BEFORE THE
FLORIDA PUBLIC SERVICE COMMISSION

PETITION FOR RATE INCREASE BY PROGRESS ENERGY FLORIDA, INC.

ELECTRONIC VERSIONS OF THIS TRANSCRIPT ARE
A CONVENIENCE COPY ONEY AND ARE NOT
THE OFFICIAL TRANSCRIPT OF THE HEARING, THE . PDF VERSION INCLUDES PREFILED TESTIMONY.

VOLUME 4

Page 376 through 556
PROCEEDINGS: TECHNICAL HEARING

BEFORE: CHAIRMAN BRAULIO L. BAEZ
COMMISSIONER J. TERRY DEASON
COMMISSIONER RUDOLPH "RUDY" BRADLEY
COMMISSIONER LISA POIAK EDGAR

DATE: Wednesday, September 7, 2005
TIME: Commenced at 9:30 a.m.
PLACE: Betty Easley Conference center Room 148
4075 Esplanade Way
Tallahassee, Florida

REPORTED BY: JANE FAUROT, RPR
Official FPSC Hearings Reporter (850) 413-6732

APPEARANCES: (As heretofore noted.)

WITNESSES

11

12

13

14

15

16

17

18

19

20

21

22

23

24
25

[^0]
I. STATEMENT OF QUALIFICATIONS OF JAMES A. ROTHSCHILD

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is James A. Rothschild and my address is 115 Scarlet Oak Drive, Wilton, Connecticut 06897.
Q. WHAT IS YOUR OCCUPATION?
A. I am a financial consultant specializing in utility regulation. I have experience in the regulation of electric, gas, telephone, sewer, and gas utilities throughout the United States.
Q. PLEASE SUMMARIZE YOUR UTILITY REGULATORY EXPERIENCE.
A. I am President of Rothschild Financial Consulting and have been a consultant since 1972. From 1979 through January 1985, I was President of Georgetown Consulting Group, Inc. From 1976 to 1979, I was the President of J. Rothschild Associates. Both of these firms specialized in utility regulation. From 1972 through 1976, Touche Ross \& Co., a major international accounting firm, employed me as a management consultant. Touche Ross \& Co. later merged to form Deloitte Touche. Much of my consulting at Touche Ross was in the area of utility regulation. While associated with the above firms, I have worked for various state utility commissions, attorneys general, utility customers and public advocates on regulatory matters relating to regulatory and financial
issues. These have included rate of return, financial issues, and accounting issues. (See Appendix A, which has been identified as Exhibit __(JAR-16).)
Q. WHAT IS YOUR EDUCATIONAL BACKGROUND?
A. I received an MBA in Banking and Finance from Case Western University (1971) and a BS in Chemical Engineering from the University of Pittsburgh (1967).

II. PURPOSE

Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY?
A. I have been engaged by the Florida Office of Public Counsel to recommend the appropriate capital structure and a fair cost of capital that the Commission should employ in this case and to comment on the cost of capital testimony filed by PEF Witness Dr. Vander Weide.

Q. ARE YOU SPONSORING ANY EXHIBITS TO YOUR TESTIMONY?

A. Yes. I am sponsoring Exhibit Nos. ___ (JAR-1 - 16), which support and illustrate the points I develop in my testimony.

III. SUMMARY OF FINDINGS AND RECOMMENDATIONS

Q. PLEASE SUMMARIZE YOUR FINDINGS.
A. In my testimony I will develop the following points:

1. PEF seriously overreaches in its requests in the areas of capital structure and return on equity. When one corrects for PEF's excesses in these areas alone, the result is to more than offset the company's entire request for an increase in base rate revenues. This is without considering any other needed adjustments.
2. PEF proposes to employ a capital structure containing 63% equity, ostensibly to support an upgrade by bond ratings agencies. While I disagree that a higher rating for PEF either is needed or would benefit customers, the more important point is that the proposed capital structure would require PEF customers to subsidize Progress Energy Consolidated without providing any real assistance in the form of enhanced rating agency review. This is because Progress Energy's "problem" with rating agencies is-not the regulated utility-but the weaker financial structure of the parent, which is the focus of rating agency reviews of both entities.
3. PEF's request to impute additional equity in the capital structure to offset "purchased power" improperly singles out one risk factor to the exclusion of considerations that mitigate risk, while continuing to ignore the importance of the parent's capital structure in rating agency determinations.
4. Dr. Van der Weide's proposal of 12.8% ROE is the product of a seriously and demonstrably flawed application of the DCF and risk premium methodologies.
5. To avoid requiring PEF's customers to subsidize PEF's parent, Progress Energy, and separately to ensure that ratepayers receive at least some of the benefits associated with fully protecting investors from storm damage risk, I recommend that the Commission employ the parent's consolidated capital
structure for ratemaking purposes. This capital structure currently contains 41.8% common equity, 57.6% debt, and 0.5% preferred stock.
6. I recommend that Progress Energy Florida (PEF) be allowed an overall cost of capital of 6.65%. This is based upon an overall cost of capital using a 9.10% cost of equity, 5.73% cost of long-term debt, 4.04% cost of short-term debt and 4.58% cost of preferred stock. It is also based upon the actual consolidated financial capital structure of parent Progress Energy that I have described and a Florida regulatory basis capital structure as shown on Exhibit \qquad (JAR 1), Page 2.

IV. INTRODUCTION

Q. HOW DOES YOUR OVERALL COST OF CAPITAL COMPARE TO THE COST OF CAPITAL REQUESTED BY THE COMPANY?
A. From my experience, it is common for companies to overstate the cost of capital when computing their overall revenue requirements. In this case, the Company's requested cost of capital exceeds its true cost of capital significantly more than is normally encountered. By over-allocating expensive common equity to the regulated operations of PEF and through a series of inappropriate adjustments proposed by company witness Mr. Portuondo, the Company has requested that its cost of capital be computed using a financial capital structure containing 63.08\% common equity (Exhibit ___ (JAR-1)), p. 2) even though on a consolidated basis (one that includes both regulated and unregulated operations), Progress Energy is
actually financed with a capital structure containing approximately 41.8% common equity. (Exhibit (JAR-1)), page 1. The Company has coupled to this request for a capital structure thats contains an excessive level of common equity a substantially overstated cost of equity request of 12.8%. The request is based upon the already excessive 12.3% recommended by Dr. Vander Weide, which was then increased by an additional 0.50% based on the desire of Dr. Cicchetti to reward PEF for efficiency. Based upon the capital structure requested by the Company, this 0.50% "reward" amounts to an additional rate increase of over $\$ 20$ million per year. The "pre-award" value of 12.3% is itself the subject of an unwarranted upward adjustment. Dr. Vander Weide starts from a more "normally" overstated cost of equity request of 11.4%, but then increases it based upon claimed financial risk considerations -- even though, especially after considering the benefits of eliminating storm-damage risk exposure, the requested capital structure of PEF has far less financial risk than the capital structures of other companies that purportedly serve as the basis for his adjustment.

The combined effect of the very high cost of equity request and the inappropriate capital structure computation would drive PEF's cost of capital computation up to a grossly overstated 9.50% instead of the far more reasonable result of 6.65% that I have recommended.

Q. HOW SIGNIFICANT IS THE IMPACT OF THE COMPANY'S OVERLY

 AGGRESSIVE COST OF CAPITAL REQUEST?A. As shown on Exhibit _ (JAR-1), page 4), the Company's requested cost of capital is so overstated that if the company had not overreached in the area of cost of capital it would have been requesting a $\$ 35.4$ million rate decrease instead of the completely unnecessary $\$ 205.6$ million rate increase request. This rate decrease of $\$ 35.4$ million is based on the impact of the requested cost of capital alone. It does not consider any other adjustments that may be appropriate to the Company's requested rate base or operating income at present rates.
Q. HAVE YOU EVER TESTIFIED IN ANOTHER RATE CASE IN WHICH CHANGES YOU HAVE PROPOSED TO THE COST OF CAPITAL IN AND OF THEMSELVES CHANGED THE REVENUE REQUIREMENT FROM A LARGE INCREASE TO A MEANINGFUL RATE DECREASE?
A. No, not that I remember. The excessive nature of the cost of capital requested by the Company in this case cannot be stressed enough.
Q. DOES OPC'S RECOMMENDATION IN THIS CASE ALLOW PEF TO MAINTAIN ITS BBB BOND RATING?
A. Yes. The capital structure I have recommended is consistent with the actual capital structure being used by Progress Energy to finance its operations and my recommended cost of equity is consistent with the 9.0% return on equity Value Line has projected Progress Energy will earn in 2008-2010. Therefore, even though OPC's overall recommendation is for a very substantial rate reduction, the
returns PEF will earn that are consistent with OPC's recommendation will provide the capital structure and coverage ratios that are already expected.

V. CAPITAL STRUCTURE

Q. WHAT CAPITAL STRUCTURE HAVE YOU RECOMMENDED IN THIS

CASE?
A. I recommend that the overall cost of capital of PEF be computed using the Florida regulatory basis capital structure shown on Exhibit _ (JAR-1), Page 2. This is based on a financial basis capital structure consisting of 41.8% common equity, 0.5% preferred equity, and 57.7% debt, as shown on Schedule JAR 1, Page 1. I arrived at this recommended capital structure based on the actual capital structure being used by Progress Energy on a consolidated basis as of December 31, 2004. I also made the following observations:
a) Industry Average Capital Structure. The average financial basis capital structure of the electric companies selected by Dr. Vander Weide is 44.21% common equity, 1.10% preferred equity, and 54.74% debt (See Schedule JAR 3, Page 2)). This slightly lower debt percentage being used on average by the group as compared to the actual capital structure being used by Progress Energy is consistent with the slightly higher average bond rating that has been awarded to the group selected by Dr. Vander Weide.
b) Target Capital Structure. Progress Energy stated in its 2004 Annual Report to Stockholders that its target financial basis capital structure is one that contains 55\% total debt (Page 7 of the Progress Emergy 2004 Annual Report to Stockholders, and response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, Question \#112.) as contrasted to 63.08% equity that it has requested in this rate case if the capital structure is computed on the same basis as what Progress Energy used for its target. See Schedule JAR 1, Page 2. This 55% target debt level is a result that is
not only close to the actual capital structure it is now using, but is also virtually identical to the average capital structure of the electric utility group selected by Dr. Vander Weide.
c) $S \& P$ Guidelines for $B B B$ rating. $\mathrm{S} \& \mathrm{P}$ specifies that its capital structure guidelines (financial basis) for a BBB rated electric company in Progress Energy's risk category of " 5 " is debt as a percentage of total capital of between 50% and 60% (See page 45 of S\&P Corporate Rating Criteria 2005. The mid-point of this range is exactly equal to Progress Energy's target capital structure, but is also virtually identical to the average capital structure being used by the comparative group of electric companies.

The percentage of common equity in the capital structure of Progress Energy Consolidated is within a reasonable range and therefore could be maintained in the long-run. If the common equity ratio of Progress Energy consolidated were actually increased, rather than merely "imputed" at the level of PEF for ratemaking purposes, within reason such an increase could benefit ratepayers by having a company with lower financial risk.

Q. IS THERE ANY REASON PROGRESS ENERGY FLORIDA REQUIRES

 THE 36.33% DEBT LEVEL REQUESTED BY THE COMPANY RATHER THAN THE 55-57.6\% DEBT LEVELS BEING USED SUCCESSFULLY BY THE COMPARATIVE GROUP OF COMPANIES AND BY THE CONSOLIDATED PROGRESS ENERGY?A. No. To require a debt level of no more than 36.33%, (financial basis as derived on Exhibit ___ (JAR-1), Page 2, or on relative terms about 20% less debt used by either the consolidated Progress Energy or by the comparative group, Progress Energy Florida would have to be in a significantly higher risk category than either the consolidated Progress Energy or the average of the comparative
groups. S\&P's bond rating write-up shows that, if anything, Progress Energy Florida is in a lower risk category than the consolidated Progress Energy. Even the Company does not claim that Progress Energy Florida is in a higher risk category than the consolidated Progress Energy. See Exhibit \qquad (JAR-15), the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, Question \# 126.
Q. IN HIS DIRECT TESTIMONY, DR. CICCHETTI CLAIMS THAT PEF IS REQUESTING A CAPITAL STRUCTURE CONTAINING 55\% EQUITY, WHILE YOU SAY THE COMPANY HAS REQUESTED A CAPITAL STRUCTURE CONTAINING 63.08\% COMMON EQUITY. PLEASE EXPLAIN THE DIFFERENCE.
A. A. My Schedule JAR 1, Page 2 shows that the capital structure being requested by PEF is really 63.08% common equity if placed on the same financial basis that is used by Progress Energy for setting its capital structure target and by rating agencies. As also shown on Exhibit ___ (JAR-1), Page 2, even if the capital structure is put on a Florida regulatory basis, the PEF requested capital structure still contains 57.83% equity, not the 55% cited by Dr. Cicchetti. As stated by Mr. Sullivan on page 10 of his testimony, the 55% common equity ratio is ".. before taking long-term purchased power contracts into account."

Q. DOES THE EXISTENCE OF PURCHASED POWER CONTRACTS INFLUENCE THE COMPARATIVE ANALYSIS?

A. First, as explained more fully below, when deciding what capital structure to target for Progress Energy consolidated, the parent did not make an adjustment for the effect of PEF's contracts on Progress Energy's rating._Second, if one wants to compare the capital structure of PEF adjusted for purchased power contracts, any
comparisons to other companies should also be done after making purchased power contract adjustments to the other companies.

Q. DOES PROGRESS ENERGY FLORIDA HAVE A SIGNIFICANTLY HIGHER PERCENTAGE OF PURCHASED POWER CONTRACTS THAN THE PERCENTAGE OF PURCHASED POWER CONTRACTS USED BY COMPANIES IN THE COMPARATIVE GROUP SELECTED BY DR. VANDER WEIDE?

A. I do not know. In an attempt to test the validity of the Company's claim regarding the impact of purchased power contracts on the proper capital structure for Progress Energy Florida, the Company was asked to provide the purchased power information relative to companies in his comparable group in a form similar to that presented by Dr. Vander Weide on page 22 of his testimony. The Company has refused to provide the information. See Exhibit ___ (JAR-15), the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, Question \# 141. Suffice it to say that, with respect to the companies in his comparable group, Dr. Van der Weide did not attempt to "follow through" with his proposed adjustment. The absence of this subject as a consideration in Dr. Vander Weide's comparison of PEF and other companies is telling, as it is a measure of the significance-or lack thereof-- he attributes to it.
Q. EVEN IF IT WERE DETERMINED REASONABLE TO CONSIDER PURCHASED POWER AS A RELEVANT FACTOR, WOULD THAT JUSTIFY A LOWER DEBT LEVEL FOR PROGRESS ENERGY FLORIDA?
A. No. The Company has failed to present any such justification. If risk adjustments are made, it is improper to make an adjustment for only one factor
without also considering others. S\&P notes that, compared to the rest of Progress Energy, Progress Energy Florida has the relative advantage of stability. In contrast, S\&P finds that Progress Energy's "...merchant generation operations remain high risk." (See Exhibit _ (JAR-15), OPC $2^{\text {nd }}$ POD \#86). Therefore, in aggregate, if anything Progress Energy Florida should be able to carry a percentage of debt higher than that of the consolidated Progress Energy and still be able to maintain a BBB bond rating.

Q. HOW SHOULD THE COMMISSION DETERMINE THE CAPITAL STRUCTURE TO USE IN THE DETERMINATION OF THE OVERALL COST OF CAPITAL APPLICABLE TO THE REGULATED ELECTRIC OPERATIONS OF PEF?

A. Ideally the Commission should use the capital structure that will balance safety and economy. However, the determination of the capital structure that would produce the lowest overall cost of capital is a controversial undertaking. Therefore, commissions frequently look to actual capital structures as indicators of the capital structures that will produce the lowest overall cost of capital. Utility rate regulation is a substitute for competition. Competition puts continual pressure on companies to provide services desired by its customers at the lowest price. To provide services at the lowest price, competitive companies have to minimize all costs, including the cost of capital. The cost of capital can be highly influenced by the capital structure a company uses.

It cannot be stressed strongly enough that the reported capital structure of wholly owned subsidiaries such as PEF does not provide insight into what capital structure management believes will produce the lowest overall cost of capital. Subsidiary capital structures can, and often do, contain equity that was actually raised by its parent in the form of debt and not equity. Holding companies with regulated subsidiaries have a special incentive to put extra equity on the books of such regulated subsidiaries when the only point to such excess equity is to rationalize a higher than appropriate revenue requirement (and correspondingly large dividends to be paid to the parent).

Significantly, Standard \& Poors is specifically aware of the problems associated with a high common equity ratio reported on the books of regulated subsidiaries when such extra equity disappears at the consolidated level:

> Utilities are often owned by companies that own other, riskier businesses or that are saddled with an additional layer of debt at the parent level. Corporate rating criteria would rarely view the default risk of an unregulated subsidiary as being substantially different from the credit quality of the consolidated economic entity (which would fully take into account parent-company obligations). Regulated subsidiaries can be treated as exceptions to this rule - if the specific regulators involved are expected to create barriers that insulate a subsidiary from its parent.

See page 43 of Corporate Rating Criteria from Standard \& Poors, a copy included in Exhibit _(JAR-14).

Based upon the principles in the above statement, in spite of the substantial extra percentage of common equity in the capital structure of PEF compared to the consolidated Progress Energy, over time PEF has still received the same BBB
bond rating as the consolidated Progress Energy. Without the benefits of the stronger bond rating to accompany it, the extra equity Progress Energy Florida has arranged to show on its books only serves to make the overall cost of capital appear considerably more expensive than it is. A review of documents from Standard \& Poors definitively shows this:
a) Page 45 of the 2005 edition of "Corporate Rating Criteria" shows that a company such as Progress Energy Florida with a risk rating of "5" (See the response to to interrogatory number 158 from the Citizen's $3^{\text {rd }}$ set of Interrogatories included in Exhibit __(JAR-14) should have the 50-60\% debt in its capital structure that Progress Energy has in order to obtain the BBB bond rating. The 44.35% debt ratio being claimed by Progress Energy Florida for its cost of capital computation is towards the stronger end of the target range of $42-50 \%$ debt sufficient for an A rating and is a far stronger capital structure than the $50-60 \%$ range Standard \& Poors finds consistent for a BBB rating when the risk rating is " 5 ".
b) The Standard \& Poors research report on Progress Energy Florida provided in response to OPC $2^{\text {nd }}$ POD \#86 (Exhibit \qquad (JAR-14))states the following:

The ratings on Florida Power Corp. ($\mathrm{d} / \mathrm{b} / \mathrm{a}$ Progress Energy Florida) reflect the consolidated credit profile of the parent Progress Energy Inc. The 'BBB' corporate credit rating on Progress Energy and its utility subsidiaries reflect weakened utility financial performance stemming from the economic downturn and rate reduction, compounded by overcapacity in the Southeast, which has weakened the financial performance of the unregulated generation portfolio, and high financial leverage. The company's tax-advantaged synthetic fuel business also has the effect of reducing the company's cash flow in the intermediate term.

The wholly owned subsidiaries include Carolina Power \& Light Co. (CP\&L d/b/a Progress Energy Carolinas), Florida Power, and Progress Ventures. The Average business position is supported by the relatively stable regulated utilities, CP\&L and Florida Power, which contribute 80% of the consolidated company's net income. Long-term growth prospects remain strong in the vibrant Florida service area while the negative trend in North Carolina's industrial sales is expected to stabilize in the near term, after four years of significant declines. The merchant generation operations remain high risk.

Based on the above, it can be seen that the bond rating of Progress Energy Florida is constrained, not only by the total amount of debt in the consolidated capital structure, but also by the higher risks associated with the unregulated and non-Florida regulated operations of the consolidated Progress Energy. The above statements also show that the extra common equity Progress Energy now wants to create on the books of PEF for ratemaking purposes should not be expected to help strengthen PEF's bond rating. If the Company wants a higher bond rating for PEF, it would have to lower the debt ratio and increase the common equity ratio of the consolidated Progress Energy. Practically speaking, based on the rating agencies' criteria and practices, only by bringing the common equity ratio of PEF up to that of the consolidated Progress Energy, would a bond upgrade be possible.
Q. IS THE STANDARD AND POORS REPORT CITED ABOVE CONSISTENT WITH STANDARD \& POORS' NORMAL RATING POLICY?
A. Yes. The 2005 "Corporate Rating Criteria" book explains S\&P's view of "Parent/Subsidiary Links" in a chapter beginning on page 86. (See Exhibit __ (JAR-14). This page states the following:

A weak entity owned by a stronger parent usually-although not alwayswill enjoy a stronger rating than it would on a stand-alone basis.

And:

A strong subsidiary owned by a weak parent generally is generally rated no higher than the parent.

S\&P continues, on the same page, to state that the reason why a strong subsidiary is generally not rated any higher than the parent is because:
... in most cases, a 'strong' subsidiary is no further from bankruptcy than its parent, and thus cannot have a higher rating.

The above statements show that even though Progress Energy Florida likely has a lower business risk than the consolidated Progress Energy, it will not get a bond rating higher than the consolidated Progress Energy. This is true irrespective of the non-existent common equity Progress Energy asks the Commission to assume for ratemaking purposes. Progress Energy Florida's proposed high common equity ratio accomplishes nothing other than to create the appearance of a higher cost of capital for Progress Energy Florida in its rate case than is realistic. The sole effect would be to increase PEF's revenue requirements above that which would be required to earn PEF's true cost of capital.
Q. DOES THE COMPANY CLAIM THAT THE SUBSTANTIAL INCREASE IN THE COMMON EQUITY RATIO OF PROGRESS ENERGY FLORIDA WILL INCREASE PROGRESS ENERGY FLORIDA'S BOND RATING?
A. No. See the response to Citizens $3^{\text {rd }}$ Set of Interrogatories, Question \# 135 (Exhibit ___(JAR-15). Without so much as even a claim by the requesting utility that the measure will have that effect, it is entirely unfair to ask ratepayers to pay millions of dollars more to support a capital structure containing so much more common equity than is actually being employed by Progress Energy consolidated. It appears to me that the Progess Energy Florida capital structure's extra equity serves no benefit other than to cause the computation of the overall cost of capital for regulatory purposes to appear much higher than it really is, or needs to be.

Q. DOES PROGRESS ENERGY HAVE A TARGET CAPITAL STRUCTURE IT IS TRYING TO ACHIEVE?

A. Yes. Page 7 of the 2004 Progress Energy Annual Report to Stockholders that is contained in Section F of the Minimum Filing Requirements states: "In 2004, we improved our balance sheet by reducing our debt-to-capitalization ratio to 57.6 percent. We're on track to reach our goal of 55 percent." While I have chosen not to make this target capital structure my primary recommendation (because we cannot be sure the Company will actually implement its target), if the target capital structure were to be used, then my recommended overall cost of capital would increase from 6.37% to 6.45%. However, it is important to remember that the appropriate return on equity varies as a function of the level of debt in the capital structure. If this planned reduction in Progress Energy's level of debt were to be reflected in the choice of capital structure in this case, my corresponding recommendation for the cost of equity would change from 9.10% to 9.00%.

$$
\begin{aligned}
& \text { Q. WHY DID PROGRESS ENERGY (CONSOLIDATED) SELECT A CAPITAL } \\
& \text { STRUCTURE WITH } 55 \% \text { DEBT AS ITS TARGET? } \\
& \text { A. According to the Company's response to } 112 \mathrm{c} \text { in the Citizen's Third Set of } \\
& \text { Interrogatories in this proceeding (Exhibit __(JAR-15)), the Company chose } \\
& \text { the } 55 \% \text { debt target for the capital structure of the consolidated Progress Energy } \\
& \text { "... based primarily on leverage guidelines and median ranges for BBB rated } \\
& \text { electric utility holding companies." }
\end{aligned}
$$

Q. WHEN MAKING ITS DECISION TO TARGET THE 55\% DEBT RATIO, DID PROGRESS ENERGY MAKE THE SAME ADJUSTMENT FOR PURCHASED POWER THAT IS PROPOSED BY DR. VANDER WEIDE ON PAGE 22 OF HIS TESTIMONY IN THIS PROCEEDING?
A. No . See the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, \#112 b, included in Exhibit ___(JAR-14). This shows that Dr. Vander Weide's approach and Mr. Portuondo's proposed adjustment to capital structure selection differs from the method used by the management of Progress Energy. Since Progress Energy has not made any special adjustments for purchased power when providing the justification for the capital structure it is actually implementing, it would be inconsistent to treat purchased power any differently in this rate case.
Q. IS THE CAPITAL STRUCTURE REQUESTED BY THE COMPANY THAT CONTAINS 63.08\% COMMON EQUITY AND ONLY 36.33\% DEBT A REASONABLE BASIS FOR DETERMINING THE COST OF CAPITAL IN THIS PROCEEDING?
A. No. Particularly in light of an actual structure that includes debt above 50% at the consolidated level, it is unreasonable. If used, it would result in the computation of a rate increase when, in reality, the Company should be ordered to lower rates.

The requested capital structure is merely the product of internal bookkeeping, and inappropriate, unwarranted adjustments, and not one that is reflective of the true financial risk impacting the bond investors of Progress Energy Florida. To the extent the percentage of common equity in the capital structure of PEF exceeds the Progress Energy consolidated level, such excess has little or no impact on the bond rating of PEF. However, if the level of common equity in the capital structure of PEF should fall below the level of equity in the capital structure of Progress Energy consolidated to an extent not justified by the difference in risk profile, then this could eventually cause PEF to have a bond rating lower than that of Progress Energy.

As is shown later in this testimony, Standard \& Poors has effectively rated the debt of Progress Energy Florida based on the consolidated Progress Energy capital structure. Because Progress Energy on a consolidated basis carries far less equity than is proposed for Progress Energy Florida, the extra equity being requested for Progress Energy Florida fails to provide the financial strength benefits that would be associated with the proposed increase in the common equity ratio. The use of the Progress Energy Florida capital structure contributes to a substantially exaggerated computation of the overall cost of capital at a great, wasted expense to ratepayers. The use of the Progress Energy Florida capital structure would also be wrong because it would force ratepayers to subsidize the unregulated operations of Progress Energy.

Q. HOW DO YOU KNOW THAT THE USE OF THE PROGRESS ENERGY FLORIDA BALANCE SHEET WOULD RESULT IN RATEPAYERS SUBSIDIZING THE UNREGULATED OPERATIONS OF PROGRESS ENERGY?

A. As shown on Exhibit ___(JAR- 1), Page 3, if the capital structure of Progress Energy Florida and Progress Energy Carolina are subtracted from the consolidated capital structure, what is left is an entity with over $\$ 7$ billion of total capital, only about 31.9% of which is common equity. Since the unregulated operations are the most risky portion of the business of Progress Energy consolidated, it is impossible to believe that the common equity ratios for the regulated operations would be economically chosen to contain so much more common equity than the effective amount left over for regulated operations. Furthermore, the numbers I have presented are actual as of December 31, 2004. In this rate case, the Company has proposed to increase the common equity ratio of Progress Energy Florida over the approximately 48.5% as of December 31, 2004 up to 63.08% (See Exhibit \qquad (JAR-1), P. 2)). Such an increase in the common equity ratio of Progress Energy Florida is proposed by the Company to occur merely because of an increase in the allocation of total common equity to Florida operations (see the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, Question \# 136 in Exhibit ___ (JAR-15)). If Progress Energy Florida actually does what it has proposed to do, the effect would be for the effective common equity ratio for the unregulated operations of Progress Energy to drop even further.

