	10.34
Mar 2006	10.61
Apr 2006	8.65
May 2006	7.38
Jun 2006	7.44
Jul 2006	7.64
Aug 2006	7.76
Sep 2006	7.46
Oct 2006	6.95
Nov 2006	9.34
Dec 2006	8.83

FUEL PRICE FORECAST Natural Gas

Transportation costs are not included in natural gas prices.

FUEL PRICE FORECAST Coal

	Сгуз	stal River 1 8	12	Crystal River 4 & 5				
Month	btu/lb	\$/ton	\$/mmbtu	btu/ib	\$/ton	\$/mmbtu		
Jan 200 6	12,500	72.14	2.886	12,500	76.37	3.055		
Feb 2006	12,500	72.14	2.886	12,500	75.91	3.036		
Mar 2006	12,500	71.35	2.854	12,500	76.37	3.055		
Apr 2006	12,500	71.46	2.859	12,500	75.98	3.039		
May 2006	12,500	71.34	2.853	12,500	76.44	3.058		
Jun 2006	12,500	71.34	2.853	12,500	75.98	3.039		
Jul 2006	12,500	74.78	2.991	12,500	77.38	3.095		
Aug 2006	12,500	74.78	2.991	12,500	76.69	3.068		
Sep 2006	12,500	74.78	2.991	12,500	77.56	3.102		
Oct 2006	12,500	74.89	2.996	12,500	76.90	3.076		
Nov 2006	12,500	74.89	2.996	12,500	77.28	3.091		
Dec 2006	12,500	74.79	2.992	12,500	76.58	3.063		

Transportation costs are included in coal prices.

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

Fuel and Capacity Cost Recovery Factor January Through December 2006

PART D - CAPACITY COST RECOVERY CALCULATIONS

ſ

Progress Energy Florida Capacity Cost Recovery Clause Projected Capacity Payments For the Year 2006

Decket 050001-EI
Witness: J. Portuondo
Schedule E12 - Cepecily Costs
Part D
Page 1 of 7

		ESTMATED JAN	ESTIMATED FEB	ESTIMATED MAR	ESTIMATED APR	ESTIMATED	ESTIMATED JUN	ESTIMATED	ESTIMATED	ESTIMATED SEP	ESTIMATED OCT	ESTIMATED	ESTIMATED DEC	TOTAL
	Base Production Level Capacity Charges:				· · ·									
1	Aubumdale Power Partners, L.P. (AUBRDLFC)	535,840	535,840	535,840	535,840	535,840	535,840	535,840	535,840	535,840	535,840	535,840	535,840	6,430,080
2	Auburndale Power Partners, L.P. (AUBSET)	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	2,549,254	30,591,048
3	Bay County (BAYCOUNT)	263,780	263,780	263,780	263,780	263,780	263,780	263,780	263,780	263,760	263,780	263,780	263,760	3,165,380
1	Cargiil Fertilizer, Inc. (CARGILLF)	528,300	528,300	528,300	528,300	528,300	528,300	528,300	528,300	628,300	528,300	528,300	528,300	8,339,600
2	Jenerson Power L.C. (JEFFPOWR)	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,000	17,900	17,000	17,000	294,000
9	Lake County (LAKCOUNT)	502,478	502,478	502,478	502,478	507,478	502,478	502,478	502,478	502,478	502,478	502,478	502,478	6,029,736
	Lake Cogen Limited (LAKORDER)	2,664,651	2,664,651	2,664,651	2,864,851	2,654,651	2,684,651	2,664,651	2,004,051	2,664,651	2,664,651	2,664,651	2,661,651	31,975,812
	Ormore County (ME+RUADE)	969,860	989,860	989,850	989,860	989,850	969,860	969,860	969,860	989,860	989,960	969,860	989,550	11,678,320
10		2.2/0,010	2,2/0,010	2,2/0,510	2,2/6,516	2,270,510	2,2/0,516	2,2/6,516	2,275,516	2,276,516	2,276,516	2,276,516	2,275,516	27,318,192
11		2.032,030	2,032,630	2,002,630	2,032,030	2,032,030	2,032,030	2,032,030	2,052,630	2,032,630	2,052,630	2,032,630	2,032,030	24,391,000
12	Parce Cooper Emiled (Dr.CCOGAS)	0	0	0	0	0	0	0	0	0	0	0	0	
13	Patch County Researce Recovery (RASCOUNT)	3,100,304	3,100,304	3,100,304	3,190,384	3,100,304	3,190,384	3,105,364	3,105,384	3,100,344	3,100,304	3,100,364	3,105,384	37,990,008
14	Pinelits County Resource Recovery (PASCOUNT)	900,430	800,430	900,430	2 457 808	900,430	900,430	9U0,43U	0 167 600	900,430	900,430	900,430	900,430	10,077,100
15	Prik Power Partners I P (MIII SCREV/POVCTCR)	3,832,036	2,101,010	2,137,030	2,137,030	2,13/,040	2,157,090	1 832 036	2,107,090	2,107,090	2,107,095	2,107,096	2,107,090	46 006 220
18	U.S. Agn-Chemicals (AGRICHEM)	50.827	\$0.002,800 50,807	50 #27	50 827	40 827	50 827	60 827	4032,030	40 827	60 #37	3,032,930	5,052,050	600 924
17	Wheelstrator Ridge Framy Inc. (RIDGEGEN)	ROD GAA	800 946	800 646	800 045	800 948	800 048	800 948	800 044	20,021	800 848	800.048	803 949	9 611 352
18	UPS Purchase (414 total (mu) - Southern	4 475 000	4 475 000	4 475 000	4 475 000	4 475 000	A 475 000	4 475 000	4 475 000	4 475 000	A 475 000	A 475.000	4 475 000	53 700 000
19	incremental Security (5060001 6740001 & 5490001)	74 417	74 417	74 417	810 167	74 417	74 417	810 167	74 417	74 417	810 167	74417	810 167	3 636 000
20	Subtotal - Base Level Caterio Churnes	27 824 048	27 824 946	27 824 CAR	28 560 696	27 824 946	27 824 945	28,550 695	27 824 944	27 874 946	28 560 895	27 874 946	26 560 596	336,842,348
21	Base Froduction Jurisdictional Resonability	93,753%	93 753%	93 753%	83 753%	93 753%	93.753%	\$3,753%	83 753%	93.753%	93 753%	93 753%	83,753%	
22	Base Level Jurisdictional Canacity Charges	26 066 721	26,086,721	26 086 721	26 775 509	26 086 721	26.095.721	26 776 500	26,086,721	26,086,721	26,776,500	26 095 721	26,778,500	315,799,806
	Intermediate Production Level Capacity Charges;													
23	TECO Power Purchase (70 mw)	718,100	718,100	718,100	718,100	715,100	718,100	718,100	718,100	718,100	718,100	718,100	718,100	8,617,204
24	Schedule H Capacity Sales	(4,000)	(4,000)	(4.000)	(4,000)	(4,000)	(4,000)	(4,000)	(4,000)	(4,000)	(4,000)	(4,000)	(4,000)	(48,000)
25	Subtotal - Intermediate Level Capacity Charges	714,100	714,100	714,100	714,100	714,100	714,100	714,100	714,100	714,100	714,100	714,100	714,100	8,569,204
26	Intermediate Production Jurisdict, Responsibility	79.045%	79 046%	79.048%	79.046%	79.046%	79.046%	79.046%	79.046%	79.046%	79.046%	79.046%	79 046%	
27	Intermediate Level Jurisdict, Capacity Charges	564,468	564,468	564,458	564,468	564,468	584,468	584,468	564,488	564,468	564,468	584,468	564,468	6,773,613
	Praking Production Level Geoecity Charges:												,	
28	Chattahoochee	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	12,500	150,000
29	CP & time	1,357,930	1,357,930	1,357,930	1,357.930	1,357,930	1,357,930	1,357,930	1,357,930	1,357,930	1,357,\$30	1,357,930	1,357,930	16,295,161
30	Peaking Purchases - Winter Peak	0	0	0	0	0	0	0	0	0	0	0	1,402,800	1,402,800
31	Peaking Purchases - Summer Peak	0	0	0	0	0	900,000	900,000	900,000	900,000	0	0	0	3,600,000
32	Peaking Purchases - Winter Peak	0	0	0_	0	0	0	0	0	0	0	0	0	0
33	Subtotal -Peeking Level Capacity Charges	1,370,430	1,370,430	1,370,430	1,370,430	1,370,430	2,270,430	2,270,430	2,270,430	2,270,430	1,370,430	1,370,430	2,773,230	21,447,902
34	Peaking Production Juriscictional Responsibility	88.979%	88.979%	88.979%	68,979%	88 979%	85.979%	88.979%	88.979%	88.979%	88.979%	88 979%	88.979%	10.004.000
35	Peaking Level Junistichonal Capacity Charges	1,219,395	1,219,395	1,219,395	1,219,395	1,219,395	2,020,205	2,020,205	2,020,206	2,020,205	1,219,390	1,218,390	2,401,012	19,004,10¢
	Other Cabacity Charges:												(00.074)	1010 010
30	Hetal Wheeling	(94,637)	(104,166)	(92,142)	(59.449)	(27,531)	(22,369)	(29,251)	(24,950)	(30,972)	(25,510)	(50,782)	(0.7,071)	244 000 662
37	Total Jurisdictional Capacity Payments	27,775,948	27,766,398	27,778,442	28,500,923	27,843,053	28,649,026	29,331,932	25,646,440	28,840,423	28,534,202	27,813,802	20,121,000	341,000,002
	(LEWIS 22 + 21 + 30 + 30)													
38	Estimated Actual Truck Lin Description for the						· · · ·							14,597,880
	Definit Intrany through December 2005													
	Period Servery arough December 2000													
39	Total (Sum of lines 37 + 38)													355,606,533
40	Ravanue Tax Multiplier					. 1		. •					-	1.00072
41	Total Recoverable Capacity Payments													355,882,570
									-	-		· · ·		

Ессян Ани 2009 Сараску Сок Цесолай Санина Риојесан Слак Цесолай Санина Риодика Есний Гроца

13-100030 technol (0001-0000) Winness (1-000000) Winness (1-00000) Winness (1-00000) Winness (1-00000) Winness (1-00000)

The Sager

	- ANNA	ala Nayari ya G	en T	Espiration .	There?	
	00.71	- Low -		Dec 13	29-net.	Auburidate Power Partment, L.P. (AUBROLFC)
	81 711	Purch	30	Dec-13	AC-ONA	(1338UA) . 9.J . manual much embrada
	00.11	Purch	зÐ	80-00(j	28-net	Bey CAUTY (BAYCOUNT)
	00.81	Purch .	4 0	10-340	28-04S	Cargar Farilityar, Inc. (CARGRLE)
1.1	3'00	Purch .	Ot.	80-qe3	20-145	Jefferson Power L.C. (JEFFPOMER)
	37.21	450Pd	3Ö t	at-nut.	20-MIL	(UNICODIN) 4000 MICT
	00 011	- hore	# 0	21-12	26-PC -	(RECRONAL) beam Longo solution
-	00.61	row a	-Ote	ELMON	LO-MON	(Hero-Date County (METRDADE)
	00.112	- iping	0E	04C-24	561PC	CLEUDe CODeu (CLEVINGECO)
	33'50	tourd.	30	Dec-23	59-04S	Orlando Cogen Liniad (ORLACOGL)
	00.001	sping.	σt	80-940	28-94	Pasco Cogan Limited (PASCOGL)
	23.00	100nd	- 3D	15-043	20-1mr	Pasco County Resource Recovery (PASCOUNT)
	ST.42	riow 9	d€	Cac-24	38-V#C	Provides County Resource Recovery (PRNCOUNT)
	18 30	storund .	зÖ	PS-GOV	96-0ny	POR POWN PARAMIR, L. P. (MULBERY)
	90.60	- UCUPA	30	80-0ny	He Onv	POR PRIME PERMIS, L. P. (ROYSTER)
· .	195	(brid)	3D.	90-943	78-MBL	ITS. Aprichemicale (AGRICHEM)
	39,60	up na	JO.	CZ-040	10-01V	Wheeleditor Rode Energy, Inc. (RIDGEGEN)
· •	00 717	- spind	MARC .	01-1011	98-94	mentaus - seenand 241
•	00'04	tond.	MAC	11-093	58-AN	approximation Purchase
	6	908	OBMIC	(Z)	SE-MIN	Schedule H Capacity - New Smyrus Beach
		🔄 🗰 S	MAD .	PO-UR	PO-ARM	eeserinte T - Vicage3 H ekolerta - 7
	1	e daug	- OB-ME	21-120	20-100	eerbeerbeet 2
- 19		is thurs	Jerac	01-040	Dec-06	enij 8 merej sumo) 🦄

(1) The New Simples Boach (NSB) Schedule H context is in effect until canceled by either Program Energy Florids of NSB upon 1 year's until call object.

Progress Energy Flonds **Capacity Cost Recovery Clause** Calculation of Estimated / Actual True-Up For the Year 2005

Provide Strate Stra															
Process of a finance is a constrained with the co															
Dependency frame Dependency frame<											• • •				
Catalog Catalog Catalog Ca	Pro	sgress Energy Flonda												Ce	cket 050001-E
Calculator / Add Thauki Control / Add Thauki Contro	Ca	pacity Cost Recovery Clause												Wanaar	C J. Pertuondo
Data Construction Description Description <thdescription< th=""></thdescription<>	Cal	iculation of Estimated / Actual True-Up										,		Schedule E12 -	Capacity Coliti Real D
Bits Description						2									Page 3 of 7
ACTUAL ACTUAL<															Amended 9/05
Batt. Elsevani, Jett Casachi, J. Dot Dot <thdot< th=""> Dot Dot <thd< th=""><th></th><th></th><th>ACTUAL</th><th>ACTUAL</th><th>ACTUAL</th><th>ACTUAL</th><th>ACTUAL</th><th>ACTUAL</th><th>ACTUAL</th><th>ESTIMATED</th><th>ESTIMATED</th><th>ESTIMATED</th><th>ESTIMATED</th><th>ESTIMATED</th><th>TOTAL</th></thd<></thdot<>			ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ACTUAL	ESTIMATED	ESTIMATED	ESTIMATED	ESTIMATED	ESTIMATED	TOTAL
1 Advances Sci.200 SCI		Base Production Level Capacity Charges;									GEP				1017
a Aurochan Huer Fuer 2.48330 <td>1</td> <td>Auburndaie Power Parines, L.P. (AUBROLFC)</td> <td>532,270</td> <td>503,710</td> <td>503,650</td> <td>503,880</td> <td>603,880</td> <td>503,880</td> <td>503,880</td> <td>503,680</td> <td>503.580</td> <td>503,880</td> <td>203,880</td> <td>503,680</td> <td>6,074,780</td>	1	Auburndaie Power Parines, L.P. (AUBROLFC)	532,270	503,710	503,650	503,880	603,880	503,880	503,880	503,680	503.580	503,880	203,880	503,680	6,074,780
Coupy France. In: CLANDLY 1 Jeas on the	2	Rev County REAVCOUNTS	2,539,295	2,426,332	2,426,332	2,426,332	2,426,332	2,428,332	2,426,332	2,426,332	2,426,332	2,425,332	2,426,332	2,426,332	29,228,940
s Anterna Prove LC (LETPORNING) Lan Courty (LETROPON) Lan Courty (LETROPON) Lang Courty (LE	4	Congill Festilizer, Inc. (CARGELF)	525 900	502 650	502 850	502 650	502.650	502 650	602 680	#02 MG	802 650	502 66A	802 650	290,274 500,650	6 055 060
9 Loss Curvey (LARCOLATI) 4490,005 472,415 477,215	5	Jefferson Power L.C. (JEFF POWR)	(41,465)	0	.0	0	9,829	15,228	17,000	17,000	17.000	17,000	17,000	17,000	85,591
introduct Control (LETIONC) 2173.19 224.29 224.	67	Lake County (LAKCOUNT)	499,035	472,515	472.515	472,515	472,515	472,515	472,515	472,615	472,615	472,615	472,515	472.615	5,696,700
9 0 0 0 217,558 2,107,208 3,107,208 3,107	. 6	Metro-Dade County (METRDACIE)	2,672,818	2,534,639	2,534,639	2,534,639	2,534,630	2,534,630	2,534,639	2,534,439	2,534,859	2,534,839	2,534,639	2,634,639	30,553,647
10 Obsec Caper Letted (CRL/COCL) 128/142 1.88.14	9	Crange Cogen (ORANGECO)	2278.518	2,156,949	2,167,999	2.167.990	2 167 999	2 167 092	1 187 000	942,130	942,130	942,130	942,130	942,130	9,548,125
10 Discretation Cognet Under (CRE(20045)) 0	10	0 Orlando Cogen Linited (ORLACOGL)	1,391,408	1,657,639	1,655,942	1,653,362	1,591,172	1,419,901	1,540,701	1,934,619	1,934,819	1,934,619	1,934,619	1,934,819	20,583,218
1 Participant Leng Control 3.167/222	11	1 Offando Cogen Limited (ORLCOGAS)	0	0	0	0	0	0	0	Û	0	0	0	0	0
14 Presta Conty Resource Records Processor 202,780 202,770 202,771 202,771 202,771 202,771	13	3 Pasco County Resource Recovery (PASCOLINT)	3,267,934	3,157,922	3,157,922	3,157,922	3,361,214	3,157,922	3,157,922	3,157,922	3,157,922	3,157,922	3, 157, 922	3,157,922	38,728,368
15 PM Poer Partes, L.P. (HAULESCHTROTSTER), US Syst-Commun. (ACRC-EM), HUS App-Commun. (A	- 14	4 Pinellas County Resource Recovery (PINCOUNT)	2,142,915	2 029 035	2.029.035	2.029.035	2 079 035	2 029 035	852,380 2 029 035	852,380	2020006	852,380	852,380	852,380	10,276,400
9 0.3 Spin-Charmana (AGR/FELD) 41,722 44,851 44,851 44,851 44,851 44,851 44,851 44,851 44,851 84,856 80,946 800,947 800,977 800,977	1	5 Polk Power Partners, L.P. (MULBERRY/ROYSTER)	4,265,565	3,647,053	3,647,053	3,647,053	3,647,053	3.547,053	3.647.063	3.547.063	3.647.053	3.647.053	3.647.063	3.647.053	44,383,148
10 10<	10	5 US Agri-Chemicals (AGRICHEM)	41,782	44,631	45,441	48,358	45,855	41,430	37,160	48,358	48,358	48,358	48,358	40,358	546,447
10 Incremental Security (SURCO) (S2000) (S20000) (S20000) (S2000) (S2000) (S20000) (S2000) (S2000) (S2000) (S2	-18	UPS Purchase (414 trial met - Gautaria	959,907	800,945	800,946	800,946	800,946	800,948	800,946	800,548	800.946	800,946	800,946	800,946	9,770,313
20 52	15	9 Incremental Security (5060001, 5240001 & 5490001)	33 528	4,043,927	4,1,35,495	521 341	4,257,415	4,384,785	4,439,050	4,411,000	4,369,000	4,333,000	4,371,000	4,369,000	51,730,380 8,216 642
21 Bies Production Agneticitant Responsibility 25.57% 05.057%	20	0 Sublotal - Base Level Capacity Charges	27,001,879	28,790,377	26,349,278	25,976,122	26,249,341	26,306,661	27,304,151	26,596,728	28.644.728	28,267,761	28.656.728	28,303,761	322,540,734
2 2	21	1 Base Production Juriedictional Responsibility	95.957%	95.957%	95.957%	95.957%	95.957%	85.957%	95.957%	95.957%	95,957%	95.957%	95.957%	95.957%	
21 1200 Prove functional functional participants 23 1500 Prove functional participants 24 500 Addet / Marmacadas Loval Jonatonal 1600,767 746,024 </td <td>-</td> <td>Information Productional Capacity Charges</td> <td>25,910,193</td> <td>25,707,242</td> <td>25,283,977</td> <td>24,925,907</td> <td>25,188,060</td> <td>25,245,213</td> <td>28,200,244</td> <td>25,617,379</td> <td>25,567,482</td> <td>27,124,895</td> <td>25,578,998</td> <td>27,159,439</td> <td>309,509,049</td>	-	Information Productional Capacity Charges	25,910,193	25,707,242	25,283,977	24,925,907	25,188,060	25,245,213	28,200,244	25,617,379	25,567,482	27,124,895	25,578,998	27,159,439	309,509,049
24 Staktel H Capacy Basis (4.155) (2.21) (2.25)	23	3 TECO Power Putchase (60 ptw)	650 757	850 767	860 307	450 747		440 747		749 674	7/4.03/	74 694	210.024	748 084	
25 506002 100000 606.061 606.061 606.061 605.150 605.160 728.000 <t< td=""><td>24</td><td>4 Schedule H Capacity Seles</td><td>(4,195)</td><td>(8,815)</td><td>(9,221)</td><td>(9.065)</td><td>(9.357)</td><td>(9.217)</td><td>(9.357)</td><td>(9.026)</td><td>(46,034</td><td>(9.026)</td><td>/45.034</td><td>/40,034 /9,026</td><td>6.306,039</td></t<>	24	4 Schedule H Capacity Seles	(4,195)	(8,815)	(9,221)	(9.065)	(9.357)	(9.217)	(9.357)	(9.026)	(46,034	(9.026)	/45.034	/40,034 /9,026	6.306,039
Bitsminutate Production Autick: Responsebility Bit S74% Bit S74%<	25	5 Subtotal - Intermediate Level Capacity Charges	655,572	650,952	650,546	660,661	650,410	850,550	650,410	739,008	739.008	739,008	739.008	739.008	8,254,161
Description Law Diractic Lapacity Charges 557,555 553,253 552,251 553,065 552,075 553,065 557,759 553,065 557,759 550,000 12,000	26	8 Intermediate Production Jurisdict. Responsibility	86.574%	86.574%	86.574%	86.574%	86.574%	56.574%	86.574%	86.574%	86.574%	80.574%	86.574%	86.574%	
2 Constant Line Landow Line Version 12,500	21	Besting Ornerstan I and Consein Charges	\$67,555	563,555	563,204	563,321	563,086	563,207	563,065	639,789	639,789	639,789	639,789	639.789	7,146,968
29 Ready Creat 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 1,000 0	26	6 Chellahoochee	12 500	11 693	13 407	11 874	12 306	43 634		10 600	13 670	** ***		12 600	160.000
30 Reservive.dotah 787,800 787,800 0 <td< td=""><td>26</td><td>P Ready Creek</td><td>150,000</td><td>100,000</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>.2.00</td><td>6</td><td>0 0</td><td>250.000</td></td<>	26	P Ready Creek	150,000	100,000	0	0	0	0	0	0	0	.2.00	6	0 0	250.000
31 The Enkign Authority 9 0	30	Reliant-Vandoleh	797.900	797,900	0	0	0	0	D.	0	0	0	ō	0	1,595,800
2 0	31	CR & Line	0	0	0	Ŭ,	0	900,000	900,000	900,000	900,000	0	0	Q	3,600,000
34 Parking Production Jurisdictional Responsibility 360,433 100,433 1	33	Subblai-Peaking Level Canacity Character	940.400	0	0	0	0	0	0	0	0	0	0	1,357,930	1,357,930
36 Peaking Level Juisticicions Capacity Charges Other Catacity Charges 716,093 676,136 3,997 9,420 9,220 680,478 680,278 680,378 9,320 9,320 1,021,820 5,184,840 Other Catacity Charges 716,093 676,136 9,397 9,420 9,220 680,478 680,278 680,378 680,378 9,320 9,320 1,021,820 5,184,840 7162,093 676,136 9,397 1,021,820 5,184,840 118,859 (2,941) (22,359) (27,531) (32,229) (50,646) (427,399) 7162,093 676,133 26,2665 (4,183) (6,646) (18,859) (2,941) (22,359) (27,531) (32,229) (50,646) (427,399) 7162,097,076 26,010,544 25,800,912 25,406,465 26,753,688 26,015,778 30,466,612 29,400,867 27,440,677 28,065,17 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517 946,517	з	Peaking Production Jurisdictional Responsibility	74 562%	74 562%	13,407	74,552%	74,562%	812.034 74 55.7%	74.562%	912,500 74 562%	74 562%	74 542%	74,500	74.562%	06.1,608,0
Other Catacity Charges: (99,751) (38,380) (56,265) (4,183) (6,645) (18,859) (2,901) (22,399) (27,531) (23,229) (50,845) (72,268) (427,399) 37 Total Aviadactional Capacity Charges 27,094,057 26,010,544 25,000,912 25,480,465 25,753,688 26,470,006 27,440,657 28,915,178 26,860,118 27,700,775 26,177,200 28,748,761 321,412,448 38 Capacity Cost Racovery Revenues (net of tex) 946,517	36	Peaking Level Jurisdictional Capacity Charges	716,093	676,136	9,997	9,420	9,220	580,478	680,278	080,378	680,378	9,320	9.320	1021,820	5, 184,840
3.5 Protects Protecting (99,751) (23,339) (55,266) (4,183) (6,648) (18,889) (2,941) (22,329) (27,531) (23,229) (50,446) (72,283) (72,661,33) (72,661,33) (72,661,33) <td>-</td> <td>Other Capacity Charges:</td> <td></td>	-	Other Capacity Charges:													
23. Capacity Cost Recovery Revenues (not of lax) 33. Capacity Cost Recovery Revenues (not of lax) 33. Capacity Cost Recovery Revenues (not of lax) 33. Capacity Cost Recovery Revenues (not of lax) 34. Capacity Cost Recovery Revenues (not of lax) 35. Capacity Cost Recovery Revenues (not of lax) 36. Capacity Cost Recovery Revenues (not of lax) 37. Capacity Cost Recovery Revenues (not of lax) 38. Capacity Cost Recovery Revenues (not of lax) 39. Prior Period True-Up Provision 40. Current Period True-Up Provision 40. Current Period True-Up Provision 41. True-Up Provision 41. True-Up Provision 42. Interest Provision 43. Capacity Cost Recovers (line 40 - 57) (2664,543) (4,240,130) (2,965,003) (2,011,277) (3,147,965) 495,316 31,645,159 30,887,204 28,095,003 24,195,204 19,923,872 307,443,335 41. True-Up Provision Corrent Provision Corrent Cycle Baines - Owes(Under) (line 41 + 42) (14,240,130) (2,965,003) (2,011,277) (3,147,965) 495,386 4,063,682 4,529,981 4,027,089 346,221 (1,962,036) 24,195,204 19,923,036,910 (14,240,91,900)	30	- rouse vincening 7 Total knindistanal Chanaity Channes	(99,751)	(38,389)	(56,266)	(4,183)	(6,698)	(18,889)	(2,961)	(22,369)	(27.5.91)	(23,229)	(50,846)	(72,268)	(427,399)
39 Prior Period True-Up Provision 24,703,500 2	38	Cabacity Cost Recovery Revenues (out of tex)	27,094,090	25,810,544	25,800,912	25,490,465	25,753,688	26,470,009	27,440,627	28,915,178	26,860,118	27,760,776	26,177,260	28,748,781	321,412,448
40 Current Parcel Revenues (au of ser) (line 38 + 30) Trans-Up Provision 24,429,547 22,670,414 21,805,009 22,479,168 22,606,022 26,866,396 31,504,509 31,445,159 30,887,204 28,060,035 24,185,204 19,939,872 307,043,359 41 Trans-Up Provision Over/Under/ Recov (line 40 - 57) (2,664,543) (4,240,130) (2,065,303) (3,011,277) (3,147,965) 405,386 4,063,682 4,529,981 4,027,080 346,281 (1,992,056) (8,806,916) (14,309,068) 11 statistic revision for the Month 11,811 3,156 (6,005) (19,250) (00,405) (37,834) (36,475) (27,231) (18,010) (14,597,980) (14,597,9	36	Prior Period True-Up Provision	946,517	946.517	946.517	946.517	946,517	946.517	948.517	946.617	946 517	948.517	946.517	(2,750,294)	7,661,393
Insel/b Provision 11 Tras-Up Provision 11 Tras-Up Provision 41 Tras-Up Provision 0xet/Under/ Recov (fine 40 - 57). 42 Infrast Provision for the Month 11.811 3.159 (9.065) 43 Tras-Up Provision for the Month (1.811 3.159 (9.065) (1.811 3.159 (2.664,543) (4.240,130) (1.962,076) (2.664,543) (2.664,543) (4.240,130) (2.664,543) (4.240,130) (2.664,543) (4.240,130) (2.664,543) (4.240,130) (2.662,732) (6.063,662 (2.652,732) (6.063,662) (2.652,732) (6.063,662) (2.652,732) (6.063,662) (2.652,732) (6.063,662) (1.6,61,363) 7,661,363 (2.652,732) (6.063,662) (2.652,678) (7,572,136) (2.652,732) (6.063,652) (4.652,732) (6.063,652) (4.653,767) (12,661,363) (2.652,732) (6.064,862) <	40	Current Period Revenues (net of ser) (line 38 + 30)	24,429,547	22,670,414	21,835,009	22,479,168	22,608,023	26,966,396	31,504,309	31,445,159	30,667,204	28.095.035	24,185,204	19,939,872	307,043,359
41 Time-Up Provision - Over(Under) Recov (five 40 - 57). (2.664.543): (4.240.130) (2.965.203): (3.011.277) (3.147.865): 465.386 4.053.682 4.027.060 3.452.581 (1.992.056) (8.800,916) (14.529.801) 42 Infrast Dp Provision for the Month 3.158 (8.905.011.277) (3.147.865) 465.386 4.023.682 4.027.060 3.45,251 (1.992.056) (8.800,916) (14.529.801) (3.22.872) 43 Linent Cycle Basince - Over(Under) fore 41 + 42) (18.507.800) (10.663.862) (12.667.632) (4.0075.806) (3.745.147) (5.756.741) (14.597.800) (14.597.801) (14.597.801) (14.597.802) (14.597.802) (40.75.801) (37.951.393) 7.661.393 7.661.393 7.661.393 7.661.393 7.661.393 7.661.393 7.661.393 7.661.393 7.661.3933 7.661.3933 7.661.3933		True-Up Provision				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -									
11.811 3.153 (6.055) (19,250) (20,405) (27,231) (18,010) (14,602) (19,561) (228,172) 13 Channel Cycle Balance - Owsk(Under) (fine 41 + 42) (14,563,052) (13,664,219) (17,231) (18,010) (14,602) (14,567,800) (14,567,800) 43 Channel Cycle Balance - Owsk(Under) (fine 41 + 42) (14,563,052) (16,061,063,052) </td <td>41</td> <td>I The-Up Moveon - Over/(Under) Recov (See 40 - 37)</td> <td>(2,664,543)</td> <td>(4,240,130)</td> <td>(1,965.903)</td> <td>(2,011,277)</td> <td>(3,147,865)</td> <td>495,386</td> <td>4,063,682</td> <td>4,529,981</td> <td>4,027,008</td> <td>345,281</td> <td>(1,992,056)</td> <td>(5,808,910)</td> <td>(14,369,068)</td>	41	I The-Up Moveon - Over/(Under) Recov (See 40 - 37)	(2,664,543)	(4,240,130)	(1,965.903)	(2,011,277)	(3,147,865)	495,386	4,063,682	4,529,981	4,027,008	345,281	(1,992,056)	(5,808,910)	(14,369,068)
44 Plas: Prior Pariod Balance (4,013,030) (1,012,030)	43	Cirrent Circle Relation - Charlet Index) (Inc. 45 a. 42)	11,811	3,158	(6,085)	(19,250)	(30,406)	(37,934)	(36,476)	(27,231)	(18,010)	(14,602)	(19,561)	(32,167)	(228,792)
45 Phile Cumulative Tue-up Dreat[Under] Bines 43 through 45) (9465,517) (1,893,034) (2,839,551) (3,795,085) (4,143,482) (14,532,547) (11,551,858) (7,996,525) (4,833,066) (5,548,624) (8,607,078) (14,597,889) (14,597,889)	44	Plus: Prior Period Belance	7,661 391	7.661 393	7.061 392	7 861 393	7.841.393	7.651 393	7.641.391	7 (451 1923	7,661.393	7,661.397	7,061,393	7.661.301	7,681,393
45 Net True-up Over(Under) Bines 43 Byrough 45) 4,062,144 (1.121,345) (8,041,850) (10,018,894) (14,143,482) (14,832,547) (11,551,858) (7,996,525) (4,833,096) (5,548,924) (8,507,078) (14,597,890) (14,597,890)	45	5 Plus Cumulative True up Provision	(946,517)	(1,893,034)	(2,839,551)	(3,786.068)	(4,732,585)	(5,679,102)	(6,625.619)	(7,572,136)	(8,618,663)	(9,465,170)	(10,411,687)	(7.661,393)	(7,661,393)
	46	Net True-up Over!(Under) dines 43 through 45)	4,062,144	(1,121,345)	(6,041.850)	(10,018,894)	(14,143,482)	(14,632,547)	(11,551,858)	(7,996,626)	(4,933,066)	(5,548.924)	(8,507.078)	(14,597,880)	(14,597,890)
		· · · · · · · · · · · · · · · · · · ·									13-10-14				
						1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1									