Q. HOW DOES USING THE HIGHER COMMON EQUITY RATIO OF

 PROGRESS ENERGY FLORIDA IMPACT THE INCENTIVE FOR THE COMPANY TO IMPLEMENT A PROPER CAPITAL STRUCTURE?A. If the Commission were to make the mistake of using the capital structure requested by the Company for ratemaking purposes, in addition to overcharging of ratepayers it would provide the Company with an incentive to maintain a
consolidated common equity ratio at a lower level than if the Commission were to instead compute the overall cost of capital based on the consolidated capital structure. The more that the level of common equity in the capital structure used to compute the overall cost of capital exceeds the real, consolidated, common equity level, the higher the extent to which the real return on equity earned by Progress Energy on its regulated operations in Florida exceeds the cost of equity allowed by the Commission.
Q. ON PAGE 33 OF HIS TESTIMONY, DR. CICCHETTI SAYS THAT "...AS THE DEBT TO EQUITY RATIO INCREASES, THE ROD [RETURN ON DEBT] WILL BEGIN TO INCREASE AS BOND RATINGS ARE LOWERED, INCREASING OVERALL ROR. SECOND, FINANCIAL RISK OF THE FIRM IS HIGHER AS DEBT-TO-EQUITY RATIO INCREASES." PLEASE RESPOND.
A. As they relate to a stand-alone entity, those statements are generally correct. However, whether they are applicable to PEF requires a consideration of PEF's place in the overall corporate structure. What Dr. Cicchetti has failed to recognize is that the trade-off between the cost of debt and capital structure for PEF does not take place at the PEF level, but at the Progress Energy consolidated level. Standard \& Poors recognizes that the higher debt ratio carried by the consolidated Progress Energy controls the bond rating of not only Progress Energy, but PEF as well. Therefore, the huge fallacy in what the Company is proposing is that it wants to receive the extra return for an especially thick
common equity ratio without any hope of receiving the lower cost of debt that would accrue to such an equity rich capital structure -- because Standard \& Poors recognizes that the higher debt ratio carried by the consolidated Progress Energy controls the bond rating of not only Progress Energy, but PEF as well.

Q. DOES THE COMMISSION'S DECISION TO PROTECT INVESTORS FROM STORM DAMAGE COSTS INFLUENCE THE CHOICE OF CAPITAL STRUCTURE IN THIS PROCEEDING?

A. Yes. The process of passing on all storm damage costs to ratepayers means that ratepayers are entitled to benefit from any reduction in the cost of capital that results from this risk reduction treatment. The most direct impact of protecting the company from storm damage expense exposure is in its capital structure. Debt is less expensive than equity, and so should be employed prudently to lower overall revenue requirements. The appropriate level of debt in the capital structure is directly a function of the company's risk profile. The higher the risk, the lower the amount of debt that is appropriate, and vice versa. The elimination of storm damage risk enables the company to prudently use more debt, and thereby lowers the cost of capital. Since this extra debt will show up on the consolidated books of Progress Energy, the treatment methodology for storm damage expense that has been chosen by the Florida Public Service Commission makes it all the more critical that the common equity ratio for PEF be no higher than the consolidated common equity ratio. To the extent that the other regulated operations owned by Progress Energy do not have the same degree of storm
damage protection, and the unregulated operations are more risky than the regulated operations, one could argue reasonably to apply a lower percentage of common equity to PEF for ratemaking purposes than is used by the consolidated operations. Certainly a decision to shift storm-related risk from the company to ratepayers constitutes yet another reason why the Commission should reject the artificially higher amount of equity being requested by PEF. It would be terribly unfair to ratepayers to make them sustain the full risk of storm damage expenses without also passing on to them the full benefit of the resulting lower cost of capital.

Q. PLEASE CONTINUE.

A. By providing certainty to PEF that they will be able to recover future storm damage costs, the Company can prudently use a higher level of debt than it could without such certainty. However, the Commission should recognize that the increase in the debt amount could readily appear on the consolidated books of Progress Energy and not necessarily PEF. This is especially true if Company management believes that they can carry more debt on the consolidated books without having the true benefit of the cost savings associated with the extra debt reflected in PEF ratemaking treatment. Now that the Commission has decided to fully pass on these storm damage costs, it is all the more essential that the capital structure computation be oriented towards the consolidated Progress Energy capital structure and NOT the PEF reported subsidiary capital structure.
Q. WOULD THE CAPITAL STRUCTURE YOU HAVE RECOMMENDED PUT PRESSURE ON THE BOND RATING OF PEF?
A. No. The capital structure I have recommended is consistent with the capital structure that has produced the current bond ratings, and is very similar to the capital structure Progress Energy proposes to implement based upon what it determined to be the debt level consistent with the mid-point of its desired bond rating target of BBB. Page 21 of the Progress Energy Annual Report to Stockholders says the following:

> Progress Energy's ratings outlook was changed to "negative" from "stable" in 2004 by both Moody's and Standard \& Poor's (S\&P). Both these ratings agencies cited the uncertainty around the timing of storm cost recovery, potential delays in the Company's debt-leverage plan, uncertainty about the upcoming rate case in Florida and uncertainty about the IRS audit of the Company's synthetic fuel partnerships in their ratings actions. This change in outlook has not materially affected Progress Energy's access to liquidity or the cost of its short-term borrowings. If Standard \& Poor's lowers Progress Energy's senior unsecured rating on ratings category to BB+ from its current rating it would be a noninvestment grade rating. The effect of a noninvestment grade rating would primarily be to increase borrowing costs. The Company's liquidity would essentially remain unchanged as the Company believes it could borrow under its revolving credit facilities instead of issuing commercial paper for its short-term borrowing needs. However, there would be additional funding requirements of approximately $\$ 450$ million due to ratings triggers embedded in various contracts.

Note that the target capital structure targeted by the management of Progress Energy varies from the recommendation for PEF made by Dr. Vander Weide on page 20, where he says that PEF should target an "A" bond rating. While both the management of Progress Energy and I believe that a BBB bond rating target is sufficient, for reasons I will develop in detail below the Florida Public Service

Commission is not going to be able to take action that would result in an " A " bond rating from Standard \& Poors for PEF unless the management of Progress Energy takes action, on a consolidated basis, to increase the common equity ratio above its current targeted " BBB " rating mid-point.

The cost of capital I have recommended for PEF will be sufficient for both PEF and the consolidated Progress Energy to keep thethe current bond rating so long as the other regulated and unregulated entities owned by Progress Energy also provide returns on capital consistent with the level I have recommended for PEF. (Certainly it is not the function of this Commission to anticipate poor performance by the other entities and require PEF's customers to carry their load.) My recommended cost of capital would not put pressure on the bond rating of PEF because (1) it is fully adequate for the needs of the utility, and (2) no amount of artificial subsidy from PEF to Progress Energy will substitute for the need for Progress Energy consolidated to address the concerns of the rating agencies directly: the only effect would be to overcharge customers.

PEF's bond rating is highly dependent on the bond rating of the consolidated Progress Energy. Providing artificially higher revenues from PEF simply to support the bond rating of Progress Energy would be both inefficient and unfair. It would be unfair because such an approach places all the burden for parent Progress Energy's situation onto PEF's Florida ratepayers, when any needed credit protection or strengthening efforts should be placed on all of the operations of Progress Energy, not just those of PEF. It would be inefficient, because merely raising rates at the PEF level without a corresponding decrease in the percentage of debt in the consolidated Progress Energy capital structure would be
less effective than reducing Progress Energy's percentage of debt. This is because reducing the percentage of debt at the parent level would not only improve Progress Energy's standings within the Standard \& Poors defined capital structure range by bond rating, but also would improve coverage ratios and cash flow by freeing Progress Energy of the responsibility to make interest payments on a higher than optimal level of debt .

With the actual percentage of common equity of parent Progress Energy remaining at or below 42% common equity, no help would be provided by artificially and even fictitiously inflating the common equity ratio of PEF to a level over 63% for ratemaking purposes. When considering the bond rating potential of a wholly owned subsidiary such as PEF, it must be recognized that a bond rating is highly influenced by the weakest link in the chain. In this case, the chain to the bond rating is made up of two links: the consolidated Progress Energy and PEF. Just as the strength of a chain is not increased if one link is increased to a 1 inch diameter and then hooked to a link with a $1 / 8^{\prime \prime}$ diameter, adding common equity to PEF without a corresponding strengthening of the capital structure of Progress Energy would not provide the claimed help. It would merely place an extra, unfair burden -- in the form of higher revenue requirements to support the additional equity -- onto Florida ratepayers.

VI. COST OF DEBT

Q. PLEASE SUMMARIZE YOUR FINDINGS ON THE COST OF DEBT.

A. I have adopted the cost of debt proposed by the Company.

VI. COST OF COMMON EQUITY

A. Summary of Conclusions on Cost of Equity.

Q. PLEASE SUMMARIZE HOW YOU OBTAINED YOUR COST OF EQUITY RECOMMENDATION.

A. The cost of equity of 9.10% was based upon the results of applying the DCF method to the same groups of electric companies and gas distribution companies selected by Company cost of capital witness Dr. Vander Weide. I also relied upon the results indicated by several implementations of the Risk Premium/CAPM method.

Q. PLEASE CONTINUE.

A. As I explain in detail later in this section, I determined the cost of equity to PEF by applying both a simplified or constant growth DCF method and a complex or multi-stage DCF method to the same groups of electric utilities and gas distribution utilities selected by Dr. Vander Weide, and by also considering the results of risk premium/CAPM analyses. These results are summarized on Exhibit ___ (JAR-2).

As shown on this exhibit, application of the simplified, or constant growth DCF method indicates a cost of equity between 8.45% and 8.49%. At the same time, the complex or multi-stage DCF produces a cost of equity between 9.51% and 9.56%. The risk premium/CAPM method is indicating a cost of equity of 8.20% based upon a method that considers risks specific to the electric industry, a result that is confirmed by the 9.60% to 10.00% cost of equity indicated by the
risk premium/CAPM for a company of average risk. (Electric utilities have below average risk). When interpreting the array of cost of equity results, I am aware that the reason the multi-stage DCF is indicating a higher cost of equity than the simple DCF method is because Value Line is forecasting an increase in the retention rate. This increase in the retention rate comes about because of the relatively low forecast growth rate for dividends, especially for the gas distribution companies. Since the simplified DCF result is the one consistent with the risk premium/CAPM results, it is likely that Value Line's forecasted low dividend growth rate is inconsistent with what the market expects. Nevertheless, I gave weight to the multi-stage DCF in formulating my recommended 9.00% cost of equity for an electric company with financial risk equal to that of the group of electric distribution companies. This makes my 9.00% cost of equity conservatively high.

In contrast, Dr. Vander Weide recommended a cost of equity of 12.3% with a capital structure containing 63.08% common equity (financial ratio basis). The Company then increased Dr. Vander Weide's recommended 12.3% up to 12.8%. The combined effect of this high cost of equity and high percentage of common equity in the capital structure is to increase the revenue requirement associated with the Company's cost of capital to amounts substantially higher than the revenue requirement derived from my recommendations. In fact, as explained earlier in this testimony, the Company's request for cost of capital is so excessive that just correcting the cost of capital computation switches the Company's request for a rate increase into the need for a meaningful rate decrease.

Q. HOW DOES YOUR IMPLEMENTATION OF THE DCF MODEL VARY

 FROM THE IMPLEMENTATION USED BY THE COMPANY?A. Unlike Dr. Vander Weide, I quantified growth by using a DCF method that computes constant growth that is sustainable over the long term, and applied the risk premium/CAPM methods without making the mistake of using the known-to-be inflated arithmetic averaging method. In addition, I recognized the data that shows overwhelmingly that risk premiums have been declining for decades. Most of the cost of equity difference is directly attributable to the errors Dr. Vander Weide made in his implementation of the risk premium/CAPM methods. I say this because he obtained a result of 9.4% when applying his version of the DCF method to the comparative electric companies he selected (See Exhibit No. __ (JVW-1), Page 1)), a value that is much closer to my recommended 9.10% cost of equity than the result he determined after giving significant weight to his risk premium/CAPM results. The differences are explained in detail later in this testimony.

B. Overview of Cost of Equity

Q. WHAT IS THE COST OF EQUITY?

A. The cost of equity is the rate of return that must be offered to a common equity investor in order for that investor to be willing to buy the common stock. The rate of return is earned in two different ways. One part of the return is from a dividend. The other part of the return is through the change in the stock price.

Investors buy stock to benefit from the total return. Total return is the sum of the dividend income and the profit (or loss) obtained from the change in the stock price.

While dividends are the norm in the utility industry, many companies do not pay a dividend. For those companies that do not pay a dividend, investors are willing to buy the stock if investors expect that the potential for capital appreciation offsets the lack of any dividend income. Common equity investors can, at best, only estimate what the stock price will be in the future. Also, investors are not certain what future dividends will be. Therefore, common equity investment always entails risk, but the risk can vary greatly from company to company.

The return an investor cares about is best measured as the return on market price. An investor who buys a common stock at $\$ 10.00$ per share and sells it a year later for $\$ 10.90$ will have received a 9% return (plus dividends, if any), irrespective of whether or not the company earned any money, and irrespective of the return on book value. However, utility commissions have the responsibility of balancing the interests of investors and ratepayers. Therefore, if it can be determined that investors are willing to buy stock with the expectation of being able to earn an annual return of 9%, then a commission should set rates so that the return on used and useful rate base is at the level where the future return on book value is expected to be 9%. Consequently:
a) if the market price should happen to be below book value, this would not be justification for providing a lower return than the cost of equity demanded by investors.
b) if the market price should happen to be above book value, this would not be justification for providing a higher return than the cost of equity demanded by investors.

As the U. S. Supreme Court found in its 1948 decision in Federal Power Commission v. Hope Natural Gas, 320 U.S. 591, at page 602 , the stock price is "... the end product of the process of rate-making not the starting point..." and that "... the fact that the value is reduced does not mean that the regulation is invalid." Therefore, in rate cases it is important to set rates based on a return on book value. Among the many problems with the market value capital structure approach discussed by Dr. Vander Weide is that it contradicts this important principle from the Hope Natural Gas case.

Q. HOW MANY BASIC METHODS ARE USED TO CALCULATE THE COST OF EQUITY?
 A. There are two basic methods commonly used to determine the cost of equity: the Discounted Cash Flow ("DCF") method and the risk premium/Capital Asset Pricing Model ("CAPM") method.

Q. PLEASE EXPLAIN BRIEFLY HOW THE DCF METHOD WORKS?

A. The DCF method starts with the current dividend yield, and adds to that dividend yield an estimate of growth to arrive at the estimated cost of capital. This growth is really the estimate of the future stock price appreciation that investors are predicting might occur until the stock is sold. Dividend growth, book value
growth, and earnings growth, to the extent they may be used, are only relevant to the degree they can help estimate the future stock price.
Q. PLEASE EXPLAIN WHY THE DCF METHOD IS USED.
A. Perhaps a major part of the reason that the DCF method has been so commonly used over the years is because, more than any other method, if properly applied, it can directly examine those factors that provide the incentive for investors to buy common stock in the first place.
Q. PLEASE EXPLAIN HOW THE RISK PREMIUM/CAPM METHOD WORKS.
A. The risk premium method in a generic sense includes the CAPM method, and it is also commonly used by witnesses in rate proceedings. The risk premium/CAPM method is really measuring the very same thing as the DCF method --- the total return expected by a common stock investor. However, rather than determining this total return by directly estimating future dividends and capital appreciation, the risk premium/CAPM method is looking either to interest rates or the inflation rate to help estimate what total return common stock investors require.
C. DCF Method
Q. IS THE DCF METHOD WIDELY USED IN UTILITY RATE PROCEEDINGS?

Abstract

A. Yes. The DCF model is more widely used than any other approach to determining the cost of equity.

Q. IS THERE A CONSISTENT MANNER COMMONLY USED TO IMPLEMENT THE DCF METHOD?
A. No. However, most implementations of the DCF model in utility rate proceedings do not start from the basic form of the model that separately discounts each future expected cash flow. Instead, utility rate proceedings typically focus on a special, simplified, version of the DCF model where the cost of equity, k, equals dividend yield (D) plus growth (g) in the formula $\mathrm{k}=\mathrm{D} / \mathrm{P}+\mathrm{g}$.

Most analysts acknowledge that when using this simplified, constant growth or $\mathrm{D} / \mathrm{P}+\mathrm{g}$ form of the DCF model, the growth rate " g " must be representative of the constant future growth rate anticipated by investors for dividends, earnings, book value, and stock price. However, all too often those who implement this constant growth form of the DCF model forget this important principle. Some merely try to make the issue go away by incorrectly stating that the $\mathrm{D} / \mathrm{P}+\mathrm{g}$ formula requires the "assumption" of constant growth. When so stating, they are missing the proper mathematical use of the word "assumption". Actually, the "assumption" of constant growth is a mathematical step that is made when this simplified $D / P+g$ form of the DCF model is derived from the basic form of the model. However, what this means mathematically is that the $\mathrm{D} / \mathrm{P}+\mathrm{g}$ form should not be used UNLESS the value
of " g " is consistent with the mathematical characteristics that had to be met in order to derive this special form of the DCF model in the first place. Failure to recognize that the selected value of "g" must be in keeping with the mathematical derivation of the $\mathrm{D} / \mathrm{P}+\mathrm{g}$ form of the DCF model often causes substantial, unnecessary error when implementing the DCF model in utility rate proceedings. For example, a user of the $\mathrm{D} / \mathrm{P}+\mathrm{g}$ form of the DCF model that relies on only earnings growth, in the face of evidence that dividends or book value is expected to grow at a different rate than earnings, is probably using the DCF model incorrectly.
Q. WHY IS IT SO IMPORTANT FOR THE GROWTH RATE USED IN THE CONSTANT GROWTH VERSION OF THE DCF MODEL TO BE REPRESENTATIVE OF THE CONSTANT GROWTH RATE FOR DIVIDENDS, EARNINGS, BOOK VALUE AND STOCK PRICE?
A. The derivation of the constant growth formula is based upon the principle that investors buy stock solely for the right to future cash flows obtained as a result of that ownership. The cash flows are obtained through dividend payments and/or stock price appreciation. The constant growth version of the DCF formula will accurately quantify investors' expectations only if investors expect the dividend yield (defined as dividend payment divided by stock price, or D / P in the constant growth DCF formula) and the growth in dividends to best be estimated at one constant growth rate for many years into the future. The dividend yield and growth rate that are used in the constant growth formula cannot be casually taken
from any source that happens to publish a growth rate, even if the source is highly reliable. This is because the highly reliable source could very well be publishing a growth rate that is different from the very special kind of growth that is appropriate for the constant-growth DCF formula.

Consider what happens if the expected growth rates are not all equal:

1. DIFFERENT GROWTH RATE FOR EARNINGS AND FOR DIVIDENDS. Both dividends and the ability for a company to grow dividends in the future are directly derived from earnings. The dividend yield, or D / P, portion of the constant growth DCF formula quantifies the investor-derived value from the portion of earnings paid out as a dividend. The " g " portion of the constant growth DCF formula quantifies the value of the portion of earnings retained in the business.

If dividends are quantified using the current dividend rate, but an earnings forecast is used to quantify " g " that is based upon a future environment in which earnings are expected to grow more rapidly than dividends, an ever-increasing portion of the total return expected by investors will be attributable to growth, and a smaller portion will be attributable to dividends. Under these conditions, other things being equal, the constant growth version of the DCF model would overstate the cost of equity because the decrease in the payout ratio that results from a more rapid earnings growth rate than dividend growth rate would shift a greater portion of the earnings from dividends to earnings growth.

The result of is that the higher future earnings growth rate would
cause the portion of earnings available for dividends to be lower, and therefore the dividend yield would be lower. Conversely, if future earnings growth were expected to be less than dividend growth, the constant growth form of the DCF model would understate the cost of equity.

Every time a dividend payment is scheduled, the board of directors of a company decides what portion of earnings to pay out as a dividend and what portion of earnings to re-invest, or "retain" in the business. It is this reinvestment of earnings that causes sustainable growth. Both dividends and growth therefore compete for the same dollars of earnings. The higher the portion of earnings allocated to the payment of dividends, the smaller the amount of earnings left over for re-investment and therefore the lower the future growth rate.

The relationship between the portion of earnings paid out as a dividend and the portion re-invested in the business is commonly referred to as either the dividend "payout" ratio (which is computed by dividing dividends by earnings), or the "retention rate" (which is computed by dividing the portion of earnings re-invested in the business by earnings). The sum of the payout ratio and the retention rate is 1.0 , because 100% of earnings is either paid out as a dividend or retained in the business.

The constant growth version of the DCF formula uses a specific dividend rate to compute the " D / P " term of its formula. This specific dividend rate has a specific earnings "retention rate" associated with it. This specific "retention rate" provides for one and only one percentage of earnings
that remains to cause the growth that is quantified in the second term of the equation. This is because the portion of earnings paid out as a dividend and the portion not paid out as a dividend must remain equal to total earnings.

If the dividend "payout ratio" or the earnings "retention" ratio are not constant, the portion of earnings available for growth and the portion available for dividends will continue to shift over time. Under such conditions, the constant growth formula produces an erroneous result because it is incapable of properly accounting for this change.

2. EARNINGS PER SHARE GROWTH RATE DIFFERENT FROM STOCK

 PRICE GROWTH RATE. When earnings per share growth rates are measured over a relatively short time period, such as the five-year consensus growth rates compiled by financial services such as Zacks and I/B/E/S, it is likely that investors expect materially different growth rates in earnings per share and stock price. This is because the earnings per share growth rate as reported in such services is simply the compound annual growth rate in the earnings per share from the most recently completed fiscal year compared to the earnings per share forecast for five years into the future. Presumably, an earnings per share forecast for five years into the future is sufficiently far off that analysts' forecasts for that time period must be based upon an expectation of normal conditions. Five years into the future is too far off to forecast abnormal economic conditions, abnormal weather conditions, or any abnormal operating problems that could impact earnings. However, the base year from which earnings are forecast is likely tocontain some abnormalities that have an impact on earnings. To the extent this abnormality exists, the forecast of earnings per share growth from the base year to a period five years in the future will be equal to the sustainable growth rate plus or minus the impact of any abnormalities. Growth that is required to bring earnings up to or down to normally expected conditions is not sustainable growth, and therefore it is not the kind of growth that would be mirrored in the stock price growth rate.

3. DIFFERENT GROWTH RATES FOR EARNINGS AND FOR BOOK VALUE.

The return on book equity is computed by dividing earnings by book value. This is an important number for several reasons: a) for a regulated utility company, the allowed cost of equity is the return on book equity that a utility commission intends for a company to earn on the regulated portion of its business, and b) unregulated companies attempt to earn the highest risk adjusted returns on equity that are possible.

If earnings per share grow more rapidly than book value per share, the return on equity increases. Conversely, if earnings per share grow more slowly than book value per share, the return on equity decreases. While increases and/or decreases in the earned return on equity can and do occur, it is not credible to forecast a sustained change in the return on equity for the many years into the future that are required in the constant-growth DCF model.

For example, a forecasted continuation of a decrease in the earned return on equity would eventually drive the earned return on equity to near zero - a
condition that is not credible for a regulated business providing a needed service. Similarly, a forecasted continuation of an increase in the earned return on equity would eventually drive the earned return on equity to an extremely high number a condition that would not form the basis for a credible growth rate forecast for a regulated business because of the regulatory constraints on the authorized return.

Also, an earnings per share growth rate higher than the book value per share growth rate is not credible for a competitive business because, as returns would go higher and higher, more and more competitors would be attracted. If a growth rate based upon an earning per share forecast higher than the forecast book value per share growth rate were used in a constant-growth form of the DCF model, then the constant-growth version of the DCF model would contain an upward bias. Conversely, if an earnings per share forecast is lower than the book value per share growth rate, then the constant-growth form of the DCF model would contain a downward bias.
Q. ARE FIVE-YEAR EARNINGS PER SHARE FORECASTS OF THE TYPE AVAILABLE FROM SOURCES SUCH AS ZACKS, I/B/E/S, OR VALUE LINE SUITABLE AS A PROXY FOR LONG-TERM SUSTAINABLE GROWTH IN THE CONSTANT-GROWTH FORM OF THE DCF MODEL?
A. No. For the reasons I just explained, it is improper to directly use a five-year earnings per share forecast as a proxy for long-term sustainable growth in the constant-growth DCF model. Zacks, I/B/E/S, Value Line and similar firms make no attempt to make earnings per share forecasts to be representative of the
anticipated growth rate in dividends per share, book value per share, or stock price. Therefore, while these sources can provide useful in formulating a sustainable growth rate in the context of a constant-growth DCF model, if their estimates are used directly as a proxy for long-term growth, they are no more accurate than it would be to forecast the height of a human at age 60 based upon a reasonable forecast of annual growth for the five years starting at age 12.

Earnings per share forecasts are generally different from the anticipated growth in dividends, book value, and stock price because they include the often substantial impact of bringing earnings up or down to a normal earned return on equity from whatever return on equity was achieved in the most recently completed fiscal year. Additionally, such analysts' growth rates tend to be overstated because of the well-documented propensity for analysts to be optimistic (While there are many sources that have shown this optimism to exist, one noteworthy source is a statement by Arthur Levitt, former chairman of the U.S. Securities and Exchange Commission. The following appeared on page 4 of the $5 / 31 / 99$ issue of Barrons:

ARTHUR LEVITT MAY BE THE best chairman of the SEC since Joe Kennedy. And no accident, really: Like Kennedy, Levitt spent enough time in the Street to develop a fine nose for good stocks and bad people.

Back in April, Levitt delivered some cogent remarks on analysts (in the sacred order of being, they're somewhat lower than angels) and their innate bullishness (solely the product of their sunny natures).

As he observed, sell recommendations make up 1.4% of all analysts' recommendations, while buys represent 68%.

By way of explanation for this strange imbalance, he offers the possibility of a "direct correlation between the content of an analyst's
recommendation and the amount of business his firm does with the issuer."

Analysts, he grouses are too eager to see every frog of a stock as a prince. What the world needs, he laments, are analysts who call a frog a frog.)
The combined effect of the habitual optimism of analysts and the required movement over a relatively short five-year time period to bring earnings per share up to the optimistic levels, commonly causes the five-year growth rates that are estimated by analysts to commonly overstate the future sustainable growth rate.

[^1]
Abstract

Q. WHY MUST THE RETENTION RATE, "b" BE CONSISTENT WITH THE OTHER VALUES INPUT INTO THE DCF MODEL? A. By definition, the retention rate, " b ", is the portion of earnings that is NOT paid out as a dividend. Because future earnings will be equal to the return on book equity times book value, the future anticipated value of the return on book equity " r " defines the future expected earnings rate.

The portion of earnings NOT paid out as a dividend is directly related to the future expected earnings rate and the future dividend rate. When the dividend rate is input into the $\mathrm{D} / \mathrm{P}+\mathrm{g}$ form of the DCF model, the portion of earnings that has been allocated to dividends has already been defined. Therefore, in order to avoid either the double-counting of earnings or the under-counting of earnings, the same definition of the dividend rate that has been used for the value of " D " in the D / P portion of the DCF equation MUST be used to determine the value of the retention ratio, "b", when computing sustainable growth.

Q. HOW CAN YOU ASSURE CONSISTENCY BETWEEN THE DIVIDEND RATE USED TO COMPUTE DIVIDEND YIELD AND THE DIVIDEND RATE USED TO COMPUTE THE RETENTION RATIO?
A. The way to ensure the consistency necessary for a valid result from the implementation of the constant-growth form of the DCF model is to compute the retention rate "b" based upon the inputs used for the dividend rate " D " and the future expected return on equity, " r ". As previously stated, by definition, the retention rate " b " is equal to the portion of earnings not paid out as a dividend
divided by earnings. The earnings consistent with the value used for "D" is determined by multiplying book value by the value of the future expected return on equity, " r ". The book value that should be used is the book value as of the time of the valuation of " D ". The result is the future expected rate of earnings that is consistent with the value used for both " D " and for " r ". By subtracting "D" from the future expected earnings and dividing that amount by the same future expected earnings results in a retention rate that contains the necessary consistency. If any other value for " b " is used, such as a forecasted value for " b " in some future time period, then the result from the constant-growth DCF computation would be invalid.