Progress Energy Florida Gapacity Cost Recovery Clause Calculation of Estimated / Actual True-Up For the Year 2005

Doctant 050001-EI Witness: J. Portuondo Schedule E12 - Capacity Costs Part D Page 4 of 7 Amended 9/05

1

Contract Data:

Name	Start Date	Expiration Onle	Туре	Purchese/Sale	MW
Aubumcele Power Partners, L.P. (AUBROLFC)	Jen-95	Dec-13	OF	Purch	17.00
Autoumcale Power Pariners, L.P. (AUBSET)	Aug-04	Dec-13	Q₽	Purch	114.18
Bay County (BAYCOUNT)	Jan-95	Dec-05	OF	Purch	11.00
Cargill Farilizer, Inc. (CARGILLF)	Sep-02	Dec-07	OF	Purch	15.00
Jeferson Power L.C. (JEFFPOWER)	Jul-02	Sep-08	OF	Purch	2.00
Late County (LAKCOUNT)	Jan-95	347-14	OF	Purch	12.75
Loke Cogen Limited (LAKORDER)	Jul-93	Jul-13	OF	Purch	110.00
Metro-Dade County (METROADE)	Nov-01	Nov-13	QF	Purch	43.00
Orange Cogen (ORANGECO)	Jul-95	Dec-24	QF	Purch	74.00
Orlando Gegen Linited (ORLACOGL)	Sep-93	Dec-23	QF	Purch	79.20
Pasco Cogan Limited (PASCOGL)		Dec-06	QF	Purch	109.00
Pasco County Researce Recovery (PASCOUNT)	Jan-95	Dec-24	QF	Purch	23.00
Pinellas County Resource Recovery (PINCOUNT)	Jan-95	Dec-24	QF	Purch	54.75
Polk Power Parlmank, L. P. (MULBERY)	Aug-04	Aug-24	QF	Purch	79.20
Polk Power Partners, L. P. (ROYSTER)	Aug-94	Aug-09	QF	Purch	30,80
U.S. Agri-Chemicals (AGRICHEM)	Jan-97	Dec-06	OF	Purch	5.61
Wheelebrator Ridge Energy, Inc. (RIDGEGEN)	Aug-94	Dec-23	QF	Purch	39,60
UPS Purchase - Southern	Jul-88	May-10	Other	Purch	414.00
TECO Power Putchase	Mar-93	Feb-11	Other	Purch	70.00
Schedule H Capacity - New Smyrna Beach	Nov-85	(2)	Other -	Sale	
Schedule H Capacity - Talleheesee	May-G4	Jun-04	Other	Sale	
Cialishcochee	Oct-02	Oct-12	Other	Purch	
Ready Creek	Dec-03	Feb-05	Other	Purch	
Vandoleh (Reliant Energy Services)	Dec-04	Feb-06	Other	Purch	
The Energy Authority	Jun-05	Sep-06	Other	Purch	
Central Power & Lime	Dec-05	Dec-10	Other	Purch	

8

Progress Energy Florida Development of Jurisdictional Delivery Loss Multipliers Based on Actual Twelve Months Ending December 31, 2004 Estimated for the Period of: January Through December 2006

Docket 050001-EI Winess: J. Portuondo Part D Page 5 of 7

		Energy E	Delivered @ Billing Le	vei			Energy		
		Billed	Unbilled	Total		Delivery	Required @		Jurisdictional
		MWH	MWH	MWH	% of Total	Efficiency	Source Level	% of Total	Loss Multiplier
Patall									
Transmission		633 355							
Oistribution Brimson		531,458	3,903	341,211		0.9763000	554,349		
Distribution Secondary		4,040,203	33,444	4,5/8,59/		0.9563000	4,739,415		
Total Datail		35,109,602	243,367	33,353,109		0.9411/51	35,437,795		
TOURI AVIAN		30,193,113	260,904	36,4/4,0//	95.17%	0.9445/66	40.731,559	95,37%	1.00207
						5.54%			
Wholesale									
Generation Level		883,271	28,443	911,714		1.0000000	911,714		
Transmission		948,630	(3,667)	944,963		0.9763000	967,902		
Distribution Primary		95,312	114	95,426		0,9663000	98,754		
Distribution Secondary		•							
Total Wholesale		1,927,212	24,890	1,952,102	4.83%	0.9867228	1,978,370	4.63%	0.95927
						1.33%			
Subtotal Class		40,120,325	305,854	40,426,179	100.00%	0.9465268	42,709,929	100.00%	1.00000
			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			5.35%			
						1. e			
Non-Class									
Sepa	Transmission	8,176	-	8,176		0.9763000	8,374		
Homestead - Base	Generation	131,760	5,692	137,452		1.0000000	137,452		
FP&L - Base	Generation	1,396,025	60,309	1,456,334		1.0000000	1,458,334		
TECO - Intermediate	Transmission	•	•	· ·		0.9763000	•		
Seminole Elect Coop	Generation	737,780	(17,580)	720,200		1.0000000	720,200		
Tallahassee - Base	Transmission	100,138	4,326	104,464		0.9763000	107,000		
Interchange	Generation	789,756	•	799,756		1,0000000	799,756		
Company Use	Secondary	118,816		118,816		0.9411751	126,242		
Total Non-Class		3,292,451	52.747	3,345,198			3,355,358		
Total System		43,412,776	358,601	43,771,377		0.950203	48,065,287		

Progress Energy Florida Capacity Cost Recovery Clause Calculation of Capacity Clause Recovery Factor Using Current 12 CP & 1/13th AD Allocation Method for Production Demand For the Year 2006

	Rate Class	(1) Mwh Sales Ø Moter Level	(2) 12 CP Load Factor	(3) Average CP MW @ Meter Level (1)/8760hrs/(2)	(4) Delivery Efficiency Factor	(5) Average CP MW @ Source Level (3)/(4)	(6) Mwh Sales @ Meter Level	(7) Delivery Efficiency Factor	(8) Source Level Mwh (6)/(7)	(9) Annual Average Demand (8)/8760hrs
ł.	Residential Service	20,435,616	0.548	4,256.99	0.9411752	4,523.06	20,435,616	0.9411752	21,712,871	2,478.64
II.	General Service Non-Demand				•					
	Transmission	2,830	0.609	0.53	0.9763000	0.54	2.830	0.9763000	2,899	0.33
	Primary	6,106	0.609	1.14	0.9663000	1.18	6,105	0.9663000	6,319	0.72
	Secondary	1.345.051	0.609	252.13	0.9411752	267.89	1.345,051	0.9411752	1,429,119	163.14
	Total Gen Serv Non-Demand	1,353,987	.'	253.80		269.61	1,353,987	•	1,438,337	164.19
ii 1.	GS - 100% L.F.	85,622	1.000	9.77	0.9411752	10.38	85,622	0.9411752	90,973	10.39
Ν.	General Service Demand		· · ·					1		
	SS-1 - Transmission	9,179	3.733	0.28			9,179			
	GSD-1 - Transmission	(152)	0.698	(0.02)			(152)			
	Total Transmission	9,027		0.26	0.9763000	0.27	9,027	0.9763000	9,246	1.06
	SS-1 Primary	5,482	3.733	0.17			5,482			
	GSD-1 - Primary	2,505,277	0.698	409.73			2.505.277			
	Total Primary	2,510,759		409.90	0.9663000	424.20	2,510,759	0,9663000	2,598,322	296.61
	GSD - Secondary	12.662.743	0.698	2.070.94	0.9411752	2.200.38	12.662.743	0.9411752	<u>13.454.183</u>	<u>1.535.87</u>
	Total Gen Serv Demand	15,182,529		2,481.10		2,624.85	15,182,529		16,061,751	1,833.54
٧.	Curtailable Service									
	CS - Primary	294,624	0.779	43.17	· ·		294,624	,		
	SS-3 - Primary	1.842	0,480	0.44			1.842			
	Total Primary	296,466	1.4	43.61	0.9663000	45.13	296,466	0.9663000	306,805	35.02
	CS - Secondary	0	0.779	0.00	0.9411752	0.00	Q	0.9411752	Q	0.00
	Total Curtailable Service	296,466		43.61		45.13	296,466		306,805	35.02
VI.	Interruptible Service							•		
	IS - Transmission	408,644	0.940	49.63			408,644			
	SS-2 - Transmission	102,983	0.748	15.72			102,983			
	Total Transmission	511.627		65.35	0.9763000	66.94	511.627	0.9763000	524,047	59.82
	IS - Primary	1.748,265	0.940	212.31			1,748,265			
•	SS-2 - Primary	63.764	0.748	9.73			63.764			
	Total Primary	1.812.029		222.04	0.9663000	229.78	1,812,029	0.9663000	1,875,224	214.07
	IS - Secondary	137,041	0.940	16.64	0.9411752	17.68	137.041	0.9411752	145.606	<u>16.62</u>
	Total Interruptible Service	2,460,697		304.03		314.40	2,460,697		2,544,877	290.51
VII.	Lighting Service	333,325	4.650	8.18	0.9411752	8.69	333,325	0.9411752	354,158	40.43
	Total Retail	40,148.242				7,796.12	40,148,242		42,509,772	4,852.72

Progress Energy Florida Capacity Cost Recovery Clause Calculation of Capacity Clause Recovery Factor Using Current 12 CP & 1/13th AD Allocation Method for Production Demand For the Year 2006

		(1) Avera	(2) ige	(3) Anni	(4) Ial	(5) 12/13 of	(6) 1/13 of	(7) Demand	(8) Dollar	(9) Effective Mwd's	(10) Capacity Cost
		12 CP D	emand	Average [Demand	12 CP	Annual Demand	Allocation	Allocation	@ Secondary Level	Recovery Factor
		Mw		Mw	- %	12/13 * (2)	1/13 * (4)	(5) + (6)	(7) * Totai	Year 2006	(c/Kwh)
ł.	Residential Service	4,523.06	58.017%	2,478.64	51.077%	53.554%	3.929%	57.483%	204,560,481	20,435,615	1.001
11.	General Service Non-Demand										
	Transmission		1							2,773	0.889
	Secondary									5,045 1 345 051	0.099
	Total Gen Serv Non-Demand	269.61	3.458%	164.19	3.383%	3.193%	0.260%	3.453%	12,287,935	1,353,869	
111.	GS - 100% L.F.	10.38	0.133%	10.39	0.214%	0.123%	0.016%	0.139%	494,649	85,622	0.578
i∨.	General Service Demand				•						
	Transmission									8,846	0.782
	Primary									2,485,651	0.790
	Secondary Total Gen Service, Domond	2 624 86	33 66094	1 833 54	37 78494	31 08194	2 008%	13 085%	120 030 805	<u>12,062,743</u> 15,157,240	0.790
	Total Gen Gentice Liending	2,024.05	30.000 M	1,000.04	01.10474	01.00170	2.000 10	JJ.JUJ /4	120,000,000	10,101,240	
V.	Curtailable Service					•					
	Transmission	1			1					0	0.701
	Primary									293,501	0.708
	Total Curtailable Service	45 13	0.580%	35.02	0.722%	0 534%	0.056%	0 590%	2.099.589	293.501	0.110
Vi,	Interruptible Service										
	Transmission									501,394	0.600
	Primary Sectored		1							1,793,909	0.606
	Secondary Total Interruptible Service	314.40	4.033%	290.51	5.987%	3.722%	0.461%	4.183%	14,885,731	2,432,344	0.012
VII.	Lighting Service	8.69	0.110%	40.43	0.833%	0.103%	0.064%	0,167%	594,290	333,325	0.178
	Total Retail	7,796.12	100.000%	4,852.72	100.000%	92.310%	7.692%	100.000%	355,862,570	40,091,516	0.88637

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

Fuel and Capacity Cost Recovery Factor January Through December 2006

PART E - SCHEDULE OF HINES UNIT 2 DEPRECIATION & RETURN

Progress Energy Florida Docket 050001-EI Witness: J. Portuonodo Part F

Calculation of Inverted Residential Fuel Rates

	Annual Units MWH	Levelized Fuel Rate Cents/kwh		Annual Fuel Revenues	Inverted Fuel Rates Cents/kwh		Annual Fuel Revenues
Residential Excluding TOU:							
0 - 1,000 kwh	13,275,947	5.202	\$	690,667,867	4.852	\$	644,159,569
Over 1,000 kwh	7,158,647	5.202		372,421,452	5.852		418,929,749
Total	20,434,594		5	1,063,089.318		5	1,063,089,318

Rate Differential by Tier - Cents per KWH

1.000

Residential Sales:

Levelized	20,434,594
Time of Use	1,021
Total	20,435,615
Check	-

EXHIBITS TO THE TESTIMONY OF JAVIER PORTUONDO

Fuel and Capacity Cost Recovery Factor January Through December 2006

SCHEDULES E1 THROUGH E10 AND H1

5.195

Progress Energy Florida

Fuel and Purchased Power Cost Recovery Clause

Estimated for the Period of : January Through December 2006

			DOLLARS	MWH	CENTS/KWH
1.	Fuel Cost of System Net Generation		1,693,893,744	37,240,450	4.54853
2.	Spent Nuclear Fuel Disposal Cost		6,228,904	6,636,378 *	0.09386
3.	Coal Car Investment		10,413,156	Ó	0.00000
4.	Adjustment to Fuel Cost		38,332,621	0	0.00000
5.	TOTAL COST OF GENERATED PO	WER	1,748,868,426	37,240,450	4.69615
6.	Energy Cost of Purchased Power (E)	cci. Econ & Cogens) (E7)	114,125,596	4,915,525	2.32174
7.	Energy Cost of Sch. C.X Economy Pr	urchases (Broker) (E9)	0	Ū.	0.00000
8.	Energy Cost of Economy Purchases	(Non-Broker) (E9)	55,641,111	777,200	7.15918
9.	Energy Cost of Schedule E Economy	Purchases (E9)	0	0	0.00000
10.	Capacity Cost of Economy Purchase	s (E9)	0	0.*	0.00000
11,	Payments to Qualifying Facilities (E8) 	145,301,280	4,663,000	3.11605
12.	TOTAL COST OF PURCHASED PO	WER	315,067,987	10,355,725	3.04245
13.	TOTAL AVAILABLE KWH			47,596,175	
14.	Fuel Cost of Economy Sales	(E6)	0	0	0.00000
14a.	Gain on Economy Sales - 80%	(E6)	0	0 *	0.00000
15	Fuel Cost of Other Power Salea	(E6)	(45,615,405)	(759, 138)	6.00884
15a,	Gain on Other Power Sales	(E6)	(5,856,036)	(759,138) *	0.77141
16.	Fuel Cost of Unit Power Sales	(E6)	0	0	0.00000
16a.	Gain on Unit Power Sales	(E6)	Q	0	0.00000
17.	Fuel Cost of Stratified Sales	(E6)	(129,373,189)	(2,496,445)	5.18230
18.	TOTAL FUEL COST AND GAINS ON	POWER SALES	(180,844,630)	(3,255,583)	5.55491
19.	Net inadvertent interchange			0	
20.	TOTAL FUEL AND NET POWER TR	ANSACTIONS	1.883,091,783	44,340,592	4.24688
21.	Net Unbilled		(67,203)	1,582	(0.00016)
22.	Company Use		5,096,256	(120,000)	0.01224
23.	T & D Losses		109,174,495	(2,570,699)	0.26211
24.	Adjusted System KWH Sales		1,883,091,783	41,651,476	4.52107
25.	Wholesale KWH Sales (Excluding Su	pplemental Sales)	(68,127,896)	(1.503.234)	4.53209
26.	Jurisdictional KWH Sales		1,814,963,887	40,148,242	4.52066
27.	Jurisdictional KWH Sales Adjusted fo	r Line Losses x 1.00207	1,818,720,862	40,148,242	4.53001
28.	Prior Period True-Up (Sch E1-A)		264,931,104	40,148,242	0.65988
29.	Total Jurisdictional Fuel Cost		2,083,651,966	40,148,242	5.18989
30.	Revenue Tax Factor				1.00072
31.	Fuel Cost Adjusted for Taxes		2,085,152,195	40, 148, 242	5.19363
32.	GPIF **		532,353	40,148,242	0.00133
33.	Fuel Factor Adjusted for taxes includi	ng GPIF	2,085,584,548	40, 148, 242	5.19495

34. Total Fuel Cost Factor (rounded to the nearest .001 cents/ KWH)

* For Informational Purposes Only

** Based on Jurisdictional Sales

SCHEDULE E1-A

Progress Energy Florida Calculation of Total True-Up (Projected Period) Estimated for the Period of : January Through December 2006

1.	ACTUAL OVER/(UNDER) RECOVERY JANUARY - DECEMBER 2004	5.	(170,405,867)
2.	ESTIMATED OVER/(UNDER) RECOVERY JANUARY - DECEMBER 2004		155,959,294
3.	ESTIMATED JANUARY - DECEMBER 2004 UNDER RECOVERY CARRIED FORWARD TO 2006 (Docket No. 040001-EI, Order PSC-04-1276-FOF-EI)		(79,157,270)
4.	ESTIMATED OVER/(UNDER) RECOVERY JANUARY - DECEMBER 2005		(171,327,261)
5.	TOTAL OVER/(UNDER) RECOVERY TO BE INCLUDED IN THE JANUARY - DECEMBER 2006 PROJECTED PERIOD (Lines 1 through 4)	\$	(264,931,104)
6 .	JURISDICTIONAL MWH SALES (Projected Period)	Mwh	40,148,242
7.	TRUE-UP FACTOR (Line 5 / Line 6)	Cents/kwh	0.65988

Docket 050001-EI SCHEDULE E1-B

Progress Energy Fikrids Calculation of Estimated True-Up Actual/Estimated for the Period of: January Through December 2005

	Actual	Estimated	Estimated	Estimated	Estimated	Estimated	TOTAL						
DESCRIPTION	Jan-05	Feb-05	Mar-05	Apr-05	May-05	Jun-05	Jul-05	Aug-05	Sep-05	Oct-05	Nov-05	Dec-05	PERICO
REVENUE													
1 Jurisdictional M/VH Sales	3,029,290	2,817,495	2,720,300	2,829,554	2,834,359	3,367,358	3,915,031	3,954,161	3,861,622	3,519,948	3,012,905	2,941,789	38,824,010
2 Jurisdictional Fuel Factor (Pre-Tax)	3.877	3.886	3.882	3,890	3.904	3.900	3.902	3.910	3.910	3.910	3.910	3.910	
3 Total Jurisdictional Fuel Revenue	117,456,065	109,492,306	105,607,419	110,067,310	110,663,960	131,331,315	152,755,351	154,590,574	151,762,432	137,614,647	117,791,540	115,011,212	1,514,144,131
4 Less: True-Up Provision	(6,400,169)	(6,400,169)	(6,400,189)	(6,400,159)	(6,400,169)	(6,400,169)	(6,400,169)	(6,400,169)	(6,400,189)	(6,400,169)	(6,400,169)	(6,400,169)	(76,802,024)
5 Less: GPIF Provision	(178,308)	(178,306)	(178,308)	(178,308)	(178,308)	(178,308)	(176,308)	(178,308)	(178,308)	(178,308)	(178,308)	(178,307)	(2,139,695)
6 Less: Other	0	0	0	0	0	0	0	0	0	0	0	0	0
7 Net Fuel Revenue	110,877,588	102,913,829	99,028,942	100,488,833	104,085,483	124,752,838	146,176,874	148,012,097	145,183,955	131,036,170	111,213,063	108,432,736	1,435,202,412
								•					
FUEL EXPENSE						• 							
8 Total Cost of Generated Power	89,019,275	74,131,090	98,360,488	87,305,066	105,377,104	122,734,133	179,674,790	162,326,848	156,710,690	138,965,395	135,150,887	114,989,542	1,484,745,305
9 Total Cost of Purchased Power	22,532,030	19,075,422	19,595,769	21,850,381	19,432,339	30,872,945	51,218,232	34,580,821	30,486,505	27,644,150	21,843,066	23,923,076	322,834,737
10 Total Cost of Power Sales	(9,474,645)	(8,0\$3,969)	(9,245,042)	(7,759,188)	(7,318,097)	(7,007,589)	(5,294,835)	(8,843,142)	(9,301,422)	(10,435,034)	(10,542,968)	(8,978,065)	(102,284,015)
11 Total Fuel and Net Power	102,076,660	85,122,543	108,711,215	101,396,279	117,491,347	146,399,489	225,598,186	208,044,525	177,895,773	158,174,511	148,450,965	129,934,534	1,705,298,027
12 Juristicional Percentage	94.78%	93.75%	93.62%	91,25%	93.78%	94.84%	94.01%	94.09%	93.84%	93.58%	82.91%	93.26%	93.70%
13 Juristictional Loss Multiplier	1.00097	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207
14 Jurisdictional Fuel Cost	98,842,105	79,967,575	101,986,115	92,715,629	110,411,465	139,132,685	212,523,871	196,154,294	167,282,954	146,450,634	135,349,251	121,427,782	1,801,244,360
							· · ·						
COST RECOVERY	0												
15 Net Fuel Revenue Less Expense	14,035,484	22,948,254	(2,957,172)	10,773,204	(6,325,982)	(14,379,847)	(66,346,997)	(48,142,198)	(22,098,999)	(15,414,464)	(25,138,189)	(12,995,046)	(166,041,952)
16 Interest Provision	(323,580)	(291,584)	(270,109)	(262,751)	(254,818)	(278,060)	(389,393)	(532,335)	(613,950)	(650,138)	(690,663)	(727,927)	(5,285,309)
17 Gurrent Cycle Balance	13,711,904	36,366,574	33,139,292	43,649,745	37,068,945	22,411,037	(44,325,352)	(92,999,885)	(115,712,834)	(131,777,435)	(157,604,287)	(171,327,281)	
18 Plus: Prior Period Balance	(170,405,871)	(170,405,871)	(170,405,871)	(170,405,871)	(170,405,871)	(170,405,871)	(170,405,871)	(170,405,871).	(170,405,871)	(170,405,871)	(170,405,871)	(170,405,871)	
19 Plus: Camulative True-Up Provision	6,400,169	12,800,338	19,200,507	25,600,676	32,000,845	38,401,014	44,801,183	51,201,352	57,601,521	64,001,690	70,401,859	76,802,028	
20 Total Retail Balance	(150.293,798)	(121,238,959)	(118,068,072)	(101,155,450)	(101,338,081)	(109,593,820)	(169,930,040)	(212.204.404)	(228,517,184)	(238,181,616)	(257.608.299)	(264,931,104)	

Amended 9/05

SCHEDULE E1-C

Progress Energy Florida Calculation of Generating Performance Incentive And True-Up Adjustment Factors Estimated for the Period; January Through December 2006

1. TOTAL AMOUNT OF ADJUSTMENTS:

	A. Generating Performance Incentive Reward / (Penalty)	\$	532,353
	B. True-Up (Over) / Under Recovery	\$	264,931,104
2.	JURISDICTIONAL MWH SALES	Mwh	40,148,242
3.	ADJUSTMENT FACTORS:		• • •
	A. Generating Performance Incentive Factor	Cents/kwh	0.00133
	B. True-Up Factor	Cents/kwh	0.65988

Progress Eenrgy Florida Calculation of Levelized Fuel Adjustment Factors (Projected Period) Estimated for the Period of : January Through December 2006

1.	Period Jurisdictional Fuel Cost (E1,	line 27)		\$	1,818,720,862
2.	Prior Period True-Up (E1, line 28)				264,931,104
3.	Other Adjustments				0
4.	Regulatory Assessment Fee (E1, lin	e 30)			1,500,228
5.	Generating Performance Incentive Fa	ctor (GPIF) (E1, line 32)		532,353
6	Total Jurisdictional Fuel Cost (E1, lir	ne 33)		\$	2,085,684,547
7.	Jurisdictional Sales (E1, line 26)		Mwh		40,148,242
8.	Jurisdictional Cost per Kwh Sold (Lin	e 6 / Line 7 / 10)	Cents/kwh		5.195
9 .	Effective Jurisdictional Sales (See Be	elow)	Mwh		40,091,519
	LEVELIZED FUEL FACTORS:				
10.	Fuel Factor at Secondary Metering (L	ine 6 / Line 9 / 10)	Cents/kwh		5.202
11.	Fuel Factor at Primary Metering (Line	: 10 * 99%)	Cents/kwh		5.150
12.	Fuel Factor at Transmission Metering	(Line 10 • 98%)	Cents/kwh		5.098
	TIERED FUEL FACTORS:				
13.	Fuel Factor - First Tier (0-1000 kWh)		Cents/kwh		4.852
14.	Fuel Factor - Second Tier (Over 1000	kWh)	Cents/kwh		5.852
			JURISDICTION	IAL :	SALES (MWH)
		METERING VOLTAGE:	METER		SECONDARY
		Distribution Secondary	34,999,398		34,999,398
		Distribution Primary	4,625,360		4,579,106
		Transmission	523,484	<u> </u>	513,014
		Total	40,148,242		40,091,519

Progress Eenrgy Florida Calculation of Final Fuel Cost Factors Estimated for the Period of : January Through December 2006

					Time of Use		
<u>Line:</u>	Metering Voltage	First Tier Factor Cents/Kwh	Second Tier Factor Cents/Kwh	Levelized Factors Cents/Kwh	On-Peak Multiplier 1.342	Off-Peak Multiplier 0.848	
1.	Distribution Secondary	4.852	5.852	5.202	6.981	4.411	
2 .	Distribution Primary	-		5.150	6.911	4.367	
3.	Transmission	-	-	5.098	6.842	4.323	
4.	Lighting Service	-		4.892			

Line 4 calculated at secondary rate of 5.202 * (18.7% * On-Peak Multiplier 1.342 + 81.3% * Off-Peak Multiplier 0.848).

DEVELOPMENT OF TIME OF USE MULTIPLIERS

ON-PEAK PERIOD

OFF-PEAK PERIOD

TOTAL

			Average			Average			Average
	System MWH	Marginal	Marginal	System MWH	Marginal	Marginal	System MWH	Marginal	Marginal
<u>Mo/Yr</u>	Requirements	Cost	Cost (c/kWh)	Requirements	Cost	Cost (¢/kWh)	Requirements	Cost	Cost (¢/kWh)
Jan-06	961,012	51,801,637	5.390	2,662,766	116,775,628	4.386	3,623,778	168,577,265	4.652
Feb-06	866,028	52,922,838	6.111	2,315,629	109,548,600	4.731	3,181,657	162,471,438	5.107
Mar-06	949,360	60,105,121	6,331	2,437,045	134,121,188	5.503	3,386,405	194,226,309	5.735
Apr-06	1,010,061	76.892,634	7.613	2,324,466	99,614,838	4.285	3,334,527	176,507,471	5.293
May-06	1,462,407	118,854,587	8.127	2,643,901	115,990,865	4.387	4,106,308	234,845,453	5.719
Jun-06	1,510,320	145,144,696	9.610	2,898,454	147,625,164	5.093	4,408,774	292,769,859	6.641
Jul-06	1,484,372	147,958,257	9.968	3,296,275	203,030,789	6.159	4,780,647	350,989,046	7.342
Aug-06	1,666,396	181,973,676	10.920	3,145,936	197,971,783	6.293	4,812,332	379,945,459	7.895
Sep-06	1,400,658	123,768,589	8.836	2,970,171	164,774,510	5.548	4,370,829	288,543,099	6.602
Oct-06	1,299,321	117,935,104	9.077	2,597,327	130,387,441	5.020	3,896,648	248,322,545	6.373
Nov-06	882,525	53,797,736	6.096	2,435,080	135,899,873	5.581	3,317,605	189,697,609	5.718
Dec-06	903,132	56,856,871	6.296	2,722,301	136,424,459	5.011	3,625,433	193,281,330	5.331
TOTAL	14,395,592	1,188,011,745	8.253	32,449,352	1,692,165,138	5.215	46,844,944	2,880,176,882	6.148
MARGIN	AL FUEL COST		ON-PEAK			OFF-PEAK			AVERAGE
WEIGHTI	NG MULTIPLIER		1.342			0.848			1.000

Progress Energy Florida **Development of Jurisdictional Delivery Loss Multipliers**

Based on Actual Twelve Months Ending December 31, 2004

		Energy De	sivered @ Billing	Level			Energy		
		Billed	Unbilled	Total		Delivery	Required #2		Jurisdictional
		MWH	MWH	MWH	% of Total	Efficiency	Source Level	% of Total	Loss Multiplier
Retail			· · ·						
Transmission		537 258	3 053	541 214		0.0763000	554 340		
Distribution Primary		4 546 253	33 444	A 579 697		0.9703000	A 730 445		
Distribution Secondary		33 109 602	243 567	33 353 160		0.9003000	4,138,413		
Total Retail		38 193 113	280.064	39,535,105	05 17%	0.0445766	40 721 550	05 379/	1.00207
			200,304	30,474,077	33,1776	5.54%	40,131,39	80.3170	1.00207
Wholesale									
Generation Level		883,271	28,443	911,714		1.0000000	911,714		
Transmission		948,630	(3,667)	944,963		0.9763000	967,902		
Distribution Primary		95,312	114	95,426		0.9663000	98,754		
Distribution Secondary		•	-	•					
Total Wholesale		1,927,212	24,890	1,952,102	4.83%	0.9867228	1,978,370	4.63%	0.95927
						1.33%			
Subtotal Class		40,120,325	305,854	40,426,179	100.00%	0.9465288	42,709,929	100.00%	1.00000
						5.35%			
					- 	•			
Non-Class				•		1			
Sepa	Transmission	8,176	•	8,176		0.9763000	8,374		
Homestead - Base	Generation	131,760	5,692	137,452		1.0000000	137,452		
FP&L - Base	Generation	1,396,025	60,309	1,456,334		1.0000000	1,456,334		
TECO - Intermediate	Transmission	· -	-	-		0.9763000	•		
Seminole Elect. Coop	Generation	737,780	(17,580)	720,200		1.0000000	720,200		
Tailahassee - Base	Transmission	100,138	4,326	104,464		0.9763000	107,000		
Interchange	Generation	799,756	•	799,756		1.0000000	799,756		
Company Use	Secondary	118,816	-	118,816		0.9411751	126,242		
Total Non-Class		3,292,451	52,747	3,345,198			3,355,358		
Total System		43,412,776	358,601	43,771,377		0.950203	46,065,287		

Progress Energy Florida . Fuel and Purchased Power Cost Recovery Clease Estimated for the Paried of : Jenuery Tarough December 2006.

			Estimated												
			Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Jul-06	Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	TOTAL
								• -							
1	Fuel Cost of System Net Generation		\$142,191,975	\$119,117,480	\$134,871,554	\$102,693,742	\$135,698,209	\$159,397,520	\$184,743,627	\$190,811,077	\$159,273,588	\$130,398,397	\$115,930,573	\$118,768,003	\$1,693,893,744
1a	Nuclear Fuel Disposel Cost		534,681	482,842	534,681	516,908	523,638	506,425	523,838	523,838	506,425	523,835	\$16,905	534,681	5,228,904
10	Adjustments to Fuel Cost		4,084,809	3,947,735	3,940,820	3,929,538	3,923,263	3,935,020	3,896,984	3,870,706	3,874,233	5,603,297	3,848,157	3,891,217	48,745,777
2	Fuel Cost of Power Sold		(6,378.075)	(6,767,963)	(6,639,752)	(3,825,490)	(1,927,383)	(1,631,120)	(2,402,811)	(2,100,593)	(2,420,787)	(2,069,345)	(3,921,426)	(5,530,660)	(45,615,405)
2.	Gains on Power Sales		(793,669)	(832,509)	(908,007)	(500,681)	(253,116)	(211,793)	(307,958)	(234,269)	(321,695)	(280,977)	(510,655)	(700,687)	(5,856,036)
20	Fuel Cost of Stratified Sales		(6,556,799)	(8,698,312)	(8,920,373)	(7,836,563)	(8,175,278)	(8,962,582)	(13,457,213)	(15,738,867)	(14,320,327)	(14,427,731)	(13,128,627)	(9,152,488)	(129,373,189)
3	Fuel Cost of Purchased Power (Excl Economy)		8,616,142	7,756,979	8,996,048	8,770,158	9,122,298	10,464,723	10,454,792	11,263,755	9,897,209	9,435,869	9,015,258	10,332,367	114,125,596
3a	Energy Payments to Qualifying Facilities		12,485,055	11,013,061	12,363,401	11,296,628	12,209,174	12,303,503	12,783,896	12,800,779	11,771,084	11,755,595	12,023,155	12,495,946	145,301,280
4	Energy Cost of Economy Purchases	-	2,995,040	1,045,280	1,310,487	1,571,678	5,158,978	4,735,146	9,504,847	8,695,345	8,281,200	7,508,475	2,689,412	2,145,225	55,641,111
5	Total System Fuel & Net Power Transactions		\$157,179,139	\$127,056,594	\$145,548,858	\$116,615,686	\$156,279,981	\$180,536,842	\$205,740,005	\$209,891,772	\$176,540,930	\$148,447,419	\$126,462,754	\$132,781,604	\$1,883,091,783
6	Jurisdictional MWH Sold		3,067,615	2,956,795	2,833,663	2,859,204	3,063,808	3,638,605	3,951,869	4,052,968	4,010,034	3,617,097	3,095,174	3,001,370	40,148,242
7	Jurisdictional % of Total Sales		93.22%	95.68%	95.68%	96.63%	96,60%	96.79%	96.83%	\$6.74%	96.65%	96.58%	96.47%	98.57%	96.38%
8	Jurisdictional Fuel & Net Power Transactions		146,526,100	122,842,223	140,715,721	112,664,457	150,973,025	174,740.346	199,211,528	203,041,590	170.631.924	143,373,129	121,996,742	128,227,092	1,614,963,887
9	Jurisdictional Loss Multiplier		1,90207	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1 00207	1.00207	1.00207	1.00207	1.00207	1.00207
10	Jurisdictional Fuel & Net Power Transactions	-	146,829,409	123,005,507	141,007,002	112,017,724	151,285,539	175,102,058	199,623,896	203,461,886	170,985,132	143,009,912	122,249,275	128,492,522	1,818,720,862
11	Adjusted System Sales	MWH:	3,290,643	3,058,475	2,931,011	2,956,958	3,171,508	3,759,305	4,081,378	4,189,727	4,148,902	3,745,114	3,208,481	3,107,976	41,661,476
12	System Cost per KWH Sold	chanh	4.7767	4.1545	4.9657	3.9412	4.9277	4.8024	5.0409	5.0097	4.2551	3.9638	3.9415	4.2723	4.5211
13	Jurisdictional Loss Multiplier	x	1.00207	1.00207	1.00207	1.00207	1.00207	1.00207	1.90207	1.00207	1.00207	1.00207	1,00207	1.00207	1.00207
14	Jurisdictional Cost per KWH Sold	c/kwh	4.7864	4,1832	4.9761	3.9493	4.9378	4.8123	5.0514	5.0200	4.2639	3.9720	3.9497	4.2811	4.5300
15	Prior Period True-Up	•	0.7197	0.7467	0,7791	0.7722	0.7206	0.6068	0.5587	0.5447	0.5506	0.6104	0.7133	0.7356	0.6599
16	Total Jurisdictional Fuel Expanse	c/kwh	5.5061	4,9098	5.7552	4,7214	5.6584	5.4191	5.6100	5.5648	4.8145	4.5823	4.6630	5.0167	5.1899
17	Revenue Tax Multiplier	x	1.00072	1.00072	1.00072	1.00072	1.00072	1,00072	1.00072	1.00072	1.00072	1,00072	1.00072	1.00072	1.00072
18	Recovery Factor Adjusted for Taxes	chawh	5.5101	4,9134	5.7594	4,7248	5.6625	5.4230	5.6141	5.5888	4.8180	4,5855	4.6683	5.0203	5.1938
19	GPIF	•	0.0014	0.0015	0.0016	0.0016	0.0014	0.0012	0.0011	0.0011	0.0011	0.0012	0.0014	0.0015	0.0013
20	Tatai Recovery Factor (rounded .001)	chut	5.512	4.915	5.761	4,726	5.664	5.424	5.615	5.570	4.819	4,587	4.658	5.022	5.195

SCHEDULE EZ

Generating System Comparative Data by Fuel Type

			Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Subtotal
	FUEL COST OF SYSTEM	NET GENERA	ATION (S)					·····	
1	HEAVY OIL		30,756,792	25,662,103	33,149,029	18,599,051	30,270,375	41,147,610	179,584,960
2	LIGHT OIL		9,094,802	1,755,036	2,569,639	2,664.276	4,703,234	8,375,807	29,162,794
3	COAL		33,634,906	30,141,330	25,019,580	34,257.492	37,272,111	36,996,216	199,321,616
4	GAB		65,696,812	59,745, 093	72,124,652	45,231.029	61,442,461	68,934,672	374.174,729
5	NUCLEAR		2.008.054	1 813,918	2.008.664	1,941.694	2.010.028	1.943.213	11,725,381
6	OTHER		0	0	0.	0	9	0	0
7	TOTAL	\$- 	142,191,975	119,117,480	134,871,554	102,693,742	135,698,209	159,397,520	793.970,490
-	SYSTEM NET GENERATIO	ar (maari)							-
8	HEAVY CR.		386,449	312,991	410,149	272,545	436,074	563,370	2,397,369
*	CON		1 140 EDE	100,1	900,11	1458 044	1 378 343	1 962 133	120,300
10	CAR		742 101	1,036,900 678 473	308,301	689.340	1.2/0,212	1,353,133	0.007.000
12	NINT FAR		560 668	514 428	540 SSR	550 722	558 108	530 644	1 1/2 126
14	OTHER		0	0		0.00	0,00		3.5%2.120
14	TOTAL	NWH	2 885 490	2 566 612	2 664 518	2 611 869	3 241 615	3 541 587	17 511 591
	UNITS OF FUEL BURNED							0,041,001	
15	HEAVY OIL	66.	656,584	563,118	663,170	467,369	739,329	936.887	4.048.457
16	LIGHT OR	88.	89,430	17,235	25,494	27.834	49,967	89.896	299,655
17	COAL	TON	447,961	403,472	338,441	460,861	498.845	523,717	2,672,298
18	GAS	MCF	5.810,471	5,179,127	6,204,300	4,570,400	7,465,718	8,374,707	37,604,723
19 ີ	NUCLEAR	MMBTU	5,805,388	5.242,637	5,805,386	5.612,411	5.809.329	5.616.222	33,891,273
20	OTHER	BBL	0	Ó	0	0	0	0	0
	STUS BURNED (MMSTU)								
21	HEAVY OIL		4,267,793	3,660,269	4,440,607	3,037,900	4,805,637	6,069,765	26,301,971
22	LIGHT OIL		518,692	99,963	147,853	161,438	289,806	521,394	1,739,156
73 -	COAL		11,199,022	10.086,789	8,461,027	11,496,513	12,471,120	13,092,927	86.607.408
24	GAS		5,810,471	5,179,127	6,204,300	4,570,400	7,466,718	8,374,707	37,604,723
25	NUCLEAR		5,805,388	5,242,537	5,805,386	5,612,411	5,809.329	5,616,222	33,891,273
26	OTHER		0	0	0	0	0	0	0
27	TOTAL	MMBIU	27,601,366	24,268,555	25,059,183	24,878,662	30,841,620	33,695,015	186,344,531
-	GENERATION MIX (7 MY	ni .	Vanit Cit	12.078			13.40		43.000
40 30	HEAVY OIL		13.3879	0.00%	10.2478	10.44%	13.4576	10.0175	13.0070
49 10	COAL		39 8444	40.25%	33 5086	46 44%	30 37%	38 3146	0.72.79
11	CAR		25.73%	36.44%	30 1894	10 44 74 22 5885	38.37 19	30.4 176	37.6170
32	NUCLEAR		19 74%	20.04%	21 38%	21.09%	17 22%	18 24%	18 30%
33	OTHER		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
34	TOTAL		100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
	FUEL COST PER UNIT								
35	HEAVY OIL	\$/86L	46.84	45.57	48.52	39.80	40,94	43.92	44.38
36	LIGHT OIL	\$/86L	101.70	101.83	100.80	95.72	94.13	93.17	87.26
37	COAL	\$JTON	75.08	74.71	71.93	74.60	74.72	74.46	74.59
38	GAS	SANCE	11.45	11.64	11.62	9.90	8.23	8.23	9.95
39	NUCLEAR	\$/MM/BTU	0.35	0.35	0.35	0.35	0.35	0.35	0.35
40	OTHER	\$/88L	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	FUEL COST PER MABTU	(SYMMBTU)							
41	HEAVY OIL		7.21	7.01	7,47	6,12	6.30	6.76	6.83
42	CONTON		17.53	17,56	17.38	16.50	16.23	15.06	16.77
43	CAR		3.00	2.99	2.96	2.01	2.90	2.90	2.98
44			11/45	11.04	31.63	9.90	6.23	5.23	895
44.	OTHER		66.V 000	0.00	0.00	000	0.000	0.30	0.35
47	TOTAL	SMMBTU	5.15	4 91	5.34	4 13	4.40	A 73	4 77
	BTU BURNED PER KWH (BTU/KWH)	L			~			
48	HEAVY OIL		11,044	10,992	10.933	11.148	11.020	10.809	10.970
49	LIGHT OIL		13,738	13,038	12,785	13, 109	14,090	14,283	13,763
50	COAL		9,742	9,765	9,744	9,686	9,772	9,676	9,729
51	GAS		7,830	7,634	7,871	7,755	7.653	7,983	7.804
52	NUCLEAR		10,191	10,191	10,191	10, 191	10,409	10,409	10,263
53	OTHER		0	0	0	0	0	0	0
54	TOTAL	BTU/KWH	9,566	9,456	9.405	9,525	9.514	9,514	9,499
	GENERATED FUEL COST	PER KWH (C	JKWH)						
55	HEAVY OIL		7 98	7.71	8.16	0 .82	6.94	7.30	7.49
56	LIGHT OIL		24.09	22.89	22.22	21.63	22.88	22.94	23.68
57	CONL		293	2 92	2.88	2.89	2.92	2 88	2.90
58	GAS		8 99	6.81	8.92	7.67	6,46	6.57	7.77
59	NUCLEAR		035	0.35	0.35	0.35	0.36	0,36	0.38
60	OTHER	C MIANI	000	0.00	0.00	0.00	0.00	0.00	0.00
61	I VIAC	~/n¥¥6	4.93	4.04	5.05	3.93	4.19	4 50	4.531

Generating System Comparative Data by Fuel Type

			Jui-06	Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	Total
	FUEL COST OF SYSTEM	NET GENERAT	TION (\$)						
1	HEAVY OIL		55,014,846	56,831,401	43,437,913	35,749,268	29,408,904	25,676,463	425,905,775
2	LIGHT OIL		8, 105, 794	9,026,443	5,060.466	7,101.478	2.621.077	1,660,534	63,758,586
3	COAL		42.069,253	41,585,471	39,923,825	38.059,584	31,421,523	39,451,451	431.832.723
4	GAS		77.543,705	81,357.733	57,565,170	47,478.019	50.470.035	49,756,892	748,679,284
5	NUCLEAR		2.010,025	2,010.029	1,943,213	2.010.028	1,949,035	2.008,854	23,657,377
6	OTHER		0	0	0	0	0	0	<u> </u>
7	TOTAL	\$	184,743,627	190,811,077	159,273,588	130,398,397	115,930,573	118,788,003	1,693,693,744
	SYSTEM NET GENERATI	DN (MVVH)					· · ·		1
8	HEAVY OIL		692,009	709.674	565,509	425,807	320,007	278,318	5,389,913
8	LIGHT OIL		35,362	38.863	25,084	31.025	12,452	7,537	277,891
10	COAL		1,422,607	1,413,684	1,345,565	1,283.668	1,056,323	1,351,130	14,740,143
11	GAS		1,159,445	1,180,853	1.039,272	730.091	615,330	652,894	10,195,325
12	NUCLEAR		558,106	558,108	539,554	558, 108	550,722	569,658	8,635,378
13	OTHER		. 0	0	0	0	0	0	0
34	TOTAL	MWH	3,867,529	3,901,180	3,517,084	3,028,695	2.554,834	2,659,537	37,240,450
	UNITS OF FUEL BURNED								
15	HEAVY OIL	BOL	1,128,046	1,156,299	941,793	716,545	540,643	488, 168	9,018,949
16	LIGHT OIL	881	86,809	95,936	64,070	74,478	26.634	16,741	664,623
17	COAL	TON	549,988	546,814	521.034	499,417	410.275	518,174	5,718.998
18	GAS	MCF	9,246,417	9,578,395	8,210,085	5.967,130	4,772,479	4,951,614	80,330,843
19	NUCLEAR	MMBTU	5,809,329	5,809,331	5,616,222	5,609,329	5,633,049	5,805,387	55,373,920
20	OTHER	884,	0	0	0	0	0	0	. 0
	BTUS BURNED (MMBTU)					· · · · · · · · · · · · · · · · · · ·			· · ·
21	HEAVY OIL		7,332,301	7,515,944	6, 121,653	4,657,543	3,514,178	3,179,581	58,623,171
22	LIGHT OIL		503, 492	556,429	371,607	431,973	154,478	97,098	3,854,233
23	COAL		13,749,702	13,670,343	13.025.852	12,485,430	10.256.870	12.979.338	142.974,941
24	GAS		8.240,417	CRC,5/6,8	8,210,088	5,967,130	4,772,479	4,901,014	80,330,843
25	NUGLEAR		0.009,329	2,009,031	5.616.222	5,009,329	5,033,049	5,605,367	68.373,920
20	UTHER	LAADTU	76 544 744	27 120 442	22 246 410	20.251.405	24 224 054	77 011 014	284 457 409
21	OCHERATION MY REAM		30,041,241	37,130,442	33, 343,419	28,351,405	24,331,034	27,013,010	334, 107, 106
-	UEALW OIL	• •	17 854	18 104	18 1196	14 (18%)	17 8784	0.71%	14 478
20	HENVI OIL		0.91%	1.00%	0.74%	1.02%	0.40%	0.26%	0.75%
30	COAL		36.76%	36 24%	38,26%	42.38%	41 35%	47.25%	39.58%
31	GAS		29.96%	30.27%	29.55%	24.11%	24.09%	22 83%	27 38%
32	NUCLEAR		14,43%	14.31%	15.34%	18.43%	21.56%	19.92%	17.82%
33	OTHER		0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
34	TOTAL	%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
	FUEL COST PER UNIT								
35	HEAVY OIL	\$/8BL	48.77	49.15	46.12	49.89	54.51	52.90	47,23
36	LIGHTOL	\$/BB1_	93.38	94.09	94.90	95.35	\$8.41	99.19	95.95
37	COAL	S/TON	76.49	76.05	76,62	76 21	75.59	75.99	76.51
38	GA\$	SMCF	8.39	8.49	8.27	7.95	10.58	10.05	9.32
30	NUCLEAR	SAMABTU	0.35	0.36	0.35	0.35	0.35	0.35	0.35
40	OTHER	\$/88L	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	FUEL COST PER MMBTU	(SAMMBTU)							
41	HEAVY OIL		7.50	7.50	7,10	7 68	0,39	Q, 14	7.27
42	LIGHT OIL		16.10	16.22	16,38	18.44	16.97	17,10	16.54
43	COAL		3.06	3.04	3.07	3.06	3.06	3.04	3.02
44	GAS		8.3¥	6.4¥	8.2.7 0.2.F	6.90	10.56	10.05	9.32
40 48	NUCLEAN		0.35	0.35	0.35	0.35	0.35	0.35	0.35
40	TOTAL	\$4.040TH	5.00	6.14	4.78	0.00	4.77	0.00	0.00
-1	NTU BURNED PER KWH (B TELAKYADAD	L	J . 14				7,77	4.76
48	HEAVY OR		10 596	10 591	10 805	10 938	10 982	11 474	10 876
40	LIGHT OIL		14 238	14 318	14.747	13 923	12 408	17 883	13 880
50	COAL		9.665	9,670	9,680	9.728	9,710	9 606	9 700
51	GAS		7.975	6,111	7.900	8,173	7.756	7.584	7 878
52	NUCLEAR		10,409	10,409	10,409	10,409	10,228	10,191	10,303
53	OTHER		Q	0	0	٥	G	0	. 0
54	TOTAL	BTU/KWH	9,474	9,518	9,481	9,691	9,524	9,447	9,510
	GENERATED FUEL COST	PER KWH (CA	(WH)						
56	HEAVY OIL		7.95	8.01	7.67	8.40	9.21	9.30	7.90
56	LIGHT OIL		22.92	23.23	23.31	22.89	21.06	22.03	22.95
57	COAL		2.96	2.94	2.97	2.95	2.97	2.92	2.93
58	GAS		6.69	6.89	6.53	6.50	8.20	7.62	7.34
59	NUCLEAR		0.36	0.36	0.36	0,36	0.35	0.35	0.36
60	OTHER		0.00	0.00	0.00	0.00	0.00	0.00	0.00
61	TOTAL	C/KWH	4.78	4.89	4.53	4.31	. 4 54	4,15	4.55