Q. DO STOCK ANALYSTS USE THE "b x r" METHOD?

A. Yes. In the textbook, Investments, by Bodie, Kane and Marcus (Irwin, 1989) at page 478 , expected growth rate of dividends is described as follows:

How do stock analysts derive forecasts of g, the expected growth rate of dividends? Usually, they first assume a constant dividend payout ratio (that is, ratio of dividends to earnings), which implies that dividends will grow at the same rate as earnings. Then they try to relate the expected growth rate of earnings to the expected profitability of the firm's future investment opportunities.

The exact relationship is

$$
g=b \times R O E
$$

where b is the proportion of the firm's earnings that is reinvested in the business, called the plowback ratio or the earnings retention ratio, and ROE is the rate of return (return on equity) on new investments. If all of the variables are specified correctly, [the] equation . . . is true by definition, . . .
Q. DO SOME COST OF CAPITAL WITNESSES CRITICIZE THE "b x r" METHOD AS BEING CIRCULAR?
A. Yes. Some cost of capital witnesses claim that the " $\mathrm{b} \times \mathrm{r}$ " method is circular because the future earned return on book equity that is used to quantify growth is used to determine the future earned return equity.

Q. IS THAT CRITICISM VALID?

A. No. Those who claim that the method is circular confuse the definition of " r " and the definition of " k ". While " r " is defined as the future return on book equity anticipated by investors, " k " is the cost of equity, or the return investors expect on the market price investment. Since the market price is determined based upon what investors are willing to pay for a stock, and the book value is based upon the net stockholders' investment in the company, "r" usually has a different value than " k ". In fact, the proper application of the DCF method relates a specific stock market price to a specific expectation of future cash flows that is created by future earned return ("r") levels.

For example, assume investors are willing to pay $\$ 10$ a share for a company when the expectations are that the company will be able to earn 12% on its book equity in the future. If events would cause investors to re-evaluate the 12% return expectation, the stock price should be expected to change. If investors' expectations of the future return on book equity change from 12% to 10%, and there is no corresponding change in the cost of equity, the stock price would
decline. The cost of equity, however, would not decline simply because an event might occur that would cause investors to lower their estimate for " r ". The cost of equity is equal to the sum of both the dividend yield and growth. Investors' estimate of " r " influences the investors' estimate for growth. Changes in growth expectations cause investors to change the price they are willing to pay for stock. A change in the stock price can cause a change in the dividend yield that offsets the change in expected growth. In this way, a higher dividend yield would offset by the lower expected growth rate and leave the cost of equity, " k ", unchanged.

Q. HOW DID YOU IMPLEMENT THE DCF METHOD IN THIS CASE?

A. Consistent with the principles described above, I started by quantifying the D / P, or dividend yield term. Then I computed the growth rate, " g ". I derived the growth rates from the internal, or retention growth rate, or "b x r" + "sv" method where " b " represents the future expected retention rate and " r " represents the future expected earned return on book equity. The "sv" term quantifies the growth that is caused by the sale of new common stock in excess of book value.

Q. HOW DID YOU DETERMINE THE DIVIDEND YIELD OR THE "D/P" PORTION OF THE CONSTANT-GROWTH DCF EQUATION?

A. I determined the dividend yield as follows:
a) I took the current quarterly dividend rate for each company examined and multiplied it by 4 to arrive at the current annual dividend rate.
b) The current quarterly dividend rate was then converted to a dividend yield by dividing it by the stock price of each company. The stock price used was determined two different ways. One way was to take the actual stock price as of the end of the period I examined. The second way was to take the average of the high and low stock price over the prior year.
c) The resulting dividend yield was increased by adding one-half the future expected growth rate. This upward adjustment to the dividend yield is necessary because the DCF formula specifies that the dividend yield to be used is equal to the dividends expected to be paid over the next year divided by the market price. After this adjustment to increase the dividend yield, the yield is equal to an estimate of dividends over the next year. To each dividend yield result, I added one-half the future expected growth rate. After the adjustment, the yield is equal to an estimate of dividends over the next year. (The complex version does not directly use dividend yields. Instead, it determines the present value of each dividend payment as a discounted cash flow.)
Q. HOW DID YOU OBTAIN THE GROWTH RATES YOU USED IN THE DCF METHOD?
A. I quantified growth by using "b x r" + sv.
a) determination of value for " r "
Q. HOW DID YOU DETERMINE THE VALUE OF "r" THAT YOU USED IN THE "b x r" PORTION OF THE GROWTH RATE DETERMINATION?
A. My estimate for " r " is based upon a review of the actual historic actual return on book equity and future expected returns on book equity for each company. I used Value Line and the future expected return on book equity that was derived from other analysts' earnings forecasts. The results of these inputs are summarized in Footnote (A) on Schedule 5 Pages 1 and 2. I also considered what are likely to be future allowed returns on equity. Based upon this input, I concluded that investors expect the future sustainable return on book equity, "r" to be 11.00% for the electric company group, and 12.00% for the gas distribution group.

> b) Determination of Retention Rate, "b"

Q. HOW DID YOU DETERMINED THE VALUE OF THE FUTURE EXPECTED RETENTION RATE "b" THAT YOU USED IN YOUR SIMPLIFIED DCF ANALYSIS?

A. As previously explained, I recognized that the retention rate, " b ", is merely the residual of the dividend rate, " D ", and the future expected return on book equity, "r." Since, by definition, " b " is the fraction of earnings not paid out as a dividend, the only correct value to use for " b " is the one that is consistent with the quantification of the other variables when implementing the DCF method. The formula to determine " b " is:

$$
b=1-(D / E) \text {, where }
$$

$\mathrm{b}=$ retention rate
$\mathrm{D}=$ Dividend rate
$E=$ Earnings rate

However, " E " is equal to " r " times the book value per share. Book value per share is a known amount, as is " E ", consistent with the future expected value for " r ", and the " D " used to compute dividend yield. Therefore, to maximize the accuracy of the DCF method, quantification of the value of " b " should be done in a manner that recognizes the interdependency between the value of " b " and the values for " r " and " D ". I directly computed the value of " b " based upon the values of "D", and "r".

Q. WHAT RETENTION RATES DID YOU USE IN THE SNGLE-STAGE DCF METHOD?

A. Based upon the above formula ($b=1-D / E$), I computed a retention rate of, 33.57% to 36.07% for the electric company group, and 31.74% to 32.55% for the gas distribution group.
Q. PLEASE SUMMARIZE YOUR DCF RESULTS.
A. As I stated earlier in my testimony, I reviewed the results of my analyses as summarized on Exhibit _ (JAR-2). As shown on this schedule, the DCF-derived cost of equity varied between 8.25% and 9.85%, depending upon which group of companies or which time period is being used.

D. Risk Premium/CAPM Method

Q. PLEASE EXPLAIN THE RISK PREMIUM/CAPM METHOD.

A. The risk premium/CAPM method estimates the cost of equity by analyzing the historic difference between the cost of equity and a related factor such as the rate of inflation or the cost of debt.

One critically important fact to understand when implementing the risk premium method is that risk premiums have declined in recent years. Federal Reserve Chairman Alan Greenspan made a speech on October 14, 1999 entitled "Measuring Financial Risk in the Twenty-first Century". The text of the speech is available at http://www.bog.frb.fed.us/boarddocs/speeches/1999/19991014.htm. In the speech, Chairman Greenspan says:

That equity risk premiums have generally declined during the past decade is not in dispute. What is at issue is how much of the decline reflects new, irreversible technologies, and what part is a consequence of a prolonged business expansion without a significant period of adjustment. The business expansion is, of course, reversible, whereas technological advancements presumably are not.

Q. IS CHAIRMAN GREENSPAN'S VIEW OF THE REDUCTION IN RISK

 PREMIUMS CONSISTENT WITH WHAT INVESTORS NOW GENERALLY EXPECT?A. Yes. One good source to confirm that the financial community shares Chairman Greenspan's conclusion is an article that appeared in the April 5, 1999 issue of Business Week:

The risk premium is the difference between the risk-free interest rate, usually the return on U.S. Treasury bills, and the return on a diversified stock portfolio. Over more than 70 years, the return to stocks averaged 11.2%, and T-bills, just 3.8%. The difference between the two returns, 7.4%, is the risk premium. Economists explain this extra return as an investors' reward for taking on the greater risk of owning stocks. Most market watchers believe that in recent years, the premium has fallen to somewhere between 3% and 4% because of lower inflation and a long business upswing that makes corporate earnings less variable.
[emphasis added]
On October 4, 2001, a report from Credit Suisse First Boston concluded that the equity risk premium over treasury bonds is 3.7%, and the equity risk premium over Baa rated corporate bonds is now 1.9\%. (1 Weekly Insights, "Global Strategy Perspectives", October 4, 2001, Credit Suisse First Boston, pages 55 and 61.

Page 189 of the "Stocks, Bonds, Bills, and Inflation 2004 Yearbook" by Ibbotson Associates states, in a section entitled "Long-term Market Predictions" that:

Ibbotson and Chen believe that stocks will continue to provide significant returns of the long run, averaging around 9.22 percent per year, assuming historical inflation rates. The geometric equity risk premium, based on the supply side earnings model, is calculated to be 3.84%.

The 3.84% forward-looking risk premium concluded by Ibbotson and Chen appears in the very same book that shows a geometric risk premium of 5.0% (Page 33 of Stocks, Bonds, Bills and Inflation, 2004 Yearbook, 10.4% geometric mean return on Large Company Stocks minus 5.4% geometric mean returns on Long-term Government Bonds) based upon purely historical data that has not yet factored any consideration of the downtrend in risk premiums.

A review of the discussion on page 108 of the same 2004 edition of Stocks, Bonds, Bills, and Inflation shows why the equity-to-debt risk premium has been declining. The description of the data and the data both show that between 1925 and 2003, the volatility of common stocks has been declining and the volatility of longterm government bonds has been increasing.

Risk is proportional to expected volatility. Therefore, the convergence in the volatility of common stock prices and government bond prices brings the relative risk closer together now than it was back in the earlier part of the Ibbotson Associates 1926-2003 data series.

1. Inflation Risk Premium Method.

Q. HOW HAVE YOU APPLIED THE INFLATION RISK PREMIUM METHOD?

A. I implemented the inflation premium method by adding investors' current expectation for inflation to the long-term rate earned by common stocks net of inflation.
Q. WHAT IS THE BASIS FOR THE INFLATION PREMIUM METHOD?
A. The basis has been explained in a book entitled Stocks for the Long Run (McGraw Hill 2002) Dr. Jeremy Siegel, a professor at the Wharton School. Professor Siegel examined the real returns achieved by common stocks from 1802 through 2001. He concluded that equity returns in excess of the inflation rate have been very similar in all major sub-periods between 1802 and 2001, while the risk premium in between bonds and common stocks has been erratic.

At page 11 he states:
Despite extraordinary changes in the economic, social, and political environment over the past two centuries, stocks have yielded between 6.6 and 7.2 percent per year after inflation in all major subperiods.

At page 12 he states:

Note the extraordinary stability of the real return on stocks over all major subperiods: 7.0 percent per year from 18021870, 6.6 percent from 1871 through 1925, and 6.9 percent per year since 1926. Ever since World War II, during which all the inflation in the U.S. has experienced over the past two hundred years has occurred, the average real rate of return on stocks has been 7.1 percent per year. This is virtually identical to the previous 125 years, which saw no overall inflation. This remarkable stability of long-term real returns is a characteristic of mean reversion, a property of a variable to offset its short-term fluctuations so as to produce far more stable long-term returns.

Continuing on page 14 , he states:

As stable as the long-term real returns have been for equities, the same cannot be said of fixed-income assets. Table 1-2 reports the nominal and real returns on both short-term and long-term bonds over the same time periods as in Table 1-1. The real returns on bills has dropped precipitously from 5.1 percent in the early part of the nineteenth century to a bare 0.7 percent since 1926 , a return only slightly above inflation. The real return on long-term bonds has shown a similar pattern. Bond returns fell from
a generous 4.8 percent in the first sub period to 3.7 percent in the second, and then to only 2.2 percent in the third.

And, at pages 15-16 he explains some of the reasons why bond returns have been especially unstable:

Although the returns on equities have fully compensated stock investors for the increased inflation since World War II, the returns on fixed-income securities have not. The change in the monetary policy standard from gold to paper had its greatest effect on the returns of fixedincome assets. It is clear that the buyers of long-term bonds in the $1940 \mathrm{~s}, 1950$ s, and early 1960 s did not recognize the inflationary consequences of the change in monetary regime. How else can you explain why investors voluntarily purchased 30 -year bonds with 3 and 4 percent coupons, ignoring a government policy that was determined to avoid devaluation and in fact favored inflation?

Another explanation for the fall in bond returns is investors' reaction to the financial turmoil of the Great Depression. The stock collapse of the early 1930's caused a whole generation of investors to shun equities and invest in government bonds and newly-insured bank deposits, driving their return downward. Finally, many investors bought bonds because of the widespread (but incorrect) prediction that another depression would follow the war.

Professor Siegel then provides a conclusion on page 16 that:
Whatever the reason for the decline in the return on fixed-income assets over the past century, it is almost certain that the real returns on bonds will be higher in the future than they have been over the last 70 years. As a result of the inflation shock of the 1970's, bondholders have incorporated a significant inflation premium in the coupon on long-term bonds.

Q. IS IT POSSIBLE TO ACCURATELY QUANTIFY INVESTORS' CURRENT

 EXPECTATIONS FOR INFLATION?A. Yes. It has recently become possible to analytically determine investor's expectations for inflation. The U.S. government has issued inflation-indexed treasury bonds. The total return received by investors in these bonds is a fixed interest rate plus an increment to the principal based upon the actual rate of inflation that occurs over the life of the bond. These bonds pay a lower interest rate simply because investors know that in addition to the interest payments, they will receive the allowance for inflation as part of the increment to the principal. This is in contrast to conventional U.S. treasury bonds. The principal amount of a conventional bond does not change over the life of the bond. Therefore, whatever allowance for inflation investors believe they need can only be obtained through the interest payment. By comparing the interest rate on conventional U.S. treasury bonds with the interest rate on inflation-indexed U.S. treasury bonds, the future inflation rate anticipated by investors can be quantified.

Q. WHAT IS THE CURRENT INFLATION EXPECTATION OF INVESTORS?

A. As of May, 2005, the inflation expectation of investors was estimated to be about 3.0%. See Schedule JAR-9. This was obtained by observing that longterm inflation-indexed treasury securities were yielding 1.81%, while longterm non inflation-indexed treasury securities were yielding 4.55\%. The difference between 4.55% and 1.18% is 2.74%.
Adding the current 3.0% inflation expectation to the 6.6% to 7.0% range produces an inflation risk premium indicated cost of equity of 9.60% to 10.00% for an equity investment of average risk. Since the risk of Progress Energy and the group of comparative electric utilities is below average, this result is consistent with my recommended cost of equity of 9.10%.

2. Debt Risk Premium Method

Q. HOW DID YOU DETERMINE THE COST OF EQUITY USING THE DEBT

 RISK PREMIUM METHOD?A. As shown on Schedule 10, pages 1 and 2, I separately determined the proper risk premium applicable to long-term treasury bonds, long-term corporate bonds, intermediate-term treasury bonds and short-term treasury bills. Using a wide array of data points across the yield curve provides the results that are less impacted by a temporary imbalance that may exist in the debt maturity "yield curve".
Q. EARLIER IN THIS SECTION OF YOUR TESTIMONY, YOU SHOWED THAT FEDERAL RESERVE CHAIRMAN GREENSPAN NOTED THAT THE DECLINE IN EQUITY RISK PREMIUMS "... IS NOT IN DISPUTE." YOU ALSO PROVIDED SOURCES FROM FINANCIAL LITERATURE CONCLUDING THAT THE RISK PREMIUM IS NOW LESS THAN 4\%. DO YOU HAVE ANALYTICAL SUPPORT TO SHOW THAT THE STATEMENTS FROM THE SOURCES YOU HAVE QUOTED ARE CORRECT?
A. Yes. I examined the historic actual earned returns on common stocks and bonds from 1926 through 2004. But, rather than merely making one simplistic computation that examined the entire time period with only one return number over the entire period, I examined a 30 -year moving average of the earned returns. 30 years is long enough to see if indeed there is a trend to the earned
returns, but not so short as to be overly influenced by the natural volatility in earned returns that generally occurs over just a year or a few years. As shown in attached graphs, Exhibit __(JAR-), the decline in the risk premiums is persistent and undeniable.

These graphs confirm that a risk premium over 30 year treasuries in the 3 to 4% range is appropriate. For my equity cost computations, I used the conservatively high estimate of 4.0% as the risk premium appropriate to add to U.S. treasuries when determining the cost of equity for an industrial company of average risk. For applying the appropriate risk premium to interest rates other than U.S. treasuries, I determined the average historic risk spread between long-term treasuries and the other interest rate categories I examined. See Exhibit \qquad 10), Page 2 . This 4% risk premium was increased or decreased as warranted by the historic data when applied to each of the separate interest rate categories to which I applied the risk premium method.

Q. WHY HAVE YOU CHOSEN 30 YEARS TO SHOW THE DOWNTREND IN THE RISK PREMIUM RATHER THAN A SHORTER TIME PERIOD SUCH AS 10 YEARS?

A. Ten years is far too short a time period to be able to observe the actual risk premium based upon realized historic returns. If the equity risk premium declines, this means by definition that equity investors are willing to settle for a lower risk premium component of the total return they are demanding. If they are willing to settle for a lower return and if other things remain equal, this means
that investors are willing to pay a higher stock price for the same future expected cash flow. What this means is that the initial reaction to a lowering of the equity risk premium is for the stock price to rise. A rise in the stock price results in a higher historic earned return at the same time the higher stock price means the investor would expect a lower future return. Unless enough years are used in the historic analysis to diminish the misleading impact of the initial response to a reduction in the risk premium, the historic earned returns will not be helpful. I am especially encouraged by the relative consistency of the trend in the lowering of the risk premium as shown in the 30 -year data. This reinforces the likelihood that the risk premium has in fact declined as Federal Reserve Chairman Greenspan and many others have observed.

Q. ARE THERE REASONS WHY THE RISK PREMIUM HAS BEEN IN A

MULTI-DECADE DECLINE?

A. Yes. In addition to the reasons previously cited as given by Professor Siegel and Ibbotson and Chen, another important reason is a lowering of the U.S. capital gains income tax rate. Investors are concerned about the total after-tax return earned. The majority of the return earned by an investor on a long-term bond (and in many cases all of the return earned by a long-term bond investor) is the interest income. Interest income is fully taxed at regular income tax rates. This is in contrast to an investor in common stocks. Investors in the average large common stock have received the majority of their total return in the form of stock price, or capital appreciation. Capital appreciation is not taxed at all until the
stock is sold. Then, it is taxed at the long-term capital gains rate if the stock has been owned long enough to be eligible for such treatment. Currently, long-term capital gains are subject to a federal income tax of no more than 20%. There is a considerably lower rate on long-term capital gains than prevailed in prior decades.

Yet another factor causing the decline in the equity-to-debt risk premium is the proliferation of mutual funds. Mutual funds have increased the demand for common stocks by making it easier for more investors to own common stock. While it is debatable whether the popularity of mutual funds is proof that the risk premium has declined (because more investors are comfortable investing in common stock) or is the reason that the risk premium declined (because mutual fund marketing has increased the availability of investment funds for equity), it is nevertheless a relevant factor.

Q. WHAT MATHEMATICAL METHOD DID YOU USE TO COMPUTE

 HISTORIC ACTUAL RETURNS WHEN DERIVING THE RISK PREMIUM?A. I used the geometric average. The use of the geometric average approach is supported by the financial literature and empirical analysis. Please see (JAR-13) to this testimony for a detailed discussion on why the geometric average is proper.

Q. WHAT COST OF EQUITY IS INDICATED BY THE IMPLEMENTATION OF THE RISK PREMIUM/CAPM METHOD IN THIS CASE?

A. As shown on Exhibit ___(JAR-2), the cost of equity indicated by the equity risk premium/CAPM method is 7.80% after making specific adjustment for the risk of the electric utility business and is 8.56% before making the risk adjustment. The cost of equity indicated by the inflation premium method is 9.60% to 10.00% before making an adjustment for the lower than average risk faced by PEF.

VIII. EVALUATION OF THE TESTIMONY OF DR. VANDER WEIDE

A. INTRODUCTION

Q. PLEASE SUMMARIZE YOUR CONCERNS WITH DR. VANDER WEIDE'S

 TESTIMONY IN THIS PROCEEDING.A. My review of the testimony of Dr. Vander Weide reveals serious errors in financial logic and poor mathematical choices that have resulted in a substantial upward tilt to his results. These deficiencies, especially when coupled with the incorrect, overly equity-laden common equity ratio proposed by PEF, and further increased by the Company's additional 0.5% requested addition to the cost of equity, cause Dr. Vander Weide's 12.3% calculated cost of equity to be dramatically and unjustifiably higher than PEF's true cost of capital.

Problems with the Company's cost of capital presentation include:

1. Use of the capital structure of PEF, even though this capital structure contains considerably more common equity than the capital structure Progress Energy uses for its consolidated operations.
2. The PEF capital structure employed by Dr. Vander Weide contains considerably more common equity than the average capital structure of his comparative electric companies. Dr. Vander Weide proposes a backwards adjustment where he adds 0.90% to his recommended cost of equity for PEF based on his claim of financial risk, even though his proposed capital structure has less, not more, common equity than the structures of the companies in his comparative group.
3. Use of the upwardly-biased arithmetic average to quantify historic actual risk premiums instead of the more appropriate geometric average, coupled with reliance on a specialized estimate of future interest rates rather than the market consensus of future interest rates. After obtaining these high estimates in his risk premium approach, Dr. Van der Weide used them to dilute the more reasonable 9.4% result (per Exhibit No. __(JVW-1) Page 1 of 3) he obtained when applying his DCF method to the comparative electric companies he chose.
4. The addition of 0.25% to the cost of equity for financing costs even though the actual costs incurred are substantially lower. (See response to Citizens' $3^{\text {rd }}$ Set of Interrogatories, Question \#154 a included in Exhibit ___(JAR -15)
5. The use of a market value capital structure, even though:
a) such a market-based capital structure (where for capital structure purposes the market price times the number of shares outstanding is used for the common equity balance rather than the traditional per-books balance of common equity as is always used by the Commission in electric utility rate proceedings) is not indicative of the way an efficient provider of electric utility service would finance its business, and
b) The use of a market-based capital structure is fundamentally, methodologically incompatible with a DCF-derived cost of equity. The mismatch contributes to the overstatement of PEF's cost of equity.
6. The misuse of the DCF method as Dr. Vander Weide applied it. He erred by:
a) incorrectly using a 5-year short-term earnings per share growth as a proxy for long-term growth;
b) inflating the dividend yield by making an upward adjustment for the quarterly payment of dividends without excluding many
companies from the S\&P 500 group yet while claiming to have presented data for the group as a whole;
c) making a corresponding adjustment to lower the return for the compounding of the equity return within a year; and
d) adding a 25 basis point allowance for financing costs when the actual costs have been considerably lower than this.
7. Selectively excluding companies from the $S \& P 500$ in a way that could bias the result.
8. Misusing the risk premium method by:
a) Relying on an arithmetic average instead of the methodologically correct geometric average to quantify historic earned risk premiums,
b) Using a specialized estimate of future interest rates rather than the market consensus of interest rates, and
c) Failing to consider that debt to equity risk premiums have been in a multi-decade decline.
9. Making an improper adjustment for financial risk.
B. MISUSE OF DCF METHOD

Q. HOW DID DR. VANDER WEIDE ERR WHEN HE EXCLUDED COMPANIES FROM HIS DCF ANALYSIS?
 A. At page 35, lines 11-16 of his testimony Dr. Vander Weide states that he excluded companies for various reasons, including any decline in the dividend rate over the last two years. Excluding companies that happened to cut the dividend rate can skew the results of the analysis. This is effectively a technique to exclude companies with unusually low indicated DCF results without making a similar exclusion of companies with high DCF results.

Dr. Vander Weide's method for excluding companies from the $\mathrm{S} \& \mathrm{P} 500$ is even more of a problem than the method he used to exclude companies from his electric utility group. His Exhibit No.__(JVW-9) specifically states that he excluded all companies that did not have a forecast of a positive growth rate. He made this exclusion, then excluded all companies that had either the 25% highest or 25% lowest results. By first excluding the companies with negative growth rates and then excluding both the high and the low 25%, Dr. Vander Weide has produced what could be a substantial upward skewing of his DCF analysis because he excluded more companies with a low DCF result than those he excluded for a high DCF result.

C. INCORRECT USE OF FIVE-YEAR GROWTH RATES IN DCF METHOD.
 Q. WHAT DID DR. VANDER WEIDE USE TO MEASURE LONG-TERM SUSTAINABLE EARNINGS PER SHARE GROWTH?
 A. Dr. Vander Weide used analysts' five-year earnings per share forecasts as his sole proxy for long-term sustainable growth.

Q. IS IT APPROPRIATE TO USE ANALYSTS' FIVE YEAR FORECASTS OF EARNINGS PER SHARE AS THE PROXY FOR LONG TERM GROWTH?

A. No. Use of a short-term five-year forecast earnings per share growth rate is improper, because no attempt is made to assure these earnings per share forecasts are representative of the long-term sustainable future growth rates in dividends
per share, book value per share, or stock price. While analysts' short-term earnings per share forecasts can be used to develop a sustainable growth rate in the context of a constant-growth DCF model, when they are used directly as a proxy for long-term growth they are no more accurate than a forecast the height of a human at age 60 based upon a reasonable forecast of annual growth for the five years starting at age 12 .

Earnings per share forecasts are generally different from the anticipated growth in dividends, book value, and stock price because they include the often substantial impact of bringing earnings up or down to a normal earned return on equity from whatever return on equity was achieved in the most recently completed fiscal year. Additionally, as I explained earlier, such analysts' growth rates tend to be overstated because of the well-documented propensity for analysts to be overly optimistic. The combined effect of the habitual optimism and the required movement over a relatively short five-year time period to bring earnings per share up to the optimistic levels causes five-year analysts' growth rates to commonly overstate the future sustainable growth rate.
Q. HAS DR. VANDER WEIDE PROVIDED ANY JUSTIFICATION FOR HIS USE OF FIVE-YEAR ANALYSTS' EARNINGS PER SHARE GROWTH RATE FORECASTS IN HIS DCF MODEL?
A. Yes. On page 31 of his testimony, Dr. Vander Weide claims to rely on a research paper he wrote in 1988. However, Dr. Vander Weide is using his own research paper far more broadly than is justified by the paper itself. The paper concludes
that "... investors rely more heavily on analysts' growth forecasts than on historical growth extrapolations in making security buy and sell decisions." Then, the paper goes on to conclude that "Indirectly, this finding lends support to the use of valuation models whose input includes expected growth rates." This says nothing about whether analysts' forecasted dividend growth rates are or are not more accurate than analysts' earnings per share forecasts. It says nothing about whether or not a growth rate derived by multiplying forecasted earned return on equity by a retention rate is more accurate than merely using a five-year earnings per share growth rate as a proxy for long term growth.

Furthermore, the paper relied upon by Dr. Vander Weide says nothing about the degree of accuracy that can be obtained from the method he used. All the paper does is compare the relative ability of analysts' forecasted earnings per share growth rates and historic growth rates to explain stock prices. The paper shows that companies with high growth expectations have better stock prices than companies with low growth expectations. However, given how the study was done, if all of the growth rate numbers he used were consistently overstated by 50% due to a factor such as temporarily high growth coming out of a recession, he would have obtained the same results as if the growth rates were accurate. In other words, just because analysts' forecasts are better at explaining stock prices than historical growth rates does not mean that the results are accurate, or free of bias.