SCHEDULE E4

Progress Energy Florida System Net Generation and Fuel Cost

Estimated for the Period of: Jan-06 through Dec-06

(A)		(B)	(C)	(D)	<u>(E)</u>	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)
		NET	NET	CAPACITY	EQUIN AVAIL	OUTPUT	AVO. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST
PLANT/UNIT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH
		(MW)	(N/V-I)	(%)	(%)	(%)	(BTUAKWH)		(UNITS)	(BTUNUNIT)	(MMBTU)	(5)	(CAKWH)
1 CRYS RIV NUC	3	779	6,636,378	95.5	97.0	100.3	10,303	NUCLEAR	68.373,920 MMBTU	1.00	68.373.920	23.657.377	0.36
2 ANCLOTE	1	510	1,570,680	34.5	91.2	38.5	10,758	HEAVY OIL	2.599,067 BBLS	6.50	16,893,933	116.747.362	7.43
3 ANCLOTE	1		0				0	GAS	0 MCF	1.00	0	0	0.00
4 ANCLOTE	2	509	1,453,980	32.0	87.8	40.2	10,739	HEAVY OIL	2.402.175 BBLS	6.50	15.014.135	110,107,101	7.57
5 ANCLOTE	2		0				ò	GAS	0 MCF	1.00	0	0	0.00
6 BARTOW	1	122	469,950	43,1	88.5	49.7	11,207	HEAVY OIL	810,291 BBLS	8.50	5,266,890	36,368,911	7.74
7 BARTOW	2	120	508,072	47.2	93.3	59.1	11,189	HEAVY OIL	871,084 BBLS	6.50	5,662,047	38,145,083	7,54
8 BARTOW	3	206	940.662	51.1	97.1	57.5	10,332	HEAVY OIL	1.495,183 BBLS	6.50	9,718,687	66,749,508	7,10
9 BARTOW	3	6	0				٥	GAS	0 MCF	1.00	0	0	0.00
10 CRYSTAL RIVER	1	381	2,202.933	64.8	92.0	69.4	10,452	COAL.	920,986 TONS	24.77	23.024,641	67,532,582	3.07
11 CRYSTAL RIVER	2	489	2,639,405	60.5	84.5	70.5	9,552	COAL	1,008,449 TONS	24.77	25,211,223	73,852,688	2.80
12 CRYSTAL RIVER	4	728	4,947,789	76.2	93.4	82.1	9,602	GOAL	1,900,272 TONS	24.71	47.506,804	145,612,167	2.94
13 CRYSTAL RIVER	5	725	4,950.016	76.5	89.6	86.0	9,542	COAL	1,689,291 TONS	24.71	47,232,273	144,835,286	2.93
14 SUWANNEE	1	23	101,871	35.1	91.8	64.9	12,554	HEAVY OIL	196,758 BBLS	6.50	1,278,924	13,559,324	13.31
15 SUWANNEE	1		0				0	GAS	0 MCF	1.00	0	0	0.00
16 SUWANNEE	2	32	100,176	35.6	94.1	67.2	13,644	HEAVY OIL	210,278 88LS	6.50	1,366,804	14,500,924	14,48
17 SUWANNEE	2	ļ.	0				0	GAS	0 MCF	1.00	0	0	0.00
18 SUWANNEE	3	1 81	246,652	34.3	87.0	55.0	11,440	HEAVY OIL	434,116 BBLS	6.50	2,821,751	29,787,563	12.06
19 SUWANNEE	3	:	0				0	GAS	0 MCF	1.00	0	0	0.00
20 AVON PARK	1-2	58	2,128	0.4	91.6	17.4	17,281	LIGHT OIL	6,340 BBLS	5.80	36,774	608,354	28.59
21 AVON PARK	1-2	0	8,865	0.0	0.0	0.0	17,322	GAS	153.562 MCF	5.80	153,582	1,847,892	20.84
22 BARTOW	1-4	203	10,205	2.7	95.3	92.9	14,552	LIGHT OIL	25,605 BBLS	5.90	146,508	2,499,531	24.49
23 BARTOW	1-4		38,294				15,094	GAS	578,028 MCF	1.00	578,028	5,338,262	13.94
24 BAYBORO	1-4	208	34,700	1.9	96.3	88.5	14,444	LIGHT OIL	86,418 BBLS	5.80	501,222	8,405,518	24.23
25 DEBARY	1-10	715	78,923	4.5	95.2	100.3	13,874	LIGHT OIL	188,787 BBLS	5.80	1.094,954	18,104,521	22.94
26 DEBARY	1-10		207,390				13,770	GAS	2,855,849 MCF	1.00	2,865,849	25,525,316	12.31
27 HIGGINS	1-4	128	633	2.5	96.0	99.7	17,913	LIGHT OIL	1,955 884,5	5.80	11,339	190,997	30.17
28 HIGGINS	1-4		28,409				16,737	GAS	475,488 MCF	1.00	475,488	4,503.134	15.85
29 HINES	1-3	1,663	7,952,217	.52.6	\$8.6	22.3	7,253	GAS	57,580,960 MCF	1.00	57,580,980	543,695,913	5.84
30 HINES	1-3		0				0	LIGHT OIL	Q BBLS	5.80	0	0	0.00
31 INT CITY	1-14	1,076	62,367	5.7	93.9	95.5	13,675	LIGHT OIL	147,043 BBLS	5.80	852,847	14,225,499	22.81
32 INT CITY	1-14		487,097				13,275	GAS	6,473,976 MCF	1.00	8.473.976	57,011,972	11.69
33 RIO PINAR	1	15	1,204	0.9	84.6	89.7	18,385	LIGHT OIL	3,816 BBLS	5.80	22,135	361,273	30.01
34 SUWANNEE	1-3	183	52,448	3.2	99.3	89.9	14,128	LIGHT OIL	127,850 BBLS	5.80	741,528	12.118.045	23.09
35 SUWANNEE	1-3		0				0	GAS	0 MCF	1.00	0	0	0.00
36 TIGER BAY	1	215	1,178,638	61.4	88.7	85.7	7.833	GAS	9,231,968 MCF	1.00	9.231,968	84,664,528	7.18
37 TURNER	1-4	174	15,419	1.0	91.9	84,3	15,445	LIGHT OIL	41,060 BBLS	5.60	236,150	3,919,051	25.42
38 UNIV OF FLA.	1	38	294,815	86.9	89.7	98.6	9,772	GAS	2,681,012 MCF	1.00	2,681,012	26,092,266	8.65
39 OTHER - START UP			19,624		•		10,536	LIGHT OIL	35,649 BBLS	5.80	206,766	3,324,699	16.94
40 OTHER			0	-	-		•		•	• -	-	0	-
41 TOTAL		9.415	37,240,450				9.510				354,157,108	1,693,893,744	4.55

-1 IOIAL

System Net Generation and Fuel Cost

Estimated for the Month of:

(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(†)	_(J)	(K)	(L)	(M)
		NET	NET	CAPACITY	EQUIV AVAIL	OUTPUT	AVG. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST
PLANT/UNIT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PERKWH
		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MMBTU)	(\$)	(C/KWH)
1 CRYS RIV NUC	3	788	569,658	\$7.2	97.0	100.1	10,191	NUCLEAR	5,805,388 MMBTU	1.90	5,805,384	2.005,564	0.35
2 ANCLOTE	1	522	111,043	28.6	98.8	28.9	11,183	HEAVY OIL	191,048 BBLS	6.50	1,241,811	8,713,847	7,85
3 ANCLOTE	1		0				0	GAS	0 MCF	1.00	•	0	0.00
4 ANCLOTE	2	522	105,702	27.5	99.3	27.7	11,065	HEAVY OIL	181,638 BBLS	6,50	1,180,644	8,284,635	7,76
5 ANCLOTE	2		0				â	GAS	0 MCF	1.00	Ð	0	0.00
6 BARTOW	1	123	37,022	40.5	\$1.9	44.0	11,295	HEAVY OIL	64,333 BBLS	6.50	418,167	2,906,547	7,85
7 BARTOW	2	121	23,067	25.6	97.1	384	11,956	HEAVY OIL	42,429 BBLS	6.50	275,766	1,916,902	8.31
8 BARTOW	3	208	84,416	54.5	\$7.1	55.5	10,193	HEAVY OIL	132,383 BBLS	6.50	860,487	5,960,975	7.09
9 BARTON	3		0				0	GAS	0 NCF	1.00	0	0	0.00
10 CRYSTAL RIVER	1	383	145,437	51.4	91.9	54.9	10,801	COAL	63,264 TONS	25.00	1,581,607	4,564,054	3.12
11 CRYSTAL RIVER	2	491	188,158	51.5	87.8	56.8	9,706	COAL	73,051 TONS	25.00	1,826,270	5,270,069	2.80
12 CRYSTAL RIVER	4	735	394,721	72.2	\$5.7	75.0	9,598	COAL	151,534 TONS	25.00	3,788,349	11,572,834	2,93
13 CRYSTAL RIVER	5	732	420,211	77.2	\$7.2	78.6	9,526	COAL	160,112 TONS	25.00	4,002,795	12,227,937	2,91
14 SUWANNEE	1	33	4,003	16.3	95.8	63.8	12,558	HEAVY OIL	7,732 BBLS	6.50	50,260	510,359	12,75
15 SUWANNEE	1		Q				Ó	GAS	0 MCF	1.00	0	\$	0,00
16 SUWANNEE	2	32	4,448	18.7	\$8.2	65.0	13,657	HEAVY OIL	9,346 BBLS	6,50	60,746	616,837	13.67
17 SUWANNEE	2		- Ó				0	GAS	0 NCF	1.00	0	0	0.00
18 SUWANNEE	3	81	15,748	25.1	\$7.0	512	11,423	HEAVY OIL	27,676 BBLS	6.50	179,692	1,826,690	11,60
19 SUWANNEE	3		0				0	GAS	0 MCF	1.00	0	0	0.00
20 AVON PARK	1-2	64	445	0.9	98.5	34.4	17,258	LIGHT OIL	1.324 BBLS	5.80	7,680	134,614	30.23
21 AVON PARK	1-2		605				17,116	GAS	10,355 MCF	1,90	10,355	159,802	26,41
22 BARTOW	1-4	219	1,882	2.7	\$6.1	85.5	14,122	LIGHT OIL	4.534 BBLS	5.80	26,296	467,813	25.12
23 BARTOW	1-4		2,474				14,454	GAS	35,760 MCF	1.00	35,760	430,968	17,42
24 BAYBORO	1-4	232	4,684	2.7	98.3	79.3	14,278	LIGHT OIL	11,530 BBLS	5.90	05,876	1,189,741	25.40
25 DEBARY	1-10	762	10,261	3.8	97.5	86.4	13,615	LIGHT OIL	24,088 BBLS	5,80	139,708	2,454,090	23.92
26 DEBARY	1-10		11,257				13,450	GAS	151,403 NCF	1.00	151,403	1,763,858	15.67
27 HIGGINS	1-4	134	362	2.5	98.4	93.8	18,022	LIGHT OIL	1,125 BBLS	5.60	6,524	113,402	31.33
28 HIGGINS	1-4		2,178				17,020	GAS	37,070 MCF	1.00	37,078	444,950	20.43
29 HINES	1-3	1.693	596,859	47.4	96.3	19.8	7,337	GAS	4,379,503 MCF	1.00	4,379,503	50,294,087	8.43
30 HINES	1-3		0				0	LIGHT OIL	0 88LS	5.80	· •	. 0	0.00
31 INT CITY	1-14	1,206	11,865	4.2	98.3	65.3	13,150	LIGHT OIL	26,909 BBLS	5.80	158,078	2,731,952	23.02
32 INT CITY	1-14		25,727				12,975	GAS	333,805 MCF	1.00	333,805	3,658,590	15.00
33 RIO PINAR	. 1	16	261	2.2	88.0	81.2	17,939	LIGHT OIL	807 88LS	5.80	4,682	81,288	31.14
34 SUWANNEE	1-3	201	3,903	2.6	99.3	81.6	13,601	LIGHT OIL	9,153 BBLS	5.80	53,085	924,351	23.68
35 SUWANNEE	1-3		Đ				. 0	GAS	0 NCF	1.00	· 0	0	0.00
36 TIGER BAY	1	223	74,008	44.6	\$4.2	81.5	7,660	GAS	581,709 MCF	1.00	581,709	6,701,746	9.06
37 TURNER	1-4	194	3,105	2.2	96.0	69 0	15,184	LIGHT OIL	8,128 BBLS	5.80	47,145	821.891	28.47
38 UNIV OF FLA.	1	41	28.983	\$5.0	\$7.2	976	9,691	GAS	280,866 MCF	1.00	280,866	3,042,811	10.50
39 OTHER - START UP	-	-	1,006	•		-	10,563	LIGHT OIL	1,832 BBLS	5.80	10,525	175.750	17.47
40 OTHER													
41 TOTAL	1	9.756	2.885.490				9,586				27,501,366	142.191,975	4,93
	I												

SCHEDULE E4

Feb-06 to rimold for the Month of System Net Generation and Fuel Cost Progress Energy Florida

(M)	(ר)	Ю	(1)	(1)	(H)	(9)	(E)	(3)	(O)	(0)	(8)		(A)
FUEL COST	CENENCE SY		L TRIA	1303	L nana	ANG. NET	inano	EQUIV AVAIL	CAPACITY	130	I IN	<u> </u>]
ымия	FUEL COST	BURNED	HEAT VALUE	OBINALIO	3dAL	HEAT RATE	ROTOR	FACTOR	FACTOR	GENERATION	TIDARAC	,	PLANTAUNT
(CUKANH)	(2)	(UTBANK)	(())()()()()	(STINU)		(HWAMUTER)	(%)	(%)	(%)	(HAAN)		<u>, </u>	
92.0	116'ELE'L	255'292'9	001	019WN /297272	HVETON	LAL'OL	1.001	0.44	1.18	875'51C	99/	•	
04.4	590'164'2	1,128,114	05'9	S788 955 ELL		6111	Z 6Z	8'96	1.92	691'101	775	1	
00.0	0	0	00"1	JON D	SVE	0			•••	0	~~*	1	A MICLORE
19.1	- 510°122'1	051-0401	05'9	S199 266 091			510	* 56	6.95	152'18	776	7	STO DAM 2
00.0	0	0	00'1			0		V V8	<i></i>	3v3 vv	607	,	WOTSAR 1
45 8	CRG'#2C'7	ZLL'695	059	2793 00/00		1 908 99	0.75	0.26	\$'CC	67C'7C	161	c I	WOTSAG 5
61.9 No 24		371 324	059	5100 800'00		1 900 01	6.82	7.00	5 Q#	740 JZ	8UKG	с -	WOTSAA 8
00.0	777'I 06'0	411°077	000	5000 067'611		0	700	1-10	1 18%	0	An.7	ι c	WOTRAB 0
00.0	08C 9CE V	0	0010	31401, 090 05	1100	1 #36 VF	6.83	Ø 19 .	0.67	796 964	586		O CRYSTAL RIVER
01.0	\$17 COT +	CLO BCL 1	00'50	SHOL 220 00	1100	000101	105	8 LB	0 87 ·	PAR 171	107	د	I CRYSTAL RIVER
50 G	PP1 201 01	092 202 4	00 92	SNUL FOU LEL	100	270 G	962	1.20	619	025 595	512		S CRYSTAL RIVER
2.00	NTA ACT OF	200 EZ2 E	00.85	SNUL CET IPI	100	195 8	5 84	6.20	6 / 9	602 \$9C	222	5	3 CHASTAL RAVER
96 CI	692 FS1	751 51	05 9	STHE LEE C		1 129 61	P 05	5 47	67 	961-1-	EE	1	A SUWANNEE
00'0	0	0	001	0 MCE	SVE	0				0		۱	3 SUWANNEE
99.41	189 29	861.8	05'9	S189 064	HEAVY OIL	14.352 1	82.2	1.91	2.1	328	35	3	SUWANNEE
0.00	0	0	00.1	0 MCF	SAS	0			•	0		2	JENNAWUS 7
99.11	116,125,1	122,505	05.0	5788 ZH9'81	HEAVY OIL	1 210.11	T.88	0.78	0.81	10.825	48	2	3 SUWARNAEE
00 0	0	0	00'1	0 MCE	SVE	0				0		£	33MNVMMEE
30.79	810,E	543	06.8	S188 0C	LIGHT OIL	005'21	85	82.8	0.0	01	148	2.1	XAAN PARK
96.58	72,997	2,231	00'1	3'331 MCL	SAS	11'582 4				159		S-1	AYON PARK
52 52	587,85	5 99' 5	08'S	548 BBLS	LIGHT OIL	1 751,41	5'98	1'95	8.0	201	210	**	S BARTOW
ZF 12	662'921	896'11	00.1	TI, BAG NOF	SAS	198,41				158		₩1	WOTAAB E
AA 20	40.000			0.00 000 0							***		46640(#G 1

10'1	097'/11'811	54'368'882				997'6	<u></u>			5,566,512	992'6	ר	TV101 +
				· · · ·									8 OTHER
60'21	145,135	195'8	2.40	S188 189'1	DIGHT OIL	10'384	2 * 1		•	SER	-		QUIRAT2 - ABHTO 4
10.50	5153 563	521'986	00'1	321'833 WCL	SVÐ	60/'6	9'96	5.7 4	1.28	52'842	\$9	۶.	T INIA OF FLA.
52'91	51'542	212.1	08'5	508 BBF2	TIGHLOIT	E62'11	0.26	0'95	- L'O	83	16L	**	ABMRUT T
61.6	\$16°LZL'9	485'368	00'1	485'398 INCL	SV0	518'2	£18	2 16	8 /S	291,58	553	\$	YAB REDIT &
00'0	0	0	00'1	9 WCE	SVO	0				0		6-1	SUWANNEE
23.83	xc0.222	10+++1	08.8	5484 8813	TIO THOIL	13'005	\$1\$	6.99.3	20	E90'1	501	1-3	BENNYMARS M
00.0	0	0	09'5	S188 0	TIO LHOIT	0	00	1.68	0.0	0	91	¥	SANIA ORA 0
90.91	\$50°201"Z	196,011	1.00	120"201 INCE	SVO	13,002				13,103		F1-1	S INT CITY
55.21	991 209	32'340	08'5	S188 961'9	LIGHT OIL	129,51	1.07	£'95	0°1	2,846	1'509	*L-L	ALIO INI N
00'0	0	0	00'S	\$199.0	LIGHT OIL	0				0		6-I	SENDI O
80.39	508'LVL'LV	656'951'F	06'1	12PH 658'991'W	SVÐ	10C'L	508	6.99	42'5	106'999	C691	\$-1	SENIN 6
58.32	158'223	259'4	00.1	1'825 MCL	SVÐ	990,71				442		71	SNIDDIH B
00.0	0	D	09'9	8788 0	TICH LING	0	1003	6'66	0'0	0	PEL	P=1	SNIDDIH D
MB.81	99-1"090"1	909.98	00'L	82'804 MCL	549	025'81				046,8		05-5	VEABARY
S1.16	55P'#5C	30,086	05.2	S788 £99'C	LIGHT OIL	13,683	£ 15	P'16	F 1	895' L	Z9L	01-1	YAAABBO 2
52'49	333'260	201.81	08'S	3'155 8812	LIGHT OIL	502.01	¥ 64	£'96	4.0	1271	535	171	OROGYAE N
21-12	1167303	996'LL	00.1	11'BHE INCE	SVO	199'#1				128		p-1	WOTPAR E
52 52	52'52	199'1	09'5	548 9872	FIGHL OIL	121,61	5'98	1'95	8.0	103	518	1° L	3 BVBLOM
99199	12.997	5231	00"1	5'331 INCL	SVS	11'582				159		51	X9A4 NOVA 1
30'18	520°E	943	06'9	S788 0C	FIGHLOIF	005'41	85	979	0.0	03	18	2-1	XSIAG NOVA 0
00 0	0	0	00'1	0 MCE	SAD	0				0		£	33MNVMMS 6
9911	112'192'1	133,505	05.8	\$788 ZM8'81	HEAVY OIL	415.11	1.89	0'48	0.81	10,825	\$B	3	BENNAMAR &
00.00	0	9	00.1	0 MCE	SVD	0				0		2	3 SUWANUS T
99'91	189 ZS	961.38	05.9	S199 064	HEVAL OIL	14'325	95.3	1'67	\$'L	950	35	3	SUWANNEE
00.00	0	0	001	0 MCE	SVD	0				0		L	3 SUWANNEE
15.94	892'¥S1	12124	05.8	\$'224 BBC8	HEAVY OIL	129'21	P 89	5'17	6'1	961°E	23	L	33NNVMNEE
2'80	\$T3,857.01	3'223'502	52.00	SNOL ZEE'IH	CONT	195'8	594	2,79	6.78	604'890	267	9	3 CHARTAL RIVER
2.93	H+1,501,01	3,327,349	25,00	SNOL MO'ECH	CONL	969,0	07L	4'98	2.03	SEC'SHE	9EL	*	3 CEASTAL RIVER
81.S	61 P'E96'P	1,726,932	25200	SNOT 770,00	COVE	8,672	1 65	8.18	6'87	198,871	167	2	I CHARLYT BIAEB
01.6	4,326,289	C15,000,1	52.00	SNO1, 696'65	CONT	951'01	C 95	6'15	6.84	139.364	283	۱.	I CEASINT BINES
00.0	9	0	100	0 MCE	SVD	0				0		£	WOTPAAR 0
96'9	251,106,8	911'511	05.0	118'548 BBC2	HEAVY OIL	10'502	222	1'24	1.95	£96'52	208	2	WOTAMS 8
£1.8	196'895'1	199,521	05.8	30'222 5973	HEAVY OIL	105,11	39.65	2.28	ð.8t	807.81	121	3	WOTRAG 5
92°2	2,524,695	3681415	059	S199 967,88	HEAVY OIL.	616,11	8.54	93.0	\$'\$0	\$25'20	152	۱.	WOTPAR 8
00.0	0	9	00.1	0 MCE	SVÐ	0				0		z	3 ANCLOTE
19.1	\$10,755,7	050'800'L	05'9	S 199 266 091	HEAVY OIL	MOF.11	0.75	1.00	£.15	122,10	222	ζ	* VICTOLE
00.0	0	0	00.1	0 MCE	SYD	0				0		1	3 WICLOTE
04.7	590'162'2	1,128,114	05'9	S188 955'ELL	HEAVY OIL	6H'II	262	8'96	1.95	681,101	225	1	S VINCEOLE
52.0	PISCIPI	2545 231	001	UTBAN TEZSES	MOCTEVIS	161'01	1.001	0.24	1.13	824'115	984	<u>د</u>	I CEAS BIN MIC
CHANHD	(2)	(UTENMA)		(STINU)	1	(HWXNUTB)	(%)	(%)	(%)	(HAVAN)	(1110)	1	
I HWARAB	FUELCOST III	I CENSIOR	HEY! AVTOF !		1 2411	1 31VH (V3H	L HOLDAY	I MOLOWA			EL HENGENET		LINE LINE AND A

System Net Generation and Fuel Cost

Estimated for the Month of:

(A)		(B)	(C)	(D)	(E)	<u>(F)</u>	(G)	(H)	(I)	(J)	(K)	(L)	(M)
	:	NET	NET	CAPACITY	EQUIVAVAIL	OUTPUT	AVG, NET	FUEL	FUEL	PUEL	FUEL	AS BURNED	FUEL COST
PLANTAUNIT	1	CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PERKWH
		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)	<u> </u>	(UNITS)	(BTU/UNIT)	(MMBTU)	(5)	(CAKWH)
T CRYS RIV NUC	3	788	569,658	97.2	97.0	100.1	10,191	NUCLEAR	5,805,386 MMBTU	1.00	5,805,386	2,006,664	0.35
ZANGLOTE	1	522	140,629	38.2	\$8.8	36.7	10,729	HEAVY OIL	232,114 BBLS	6.50	1,508,743	10,733,153	7.53
3 ANCLOTE	1		0					GAS	0 MCF	1.00	0	Q	0.00
4 ANGLOTE	2	522	117,454	30.2	99.3	36.1	10,747	HEAVY OIL	194,195 BBLS	6.50	1,262,267	8,979,730	7.65
5 ANCLOTE	2		0				d	GAS	0 MCF	1.00	0	C	0.00
6 BARTOW	1	123	21,732	23.7	50.4	47.1	11,193	HEAVY OIL	37,423 BBLS	6.50	243,252	1,714,345	7.89
7 BARTOW	2	121	20,877	23.2	65.8	43.7	11,676	HEAVY OIL	37,501 BBLS	6.50	243,756	1,717,897	8.23
8 BARTOW	3	208	62,636	40.5	<u>97.1</u>	49.5	10,516	HEAVY OIL	101,340 BBLS	6.50	658,709	4,542,323	7.41
9 BARTOW	3		0				G	GAS	0 MCF	1.00	0	0	0.00
10 CRYSTAL RIVER	1	383	182,385	64.0	91.9	65.5	10,484	COAL	76,483 TONS	25.00	1,912,075	5,457,228	2.99
11 CRYSTAL RIVER	2	491	232,126	63.5	87.6	69.4	9,522	COAL	88,408 TONS	25.00	2,210,209	6,308,128	2.72
12 CRYSTAL RIVER	- 4	735	416,289	76.1	\$5.7	78.3	9,581	COAL	159,207 TONS	25.00	3,980,172	12,158,824	2.92
13 CRYSTAL RIVER	5	732	37,501	5.9	9.5	. 80.0	9,552	COAL	14,343 TONS	25.00	358,571	1,095,380	2.92
14 SLAVANNEE	1	33	10,900	44,4	95.8	61.2	12.479	HEAVY OIL	20,926 BBLS	6,50	136,022	1,392,099	12.77
15 SUWANNEE	1		0					GAS	0 MCF	1,00	0	O	0.00
16 SUWANNEE	2	32	10,919	45.9	98.2	63.2	13,656	HEAVY OIL	22,940 BBLS	6.50	149,112	1,526,067	13.96
17 SUWANNEE	2		0				C	GAS	0 MCF	1.00	0	0	0.00
18 SUWANNEE	3	81	21,002	34.8	87.0	52.8	11,358	HEAVY OIL	36,730 BBLS	6.50	238,746	2,443,415	11.63
19 SUWANNEE	3		0				C	GAS	0 MCF	1.00	0	0	0.00
20 AVON PARK	1-2	64	4	0.0	49.6	· 2.1	23,750	LIGHT OIL	16 BBLS	5.80	95	1,664	41.60
21 AVON PARK	1-2		148				16.973	GAS	2,512 MCF	1.00	2,512	76,584	51.75
22 BARTOW	1-4	219	342	1.1	92.6	85.8	14.064	LIGHT OIL	829 BBLS	5.80	4,810	85,571	25.02
23 BARTOW	1-4		1,529			• •	14.486	GAS	22,149 MCF	1.90	22,149	290,058	18.97
24 BAYBORO	1-4	232	650	0.4	98.3	79.4	14,194	LIGHT OIL	1,591 BBLS	5.80	9,226	164,133	25.25
25 DEBARY	1-10	762	2,334	2.2	\$1.4	0.86	13,597	LIGHT OIL	5,472 BBLS	5.80	31,736	557,470	23.88
26 DEBARY	1-10		10,341				13,451	GAS	139,092 MCF	1.00	139,092	1,659,900	16.05
27 HIGGINS	1-4	134	6	9.0	96.4	101.5		LIGHT OIL	0 BBLS	5.80	0.1	C	0.00
28 HIGGINS	· 14		956				16,809	GAS	18,089 MCF	1.00	16,059	.223,982	23.43
28 HINES	1-3	1,693	630,037	50.0	72.6	22.7	7,252	GAS	4,568,734 MCF	1.00	4,568,734	53,215,390	8.45
30 HINES	1-3		0					LIGHT OIL	0 BBLS	5.80	Ċ	0	0.00
31 INT CITY	1-14	1,206	3,679	2.7	98.3	70.5	12,507	LIGHT OIL	7,934 BBLS	5.80	46,015	805,477	21.89
32 INT CITY	1-14		20,404				12,923	GAS	263,891 MCF	1.00	263,691	3,162,246	15.50
33 RIO PINAR	1	16	7	0,1	88.0	81.3	18,429	LIGHT OIL	22 88LS	5.80	129	2,240	32.00
34 SUWANNEE	1-3	201	2,152	1.4	99.3	81.8	13,627	LIGHT OIL	5,056 BBLS	5.80	29,326	510,049	23.73
35 SUMANNEE	1-3		0				C	GAS	0 NCF	1.00	. O	ď	0.00
36 TIGER BAY	1	223	116,269	70.1	\$4.2	81.7	7,825	GAS	909,787 MCF	1.00	909,787	10,383,071	8.93
37 TURNER	1-4	194	285	0.2	96.0	95.4	14,544	LIGHT OIL	715 BBLS	5.80	4,145	72,261	25.35
38 UNIV OF FLA.	1	41	20,161	95.6	97.2	98.2	9,680	GAS	282,265 MCF	1.00	282,266	3,113,451	10.68
39 OTHER - START UP		•	2.112			-	10,597	UGHT OIL	3,859 BBLS	5.80	22,381	370,174	17.53
40 OTHER													
41 TOTAL	1	9,756	2,664,518				9,405		· · · · · · · · · · · · · · · · · · ·		25,059,183	134,871,554	5.08