I have been testifying on the cost of capital since about 10 years before this paper relied upon by Dr. Vander Weide was presented, and I have always
advocated using a growth rate based upon forecasted expectations and not historic growth rate indicators. Therefore, I basically agree with the conclusions in the paper that forecasted results are better at explaining stock prices than historic growth rate indicators. However, merely using analysts' five-year earnings per share growth rates as a proxy for what investors expect for long-term sustainable growth is at best a very unreliable and very inaccurate method of quantifying future expected growth. While this has always been true, it is more true now than ever.

Q. WHY IS IT MORE INAPPROPRIATE NOW THAN EVER BEFORE TO USE ANALYSTS' FIVE-YEAR EARNINGS PER SHARE GROWTH RATE FORECASTS AS A PROXY FOR LONG-TERM SUSTAINBLE GROWTH IN THE DCF MODEL?

A. In recent years, investors have learned the hard way that analysts' forecasts often contain a substantial upward bias. Starting at least 10 years after the completion of the paper prepared by Dr. Vander Weide, countless articles that appeared in both business publications and the popular press throughout the last year have shown these biases. Business Week, a widely read business publication, contained numerous articles that reported on the problems with securities analysts. These articles include:

1. A cover story entitled "How Corrupt is Wall Street" appeared in the May 13, 2002 issue of Business Week.
a) The article mentions that Merrill Lynch, Solomon Smith Barney, Morgan Stanley Dean Witter along with 10 other firms are being investigated by the US Securities and Exchange Commission for unethical practices. See page 37 of May 13, 2002 Business Week article included in (JAR-14) of this testimony.
b) According to the article, New York State Attorney General Eliot Spitzer made public e-mail exchanges at Merrill. Theemail messages uncovered by Dr. Spitzer showed that "...analysts disparage stocks as 'crap' and 'junk' that they were pushing at the time. The e-mails are so incendiary that they threaten to thrust Wall Street into the sort of publicrelations nightmare that Philip Morris, Ford, Firestone, and Arthur Andersen have endured in recent years." (See page 39 of Business Week May 13, 2002 included in (JAR-14) of this testimony)
c) The article features the following quote from David Komansky, the CEO of Merrill Lynch, by placing it in bold letters and large print:

> We have failed to live up to the high standards that are our tradition, and I want to take this opportunity to publicly apologize to our clients, our shareholders, and our employees.

In the above quote, Dr. Komansky was responding to what Business Week describes as "...the analyst debacle..."See Business Week article "How Corrupt is Wall Street", May 13, 2002, page 42, included in (JAR-14) of this testimony.
2. The cover of the July 29,2002 issue of Business Week features the article entitled "THE ANGRY MARKET." The Cover summarizes the article by saying "THE BLUNT MESSAGE: Investors are re-pricing stocks to reflect a more honest picture of earnings, options, and the future." In a discussion about the inaccurate and misleading earnings reporting done by many companies, Business Week says:

> Brokerage-house analysts aren't much help either. They tend to do what companies want. For example, only six of the 21 analysts that have given First Call their estimates for AOL Time Warner Inc.'s 2003 earnings actually provided GAAP figures.
3. A cover article in the August 5, 2002 issue of Business Week is entitled " INSIDE THE TELECOM GAME. How a small group of insiders made billions as the industry collapsed." The article discusses the buy recommendations consistently made by Dr. Grubman on these companies, and says on page 34 :

Now, investors are questioning whether Grubman was motivated by his true opinions - or by the millions of dollars he received from supporting his telecom clique.
4. "HOW TO FIX CORPORATE GOVERNANCE" is the cover article in the in the May 6, 2002 issue of Business Week. Page 76 of this article says:

If investors have learned anything from this crisis, it's that Wall Street's analysts are often loath to put a bad
spin on a stock. Historically, "sell" ratings have constituted fewer than 1% of analysts' recommendations, according to Thompson Financial/First Call...It's more a case of an inherently conflicted system, that is now the focus of a Justice Department investigation.
"'Investors need to realize that the free research they're getting is often just a marketing tool', says Kent Womack, a professor at Dartmouth College's Amos Tuck school of business."
5. A June 10, 2002 issue of Fortune had an article entitled "In Search of the Last Honest Analyst". The Fortune article noted:

> In fact, stock research sank so low during the bubble that it actually became a contrary indicator of a stock's performance. Researchers at the University of California and Stanford reviewed almost 40,000 stock recommendations from 213 brokerages during the year 2000. The most highly rated stocks had a -31% return for the year, according to the study. Meanwhile, the stocks least favorably recommended (that is, the sells) soared an annualized 49%-- a differential of 80 percentage points. (See Fortune.Com "In Search of the Last Honest Analyst", June 2002, page 1 of 2 in JAR14)
6. A September $24^{\text {th }}, 2002$ Wall Street Journal article entitled "Will Grubman Case Tone Down the Exaggeration by Analysts?" states the following:

During the 1980s and 1990s, analysts often served as quasiadvocates for companies that hired their firms for investment-banking work, accompanying them on road shows to sell their stock, setting up one-onone meetings between management and institutional investors, and proffering their access to management to give an unofficial version of the companies' view of business developments. (Wall Street Journal "Will

Grubman Case Tone Down The Exaggeration by Analysts?" September 24,2002 , starting on pages C-1 and C-3, included in JAR-14JAR-14).
7. On October 22, 2002, a Wall Street Journal article entitled "Massachusetts Claims CSFB Stock Reports Led Investors Astray" appeared on pages $\mathrm{C}-1$ and $\mathrm{C}-10$. Following are some highlights from this article:

The complaint [by the Secretary of the Commonwealth of Massachusetts] alleges CSFB misled investors by allowing its investment-banking division in particular, star Frank Quattrone - to exert undue influence on the firm's research department.

The complaint which echoes one filed earlier this year by Elliott Spitzer against Merrill Lynch \& Co. will no doubt add to investor concern that Wall Street peddled research it didn't believe only to get its hands on the much more lucrative investment-banking fees.
'The presumption that every firm engaged in this behavior is fair,' says Roy Smith, a professor of finance at New York University and a former partner at Goldman Sachs Group, Inc. 'It reminds me of how we used to talk in the locker room after a football game. That talk happens all the time, but it would sure be embarrassing if anyone ever recorded it.'

See: Wall Street Journal, October 22, 2002, page C-1 and C-10, included in Exhibit ___(JAR-14).

Q. WHAT DO YOU CONCLUDE FROM THESE ARTICLES?

A. I conclude that 'analysts' earnings per share forecasts have a strong tendency to be overly optimistic and that investors are now aware of this over-optimism. Therefore, especially if 'analysts' five-year earnings per share growth rate forecasts are used in a DCF model, the true cost of equity as expected by investors will have a strong tendency to be substantially overstated.

D. UPWARD ADJUSTMENT FOR QUARTERLY DIVIDEND PAYMENTS

Q. WHY WAS DR. VANDER WEIDE WRONG TO INCREASE HIS DIVIDEND YIELD TO REFLECT THE QUARTERLY PAYMENT OF DIVIDENDS?
A. Dr. Vander Weide's approach to escalating the dividend yield for the impact of quarterly compounding is wrong because it provides only part of the story. If it is correct to adjust the dividend yield upwards to account for quarterly compounding, then it is just as correct to adjust the return on equity DOWN to adjust for the daily compounding that occurs because a company earns its return on equity every day as revenues are collected and a DOWNWARD adjustment to the growth rate because if a company pays dividends quarterly, it has less use of the earnings to create growth. These downward adjustments to the return on equity (adjustments Dr. Vander Weide fails to consider) more than offset his upward adjustment to the dividend yield.
Q. DID DR. VANDER WEIDE MAKE ANY OF THOSE DOWNWARD ADJUSTMENTS?
A. No. Therefore, his quarterly dividend adjustment is incomplete and serves only to provide an upward bias to his DCF result.

E. Dr. Vander Weide's Risk Premium Method

Q. PLEASE BRIEFLY DESCRIBE THE RISK PREMIUM METHOD.
A. The risk premium method estimates the cost of equity by analyzing the historic difference between the cost of equity and a related factor such as the rate of inflation or the cost of debt.
Q. PLEASE COMMENT ON THE RISK PREMIUM METHODS AS PRESENTED BY DR. VANDER WEIDE.
A. Dr. Vander Weide applies the risk premium method by computing the difference in the returns earned by common stocks as compared to the return earned on bonds in a variety of different ways. However, in different combinations, these approaches rely upon the following flaws:

1. The overstating of historic actual returns by using the arithmetic average to compute historic actual differences in earned returns rather than the geometric or compound returns;
2. The reliance on a risk premium computed from Dr. Vander Weide's flawed approach to the DCF method; and/or
3. Ignoring the persistent and substantial drop in risk premiums that has been occurring for decades.

In addition to improperly computing the risk premium for the reasons stated above, Dr. Vander Weide's risk premium approach is also flawed because he incorrectly concludes that the risk premium between debt and equity are constant, when they are not. As I have shown earlier in this testimony, empirical
evidence, financial theory, and financial articles all show that the risk premium as measured against interest rates has been anything but constant. It is risk premiums measured against the inflation rate, not interest rates, which have shown to be reasonably constant.
Q. PLEASE EXPLAIN THE PROBLEMS CAUSED BY USING THE ARITHMETIC METHOD TO QUANTIFY THE RISK PREMIUM.
A. As will be explained in detail later in this testimony, textbooks, the U.S. Securities and Exchange Commission ("SEC"), and Value Line all have recognized that the only proper way to measure long-term historic actual earned returns is to use the geometric mean, not the arithmetic mean put forward by Dr.Vander Weide. In contrast, Dr. Vander Weide used the arithmetic mean. The arithmetic mean is specifically identified by several sources as a method that will specifically result in an answer that is upwardly biased.
Q. IS THERE A MATHEMATICAL RELATIONSHIP BETWEEN THE GEOMETRIC AVERAGE AND THE ARITHMETIC AVERAGE?
A. Yes. Page 24 of the third edition of Stocks for the Long Run by Professor Jeremy
J. Siegel © 2002 contains the following:

The geometric return is approximately equal to the arithmetic return minus one-half of the variance σ^{2} of yearly returns $\mathrm{r}_{\mathrm{G}}=\mathrm{r}_{\mathrm{A}}-1 / 2 \sigma^{2}$.

Investors can be expected to realize geometric returns only over long periods of time. The average geometric return is always less than the average arithmetic return except when all yearly returns are exactly equal. This difference is related to the volatility of yearly returns.

As correctly explained above, the only reason the arithmetic average is higher than the geometric average is because of the volatility of yearly returns. Therefore, from the perspective of the cost of equity to allow a regulated utility, the correct return is the geometric return. The geometric return, if allowed, will be the return the utility company is given a reasonable opportunity to earn. If there is a difference between the geometric return and the arithmetic return, for a regulated utility this difference will occur simply because a utility company's stock price will fluctuate up and down even though the allowed return on equity remains fixed at least until the next rate case.
Q. HAVE YOU SEEN COMPANY WITNESSES WHO USE THE ARITHMETIC AVERAGE CLAIM THAT THE GEOMETRIC AVERAGE IS THE CORRECT AVERAGE TO USE WHEN MEASURING HISTORIC RETURNS, BUT THE ARITHMETIC AVERAGE IS SOMEHOW CORRECT FOR FORECASTING FUTURE RETURNS?
A. Yes, I have seen this argument. But, given that the difference between the geometric return and the arithmetic return is due to volatility and not the true return actually being achieved, an argument that claims a different measurement technique applies to historic data than to forecast data is incorrect. Consider the following example. Assume that the U.S. Government issued a 30 -year bond 15 years ago that pays an annual interest rate of 5.0% on the face amount of the bond. Further assume that although interest rates fluctuated over the last 15
years, the current interest rate demanded by investors happens to be 5% today. Under these assumptions, over the last 15 years, the price of the bond has gone up in some years and gone down in other years. But, if the current interest rate demanded by investors on this bond is still the same 5% as was demanded by investors at the time of the original issuance, the bond will be selling for the same price as it did when originally issued 15 years ago. Because of this fluctuation, if the total return (price appreciation or price depreciation plus the 5% interest income) is measured using the arithmetic average, then the measured return will include the 5% real return actually obtained by investors plus an additional illusory return cause by volatility rather than an actual return received by the investor. From the perspective of the investor who is forecasting the return on this 5% government bond with 15 years remaining, we know with certainty that the accurate forecasted future return will be 5% per year. We also can be confident that interest rates will fluctuate over the next 15 years. Therefore, this fluctuation will cause the arithmetic return measurement to be higher than the 5% annual return even though the 5% return is the only possible return an investor who holds this bond to maturity could get.
Q. IS IT THE 5\% RETURN ON THE TREASURY BOND OR IS IT THE ARITHMETIC AVERAGE RETURN THAT IS ANALAGOUS TO THE ALLOWED RETURN ON EQUITY TO A REGULATED UTILITY COMPANY?
A. The 5% coupon return is the return that is analogous to the allowed return. Therefore, even if we were to attempt to satisfy the investor who was incorrectly led to believe that he or she would achieve the arithmetic average and not the geometric average, the return based upon the geometric average should form the return allowed. Then, an investor who wishes to be fooled into achieving a higher return than is achieved by the geometric average will continue to be under the misconception that he or he is earning more than the geometric average. This can happen because the stock price fluctuation will still produce annual returns that, under the arithmetic average method, will appear to be higher than the allowed geometric return.

Consider the problem that would develop if allowed returns were errantly erroneously? set based upon the arithmetic average rather than the geometric average. If a utility company is allowed to earn a return on rate base equal to the arithmetic average, then the normal stock price fluctuations would cause the new arithmetic average measured result to continue to exceed the old allowed arithmetic average. A repetition of the error caused by using the arithmetic average, if repeated in the next rate case, would cause yet a further ratcheting up of the allowed return in each future rate case where this mistake to use the arithmetic average is repeated.

[^2]A. Yes. As previously stated, arithmetic average returns overstate the actual returns received by investors because arithmetic returns measure volatility, not actual returns earned by investors. The more variable historic growth rates have been, the more his method exaggerates actual growth rates. Arithmetic average returns ignore the impact of compound interest. For example, if a company were to have a stock price of $\$ 10.00$ in the beginning of the first year of the measurement period and a $\$ 5.00$ stock price at the end of the first year, an arithmetic average approach would conclude that the return earned by the investor would be a loss of $50 \%[(\$ 5-\$ 10) /(\$ 10)]$. If, in the second year, the stock price returned to $\$ 10.00$, then the arithmetic average would compute a gain of 100% in the second year $[(\$ 10-\$ 5) /(\$ 5)]$. The arithmetic average approach would naively average the 50% loss in the first year with the 100% gain in the second year to arrive at the conclusion that the total return received by the investor over this two year period would be 25% per year $[(-50 \%+100 \%) / 2$ years]. In other words, the arithmetic average approach is so inaccurate that it would conclude the average annual return over this two year period was 25% per year even though the stock price started at $\$ 10.00$ and ended at $\$ 10.00$. The geometric average would not make such an error. It would only consider the compound annual return from the beginning $\$ 10.00$ to the ending $\$ 10.00$, and correctly determine that the annual average of the total returns was not 25%, but was zero.

In order to protect investors from misleading data, the SEC requires mutual funds to report historic returns by using the geometric average only. The
arithmetic average is not permitted. The geometric average, or SEC method, has the compelling advantage of providing a true representation of the performance that would have actually been achieved by an investor who made an investment at the beginning of a period and re-invested dividends at market prices prevailing at the time the dividends were paid.
Q. DOES THE FINANCIAL COMMUNITY COMPUTE HISTORIC ACTUAL ACHIEVED RETURNS BASED UPON ARITHMETIC MEANS OR GEOMETRIC MEANS?
A. As shown earlier in this testimony, the financial community (as represented by articles from The Wall Street Journal and from Business Week) refers to geometric averages when evaluating historic returns. Additionally, an article on page 92 of the August 16, 1999 issue of Fortune magazine refers to the return that is equal to the geometric mean from Ibbotson Associates as "...the oftquoted calculation..." of historic actual returns on common stocks. The article does not even mention the number that is equal to the historic arithmetic return.

[^3]We use a geometric average of rates of return because arithmetic averages are biased by the measurement period. An arithmetic average estimates the rates of return by taking a simple average of the single period rates of return. Suppose you buy a share of a nondividend-paying stock for $\$ 50$. After one year the stock is worth $\$ 100$. After two years the stock falls to $\$ 50$ once again. The first period return is 100 percent; the second period return is -50 percent. The arithmetic average return is 25 percent [(100 percent 50 percent)/2]. The geometric average is zero. (The geometric average is the compound rate of return that equates the beginning and ending value.) We believe that the geometric average represents a better estimate of investors' expected returns over long periods of time. [Emphasis added]

Similarly, in another textbook discussion that specifically addresses the use of the Ibbotson data, Financial Market Rates \& Flows, by James C. Van Horne, Prentice Hall, 1990, states the following on page 80:

The geometric mean is a geometric average of annual returns, whereas the arithmetic mean is an arithmetic average. For cumulative wealth changes over long sweeps of time, the geometric mean is the appropriate measure.

The textbook Investments by Nancy L. Jacob and R. Richardson Pettit, Irwin, 1988, puts it well when it says:

The existence of uncertainty as reflected in a distribution of possible values makes the expected value, or arithmetic average rate of return, a misleading and biased representation of the wealth increments which will be generated from multiperiod investment opportunities.

The average annual rate of wealth accumulation over the investment period, termed the average annual geometric rate of return, correctly measures the average annual accumulation to wealth when multiple periods are involved.
[Emphasis is contained in the original]

Q. HAS VALUE LINE SAID ANYTHING REGARDING THE USE OF AN

 ARITHMETIC AVERAGE OR A GEOMETRIC AVERAGE?A. Yes. On May 9, 1997, Value Line issued a report entitled "The Differences in Averaging". This report was contained on pages 6844-6845 of the "Value Line Selection \& Opinion" portion of its weekly mailings to subscribers. This report says that:

> (t)he arithmetic average has an upward bias, though it is the simplest to calculate. The geometric average does not have any bias, and thus is the best to use when compounding (over a number of years) is involved.

The Value Line report then goes on to provide examples that show why the arithmetic average overstates the achieved returns while the geometric average produces the correct result.

Ibbotson Associates has also said that it is the geometric average that is "... the correct average to compare with a bond yield..." See page 75 of Stocks, Bonds, Bills, and Inflation 1986 Yearbook contained in (JAR-14).

On October 8, 2003, The Wall Street Journal published an article entitled "Financial Advisers and Fuzzy Math", contained in (JAR-14). This article starts out by saying:

Next time your financial adviser makes a prediction for an average rate of return during an investment pitch, you might want to doublecheck the math.

Some financial advisers rely too heavily on a formula known as an arithmetic average, which can be misleading when investing for the long
term. Financial advisers who use this formula may be overstating your potential profit and leading you to take risks you might otherwise avoid.

Therefore, when Dr. Vander Weide chose to use the arithmetic average, he chose a method that both a financial textbook and Value Line have specifically noted to be biased. This is not a place to compromise, as the more weight that is given to the arithmetic average result, the larger the upward bias in the risk premium method.
Q. DR. VANDER WEIDE PRESENTS EXHIBIT NO. \qquad (JVW-7) IN SUPPORT OF THE USE OF THE ARITHMETIC AVERAGE. PLEASE COMMENT ON THE EXHIBIT.
A. Dr Vander Weide's Exhibit No. ___ (JVW-7) establishes a hypothetical example in which an investor starts with an investment that has a 50% chance of returning $\$ 1.30$ after 1 year, and another 50% probability of returning $\$ 0.90$ after one year. He then goes on to claim that after 2 periods, the total return expectation based on his hypothetical is $\$ 1.21$. He uses the numbers he put in his hypothetical to conclude that based upon the arithmetic averaging method, the total return expectation is the correct $\$ 1.21$, but he obtains a lower number when he uses the geometric method. A close review of what he has presented shows that he has not applied either the geometric or the arithmetic method properly. Yes, I agree that based upon his hypothetical, the two period return expectation is $\$ 1.21$. However, Dr. Vander Weide did NOT apply the geometric or arithmetic
mean methods properly. His critical omission was his failure to compound the results over two periods. As shown on Exhibit \qquad (JAR-13), the arithmetic mean results in the faulty, overstated conclusion that the return under his hypothetical would be $\$ 1.23$, while the geometric mean method produces the correct answer of $\$ 1.21$.

Q. HAVE YOU COMPARED GRAPHICALLY THE CAPITAL APPRECIATION GROWTH RATE USING THE ARITHMETIC AVERAGE METHOD WITH THE CAPITAL APPRECIATION GROWTH RATE THAT IS OBTAINED USING THE SEC METHOD?

A. Yes. In Exhibit __(JAR-13) I show the actual movement of the S\&P Utility index from 1928 through 2003. I also show how the index would have behaved on a year-by-year basis using the average growth obtained from the SEC method and using the arithmetic average historic growth rate methodology. The graph illustrates that the arithmetic average calculation of historic actual returns deviates at an ever-increasing rate over time from the actual S\&P Utility Index, overstating the total return from 1928-2003 by about 500%. By contrast, the historic actual returns computed using the SEC method is a dramatically more reasonable track of the growth of the $\mathrm{S} \& \mathrm{P}$ utility over time and thus is the proper measure of historic actual return rates realized by investors.

In the exhibit, the top line shows that if $\$ 100$ had been invested in public utility common stocks from the beginning of 1928 through 2003 and had earned the arithmetic return, the $\$ 100$ would have grown to about $\$ 238,000$. The dotted
line in the graph shows what actually would have happened to a real $\$ 100$ investment if it had been invested in public utility common stocks. As shown on the graph, the $\$ 100$ investment would have actually grown to about $\$ 44,000$. While the increase from $\$ 100$ to $\$ 44,000$ is a very sizeable return, it is far less than the $\$ 238,000$ return that would have been achieved if the arithmetic return methodology had been achieved. The smooth line that ends at the same place as the dotted actual return line is the ongoing value of $\$ 100$ invested in 1928 that grew at the geometric return rate. Note that the $\$ 100$ invested at the geometric return rate is, by 2003 , exactly equal to the actual return. Therefore, the geometric return accurately measures the actual return that was achieved from 1928 through 2003, but the arithmetic average return exaggerates the actual return by over five times.

Q. HOW MUCH HIGHER IS THE RISK PREMIUM DIFFERENCE BASED UPON AN ARITHMETIC AVERAGE THAN IT IS BASED UPON A GEOMETRIC AVERAGE?
 A. From 1928 to 2003, the arithmetic average method (to which Dr. Vander Weide gives weight) produced an indicated risk premium that was 2.13% higher for public utility stocks versus public utility bonds than the risk premium indicated by using the SEC, or geometric average method. The arithmetic median method is essentially identical to the arithmetic mean method and therefore produces an error that is similar to the error produced by the arithmetic average method.

Q. HAVE RISK PREMIUMS BEEN STABLE OVER THE YEARS?

A. No. This is yet another important problem with Dr. Vander Weide's approach to the risk premium method. As I have previously stated, U.S. Federal Reserve Chairman Alan Greenspan has noted that risk premiums have declined. Dr. Vander Weide failed to see this downtrend because he only examined changes from one year to the next without examining the bigger picture.

Q. WHAT DOES IBBOTSON ASSOCIATES SAY IS THE CURRENT

 APPROPRIATE RISK PREMIUM?A. Page 189 of the "Stocks, Bonds, Bills, and Inflation" 2004 Yearbook by Ibbotson Associates says:

Long-term Market Predictions
Ibbotson and Chen believe that stocks will continue to provide significant returns over the long run, averaging around 9.22 percent per year, assuming historical inflation rates. The geometric equity risk premium, based on the supply side earnings model, is calculated to be 3.84 percent.

Page 181 of the "Stocks, Bonds, Bills, and Inflation" 2005 Yearbook by Ibbotson Associates says:

Long-term Market Predictions
Ibbotson and Chen believe that stocks will continue to provide significant returns over the long run, averaging around 9.52 percent per year, assuming historical inflation rates. The equity risk premium, based on the supply side earnings model, is calculated to be 4.08 percent on a geometric basis and 6.14% on an arithmetic basis.

Q. HOW HAS DR. VANDER WEIDE QUANTIFIED THE RISK FREE RATE THAT HE USED IN HIS RISK PREMIUM ANALYSES?

A. Dr. Vander Weide used the long-term treasury bond rate as his risk free rate. Even though the current long-term interest rate is the reflection of what investors expect to be the long-term interest rate, Dr. Vander Weide replaced the judgment of the market with a forecast of interest rates. The forecast of interest rates he used was 5.70% (see Exhibit No. ___(JVW-9), Page 1) even though the actual long-term interest rate as of the time he prepared his testimony was 4.89% (See the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, \#165, part b, included in Exhibit ___ (JAR-15)). Interestingly, while Dr. Vander Weide based his analysis on the forecast of an increase in Treasury rates, in June the interest rate dropped to about 4.49%.
Q. DID DR. VANDER WEIDE PRESENT ANY EVIDENCE TO SHOW THAT USING THE FORECAST OF AN ECONOMIC SERVICE WAS MORE ACCURATE THAN DEPENDING ON THE MARKET FORECAST AS EXPRESSED IN LONG-TERM INTEREST RATES?
A. No.

Q. DID YOU PREPARE SUCH A STUDY?

A. Yes. From materials available in my office, I was able to review interest rate forecasts made by Value Line going back to 1992. As shown on Schedule JAR-11, Value Line's forecast for interest rates was high by an average of 1.22%. Using actual long-term interest rates as a forecast of what long-term interest rates would be in five years was considerably less inaccurate. While it was also high, it was high by an average of 0.76%.

A review of the graph shown on Exhibit __(JAR-11) shows that in the period from 1992-2005 long-term interest rates were in a significant downtrend. Forecasts were incapable of accurately predicting that downtrend. Whether the downtrend will continue, flatten out, or reverse is unknown. It is unknown to me, and as shown from the review of history it is also unknown to forecasters. It would be unfair to ratepayers to make them pay for an up-trend in interest rates that has been promised year after year by forecasters but has yet to materialize. Dr. Vander Weide's use of the highly inaccurate forecast of long-term interest rates rather than using current actual long-term interest rates has caused his Risk Premium methods to overrate the cost of equity by about 0.8%. This error he has made combined with the others previously discussed help explain why his Risk Premium results produce such unrealistically high cost of equity estimates.

F. UPWARD ADJUSTMENT FOR FINANCING COSTS

Q. YOU STATED IN THE SUMMARY PORTION OF THIS SECTION THAT

 DR. VANDER WEIDE WAS INCORRECT TO ADD AN ALLOWANCE FOR FINANCING COSTS TO HIS REQUESTED COST OF EQUITY. PLEASE EXPLAIN WHY.A. Dr. Vander Weide's recommendation includes an adjustment to his cost of equity for financing costs. Both the $\mathrm{S} \& P 500$ and the other sample companies he examined have common stock that is selling at a market price considerably higher than its book value. The premium received from the sale of stock at these prices would be more than sufficient to fully pay for financing costs.
Q. WHAT IS THE AMOUNT HE HAS REQUESTED FOR FINANCING COSTS?
A. According to his response to 154 , part b, Dr. Vander Weide's financing cost request, if adopted by the Commission, would result in an annual cost to ratepayers of $\$ 10.9$ million.
Q. IS THIS $\$ 10.9$ MILLION PER YEAR A REALISTIC REQUEST FOR FINANCING COSTS?
A. No. According to the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, \# 155, the total amount for financing costs incurred by the consolidated entities that owned PEF in the last 20 years totaled $\$ 67.1$ million, or about $\$ 3.4$ million per year. This amount becomes smaller yet after the $\$ 3.4$ million is allocated to PEF, showing that even before accounting for the benefits associated with selling new stock in excess of book value the financing cost allowance requested by Dr. Vander Weide is many multiples of the actual incurred financing costs.