SCHEDULE E4

SCHEDULE E4

Progress Energy Florida System Net Generation and Fuel Cost

30-rqA to the Month of: a stimulation of the second second

3'83	105,693,742	24,878,662				575'6				2,611,869	952'8	J	TV101 H
													ABHTO 0
16.32	294'961	200'51	00'9	5'900 881'2	LIGHT OIL	¥2¥'01	•		*	099'l	•		AUTRAT2 . ABHTO 8
78.8	998,025,1	091'291	001	141,180 MCF	SVD	659'6	¥'66	8.12	0.02	202,81	19	1	IS CRIVING FLAC
51'26	999'111	994.9	00'5	S'198 291'1	LIGHT OIL	908'71	ĽЦ	0'96	0.3	154	16 1	*1	RENGULT TURNER
96.8	560'156'2	277,056	00.1	277,056 MCF	SVÐ	£98'L	¥'19	₽'89	313	962'96	523	L	AVE USED BYA
00'0	ø	0	00'1	D INCL	SVD	0				0		1-3	BUNANNEE
16.52	225'188	20142	09'9	S'198 169't	TICHL OIL	13'22'	2.18	£'66	17	629'1	501	e-1	JENNYMAS H
30.21	3'832	331	00'S	5199 BC	LIGHT OIL	£19 ⁻ 81	9'08	1.88	1.0	15	91	4	SANIA OIR (
13.05	5225533	SZC VSZ	00'L	SSH'353 MCL	SVÐ	15,999				999'SL		91-1	VTID THI SI
50.66	816,187	990'99	0015	5788 146'1	LIGHT OIL	12,621	¥'69	C 95	5.6	3'848	1'506	¥1-1	VTIO THI H
00.0	0	0	08'S	S199 0	LIGHT OIL	0				. 0		5-1	SENIH O
81°2	NNN'SLE'DE	2'669'608	00'1	3'699'609 MCL	SYD	816'2	518	1.08	1'01	899'509	669'1	C-1	SENIH 6
27.81	184,845	55'282	00'L	33'202 MCL	SVO	928'91				CEE,1		**	SNIDDIH 3
00.0	0	0	01'5	S198 0	TIGHT OIL	0	\$16	£'96	0.0	0	124	+1	SNIODH L
SC.21	996'901'1	E82'191	00.1	HALLAS MCE	eve	961'61				266,01		01-1	N DEBARY
35'92	109,238	45,711	08'5	S'168 #90'L	FIGHL OIL	195'61	£'\$6	0.68	*7	371'5	292	01-1	N DEBVER
53'82	326,248	286'61	08'S	2,342 884.6	FIGHL OIL	EEZ'91	£62	£'95	8.0	29C'4	575	1-1	CROBYAR N
96.81	210,725	100'02	00'1	20'031 MCE	SVD	14'472				886,1		₩L.	WOTPAS 2
53'13	133'108	506'2	00'5	S'198 #96'1	LIGHT OIL	950'st	1.28	T.ET	1.2	195	513	₩L	WOTRAG 33
82 [°] 5Z	796,811	EN8.7	00"1	1'943 MOE	SAS	11/012				199		2-1	XBAG NOVA 12
28.62	764.16	206'i	08'\$	3788 825	JIO THOL	15721	9'51	9'08	0.2	011	19	2-L	SO AVON PARK
00.00	D	0	00° L	BOW 0	SVD	0				0		£	33NNVAARS 51
19 11	196'00+'1	019'261	09'9	51'500 BBF2	HEVAN OIT	25911	20.0	0.78	30°0	15'036	19	c	E SUMANNEE
00.0	0	0	00' 1	6 WCE	570	0				0		z	JENNYMAS (
14'03	967,928	809'18	05'9	12,660 881.5	HEAVY OIL	609'C1	1.10	Z'96	54'8	216'9	32	5	BENNYMALE
00.0	0	0	00'1	0 MCE	SVO	0				0		1	33NNVMOS \$1
18.51	222,118	060'09	09'9	5788 902 6	HEAVY OIL	15'000	0'09	8'96	50.4	400'\$	££	L.	H SUMVINEE
68.Z	11'898'803	3,944,964	32.00	SNOT 661,121	CON	8'255	1'08	Z"18	1'92	414'315	221	ş	IS CRYSTAL RIVER
18.2	969'999'11	¥20'822'E	52'00	SNOT COLUET	TYOD	8/5'6	16.87	£'98	1.27	7 85 '785	961	*	ABVIA LATZYAD \$1
2,73	018,818,8	2,066,460	32'00	SNO1 952'28	CON	199'6	5'99	8.78	6'95	512'035	161	Z	H CRYSTAL RIVER
3.01	126,206,8	566'S12'1	52.00	SNO1 049'89	CON	822.01	9.59	6'16	2°25	166'291	283	L.	IC CRASTAL RIVER
00'0	0	0	00°L	0 MCt	540	0			0'0	0		£	WOTPAG 6
21.8	2,971,143	952'539	05'9	S'188 951'98	JIÓ YVA3H	898'04	9'0#	1°28	364	291°89	509	3	WOTFIA8 3
81.8	3'151'458	568,508	05:9	S'188 098'26	HEAVY OIL	599°01	2°#9	1746	9'19	PSP'\$5	121	Z	WOTPAG T
\$7'9	2,288,506	120,604	05.9	SJ88 C00,58	HEAVY OIL	962'i i	43.8	6'16	35.0	119.92	153	1 I	WOTRAB 8
00.0	0	0	00"L	9 MCE	SAD	0				0		2	BLOIDNY S
00.0	0	0	09'9	5198 0	JIO YVABH	0	00	•	0.0	0	253	3	* WICEOTE
00.0	0	0	00. r	O MOL	SAĐ	0				0		\$	3 MACLOTE
80.8	190,016.T	1,325,460	09'9	199'222 8612	JIO YVAJH	601.11	1.82	8.80	59.4	515,011	275	F.	3 MICLOTE
SE 0	H58'116'1	2'215'411	00'1	5,612,411 MMBTU	NUCLEAR	161'01	1.001	8.96	6 (6	221.028	887	8	I CEAS BIN MIC
(CNKWH)	(\$)	(urauw)	(TINUNUTB)	(STINU)		(11/1/1/19)	(%)	(%)	(%)	(HANN)	(MAN)]
PERKWH	FUEL COST	DENIMED	HEAT VALUE	CENHOR	Barr	3TAR TABH	FACTOR	ROTOR	FACTOR	GENERATION	CAPAGTY		TINUATIVAIA
FUEL COST	VS BURNED	ษายา	าลกษ	าอกง	FUEL	TEN .OVA	TURITUO	EQUIV AVAIL	VIIDARAD	LEN	13M	1	
(W)	(ר)	(K)	(r)	(1)	(H)	(e)	(E)	(3)	(D)	(C)	(8)		(A)

SCHEDULE E4

Progress Energy Florida System Net Generation and Fuel Cost Estimated for the Month of: May-06

61.4	132'869'SE1	30'941'620				#15'8				3191172'5	166'9]	IATOT.
								· · ·					ABHTO
EE.BF	234 '83E	16,369	08'9	5798 0997	LIGHT OIL	EOX.01	-		-	9091	•		90 TRATS - REHTO
01.1	1,929,732	241,689	00'1	247,889 MCF	SVE	168'6	6.86	T15	2'96	52'062	32	F	TAIN OF FLA.
96'¥Z	413'303	585'92	04'5	1415 8678	JIO THOUL	1259'51	£718	0'96	11	959.1	9G1	1-1	RINER
8.35	P0P.087,Y	148,888	00'1	BER'SHI WCE	SVE	\$28'1	6.88	1'15	£.67	122,186	202	۱.	YA8 REDUCT
00.0	0	0	00.1	0 WCE	SVO	0				0		2-1	3 DWANKEE
18722	195'116	218'99	08.2	5198 908'S	TICHLOIT	#S1'#1	6.96	C 65	2.2	810,4	191	C-1	BUNANUE
28.60	PSC'09	161,6	09'5	5188 015	TICHLOIT	125'81	8'66	0.88	L.I	691	£1	\$	RANIG OR
26'01	102'961'9	513'SR8	00.1	213'588 INCL	579	13,348				557°8C		¥1-1	INL CILA
16 22	128,811	44'580	01'5	5188 969'1	TICHU OIL	611.21	1'9L	C 95	F 'S	261,6	110.1	#6-1	INT CITY
00'0	0	0	09'5	5189 0	JIO THOU	0				0		6-1	SENH
20'9	519'579'77	5,405,083	00.1	2'402'083 WCL	SVE	1 283	543	¥'95	8.29	141'131	¥19'1	E-1	SENH
65'71	806,896	45,038	4'00	45'039 WCE	SVE	229'91				5753		F1	SNIDDH
00'0	0	0	09'S	5188 0	LIGHT OIL	0	07#01	F'95	0.0	0	135	₽-L	SNIODH
80'11	151,500,5	544'013	00'L	544'013 WCE	S¥Ð	5/0'61				285'21		01-1	ABYBES
59'22	128,065,1	025'SL	01'5	3708 100'CL	LIGHT OIL	13,906	£901	5'/8	9.1	SEP'S	199	01-1	ANNER
23.90	975'340	008'69	09'5	STRE 165'1	JIO THOIL	£20'41	0.001	E.86	52	E44.E	491	F1	CHORYAS I
01.51	453,620	49,260	00'L	43'390 MCL	SVD	152,21				962'6		F 1	MOT SAR TOW
54'58	212'9952	812,21	09'5	5168 9/9'7	LIGHT OIL	601.41	9'001	6'16	1.5	550'1	481	1-1	WOTAMA
33'25	115,430	900,8	00'L	\$'308 INCE	SVD	115'11				927		1-3	HAVON PARK
21.93	26.935	3.630	09'9	S168 929	TICHLOIL	102'11	9'06	5 95	50	112	29	1-2	AVON PARK
00.0	0	0	00'1	0 MCE	SVE	0				0		3	BBNNYMOS :
92.11	3'094'320	180,505	05.9	S'168 541'94	HEAVY OIL	295'11	203	0'28	8.24	38'083	08	3	33NNAMURE
00.0	0	0	001	0 WCE	SVE	0				0		2	BUNANUE
11.41	895'716	596'69	05.8	S188 118,01	HEAVY OIL	118'51	P'99	2.82	58.0	£97'9	16	3	33NNVMOS
00'0	0	0	00'L	0 MCL	SVÐ	0				0		F	BENNYMALE
88.21	229'998	609'99	05'9	S198 \$41'01		13,708	6.23	8'55	5873	662'9	35	1	BENNYMARE
58°Z	15,944,825	4 337 806	52'00	SNOL PPE'691	COVE	\$29'6	6'69	2'45	1728	£8£,8£Þ	212	\$	HEATAL RIVER
79.2	900'90C'ZL	1052'234	00'SZ	SNOT ELOUISE	TVOO	804'6	797	£'95	¥44	698'717	120	*	REVEAL RAVER
CT.S	P26'019'9	2340,726	32'00	SNO1 699'69	TYOO	299'6	8'04	6'28	8.19	231'428	981	z	CKARINT BINER
66`Z	996,308,254	1 062 463	06'92	SNOT 619.87	TYCO	E84,01	£.6ð	1,58	5.29	284,781	6 2 £	F.	CKASTAL RIVER
00'0	0	0	00.1	JON 0	5 7 5	0				0		C	RACLOW
6.03	184,581,5	9 58 ,788	05'9	5198 685'964	HEAVY OIL	HEC'OL	929	1'26	9.95	016'59	504	ç	MOLHAR
SÞ'9	369,817,6	166,868	05'9	S188 266'26	HEAVY OIL	610'11	959	1.78	1'59	023.12	611	5	MOLENS
<u> </u>	5'281'020	090'Z##	05'9	S188 210'99	JIO YVA3H	61111	2.94	6'15	0.64	S12'00	121	L.	WOTPAB
00'0	0	0	00.1	0 MCE	SAS	0				0		5	ELOJONA 6
05'9	099'195'5	068'546	05'9	S189 215'SH	HEAVY OIL	110.11	292	6.08	£ 62	006'99	56+	z	ELOJONY :
00'0	0	0	00.1	0 INCE	SVO	0				0			WICTOLE
09'9	115'995'8	1418,226	Q3'9	5111151 BBF2	TIO AAYEH	11,004	1'50	8.86	2'#E	158,610	96¥	L	WICTOLE
96.0	5,010,028	2'909'358	00'1	CTRIMM 850,908,2	RABIOUN	60+'01	5'00L	0'16	\$'28	901'455	692	٤	CRYS RIV NUC
(CNRALH)	(1)	(UTBMM)	(TINUAUTS)	(STINU)		(HWXAUTB)	(%)	(%)	(%)	(HANN)	(mm)		7
нимяяза	FUEL COST	GURNED	BULAY TABH	DENSIO	BUYT	HEAT RATE	ROTOR	FACTOR	FACTOR	CENERATION	VTIDAGAC	•	PLANTNUNIT
TROD LOUT	VZ BURNED	EVEL TEU	1304	ENET	L 1304	13N OAV	INHINO	EQUIV AVAIL	VIDAANO	13N	TaM	<u> </u>	
(W)	ר)	(K)	(r)	()	(H)	(១)	(E)	(3)	(<u>a</u>)	(၁)	(8)		(\)

System Net Generation and Fuel Cost

Jun-06

.

Estimated for the Month of:

(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)
		NET	NET	CAPACITY	EQUIV AVAIL	CUTPUT	AVG. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST
PLANTAUNIT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PERKWH
L		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)	1	(UNITS)	(BTU/UNIT)	(MMBTU)	(\$)	(CAKWH)
1 CRYS RIV NUC	3	769	539,554	94.3	96.9	100.5	10,405	NUCLEAR	5,616,222 MMBTU	1,00	5,616,222	1,943,213	0.36
2 ANCLOTE	1	496	155.624	42.0	98.8	44.0	10,647	HEAVY OIL	254,924 BBLS	6.50	1,457,005	10,597,390	6.51
3 ANCLOTE	1		0					GAS	0 MCF	1.00	. 0	D	0.00
4 ANCLOTE	2	495	160,177	43.5	99.3	45.3	10,683	HEAVY OIL	263,248 BBLS	6.50	1,711,113	10,943,439	6.63
5 ANCLOTE	2		0				. (GAS	0 MCF	1.00	0	. 0	0.00
6 BARTOW	1	121	42,578	47,3	91.9	53.2	11,196	HEAVY OIL	73,358 B8LS	6,50	476,829	3,017,921	7.09
7 BARTOW	2	119	61,243	69.2	97,1	72.1	10,947	FIEAVY OIL	103,140 BBLS	6.50	670,407	4,243,105	6.93
& BARTOW	3	204	92,418	60.9	97,1	64.0	10,246	5 HEAVY OIL	145,678 BBLS	6.50	946,896	5,993,044	6.48
9 BARTOW	3		Û				(GAS	0 MCF	1.00	0	0	0.00
10 CRYSTAL RIVER	1	379	190,593	67.6	92.0	72.9	10,391	COAL	79,222 TONS	25.00	1,980,547	5,651,395	2.97
11 CRYSTAL RIVER	2	486	241,034	66.7	88.0	75.3	9,521	COAL	91,794 TONS	25.00	2,294,849	6,548,241	2.72
12 CRYSTAL RIVER	4	720	452,849	B4.5	95.7	89.9	9,50	S COAL	173,807 TONS	25.00	4,345,166	13,205,011	2.92
13 CRYSTAL RIVER	5	717	488,657	.87.9	97.2	92.1	9,543	S COAL	178,895 TONS	25.00	4,472,365	13,591,571	2.90
14 SUWANNEE	1	32	12,880	54.1	95.8	66.4	12,574	HEAVY OIL	24,916 BBLS	6.50	161,954	1,639,558	12.73
15 SUWANNEE	1		Ô				· · (GAS	0 MCF	1.00	0	0	0.00
16 SUWANNEE	2	31	10,974	47.6	98.2	69.8	13,644	HEAVY OIL	23,034 BBLS	6.50	149,724	1,615,746	13.81
17 SUWANNEE	2		0				(GAS	0 MCF	1.00	0	0	0.00
18 SUWANNEE	3	80	27,484	46.2	87.0	54.7	11,492	2 HEAVY OIL	48,590 88LS	6.50	315,837	3,197,407	11.63
19 SUWANNEE	3		0				0	GAS	0 MCF	1.00	0	0	0.00
20 AVON PARK	1-2	52	155	0.4	98.5	13.0	17,413	LIGHT OIL	465 BBLS	5.80	2,699	43,308	27.94
21 AVON PARK	1-2		1,040				17,463	GAS	18,161 MCF	1.00	18,161	188,621	18,14
22 BARTOW	1-4	187	1,291	4.6	98.1	100.9	14,76	S LIGHT OIL	3,286 BBLS	5.80	19,061	311,100	24.10
23 BARTOW	1-4		5,053				15,269	GAS	77,156 MCF	1.00	77,156	641,275	12.69
24 BAYBORO	1-4	184	5,349	3.9	98.3	100.0	14,520	LIGHT OIL	13,391 BBLS	5.80	77,666	1,257,609	23.70
25 DEBARY	1-10	667	12,142	7.7	97.5	106.1	13,970	light oil	29,248 BBLS	5.80	169,625	2,730,435	22.49
26 DEBARY	1-10		26,042				13,882	2 GAS	381,503 MCF	1.00	361,503	2,921,552	11.22
27 HIGGINS	1-4	122	60	3.6	96.3	103.8	17,667	FLIGHT OIL	183 BBLS	5.80	1,060	16,868	28.11
28 HIGGINS	1-4		3,215				16,747	GAS	53,842 MCF	1.00	53,842	462,392	14.38
29 HINES	1-3	1,514	800,487	71.1	96.4	25.3	7,24	GAS	5,802,901 MCF	1,00	5,802,901	48,072,832	6.01
30 HINES	1-3		0				(LIGHTOIL	0 BBLS	5.80	0	0	0.00
31 INT CITY	1-14	896	5,935	10.2	91.3	86,1	14,458	LIGHT OIL	14,795 88LS	5.80	85,811	1,376,039	23.19
32 INT CITY	1-14		61,894				13,370	GAS	827,532 MCF	1.00	\$27,532	6,645,105	10.74
33 RIO PINAR	1	13	243	2.5	-88.1	100.2	18,498	LIGHT OIL	775 BBLS	5.80	4,495	71,439	29.40
34 SUWANNEE	1-3	164	8,038	6.6	99.3	100.0	14,246	LIGHT OIL	19,743 BBLS	5.80	114,507	1,825,687	22.71
35 SUWANNEE	1-3		0				C	GAS	0 MCF	1.00	0	0	0.00
36 TIGER BAY	1	207	126,790	82.3	94.2	90.3	7,823	GAS	991,940 MCF	1.00	991,940	8,103,672	6.39
37 TURNER	1-4	154	2,369	2.1	96.0	102.2	15,58	LIGHT OIL	5,364 88LS	5.80	36,914	589,308	24.88
38 UNIV OF FLA.	1	35	24,497	\$4.1	97.2	100.0	9,85	GAS	241,672 MCF	1.00	241,672	1,899,223	7,75
39 OTHER - START UP		•	922	-			10,354	LIGHT OIL	1,648 BBLS	5.00	9,558	144,016	15.62
40 OTHER													
41 TOTAL	ſ	8,848	3,541,587				9,514				33,695,015	159,397,520	4.50

SCHEDULE E4

System Net Generation and Fuel Cost

Jul-06

Estimated for the Month of:

(A)		(8)	(C)	(D)	(E)	(F)	(G)	(H)		()	(J)	(K)	(೬)	(M)
		NET	NET	CAPACITY	EQUIV AVAIL	OUTPUT	AVG. NET	FUEL		FUEL	FUEL	FUEL	AS BURNED	FUEL COST
PLANTAUNIT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE		BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH
L		(MW)	(MW/H)	(%)	(%)	(%)	(BTUAWHA			(UNITS)	(BTU/UNIT)	(MMBTU)	(\$)	(CAKWH)
1 CRYS RIV NUC		3 769	558,106	\$7.5	97.0	100.5	10,409	NUCLEAR		5,800,329 MMBTU	1.00	5,809,329	2,010,028	0.36
2 ANCLOTE	•	1 498	201,387	54.4	98.8	- 55.0	10,345	HEAVY OIL		320,513 BBLS	6.50	2,083,335	14,856,040	7.38
3 ANCLOTE		1	0				0	GAS		0 MCF	1.00	C	0	0.00
4 ANCLOTE	:	2 495	207,455	56.3	99.3	567	10,385	HEAVY OIL		330,825 BBLS	6.50	2,150,360	15,333,988	7.39
5 ANGLOTE		2	0.				. 0	GAS		0 MCF	1.00	0	0	0.00
6 BARTOW	1	1 121	50,249	55.8	91. D	60,7	10,966	HEAVY OIL		84,926 BBLS	6.50	552.021	3,899,770	7.76
7 BARTOW	:	2 119	65,923	74.5	97.1	75.1	10,910	HEAVY OIL		110,650 BBLS	6.50	719,223	5.000,974	7.71
8 BARTOW	:	3 204	104.823	69.1	97.1	70.3	10,178	HEAVY OIL		164,141 BBLS	8,50	1,066,915	7,537,255	7,19
9 BARTOW	5	3	0				0	GAS		0 MCF	1.00	0	0	0.00
10 CRYSTAL RIVER	•	1 379	214,008	75.9	92.1	79.0	10,288	COAL		88,067 TONS	25.00	2,201,696	6,585,834	3.08
11 CRYSTAL RIVER	:	2 488	262.027	72.5	87.9	79.2	9,484	COAL		99,406 TONS	25.00	2,485,158	7,433,775	2.84
12 CRYSTAL RIVER		6 720	463.616	86.5	95.7	89.1	9,603	COAL		178,076 TONS	25.00	4,451,909	13,778,705	2.97
13 CRYSTAL RIVER	1	5 717	482.956	90.5	\$7.2	91.8	9,547	COAL		184,438 TONS	25.00	4,610,949	14,270,937	2.95
14 SUWANNEE	-	1 32	15.367	64.5	95.6	67.4	12,519	HEAVYOIL		29,596 BBLS	6.50	192,372	2,101,395	13.67
15 SUWANNEE	•	1	0				Ó	GAS		0 MCF	1.00	0	0	0.00
16 SUWANNEE		2 31	15.772	68.4	96.2	69.6	13,586	HEAVY OIL	•	32,965 88LS	6.50	214,274	2,340,643	14.84
17 SUWANNEE	:	2	0				. 0	GAS		0 MCF	1.00	a	0	0.00
18 SUWANNEE	;	3 80	31,033	52.1	87.0	59.8	11,401	HEAVY OIL		54,431 BBLS	6.50	353,801	3.864.781	12.45
19 SUWANNEE	:	3	. 0				0	GAS		0 MCF	1,00	0	0	0.00
20 AVON PARK	15	2 52	245	0,6	96.5	15 <i>B</i>	17,143	LIGHT OIL		724 BBLS	5.80	4,200	\$7,516	27.58
21 AVON PARK	1.4	2	1,305				17,358	GAS		22,665 MCF	1.00	22,065	227,887	17.46
22 BARTOW	1-4	4 187	922	5.0	96.1	1012	14,714	LIGHT OIL		2,339 BBL8	5,80	13,500	221,812	24,05
23 BARTOW	1-	4	6.019				15,251	GAS		\$1,794 MCF	1,00	91,794	772,656	12.84
24 BAYBORO	1-	4 184	5,180	3.8	98,3	100.0	14,492	LIGHT OIL		12,943 BELS	5.80	75,069	1,227,423	23.70
25 DEBARY	1-14	0 667	11.950	8,2	97.5	105.8	13,955	LIGHT OIL		28,752 BBLS	5.80	165,764	2,689,270	22.50
26 DEBARY	1-16	D	28,905				13,882	GAS		401,255 MCF	1.00	401,255	3,309,905	11.45
27 HIGGINS	1-	4 122	0	0.0	. 98.4	102.9	0	LIGHT OIL		0 8865	5.80	. 0	0	0.00
28 HIGGINS	1-4	4	3,786				16,770	GAS		63,156 MCF	1.00	63,155	546,975	14.52
29 HINES	1.	3 1.514	885,254	78.6	96.4	26.5	7,196	GAS		6.370.218 MCF	1,00	6,370,216	53,748,904	8.07
30 HINES	1-3	3	0				. 0	LIGHT OIL		0 BBLS	5.80	0	0	0.00
31 INT CITY	1-14	898 1	6.261	12.1	\$1.3	866	14,406	LIGHT OIL		15,553 BBLS	5.80	90,208	1,449,192	23.15
32 INT CITY	1-14	1	74,292				13,369	GAS		993,202 MCF	1.00	993,202	8,122,553	10.93
33 RIO PINAR	1	1 13	233	2.4	88.0	99.9	18,511	LIGHT OIL		744 98LS	5.80	4,313	66,672	29.47
34 SUWANNEE	1-3	3 164	7.958	6.5	99.3	100.1	14,277	LIGHT OIL		19.569 BBLS	5.80	113,616	1,614,811	22.80
35 SUWANNEE	1-3	5	0				. 0	GAS		D MCF	1.00	a	C	0.00
35 TIGER BAY	1	207	134,589	87.4	\$4.2	92.8	7,834	GAS		1,054,331 MCF	1.00	1,054,331	8,801,383	6.54
37 TURNER	1-4	154	1.799	1.6	96.0	101.1	15,392	LIGHT OIL		4,774 88LS	5.80	27,690	442,863	24,62
38 UNIV OF FLA.	1	1 35	25,315	\$7.2	97.2	99.9	9,868	GAS		249,796 MCF	1.00	249,796	2,013,442	7.95
39 OTHER - START UP			814	•		-	9,909	LIGHT OIL		1,391 BBLS	5.80	8,066	124.236	15.26
40 OTHER														
41 TOTAL		8,548	3.867.529				9,474					36,641,241	184,743,627	4.78
		1							· · ·	·····				

SCHEDNLE E4

Progress Energy Florida

System Net Generation and Fuel Cost

68.1	110,118,001	37,130,442				815,9				091'106'E	8149/8]	JATOT II
													SIERCE CONTRACTOR
86.26	152,209	390.8	68.2	S188 1861	TIOHI OIL	606.6	•	12	•	118	•		QUITRATE - REHTO 65
80.8	2,044,682	367,245	00'1	348'196' WCE	SAS	899.6	6'66	2.19	7.15	51555	38	1	28 DIVIN OF FLA.
52°45	686,982	695.86	Q8'S	S188 1279	LIGHT OIL	ell'si	6196	0.88	0'7	1062	¥SL.	₩L	37 TURNER
19'9	000,709,8	006'#90'L	00'L	1.054,909 MCF	SVD	NC8.T	878	2.12	¥'28	059161	202	۴.	YAB RECEIPT BE
00'0	0	0	00.1	0 WCE	SVO	0				0		C-1	32 PRAVINEE
33'38	850'99 L'1	OC1'LIL	28.80	S188 291'61	TICHEON	812.41	1001	£'65	¥9	¥822	191	E-1	34 SUWANNEE
59'62	919' 2 2	5.033	2.80	3788 156	TIO LHOIT	539,81	5'001	0.89	- 1"1	011	¢1	F.	RAMIN OIR CO
PO'11	198.746,01	199'952'1	00.1	1'522'894 WCE	SVÐ	586"01				11/28		₽1-1	ATIO THI SE
52'38	828,218,1	153,501	09'5	5.99 648.11	LIGHT OIL.	159'91	6 99	E'15	r.ar	M01.7	959	141-L	ALIO IN: 10
00'0	0	0	09°S	5789 0	LIGHT OIL.	0				0		2-1	SO HINES
23'9	195'152'95	ME.ME.B	60° L	6'334'544 MCL	GAS	661°L	56.6	₽ "96	1.87	178,018	1214	E-1	SBNIH 62
99'9L	289,108	\$00,66	00'L	69 D03 WCE	SVD	549'91				BELT		P=1	SNIDDIH 82
62.45	597.92	262'1	08'5	3788 600	TICHLOIT	11'850	2901	1/98	La	001	221	₽~L	SNIDDIH 12
¥9'11	516'B+0'#	662"19+	00. L	481'580 WCL	SVD	989'C1				380'90		01-1	30 DEBYISA
27.55	096,670,6	202,651	09'9	3789 12972	LIGHT OIL	13,982	\$'901	9'25	8.6	17235	L99	01-L	25 DEBARY
P8.65	9090921	515'51	08.2	S188 59671	TICHE OIL	253'#L	0.001	6'95	8.6	191'9	18 1	₽FL	OROBYAB M
10.51	CEB'592	900'26	00'1	35'000 MCL	SVD	06Z'SL				+10'9		₩L	WOTAA8 ES
54.38	330,529	700.0S	C8.2	S188 09%C	TIGHL OF	662'#1	8'001	1.62	6.8	996"1	181	₩- 1	WOTRAS 22
SE 91	882,000	LL#'91	00'1	32'411 WCE	SYD	605'21				5,039		2-1	XRA9 NOVA 15
96'LZ	111'991	969.8	09'5	5788 1051	LIGHT OIL	812.11	505	\$ 98	£.1	SIS	25	2-1	20 AVON FARK
00'0	0	0	1.00	JOH 0	\$¥9	0				0		C	JENNYMAS 6
95'21	4'156'524	720,6%C	09 [.] 0	SJ86 C91,95	HEVAL OIL	9+5"11	299	0.78	0'96	33,320	09	ε	IS SUMANNEE
00.0	0	0	00° L	0 WCE	SYD	0			·	0-		3	11 SUMANNEE
19°71	5 48 118	699'9ZZ	05.8	STEB LCS'MC	HEAVY OIL	609.61	LET .	2.68	¥72	102'91	16	z	A SUWVINE
00'0	0	0	00.1	D WCL	SVD	0				0		L	JENNYMMEE
13.61	111.002.2	504'982	05'9	S188 2691C	HEVAN OIL	12721	612	8 '98	6.99	+1+91	25	1	H SOMVINEE
5 33	090'661'91	212,829,5	32°00	SNOL EPI'981	TVOO	915'8	1'26	2.78	6'05	088,989	111	ç	NAME AND A CHARLES
5672	13 649 333	E/E'S##'#	52.00	SNO1 525221	TVOO	£09'6	0.68	/ 98	6.88	212799	07/		IT CHLOINT BIEL
182	966'600'2	877,644,5	52'00	SHOL ISZ'ZE	TVOO	184'6	ru	0.65	τu	ZIE'SZ	987	z	IL CRASINE MIVER
3.09	100'121'9	219'811'2	52'00	SNO1 SHO'SE	CONT	125'01	6'9/	2.28	8.67	ORL'ROZ	815	1	NEW TYLETA
00.0	0	0	00.1	JOW C	SVĐ	0				0		6	ADDAG HISKOD OF
134	920'989'2	11080.1	05'9	S'88 981'991	HEVAL CH	9/1'01	711 ·	176	6.69	951'901	107	с г	MOLOUN 0
SL'L	2'535'984	1991'962	05'9	STER SPICIL	HEVALOIF	168'01	6'9/	1.78	£'94	879'/9	6L1	2	
91.1	4'088'122	24'224	05'9	5788 255 88	HEAVY OIL	076'01	5'09	6'18	5.85	17979	171	i	MOTOAR 1
00.0	0	0	00.1	JOW 0	SVD	0				0		,	MOTOAR A
51-2	12,628,210	121,311,5	65'9	S788 69/'YEE	HEAVY OIL	9/5'01	\$75	2.65	0'/9	967/1802	CR	,	310 IUNY 5
00'0	0	0	00.1	JOH 0	SYD	0		•••	v 67	0	301	с ,	
2412	990'995'51	019'ZVI'Z	95.9	238'905 866'2	HEVAL OIL	SEC.01	9'90	9'04	8'02	4 667'107	061		3 WHO DIE
90'38	S20,010,Z	2'908'334	60"1	OLSAW LCC'SOR'S	HYROON	SIN'OL	6.001	0.18	C'18	901,900	40/	•	
(CWCNH)	(2)	(UTBMM)	(UNIVILE)	(SUNO)	T	(HAAN/DIR)	T (%)	(%)	(4)	(HAAM)	(4499)	<u>,</u>	
	1900 7304	A THOMAS	20744	034460	340	11101110				VIII/	¥¥Ш 8/	1	
1900 1904	0300008.94	1304	1904	INDRED LOEF		1241.094	104100	EACTOR	EACTOR	GENERATION	CAPACITY	1	THAI ATHAJ9
(W)	(1)	<u> </u>	(0)	(1)	(1)	1 ADM 2017		1 8004 (2)	(a)	(O)		L	
18.87	10	(21)	u/	W/ 1	101/	10/	137	(3)	ιu/	(0)	(11)		\ V /

Progress Energy Florida System Net Generation and Fuel Cost

Estimated for the Month of:

Sep-06

(A))	(8)	(C)	(D)	(E)	(F)	(G)	<u>(H)</u>	(I)	(J)	(K)	(L)	(M)
		NET	NET	CAPACITY	EQUIV AVAIL	OUTPUT	AVG. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST
PUNITA	lnet	CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEATVALUE	BURNED	FUEL COST	PER KWH
		(NIW)	(MM/H)	(%)	(%)	(%)	(BTLIKWH)		(UNITS)	(BTU/UNIT)	(MMBTU)	(5)	(CARVH)
1 CRYS RIV NUC	:	3 769	538,554	94,3	96.9	100.5	10,409	NUCLEAR	5.616.222 MMBTU	1.00	5,616,222	1,943,213	0,36
2 ANCLOTE	1	1 498	156,344	42.2	98.80	44.Z	10.621	HEAVY OIL	255,469 BBLS	6.50	1,660,547	11,064,559	7.06
3 ANCLOTE	1	1	0				- O	GAS	0 MCF	1.00	0	. 0	0.00
4 ANCLOTE	:	2 495	163,258	44.3	99.3	46.1	10,645	HEAVY OIL	267,369 BBLS	8.60	1,737,898	11,579,964	7.09
5 ANCLOTE	2	2	0				0	GAS	0 MCF	1.00	Ô	0	0.00
6 BARTOW	1	1 121	42.531	47.2	91.9	\$3.1	11,198	HEAVY OIL	73,256 BBLS	6.50	478,162	3,141,164	7.39
7 BARTOW	2	2 119	60.112	67.9	97,1	70.7	10.963	HEAVY OIL	101,387 BBLS	6.50	659,016	4,347,423	7,23
8 BARTOW	3	3 204	90,981	59.9	\$7.1	83.0	10.253	HEAVY OIL	143,513 BBLS	6,50	932,835	6,153,763	6,76
9 BARTOW	1	3	0				0	GAS	0.MCF	1.00	0	0	0.00
10 CRYSTAL RIVER	1	1 379	196.936	60.8	\$1.9	77.7	10,314	COAL	81,247 TONS	25.00	2,031,172	6,075,781	3.09
11 CRYSTAL RIVER	1	2 436	246.703	66.2	87.9	77.0	9,510	COAL	93,850 TONS	25.00	2,346,250	7,018,264	2.84
12 CRYSTAL RIVER		6 720	441,691	82.5	95.7	87.8	9,617	COAL	169,901 TONS	25.00	4,247,537	13,177,014	2.98
13 CRYSTAL RIVER		5 717	460.335	86.3	\$7.2	90.4	9,560	COAL	176,036 TONS	25.00	4,400,893	13,652,786	2.97
14 SLIWANNEE	1	I 32	12,709	53.4	35.8	64.2	12,578	HEAVY OIL	24,594 88.5	6.50	150,858	1,744,749	13.73
15 SUWANNEE	1	1	. 0				0	GAS	0 MCF	1.00	0	Đ	0.00
16 SUWANNEE		2 31	13.023	55.5	56.2	65.6	13,725	HEAVY OIL	27,499 8B.S	6.50	178,745	1,950,889	14.98
17 SUWANNEE	3	2	0				- 0	GAS	0 MCF	1,00	0	0	0.00
18 SUWANNEE	1	3 80	27,551	46.3	87.0	54,8	11,491	HEAVY OIL	48,706 BBLS	6.50	316,592	3,455,402	12.54
19 SUWANNEE	3	3	0				0	GAS	0 MCF	1.00	0	0	0.00
20 AVON PARK	1-2	2 52	195	0.5	98.5	18.5	17,199	LIGHT OIL	581 BBLS	5.60	3.371	55,102	28.11
21 AVON PARK	1-3	2	863				17,349	GAS	14,972 MCF	1.00	14,972	164,548	19.07
22 BARTOW	1-4	187	1,280	3.7	98.1	100.6	14,735	UGHT OIL	3252 BBLS	5.80	18,861	313,494	24.49
23 BARTOW	1-4		3877				15,233	GAS	59.059 MCF	1.00	59,069	503,979	13.00
24 BAYBORO	1-4	184	3.670	2.7	96.3	100.0	14.495	LIGHT OIL	9.172 BBLS	5,89	53,197	884,203	24.09
25 DEBARY	1-10	667	7.097	6.0	87.5	109.4	13,938	LIGHT OIL	17.054 BBLS	5.80	98,915	1,621,898	22.85
28 DEBARY	1-10	3	22.666		-,		13,875	GAS	314,497 MCF	1.06	314,497	2,569,183	11.33
27 HIGGINS	1-4	122	57	3.7	98.3	103.1	17.561	LIGHT OIL	173 BBLS	6.00	1.001	16,230	28.A7
28 HIGGINS	1-4		3277	-1-			16.677	GAS	54.552 MCF	1.00	54,652	470,049	14.34
29 HINES	1.3	1514	800 945	71.1	95.3	25.8	7.222	GAS	5,784,705 MCF	1.06	5,714,705	48,085,833	6.00
30 HINES	1.3	·	0				0	LIGHT OIL	0 BBLS	5.80	0	0	0.00
31 NT CITY	1.14	AQA	4723	9.0	91.3	88 6.	14 336	LIGHT ON	11.714 BBLS	5 60	67.943	1.109.896	23.50
32 INT CITY	1.14		55 554		••••		13 359	GAS	742 147 MCF	1.00	742.147	8,009,547	10.82
33 RIO PINAR			90	00	88.1	100.7	18,500	UKSHIT ON	287 ABL 8	5.80	1 665	26.961	29.96
34 SUWANNEE	1.3	164	6604	5.5	00.3	100.2	14 303	I KSHIT ON	16 508 BB/ S	5.60	95 744	1 565 255	23.23
35 SLEWANNEE	1.1		0,000			100.0		CAS	0 MCE	1.00		0	0.00
THE THE PAN	1.2		177.600	e 2.e		00 0	7 416	045	000.301 (405	1.00	000 191	# 17G 432	6.41
17 THRNED		474	121,240	94.0 4 M		07.5 07.5	1023		3 232 68 5	1.00 6 66	000,000 (22 (26	v, 178,745 961 840	75 48
	1-4	104	1,420	1.2	97.U	¥2.\$	10,000	CAR .	3,030 00.0	0.00	55.590 914 879	0P0,105	7 72
THER. STADT UN	1	30	14,497	ari, 1	91,Z	100.9	C06,V		4.465 BBC -	F.U#	471,072 B 600	1,004,000	15 82
A OTHER OTHER		•	857	•		٠	10,107	LIGH! OIL	1,493 8865	3.09	0,062	133,300	10.02
											03.946.440	460 473 500	1 63 4
		8.548	3,517.064	<u>-</u>			9,481				33,340,419	139,213,305	4.00

System Net Generation and Fuel Cost

Estimated for the Month of

(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)
		NET	NET	CAPACITY	EQUIV AVAIL	OUTPUT	AVG. NET	FUEL	FUEL	PUEL	FUEL	AS BURNED	FUEL COST
PLANTAINIT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH
		(MNV)	(MVVH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MMBTU)	(5)	(C/KWH)
1 CRYS RIV NUC	3	769	558,106	97.5	97.0	100.5	10,409	NUCLEAR	5,809,329 MMBTU	1.00	5,809,329	2.010.028	0.36
2 ANCLOTE	1	498	90,402	24.4	63.7	38.3	10,823	HEAVY OIL	150,527 BBLS	8.50	978,423	7,250,969	8.02
3 ANCLOTE	1		0				0	GAS	0 MCF	1.00	0	a	0.00
4 ANCLOTE	2	496	138,483	37.1	99.3	44.5	10,817	HEAVY OIL	227,129 BBLS	6.50	1,476,337	10,940,976	8.02
5 ANCLOTE	2		0				0	GAS	0 MCF	1.00	0	0	0.00
6 BARTOW	1	121	41,209	45.8	91.9	49.8	11,297	HEAVY OIL	71,819 BBLS	6.50	465,523	3,419,048	8.30
7 BARTOW	2	119	34,097	38.5	97.1	44.5	11,855	HEAVY OIL	62,187 BBLS	6.50	404,217	2,968,785	8.71
8 BARTOW	3	204	91,756	50.5	97.1	8 1.5	10,271	HEAVY OIL	144,984 BBLS	6.50	942,398	6,921,472	7.54
9 BARTOW	3		0				0	GAS	0 MCF	1.90	0	0	0.00
10 CRYSTAL RIVER	1	379	193,581	68.7	92.0	71.4	10,452	COAL	80,933 TONS	25.00	2,023,330	6,061,487	3.13
11 CRYSTAL RIVER	2	486	240,450	56.5	87.9	72.7	9,569	COAL	92,038 TONS	25.00	2,300,949	6,893,177	2.87
12 CRYSTAL RIVER	4	720	377,785	70.5	63.4	63.6	9,659	COAL	145,959 TONS	25.00	3,648,980	11,224,808	2.97
13 CRYSTAL RIVER	5	717	471,850	58.5	97,2	89.7	9,563	COAL	180,487 TONS	25.00	4,512,171	13,680,113	2.94
14 SUWANNEE	1	32	7,194	30.2	95.8	64.4	12,712	HEAVY OIL	14,070 86L6	6.50	91,453	994,494	13.82
15 SUWANNEE	1		0				. 0	GAS	0 MCF	1.00	0	٥	0.00
16 SUWANNEE	2	31	5,762	29.3	96.2	68.0	13.722	HEAVY OIL	14,275 BBLS	6.50	92,789	1,009,022	14.92
17 SUWANNEE	2		0					GAS	0 MCF	1.00	0	0	0.00
18 SUWANNEE	3	80	17,904	30.1	87.0	55.8	11,528	HEAVY OIL	31,754 BBLS	6.50	206,403	2,244,502	12.54
19 SUWANNEE	3		٥				0	GAS	0 MCF	1,00	0	0	0.00
20 AVON PARK	1-2	52	181	0.5	98.5	12.7	17,519	LIGHT OIL	547 BBLS	5.80	3,171	52,210	26.65
21 AVON PARK	1-2		1,239				17,295	GAS	21,429 MCF	1.00	21,429	202,960	16.38
22 BARTOW	1-4	187	1,167	4.7	96.1	101.0	14,758	LIGHT OIL	2,969 BBL,\$	5,80	17,223	288,317	24.71
23 BARTOW	1-4		5,337				15,240	GAS	81,338 MCF	1.00	81,338	632,689	11,85
24 BAYBORD	1-4	164	2,647	1.9	98.3	100.0	14,546	LIGHT OIL	6,639 BBLS	5,80	38,504	644,567	24.35
25 DEBARY	1-10	667	8,659	5.9	89.6	107.1	13.951	LIGHT QIL	20,587 BBLS	5,80	119,407	1,972,109	23.04
26 DEBARY	1-10		20.589				13,877	GAS	285,715 MCF	1,00	285,715	2,197,175	10.67
27 HIGGINS	1-4	122	54	5.3	98.4	105.0	17,815	LIGHT OIL	166 88LS	5.00	962	15.712	29.10
28 HIGGINS	1-4		4,735				16,579	GAS	78,500 MCF	1,00	78,500	612,333	12.93
29 HINES	1-3	1,514	497,278	44.1	63.0	24.8	7,285	GAS	3,622,553 MCF	1.00	3,622,553	29,532,075	5.94
30 HINES	1-3		0				0	LIGHT OIL	0 88LS	5.80	D	0	0.00
31 INT CITY	1-14	1,041	7,704	7.1	83.4	75.6	13,833	LIGHT OIL	18,373 BBLS	5.80	106,506	1,753,507	22.76
32 INT CITY	1-14		47,637				13,300	GAS	633,553 MCF	1.00	633,553	4,839,939	10.16
33 RIO PINAR	1	13	66	0.7	88.0	100.5	18,591	LIGHT OIL	212 BBLS	5.80	1,227	20,015	30.33
34 SUWANNEE	1-3	164	6,668	5.5	99.3	100.1	14,275	LIGHT OIL	16,460 BBLS	5.80	95,468	1,662,129	23.36
35 SUWANNEE	1-3		0				0	GAS	0 MCF	1.90	0	0	0.00
36 TIGER BAY	1	207	131,229	85.2	94.2	90.4	7,822	GAS	1,026,532 MCF	1,00	1,026,532	7,855,763	5.99
37 TURNER	1.4	154	1,404	1.2	76.1	87.9	15,724	LIGHT OIL	3.806 88LS	5.80	22,077	361,693	25.78
38 UNIV OF FLA.	1	35	22,047	84.7	\$4.7	100.0	9,865	GAS	217,510 MCF	1.00	217,510	1,605,065	7.28
39 OTHER - START UP			2,555	-		•	10,712	LIGHT OIL	4,719 BBLS	5.80	27,368	431,220	15.88
40 OTHER													
41 TOTAL	[8,991	3,029,695				9,691				29,351,405	130,396,397	4.31
								•					

SCHEDULE E4

Progress Energy Florida System Net Generation and Fuel Cost Estimated for the Month of: Nov-06

()		(B)	(C)	ê	(E)	£	(<u>0</u>	(H)	0	6	(X)	(1)	
		¥E1	NET	CAPACITY	EQUIV AVAIL	OUTPUT	AVG. NET	FUEL	FUEL	REL	FUEL	AS BURNED	FUEL COST
PLANTAUNT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	34LL	BURNED	HEAT VALUE	BURNED	FUELCOST	PER KWH
		(ww)	(HVVH)	ŝ	£	E	(BTUMOWH)		(UNITS)	(BTUAINIT)	A MANATI N	(6)	
1 CRYS RIV NUC	n	786	550,722	83.9	8	1001	10.226 N	NGEAR	5 ANT OLD MURTH		in the second	(0)	
2 ANCLOTE	**	522	60,170	15.5	12.8	37.4	10.754 H	EAVY OIL	ON SLAR BRIS				
3 ANCLOTE	-		Q				0	MS.	0 MCF		000//200	9/1.102.0	8.3
4 ANCLOTE	~	523	111,248	26.6	5.04	37.1	H C07.01	EAVY OIL	TRA KKG DBI C				
5 AMCLOTE	~		0				90	AS			10'SAL'1	165'R2/'R	11.8
6 BARTOW	-	123	39,460	43.1	91.9	485	H 191 11	FAVY OIL	2011 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	3		D	0.0
7 BARTOW	2	121	21,890	26.5	1.79	911				8	440,510	3.552,507	9.00
8 BARTOW		208	150.15	16.5	97.4					9	279,485	2,253,916	64.6
9 BARTOW	ŝ		C						SUUD 581.5	6.50	578,932	4,000.015	8.50
10 CRYSTAL RIVER		181	187 818		0.10	ŝ		3	0 100	8	o	•	0.0
11 CRYSTAL RIVER		184		1	A 1	0780	10,448 10		76,406 TONS	25.00	1,010,156	5,722,440	3.13
12 CRYSTAL RIVER		ž			9.0 0	8	9,662 C		42,313 TONS	25.00	1,067,831	3,169,047	2.89
13 CRYSTAL RIVER		3		97.9	19.8	280	9.580 C	đ	126.821 TONS	25.00	3,170,533	9,800,160	2.96
14 SUMANNEE	•••	2 1		79,62	172	543	9,502 C	8	184,734 TONS	25.00	4,118,350	12,729,875	2.2
15 SI MAMMEE		સ	202.1	9.06	95.8	2	12,511 H	EAVY OIL	14,446 BBLS	6.50	93,898	1,013,570	13.51
10 CONVENES	- •	1	0				0	AS	· D MCF	5,8	•	0	000
	2	2	668'9	29.0	88.2	5 99	14 885 ET	EAVOIL	14,433 BBLS	6.50	\$3.812	1012.641	2
TE SURVENUES	~		•				0	A.S	0 MCF	1.00	0	0	000
	ю.	5	15,881	9	87.0	663	14 60C'11		27,626 88LS	6.50	180.867	1 960 345	10.00
IN SUVANNEE	с)		•				0 0 0	NS	0 MCF	81			8
CU AVUN PAKK	<u>7</u>	2	8	0.0	200.5	3.4	17,330 LK	BHT OIL	60 BRLS	885	, av	203	
21 AVON PARK	7		452				17,274 64	st	7 ROB LACE	8 8		008/0	
22 BARTOW	1	219	92	1. 2	86.1	86.7	14.026 LIC		189 GRIS		ana'.	CAL'121	8-17
23 BARTOW	ī		1,846				14 828 54					13,068	19-10-
24 BAYBORD	1	232	193	0.3	8	704			A LINE DRIVE	8	27,372	311,913	16.90
25 DEBARY	1-10	292						5	1.440 88L5	5,00	8.385	140,167	22.03
26 DEBARY	1-10	•	10.958	3			13,807 LIG	SHI OL	5,408 BBLS	5.80	31,369	539,720	23.76
27 HIGGINS	1	134			ş		30 190'?!	3	145,866 MCF	9 .	148,688	1,578,424	14,39
28 HIGGINS	1			20	200	7	OFK	SHT OIL	0 Bels	5.80	•	G	0.0
29 HINES	7	1 601			i		16,838 GA	2	23,722 MCF	8	227,65	278,891	19.65
30 HINES	1	•		0'n+	715	77.0	7,251 GA	Ŋ,	3,709,216 MCF	1.00	3.709.216	39,138,910	7.65
31 INT CITY	1-14	BUK L		ĊĊ			0 14	, jo H	0 8818	5.80	•	•	000
22 INT CITY	1-14		2017 1016		n:94	¥ AQ	13,037 LK		7.065 BBLS	5.80	11,094	704,528	22.35
33 RIO PINAR	-	97	110.52				13,009 GA	ω,	302.196 MCF	901	302,186	3,195,258	13.85
M SUMANNEE	- :	2	2	6.1	46.9	184	18,385 LIG	HT OIL	41 BBLS	5.80	230	4,063	31,26
35 SLAVANNEE	2 :	ş	1.747	12	90.3	81.7	13,782 LIG		4,151 BBLS	5.80	24,077	410,573	23.50
M TIGER AAV	2 •		0				9 GF	s	0 MCF	1.00	0	0	0.00
V7 TURNED	- ;	57	46,006	26.3	12.2	6, 19 9, 10	7.854 GA	Ś	368.867 MCF	1.00	366,657	4.031.962	8.58
te filmer of fra	Ĩ	ž	22	0.2	1.11	63.9	15,185 LIG	HT OIL	581 BBLS	5,80	3.371	57.553	6
		Ŧ	19,106	62.6	6.13	968	9,651 GAL	5	164,420 MCF	1.00	144,420	1.014.462	950
DOTHER		•	191.1	•		,	10,196 LIG	HT OIL	7,673 BRLS	5.00	44,502	733,466	18.81
I TOTAL	L	0756	2 661 811										
	L	2	100'100'3				9,524				24,331,064	115,030,573	4.54

System Net Generation and Fuel Cost

Estimated for the Month of:

Dec-06

(A)		(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)
		NET	NET	CAPACITY	EQUIV AVAIL	OUTPUT	AVG. NET	FUEL	FVEL	FUEL	FUEL	AS BURNED	FUEL COST
PLANTAUNIT		CAPACITY	GENERATION	FACTOR	FACTOR	FACTOR	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH
L		MW	(MWH)	(%)	(%)	(%)	(BTURWH)	· · ·	(UNITS)	(BTUUNIT)	(MMBTU)	(5)	(C/KWH)
1 CRYS RIV NUC	2	788	569,658	97.2	97.0	100.1	10,191 A	NICLEAR	5,805,387 MM8TU	1.00	6,805,387	2.008,664	0.35
2 ANCLOTE	1	522	107,588	27.7	98.8	28.0	11,207 H	EAVY OIL	185,504 BBLS	6.50	1,205,779	9,695,468	9.01
3 ANCLOTE	1	F	0				0.0	SAS	0 MCF	1.00	0	0	0.00
4 ANCLOTE	2	522	61,330	15.8	99.3	22.0	11,862 H	EAVY OIL	111,922 BBLS	6.50	727.495	5,850,269	9.54
5 ANCLOTE	2	l	0				0 0	AS	0.MCF	1.00	0	0	0.00
6 BARTOW	1	123	35,731	39.0	91.9	42.5	11,353 H	EAVY OIL	62,409 BBLS	6.50	405.659	3,235,253	9.05
7 BARTOW	2	e 121	19,473	21.6	97.1	35.6	12,092 H	EAVY OIL	36.225 BBL8	6.50	235,461	1,877,872	9.64
8 BARTOW	3	1 208	42,513	27.5	97.1	39.8	10,941 H	EAVY OIL	71,557 BBLS	6.50	465.122	3,706,488	8.73
9 BARTOW	3	1	0				00	AS	0 MCF	1.00	0	0	0.00
10 CRYSTAL RIVER	1	383	198,158	69.5	91.9	72.4	10,369 C	OAL.	82,191 TONS	25.00	2.054,780	6,147,308	3.10
11 CRYSTAL RIVER	2	! 491	234,012	64.1	87.8	73.0	9,469 C	OAL	58,632 TONS	25.00	2,215,811	6.623,006	2.83
12 CRYSTAL RIVER	4	735	452,153	82.7	95.7	85.2	9,495 C	OAL	171,721 TONS	25.00	4,293,028	13,149,636	2.91
13 CRYSTAL RIVER		732	466,607	85.7	97.2	86.9	9,459 C	OAL	178,829 TONS	25.00	4,415,719	13,525,441	2.90
14 SUWANNEE	1	33	1,857	8.0	95.8	65.2	12,534 H	EAVY OIL	3,774 BBLS	6.50	24,529	264,285	13.50
15 SUWANNEE	1	ł	0				0 0	ias	0 MCF	1.00	0	0	0.00
16 SUWANNEE	2	: 32	1,541	82	96.2	66.7	13,607 H	IEAVY OIL	4,063 BBLS	6.50	26,412	284,573	14.66
17 SUWANNEE	2	1	0				0 0	AS	0 MCF	1.00	0	0	0.00
18 SUWANNEE	2	L 61	7,785	12.9	87.0	51.4	11,448 H	IEAVY OIL	13,711 8818	6.50	89,124	960,255	12.33
19 SUWANNEE	3		0				0 0	AS	0 MCF	1.00	0	0	0.00
20 AVON PARK	1-2	64	36	0.1	96.5	20.6	16,861 L	IGHT OIL	105 BBLS	5.80	607	10,492	29.15
21 AVON PARK	1-2	2	105				17,009 G	AS	1,803 MCF	1.00	1,603	65,694	61,96
22 BARTOW	1.4	219	169	05	96.1	86,2	14,065 L	IGHT OIL	459 BBLS	5.80	2,662	46,747	24,73
23 BARTOW	1-4		101				14,489 G	AS	10,157 MCF	1.00	10,157	141,765	20.22
24 BAYBORO	1-4	232	679	Ŭ.4	98.J	79.3	14,231 L	IGHT OIL	1,606 BBLS	5.80	9,663	109,691	24.99
25 DEBARY	1-10	762	728	1,4	97.5	99.9	13,545 L	IGHT OIL	1,700 BBLS	5.80	9,861	170,958	23,48
26 DEBARY	1-10	1	7,037				13,441 G	AS	94,587 MCF	1.00	94,587	1,009,135	14.34
27 HIGGINS	1-0	134	D.	0.0	98.4	95.3	0 L	IGHT OIL	0 BBLS	5.80	0	0	0.00
28 HIGGINS	1-4		431				18,961 G	IAS	7,319 MCF	1,00	7,319	115,923	26.90
29 MNES	1-3	1,693	534,354	42.4	96.3	22.2	7,200 G	AS	3,847,235 MCF	1.00	3,847,235	38,581,435	7.22
30 HINES	1-3	1	0				0 U	IGHT OIL	0 BBLS	5.80	0	0	0.00
31 INT CITY	1-14	1.205	2,249	1.8	28.3	67.3	13,036 L	IGHT OIL	5,055 BBLS	. 5.80	29,319	506,496	22.52
32 INT CITY	1-14		14,254				12,923 G	AS	184,211 MCF	1.00	184,211	1,973,078	13.84
33 RIO PINAR	1	16	0	0.0	88.0	0.0	0 L	IGHT OIL	0 BBLS	5.80	0	. 0	0.00
34 SUWANNEE	1-3	201	874	80	99.3	81.8	13,593 L	GHT OIL	2.048 861.5	5.80	11,880	204,141	23.36
35 SUWANNEE	1-3		0				0 G	AS	0 MCF	1.00	0	0	0.00
36 TIGER BAY	1	223	66,364	40.0	94.2	9.06	7.839 G	AS	520,256 MCF	1.00	529,256	5,230,200	7,88
37 TURNER	1-4	194	313	0.2	95.3	85.3	14.708 L	IGHT ÓIL	794 BBLS	5.60	4,603	79,190	25.30
38 UNIV OF FLA.	1	41	29.647	972	97.2	99.9	9.648 G	AS	286,045 MCF	1.00	284,045	2.649.661	8.94
39 OTHER - START UP	•	-	2,459				11.544 1	GHT DIL	4,DIA BBLS	5.80	28.501	472.821	18.15
40 OTHER													
41 TOTAL		9,758	2,859,537				9,447				27,013,016	118,766,003	4.15

Inventory Analysis

	HEAVY OIL	<u>.</u>	Jan-06	Feb-06	Mar-06	Apr-06	May-06	Jun-06	Subtotal
1	PURCHASES:			PAA					
2	UNITS	BBL	656,584	563,118	683,170	487,369	739,329	936,887	4,046,457
3	UNITCOST	ARRY	45.64	45.57	48.52	39.80	40.94	43.92	44.38
4		3	30,/56,792	25,662,103	33,149,029	18,599,051	30,270,375	41,147,610	179,584,960
2 4		001		663 118	683 470	407 000	710 100		
0 7	UNITS		000,004	203,110	063,170	407,308	739,329	936,887	4,046,457
,	ANOLINE	******	40.94	40.07	30.00	39.60	40.94	43.92	44.30
0			30,736,782	25,002,103	33, 149,029	10,599,051	30,270,375	41,147,610	1/9,564,960
40 9	ENDING INVEN		4 100 000	1 400 000	1 100 000	4 400 000	4 4 00 000	4 400 000	
10	UNITOORT	00L	1,100,000	1,100,000	1,100,000	1.100,000	1,100,000	1,100,000	
11	ANOINT	3/DOL	40.04 51 529 070	43.37	40.02 53 374 840	38.00	40.94	43.82	
14		•	51,526,070	50,128,540	53,374,040	43,114,720	45,037,410	48,311,460	v ¹
				алан айтан айта Айтан айтан айта					
	LIGHT OIL								
13	PURCHASES.								
14	UNITS	BBL	89,430	17,235	25,494	27,834	49,967	89,896	299,855
15	UNIT COST	\$/8BL	101.70	101.83	100.80	95.72	94.13	93.17	97.28
16	AMOUNT	\$	9,094,802	1,755,036	2,569,639	2,664,278	4,703,234	8,375,807	29,182,794
17	BURNED:								
18	UNITS	BBL	89,430	17,235	25,494	27,834	49,967	89,896	299,855
19	UNIT COST	\$/68L	101.70	101.83	100.80	95.72	94.13	93.17	97.26
20	AMOUNT	5	9,094,802	1,755,036	2,589,639	2,664,278	4,703,234	8,375,807	29, 162, 794
21	ENDING INVEN	TORY:							
22	UNITS	8 8 L	883,900	883,900	883,900	883,900	883,900	883,900	
23	UNIT COST	\$/8BL	101.70	101.83	100.80	95.72	94.13	93.17	
24	AMOUNT	2	89,892,630	90,007,537	89.097,120	84,605,908	83,201,507	82,352,963	
	2 -								
	COAL								
	CUAL] ·							
20	PURCHAGES.	701	447.041				100 010		
20	UNITCOST	SCON	447,901	403,472	330,441	459,661	498,845	523,717	2,672,296
21	ANOUNT	*	10.00	13.81	13.93	74.00	74.72	/4.46	/4.59
40 20			33,634,813	30,141,343	23.019.301	34,237,483	37,272,111	38,990,230	199,321,663
20	LINITS	TON	447 061	403 472	228 444	450 964	100 045	600 747	0.070.000
91	LINIT COST	\$/TON	75.08	74 71	73 63	405,001	496,640	323,/1/	2.0/2,290
32	AMOUNT	<	33 634 005	30 141 330	25 010 660	24 267 400	77 777 414	14.40	80.001
33	ENDING INVENT		فياياته إحصاف وحات	U. (+ 1,000	20,019,000	J-9,2J/,4922	ا ۱۱ رگم ا عبر ا د	30,370,210	128,321,010
34	LINITS	TON	768 000	768.000	768.000	768 000	768.000	768 000	
35	UNITCOST	STON	75.08	74 71	73 03	74.50	7 00,000	700,000	
36	AMOUNT	5	57 664 696	57 373 440	56 775 091	57 217 487	19.14 57 382 403	/4.40 57 185 664	
		•	01,001,000	01,010,10	50,110,001	01,212,401	31,302,002	57,100,004	
	<u> </u>								
	GAS	_							
37	BURNED:								
38	UNITS	MCF	5,810,471	5,179,127	6,204,300	4,570,400	7,465,718	8,374,707	37,604,723
39	UNIT COST	\$/MCF	11.48	11.54	11.62	9.90	8.23	8.23	9.95
40	AMOUNT	\$	66,696,812	59,745,0 93	72,124,662	45,231,029	61,442,461	68,934,672	374,174,729
		_							
	NUCLEAR								
41	BURNED:								
42	UNITS	MMBTU	5,805,388	5,242,537	5,805,386	5,612,411	5,809,329	5,616,222	33,891,273
43	UNIT COST	\$/MMBTU	0.35	0 35	0.35	0.35	0.35	0.35	0.35
44	AMOUNT	3	2,008,664	1,813,918	2,008.664	1,941,894	2,010,028	1,943,213	11,726,381

Inventory Analysis

	HEAVY OIL		Jul-06	Aug-06	Sep-06	Oct-06	Nov-06	Dec-06	Total
1	PURCHASES:		\ 					· · · ·	
2	UNITS	BBL	1,128,048	1,156,299	941,793	716,545	540,643	489,166	9,018,949
3	UNIT COST	\$/BBL	48.77	49.15	46.12	49.89	54.51	52.90	47.23
4	AMOUNT	\$	55,014,846	56,831,401	43,437,913	35,749,288	29,468,904	25,878,463	425,965,775
5	BURNED:								
6	UNITS	BBL	1,128,046	1,156,299	941,793	716,545	540,643	489,166	9,018,949
7	UNIT COST	\$/BBL	48.77	49.15	46.12	49.89	54,51	52.90	47.23
8	AMOUNT	S	55.014,846	58,831,401	43,437,913	35,749,288	29,468,904	25,878,463	425,965,775
9	ENDING INVENT	ORY:							
10	UNITS	BBL	1,100,000	1,100,000	1,100,000	1,100,000	1,100,000	1,100,000	
11	UNIT COST	\$/BBL	48.77	49.15	46.12	49.89	54.51	52.90	
12	AMOUNT	Ş	53,647,000	54,064,340	50,734,860	54,880,320	59,957,920	58,193,520	
	· · · · ·					. *			
	LIGHT OIL	7							· · .
13	PURCHASES:								
14	UNITS	BBL	86,809	95,936	64,070	74,478	26.634	18,741	664.523
15	UNIT COST	\$/88L	93.38	94.09	94.90	95.35	98.41	99.19	95.95
16	AMOUNT	\$	8,105,794	9.026,443	6,080.466	7,101,478	2.621.077	1.660.534	63,758,586
17	BURNED:								
18	UNITS	BBL	86,809	95,936	64,070	74,478	26,634	16,741	664,523
19	UNIT COST	S/BBL	93.38	94.09	94.90	95.35	98.41	99.19	95.95
20	AMOUNT	\$	8,105,794	9,026,443	6,080,466	7,101,478	2,621,077	1,660,634	63,758,686
21	ENDING INVENTO	RY:							
22	UNITS	89L	883,900	883,900	883,900	883,900	883,900	583,900	
23	UNIT COST	\$/BBL	93.38	94.09	94.90	95.35	98.41	99.19	
24	AMOUNT	\$	82,538,582	83, 166, 151	83,882,110	84,279,885	86,984,599	87,674,041	
		-							
	COAL	-1- -1-	· · · · ·						
25	COAL PURCHASES:	3. 3	· · · · · · · · · · · · · · · · · · ·						
25 26	COAL PURCHASES: UNITS		549,988	546,814	521,034	499,417	410,275	519,174	6,718,998
25 26 27	COAL PURCHASES: UNITS UNIT COST		549,988 76.49	546,814 76.05	521,034 76.62	499,417 78.21	410,275 76,59	519,174 75.99	6,718,998 75.51
25 26 27 28	COAL PURCHASES: UNITS UNIT COST AMOUNT	TON S/TON S	549,988 76.49 42,069,248	546,814 76.05 41,585,457	521,034 76.62 39,923,620	499,417 76.21 36,059,500	410,275 76.59 31,421,511	519,174 75.99 39,451,477	6,718,998 75.51 431,832,701
25 26 27 28 29	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED:	TON S/TON \$	549,988 76.49 42,069,248	546,814 78.05 41,585,457	521,034 76.62 39,923,820	499,417 76.21 38,059,580	410,275 76.59 31.421,511	519,174 75.99 39,451,477	6,718,998 75.51 431,832,761
25 26 27 28 29 30	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS	TON SYTON \$ TON	549,988 76,49 42,069,248 549,988	546,814 78.05 41,585,457 545,814	521,034 76.62 39,923,820 521,034	499,417 76.21 38,059,580 499,417	410,275 76.59 31.421,511 410,275	519,174 75.99 39,451,477 519,174	6,718,998 75.51 431,832,761 5,718,998
25 26 27 28 29 30 31	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST	TON SYTON S TON SYTON	549,988 76,49 42,069,248 549,988 76,49	546,814 78.05 41,585,457 545,814 78.05	521,034 76.82 39,923,820 521,034 76.62	499,417 76.21 38,059,580 499,417 76.21	410,275 76.59 31.421,511 410,275 78.59	519,174 75.99 39,451,477 519,174 75.99	6,718,998 75.51 431,832,761 5,718.998 75.51
25 26 27 28 29 30 31 32	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT	TON SYTON S TON SYTON S	549,988 76,49 42,069,248 549,988 76,49 42,069,253	546,814 78.05 41,585,457 545,814 78.05 41,585,471	521,034 76.82 39,923,820 521,034 76.62 39,923,828	499,417 76.21 38,059,580 499,417 76.21 38,059,584	410,275 76.59 31.421,511 410,275 76.59 31,421,523	519,174 75.99 39,451,477 519,174 75.99 39,451,451	6,718,998 75.51 431,832,701 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO	TON STON S TON STON S TON S TON S TON S TON	549,988 76.49 42,069,248 549,968 76.49 42,069,253	546,814 78.05 41,585,457 545,814 78.05 41,585,471	521,034 76.62 39,923,820 521,034 76.62 39,923,826	499,417 78.21 38,059,580 499,417 76.21 38,059,584	410,275 76.59 31.421,511 410,275 76.59 31,421,523	519,174 75.99 39,451,477 519,174 75.99 39,451,451	6,718,998 75.51 431,832,701 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 33 34	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS	TON STON S TON STON S TON TON	549,988 76.49 42,069,248 549,968 76.49 42,069,253 768,000	546,814 78.05 41,585,457 545,814 78.05 41.585,471 768,000	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000	410,275 76.59 31.421,511 410,275 76.59 31,421,523 768,000	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST	TON STON S TON STON S TON STON	549,988 76.49 42,069,248 549,968 76.49 42,069,253 768,000 76.49	546,814 78.05 41,585,457 545,814 78.05 41,585,471 768,000 78.05	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62	499,417 76.21 36,059,580 499,417 76.21 38,059,584 768,000 76.21	410,275 76.59 31.421,511 410,275 76.59 31,421,523 768,000 76.59	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35 36	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT	TON S/TON S TON S/TON S/TON S/TON S/TON S/TON	549,988 76.49 42,069,248 549,968 76.49 42,069,253 768,000 76.49 58,745,242	546,814 78.05 41,585,457 546,814 78.05 41.585,471 768,000 78.05 58,406,784	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000 76.21 58,527,744	410,275 76.59 31.421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35 35 35	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT	TON S/TON S TON S/TON S/TON S/TON S/TON S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242	546,814 78.05 41,585,457 545,814 78.05 41.585,471 768,000 76.05 58,406,784	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386	499,417 76.21 38,059,583 499,417 76.21 38,059,584 768,000 76.21 58,527,744	410,275 76.59 31.421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432	519,174 75.99 39,451,477 518,174 75.99 39,451,451 768,000 75.99 58,359,552	6,718,998 75.51 431,832,701 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35 35	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT	TON S/TON S TON S/TON S/TON S/TON S/TON S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242	546,814 78.05 41,585,457 545,814 78.05 41.585,471 768,000 76.05 58,406,784	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386	499,417 76.21 38,059,583 499,417 76.21 38,059,584 768,000 76.21 58,527,744	410,275 76.59 31.421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432	519,174 75.99 39,451,477 518,174 75.99 39,451,451 768,000 75.99 58,359,552	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35 36	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT	TON S/TON S TON S/TON S/TON S/TON S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386	499,417 76.21 38,059,583 499,417 76.21 38,059,584 768,000 76.21 58,527,744	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432	519,174 75.99 39,451,477 518,174 75.99 39,451,451 768,000 75.99 58,359,552	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35 35 35	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED:	TON S/TON S TON S/TON S/TON S/TON S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386	499,417 76.21 38,059,583 499,417 76.21 38,059,584 768,000 76.21 58,527,744	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723
25 26 27 28 29 30 31 32 33 34 35 36	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNITS	TON S/TON S TON S/TON S/TON S/TON S/TON S/TON	549,988 76.49 42,069,248 549,968 76.49 42,069,253 768,000 76.49 58,745,242	546,814 78.05 41,585,457 545,814 78.05 41.585,471 768,000 75.05 58,406,784	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58.847,386	499,417 76.21 38,059,583 499,417 76.21 38,059,584 768,000 76.21 58,527,744	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 80,330,843
25 26 27 28 30 31 32 33 34 35 36 37 36 39	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNITS UNIT COST	TON S/TON S TON S/TON S/TON S/TON S/TON S/MCF	549,988 76.49 42,069,248 549,968 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8,39	546,814 78.05 41,585,457 545,814 78.05 41.585,471 768,000 75.05 58,406,784 9,578,395 8,49	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58.847,386 8.210,085 8.27	499,417 76.21 38,059,583 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7,96	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10,58	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,614 10.05	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 80,330,843 9,32
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT COST AMOUNT GAS BURNED: UNITS UNIT COST AMOUNT	TON S/TON S TON S/TON S/TON S/TON S/MCF S/MCF S	549,988 76.49 42,069,248 549,986 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784 9,578.395 8.49 81,357,733	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386 8,210,085 8,27 67,888,170	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7.96 47,478,019	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035	519,174 75.99 39,451,477 518,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,514 10.05 49,766,892	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 80,330,843 9.32 748,679,284
25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT COST AMOUNT GAS BURNED: UNITS UNIT COST AMOUNT	TON STON STON STON STON STON STON STON S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784 9,578,395 8.49 81,357,733	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386 8,210,085 8,27 67,888,170	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7.96 47,478,019	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035	519,174 75.99 39,451,477 518,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,514 10.05 49,766,892	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 80,330,843 9.32 748,679,284
25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNITS UNIT COST AMOUNT	TON S/TON S/TON S/TON S/TON S/TON S/MCF S/MCF S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 545,814 76.05 41,585,471 768,000 76.05 58,406,784 9,578,395 8,49 81,357,733	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58.847,386 8,210,085 8,27 67,888,170	499,417 76.21 36,059,586 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7.96 47,478,019	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,614 10.05 49,768,892	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 60,330,843 9.32 748,679,284
25 26 27 28 29 30 31 32 33 34 35 36 37 36 39 40	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNITS UNIT COST AMOUNT	TON SYTON S TON SYTON SYTON SYTON SYMCF S/MCF	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 546,814 76.05 41,585,471 768,000 76.05 58,406,784 9,578,395 8,49 81,357,733	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58.847,386 8,210,085 8,27 67,888,170	499,417 76.21 36,059,580 499,417 76.21 38,059,584 768,000 76,21 58,527,744 5,967,130 7.96 47,478,019	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,614 10.05 49,766,892	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 60,330,843 9.32 748,679,284
25 26 27 28 30 31 32 33 34 35 35 35 36 39 40	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNIT COST AMOUNT	TON STON S TON STON S S TON S TON S S TON S S TON S S TON S S S TON S S S S TON S S S S S S S S S S S S S S S S S S S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784 9,576,395 8,49 81,357,733	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58.847,386 8,210,085 8,27 67,888,170	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7.96 47,478,019	410,275 76.59 31,421,511 410,275 78.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,614 10.05 49,766,892	6,718,998 75.51 431,832,761 5,718,998 75.51 431,832,723 80,330,843 9.32 748,679,284
25 26 27 28 30 31 32 33 34 35 35 36 39 40 41 42	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNITS UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNITS UNIT COST AMOUNT	TON STON S TON STON S S TON S TON S S TON S S TON S S TON S S S TON S S S S S TON S S S S S S S S S S S S S S S S S S S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784 9,576,395 8,49 81,357,733	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386 8,210,085 8,27 67,888,170	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7.96 47,478,019	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035	519,174 75.99 39,451,477 519,174 75.99 39,451,451 766,000 75.99 58,359,552 4,951,614 10.05 49,766,892 5,805 387	6,718,998 75.51 431,832,761 5,718,996 75.51 431,832,723 80,330,843 9.32 748,679,284
25 26 27 28 30 31 32 33 34 35 36 39 40 41 42 43	COAL PURCHASES: UNITS UNIT COST AMOUNT BURNED: UNIT COST AMOUNT ENDING INVENTO UNITS UNIT COST AMOUNT GAS BURNED: UNIT COST AMOUNT	TON SATON S TON SATON S TON SATON S S TON S S TON S S S TON S S S S TON S S S S S S S S S S S S S S S S S S S	549,988 76.49 42,069,248 549,988 76.49 42,069,253 768,000 76.49 58,745,242 9,246,417 8.39 77,543,706	546,814 78.05 41,585,457 546,814 78.05 41,585,471 768,000 76.05 58,406,784 9,578,395 8,49 81,357,733 5,809,331 0.35	521,034 76.62 39,923,820 521,034 76.62 39,923,826 768,000 76.62 58,847,386 8,210,085 8,27 67,888,170 5,616,222 0.35	499,417 76.21 38,059,580 499,417 76.21 38,059,584 768,000 76.21 58,527,744 5,967,130 7.96 47,478,019 5,809,329 0.35	410,275 76.59 31,421,511 410,275 76.59 31,421,523 768,000 76.59 58,818,432 4,772,479 10.58 50,470,035 5,633,049 0.35	519,174 75.99 39,451,477 519,174 75.99 39,451,451 768,000 75.99 58,359,552 4,951,614 10.05 49,766,892 5,805,387 0.35	6,718,998 75.51 431,832,761 5,718,996 75.51 431,832,723 80,330,843 9.32 748,679,284 68,373,920 0.35

Fuel Cost of Power Sold

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)	(10)
{				MWH		C/KWH				REFUNDABLE
ľ		TYPE	TOTAL	WHEELED	MWH	(A)	(B)	TOTAL \$	TOTAL	GAIN ON
MONTH	SOLD TO	8	MWH	FROM	FROM	FUEL	TOTAL	FOR	COST	POWER
		SCHED	SOLD	OTHER	OWN	COST	COST	FUEL ADJ	S .	SALES
				SYSTEMS	GENERATION			(6) x (7)(A)	(6) x (7)(8)	\$
Jan-06	ECONSALE		110,198		110,198	5.788	6.508	6,378,075	7,171,764	793,689
	ECONOMY	С	0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0:	0	0
	STRATIFIED		126,330		126,330	5,190	5,190	6,556,799	6,556,799	0
	TOTAL		236,528		236,528	5,469	5.804	12,934,874	13,728,563	793,689
					·					
Feb-06	ECONSALE	-	124,381		124,381	5.441	6,111	6,767,963	7,600,472	832,509
	ECONOMY	C	0	•	0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	• • •	0
	SALE OTHER	**	0		0	0.000	0.000	0	0	0
	STRATIFIED	<u> </u>	171,986		171,986	5.056	5.056	8,696,312	8,696,312	<u> </u>
	TOTAL		296,367		296,367	5.218	5.499	15,464,275	16,296,784	832,509
Mar-06	ECONSALE		107.642		107.842	6,168	7 012	6 639 752	7 547 759	908 007
	ECONOMY	С	0		0	0.000	0.000	0.000.102	0	300,001
	SALE OTHER		ö		0	0.000	0.000	0	ő	ů O
	SALE OTHER	-	0		0	0.000	0.000	0	ů 0	0
	STRATIFIED		166,855		166,855	5.348	5.346	8.920.373	8.920.373	0
	TOTAL		274,497		274,497	5.669	5.999	15,560,125	16,468,132	908,007
Apr-06	ECONSALE		69,152		69,152	5.532	6.256	3,825,490	4,326,171	500,681
	ECONOMY	C.	• 0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	0	0
	SALE OTHER	**	0		0	0.000	0.000	0	0	0
	STRATIFIED		173,320		173,320	4.521	4.521	7,836,593	7,838,593	0
	TOTAL		242,472	I	242,472	4.810	5.016	11,662,083	12,162,764	500,681
May-06	FCONSALE		32 784		32 764	5 883	6 655	1 027 383	2 180 400	262 118
	ECONOMY	с	0		0	0.000	0.000	0,020,000	2,100,430	255,110
	SALE OTHER	***	0		0	0.000	0.000	n n	0	0
	SALE OTHER				0	0.000	0.000	Ő	0	0
	STRATIFIED		181,655		181.655	4,500	4.500	8.175.278	8 175 278	0
	TOTAL	T	214,419	T	214,419	4.712	4,830	10,102,661	10.355.777	253 116
						and the second				
Jun-06	ECONSALE		26,000		26,000	6.274	7.088	1,631,120	1,842,913	211,793
	ECONOMY	С	0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	0	0
	STRATIFIED		197,229		197,229	4.544	4.544	8,962,582	8,962,582	0
	TOTAL		223,229		223,229	4.746	4.841	10,593,702	10,805,495	211,793