G. IMPROPER ADJUSTMENT FOR FINANCIAL RISK

Q. IS IT PROPER TO MAKE AN ADJUSTMENT FOR THE FINANCIAL RISK OF A COMPANY RELATIVE TO THAT OF THE COMPARATIVE GROUP?
A. Yes. Financial risk is influenced by the amount of debt financing a company uses to raise its capital. The greater the amount of debt, the higher the financial risk. As I have shown on my Exhibit \qquad (JAR-2), since the common equity ratio of the consolidated Progress Energy contains 41.8% common equity-- which is
slightly less common equity than the average of the 44.21% common equity used by the comparative group of electric utility companies-- I recommended that 0.10% be added to the 9.00% industry average cost of equity to allow for the higher financial risk of Progress Energy consolidated. I also noted that if the 63.08% common equity ratio requested by PEF were to be used, then the cost of equity would decline to considerably below 9.00% because the requested 63.08% common equity ratio is considerably higher than the 44.21% average for the comparative group (Per Exhibit _ (JAR-1), P. 1, the cost of equity associated with a common equity ratio of 63.08% is about 8.50%. However, even if the allowed cost of equity were lowered to 8.50%, the 63.08% is such an inefficiently high common equity ratio that the resultant revenue requirement from this capital structure is still meaningfully above the cost of capital appropriate for the Progress Energy consolidated.)

Given these facts, one would expect that if Dr. Vander Weide made the mistake of orienting towards the PEF reported capital structure rather than the Progress Energy consolidated capital structure, he would at least recognize that since the PEF requested capital structure contains considerably more common equity than both Progress Energy consolidated and the comparative group average, he should lower the 11.40% pre-financial risk cost of equity he found appropriate on page 58 of his testimony to reflect the reduced level of debt at the PEF level. But, Dr. Vander Weide did not do this. By incorrectly switching to a market value capital structure, an approach that is not only theoretically flawed but impossible to apply in this case because PEF has no publicly traded stock and therefore no definable market value,

Dr. Vander Weide turned what should have been a downward adjustment to his already inflated 11.40% cost of equity into an adjustment that further increased the cost of equity.

H. USE OF MARKET VALUE CAPITAL STRUCTURE

Q. IS IT IN ANY WAY REASONABLE TO USE THE MARKET VALUE CAPITAL STRUCTURE OF PROGRESS ENERGY AS A PROXY FOR THE MARKET VALUE OF PEF?
A. No. Progress Energy's stock price is influenced not only by its book value capital structure, which contains a lower percentage of common equity than PEF's book value capital structure; it is also influenced by the performance of its unregulated operations. Furthermore, management of Progress Energy has specifically stated that it has determined its target capital structure based upon the mid-point goal of a capital structure with 55% debt. That is 55% of book value, NOT 55\% of market value. See Exhibit __(JAR-15), the response to Citizen's $3^{\text {rd }}$ Set of Interrogatories, Questions \# 112,113, and 122.
Q. HOW DID YOU ARRIVE AT THE NECESSARY COST OF EQUITY ADJUSTMENT?
A. I examined, based upon a DCF analysis and variations in changes in capital structure, the cost of equity demanded by investors pursuant to changes in the book level of common equity. Dr. Vander Weide presented no such study.

Q. IS A DCF-DETERMINED COST OF EQUITY CONSISTENT WITH A

 MARKET VALUE CAPITAL STRUCTURE DETERMINATION?A. No. To the contrary, the two concepts are incompatible. They do not mix. The DCF method is a carefully designed approach to determining the cost of equity. It is based upon the discounting of future cash flows anticipated by investors. The DCF model is implemented by determining the present value of future expected cash flows. Future cash flows are dependent upon both what a company is able to earn on its current investment, and the return a company is able to earn on reinvested funds.

The problem with using a DCF cost of equity in conjunction with a market value capital structure, or any cost rates inferred from a market value capital structure (assuming such a market value analysis were even possible in the case of PEF), is that it incorrectly assumes that a company could reinvest new funds at the same book returns that give rise to market prices even when market prices deviate widely from book value. In reality, when stock price differs from book value, there is a difference in the earnings benefit achieved by investors from the portion of earnings paid out as a dividend and the portion of earnings retained in the business to produce future growth. The greater the market price deviates from book value, the more significant becomes the difference.

Q. HOW DOES THE DIFFERENCE IN THE RETURN INVESTORS CAN ACHIEVE FROM DIVIDENDS AND THE RETURN A COMPANY CAN

EARN FROM INVESTING FUNDS AT BOOK VALUE RELATE TO THE DCF METHOD?
A. The DCF method works by separately evaluating dividends and growth. The dividend portion of the cash flow is received by investors. Investors may use that cash for current consumption or use it to re-invest in any available investment (stocks, bonds, etc.) at currently available market prices. The portion of earnings that a company does NOT pay out as a dividend (or retains in the business) is reinvested by the company at whatever return it can achieve on book value. As book value and earnings grow, stock price tends to grow. When, as is generally the case today, book values are lower than market values, the returns that a company can achieve by re-investing the earnings in its own business at book value are higher than when those earnings are paid out as a dividend and then re-invested by the investor at market value.

The higher return achievable through the reinvestment of earnings at book value rather than the market value causes a properly applied DCF method to compute a higher cost of equity than if those same earnings were paid out as a dividend. A key benefit of the DCF model is its ability to correctly differentiate between the value of the portion of earnings paid out as a dividend and the portion of earnings retained and re-invested in the business. However, this important attribute of the DCF method is negated by Dr. Vander Weide's use of a market value capital structure to quantify financial risk differentials.
Q. HOW DOES DR. VANDER WEIDE'S USE OF A MARKET VALUE CAPITAL STRUCTURE NEGATE THE INTEGRITY OF THE DCF MODEL?
A. When Dr. Vander Weide proposes to adjust the results of a DCF-derived cost of equity based on market value capital structures, he is effectively making the critical but completely invalid assumption that when investors receive a dividend, those funds can be re-invested by that investor at book value, even though investors have no such opportunity. Investors have to buy new stock at market value, not book value. Yet, when Dr. Vander Weide applies the full DCF return to the market value of the company rather than the book value of the company, he is effectively making the invalid assumption that dividends can be re-invested at book value returns.
Q. CAN YOU SHOW EMPIRICALLY THAT DR. VANDER WEIDE'S APPROACH OF APPLYING A DCF DERIVED COST OF EQUITY TO A MARKET VALUE CAPITAL STRUCTURE IS CONTRARY TO THE REALITIES OF THE FINANCIAL MARKETPLACE?
A. Yes. The inconsistency between a market value capital structure and the DCF cost of equity is so substantial that it is easy to observe. By recommending that a company should be allowed to earn its DCF return on the market value of its investment rather than the book value of its investment, Dr. Vander Weide is saying that fully competitive companies can earn this DCF return on the market value. However, in reality this is far from the truth. Consider the following: According to page MW 58 of the June 13, 2005 issue of Barron's, the earnings
yield (earnings divided by price) on the $\mathrm{S} \& \mathrm{P} 500$ index is 5.04%. This means that the return on market value for the S\&P 500 that investors in these mostly competitive industrial companies are earning, is no where near the cost of equity indicated by the DCF method. In other words, an "apples to apples" comparison of market values to earnings shows that the actual earnings on market value that are being achieved by competitive firms are dramatically lower than the cost of equity indicated by the DCF method. This illustrates that there is a huge internal inconsistency in the way Dr. Vander Weide determines his recommended financial risk adjustment based on market value capital structure and the way the cost of the components of that capital structure are determined. The end result of the inconsistencies in the way Dr. Vander Weide proposes to quantify the financial risk differential for PEF is that Dr. Vander Weide's cost of equity recommendation is even more overstated than if he had not made the adjustment at all.

Q. ARE THERE ANY OTHER SIGNIFICANT PROBLEMS WITH DR. VANDER

 WEIDE'S PROPOSED APPROACH TO ADJUSTING FOR FINANCIAL RISK BASED ON MARKET VALUE?A. Yes. He has proposed that PEF be allowed to earn 12.3% on equity with a book value capital structure containing 63.08% common equity. (See Schedule JAR 1, P. 2). However, the market value exists only for Progress Energy. Progress Energy has a book value capital structure containing 41.8% common equity. According to Value Line, Progress Energy is expected to earn 9.00% on its book
common equity. To the extent investors agree with Value Line, then the stock price of Progress Energy is a function of this return on book equity expectation of 9.00% on a capital structure containing 41.9% common equity. If Progress Energy's investors expected earnings as high as those recommended by Dr. Vander Weide, then the stock price of Progress Energy would be considerably higher than the one used by Dr. Vander Weide to quantify financial risk. Therefore if, in spite of all the mathematical flaws with the market value capital structure proposal made by Dr. Vander Weide, one wanted to use this seriously flawed approach, it would be necessary to make an adjustment to the market value capital structure analysis to factor in the stock price that would exist if Dr. Vander Weide's recommendation were adopted. Given that the average future return on equity expectation for the comparative group of companies selected by Dr. Vander Weide is for a return on book equity lower than the unadjusted 11.4% recommended by Dr. Vander Weide, the net effect of considering the change in future expected return on book equity would be to switch Dr. Vander Weide's proposed adjustment to the cost of equity based on market value capital structure from an addition to a subtraction.

IX. COMMENTS ON THE TESTIMONY OF MR. POURTUONDO

Q. HAVE YOU READ THE SECTION OF THE TESTIMONY OF MR. PORTUONDO THAT RELATES TO CAPITAL STRUCTURE?

A. Yes. I am aware that on pages $27-31$, Mr. Portuondo has proposed numerous adjustments to capital structure. These adjustments are:

1. An adjustment to avoid the "...ongoing punitive effect of the costs the Company agreed to absorb in the settlement of an investigation into an unplanned outage at the Crystal River Unit 3 unclear unit..."
2. An adjustment to the equity component "... to recognize the treatment of its long-term purchase power agreements..." by debt rating agencies,
3. An adjustment "... to directly assign commercial paper as the source of capital for funding the unrecovered fuel costs on PEF's balance sheet...".
Q. DO YOU AGREE WITH THESE PROPOSED ADJUSTMENTS?
A. No.
Q. PLEASE EXPLAIN WHY YOU DISAGREE WITH MR. PORTUONDO'S PROPOSAL TO MAKE AN ADJUSTMENT TO ELIMINATE THE IPUNITIVE EFFECTS OF THE UNPLANNED CRYSTAL RIVER OUTAGE.
A. Page 28 of Mr. Portuondo's testimony explains that this unplanned Crystal River outage occurred back in 1996. While the Company may have taken a write-off as a result of that outage that could have caused a temporary distortion of capital structure, in the years that have passed good management would have long ago addressed any capital structure distortions. Good management controls capital structure through mechanisms such as issuing or buying back common equity, dividend policy, and issuing or buying back debt. Good management sees to it that the capital structure it implements reasonably approximates the capital
structure that produces the lowest overall cost of capital. After approximately 9 years, the management of PEF and Progress Energy consolidated has had far more than enough time to revise capital structure ratios to offset any temporary imbalance that might have been caused by the Crystal River write-off.

Even if it were true (which it is not) that capital structure is merely an accident of history and not controlled by good management, then such a way of thinking would open the door to an unwieldy number of adjustments. For example, to the extent that PEF earned more than its cost of equity in any year, the same logic that would support the sustained adjustment for the Crystal River write-off that occurred 9 years ago would support the reduction of the balance of common equity in the capital structure to eliminate the impact of any overearnings that might have occurred in the past. Otherwise, ratepayers would be double-penalized for over earnings.
Q. PLEASE RESPOND TO MR. PORTUNDO'S PROPOSAL TO MAKE A CAPITAL STRUCTURE ADJUSTMENT FOR RATING AGENCIES'TREATMENT OF PURCHASED POWER COSTS.
A. Once again, Mr. Portundo's position fails to consider what good management does. When striving to determine the proper capital structure to use to minimize the cost of capital, good management considers all important factors. To the extent that the way rating agencies treat purchased power costs influences the proper capital structure, then this is taken into consideration in the actual implementation of the capital structure. If management has already taken the
impact of purchased power on the proper capital structure implementation into consideration, then an adjustment such as the one proposed by Mr. Portuondo would only be duplicative. If management has not taken purchased power into consideration, Mr. Portuondo's proposed adjustment would not make up for the management error, as such a company would still have the inadequate amount of common equity in the capital structure irrespective of whether the adjustment is or is not made in a rate case. Therefore, either way one looks at it, Mr. Portuondo's proposal to increase the common equity ratio for ratemaking purposes based upon purchased power is wrong. The existence of purchased power is part of the information that tells management what capital structure should be implemented, not what adjustment should or should not be made in a rate case to whatever capital structures management has already implemented.
Q. PLEASE RESPOND TO MR. PORTUONDO'S PROPOSAL TO EXCLUDE COMMERCLAL PAPER ASSOCIATED WITH UNRECOVERED FUEL COSTS.

For reasons explained earlier in this section of my testimony, the consolidated capital structure is the capital structure that is best indicative of the capital structure that is actually financing the operations of PEF. Assigning the consolidated capital structure to PEF already results in a conservatively high level of common equity in the capital structure for PEF, given the higher risk of the unregulated operations of Progress Energy.

X. RESPONSE TO DR. CICCHETTI' S PROPOSED "BONUS."

Q. DO YOU AGREE WITH DR. CICCHETTI'S PROPOSAL TO "REWARD" PROGRESS ENERGY WITH AN EXPLICIT ADDER TO ITS APPROVED RETURN?
A. No. Without accepting his premise that PEF has demonstrated superior performance, such a reward is inappropriate, unnecessary, and more than likely would be counterproductive, in that it would provide inappropriate incentives to PEF.
Q. WHY DO YOU SAY SUCH AN AWARD IS UNNECESSARY AND INAPPROPRIATE?
A. Because a regulated entity such as Progress Energy already benefits any time it succeeds in keeping costs down.
Q. PLEASE EXPLAIN HOW REGULATED COMPANIES BENEFIT BY KEEPING COSTS DOWN.
A. As Dr. Cicchetti notes on page 39 of his testimony, PEF has not had a base rate increase since 1993. This means it has been able to earn at least as much if not more than it perceived to be its cost of capital. This has provided a powerful incentive for PEF to keep costs down. Another incentive to keep costs down is that a company that keeps costs under better control is less likely to be penalized in a rate case for incurring imprudent expenses.
Q. WOULD PROVIDING A HIGHER RETURN ON CAPITAL HIGHER THAN THE COMPANY'S COST OF CAPITAL CREATE AN INCENTIVE FOR FURTHER COST CUTTING MEASURES?
A. No. The higher the return on capital, the more difficult it is for a company to be able to justify making an incremental investment that might be designed to reduce expenses.
Q. IF THE BONUS RETURN WERE TO BE GRANTED, WOULD THIS PROVIDE AN INCENTIVE TO WORK HARDER FOR FUTURE PRODUCTIVITY GAINS?
A. No. If the requested bonus (that amounts to a cost to customers in excess of $\$ 20$ million per year) were granted, the extra, unnecessary return would go to stockholders. It is the employees of PEF-- whose salaries are paid by ratepayers-- who implement the cost savings. To the extent PEF employees are paid bonuses or receive pay raises for good performance, ratepayers pay for this also. Therefore, any bonus return to investors would not only be duplicative, but would be paid to an entity that does not provide any cost savings.
Q. IS THERE A REASON WHY THE COMMISSION SHOULD CONSIDER A RATE OF RETURN PENALTY INSTEAD OF A BONUS?
A. Yes. As stated previously, the capital structure and cost of equity requests in this case are extremely aggressive. Furthermore, the inflation of the common equity balance reported by PEF would make the earnings surveillance results
appear to show a lower actual return on equity than would be shown if a more realistic capital structure were maintained. These measures combine to show an overly strong desire on the part of management to take actions that are contrary to the best interests of ratepayers. While I have not made a specific proposal to lower the allowed return on equity to punish management for taking such an overly aggressive posture, the Commission would be far more justified to provide a penalty to the return on equity in this case than to provide the requested bonus.
XI. CONCLUSION
Q. PLEASE SUMMARIZE YOUR RECOMMENDATIONS IN THIS CASE.
A. PEF should be allowed an overall cost of capital of 6.65%. This is based upon a cost of equity of 9.10%. This cost of equity should be applied to a capital structure containing 41.8% common equity on a financial basis, which equates to 38.32% on a Florida regulatory basis. The capital structure I have recommended is equal to the actual capital structure being used by Progress Energy consolidated and is very similar to the average capital structure of the comparative electric companies selected by Dr. Vander Weide for use in this proceeding. My recommended capital structure, not the one recommended by Dr. Vander Weide, is the capital structure the management of Progress Energy has found to be appropriate for its operations.

Use of the capital structure supported by Dr. Vander Weide and Mr. Portuondo to set rates would provide an incentive for the capital structure of PEF to stay effectively weaker than if my capital structure is used. This is because allowing the company to earn a return on the artificial PEF capital structure would enable the Company to over-earn on the equity actually provided by the Progress Energy stockholders. Since the consolidated capital structure has a huge influence on the bond ratings of PEF, providing an incentive for the consolidated Progress Energy to continue to maintain a capital structure with a debt load towards the weaker end of the BBB bond rating category is not in the best interests of PEF ratepayers, especially if PEF ratepayers are already paying the higher rates that would otherwise be sufficient for a stronger bond rating.

Instead of providing a disincentive, the Commission could provide an incentive for the Company to strengthen the consolidated capital structure of PEF by using the same capital structure management focuses on - the consolidated Progress Energy capital structure.

Finally, PEF's exaggeration of its true capital structure by making internal bookkeeping entries and other proposed adjustments combined with Dr. Vander Weide's adjustment to increase his otherwise more traditionally inflated cost of equity claim based on his market value capital structure adjustment must be recognized for what it is: an excessive request that should not be given any credence by the Commission.

1 In combination with OPC's other recommendations and adjustments, my 2 recommendation will result in a fair return on PEF's investment-one that will

6 structure needs.
A. Yes.

SECTION I: QUALIFICATIONS AND INTRODUCTION

Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS.
A. My name is Jacob Pous and my business address is 12113 Roxie Drive, Suite 110, Austin, Texas 78729.
Q. WHAT IS YOUR OCCUPATION?
A. I am a principal in the firm of Diversified Utility Consultants, Inc. ("DUCI"). A copy of my qualifications appears as Exhibit _(JP-Appendix A)).
Q. PLEASE DESCRIBE DIVERSIFIED UTILITY CONSULTANTS, INC.
A. DUCI is a consulting firm located in Austin, Texas with an international client base. The personnel of DUCI provide engineering, accounting, economic, and financial services to its clients. DUCI provides utility consulting services to municipal governments with utility systems, to end-users of utility services, and to regulatory bodies such as state public service commissions. DUCI provides complete rate case analyses, expert testimony, negotiation services, and litigation support to clients in electric, gas, telephone, water, sewer, and cable utility matters.
Q. HAVE YOU PREVIOUSLY TESTIFIED \mathbb{N} N PUBLIC UTILITY PROCEEDINGS?
A. Yes. Appendix A also includes a list of proceedings in which I have previously presented testimony. In addition, I have been involved in numerous utility rate
proceedings that resulted in settlements before testimony was filed. In total, I have participated in well over 300 utility rate proceedings in the United States and Canada. I have testified on behalf of the staff of five different state regulatory commissions.
Q. WHAT IS YOUR EDUCATIONAL BACKROUNG?
A. As noted in Exhibit _(JP-Appendix A), I have a B.S. in Engineering and a M. S. in Management.
Q. WHAT IS YOUR PROFESSIONAL BACKGROUND?
A. I am a registered professional engineer. I am registered to practice as a Professional Engineer in the State of Texas, as well as numerous other states.
Q. ON WHOSE BEHALF ARE YOU PROVIDING THIS TESTIMONY?
A. DUCI has been retained by the Florida's Office of Public Counsel ("OPC") and the Florida Industrial Power Users Group ("FIPUG") to address Progress Energy Florida's ("PEF" or the "Company") depreciation aspect of the revenue requirements request pending before the Florida Public Service Commission (the "Commission" or "FPSC") in this docket.

SECTION II. OVERVIEW
Q. WHAT INFORMATION DID YOU REVIEW IN THE COURSE OF PREPARING YOUR TESTIMONY?
A. I reviewed the Company's filing, the transcript of the deposition of Mr. Earl Robinson, the consultant who developed the Company's depreciation study but who did not provide direct testimony, responses to interrogatories and requests to produce documents, and certain documents in the public record, including past orders and decisions of the Commission relating to the treatment of depreciation reserve imbalances, as well as A Survey of Depreciation Statistics presented by the American Gas Association Accounting Committee and the Edison Electric Property Accounting \& Valuation Committee. As of the filing of this testimony, the Company has still not provided the industry survey data in its possession that OPC requested in discovery. When the information is provided, I may have to supplement my testimony to address the information.
Q. WHAT STANDARDS DO YOU APPLY TO YOUR REVIEW OF THE COMPANY'S DEPRECIATION REQUEST?
A. The standard is the establishment of depreciation parameters that most appropriately result in the Company's recovery of invested capital over the useful life of the investment from those customers who receive the benefits of the investment. While there are different aspects reflected within this overall standard, significant components are the matching principle and the related principle of maintaining intergenerational equity or eliminating intergenerational inequities.
Q. PLEASE PROVIDE A BRIEF OVERVIEW OF YOUR TESTIMONY.
A. My testimony addresses two interrelated areas of the overall depreciation process. The first area is the treatment (rather, the lack thereof) of the excess imbalance in the Company's accumulated provision for depreciation ("reserve"), while the second area is the adjustments necessary to correct inappropriate and unsupportable net salvage proposals for 11 transmission and distribution plant accounts within PEF's depreciation study. It should be noted that to the extent that I do not address a method, procedure, technique, proposal, etc. reflected in the Company's request should not be taken as my agreement with such method, procedure, technique, proposal, etc. A brief summary of each area follows.

- Excess Reserve - The Company has identified over a half billion dollars of excess reserves in its filing. Any of the Company's main depreciation parameters (life or salvage) that are further adjusted in this case will directly affect the magnitude of excess reserve imbalance. As I will develop in my testimony, because of the use of inappropriate net salvage factors in its depreciation study, the Company has understated the magnitude of the reserve excess. Once the needed corrections are made, the reserve excess is far greater-approximately $\$ 1.2$ billion. Given the significant magnitude of the excess reserve imbalance (more than a billion dollars, equal to more than 30% of the Company's book reserve) that I have calculated, the Commission's history of amortizing imbalances in the depreciation reserve over periods shorter than the remaining life, and taking into account the need to accomplish
equity to customers on terms that are feasible from the perspective of PEF's financial posture, I recommend that the Commission bifurcate the reserve excess for ratemaking purposes. Specifically, I recommend that the Commission require PEF to amortize the increment of reserve excess that I identified by correcting the inappropriate net salvage factors, plus the surplus balance in the nuclear decommissioning fund, over four years, while leaving undisturbed PEF's proposal to flow the $\$ 504$ million reserve excess identified in the Company's study to customers over the remaining lives of the assets. This bifurcation approach is intended and designed to take an initial, but meaningful, step to timely address the severe intergenerational inequity problem that exists in the form of a reserve excess imbalance that totals more than a billion dollars. The bifurcation approach is very conservative, in that it allows for a substantial amount of the excess reserve imbalance to be amortized over the remaining life of the investment as proposed by the Company. This very conservative approach not only provides the Commission and all parties involved a significant comfort level that during the 4-year period between depreciation studies there will not be a dramatic turnaround in the current excess reserve position, but also should eliminate any concern that the Company might not earn a fair and reasonable return on its investment due to my adjustments. My recommendation is to amortize a total of $\$ 713,970,605$ excess reserve imbalance as of December 31, 2005 associated with my recommended net salvage adjustments plus the Company's $\$ 129,757,072$ excess in its nuclear decommission fund over a 4 year period. This results in a $\$ 210,931,919$ annual reduction to revenue requirements. The second portion of my recommendation is to treat the $\$ 504,049,932$ of excess reserve identified and filed by the Company over the remaining life of the investment. This treatment does not modify the depreciation rates proposed by the Company, even after recognition of the recommended adjustments to net salvage for the 11 mass property accounts discussed below.
- Mass Property Net Salvage - The amount of depreciation expense that depreciation rates are designed to recover is a function of three factors: the investment in the plant, the net amount of any payment the Company receives for the plant upon disposing of it at retirement (gross salvage) and the cost incurred to remove the plant from service (cost of removal). The difference between gross salvage and the cost to remove is referred to as net salvage. If the cost to remove an item of plant is predicted to exceed any salvage payment received, a "negative net salvage" factor will be calculated and incorporated into the analysis as an addition to the plant value that the utility must recover through depreciation rates. If the Company understates the net salvage component (by either
underestimating the gross salvage value or overestimating the cost of removing the plant), the depreciation rate that results will be too high and, if left uncorrected, will cause a reserve excess imbalance to result.

The Company has proposed modifications to the existing mass property net salvage levels for various transmission and distribution plant accounts. Individually and collectively, the Company's narrative and quantitative presentations do not justify the very large negative salvage calculation that leads it to understate its reserve excess. The Company's proposals are often inadequately supported, or are based on trend analyses that in many instances result in theoretically impossible results. The Company's narrative portions of its presentation essentially state that the basis for its proposals is "experience", "expectations", or "anticipations". As will be shown later in my testimony, these statements are basically meaningless generalizations that are either unsupported or are inaccurate. The quantitative presentation of the Company in many instances is so flawed that even the Company's outside depreciation consultant had to "discount" or ignore his results. Even the Company's historical database is somewhat questionable, since it contains negative values where only positive values normally would be expected. These latter unfortunate situations cannot be corrected, given the Company's policy not to retain the underlying supporting documentation past a 5 -year period.

Based on my review of the information and presentation by the Company, I recommend changes to the net salvage proposed by the Company for 11 transmission and distribution accounts. I further recommend that the entire impact of these adjustments be credited back to customers over the 4-year period identified in the above summary addressing the excess reserve adjustment. Alternatively, if these adjustments were to be spread over the remaining life of each investment, it would result in a $\$ 34,541,975$ adjustment to requested depreciation expense as set forth on Exhibit _(JP-1).

Q. BEFORE PROCEEDING TO THE SPECIFICS OF YOUR TWO RECOMMENDED AREAS OF ADJUSTMENTS, DO YOU WISH TO COMMENT ON ANY ASPECTS OF THIS PROCEEDING THAT YOU REGARD AS UNUSUAL?

A. Yes. The Company's presentation of its depreciation request, which reflects over $\$ 300$ million of annual depreciation expense, is outside the norm that I have experienced in my 30 years of depreciation analysis. The Company's presentation of its depreciation request is provided in a depreciation study developed by Mr. Earl Robinson of Weber Frick \& Wilson Division of AUS Consultants - Utility Services, for plant as of the end of December 2003. The data was then updated for projected plant through the end of 2005. While this pro forma update is itself somewhat unusual, the more unusual aspect of this case is that the individual responsible for the development of the depreciation parameters and rates is not a witness. The depreciation study is being sponsored by Company
witnesses Mr. Bazemore and Mr. Portuondo who, according to Mr. Robinson, never met or spoke to Mr. Robinson prior to sponsoring his study and had "absolutely" no input to the preparation of that study. (See Exhibit _(JP-2), Mr. Robinson's deposition at pages 24 and 25). This is significant, since Mr. Robinson admitted during his deposition when questioned regarding someone else's ability to replicate the various parameters and proposals that "certainly another consultant doesn't have my brain cells." (Exhibit _ (JP-2), Mr. Robinson's deposition page 91). In my opinion, it is more than questionable how individuals who are not depreciation experts and who did not participate in the study could understand and support the specific proposals based on the woefully inadequate documentation and presentation of the depreciation study. I must emphasize that I believe the Commission and customers are entitled to a much greater level of qualitative support and specific presentation than has been provided by this Company for its depreciation request. Moreover, one should not confuse the quantity of paper provided that relates to the quantification of the impact of the parameters; with the quality of information that should clearly set forth the support and justification for each selected depreciation parameters.

SECTION III: DEPRECIATION - GENERAL

Q. WHAT IS DEPRECIATION?

A. There are several definitions of depreciation. The most appropriate definition is one from the Federal Energy Regulatory Commission ("FERC"). The FERC definition for depreciation is as follows:
'Depreciation', as applied to depreciable electric plant, means the loss in service value not restored by current maintenance, incurred in connection with the consumption or prospective retirement of electric plant in the course of service from causes which are known to be in current operation and against which the utility is not protected by insurance. Among the causes to be given consideration are wear and tear, decay, action of the elements, and inadequacy, obsolescence, changes in the art, changes in demand and requirements of public authorities.

Q. IS THERE ADDITIONAL CONSIDERATION IN DEPRECIATION BEYOND THE DEFINITIONS?

A. Yes. The definitions provide only a general outline of the overall utility depreciation concept. In order to arrive at a depreciation related revenue requirement in a rate proceeding, a depreciation system must be established.

Q. WHAT IS A DEPRECIATION SYSTEM?

A. A depreciation system constitutes the method, procedure, and technique employed in the development of depreciation rates.

Q. BRIEFLY DESCRIBE WHAT IS MEANT BY METHOD.

A. Method identifies whether a straight-line, liberalized, compound interest, or other type of calculation is being performed. The straight-line method is normally employed for utility depreciation proceedings.
Q. BRIEFLY DESCRIBE WHAT IS MEANT BY PROCEDURE.
A. Procedure identifies a calculation approach or grouping. For example, procedures can reflect the grouping of only a single item, items by vintage (year of addition), items by broad group ("ALG") or total grouping, and equal life groupings. The ALG procedure is used by the vast majority of both electric and gas utilities. The Company's existing rates rely on the ALG procedure.
Q. PLEASE BRIEFLY DESCRIBE WHAT IS MEANT BY TECHNIQUES.
A. There are two main categories of techniques with various sub groupings. The two main categories are the whole life technique and the remaining life technique. The whole life technique simply reflects calculation of a depreciation rate based on the whole life (e.g., a ten year life would result in a ten percent depreciation rate over the life of a plant, or 1 divided by the life) with the amortization of any reserve imbalance over the remaining life or some shorter period of time. Alternatively, the remaining life technique recognizes that depreciation is a forecast or estimation process that is never precisely accurate and requires trueups in order to recover only 100% of what a utility is entitled to recover over the entire life of the investment. Therefore, as time passes, the remaining life technique attempts to periodically identify needed adjustments to the estimates and recover the remaining unrecovered balance over the remaining life or other period of time. Many utilities rely on a remaining life technique in utility rate matters. However, where the identified reserve imbalance is so material that recovery over the remaining life would mistreat a generation of customers, to
avoid inequities while assuring the company recovers the appropriate amount of expense, the true-up frequently is amortized over periods shorter than the remaining life.
Q. DO THE METHODS, PROCEDURES AND TECHNIQUES INTERACT WITH ONE ANOTHER?
A. Yes. Different depreciation rates will result depending on what combination of method, procedure, and technique is employed. The difference will occur even when beginning with the same average service life and net salvage values.

Q. WHAT IS NET SALVAGE?

A. In order to understand the concept of net salvage, it is beneficial to define net salvage and its various components. Net salvage, as defined by the FERC, and in National Association of Regulatory Utility Commissioner's ("NARUC") Uniform System of Accounts ("USOA") is as follows:

Net salvage value means the salvage value of property retired less the cost of removal.

The definitions of salvage and cost of removal as set forth in Title 18 CFR Part 101 and in NARUC USOA are as follows:

Salvage value means the amount received for property retired, less any expenses incurred in connection with the sale or in preparing the property for sale; or, if retained, the amount at which the material recoverable is chargeable to Materials and Supplies, or other appropriate amount.

Cost of removal means the cost of demolishing, dismantling, tearing down or otherwise removing electric plant including the cost of transportation and handling incidental thereto.

Net salvage is simply the value received for the sale, reuse, or reimbursement of retired property (gross salvage) less the cost of retiring such property (cost of removal), whether the retirement reflects demolition of the item of plant or only the accounting transaction for retiring an item of property in place, abandonment.

Due to the manner in which net salvage is calculated (gross salvage minus cost of removal), it can be positive or negative. If gross salvage exceeds cost of removal, the net salvage is positive. On the other hand, if the cost of removal is greater than the gross salvage received in the process of retirement of an item of property, then the resulting net salvage value is negative.

Q. HOW DOES NET SALVAGE IMPACT THE CALCULATION OF DEPRECIATION?

A. The intent of the depreciation process is to allow the Company to recover 100% of investment less net salvage. Therefore, if net salvage is a positive 10%, then the utility should only recover 90% of its investment through annual depreciation charges, under the theory that it will recover the remaining 10% through net salvage at the time the asset retires (e.g., $90 \%+10 \%=100 \%$). Alternatively, if net salvage is a negative 10%, then the utility should be allowed to recover 110% of
its investment through annual depreciation charges so that the negative 10% net salvage that is expected to occur at the end of the property's life will still leave the utility whole (i.e., $110 \%-10 \%=100 \%$).

Q. PLEASE SUMMARIZE THE GENERAL CONCEPT OF DEPRECIATION FOR UTILITIES.

A. The concept of depreciation utilized for utility ratemaking has evolved over time. Currently, there are still many different combinations of methods, procedures, and techniques employed in the development of utility depreciation rates. The issue regarding the correct depreciation system along with the correct net salvage to be employed for utility ratemaking must, among other things, take into account whether the results are in compliance with the requirement of being systematic and rational. In arriving at such conclusion, the regulator must further take into account the quality, quantity, and currentness of data relied upon, as well as the judgment employed by the depreciation analyst. Judgment plays an important role in the establishment of depreciation rates given the subjectivity involved in the various estimation processes. While judgment is critical, that does not mean that an analyst can simply refer to "judgment" as the basis for a proposal without providing meaningful factual support for that "judgment;" nor can "judgment" serve as the basis for ignoring relevant facts. As will be discussed later, Mr. Robinson practices the art of IPSE DIXIT, but fails to provide a logical rationale for his judgment.

SECTION IV. RESERVE IMBALANCE AND CORRECTIVE ACTION

Q. FROM A HIGH LEVEL PERSPECTIVE, WHAT IS DEPRECIATION?

A. Depreciation is the recovery of invested capital over the life of the investment and from those customers that received the benefit of the investment.

Q. IS THE RECOVERY OF CAPITAL THROUGH DEPRECIATION A PRECISE PROCESS?

A. No. The depreciation process for utility ratemaking relies on forecasting the future life and net salvage of the investment. As with any forecasting process, there are inherent inaccuracies that will exist. In recognition of the inherent inaccuracies, depreciation studies should be performed on a regular basis and should incorporate a true-up provision to address recognized excesses or deficiencies that are quantified.
Q. HOW ARE RESERVE EXCESSES OR DEFICIENCIES INDENTIFIED?
A. The normal process is to calculate what is called a theoretical reserve and compare that to the actual book reserve of the utility. The theoretical reserve is the calculated balance that would be in the accumulated provision for depreciation (FERC Account 108) at a point in time if current depreciation parameters (i.e., current life and salvage estimates) had been applied from the outset. The theoretical reserve measures the amount of depreciation expense a company needs to have collected in order to be "on schedule" with respect to recovering its
investment over the life of the depreciable asset. The book reserve reflects what actually has been collected. One can compare the book reserve to the theoretical reserve. If the book reserve is greater than the theoretical reserve, then the company has collected more than is needed at that point in time. The difference is a reserve excess. If the theoretical reserve is greater than the book reserve, the company has under collected to that point, and a reserve deficiency exists.

Abstract

Q. WHAT ARE THE GUIDING PRINCIPLES THAT SHOULD BE CONSIDERED IN DETERMINING THE CAPITAL RECOVERY PATTERN THROUGH DEPRECIATION OVER TIME? A. In my opinion, the overriding considerations of fairness and equity that govern the utility ratemaking process mandate adherence to the matching principle. In other words, the generation of customers that causes an expense or cost to be incurred should be the generation of customers that pays for such expense or cost through the rates charged for usage of the final product, in this case electricity. The matching principle attempts to achieve the goal of eliminating intergenerational inequities. Intergenerational inequities occur when one set or generation of customers pays too much or too little for its use of the investment necessary to provide electricity, and transfers either an undue advantage or undue burden to some future set of customers.

Q. HAS THIS COMMISSION HISTORICALLY RECOGNIZED THE MATCHING PRINCIPLE WHEN IT COMES TO CAPITAL RECOVERY THROUGH DEPRECIATION?
A. Yes. When capital recovery becomes materially imbalanced between generations of customers, as measured by the difference between the theoretical and book reserve, there are two normal industry options employed. The two options for truing-up or correcting the imbalance are (1) to amortize the calculated differences over a short period of time, or (2) to simply implement new depreciation rates based on the remaining life technique where the recovery period is the remaining life. This Commission has established a long and identifiable policy of correcting material reserve imbalances by (1) reserve transfers, (2) one time reserve adjustments based on changes to revenue requirement areas other than depreciation, and (3) amortizing the reserve differences over periods much shorter than the remaining life of the investment. In addition to these practices, this Commission recently approved a settlement in PEF's last rate case, Docket No. 000824-EI. In part, that settlement allowed PEF to reduce depreciation expense by $\$ 250$ million during its term and instructed PEF as to how it should allocate the corresponding reduction to the reserve among its various accounts. Rigid adherence to "remaining life" concepts would not have permitted this flexibility. (See Order No. PSC-02-0655-AS-EI, paragraph 10).
Q. HOW HAVE YOU NORMALLY HANDLED RESERVE IMBALANCE SITUATIONS LIKE THIS?
A. I do not recall ever having encountered an identified reserve imbalance of this magnitude. Normally utilities perform frequent depreciation studies and implement the results so as not to get too far out of line with current depreciation expectations. In this case, the Company identified more than half a billion dollars of excess reserve based on its proposed parameters. Rather than acting on such a significant level of excess with an immediate and meaningful response, the Company proposes "business as usual." That approach would attempt to correct the situation over the average 19.25 -year remaining life of all its investment. Particularly in view of the fact that, as I will demonstrate later, the magnitude of the reserve excess is far greater than the amount the Company identified, I do not believe this is an appropriate reaction to the facts and circumstance presented in this case. The magnitude of the intergenerational inequity compels an immediate and sizeable departure from the remaining life approach to mitigate the degree of unfairness that otherwise would be imposed on current customers. It is also worth noting that the Company's proposed "business as usual" approach differs from the settlement in the last case. In that settlement, all parties agreed to allow PEF to reduce depreciation expense during the term of the stipulation. Whether or not it was intended as a remedial step at the time, the measure prevented PEF's current reserve excess imbalance from being even more severe.

Q. HOW DOES THE EXCESS LEVEL OF RESERVE AFFECT REVENUE

 REQUIREMENTS?A. The effect on revenue requirements of the excess reserve imbalance is significant no matter the approach undertaken to correct this situation. The shorter the period utilized to return the excess to customers, the greater the revenue requirement impact. For example, the Company-identified $\$ 504$ million excess reserve is already reflected in the Company's filing and is partially responsible for the Company's recommended decrease in depreciation expense of $\$ 46$ million annually. (See Exhibit _ (JP-3), Company's depreciation study at page 2-7, column n). However, had the Company's calculated excess reserve been credited back to current customers in a period shorter than the remaining life utilized by the Company in its calculation, the overall revenue requirement impact would be a decrease in depreciation expense greater than the $\$ 46$ million amount proposed by PEF. In fact, had the Company utilized a 4 -year amortization period, rather than the remaining life period for the return of excess reserve to customers, it would have resulted in an additional $\$ 80$ million annual revenue requirement reduction during the 4 -year period ($\$ 504$ million divided by 4 less $\$ 46$ million). It must be noted that the above example does not take into account the additional impact that results from the necessary adjustments to net salvage parameters that I recommend in the net salvage portion of my testimony.
Q. CAN YOU PROVIDE EXAMPLES OF THE COMMISSION'S LONG AND IDENTIFIABLE POLICIES TO WHICH YOU REFER?
A. Yes. In the area of implementing corrective reserve transferences, some examples of this Commission's previous actions are Gulf Power Company in Docket No.

880053-EI and Marianna Electric Division by Florida Public Utilities Company in Docket No. $010669-$ EI. These examples occurred during the time frame of the 1980s through the early 2000s. (See Order Nos.19901, PSC-01-2270-PAA-EI). An example of a Commission action to change the depreciation reserve due to revenue requirements from an area other than depreciation is Tampa Electric Company in Docket No. 860868-EI. (See Order No. 19438). Finally, examples of depreciation reserve differences that the Commission required to be amortized over periods shorter than the average remaining life are General Telephone Co. in Docket No. 840049-TL, City Gas Company in Docket No. 890203-GU, and Florida Power \& Light Company in Docket No. 970410-EI. (See Order Nos. 14929, 22115, PSC-97-0499-FIF-EI).
Q. WHAT HAS THE COMMISSION STATED AS ITS UNDERLYING POLICY OR BASIS WHEN ADDRESSING THE TREATMENT OF RESERVE DIFFERENCES OR INTERGENERATIONAL INEQUITIES?
A. The Commission has adopted the position that depreciation reserve differences "should be recovered as fast as possible, unless such recovery prevents the Company from earning a fair and reasonable return on its investments." (Emphasis added) (See Order No. PSC-93-1839-FOF-EI). In another case, the Commission adopted a one-year write-off for a portion of a utility's reserve deficit by stating that "we believe that it [the deficit] should be written off as quickly as possible." (Emphasis added) (See Order No. 13918). In yet another case, the Commission addressed the fairness issue as it relates to intergenerational
inequity. In establishing a funded nuclear decommissioning reserve the Commission stated "[f]airness dictates that those receiving services and imposing costs be obligated to pay those costs, instead of placing the risk of recovery on other ratepayers who may not get service from the nuclear units." It went on to state, "that a further delay in changing rates to recognize the responsibility of current ratepayers to pay the full cost of operating the nuclear generators simply continued an already unfair situation. We determined that it was unfair that current ratepayers were not paying their full share and could therefore properly change FP\&L's and FPC's rates to alleviate unfair, unjust and unreasonable rates." (Emphasis added). (See Order No. 13427).
Q. IN THE CASES YOU CITED, DID THE AMOUNT OF THE RESERVE IMBALANCE THAT THE COMMISSION DECIDED TO CORRECT OVER A PERIOD SHORTER THAN THE REMAINING LIFE APPROACH A BILLION DOLLARS?
A. No.
Q. SHOULD THE CORRECTIVE TREATMENT OF A RESERVE IMBALANCE DIFFER DEPENDING ON WHETHER IT IS MATERIAL EXCESS OR A MATERIAL DEFICIENCY?
A. No. The rationale to be applied to either scenario is identical. In this regard, it is important to note that under the depreciation process the utility will not be
"harmed" by a corrective adjustment. The matter is one of the timing of recovery. On the other hand, imbalances have prejudicial impacts on certain customers.

Q. WHY DO YOU REFER TO MATERIAL IMBALANCES RATHER THAN IMBALANCES IN GENERAL?

A. Any process that involves estimates will result in actual values that differ from the predicted values. As previously noted, I do not believe most utilities allow identified imbalances of this magnitude to be created. Generally speaking, by revisiting the reserve situation with a comprehensive study every few years, one would reasonably expect the variance between the theoretical reserve and the book reserve to stay within reasonable bounds. When reserve imbalances occur, they are normally treated through the remaining life process. Not every discrepancy between theoretical and book reserves is so large as to require a departure from the method of recalculating the accrual that will retire the asset over its remaining life. However, the greater the disparity in the reserve, the greater the level of intergenerational inequity that exists. The greater the level of intergenerational inequity, the more compelling becomes the corresponding rationale for addressing the imbalance over a shorter period.
Q. IS THERE ANY REASONABLE QUESTION IN THIS CASE WHETHER A SIGNIFICANT OR MATERIAL EXCESS IN THE DEPRECIATION RESERVE EXISTS?

Abstract

A. In my view, there is no room for argument on this question. The Company identifies a $\$ 504$ million excess in its depreciation study and an additional $\$ 130$ million excess in its nuclear decommissioning fund. (See Exhibit _ (JP-4)). While the Company's depreciation consultant is willing only to characterize the $\$ 504$ million excess identified by his study as "not tiny, and its not huge." (See transcript of Mr. Earl Robinson at page 62, Exhibit _ (JP-2)). I submit that this level of excess must be considered material and significant by any reasonable measuring index. Moreover, the $\$ 504$ million size of the reserve excess reported in PEF's depreciation study has been artificially understated by the effect of inappropriate net salvage estimates for PEF's mass property accounts. When restated to adjust for the distortions created by the inappropriate net salvage assumptions, the reserve excess is not $\$ 504$ million, but $\$ 1.2$ billion. The reserve excess amounts to 30% of PEF's book reserve. The magnitude of the excess is so huge, and the prejudicial impact of the imbalance on current customers is so great, that fairness compels a departure from PEF's "remaining life" approach so that current customers do not continue to subsidize future customers to such a large extent.

Q. ARE YOU STATING THAT THE COMPANY INTENTIONALLY ACCELERATED THE RECOVERY OF CAPITAL BY EMPLOYING OVERLY AGGRESSIVE DEPRECIATION PARAMETERS IN THE PAST?
A. No, in part because I did not investigate the prior depreciation requests to the point where I could determine if the depreciation parameters contained therein
could be characterized as being too aggressive at those periods in the past. The fact is that the prior depreciation parameters and actual historical events have resulted in the material excess imbalance that exists today. While it would be interesting to know the cause of each component of the material imbalance from an academic standpoint, the need to correct the imbalance situation now is not dependent on what caused the material excess reserve position. In fact, while some might feel the need to know what precisely caused the material imbalance when determining the corrective option (shorter amortization period or remaining life) to employ, I submit that the customer who has paid more than his cost of service in the past cares less about the factors that led to the over collection and more about the action taken to correct the situation. Moreover, the matching principle is indifferent as to the cause of the intergenerational inequity. The real issue, as previously recognized and acted on by this Commission in the context of reserve deficiencies, is the elimination of the (excess) imbalance "as fast as possible" as previously stated by the FPSC. Finally, while it is easy to identify that a sizable component of the excess reserve is due to the longer expected life of the Company's nuclear unit, this does not account for the majority of the excess reserve that exists.
Q. DOES PEF'S DEPRECIATION CONSULTANT BELIEVE THAT IT IS IMPORTANT TO KNOW THE REASONS FOR THE IMBALANCE?
A. Yes. He stated in his deposition, "you've got to understand part of the reasons why those variances exist." (See transcript of Mr. Robinson's deposition at page

63, Exhibit _ (JP-2)). He bases his reasoning on his belief that the theoretical reserve calculation "makes an assumption that the current [depreciation] estimates have always been in place, and that's not true." (See Exhibit _ (JP-2), Mr. Robinson's deposition at page 50). Alluding to the fact that a portion of the imbalance results from life extensions, he said, "if you're going to get that additional life, you're going to end up spending a whole bunch more money down the road to get those extra lives." (See Exhibit _ (JP-2), Mr. Robinson's deposition at page 63).

Q. DO YOU AGREE WITH PEF'S DEPRECIATION CONSULTANT ON THIS POINT?

A. No. First, while the extension of the nuclear unit life has a significant impact on the imbalance, so does the impact of net salvage. In fact, when the Company's excessive proposals for transmission and distribution plant net salvage are corrected, the imbalance becomes noticeably more attributable to net salvage than to life considerations. Net salvage considerations have nothing to do with "spending a whole bunch more money down the road." Even if some additional funds are required to obtain longer lives in the future, those costs, if they in fact do occur, will be dealt with appropriately in the future - and by the customers who will benefit from such expenditures. In fact, this is the exact position already reflected in the current depreciation study and affirmed by Mr. Robinson in his deposition where he states, "I am not saying that we should include future additions, which we have not." (See Exhibit _ (JP-2), Mr. Robinson's deposition
age page 67). In other words, Mr. Robinson contradicted his previously stated belief that one would have to know or understand the reasons for the reserve imbalance. Moreover, if at some potential future period additional funds are required to obtain a longer life, then it must also be recognized that the plant that has lived that long of a period will most likely be heavily depreciated and require a small level of return compared to current levels. That simply means that while future customers may have to pay a high depreciation expense for the new additions necessary to obtain a longer life for the original asset, the older addition will have a much lower annual depreciation level and a much lower return component, more than adequate "balance" if some form of balance is required.
Q. YOU HAVE USED THE TERM "MATERIAL IMBALANCE" SEVERAL TIMES. IS THERE A PRECISE POINT AT WHICH THE IMBALANCE BECOMES MATERIAL?
A. No, not really. However, I am aware of one jurisdiction that has quantified a 5% difference between the theoretical and book reserve as the point at which a correction process will be implemented. Moreover, Mr. Robinson, the Company's depreciation consultant, stated in his deposition that "to the extent that we've increased or we've extended life on production plants, on Crystal River, that in itself made a significant difference in the theoretical versus the book [reserve]." (Emphasis added) (See Exhibit _ (JP-2), Mr. Robinson's deposition at page 63) The imbalance for nuclear plant identified by the Company is 29%. (See PEF's 2003 depreciation study at page 2-65, Exhibit _ (JP-3)). Accordingly,
while we don't know the minimum point at which Mr. Robinson would concede a disparity is "significant", we know he thinks a differential of 29% meets his criteria.
Q. WHAT PERCENTAGE LEVEL OF RESERVE IMBALANCE EXISTS FOR PEF?
A. The Company admits to a 13% excess reserve imbalance as of the end of 2005 . (See Exhibit _(JP-4) response to Citizens-204). This 13% level is prior to any impact associated with the $\$ 130$ million excess reserve position in the Company's nuclear decommissioning fund or the additional $\$ 714$ million of excess reserve based on my recommended net salvage adjustments to transmission and distribution plant. Recognition of only the additional $\$ 714$ million amount would drive the excess to over 30%, or over $\$ 1.2$ billion.
Q. HOW HAS THE COMPANY PROPOSED TO TREAT ITS EXCESS DEPRECIATION RESERVE IMBALANCE?
A. The Company proposes to remain silent as it pertains to the significant excess reserve imbalance. It proposes simply to return the excess to customers over the remaining life of the investment.
Q. WHAT REMAINING LIFE PERIOD IS REFLECTED IN THE COMPANY'S DEPRECIATION STUDY?
A. The Company's depreciation study reflects an overall 19.25-year remaining life for its entire remaining unrecovered depreciable investment.
Q. WHAT IS THE BASIS FOR THE COMPANY'S TREATMENT OF THIS MATTER?
A. The Company's depreciation study is silent on this matter. While we do not know with certainty if the Company made a conscious decision in establishing its official position, Mr. Robinson through the depreciation study employed the remaining life technique. In his deposition, Mr. Robinson said, "I have been a staunch supporter of remaining life depreciation for many years. Could there be a situation where some remedy would be required to recover investments over something other than remaining life, certainly that's something you would have to look at on a case-by-case basis, but I think it would have to be a fairly severe circumstance." (Emphasis added) (Exhibit _ (JP-2), Mr. Robinson's deposition transcript at pages 49-50). It is clear that Mr. Robinson's threshold for employing something other than the remaining life is rather high and maybe not obtainable.
Q. DOES THIS POSITION COMPORT WITH COMMISSION PRECIDENT?
A. As previously noted, the Commission often has employed the recovery of a reserve imbalance over periods shorter than the remaining life.
Q. HAS THE COMPANY'S DEPRECIATION EXPERT PREVIOUSLY TESTIFIED IN FLORIDA?
A. No.
Q. DOES THIS POSITION TAKEN BY PEF ADEQUATELY ADDRESS THE INTERGENERATIONAL NNEQUITY THAT EXISTS FOR CURRENT CUSTOMERS?
A. No. For example, the 20 -year change in the number of residential customers on an actual and forecasted basis, as set forth on page 2-4 of the Company's Ten-Year Site Plan dated March 31, 2003 is 42%. (See Exhibit _(JP-5)). While this is a sizeable change in the customer base, it tells only part of the story. The 42% growth is a net number and does not identify how many customers left or will leave the system. Thus the change in customers corresponding to the remaining life period employed by PEF for the return to customers of its prior acceleration of depreciation expense, at least for the residential class, could easily be over 50%. I submit that the current intergenerational inequity that exists due to the current excess of the depreciation reserve created by prior accelerated levels of depreciation (whether intentional or not) cannot reasonably be addressed or rectified by relying on a 19.25 -year remaining life period.
Q. DOES RELIANCE BY SOME OTHER JURISDICTION ON REMAINING LIFE TO ADDRESS RESERVE IMBALANCES DIMINISH THE NEED TO FOLLOW FPSC'S LONG AND IDENTIFIABLE PRECIDENT?
A. No. In my opinion it would be unfair to customers to deny them the same treatment afforded utilities by the FPSC when the situation was reversed.

Inconsistent application of concepts in the rate setting process causes uncertainty. Needless uncertainty in the ratemaking process is not in the public interest and can result in higher rate case expenses and other higher costs in the future.

Q. HAS MR. ROBINSON RAISED CONCERNS REGARDING A POTENTIAL TURNAROUND OF THE EXCESS RESEVE?

A. Yes. Mr. Robinson attempts to place the comparison of the theoretical reserve to the actual book reserve as something that is akin to painting "a very vague picture." He basis his position on the belief that the reserve position could change "because one day, today you could have no deficiency, and tomorrow after you finish the [depreciation] study, you could have a large deficiency." (See Exhibit (JP-2), Mr. Robinson's deposition at page 64). Mr. Robinson even went so far as to present a hypothetical example where plant could increase by 50% in the year after a depreciation study and the new addition would have a short remaining life. By the time a new study would be performed, the reserve would turn around. (See Exhibit _(JP-2), Mr. Robinson's deposition at page 75). It would take an extreme situation to cause the excess reserve imbalance to turn around quickly.
Q. HOW DO YOU ADDRESS THE COMPANY'S DEPRECIATION CONSULTANT'S CONCERN THAT DEVIATION FROM THE REMAINING LIFE AS THE TRUE-UP PERIOD LEAVES EVERYONE SUBJECT TO A REVERSAL OF THE EXCESS RESERVE POSITION SOMETIME IN THE FUTURE?
A. Recall that, as adjusted to address inappropriate salvage factors, the reserve excess is more than a billion dollars, and that if my recommendation is adopted PEF will remain "over funded" by $\$ 504$ million. Consider also that PEF will submit a new depreciation study within four years. Because I have purposely tempered my recommendation to be conservative, under the circumstances I believe there is no realistic scenario under which PEF could swing to a reserve deficiency prior to the next study. Certainly, that remote prospect is more than outweighed by the prejudice to current customers if the Commission were to take no action to address the severe imbalance more rapidly than the remaining lives of the assets. I would say there is no realistic basis or possibility that the excess reserve would turnaround and become a deficiency by the time the next depreciation study is completed in four years.