Progress Energy Florida Fuel Cost of Power Sold

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)	(10)
				MWH		СлКАН				REFUNDABLE
		TYPE	TOTAL	WHEELED	MWH	(A)	(8)	TOTAL S	TOTAL	GAIN ON
MONTH	SOLD TO	6	MWH	FROM	FROM	FUEL	TOTAL	FOR	COST	POWER
		SCHED	SOLD	OTHER	OWN	COST	COST	FUEL ADJ	\$	SALES
				SYSTEMS	GENERATION			(6) x (7)(A)	(6) x (7)(B)	5
Jul-06	ECONSALE		34,000		34,000	7.067	7.973	2.402.811	2.710.769	307,958
	ECONOMY	с	0		0	0.000	0.000	0	0	0
	SALE OTHER	-	0		. 0	0.000	0.000	0.	O,	0
	SALE OTHER	-	0		0	0.000	0.000	0	0	0
	STRATIFIED	-	251,931		251,931	5.342	5.342	13.457.213	13.457.213	0
	TOTAL		285,931		285,931	5.547	5.655	15.860.024	16,167,982	307,958
						har an				
Aug-06	ECONSALE	**	29,000		29,000	7.243	8.051	2,100,593	2,334,562	234,269
	ECONOMY	С	0		0	0.000	0.000	0	0	0
	SALE OTHER	. 	0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0.	0.000	0.000	0	0	0
	STRATIFIED		284,378		284,378	5.534	5.534	15,738,867	15,738,867	0
	TOTAL		313,378		313,378	5 693	5.767	17,839,460	18,073,729	234,269
	· .				· · · · ·				·····	
Sep-06	ECONSALE		36,000		36,000	6.724	7.618	2,420,787	2,742,482	321,695
	ECONOMY	· C	o		0	0.000	0.000	0.	0	0
	SALE OTHER		0.		0	0.000	0.000	0	0	0
	SALE OTHER	-	0		0	0.000	0.000	0	0	Q.
	STRATIFIED	**	273,957	···	273.957	5.227	5.227	14,320,327	14.320,327	0
	TOTAL		309,957		309,957	5.401	5.505	16,741,114	17,062,809	321,695
Oct-06	ECONSALE	-	30.000		30.000	6.898	7.834	2 069 345	2 350 322	280 977
	ECONOMY	c	0		0	0.000	0.000	0	2,000,022	100,011
	SALE OTHER	_	Ū.		0	0.000	0.000	ů	0	0
	SALE OTHER	-	0		0	0.000	0.000	0		· 0
	STRATIFIED		258.527		258.527	5.581	5.581	14.427.731	14 427 731	0
	TOTAL		288.527		288.527	5.718	5.815	16.497.076	16,778,053	280 977
Nov-06	ECONSALE		66,000		66,000	5.942	6.715	3,921,428	4,432,081	510,655
	ECONOMY	C	0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	٥	0
	SALE OTHER	-	0		0	0.000	0.000	0	C	0
	STRATIFIED		228,619		228,819	5.743	5.743	13,128,627	13,128,827	0
	TOTAL		294,619		294,619	5.787	5.960	17,050,053	17,560,708	510,655
Dec-06	ECONSALE	-	94,000		94,000	5.884	6.629	5,530,660	6,231,347	700,687
	ECONOMY	C	0		0	0.000	0.000	0	0	0
	SALE OTHER	-	0		0	0.000	0.000	0	0	0
	SALE OTHER		0		0	0.000	0.000	0	0	0
	STRATIFIED	<u> </u>	181,658		181,658	5.038	5.038	9,152,488	9,152,488	0
	TOTAL		275,658		275,658	5.327	5.581	14,683,148	15,383,835	700,687
Jan-06	ECONSALE		759,138		759,138	6.0 09	6,780	45.615.405	51,471,441	5.856.036
THRU	ECONOMY	С	0		0	0.000	0.000	0	0	0
Dec-06	SALE OTHER	-	0		0	0.000	0.000	Ū.	0	0
	SALE OTHER	-	0		0	0.000	0.000	0	0 0	0
	STRATIFIED		2,496,445		2,496,445	5.182	5.182	129,373,189	129,373.189	0
	TOTAL	<u> </u>	3,255,583	I	3,255,583	5.375	5.555	174,988,594	180,844,630	5,856,036

Purchased Power (Exclusive of Economy & QF Purchases)

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)
				MWH			СЛКИН		TOTAL \$
		TYPE	TOTAL	FOR	MWH	MWH	(A)	(B)	FOR
MONTH	NAME OF	8	MWH	OTHER	FOR	FOR	FUEL	TOTAL	FUEL ADJ
	PURCHASE	SCHEDULE	PURCHASED	UTILITIES	INTERRUPTIBLE	FIRM	COST	COST	(7) x (8)(B)
L			L	L					
1911-00	CPALIME	-	83,759			83,759	3.200	3.200	2,680,288
	TECO	-	14,818			14,818	4.254	4,254	630,358
	UPS PURCHASE	UPS	296,728			296,728	1.788	1,788	5,305,496
	SHADY HILLS	-	0			0	0.000	0.000	0
	PURCHASE 1	-	0			. 0	0.000	0.000	0
	PURCHASE 2		0			0	0.000	0.000	0
	TOTAL		395,305	0	0	395,305	2.180	2,180	8,616,142
C 1 00									
Feb-06	CPALIME		74,931			74,931	3.200	3.200	2.397,792
	TECO		15,845			15,845	4.254	4.254	674,030
	UPS PURCHASE	UPS	262,180			262,180	1.787	1.787	4,685,157
	SHADY HILLS	**	U			0.	0.000	0.000	0
	PURCHASE 1	••	0			0	0.000	0.000	0
	PURCHASE 2		0			0	0.000	0.000	0
	TOTAL		352,956	0	0	352,956	2.198	2.198	7,756,979
N=+ 00	0.0 4 1 10 5		02.000						
Mar-vo	CP & LIME		03,020			83,826	3.200	3.200	2,682,432
	HER DUDCHASE	100	23,893			23,893	4.254	4.254	1,016,389
	CUADY HULP	043	297,430			297,430	1.781	1,781	5,297,227
			0			U	0.000	0.000	0
	PURCHASE 1		U			0	0.000	0.000	0
	TOTAL		105 110			0	0.000	0.000	0
	TUTAL	[405,149	0	0	405,149	2.220	2.220	8,995,048
Apr.08	CRAINE		84 237			84 357			-
~pi-00	TECO		22.270			22,237	3.200	3.200	2,099,004
		LIPS	26,470			22,210	4.204	4.204	947,38Z
	SHADY HULS		132,123			292,123	0.000	1,700	5,223,192
	PURCHASE 1	-	0			0	0.000	0.000	0
	PURCHASE 2	_	0			Ŷ	0.000	0.000	
	TOTAL		395 632	0	0	395 632	2 217	2 217	8 770 159
			000,001	V		000,002	<u> </u>	2.217	0,770,158
May-06	C P & LIME	-	83.983			83 983	3.200	3 200	2 697 454
	TECO		28,418			28 418	4 254	4 254	1 208 908
	UPS PURCHASE	UPS	292 278			292 278	1 788	1 788	5 225 022
	SHADY HILLS	· •	0			0	0,000	0.000	0,220,302
	PURCHASE 1		0			0	0.000	0.000	0
	PURCHASE 2		0			0	0.000	0.000	0
	TOTAL		404.679	0	0	404 679	2 254	2 254	9 122 298
		A		<u>_</u>				2.204	3, 122,230
Jun-06	CP&LIME		81,396			81.396	3.200	3.200	2 604 672
	TECO		29.675			29.675	4.254	4,254	1.282 374
	UPS PURCHASE	UPS	298,080			298.080	1.788	1,788	5.329 670
	SHADY HILLS		0			0	0.000	0.000	0
	PURCHASE 1		0			0	0.000	0.000	0
	PURCHASE 2	-	10,737			10,737	11.810	11.810	1,268 007
	TOTAL		419,888	0	0	409,151	2.558	2.558	10,464,723

.

Progress Energy Fiorida Purchased Power (Exclusive of Economy & QF Purchases) Estimated for the Period of : January Through December 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)
				MWH			C/KWH		TOTAL S
		TYPE	TOTAL	FOR	MWH	MWH	(A)	(8)	FOR
MONTH	NAME OF	8	MWH	OTHER	FOR	FOR	FUEL	TOTAL	FUEL ADJ
1	PURCHASE	SCHEDULE	PURCHASED	UTILITIES	INTERRUPTIBLE	FIRM	COST	COS7	(7) × (8)(8)
huk-08	CPALIME		84 189			84 189	3 200	3 200	2 694 048
	TECO	-	36.214			36,214	4.254	4.254	1 540 558
	UPS PURCHASE	UPS	308.016			308.016	1,789	1,789	5 510,409
	SHADY HILLS		0			0	0.000	0.000	0
	PURCHASE 1	••	0			0	0.000	0.000	ö
	PURCHASE 2	· · · ·	5,962			5,962	11,905	11.905	709.777
	TOTAL		434,381	0	0	434,381	2.407	2.407	10,454,792
						·			
Aug-06	CP&LINE	-	84,189			84,189	3.200	3.200	2,694,048
	TECO	-	35,485			35,485	4.264	4.254	1,500,644
•	UPS PURCHASE	UPS	307,931			307,931	1.790	1.790	5,511,955
	SHADY HILLS	-				0	0.000	0.000	0
	PURCHASE 1	-	. 0			0	0.000	0.000	0
	PURCHASE 2		12,909			12,908	11.993	11,983	1,548,208
	TOTAL		440,514	0	0	440,514	2.557	2.557	11,263,755
Sep-06	C P & LIME		81,396			81,395	3.200	3.200	2,604.672
	TECO	-	32,927			32,927	4.254	4,254	1,400,722
	UPS PURCHASE	UPS	297,164		•	297,164	1.790	1.790	5,319,215
	SHADY HILLS	-	0		۰.	. 0	0.000	0.000	0
	PURCHASE 1	-	0			0	0.000	0.000	0
	PURCHASE 2		4,768			4,765	12.009	12.009	572,600
			410,255	0	0	410,200	2.3/8	2.378	9,897,209
04-08	CRALIME	-	R4 180			84 189	3 200	3 200	2 604 048
00.00	TECO	_	29.235			29,235	4 254	4 254	1 243 654
	UPS PURCHASE	UPS	306.817			306.817	1.792	1.792	5 498 167
	SHADY HILLS	-	0			0	0.000	0.000	0
	PURCHASE 1	-	0			0	0.000	0.000	0
	PURCHASE 2	-	0			0	0.000	0.000	0
	TOTAL		420,241	0	0	420,241	2.245	2.245	9,435.869
			-					_	
Nov-08	CPALIME	-	81,396			81,396	3.200	3.200	2,604,672
	TECO	-	25,493			25,493	4.254	4.254	1,084,455
	UPS PURCHASE	UPS	296,721			296,721	1.795	1.795	5,326,131
	SHADY HILLS	-	0			0	0.000	0.000	0
	PURCHASE 1	-	0			0	0.000	0.000	0
	PURCHASE 2		0			0	0.000	0.000	0
	TOTAL		403,610	0	0	403,810	2.234	2.234	9,015,258
	C D 1 1 11								
Dec-05	U P & LIME	-	04,109 27.054			04,189	3.200	3.200	2,694,048
			21,901			27,901	4.254	4.254	1,189,053
	SHADY HILLS	0-3	300,09/			300,09/	3./95	11.095	3,305,205
	DIDCHASE 1		0,010			0,078	0.000	0.000	544,001
	PURCHASE 2		v 0			0	0.000	0.000	0
	TOTAL		426 915	0	0	426.915	2 420	2 420	10 332 367
	<u> </u>				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		\$1.74V	2.4201	10,002,007
Jan-06	CPALIME		988.680			988.680	3.200	3,200	31.637.760
THRU	TECO	-	322,224			322,224	4.254	4.254	13,707,427
Dec-06	UPS PURCHASE	UPS	3,562,167			3,562,167	1.789	1,789	63,737,756
	SHADY HILLS		8,078			8,078	11.687	11.687	944,091
	PURCHASE 1		0			0	0.000	0.000	0
	PURCHASE 2		34,376			34,376	11.923	11.923	4.098.592
	TOTAL		4,915,525	0	0	4,881,149	2.338	2.338	114.125,596

SCHEDULE E8

Progress Energy Florida Energy Payments to Qualifying Facilities Estimated for the Period of : January Through December 2008

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)
				MWH			C/KWH		TOTAL \$
		TYPE	TOTAL	FOR	MWH	MWH	(A)	(8)	FOR
MONTH	NAME OF	8	MWH:	OTHER	FOR	FOR	ENERGY	TOTAL	FUEL ADJ
	PURCHASE	SCHEDULE	PURCHASED	UTILITIES	INTERRUPTIBLE	FIRM	COST	COST	(7) x (8)(A)
Jan-06	QUAL. FACILITIES	COGEN	410,267			410,267	3.043	7.108	12,485,055
			•						
5-5 00		COGEN	163 203			383 203	2 021	7 008	11.013.061
F60-00	QUAL PACIENTED	COOLIN				505,285	5.031	1.080	11,013,001
Mar-06	QUAL. FACILITIES	COGEN	399,846	· · · ·		399,846	3.092	7.157	12,363,401
						1. 1. 1.			
		COCEN	200 400		1	000 400	0.000	7.460	44.000.000
Apr-06	QUAL FACILITIES	COGEN	300,120		II	300,120	5.085	7.150	11,290,628
	· · · ·								· •
May-06	QUAL. FACILITIES	COGEN	392,918			392,918	3.107	7.172	12,209,174
	· · · · ·								
	OUNT FAOR FIFE	COOTH	200.000			000 000			40.000 500
Jun-Uo	QUAL FACILITIES	COGEN	300,229		ll	368,229	3.169	7,234	12,303,503
		· .							
Jul-06	QUAL. FACILITIES	COGEN	401,640			401,640	3.183	7.248	12,783,898
Aug.08		COGEN	401 341			401 241	3 100	7 264	12 000 770
Aug-vo	QUAL PACILITIES	COGEN	401,041			401,341	3.190	1.234[12,000,779
			•						
Sep-06	QUAL. FACILITIES	COGEN	373,491			373,491	3.152	7.217	11,771,084
0-4-06	OUAL FACILITIES	COGEN	375 705		1	375 705	3 120	7 104	11 755 508
00.00	done. Tholemes		0/0,/00		L	0,0,700	0.120	1.104	11,100,000
								•	
Nov-06	QUAL. FACILITIES	COGEN	387,164			387,164	3,105	7.170	12,023,155
Dec-08	OUAL FACILITIES	COGEN	402 980			402 980	3 101	7 188	12 495 946
	Lasran Holenico				1	-02,000	9.101	7.100	12,700,040

					a second s	and the second se	والمحادث والمستبق والمستبق والمستبق والمشاكر والمشتقا المت	the second s
TOTAL	QUAL. FACILITIES	COGEN	4,663,000		4,663,000	3.116	7.181	145,301,280

Economy Energy Purchases

(1)	(2)	(3)	(4)	(5)	(8)	(7)		(8)	(9)
			•	TRANSACT	ION COS	TOTAL S	COSTIF	GENERATED	
1		TYPE	TOTAL	ENERGY	TOTAL	FOR			FUEL
MONTH	PURCHASE	8	MWH	COST	COST	FUEL ADU	(A)	(8)	SAVINGS
		SCHED	PURCHASED	слкитн	CIKWH	(4) x (5)	СлКИН	S	(8)(8) - (7)
<u> </u>	L	1	1		<u> </u>				J
lon-08	ECONDURCH		40.000	7 499	7 400	2 005 040	0.250	2 742 606	740 055
Jairoo	OTHER	-	40,000	0.000	0.000	2,550,040	0.000	3,743,085	/40,000
			0	0.000	0.000	0	0.000	0	
	UTHER	-		0.000	0.000	, U	0.000	, v	0
	TOTAL		40,000	7.488	7.488	2,995,040	9.359	3,743,695	748,655
			-		••••••		,		e te e
Feb-06	ECONPURCH	**	20,000	5.226	5.226	1,045,280	6.533	1,306,641	261,361
	OTHER		0	0.000	0.000	0.	0.000	· · · · · · · · · · · · · · · · · · ·	0
	OTHER	-	٥	0.000	0.000	0	0.000	0	0
			·						
	TOTAL	L	20,000	5.226	5.226	1,045,280	6.533	1,306,641	261,361
Mar-06	ECONPURCH	· ••	24,000	5.460	5.460	1,310,487	6.826	1,638,142	327,655
	OTHER	-	0	0.000	0.000	0	0.000	0	0
	OTHER	-	0	0.000	0.000	0	0.000	0	. 0
		r			<u> </u>				
	TOTAL	L	24,000	5.460	5.460	1,310,487	6,826	1,638,142	327,655
Apr 06	ECONOLIDOH	_	30.000	6 2 2 0	6 230	1 571 678	8 640	1 064 769	202.092
Api-ou	OTHER		000,000	0.000	0.000	1,011,010	0.045	1,304,750	333,002
	OTHER		0	0.000	0.000	0	0.000	0	0
			-	0.000	0.000	·	0.000		0
	TOTAL		30,000	5.239	5.239	1,571,678	6.549	1,964,758	393,082
									×
May-06	ECONPURCH		99,100	5.206	5.206	5,158,978	6.507	6,448,394	1,289,416
	OTHER		0	0.000	0.000	0	0.000	0	0
	OTHER		0	0.000	0.000	0	0.000	0	0
			00.400	5.000	c anal				
	TOTAL	I	99,100	5.206	5.206]	5,158,978	6.507	6,448,394	1,289,416
Jun-08	ECONPURCH		85,000	5.571	6.671	4,735,146	6.963	5,918,794	1,183,648
	OTHER		0	0.000	0.000	0	0.000	0	0
	OTHER	-	0	0.000	0.000	0	0.000	0	0
	TOTAL		85,000	5.571	5,571	4,735,146	6.963	5,918,794	1,183.648

Progress Energy Florida Economy Energy Purchases Estimated for the Period of : January Through December 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)		(8)	(9)
				TRANSAC	TION COST	TOTAL \$	COST IF G	ENERATED	
		TYPE	TOTAL	ENERGY	TOTAL	FOR			FUEL
MONTH	PURCHASE	8	MWH	COST	COST	FUEL ADJ	(A)	(B)	SAVINGS
		SCHED	PURCHASED	СлКМН	C/KWH	(4) x (5)	С/КШН	\$	(8)(B) - (7)
.iui-06	ECONPURCH	_	111 100	8 555	8.555	9 504 847	10 695	11 881 692	2 376 845
	OTHER		0	0.000	0.000	0	0.000	0	0
	OTHER		0	0.000	0.000	0	0.000	0	.0
	Forth	1	111 100		÷ 444	0.004.047	10 40 5		0.070.040
	TUAL	<u> </u>	1 11,100 1	0.000	0.000	8,304,647	0.080	11,001,092	2,3/0,645
Aug-06	ECONPURCH		98,000	8.873	8.873	8,695,345	11.091	10,868,776	2,173,431
	OTHER		0	0.000	0.000	0	0.000	0	0
	OTHER	***	0	0.000	0.000	0	0.000	0	0
	TOTAL		98,000	8.873	8.873	8,695,345	11.091	10,868,776	2,173,431
0++ 00	FOODS		100 000	0.084	0.004	0 004 000	40.054	40.000.040	
Sep-00	OTUER	-	100,000	0.201	0.201	0,201,200	10.351	10,350,945	2,009,(45
	OTHER		0	0.000	0.000	0	0.000	0	U
	UTHER			0.000	0.000	U L	0.000	Ŭ	U
	TOTAL		100,000	8.281	8.281	8,281,200	10.351	10,350,945	2,069,745
Oct-06	ECONPURCH		102.000	7.361	7.361	7,508,475	9.201	9,385,470	1,876,995
	OTHER		0	0.000	0.000	0	0.000	0	0
	OTHER		D	0.000	0.000	0	0.000	0	0
	TOTAL		102,000	7.361	7.361	7,508,475	9.201	9,385,470	1,876,995
No. 00	FOOLD VOOL		28.000	7 077	7 077	0.000.440	h a í a	0.004.000	
NOV-06	ECONPURCH	-	38,000	7.077	7.077	2,009,412	0.047	3,361,825	672,413
	OTHER		0	0.000	0.000	0	0.000	· · · ·	0
						· · ·	0.000	·	v
	TOTAL	<u> </u>	38,000	7.077	7.077	2,689,412	8.847	3,361,825	672,413
Dec-06	ECONPURCH		30,000	7.151	7,151	2,145,225	8.939	2,681,625	536,400
	OTHER		0	0.000	0.000	0	0.000	0	0
	OTHER	••	Ò	0.000	0.000	0	0.000	0	0
	TOTAL		30,000	7.151	7.151	2,145,225	8.939	2,681,625	538,400
lan-06	ECONDUDOU		777 200	7 160	7 160	55 8A1 114	8048 200	60 660 767	12 000 644
THE	OTHER		0	0.000	0.000	00,041,111 A	0940.0 00 0.000	<i>1</i> و1,000,60 ۸	13,303,040
Dec-08	OTHER		0	0.000 6.000	0.000	0	0.000 0.000	0	0
P 24.44			· · · ·		<u></u>				
	TOTAL		777,200	7,159	7.159	55,641,111	8.949	69,550,757	13,909,646

SCHEDULE E10

Progress Energy Fiorida Fuel and Purchased Power Cost Recovery Clause Estimated for the Period of : January Through December 2006

	Actual Jan 05 - Dec 05	Proposed Jan 06 - Dec 06	Difference From Current		
	(\$/1000 KWH)	(\$/1000 KWH)	<u>\$</u>	%	
Base Rate	\$41.18	\$41.18	\$0.00	0.00%	
Fuel Cost Recovery	39.18	48.52	9.34	23.84%	
Capacity Cost Recovery	8.75	10.01	1.26	14.40%	
Energy Conservation Cost Recovery	1.69	1.69 *	0.00	0.00%	
Environmental Cost Recovery	1.27	0.62	(0.65)	-51.18%	
Storm Cost Recovery Surcharge	3.27	3.58	0.31	9.48%	
Subtotal	95.34	105.60	10.26	10.76%	
Gross Receipts Tax	2.44	2.71	0.27	11.07%	
Total	\$97.78	\$108.31	\$10.53	10.77%	

*2006 rate is preliminary.

SCHEDULE H1

Progress Energy Florida Generating System Comparative Data by Fuel Type

		Г Т				2004	2005	2006
		2003	2004	2005	2006	VS.	VS.	V8.
		Actual	Actual	Est/Act Filing	Projection	2003	2004	2005
FUEL COST OF SYSTEM NET GENERATION (\$)								
HEAVY OIL		288, 137,027	309,553,409	349,033,691	425,965,775	7.4%	12.8%	22.0%
		38,537,993	47,863.097	63,760,154	63,758,586	23.9%	33.2%	0.0%
COAL		300,040,/40	JJU, 362,400	388,902,971	431,832,723	-9.076	21.0%	23.8%
NUCLEAR		22.051.793	24,302,945	23,040,768	23 657 377	10.2%	-5.2%	2.7%
OTHER		0	0	20,040,700	0	0.0%	0.0%	0.0%
TOTAL	\$	1,045,484,842	1,128,546,004	1,440,306,568	1,693,893,744	7.9%	27.6%	17.6%
SYSTEM NET GENE	RATION (M	WH)						
HEAVY OIL		6,714,920	6,889,790	6,097,523	5,389,913	2.6%	-11.5%	-11.6%
		475,748	450,819	386,336	277,691	-5.2%	-14.3%	-28.1%
COAL		6 152 306	7 514 568	8 601 709	10 108 325	-0.076	4,170 14,594	-0.374
NUCLEAR		6,038,641	6.703.023	6,149,308	6.636.378	11.0%	-8.3%	7.9%
OTHER		0	0	0	Ő	0.0%	0.0%	0.0%
TOTAL	MWH	35,493,465	36,622,298	37,004,501	37,240,450	3.2%	1.0%	0.6%
UNITS OF FUEL BUI	RNED			/				
HEAVY OIL	BBL	10,616,488	10,616,486	9,750,143	9,018,949	0.0%	-8.2%	-7.5%
LIGHT OIL	BBL	1,072,389	1,018,518	907,122	664,523	-5.0%	-10.9%	-26.7%
COAL	MCF	52 533 468	0,094,770	69 287 500	3,115,990	-0.376	4.376	-7,170
NUCLEAR	MMBTU	61,900,670	68,741,651	63,288,860	68,373,920	11 1%	-7.9%	8.0%
OTHER	BBL	0	0	0	0	0.0%	0.0%	0.0%
BTUS BURNED (MM	BTU)							
HEAVY OIL		69,926,030	71,093,187	63,984,680	58,823,171	1.7%	-10.0%	-8.4%
LIGHT OIL		6,213,447	5,918,071	5,258,618	3,854,233	-4.8%	-11.1%	-28.7%
COAL		155,007,595	143,544,745	152,272,986	142,974,941	-6,1%	4.6%	-6.1%
NUCI FAR		61,900,670	68 741 651	63 288 860	68 373 920	11 1%	-7.9%	8.0%
OTHER		0	0	0	00,010,020	0.0%	0.0%	0.0%
TOTAL	MMBTU	347,842,051	356,276,423	355,118,473	354,157,108	2.4%	-0.3%	-0.3%
GENERATION MIX (% MWH)							
HEAVY OIL		18.92%	18.81%	16.48%	14.47%	-0.5%	-12.2%	-12.1%
LIGHTOIL		1.34%	7.23%	1.04%	0.75%	-7.5%	-16.2%	-28.7%
GAS		17.33%	20 52%	23 25%	27.38%	18.5%	13.0%	17.8%
NUCLEAR		17.01%	18.30%	16.62%	17.82%	7.6%	-9.3%	7.2%
OTHER		0.00%	0.00%	0.00%	0.00%	0.0%	0.0%	0.0%
TOTAL	%	100.00%	100.00%	100.00%	100.00%	0.0%	0.0%	0.0%
FUEL COST PER UNIT								
HEAVY OIL	2/8BI	27.14	29.16	35.80	47.23	7.4%	22.8%	31.9%
COAL	S/TON	58.86	56.08	64.96	75 51	.4.7%	15.8%	16 2%
GAS	\$/MCF	6.28	6.61	8.72	9.32	5.2%	32.0%	6.8%
NUCLEAR	\$/MMBTU	0.36	0.35	0.36	0.35	-0.8%	3.1%	-4.9%
OTHER	\$/BBL	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
FUEL COST PER MM	ABTU (\$/MN	ABTU)						
HEAVY OIL		4.12	4.35	5.46	7.27	5.7%	25.3%	33.2%
COAL		0.22	0.09	2.13	3,02	-4.0%	48.87	15 04
GAS		6.03	6.41	8.60	9.32	6.3%	34.2%	8.4%
NUCLEAR		0.36	0.35	0.36	0.35	-0.6%	2.8%	-4.9%
OTHER		0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
TOTAL	\$/MMBTU	3.01	3.17	4.08	4.78	5.4%	28.0%	17.9%
BTU BURNED PER I	(WH (BTU/K	(WH)	10.340	10 404	10 970	0.00	4 70	2 64
		10,474	10,518	10,494	10,8/6	-0.9%	1./%	3.6%
COAL		9.621	9.662	9 658	9,700	0.5%	-0.1%	0.5%
GAS		8.906	8.647	8.174	7.878	-2.9%	-5.5%	-3.6%
NUCLEAR		10,251	10,255	10,292	10,303	0.0%	0.4%	D.1%
OTHER		0	0	0	0	0.0%	0.0%	0.0%
TOTAL	BTU/KWH	9,800	9,728	9,597	9,510	-0.7%	-1,4%	-0.9%
GENERATED FUEL	LUST PER	A 29	04.40	5 79	7 00	4 704	27 44	38 19
LIGHT OIL		8,12	10.62	16.50	22.96	30.7%	55.4%	39.1%
COAL		2.28	2.19	2.54	2.93	-3.6%	15.6%	15.5%
GAS		5.37	5.54	7.03	7.34	3.2%	26.9%	4.5%
NUCLEAR		0.37	0.36	0.37	0.36	-0.8%	3.3%	-4.8%
OTHER	-	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
IUIAL	UKWH [2.95	3.08	3.89	4.55	4.6%	26.3%	76.9%