Even if a reversal were to occur, I do not believe it could be of a significant level, for example up to the $\$ 504$ million excess currently identified in PEF's depreciation study. I believe this to be the situation given that the Company is requesting a little over $\$ 300$ million of annual depreciation and the Company's proposed reduction in depreciation expenses is $\$ 46$ million, or about 13%. If one assumes that the future will be as the Company proposes in this case and depreciation could be off by 13% per year, then the under-recovery during the next four years would be approximately $\$ 160$ million. This would represent only about a third of what the current level of the reserve excess that I have recommended to be left in place. Thus, Mr. Robinson's hypothesizing of a 50%
increase in plant immediately after this case ends with a short remaining life that might result in a conclusion that "your whole reserve comparison scenario [sizeable excess reserve imbalance] would just totally change" is so far beyond the realm of reality that it represents nothing more than an attempt to deny the obvious. (See Exhibit _(JP-2), Mr. Robinson's deposition at page 75).

Q. WHAT IS YOUR SPECIFIC PROPOSAL REGARDING THE TREATMENT OF THE RESERVE EXCESS?

A. I recommend an approach that should satisfy all concerns if my recommended adjustments to mass property net salvage are adopted. Under the scenario I recommend, the $\$ 714$ million plus of additional excess reserves associated with my adjustments to net salvage parameters, plus the nuclear decommissioning excess reserve of $\$ 130$ million, would be returned to customers over the next 4years. The $\$ 504$ million of excess reserve identified by the Company in its own study can be returned to customers over the remaining life as it proposed. This latter aspect provides a safety cushion for those that may believe that one is necessary, while providing the most representative generation of customers available the return of a significant portion of their prior overpaid depreciation expense. This approach addresses the matching principle and its related intergenerational inequity problem, but not to the degree that this Commission has previously found appropriate in other cases. This approach also takes into account the need to gauge the impact of a shorter amortization period so as to protect the financial integrity of the Company. I have discussed the impact of my recommended adjustment with OPC's financial and accounting witnesses, who confirmed that PEF could implement my recommendation and maintain coverage ratios adequate to access the capital markets on reasonable terms and maintain an appropriate capital structure. Alternatively, if the Commission elects not to adopt my recommended net salvage adjustments, then fairness and equity demands that the $\$ 504$ million reserve excess identified by PEF plus the $\$ 129$ million excess in the nuclear decommissioning fund be amortized back to customers over a 4 -year period. At that point, a clean slate will have been established and future customers will be charged based on the then best estimate of depreciation parameters.

Q. WHY DID YOU CHOOSE A 4-YEAR AMORTIZATION PERIOD?

A. The 4 -year period is not only within the range of periods previously adopted by this Commission for other cases where a reserve deficiency was present; it also corrects the intergenerational situation in an effective and manageable manner. Further, the 4 -year period provides sufficient time for the Company to gain additional experience and perform and present a new, complete and welldocumented depreciation study. Finally, one must always recognize that the ratemaking process already disadvantages current customers in the intergenerational inequity scenario. Remember, those generations of customers nearer to the end of the useful life of an investment pay much less for service than do customers at the beginning of the useful life. While future customers will not see a difference in the actual product (i.e., a kwh of energy or a Kw of capacity), a
different price will be paid. Payment for electricity near the end of the useful life of investment is associated with heavily depreciated investment. Recognition of heavily depreciated investment results in a much smaller return on investment being required. It is inappropriate to violate the strong and identifiable precedent employed by this Commission in the past by penalizing current customers for the benefit of future customers.
Q. WHAT IS THE IMPACT ON REVENUE REQUIREMENTS IF YOUR BIFURCATED APPROACH TO THE \$1.2 BILLION RESERVE ACCESS IS ADOPTED?
A. Allowing the Company to retain the remaining life approach associated with the $\$ 504$ million of excess reserve it reflected in its filing and depreciation request results in no additional impact on its requested revenue requirements one way or the other. Amortizing the $\$ 714$ million excess reserve associated with my recommended changes to mass property net salvage plus the $\$ 130$ million of the excess in the nuclear decommissioning fund results in a $\$ 211$ million reduction in depreciation expense, and a corresponding reduction of that amount in the Company's overall revenue requirements. Note that the amortization would not completely offset the $\$ 300$ million of depreciation expense requested by PEF.

A. General

Q. WHAT PERIOD ASSOCIATED WITH ITS NET SALVAGE STUDY HAS THE COMPANY CHOSEN TO ANALYZE?
A. The Company has analyzed a 29-year period, 1975 through 2003.
Q. ON AN OVERALL BASIS, WHAT IS THE COMPANY'S POSITION WITH RESPECT TO THE NET SALVAGE ASPECT OF ITS DEPRECIATION STUDY?
A. The Company predicts that it will incur negative net salvage of $\$ 1.4$ billion. In other words, the cost to remove the plant will exceed its salvage value by that amount. This means that PEF contends it must collect $\$ 1.4$ billion, or 16%, more than its original investment in plant to recoup its capital investment.
Q. HAVE YOU REVIEWED ALL THE INFORMATION PRESENTED BY THE COMPANY IN SUPPORT OF ITS NET SALVAGE REQUEST?
A. Yes. I reviewed the Company's study and its answers and responses to OPC's discovery requests. In addition, OPC took the deposition of Mr. Robinson, the consultant who prepared the depreciation study, during which Mr. Robinson was asked to describe in detail all of the information he considered and the procedure he followed in arriving at his positions.
Q. WHAT DO YOU CONCLUDE REGARDING THE ADEQUACY OF THE INFORMATION TO SUPPORT PEF'S POSITION ON NET SALVAGE?
A. For the reasons I will develop in detail below, the information provided by the Company is inadequate to support or demonstrate the appropriateness of its request for an overall negative $\$ 1.4$ billion or negative 16% net salvage for plant in service forecasted as of December 31, 2005. (These amounts are exclusive of decommissioning activity related accounts).
Q. WHAT PROCESS DID PEF EMPLOY WHEN ESTABLISHING ITS NET SALVAGE PARAMETERS?
A. The only indication within the depreciation study of the process employed is very limited narratives along with 3 to 4 pages of historical data and limited numerical analyses for each account in the filed study. This is found in Sections 4 and 8 of the Company's depreciation study.

The historical data is listed both on an annual basis and on a rolling 3-year average or band basis. The last numerical page for each account sets forth the 29year overall average for gross salvage, cost of removal and net salvage. Also set forth on the last numerical page for each account are two forecasts, one for gross salvage and the other for cost of removal. The consultant predicted end-of-life gross salvage by means of a linear trend analysis. He estimated the cost of removal by applying an inflation factor to current levels. Both of these tools are suspect.

Q. WHY ARE THEY SUSPECT?

A. To begin, one must have in mind the definition of gross salvage. It is the payment, if any, the Company will receive for the asset when it retires and disposes of the asset. By definition, the minimum possible value for gross salvage is zero. Yet, Mr. Robinson's linear trend regression frequently arrived at negative gross salvage values-a result that is theoretically impossible, and that should alert one to flaws in the assumptions or methodology employed.

With respect to the cost of removal, Mr. Robinson inflated current costs over time by an assumed annual inflation factor of 2.75%. However, he failed, among other things, to consider the implications of the mismatch that results when one requires cost of removal expressed in future dollars to be collected from current customers in current dollars. His methodology produced removal costs so overstated that he frequently was forced to ignore or mentally "discount" the results when arriving at individual recommendations. (See Exhibit_(JP-2), Mr. Robinson deposition at page 128).

Therefore, it appears that the basis for the final depreciation parameter proposals lies in the narrative portion of the depreciation study. I must emphasis that I use the word "appears" given the failure by the Company in the depreciation study, the testimony, and the responses to interrogatories and requests to produce documents to identify and present with any degree of specificity how the final
proposal was determined. The narrative basically alludes to "Company expectation," "the Company's overall experience", "anticipated level of increase of retirement costs", or inconsistent reliance on varying historical data points. In other words, these statements or bases for the Company's proposal amount to little more than vague generalities that could yield basically any value the deprecation analyst desires.
Q. TO WHICH ACCOUNTS ARE YOU RECOMMENDING A CHANGE DUE TO YOUR NET SALVAGE ANALYSES?
A. As set forth on Exhibit _(JP-6), I am recommending a change to 11 of the Company's transmission and distribution accounts. These accounts comprise over 88% of PEF's transmission and distribution plant investment as of December 31, 2005.
Q. WHAT ARE THE MAJOR FLAWS IN THE COMPANY'S NET SALVAGE ANALYSIS FOR TRANSMISSION AND DISTRIBUTION PLANT?
A. The Company's transmission and distribution related net salvage analysis is fatally flawed due to numerous and significant problems. The major problems are identified below:

- Linear Trend Analysis for Gross Salvage Projections - One of the major mathematical exercises performed by the Company for each account is a linear trend of the historical gross salvage. First, it must be noted that the regression analysis of gross salvage percent
relationships does not recognize the materiality of the data point in any given year. In other words, a $\$ 100$ retirement with a corresponding $\$ 1$ gross salvage that results in a 1% level of gross salvage would be given the same weight in the regression analysis as a $\$ 1$ million retirement with a $\$ 500,000$ gross salvage that results in a 50% gross salvage level. Notwithstanding this problem with the regression analysis, Mr. Robinson should have recognized the fallacy of this model, since it often produced negative values. Negative values are theoretically impossible for gross salvage! Unfortunately, Mr. Robinson utilized a method that produced theoretically impossible negative gross salvage values in forecasting his total "forecasted" net salvage values, and then basically discarded the results when determining his recommendation. Mr. Robinson's reliance on his gross salvage model as a starting point to then discount values simply distorted the entire process.
- Inflation Based Cost of Removal Forecast - Mr. Robinson relies on a forecast model for cost of removal that recognizes only inflation. This model is also fatally flawed since it assumes inflation is the only factor to consider in determining future cost of removal. Given that the historical level of cost of removal is part of the starting point of this calculation, Mr. Robinson should have realized that many factors other than inflation affected the
historical level. In fact, if Mr. Robinson's overall model had any validity it would be easy to plot the historical cost of removal in relation to its age of the retirement and see a constantly upward sloping relationship reflecting the direct impact of inflation. In Exhibit _(JP-7), I have graphed the relationship for account 364 . As can be seen in this graph, as the age of the Company's actual data increases, the level of cost of removal does not increase as Mr . Robinson assumes. Simply put, Mr. Robinson has made an invalid assumption in his model that distorts his results. This approach does not produce credible results, even to the point where Mr . Robinson basically must discount or ignore them.
- Heavy Discounting of Historical Gross Salvage - Mr. Robinson calculates historical gross salvage averages for the database on which he relies. In many instances Mr. Robinson finds the high levels of historical gross salvage unacceptable. He claims that such amounts can only be attributed to reimbursements for relocation of investment or items returned to stores (reuse). He therefore "heavily discounts" these values-- but on an inconsistent basis. Mr. Robinson's analysis is not based on any investigation of the underlying transactions to determine the validity of his actions. Had he undertaken an investigation, he may have found that he has in effect doubly discounted the impact of reimbursements and items returned to stores. He did not identify the level of annual
retirements attributable to items returned to stores or associated with reimbursements, nor did he determine the corresponding values obtained for such transactions. In other words, Mr. Robinson does not know whether the historical positive levels of net salvage may only reflect a small level of retirement activity associated with high levels of reimbursements or returns to stores, or vice versa. The historical levels of gross salvage may be very indicative of what can be expected in the future. Without the benefit of adequate investigation, his decisions to heavily discount these transactions in his selection process can very well result in a double discounting for the same event.
- Failure to Explain Significant Differences from PEF's 2002 Study The Company performed a depreciation study on plant as of 2002; Mr. Robinson's study was performed on data that included only one more year. Mr. Robinson has proposed significant changes for many depreciation parameters without any explanation as to what caused such changes. In fact, it appears Mr. Robinson was unaware that a study one year prior to his analysis had been performed. (See Exhibit _ (JP-2), Mr. Robinson's deposition at page 29). Such failure to address Company specific data and recommendations undermines the credibility of Mr. Robinson's proposals. For example, in Account 364, the Company recommended a negative 25% net salvage in its 2002 depreciation
study, the same value as the net salvage level that is built into PEF's existing depreciation rates. Yet, in this proceeding Mr. Robinson proposes a negative 90% net salvage for this account. This swing of 65 percentage points, applied to an account approaching half a billion dollars in investment, has the effect of reducing the excess reserve position that the Company would otherwise calculate by over $\$ 300$ million as compared to the reserve associated with the existing net salvage value and that contained in the 2002 study. This significant modification to the Company's reserve, and in effect depreciation expense, deserves detailed and significant investigation. The need for detailed investigation is especially important given the fact that in 2003-the one additional year of data that Mr. Robinson relied upon compared to the Company's 2002 study-the data produced a positive 193% net salvage for Account 364. In other words, there was a dramatic increase in the percent level of positive net salvage in the one additional year and Mr. Robinson dramatically reduced net salvage (by increasing the negativity of the net salvage factor). This is one example among several in which "judgment" appears to conflict with, rather than apply, facts and logic.
- Failure to Perform Check of Reasonableness - PEF's depreciation study developed by Mr. Robinson appears to be basically silent regarding employing a sanity check or check of reasonableness for
his proposals compared to industry data. This failure to perform such a check of reasonableness is contrary to Mr. Robinson's stated position in testimony before another state regulatory agency, and is inconsistent with normal practices. (See Exhibit _ (JP-8)). For example, if Mr. Robinson had performed the sanity check or check for reasonableness for his negative 90% proposal for Account 364 - Distribution Poles, Towers \& Fixtures, he would have found that his proposal was 2 to 3 times higher (that is, more negative) than the industry average. Had he performed such a check he might have decided to investigate further and learn the Company's 2002 study had proposed only a negative 25% factor. Such additional information, coupled with the 2003 positive values, may have prevented him from making such a dramatically abrupt and inappropriate proposal.
- Anomalous Data - The Company's historical data contains atypical or unusual values. While it appears from the statements made during Mr. Robinson's deposition that he was concerned regarding some of the values, he did not adequately investigate or receive information from the Company that would explain what caused the data he has admitted are anomalous or "bogus". (See Exhibit _ (JP-2), Mr. Robinson's deposition at pages 141 and 142 for examples). Unfortunately, Mr. Robinson included such data in his analysis, which in part helps explain why modifications are
required in order to present more appropriate values for ratemaking purposes.
- Inconsistent Approach - While Mr. Robinson claimed during his deposition that he had performed the same sequence of events in developing his net salvage proposals, he failed to note that within the sequence he inconsistently picks and chooses values. For example, in Account 353 - Transmission Station Equipment, Mr. Robinson relied, in part, on his review of historical data, zeroing in on the fact that the positive net salvage declined and became "negative during more recent years." (See Exhibit _ (JP-3), page 4-26 of the 2003 depreciation study). This is in part why he ignored the historical 32% positive net salvage and proposed a zero level. Mr. Robinson relied on the two negative net salvage values that occurred in two recent years out of 29 years of historical data. He relied on these data points even though he agreed the two negative values were potentially anomalous and reflected very small negative values that were subsequently followed by a significant positive value in 2003. (See Exhibit _ (JP-2), Mr. Robinson's deposition at page 106). The very small values in 2001 and 2002 are driven by the $\$ 7,211.70$ and $\$ 0.00$ gross salvage amounts, respectively, compared to the $\$ 694,682.13$ annual average over the database without those two years. (See Exhibit (JP-3), pages 8-70, 8-71, and 8-73 of the 2003 depreciation study).

This approach of zeroing in on one or two years of data within his database is contrary to his statement in his deposition. There he stated that he would "look what those [historical data] produced overall and make my assessment from there, rather than trying to pinpoint one or two items on the page, knowing that there's a whole range of data there." (Emphasis added). (See Mr. Robinson's deposition transcript at page 120 at Exhibit _(JP-2)). In effect, what Mr. Robinson has presented is a consistent process that establishes a wide range of potential values without any specifics as to why he chose his ultimate proposal. This process of not documenting the Company's basis, allows for an arbitrary discounting of data. When Mr. Robinson was asked in his depositions what basis he used to discount values, he states he had no specific basis. (See Exhibit __ (JP-2), Mr. Robinson's deposition at page 128). He further states he had no consistent or identifiable basis that he applied to each account, thus allowing him to choose and be inconsistent between accounts. (See Exhibit _(JP-2), Mr. Robinson's deposition at page 128). While a depreciation analyst must have some degree of flexibility in the establishment of parameters, the different approaches and inconsistent reliance on the data within a process should be reasonably explained. Mr. Robinson's study is devoid of such meaningful explanation.

- Accounting for Replacement Activity - The Company has not identified, nor substantiated, those dollars that have been allocated between the cost of a new replacement addition and the cost or removal associated with the retired plant. The Company's apparent arbitrary and unsubstantiated level of allocation cannot be allowed to buttress an increase in cost of removal absent a clear and adequate demonstration as to the appropriate and necessary process assumptions, and consideration employed by the Company.

These major problems, along with others, permeate Mr. Robinson's selection process.

B. Account Specific Adjustments

a. Account 353.1 - Transmission Station Equipment
Q. WHAT HAS THE COMPANY PROPOSED FOR NET SALVAGE IN ACCOUNT 353.1 - TRANSMISSION STATION EQUIPMENT?
A. The Company has proposed a 0% level of net salvage for its investment in Account 353.1. This is a decrease of 10 percentage points from the existing $+10 \%$ net salvage (that is, a higher costs to customers). The Company's basis for its proposal is its claim that net salvage has "varied widely over the years with positive salvage declining and even becoming negative during more recent years." The Company further states that it estimates the future net salvage will be a
negative 50% "based upon the recent experience and anticipated increased cost of removal in the future." (See Exhibit _(JP-3), the 2003 depreciation study at page 4-26).

Q. DO YOU AGREE WITH THE COMPANY'S CONCLUSION?

A. No. The Company's basis for a 0% net salvage is misleading. First, the referenced recent negative values occurred only twice in the past 29 years, and these occurrences coincide with very small dollar amounts. Next, none of the 3year bands presented by PEF were negative, and the lowest 3-year band was still a positive 5%. There was not another single band that was lower than a positive 11%. Depreciation analysts roll data into multi-year bands for the very reason that single year values can be misleading and that some level of materiality must be obtained. Moreover, the most recent year's activity yielded a positive 24% net salvage. The Company's statement that its future net salvage forecast "is approximately negative fifty (50) percent" is an excellent example of just how little credibility can be assigned to the Company's forecasting process. The forecast is comprised of gross salvage and cost of removal components. The gross salvage component was based on a linear trend and produced a negative 21.41\%. As I stated earlier in my general comments on Mr. Robinson's tools and methodology, this represents an impossible result, as gross salvage by definition can only be zero or more. Unfortunately, Mr. Robinson was not deterred by the impossible value, since he employed it in his overall future negative 50% net salvage forecast: (-21.41% impossible gross salvage -28.29% cost of removal $=-$ 49.70% net salvage factor). (See Exhibit _ (JP-3), page 8-73 of the 2003 depreciation study).

Mr. Robinson's position on the gross salvage estimate changed during his deposition. In his deposition, Mr. Robinson finally recognized the negative 20% gross salvage as an impossible value and stated that "would have been zero." He also stated he "really highly discounted the [historical] gross salvage" and came up to a 10% value from the historical 41% level. (See Mr. Robinson's deposition transcript at page 101 at Exhibit _(JP-2)). However, his answer is refuted by the mathematical precision of his derivation of the net salvage factor for this account.

Mr. Robinson also admitted in his deposition that the two recent years where negative net salvage occurred, and were part of his basis for a 0% proposal, reflected "very low" levels of gross salvage. He relied on these "very low" gross salvage values even though he admitted those values --compared to other gross salvage values in his database-- were "anomalous". (See Exhibit _ (JP-2), Mr. Robinson's deposition at pages 106 and 107). Thus, only from Mr. Robinson's deposition can one begin to narrow down the possible basis for his gross salvage estimate. It appears that he ignored the trend analysis he provided in the depreciation study and also "highly discounted" the historical gross salvage.

Mr . Robinson's basis for his proposal of a 10% cost of removal is equally unclear. His study calculates a 28.29% future cost of removal, not 10%. The inflation-
based forecast has previously been discussed and shown to be fatally flawed. Mr. Robinson appears to recognize the flaw by eliminating approximately 65% of the calculated value in arriving at his final proposal ([28.29\%-10\%]/ 28.29\%). Mr. Robinson's reliance on historical data may have also been skewed to an abnormally high level due to historical costs associated with the removal of transformers contaminated with PCBs-a cost that PEF no longer incurs. While Mr. Robinson inquired about PCBs remaining in the system, he admitted in his deposition that, "there could have been some more PCBs during the 1985 to 1995 time frame." (See Exhibit _(JP-2), Mr. Robinson's deposition at page 105). It is during this time frame the Company incurred its highest percentage levels of cost of removal. Unfortunately, it does not appear that he took this fact into account to also "discount" historical cost of removal as he did gross salvage.
Q. WHAT WAS THE COMPANY'S RECOMMENDATION FOR THIS ACCOUNT IN ITS 2002 DEPRECIATION STUDY?
A. PEF recommended a 10% positive net salvage only one year earlier in the PEF's 2002 depreciation study. (See Exhibit _ (JP-9), 2002 depreciation study at page PEF-RC-017675). The one-year of additional activity produced a positive 24% net salvage for that year. The Company has not demonstrated why a 10 percentage point reduction in net salvage is warranted after only one-year when that one additional year of experience and data indicates a higher, not lower, gross salvage.
Q. WHAT NET SALVAGE LEVEL DO YOU RECOMMEND FOR THIS ACCOUNT?
A. I am recommending a positive 10% net salvage as a reasonable level. I base my recommendation on (1) the fact that this Company previously analyzed the data through 2002 and recommended a positive 10% net salvage, (2) the additional data for 2003 was a positive 24% net salvage indicating an even greater positive value may be appropriate, (3) not a single 3-year rolling band analysis yielded less than a 5% net salvage and in fact all but one yielded greater than a positive 11% net salvage value, (4) the only historical negative net salvage values occurred in 2 years where the data is "anomalous", and (5) a review of industry data confirms that a small positive net salvage is appropriate. While a more positive value may be warranted, the retention of the existing 10% value, which was reaffirmed by the Company in its 2002 study, is reasonable at this time.

Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATIONS?

A. My recommendation results in a $\$ 1,035,669$ reduction to depreciation expense or a $\$ 41,426,841$ increase in the excess reserve imbalance based on plant as of December 31, 2005.
b. Account 355 - Transmission Poles \& Fixtures
Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 355 TRANSMISSION POLES \& FIXTURES?
A. The Company has proposed a negative 25% net salvage. This is a 5-percentage point reduction-(that is, less negative)-- from the current negative 30% net salvage.
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE?
A. The Company states that this account has encountered a wide range of net salvage (positive 150% to a negative 125%). According to PEF, the highest (positive) levels are due to plant being returned to stores. The Company incurred high levels of negative net salvage in recent years and anticipates future net salvage to be negative 66% based on its linear trend and inflation analyses. Based on some unidentified blending of historical analysis results and consideration of its anticipated future analysis, PEF proposes a negative 25% as a reasonable level for this account. (See Exhibit _ (JP-3), 2003 depreciation study at pages 4-29 and 430). Mr. Robinson also states in his deposition that he performed "the same sort of sequence, nothing different about the sequence that we would go through" in the determination of his net salvage parameters for all accounts. (See Mr. Robinson's deposition transcript at page 112 at Exhibit _(JP-2)).

Q. DO YOU AGREE WITH THE COMPANY'S RECOMMENDATION?

A. No. As Mr. Robinson noted in his deposition, this is again an account where he elected to "really discount" or employ "conservative moderation" to ignore the
results of his inflation based forecasts. (See Mr. Robinson's deposition transcript at page 114 at Exhibit _(JP-2)). In his deposition, he also admits to what "would appear to [an] anomalous" gross salvage value that was materially lower than all 28 other years of data, but elected not to investigate it any further. (See Mr. Robinson's deposition transcript at page 120 at Exhibit _ (JP-2)). It may have made little difference in his proposal given his inappropriate decisions to heavily or "really discount" gross salvage. Moreover, for some unexplained reason, Mr. Robinson, stated in his deposition that he elected to employ a philosophy of "conservative moderation." (See Mr. Robinson's deposition transcript at page 114 at Exhibit _(JP-2)). His philosophy caused him to discount his forecasted result for this account from a negative 65.58% to a negative 25%, a 62% discount. It must be noted that for transmission Account 353.1 - Station Equipment, Mr. Robinson chose to discount his forecasted net salvage value by 100%. The difference is unexplained.

Mr. Robinson's proposal also fails to reasonably recognize his own 3-year rolling band standard approach. Only 1 of the past five 3 -year rolling bands resulted in a negative value, and that value was a negative 16%, much lower (less negative) than his proposed negative 25%. It should also be noted that only two of the 273 year rolling bands produced values more negative than the proposed value.

As far as future expectations, the depreciation study remains silent, as do Mr . Robinson's notes. The depreciation study states that "the historical analysis
results and consideration of the forecasted analyses" was the basis for the proposal. As noted above, historical values do not justify the proposal and Mr . Robinson's discounting of his flawed forecast analysis is meaningless.

Q. WHAT NET SALVAGE VALUE DO YOU RECOMMEND?

A. I recommend a negative 15% for this account. I base my recommendation on (1) a negative net salvage value appears only once in the last 53 -year rolling bands, (2) only 2 of the historical 3-year rolling bands had values more negative than 16%, (3) the value falls well within the industry reasonable range, (4) the Company has consistently experienced significant levels of gross salvage in all years of its database except for the one year that Mr. Robinson admits may be anomalous, and (5) the expectation that the Company will continue to experience some level of reuse or reimbursements in its annual retirements.
Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. The impact of my recommendation is a $\$ 916,183$ reduction to depreciation expense, or a $\$ 28,630,770$ increase in the excess reserve imbalance based on plant as of December 31, 2005.
c. Account 356 - Transmission Conductors \& Devices
Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 356 TRANSMISSION CONDUCTORS \& DEVICES FOR NET SALVAGE?
A. The Company has proposed a negative 30% net salvage. This is a 10 -percentage point increase (that is, increase in negativity, meaning an increase in costs to be collected from customers) in negative net salvage from the existing level of a negative 20%.
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE?
A. PEF's study states that even though history shows a positive 35% net salvage, this account has varied widely from a positive 255% to a negative 57%. The Company claims that recent positive gross salvage is due to reuse of poles. PEF has estimated that future net salvage will be approximately a negative 57% net salvage. The Company further notes that it has experienced negative net salvage in recent years. The Company also notes that its forecast analysis anticipates negative net salvage, which reinforces its "expectation" of more negative net salvage. Finally, the Company states that it based its proposal on "historical experience and anticipated future net salvage." (See Exhibit _ (JP-3), the 2003 depreciation study at pages 4-30 and 4-31).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No. PEF's negative 30% net salvage is based on an unsubstantiated elimination of most of the historical gross salvage as being unrepresentative. Positive gross salvage (that is, value greater than zero) has been notable in all years of the database. While Mr. Robinson recognized in his deposition that items returned to stores can produce gross salvage values "greater than what you paid for it", he
failed to investigate the level of return to stores or reimbursements that will continue to occur in the future. (See Mr. Robinson's deposition transcript at pages 123 and 124 at Exhibit _(JP-2)). Without the benefit of the level of reuse and reimbursements, and the corresponding gross salvage, it is inappropriate to simply eliminate significant levels of gross salvage that have occurred annually throughout the database. Mr. Robinson's decision to again ignore his gross salvage linear trend and discount the historical gross salvage experience by 87% without investigation is not credible, especially given the depreciation study's reference to "historical experience" as part of its basis. Further from the standpoint of "historical experience," it must be noted that out of the 27 bands, only one of the 3 -year bands exhibited a negative level greater than a negative 18% net salvage. (See Exhibit _(JP-3), 2003 depreciation study at page 8-72).

Another significant consideration is that in the Company's 2002 depreciation study, it concluded a negative 15% net salvage would be appropriate. (See Exhibit _ (JP-9), 2002 depreciation study at page PEF-RC-017677). It is hard to justify a proposed negative net salvage that is double (that is, twice as negative) the 2002 study amount based on 1-year of additional data. Moreover, if the doubling of the negative net salvage is based on the negative value that was booked in 2003, then Mr. Robinson would have violated his own standard of not relying on one or two years of data compared to his entire database. In addition, it must be noted that the 2003 negative salvage experience by the Company corresponds to one of the lowest levels of retirement activity in the past 29 years.

The Company reported that it retired only $\$ 286,972$ of plant in 2003 , while the average retirement level over the prior 28 years was $\$ 981,059$. (See Exhibit (JP-3), 2003 depreciation study pages $8-85,8-86$, and $8-88$). It is also unexplained why Mr. Robinson decided to discount the forecasted results for this account by only 47% compared to the 100% discount level for account 353.1 and the 62% level for account 355 .

Q. WHAT NET SALVAGE LEVEL ARE YOU RECOMMENDING?

A. I recommend a negative 10% net salvage. My recommendation is based on (1) recognition that while the historical database is significantly positive for all but a few years, the composition of the historical data is not known, (2) industry averages indicate nothing as low as a zero (0) value is appropriate, but that values up to a negative 25% are within the reasonable range, (3) the Company's 2002 study recommended a negative 15% or a less negative value than the existing level, and (4) the Company did not identify any factors, other than the previously debunked concept of inflation, that would support anything other than a movement toward the relationship exhibited by history.
Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. The impact of my recommendation is a $\$ 1,317,991$ reduction to depreciation expense, or a $\$ 43,933,098$ increase in the excess reserve imbalance based on plant as of December 31, 2005.

d. Account 362 - Distribution Station Equipment

Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 362 DISTRIBUTION STATION EQUIPMENT FOR NET SALVAGE?

A. PEF has proposed a negative 15%. This is a significant change, from the Company's existing net salvage of a positive 15%.
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE PERCENTAGE?
A. In its study, the Company recognizes that it historically experienced approximately a positive 25% net salvage. However, Mr. Robinson discounts this data due in part to his belief that it principally reflects relocations and reuses. PEF does not expect the relocation and reuses to continue at the same level in the future. The Company further recognizes that positive net salvage has been declining in the recent years and started turning negative. Finally, the Company relies on its forecasted net salvage at a negative 30%. Giving "consideration" to the recent experience and its forecast, but not stating specifically how, the Company proposes a negative 15%. (See Exhibit _(JP-3), 2003 depreciation study at pages 4-35 and 4-36).
Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?
A. No, I do not agree with the Company's proposal. The Company has not provided any reasonable or credible basis to support its proposed negative 15%; especially given it is proposing a full 30 -percentage point swing in net salvage from the existing rate. Given that the balance for this account is $\$ 370$ million, a 30 percentage point swing represents a $\$ 111$ million movement in the balance of the reserve.

Review of the historical data demonstrates that there has not been a single year of activity during the past 29 years in which the net salvage exceeded (that is, was less in value than) a negative 13%. Out of the entire period, only 3 years had any negative value. The net salvage for the past 5 and 10 -year periods is positive 12% and a positive 20%, respectively. The overall value is a positive 25%. Moreover, not a single valid year in the database had a cost of removal as high as the inflation-based forecasts of the Company.

The Company's 2002 depreciation study recommended the continued use of a positive gross salvage due to return to stores associated with growth in the system. The system is still growing. (See Exhibit _(JP-9), 2002 depreciation study at page PEF-RC-017682). While PEF did experience a negative value in a few years, it must be noted that those years corresponded to the lowest levels of gross salvage in history. Moreover, had Mr. Robinson reviewed industry averages as a check for reasonableness, he most likely would not have proposed such a negative value.
Q. WHAT RATE ARE YOU RECOMMENDING?
A. I recommend a zero (0) \% level of net salvage. My recommendation is based on (1) the strong historical activity of the Company indicating that a positive value would be appropriate, (2) the fact that historical data for this account likely understates net salvage due to the probable inclusion of costs associated with disposal of PCBs, (3) the Company's recommendation of a 5% positive value in its 2002 depreciation study, and (4) industry confirmation of net salvage value of approximately zero as being reasonable.
Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. The impact of my recommendation is a $\$ 1,665,887$ reduction to depreciation expense or a $\$ 55,529,642$ increase in the excess reserve imbalance based on plant as of December 31, 2005.
e. Account 364 - Distribution Poles. Tower \& Fixtures
Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 364 DISTRIBUTION POLES, TOWER, AND FIXTURES FOR NET SALVAGE?
A. The Company has proposed a negative 90% for Account 364 , Distribution Poles, Tower, and Fixtures. This is a significant increase (that is, greater negativity and greater amount to collect from customers) in net salvage from the existing negative 25% for such a large account.

Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE PERCENTAGE?

A. Historically the Company has incurred a negative 6% net salvage for this account. However, in its study Mr. Robinson identified that the negative net salvage has been escalating in more recent years, with several recent 3-year bands producing results far in excess of a negative 100%. Based on this experience and experience of its affiliates, the Company believes a dramatic change to a negative 90% net salvage is now representative of this account. (See Exhibit _ (JP-3), 2003 depreciation study at pages 4-36 and 4-37).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No. The Company has not justified a negative 90% for this account. The information presented by the Company does not justify a 65 percentage point swing in net salvage from the existing level of a negative 25%, which, incidentally, was also the value that PEF deemed appropriate in PEF's 2002 depreciation study. (See Exhibit _ (JP-9), 2002 depreciation study at page PEF-RC-17682). Reviewing the Company's data for the past ten years yields that PEF's historical experience exceeded a negative 90% in only two years during this period. This is important, because Mr. Robinson not only relied on this time period for his proposal but also recognized that the values for 2001 (one of the two years in which PEF recorded net salvage more negative than -90\%) were "bogus." (See Exhibit _(JP-2), Mr. Robinson's deposition at page 141). Moreover, those two years (2001 and 2002) correspond to the two lowest levels of
retirement activity during the entire 29-year database. Those two years experienced retirements of $\$ 501,139$ and $\$ 194,928$, respectively, while the average for the remaining periods was $\$ 1,922,196$. (See Exhibit _(JP-3), pages 8-109 and 8-112 of the 2003 depreciation study). In his deposition, Mr. Robinson attempted to address his inconsistent discounting of "bogus" gross salvage and cost of removal values for the 2001 data. There he stated his belief that "even if you take that [year 2001 bogus value] out, you're still talking relatively high numbers." He was not sure if he actually did that calculation, but if he did, it was done "mentally." (See Mr. Robinson's deposition transcript at pages 142 and 143 at Exhibit _ of (JP-2)). In fact, had Mr. Robinson performed the actual calculation for the most recent 10 years of his database minus the "bogus" 2001 values, the resulting "relative high number" would have yielded only a negative 36% net salvage. This is a far cry from the negative $90 \% \mathrm{Mr}$. Robinson apparently believed would result from his "mental" approach.

As I mentioned earlier, the 2002 Company depreciation study also recommended a negative 25% net salvage, the same as the existing level. Given this situation, one would assume that the data for the additional year 2003 must be the driving force for Mr. Robinson's proposed change from that based on historical experience. However, the net salvage for this account in 2003 was a positive 193% ! The actual data contradicts the basis stated by Mr. Robinson in his deposition. (See Mr. Robinson's deposition transcript at pages 141 and 142 at

Exhibit _ of (JP-2)). There, when faced with his inconsistent discounting approach he stated:
"You look at what the average is, you look at what the number is, and then you look at the data and say, 'Wait a second. For the last decade we've been seeing this kind of experience, so isn't it rational to believe that in the future that's going to continue?'" The most recent 10-year data, minus the "bogus" values, and the fact that all but one of the remaining years did not exceed his proposed negative 90% proposal clearly demonstrate the excessive level of his proposal.

Yet another inconsistent action by Mr. Robinson is his failure to apply the concept of gradualism to his proposal for this account. When asked in his deposition about applying the concept of gradualism in view of the magnitude of his proposed change, his response was while "anything is possible," that "isn't my recommendation." He further stated that even given the magnitude of swing caused by his proposal he would not temper his position "unless there was some specific information" that was applicable "to all the assets" to indicate otherwise. (See Mr. Robinson's deposition transcript at page 138 through 140 at Exhibit (JP-2)). When making that statement, Mr. Robinson apparently forgot the response he developed to Citizens Interrogatory 174. There, when discussing account 362 (for which his analysis forecasted a negative 30%), he proposed a negative 15% since "conservatism suggests a more gradual movement in that direction." (Emphasis added). (See Exhibit _(JP-10)).

Q. WHAT DO YOU RECOMMEND?

A. I am recommending a negative 35% net salvage as a reasonable value for this account. This is a 10 -percentage point increase (greater negativity) to the existing net salvage. This recommendation looks beyond the impact of the 619% gross salvage and $1,091 \%$ cost of removal values recorded in 2001, which Mr. Robinson agrees are "bogus". The recommendation is similar not only to the negative 25% existing value, but also similar to the same value recommended by PEF in its 2002 depreciation study. Unlike Mr. Robinson's proposal, my recommendation is right in line with industry averages. Mr. Robinson's dramatic change would place the Company at the upper end of the industry values for negative net salvage. Further, my recommendation does not suffer from all of the variance problems I identified in the General section of my net salvage related testimony.
Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. Relative to PEF's study and proposal, the impact of my recommendation is a $\$ 15,070,658$ reduction to depreciation expense, or a $\$ 262,305,794$ increase in the excess reserve imbalance based on plant as of December 31, 2005.
f. Account 365 - Distribution Overhead Conductors \& Devices
Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 365 DISTRIBUTION OVERHEAD CONDUCTORS AND DEVICES?
A. The Company has proposed a negative 25% net salvage for this account. This is a decrease (reduction in negativity, reduction to the amount to be collected) in negative net salvage from the existing negative 35% level. This value also corresponds to the Company's 2002 depreciation study recommendation. (See Exhibit _(JP-9), 2002 depreciation study at page PEF-RC-017683).
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE PERCENTAGE?
A. Historically, the Company's data has averaged a positive 4% net salvage. However, based on its consultant's inflation model for cost of removal and his linear trend model for gross salvage, the Company forecasts net salvage at a negative 232%. Reviewing the 3 -year rolling band analysis the consultant identified a historical range from a positive 90% to a negative 323%. Based on "the Company's overall experience and considerations of the range of three (3) year rolling band analysis" it estimated a negative 25\% net salvage. (See Exhibit _(JP-3), 2003 depreciation study at pages 4-37 and 4-38).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No. The Company has presented no clear basis for a negative 25% for this account. The trend for gross salvage is noticeably downward, but so is cost of removal. Only 2 of the 3-year rolling band analysis had a net salvage level during
the past 10 years equal to or in excess of a negative 25%. However, those 2 bands correspond to the two oldest bands (1994-1996 and 1995-1997). Turning to the annual values, only 3 years in the past 10 had negative values more negative than a negative 12% and they were the oldest years (1994-1996). Net salvage for the past five (5) and 10 -year periods resulted in a positive 4% and a positive 8%, respectively.

The Company's linear trend analysis again resulted in a theoretically impossible value, but that did not stop the Company from relying on it to establish its overall net salvage forecast. The depreciation study sets forth a negative 43.33% gross salvage and a 188.33% cost of removal to establish a forecasted net salvage of a negative 231.66\%. (See Exhibit_(JP-3), 2003 depreciation study at page 8-116). The consultant's inflation based model again produced results that even Mr. Robinson basically ignored or heavily discounted (188% indication, reduced by the analyst to 40%). Thus, the Company's claimed bases of "overall experience", which was a positive 4%, or "consideration of" the 3 -year rolling band analyses, which were basically positive or under 6% negative levels for the six most recent 3 -year bands, do not support and in fact contradict the Company's proposal. The Company's claimed bases strongly support a less negative value, especially given that the overall database was a positive 4%.

Q. WHAT ARE YOU RECOMMENDING?

A. I am recommending a negative 15%. My recommendation is based on a review of the previously discussed historical data. I did not rely on the gross salvage linear trend (as it again produced theoretically impossible results) or the inflation based cost of removal forecasts that Mr. Robinson developed. While I also gave consideration to the Company's 2002 depreciation study recommendation, I recognized that the trend for lower cost of removal levels continues into 2003 (only a negative 2%). Finally, while the Company's proposal is not outside the reasonable range from an industry standpoint, my recommended negative 15% is more representative of the industry average.

Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?

A. My recommendation results in a $\$ 2,159,190$ reduction to depreciation expense or a $\$ 49,072,536$ increase in the excess reserve imbalance based on plant as of December 31, 2005.
g. Account 367 - Distribution Underground Conductors \& Devices
Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 367 DISTRIBUTION UNDERGROUND CONDUCTORS AND DEVICES?
A. The Company has proposed a negative 15% net salvage. This is a decrease (that is, increase in negativity and an increase in the amount to be recovered from customers through depreciation rates) from the existing net salvage of zero (0)
percent and also from the Company's 2002 depreciation study, which also yielded a zero (0) percent factor for this account.
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE PERCENTAGE?
A. Historically, the Company has incurred a negative 8% for this account. However, based on inflation model and linear trend analyses within the depreciation study it forecasted a negative 291% net salvage. The Company stated in its depreciation study that it based its proposal on "experience and expectations." (See Exhibit (JP-3), 2003 depreciation study at pages 4-39 and 4-40).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No. The considerations to which the depreciation study points do not support this negative 15% proposal. The Company's 2002 depreciation study recommended a zero (0) percent net salvage. In 2003, the Company experienced a positive 11% net salvage for this account. The 2002 depreciation study also noted that, "abandonment in place is the preferred method of retirement." (See Exhibit _(JP9), 2002 depreciation study at page PEF-RC-017684). Because "abandonment in place" means literally what it says, the cost of removal should diminish and should result in lower levels of negative net salvage. Industry data also yields average levels of a negative 1% to a negative 11%, depending on the measuring index. This is consistent with an expectation of abandonment in place as the primary means of disposal. Moreover, the linear trend analysis within the
depreciation study again resulted in theoretically impossible values and its inflation-based cost of removal model was so far off from reality that even Mr. Robinson discounted its results by more than 90%.

Q. WHAT RATE ARE YOU RECOMMENDING?

A. I am recommending a negative 5% net salvage as a reasonable level for this account. My recommendation is heavily based on the fact that the Company plans on abandoning plant in service as its preferred retirement method. Abandonment of retirements rather than removal of plant should reduce the overall net salvage to something close to zero (0). This is apparently confirmed by the Company by its recommended zero (0) level of net salvage in its 2002 depreciation study. Moreover, even Mr. Robinson stated in his deposition that he gave abandonment "consideration" when discounting the historical levels of cost of removal. (See Mr. Robinson's deposition transcript at page 152 at Exhibit (JP-2)). Industry average values ranged from zero (0) to about a negative 11%. Therefore, a negative 5% net salvage value appears to be very reasonable.

Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?

A. My recommendation results in a $\$ 1,844,786$ reduction to depreciation expense or a $\$ 44,994,837$ increase in the excess reserve imbalance based on plant as of December 31, 2005.

h. Account 368 -Distribution Line Transformers

Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 368 DISTRIBUTION LINE TRANSFORMERS FOR NET SALVAGE?

A. The Company has proposed a negative 10% net salvage for this account. This is a reduction (that is, increase in the amount of expense to be recovered) of 25 percentage points from its existing level of a positive 15%.
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE PERCENTAGE?
A. Historically, the Company has routinely incurred a negative net salvage for this account, with a negative 7% average for the entire database. In addition, the Company relied on its inflation and linear trend models that produced a negative 29.6% value. (See Exhibit _(JP-3), 2003 depreciation study at page 4-41).
Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?
A. No. There has been no clear basis for a negative 10% presented or demonstrated by the Company. The trend in the most recent data is to a zero (0) level net salvage. The Company's 3-year rolling band analysis also trends to a zero (0) value. While the overall average for this account is a negative 7%, it is probably skewed due to the high disposal costs associated with PCB contaminated transformers in the past. Industry averages yield a level between a 0% to a negative 10%.

Q. WHAT ARE YOU RECOMMENDING?

Abstract

A. I believe a more reasonable value of a negative 5% net salvage should be applied to this account. The more recent historical data strongly implies a zero (0) to negative 5% value. The older and overall historical data is most likely skewed to the negative side due to the disposal costs associated with PCB contaminated transformers. Given that industry averages also would fully support a negative 5% value, the most appropriate conclusion is a negative 5% net salvage for this account.

Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. My recommendation results in a $\$ 1,380,432$ reduction to depreciation expense or a $\$ 20,915,662$ increase in the theoretical reserve excess based on plant as of December 31, 2005.
i. Account 369.1 - Distribution Services
Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 369.1 DISTRIBUTION SERVICES?
A. The Company has proposed a negative 75% net salvage for this account. This represents a 25 -percentage point increase (that is, increase in negativity, which would translate into an increase in the amount of expense to be recovered) from its existing net salvage of a negative 50%.

Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE

 PERCENTAGE?A. Historically the Company has incurred an average 116% negative salvage value for this account. The Company also claims that it has routinely experienced higher levels of negative net salvage over time. The Company further identifies that its 3 -year rolling band analysis yields a range from a positive 40% to a negative 800%. Therefore, based on the Company's "experience and expectations and anticipated level of increased retirement activity at progressively higher retirement cost", it estimates a negative 75% net salvage. (See Exhibit _(JP-3), 2003 depreciation study at page 4-42).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No. The Company presented no clear data to demonstrate that a negative 75% is a reasonable level for this sub account. The Company did recommend a negative 50% level in its 2002 depreciation study. (See Exhibit _(JP-9), 2002 depreciation study at page PEF-RC-017685). The one additional year of data in 2003 reflected a zero (0) percent net salvage level. Thus, there does not appear to be any historically based reason to increase (make more negative) its 2002 recommended negative net salvage level by 25 percentage points. The 2002 depreciation study, recognized reuse and relocation as significant factors in gross salvage. This is contrary to Mr. Robinson's unexplained reason for eliminating almost all consideration of gross salvage. This almost total elimination of gross salvage is more than questionable given Mr. Robinson's statement in his deposition that he
was "unable to really get any definitive answer" to his question as to why gross salvage was at high levels. (See Exhibit __ (JP-2), Mr. Robinson's deposition at page 157). Further, Mr. Robinson takes this position in spite of his own linear trend model that forecasts a positive 192% level for gross salvage.

Q. WHAT ARE YOU RECOMMENDING?

A. I am recommending the retention of the existing negative 50% net salvage for this account. My recommendation recognizes that the Company will continue to receive gross salvage to some extent due to customer requested relocations, a fact that Mr. Robinson failed to recognize. Until the Company obtains more stable and reliable data, a negative 50% net salvage is a reasonable level for this account.

Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?

A. My recommendation results in a $\$ 1,018,782$ reduction to depreciation expense or a $\$ 19,743,885$ increase in the excess reserve imbalance based on plant as of December 31, 2005.

j. Account 369.2 - Distribution Services

Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 369.2 DISTRIBUTION SERVICES, FOR NET SALVAGE?
A. The Company has proposed a negative 25% net salvage for this account. This is a 10-percentage point increase (that is, increase in the negativity of the factor, which would translate to an increase in the amount to be recovered) from its existing level of negative 15%.
Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSED NET SALVAGE PERCENTAGE?
A. Historically, this account yields an overall positive 4% net salvage. The Company's 3-year rolling band analysis yields a range from a positive 390% to a negative 52%. The Company's inflation model and linear trend analysis yield a negative 30%. From these items of information, the Company states that it based its estimate on the "Company's experience and expectations and anticipated level of increase retirement activity at progressively higher retirement cost." (See Exhibit _(JP-3), 2003 depreciation study at page 4-43).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No, the Company has provided almost no data to demonstrate that a negative 25% is a reasonable level for this sub account. While the 2002 depreciation study recommended a negative 10% net salvage, the one year of subsequent data was almost $\$ 9$ million of retirements and only $\$ 44,135$ of negative net salvage, or less than a negative 1\%. (See Exhibit _(JP-9), 2002 depreciation study at page PEF-RC-017686), and Exhibit _(JP-3), 2003 depreciation study at page 8-134). Therefore, the only thing that has materially changed between studies is that the

Company is proposing a much more negative net salvage when additional data indicates otherwise. Contrary to the Company's statements, the trend in the most recent data is toward a zero (0) level of net salvage, not an increasingly negative level of net salvage. In addition, the Company's database averaged a positive 4% net salvage.

Mr. Robinson apparently relied heavily on linear trend and inflation based trend models when assessing this account. The linear trend model once again produced a theoretically impossible negative value. This did not stop Mr. Robinson from including it in his total forecast. The depreciation study sets forth a negative 3.42% gross salvage and a 26.76% cost of removal to establish a forecasted net salvage of a negative 30.18\%. (See Exhibit _ (JP-3), 2003 depreciation study at page 8-136). Mr. Robinson's inflation model has previously been shown to be flawed and misguided. Therefore, Mr. Robinson's proposal is contrary to reason and logic and should be rejected.

Q. WHAT ARE YOU RECOMMENDING?

A. I am recommending a zero (0) \% net salvage for this account as a reasonable value. My recommendation relies on the trend in the data towards zero (0). I further consider that future retirement will reflect some level of abandonment, a concept Mr. Robinson agreed in his deposition. My conclusion is reinforced by industry averages that support a zero value. (See Mr. Robinson's deposition transcript at page 161 at Exhibit _(JP-2)).
Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. My recommendation results in a $\$ 3,197,837$ reduction to depreciation expense or a $\$ 94,054,077$ increase in the excess reserve imbalance based on plant as of December 31, 2005.

k. Account 373 - Distribution Street Lighting

Q. WHAT HAS THE COMPANY PROPOSED FOR ACCOUNT 373 DISTRIBUTION STREET LIGHTING, FOR NET SALVAGE?
A. The Company has proposed a negative 20% net salvage. This is a 10 -percentage point increase (that is, increase in negativity and increase in expense to be collected from customers) from the existing net salvage of negative 10% and a 15 percentage point increase from the Company's recommendation in its 2002 depreciation study. (See Exhibit _(JP-9), 2002 depreciation study at page PEF-RC-017688).

Q. WHAT IS THE COMPANY'S BASIS FOR ITS PROPOSAL?

A. While the depreciation study recognizes that the overall experience was a positive 15% net salvage, Mr. Robinson claims that "more recent years have experienced a considerable amount of negative net salvage in the range of negative twenty (20) to ninety (90) percent." Mr. Robinson then claims that "future periods are anticipated to experience similar levels of higher negative net salvage." Finally,
he states that his estimate is based on "the trend of recent experience and future expectations." (See Exhibit _(JP-3), 2003 depreciation study at page 4-46).

Q. DO YOU AGREE WITH THE COMPANY'S PROPOSED VALUE?

A. No. The Company has provided virtually nothing in support of its proposed net salvage. Its reliance on recent trends and future expectations is misleading. The trends for the last several 3-year bands are driven heavily by the 2001 activity. In 2001, the Company experienced one of the lowest levels of retirements, but the second highest dollar level of cost of removal and the highest percentage of cost of removal. The 2001 retirements figure was $\$ 953,933$ while the cost or removal was $\$ 1,799,003$. (See Exhibit _ (JP-3), page 8-148 of the 2003 depreciation study). These values compare to average retirement and cost of removal values for the remaining period of $\$ 2,385,381$ and $\$ 380,406$, respectively. (See Exhibit _ (JP-3), pages 8-148 and 8-151 of the 2003 depreciation study). This data is more than suspect. In fact, Mr. Robinson could not explain the negative salvage in 1997. In his deposition, Mr. Robinson stated, "it doesn't make sense." (See Mr. Robinson's deposition transcript at page 163 at Exhibit _(JP-2)). Moreover, the Company's 2002 depreciation study recommended a reduction in the level of negative net salvage to only a negative 5%. The trend in the data, other than the anomalous 2001 data, is more toward a zero (0) level.

Q. WHAT ARE YOU RECOMMENDING?

A. I am recommending a zero (0) percent net salvage. My recommendation relies on the trend in the historical data, recognizing that irregularities do exist in the recorded data. Unlike Mr. Robinson's approach, my recommendation recognizes some level of gross salvage given that it has continuously been experiencing positive salvage even during periods when the Company was not selling systems. Further, industry data also confirm the reasonableness of a zero (0) value.
Q. WHAT IS THE IMPACT OF YOUR RECOMMENDATION?
A. My recommendation results in a $\$ 4,934,540$ reduction to depreciation expense or a $\$ 53,363,464$ increase in the excess reserve imbalance based on plant as of December 31, 2005.
Q. WHAT IS THE COLLECTIVE IMPACT OF YOUR RECOMMENDATIONS, AS COMPARED TO PEF'S DEPRECIATION PROPOSAL?
A. My recommendations result in a reduction (that is, less negative, meaning lower expenses to be collected from customers, relative to Mr. Robinson's study) of $\$ 713,970,605$ to the amount of negative net salvage the Company incorporated in the calculation of its proposed depreciation rates and revenue requirements. The $\$ 713,970,605$ flow back to customers of the resulting additional excess reserve over 4 years results in a reduction to revenue requirement of $\$ 211$ million. Even if the FPSC flows the excess net salvage reserve over the remaining life of the plant, this would still result in an annual depreciation expense reduction of $\$ 34,541,975$ below the company's proposal.

1 Q. DOES THIS CONCLUDE YOUR TESTIMONY?
2 A. Yes.

```
STATE OF FLORIDA )
```

 : CERTIFICATE OF REPORTER
 COUNTY OF LEON)
I, JANE FAUROT, RPR, Chief, Office of Hearing
Reporter Services, FPSC Division of Commission Clerk and
Administrative services, do hereby certify that the foregoing
prefiled testimony was assembled under my direct supervision.

I FURTHER CERTIFY that I am not a relative, employee, attorney or counsel of any of the parties, nor am I a relative or employee of any of the parties' attorney or counsel connected with the action, nor am I financially interested in the action.

DATED THIS 12 th day of september, 2005.

[^0]: ```
 \[
 P R O C E E D I N G S
 \]
 PROCEEDINGS
 (Transcript follows in sequence from Volume 3.)
 (Transcript follows in sequence from Volume 3.)
    ```

[^1]:    Q. HOW IS IT POSSIBLE TO ENSURE THAT THE GROWTH RATE USED IN THE CONSTANT-GROWTH VERSION OF THE DCF MODEL WILL RESULT IN AN APPROPRIATE CONSTANT GROWTH RATE INDICATOR FOR DIVIDENDS, EARNINGS, BOOK VALUE, AND STOCK PRICE?
    A. The most straight-forward and accurate way to determine the appropriate growth rate is to use the " $\mathrm{x} \mathrm{r}+\mathrm{sv}$ " formula, where $\mathrm{b}=$ the earnings retention rate, $\mathrm{r}=$ the future expected return on book equity, and sv is a factor that accounts for sustainable growth caused by the sale of new shares of common stock. The mathematics used to derive the $\mathrm{D} / \mathrm{P}+\mathrm{g}$ form of the DCF model show that the "b $\mathrm{x} \mathrm{r}+\mathrm{sv}$ " formula properly quantifies sustainable growth. However, common mistakes in applying this formula include using historic values of " r " rather than future expected values, and failing to use a retention rate value, " b " that is consistent with the other values input into the DCF model.

[^2]:    Q. CAN YOU PROVIDE A MATHEMATICAL EXAMPLE THAT SHOWS WHY RISK PREMIUMS BASED UPON HISTORIC ARITHMETIC RETURNS ARE IMPROPER?

[^3]:    Q. DO FINANCIAL TEXTBOOKS SUPPORT THE USE OF THE GEOMETRIC AVERAGE FOR COMPUTING HISTORIC ACTUAL RETURNS?
    A. Yes. For example, the textbook Valuation. Measuring and Managing the Value of Companies, by Copeland, Koller, and Murrin of McKinsey \& Co., John Wiley \& Sons, 1994, in a description of how to use the Ibbotson Associates data states the following on pages 261-262:

