Messer, Caparello & Self

A Professional Association

Post Office Box 1876 Tallahassee, Florida 32302-1876 Internet: www.lawfla.com

September 21, 2005

BY HAND DELIVERY

Ms. Blanca Bayó, Director Commission Clerk and Administrative Services Room 110, Easley Building Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, Florida 32399-0850

Re: Docket No. 050001-EI

Dear Ms. Bayó:

Enclosed for filing on behalf of Florida Public Utilities Company are an original and fifteen copies of Florida Public Utilities Company's Notice of Inclusion of Testimony in the above referenced docket.

Please indicate receipt of this document by stamping the enclosed extra copy of this letter "filed" and returning the same to me.

Thank you for your assistance in this matter.

Sincerely, Corman No

Norman H. Horton, Jr.

NHH:amb Enclosures cc: Ms. Cheryl Martin Parties of Record

DOCUMENT NUMPER-DATE

DOWNTOWN OFFICE, 215 South Monroe Street, Suite 701 • Tallahassee, Fl 32301 • Phone (850) 222-0720 • Fax (850) 224-859 6 0 SEP 21 10 NORTHEAST OFFICE, 3116 Capital Circle, NE, Suite 5 • Tallahassee, Fl 32308 • Phone (850) 668-5246 • Fax (850) 668-5613

FPSC-COMMISSION CLERK

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

)

)

)

In re: Fuel and Purchased Power Cost Recovery Clause and Generating Performance Incentive Factor Docket No. 050001-EI Filed: September 21, 2005

NOTICE OF INCLUSION OF TESTIMONY

Florida Public Utilities Company ("the Company" or "FPUC"), through its undersigned attorney, gives notice of its intent to present the testimony and exhibits filed in Docket No. 050317-EI in this docket as well. A copy of the testimony and exhibits is attached and copies have previously been provided to the Commission.

Respectfully submitted,

NORMAN H. HORTON, JR., ESQ. MESSER, CAPARELLO & SELF, P. A. Post Office Box 1876 Tallahassee, FL 32302-1876 (850) 222-0720

Attorneys for Florida Public Utilities Company

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that true and correct copies of the foregoing have been served by Hand Delivery (*) and/or U. S. Mail this 21st day of September, 2005 upon the following:

Adrienne Vining, Esq.* Division of Legal Services Florida Public Service Commission 2540 Shumard Oak Blvd., Room 370 Tallahassee, FL 32399-0850

John Butler, P.A. Steel Hector & Davis, LLP 200 South Biscayne Boulevard, Suite 4000 Miami, Florida 33131-2398

Patricia Ann Christensen* Associate Public Counsel Office of the Public Counsel c/o The Florida Legislature 111 West Madison St., Rm 812 Tallahassee, FL 32399-1400

Mark Hoffman, Esq. Legal Department CSX Transportation 500 Water Street, 14th Floor Jacksonville, FL 32202

Timothy J. Perry, Esq. McWhirter, Reeves, Davidson Kaufman & Arnold, P.A. 117 S. Gadsden St Tallahassee, FL 32301

Ms. Angela Llewellyn Administrator, Regulatory Coordination Tampa Electric Co. P.O. Box 111 Tampa, FL 33601-0111

James A. McGee, Esq. Progress Energy Florida, Inc. P.O. Box 14042 St. Peterburg, FL 33733-4042

John W. McWhirter, Esq.
McWhirter, Reeves, Davidson Kaufman & Arnold, P.A.
400 N. Tampa Street, Suite 2450
Tampa, FL 33602

Jon C. Moyle, Jr. Moyle, Flanigan, Katz, Raymond & Sheehan, P.A. 118 N. Gadsden Street Tallahassee, FL 32301 Gary Perko, Esq. Hopping, Green Sams and Smith P.O. Box 6526 Tallahassee, FL 32314

Ms. Susan D. Ritenour Secretary and Treasurer Gulf Power Company One Energy Place Pensacola, FL 32520-0780

Jeffrey A. Stone, Esq. Russell A. Badders, Esq. Beggs & Lane Law firm P.O. Box 12950 Pensacola, FL 32591-2950

William G. Walker, III Florida Power & Light Company 215 S. Monroe St., Suite 810 Tallahassee, FL 32301-1859

Lee L. Willis, Esq. James D. Beasley, Esq. Ausley & McMullen Post Office Box 391 Tallahassee, FL 32302

Robert Scheffel Wright John Thomas LaVia, III Landers & Parsons, P.A. P.O. Box 271 Tallahassee, FL 32302

DIRECT TESTIMONY OF GEORGE BACHMAN CHERYL MARTIN MARK CUTSHAW ROBERT CAMFIELD

IN

FLORIDA PUBLIC UTITITIES COMPANY

PETITION OF FLORIDA PUBLIC UTILITIES COMPANY

FUEL COST RECOVERY AND PHASE-IN PLAN

1	O .	Please s	tate	vour	name,	title,	and	business	address.

- A. <u>Witness Bachman</u>. My name is George Bachman. I am the Chief Financial
 Officer and Treasurer of Florida Public Utilities Company. My business
 address is 401 South Dixie Highway, West Palm Beach, Florida, 33401.
- 5 <u>Witness Martin</u>. My name is Cheryl Martin. I am Controller for Florida Public
- 6 Utilities Company. My business address is 401 South Dixie Highway, West
- 7 Palm Beach, Florida, 33401.
- 8 <u>Witness Cutshaw</u>. My name is Mark Cutshaw. I am the Director of the
- 9 Northwest Florida Division for Florida Public Utilities Company. My business
- 10 address is 2825 Pennsylvania Avenue, Marianna, Florida 32447.
- 11 <u>Witness Camfield</u>. My name is Robert Camfield. I am a Vice President with
- 12 Christensen Associates Energy Consulting LLC (CAEC). My business address
- is Suite 700, 4610 University Avenue, Madison, Wisconsin, 53705.

Q

Q. What is the scope of your testimony?

A.	The scope of our testimony is twofold. First, we provide evidence in support of
	the costs of power supply (generation and transmission services) of Florida
	Public Utilities Company (FPU or Company), for use in determining the retail
	price of the Company's fuel cost recovery mechanism. Second, our testimony
	presents the Company's proposed phase-in of costs associated with sharply
	higher power supply costs beginning in January 2008, as anticipated. In the
	course of presenting the proposed phase-in plan, we review current conditions
	of wholesale power markets and the implications for power procurement; and
	we present the Company's overall procurement strategy.
Q.	Please review your professional background and experience that qualifies
	you to provide such recommendations.
А.	Witness Bachman. I have Bachelor of Science Degree in Business
	Administration from Indiana University in 1981, with a concentration in
	Accounting. I subsequently joined Southeastern Public Service Company, and
	served as the Assistant Controller at the time of my departure in January 1985,
	when I joined Florida Public Utilities Company. My positions through 1998
	included General Accounting Office Manager, Accounting Manager, and
	Controller.
	In 1999 I was appointed to my current position, Chief Financial Officer and
	Treasurer of Florida Public Utilities Company. As the senior financial and
	accounting official of the Company I have overall fiduciary responsibility and
	oversee the accounting and finance department with all related functions. The
	Q.

accounting and finance staff maintains the accounting systems and carries out
day-to-day functions such as revenue accounting, cost accounting, cash
management, tax accounting, and payroll. Our area maintains the financial
records of the Company and reports financial results. The accounting and
finance department is also responsible for various studies in support of
accounting activities, such as determination of depreciation rates. As Chief
Financial Officer, I represent the Company before the investment community
including investment and commercial banks. Finally, I am responsible to the
Chief Executive Officer for the development of financial policy, and I am
involved in determination of overall business strategy at the highest level.
I have been an expert witness in numerous fuel, purchased gas, and rate relief
proceedings before the Florida Public Service Commission for electric, gas, and
water.
Witness Martin. I have been employed by FPU since 1985 and I have worked
within numerous accounting functions Company. I assumed the position of
Corporate Accounting Manager in 1995. In this position, I managed the
Corporate Accounting Department including regulatory accounting (Fuel, PGA,
conservation, rate cases, surveillance reporting, and general regulatory
reporting), tax accounting, external reports, and various special projects. In
January 2002, I assumed the position of Controller of the Company where, in
addition to the above duties, I also have responsibilities in purchasing, general
accounting, and Securities and Exchange Commission (SEC) reporting. I have
been an expert witness in numerous proceedings on behalf of FPU before the

1	Florida Public Service Commission (FPSC), including rate relief in Docket
2	Numbers 881056-EI, 930400-EI, and 030438-EI for retail electricity service,
3	and 900151-GU and 940620-GU for retail natural gas service. I graduated from
4	Florida State University in 1984 with a Bachelor of Science degree in
5	Accounting. I am a Certified Public Accountant in the State of Florida.
6	
7	Witness Cutshaw. I joined FPUC in May 1991 as Division Manager in the
8	Marianna Division. In 2001, my title was changed to Director, Northwest
9	Florida. My work experience and responsibilities at FPUC include all aspects
10	of budgeting, customer service, and operations and maintenance in the
11	Marianna/Northwest Florida Division. In 2003 – 2004, I testified before the
12	Florida Public Service Commission in Docket 030438-El on rate design and
13	related matters. In 1993, I participated in the Cost of Service study for the
14	Marianna Division Rate Case Filing and testified during the proceeding. I have
15	also been involved with numerous proceedings and matters of Florida Public
16	Utilities Company before the Commission, including filings, audits, and data
17	requests for the FPSC. I graduated from Auburn University in 1982 with a B.S.
18	in Electrical Engineering and began work with Mississippi Power Cornpany in
19	June 1982. I left Mississippi Power Company in May, 1991 while in the
20	position of Supervisor, Electric Operations. While at MPC, I was involved in
21	the budgeting, operations and maintenance activities in the Hattiesburg, Laurel
22	and Pascagoula Districts.
23	
24	Witness Camfield. I am a graduate of Interlochen Arts Academy, and hold a
05	

. 1

25 Bachelor of Science Degree in Business Administration from Ferris State

4

.

1 University with an emphasis in Management, graduating in 1969. I earned a 2 Master of Arts Degree in Economics at Western Michigan University in 1975. 3 with a concentration in Monetary Theory and Policy. I joined the Michigan 4 Public Service Commission in 1976 as a staff economist. During my tenure 5 with the Michigan Commission, I was involved in several retail electricity and 6 natural gas pricing issues, and I testified in several rate case proceedings 7 regarding cost of capital and retail gas prices. I joined the New Hampshire 8 Public Service Commission in 1979 as the senior economist, and held the 9 position of chief economist beginning in 1981. In these positions, I was 10 responsible for the development, administration, and training of the economics 11 staff. I oversaw economic analysis and the development and delivery of 12 testimony, and provided policy advice to the Commission on a variety issues 13 such as construction work in progress, financial planning, and the determination 14 of PURPA Section 133 rates. I joined Southern Company in 1983, and held 15 positions in several departments including Pricing and Economic Analysis at 16 Georgia Power Company, Costing Analysis at Southern Company Services, and 17 Southern Company's Strategic Planning Group. In 1994, I joined Laurits R. 18 Christensen Associates, Inc. as senior economist, and currently hold the position 19 of Vice President. My experience covers a gamut of issues facing regulated 20 industries. I have represented agency staff, consumer advocates, independent 21 generation companies, utilities, and transmission companies before nine 22 regulatory agencies regarding cost of capital, cost benchmarking, fore casts of 23 electricity demand, retail rates, cost of service allocation, generation planning, 24 and transmission issues. I have been involved in the negotiation of power 25 supply contracts and the terms for franchise licenses. My overseas assignments

1		are several, and I recently managed a large market restructuring project in
2		Central Europe. I have served on national and regional advisory panels, and I
3		have advised electric companies on numerous policy and technical issues.
4		Innovations include two-part tariffs for transmission services, web-based self-
5		designing retail electric products, marginal cost-based cost-of-service methods,
6		and efficient pricing of distribution services. I have published chapters in
7		books, reports, and articles in noted journals such as The Electricity Journal,
8		CIGRE, and IEEE Transactions on Power Systems. Currently, I am the
9		Program Director of EEI's Market Design and Transmission Pricing School.
10		My resume, including the list of formal appearances before regulatory agencies,
11		is attached.
12		
10	_	
13	Q.	Can you please review the market context and situation of Florida Public
13 14	Q.	Can you please review the market context and situation of Florida Public Utilities Company?
	Q. A.	
14	-	Utilities Company?
14 15	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a
14 15 16	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These
14 15 16 17	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These markets are referred to as the Northeast and Northwest divisions. During 2004,
14 15 16 17 18	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These markets are referred to as the Northeast and Northwest divisions. During 2004, the Northeast division, also known as Fernandina Beach, served 15,100
14 15 16 17 18 19	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These markets are referred to as the Northeast and Northwest divisions. During 2004, the Northeast division, also known as Fernandina Beach, served 15,100 customers with gross electricity sales of 449,464 MWh. The Northwest
14 15 16 17 18 19 20	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These markets are referred to as the Northeast and Northwest divisions. During 2004, the Northeast division, also known as Fernandina Beach, served 15,100 customers with gross electricity sales of 449,464 MWh. The Northwest division, also known as Marianna served 15,000 customers with gross
14 15 16 17 18 19 20 21 22	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These markets are referred to as the Northeast and Northwest divisions. During 2004, the Northeast division, also known as Fernandina Beach, served 15,100 customers with gross electricity sales of 449,464 MWh. The Northwest division, also known as Marianna served 15,000 customers with gross electricity sales of 316,884 MWh.
14 15 16 17 18 19 20 21	-	Utilities Company? Yes. The electricity business unit of Florida Public Utilities Company is a distribution utility that serves two retail markets of northern Florida. These markets are referred to as the Northeast and Northwest divisions. During 2004, the Northeast division, also known as Fernandina Beach, served 15,100 customers with gross electricity sales of 449,464 MWh. The Northwest division, also known as Marianna served 15,000 customers with gross

with 150,000 kVA of transformer capability and 138 kV primary feeders. The
 Northwest division interconnects with Southern Company's transmission
 network at five delivery points with 130,000 kVA of capability and 12.5 kV
 primary feeders.

5

6 Q. What are the Company's current arrangements for the power supply? 7 A. Both divisions of the Company are wholly dependent upon external purchases 8 of generation and transmission (G&T) services to satisfy the needs of the 9 Company's retail markets. Accordingly, FPU has, for a number of years, 10 engaged in full requirements contracts for G&T services with suppliers in the 11 southeast region. Full requirements refers to an umbrella or package of services 12 covering the total loads of FPU, and includes energy (balancing or spot energy), 13 reserve service categories of regulation, spin, non-spin, and backup, ancillary 14 services of voltage support and black start, and the transmission services of 15 network transport services and transaction scheduling. Full requirements 16 services have been and are currently provided to FPU under long-term contracts 17 with JEA in the case of the Northeast division, and with Gulf Power Southern 18 Company (Gulf/SoCo) in the case of the Northwest division. Both contracts 19 date to 1997 and expire in December 2007. The Company is currently 20 implementing its strategy for power supply for 2008 and beyond. This involves 21 the recent release of the Company's all-source RFP. 22

- Q. Have the current contracts been favorable overall, and in the general
 interest of the Company's retail customers?
 - 7

1 A. Yes. The current full requirements power supply arrangements have been 2 wholly successful. Both suppliers, JEA and Gulf/SoCo, have served Florida 3 Public Utilities Company and its retail electricity customers well from a broad 4 perspective including reliability, counterparty risk, and commercial terms of 5 sale. The contract terms and prices of the current contracts were negotiated in 6 good faith by the contracting parties within an environment of increasing 7 contestability in wholesale markets. The negotiation process resulted in 8 commercial terms that have been fair to the contracting parties including JEA, 9 Gulf/SoCo initially. However, wholesale prices rose substantially during 1998 10 and 1999, and with the exception of 2002, the terms have been generally 11 favorable to the Company in all years thereafter. It is useful to reference 12 Exhibit BMCC-5, which shows compiled day-ahead spot prices for energy for 13 the relevant regions of the North American Reliability Council regions include 14 the Southeastern Electric Reliability Council (SERC) and the Florida Reliability 15 Coordinating Council for individual months of the years 2000 - 2004. As 16 observed, these prices range from \$33 to \$49 for SERC and from \$43 to \$52 for 17 the FRCC over these years. A similar story is revealed for the early contract 18 years, in part due to a large and unanticipated run-up in short-term prices during 19 1998 and 1999. However, it is important to recognize that ex post comparisons 20 of spot prices with respect to contract prices agreed to at the start of a period 21 simply describe the outcome of events beyond the contracting parties² control or 22 influence. Ex post prices can reside outside the range of expectations held by 23 the counter parties at the time that the contracts were agreed to.

1	The Company's successful arrangements for power supply coupled with its cost
2	efficiency in distribution services mean that the retail customers of FPU have
3	enjoyed and continue to enjoy low-cost and reliable retail power services.
4	Indeed, Exhibit BMCC-6 shows that customers of Florida Public Utilities
5	Company currently enjoy about a 20% cost advantage with respect to peer
6	groups.
7	
8	Q. What is Florida Public Utilities Company's strategy for power supply
9	beyond December 2007?
10	A. The Company has issued a Request for Proposals for Wholesale Power Supply
11	(RFP), and is in the midst of receiving and assessing offers to provide wholesale
12	power supply including generation and transmission services. The anticipated
13	offers by bidders will be assessed according to the dual objective of minimizing
14	prices and overall risks to retail consumers, where risks include price volatility,
15	delivery, and counterparty risks.
16	
17	The Company is pursuing all possible avenues and measures to obtain the
18	lowest possible prices in order to sustain its competitive price advantage in
19	retail markets. The RFP is the first major step in the Company's transparent
20	and open procurement process. The procurement process is geared to building
21	contestability by facilitating the maximum level of bidder participation.
22	Accordingly, the Company's RFP has been delivered to a fairly large number of
23	suppliers that have expressed interest in responding to the RFP.
24	

,

1 The procurement strategy is set up in a manner that provides the basis to 2 diversify risks by building a contract portfolio that includes multiple suppliers 3 and contract laddering for the two divisions. To this end, the RFP seeks to 4 obtain three types of offers to supply: Full Requirements, Partial Requirements, 5 and Energy Service (block energy). Bids will be assessed according to б objective, value-based criteria. Nonetheless, the full success of the RFP is 7 somewhat dependent upon the level of participation of bidders, and the offers 8 themselves.

9

10 The Company has been remarkably successful as a low-cost service provider, 11 particularly in view of the absence of potential scale economies at all levels and 12 areas of its operations. From the perspective of the RFP and power supply, the 13 Company is mindful of possible limits occasioned by its comparatively small-14 sized electricity operations in terms of risk diversification. Also, the Company 15 remains concerned about the timing of the release of the RFP, which is taking 16 place at a time of high cost wholesale market prices. Thus, it is essential that 17 the term and the structure of the commercial terms of the resulting contract 18 match up with the overall market outlook at the time that power supply 19 contracts with winning bidders are finalized, and do so in a way that captures 20 benefits in the form of lower prices should wholesale prices subsequently 21 decline.

22

Q. What are the likely results of the Company's power procurement process?
A. It is likely that the contemporary conditions of electricity markets will translate
into sharply higher prices for generation and transmission services beginning in

2008. As we mentioned, wholesale electricity prices have risen to exceptionally
 high levels since 2004. This contemporary experience affects expectations of
 the future; that is, forward prices reflect commitments conditional upon
 expectations of the future. In turn, expectations of future spot prices reflect
 recent price experience of wholesale markets.

6

7 As with all forward markets including commodities, currencies, and financial 8 markets, expected electricity market conditions and spot prices are implicit in 9 market participants' willingness to supply (sell) and willingness to pay 10 (purchase) over future periods. That is, bids and offers reflect the expected 11 future short-run marginal costs/spot prices of the region as such costs/prices 12 reflect opportunity cost – essentially, the highest-valued use of resources, 13 otherwise known as market worth. As observed, prices of New York 14 Mercantile Exchange (NYMEX) futures (standardized forward contracts) for 15 delivery at various locations across the Eastern Interconnection as well as in the 16 West over the ensuing two or three years, are trading within the range of 17 roughly \$58 to \$75 per MWh. Not surprising, futures prices are lower during 18 off-peak months than during peak months. Also, futures contracts for off-peak 19 hours trade lower, ranging around \$40 per MWh. Of particular concern are the 20 high prices of off-peak periods, which are driven largely by exception ally high 21 costs of primary fuels, the major input to the process of producing and 22 generating electricity, and to a lesser extent by the increased frequency that gas-23 fired generators are on the margin.

24

Q. What are the implications of high forward wholesale prices for retail consumers?

3 A. The implications for retail consumers are twofold. First, customers of Florida 4 Public Utilities Company face substantial likelihood of sharply higher retail 5 prices for power supply. While the Company is committed to obtaining the best 6 outcome from its procurement process, the resulting prices reflect the realities 7 of wholesale markets, and are properly incurred costs and wholly prudent in all 8 aspects. The higher prices of the succeeding contracts for power, as expected, 9 will bring the retail prices of the Company to an overall level that approaches that of other service providers in the region. Nonetheless, the Company 10 believes that, through its efficient power procurement process and ongoing 11 12 business operations, it will remain the price leader within the Florida region over the foreseeable future, particularly in view of the significant upward 13 14 pressure that higher primary fuel prices will have on all utilities within the 15 region and at the national level.

16

17 Second, under the current regulatory framework, retail prices will rise abruptly 18 when the new wholesale supply contracts come into force in January 2008. The 19 abrupt transition to the higher price level constitutes a needless and burdensome 20 shock to customers that can be eased with mitigating policy and action. 21 Transitioning to the high prices is an issue of vital importance to retail 22 consumers, and Florida Public Utilities Company wishes to enlist the assistance 23 of the Florida Public Service Commission. Through appropriate regulatory 24 policy, the Commission and the Company can help retail consumers to bridge 25 the ensuing and difficult timeframe.

1

2

Q. What strategies are available to mitigate the abrupt change in wholesale power costs on retail customers?

3 A. As commonly recognized, sudden abrupt bill changes and volatility (variation) 4 is costly to consumers. While high prices are evidence of the contemporary 5 markets that we face, the Florida Public Service Commission and the Company 6 can take progressive action to largely mitigate what is likely to otherwise be a 7 clear-cut case of rate shock. To this end, the Company proposes to phase in the 8 impact of higher expected wholesale power costs to retail customers over the 9 2006 - 2010 timeframe. The effect of the phase-in plan is to soften the impact 10 of the large price rise on customer bills, as anticipated. In so doing, the overall 11 welfare of customers will be improved.

12

Q. What are the design principles that underlie Florida Public Utilities phasein plan?

15 A. The proposed phase-in plan and framework is premised on a central design 16 principle. That is, the recommended plan should improve welfare while also 17 satisfying a "hold harmless" constraint. In the immediate context, hold 18 harmless means that the retail customers of the Company are left indifferent in 19 money flows, regardless of the approach taken. That is, the plan is bill neutral 20 in terms of discounted money flows for customers as a whole. The proposed 21 phase in plan obtains improvements in overall welfare by mitigation/ 22 elimination of rate shock while also satisfying hold harmless criteria.

1 Q. What are the main elements of the proposed phase-in plan? 2 A. The Company's proposed plan has several key features. First, the proposed 3 plan incorporates a *surcharge*, a special and temporary charge to retail 4 customers on fuel costs during the two years previous to the effective date of the 5 new contracts. The surcharge amount would be implemented in two steps 6 during these two years, 2006 and 2007. The second step, 2007, is somewhat 7 higher in absolute terms than the first step, 2006, as the surcharge ramps up and 8 approaches the anticipated contract prices, which are effective in early 2008. 9 10 The second feature is *interest accrual*. That is, the surcharge amounts accrue 11 interest monthly at 2.8 per cent interest, which is the current cost of commercial 12 paper. The total accrual amount including principal and interest accumulate in 13 an escrow account. The accumulated surcharge and interest should also be 14 excluded from the company's working capital for purposes of surveillance and 15 base rate making in order to hold the company harmless as well as customers. 16 17 The third feature of the plan is referred to as *flow-back credits*, where the 18 escrow balance at year-end 2007 is flowed back as credits (reductions) to the 19 retail charges for the new contracts, in three steps over the years 2008, 2009, 20 and 2010. The flow back credits diminish over time, with the amount of the

credit for 2008 greater than that of 2009, and with 2009 greater than that for
2010. The surcharge amounts, escrow accrual, and flow-back amounts are
subject to full accounting audits and checks, and review by the Florida Public
Service Commission.

1 The fourth feature of the Company's proposed plan is referred to as *within*-2 *process adjustment and reconciliation*. That is, the surcharge amounts will be 3 adjusted as market expectations change, as actual energy sales deviate from 4 forecast sales, as offers are received, and as contracts for new power supply are 5 reached. Finally, we wish to mention that the baseline point used to determine 6 the surcharge amounts are, by design, out-of-market in order to preserve 7 incentive compatibility.

8

9 Q. Given current expectations of the Company, please describe the surcharge
10 amounts and the implied revenue and escrow amounts obtained with the
11 proposed phase-in plan.

A. The proposed surcharge amounts for 2006 and 2007 and the resulting revenues
and escrow balances are shown on pages 1 and 2 of Exhibit BMCC-1, for the
Northeast and Northwest divisions of FPU respectively. As shown for the
Northeast division (page 1), the 2006 surcharge is 0.644 cents per kWh, while
the surcharge for 2007 is 1.418 cents per kWh. These surcharge values are
applied to energy sales during the months of January – December of 2006 and
2007.

19

For the Northeast division, the surcharges revenues resulting from the implementation of the phase-in plan are expected to be \$3,147,560 and \$7,191,467 for 2006 and 2007, respectively, stated in nominal terms. With the inclusion of the accrual of interest, the resulting escrow balance at December 2007 is expected to be \$10,560,025. As proposed, interest is compounded monthly.

1	As mentioned above, the escrow amount is flowed back as a credit to customer
2	bills during 2008 – 2010. The flow back credit amounts received by customers
3	are equal to \$5,586,226 during 2008, \$3,338,752 during 2009, and \$1,995,523
4	in 2010. Escrow balances accrue interest over the course of the flow back
5	period, 2008 – 2010.
б	
7	The surcharge and flow back credits are less for the Northwest division because
8	of lower sales quantities and higher contract prices for power supply currently,
9	than for the Northeast division. Specifically, the 2006 surcharge is 0.321 cents
10	per kWh, while the surcharge for 2007 is 0.676 cents per kWh. The expected
11	surcharge revenues obtained by the phase in plan in the Northwest are
12	\$1,024,210 and \$2,196,775 for 2006 and 2007, respectively, stated in nominal
13	terms. With the inclusion of the accrual of interest, the resulting escrow balance
14	at December 2007 is expected to be \$3,291,077.
15	
16	The escrow amount flowed back as credits to customers in the Northwest
17	division during 2008 – 2010 are equal to \$1,711,652 during 2008, \$1,049,566
18	during 2009, and \$643,623 in 2010.
19	
20	Q. Please describe the size the rate shock impacts facing customers absent the
21	phase in plan.
22	A. As mentioned, the increases in prices are large without the implementation of
23	the phase in plan. Exhibit BMCC-1 page 3 shows the anticipated rate impacts
24	on customer bills beginning in the year 2008 without the presence of the plan.
25	As can be seen, the percentage change in the customer bills of residential,
	16

.

commercial, and industrial consumers range from 22 to 78%. Abrupt change in
 customer bills of these magnitudes are of major concern, and evidence of the
 substantial burden placed on retail consumers in the absence of the phase in
 plan.

5

6 In addition, the bill impacts differ significantly among customers and it is useful 7 to review the differential impacts. Without the phase in plan, customers of the 8 northeast division face significantly larger increases than customers of the 9 northwest division. This is because the current contract prices for wholesale 10 power supply for the northwest division are higher than the corresponding prices for the northeast division. As observed, the percentage change in 11 12 customer bills range from 22% to 45% for the northwest division, whereas the 13 impacts for the northeast division are larger still, ranging from 35% to 78%. As 14 a general rule, the change in the electricity bills facing customers rises 15 progressively with an increasing share of the current bill composed of costs of 16 wholesale power. For this reason, the larger customers of the northeast division 17 in particular face very large bill impacts.

18

The bill impacts clearly demonstrate the need to phase in the costs of theCompany's new contracts.

21

Q. Can you please elaborate on and briefly discuss fairness and efficiency
aspects of the proposed phase in plan?

A. Yes. The proposed plan has both fairness and market efficiency aspects. From
a social efficiency perspective, the path of the phase in prices more closely

1	1	matches wholesale prices, which reflect societal marginal costs of power, over
2	1	the years of the surcharge, 2006 and 2007. Overall efficiency is improved and
3	1	the level of retail sales will be somewhat less than otherwise during these years.
4	(Conversely, phase in prices experienced by consumers depart from wholesale
5]	prices during the period of the flow back credits. Accordingly, retail sales
6		levels will be somewhat greater than otherwise during these latter years.
7		
8		The first order welfare impacts of the proposed plan, measured as consumer
9		surplus and as reflected in expected electricity sales impacts, are significant for
10		individual years but small overall for the several years over which the plan is in
11		effect. However, our main concern and the purpose of the proposed phase in
12		plan is the benefits obtained by introducing a degree of gradualness in price
13		changes – essentially, second order benefits realized through of stability of
14		prices. By attenuating rate shock, a form of risk, the proposed plan reduces
15		harm caused by a sudden increase in prices. It is predominantly this reason
16		rather than market efficiency that underlies the Company's petition to the
17		Commission to implement the phase in plan as proposed.
18		
19	Q.	Do customers prefer reduced risk, and does the phase-in plan add value?
20	A.	Yes. Cursory observation, intuition and common sense, and formal empirical
21		evidence across a broad range of markets suggest that risk and uncertainty are
22		costly and that economic agents, both firms and households, prefer less risk all
23		other factors constant. A large number of examples of risk aversion in the
24		behavior of agents are readily available:

•

•

.

1	1.	The comparatively large-scale participation and steady growth of futures
2		markets and over-the-counter forward contracts for wholesale
3		commodities including energy, agriculture, and metals, as well as the
4		steady expansion of the products that are traded forward.
5		
6	2.	The longstanding presence of comparatively long-term debt instruments in
7		financial markets, the growth in financial options including complicated
8		compound features.
9		
10	3.	The appearance of weather-related insurance to mitigate financial losses
11		attributable to crop damage, and insurance to guard against damaged
12		goods and cargo while in transit.
13		
14	4.	The growth in the volume of transactions in forward currency markets.
15		
16	5.	The expansion of consumer insurance markets beyond life, auto, and home
17		insurance categories and products. Insurance coverage is commonly
18		available for health, consumer electronics, boats, automobile repair and
19		service, tires, theft, and appliances. In addition, the range of coverage of
20		insurance menus and options has expanded vastly.
21		
22	6.	The appearance of forward retail contracts for home heating oil and
23		propane gas.

1	7.	The vast expansion of specialized insurance products for business that
2		cover a broad range of contingency events such as physician malpractice,
3		and disability and physical incapacity for athletes and artists, as well as
4		insurance for highly valued art and musical instruments.
5		
6	8.	Strong consumer preferences for fixed-price open-quantity tariff design
7		for regular telephone service in lieu of measured service.
8		
9	9.	Equity share prices, as traded on major financial exchanges worldwide, are
10		ordered according to perceptions of risks. If equity A has equivalent
11		expected cash returns to capital but higher perceived risks vis-à-vis the
12		cash returns and risks of equity B, A will trade at market prices lower than
13		that of B. The lower prices of A provide the means for the realization of
14		higher expected market returns to shareholders of A than to the
15		shareholders of B, thus compensating for the higher risks implicit in
16		holding the shares of A.
17		
18	Ris	k management mechanisms and insurance tools are the vehicles of markets
19	to 1	nitigate risks and the costly effects of uncertain events associated with the
20	ma	ny aspects of business and life. In so doing, a broad spectrum of markets are
21	ma	de more complete. A window to the expanding opportunities to hedge risk is
22	Ro	bert Shiller's recent book entitled "The New Financial Order: Risk in the 21 st
23	Ce	ntury" published in 2003. The range of possible products and applications of
24	risl	k management principles is vast. The essential point is that there exists a
25	bro	ad base of market experience to affirm the intuitive notion that risk is costly

e

1		and that economic agents are willing to compensate third parties willing to
2		assume the costly burden of and responsibility for risk. In short, agents prefer
3		less risk to more, and market processes can be expected to implement many new
4		innovations to mitigate risk.
5		
6	Q.	What about retail electricity markets? Is there explicit evidence and
7		examples of risk aversion in the choices of consumers?
8	A.	Yes, examples of risk aversion behavior by participants in electricity markets
9		are readily at hand. For example, the fast expansion of fixed bill products at the
10		retail level, and the wide scale participation in financial and physical
11		transmission rights at the wholesale level are immediate examples. The fact that
12		fixed bill products, which hedge quantity risks, are typically offered at premium
13		prices suggests that many consumers are willing to pay higher expected prices
14		for the risk hedging features of fixed bill products. In essence, consumers make
15		value-improving choices, and by selection of premium-priced fixed bill options,
16		retail consumers can improve welfare. This means that, for those customers that
17		self select fixed bill products, the inherent quantity risks of the standard offer
18		tariff, as perceived, is more costly the price premium attending the risk
19		management feature of the option.
20		
21		A second example of the costly nature of risk is the selection behavior of retail
. 22		customers that are confronted with bill-neutral time-of-day options. To a
23		substantial degree, customers prefer conventional non-varying price open
24		quantity tariffs, which are common and prevalent among retail tariffs of service
25		providers, to the TOU option. Generally, the TOU option is selected only when
		01

ų,

•

customers are capable of substantially shifting load to the lower-priced off peak
 periods – thus reducing the total electric bill – or where the customer bill on the
 TOU option is somewhat below that of the conventional tariff, holding
 quantities constant.

5

A third example is the self-selection of curtailable service load control options.
To a large extent, customers will only chose such options when they are
attended by rather substantial discounts in comparison with the firm service of
standard offer tariffs. Essentially, the uncertainty associated with non-firm
supply is costly, and sufficient discounts are necessary to obtain customer
participation in non-firm power supply.

12

Q. What are the policy lessons and principles that we can draw from market
 experience and the behavior of agents regarding risks?

A. First, it is quite clear that risk is costly, and that the Commission and Florida
Public Utilities Company should take the necessary action to reduce risks in a
cost effective manner where possible. Second, the Commission should support
the Company's plan to phase in the anticipated higher prices for power supply.
In so doing, the Commission mitigates the costly impacts of rate shock, thus
improving the welfare of the retail customers of Florida Public Utilities
Company.

22

Q. Is there precedent for the phase-in of sharply rising costs for pow ersupply?

1	A.	While the reasons, situation, and market context were unique to the earlier era, a
2		number of incumbent utilities phased in large-scale and costly base load power
3		plants during the 1980s. Utility sponsors and regulators allowed and fully
4		supported the phase-in of prudently incurred costs over several years in order to
5		ease the burden of what would have otherwise been serious rate shock events.
6		
7		It is useful to mention that the situation during this previous timeframe is in
8		sharp contrast to that of the Florida Public Utilities Company in several
9		important respects. Back then, large-scale base load plants were the primary
10		cause of rate shock, and their utility sponsors had in several cases breached the
11		confidence of retail customers and regulators, as manifest in costly overruns of
12		construction budgets. As a result, the plants and their sponsors sometimes faced
13		serious regulatory issues related to the need for additional resources, technology
14		choice, and plant costs that were significantly out-of-market.
15		
16		In contrast, the situation of the Company contains none of these issues. Rather,
17		Florida Public Utilities Company faces higher costs simply because of the
18		contemporary realities of wholesale markets.
19		
20	Q	. Would you please describe the workings of power markets in the Southeast,
21		and the implications for power procurement?
22	А	. Wholesale power markets were opened to new entrants with the passage of the
23		national Energy Policy Act of 1992. Provisions of the Act called for incumbent
24		transmission service providers, most of which were and continue to be vertically
25		integrated electric companies, to allow access to transmission networks to
		23

۰.

buyers and sellers of wholesale power. Authority for implementation,

oversight, and enforcement of the wholesale electricity market provisions of the
Energy Policy Act was assigned to the Federal Energy Regulatory Commission
(FERC).

5

1

6 The market mechanisms and procedures for obtaining access to power networks 7 and scheduling wholesale transactions were not formalized, and the process was 8 encumbered by burdensome scheduling, procedural, and institutional 9 inefficiency. Arguably, accessibility to networks was effectively denied by 10 procedural burdens for several years. A defining moment in the organization of 11 wholesale markets was the Open Access Transmission Tariff as established in 12 1996. In April of that year, the FERC issued two landmark orders:

- Order 888, Promoting Wholesale Competition Through Open Access
 Non-discriminatory Transmission Services by Public Utilities and
 Recovery of Stranded Costs by Public Utilities and Transmitting
 Utilities; and,
- Order 889, Open Access Same-Time Information System (Formerly
 Real-Time Information Networks) and Standards of Conduct.

In addition to functionally separating the generation and transmission functions
and activities of incumbent utilities, these two companion orders define
categories of wholesale services, define the basis for determining the prices for
wholesale services, and set forth fairly definitive procedures regarding the
scheduling of wholesale transactions among control areas of the Nation's
transmission grid using web based services (OASIS).

While the FERC has authorized the further unbundling of wholesale markets with the formation of ISOs and RTOs in California and the northern regions of the Eastern Interconnection, FERC Orders 888 and 889 constitute the authority for the conduct of power markets in much of the U.S. and under which a large volume of short- and long-term power transactions occur.

6

The growth in wholesale market transactions has precipitated the
implementation of OASIS sites by service providers in order to facilitate the
scheduling of wholesale transactions. Also, regional markets have formed
commercial hubs at various locations and interfaces throughout the U.S. Hubs
play an important role in price discovery.

12

These various procedural mechanisms and market provisions serve to facilitate 13 14 and enable market processes. Buyers and sellers can engage in a variety of 15 near-term transactions using more-or-less standard market products such as 16 energy service and bundled packages of energy and transmission (including 17 reserves) for same-day and day-ahead hourly and 16-hour periods, as well as for 18 weekly and monthly peak-period and all-hours supply. Furthermore, market 19 participants can schedule long-term transactions across seasons and years. In most regions, wholesale market participants are numerous and include rural 20 21 cooperatives, local distribution companies, power trading subsidiaries of investor-owned utilities, trading authorities and merchant traders, merchant 22 generators, and municipalities. While nettlesome impediments to competition 23 remain wholesale electricity markets are reasonably contestable in most regions 24 and within most timeframes. 25

1		This wholesale market environment is quite suitable for competitive power
2		procurement, although serious challenges may be present in some areas and
3		locales because of accessibility to transmission and so-called "pancaked"
4		pricing of transmission services across multiple control areas. While these
5		issues are encumbering and are not to be minimized, buyers including local
6		distribution companies such as Florida Public Utilities Company, can organize
7		well-structured procurement processes and often obtain competitively priced
8		power supply.
9		
10	Q.	What are your expectations regarding future electricity prices and the
11		reasons that underlie future price levels?
12	А.	The U.S. electricity industry has entered an era of sharply higher wholesale
13		prices for electricity beginning in late 2003. The contemporary high power
14		prices are a national phenomenon, and are a result of three main factors. First,
15		primary fuel prices including coal, natural gas, and oil have all risen to very
16		high levels. Current fuel prices are largely a result of a sudden and seemingly
17		sustained tightening of supply-demand balance for fuels; supply margins are
18		fairly tight and inventories are exceptionally low from time to time over recent
19		years in the case of natural gas and oil.
20		
21		Second, transmission networks have experiencing substantially higher levels of
22		congestion in recent years, which is manifest as increased frequency in
23		transmission load relief (TLR) calls, and expanded differences in locational and
24		zonal prices for power. Third, the aggregate demand for electricity service, as
25		reflected in observed peak loads and energy consumption, has advanced over

the past three years to levels that better balance with and more fully utilize 1 2 generation supply. Fourth, and to a lesser extent, concerns about global 3 warming and other environmental considerations have caused the electricity 4 industry to increasingly embrace renewable resources, as evidenced by the 5 adoption of Resource Portfolio Standards policy in several regions of the U.S. б While renewable resources may reduce total emissions including sulfur dioxide 7 (SO2), mercury (including elemental, vapor, and particulate bound 8 components), nitrogen oxides (NOX), particulate matter, and carbon dioxide 9 (CO2), such resources will raise the total costs of power supply, as far as the 10 internal and direct resource costs are concerned.

11

12 Q. Please provide projections of future prices.

13 A. Exhibit BMCC-2 presents a projection of spot power prices for the Southeast 14 region over the 2005 – 2012 timeframe. We include tables of average spot 15 prices for three timeframes including all-hours, peak periods, and off-peak 16 periods. These prices are a result of market simulations developed by CAEC 17 and used regularly to prepare forecasts of regional prices. The prices reflect 18 simulations of a range of possible market outcomes for energy, and the implicit 19 reserve services of regulation, spin, non-spin, and backup reserve categories. 20 The composite power prices are marginal cost-based prices for regions and 21 incorporate scarcity rents. However, the prices do not include black start or 22 reactive power, nor do they reflect the marginal cost of delivery services 23 including transmission network service, connections services, and scheduling.

While we have also developed prices for Florida, the North American Electric 1 2 Reliability Council (NERC) region known as the Florida Reliability Coordinating Council (FRCC), we believe that the more relevant region for the 3 4 purposes herein is the NERC region known as the Southeast Electric Reliability 5 Council (SERC), which encompasses the states of Alabama, Georgia, Mississippi, North Carolina, South Carolina, Tennessee, and Virginia, as well as 6 the southern and northeastern areas of Louisiana. 7 8 9 The regional price projections are developed by applying a structural analysis 10 approach to the markets represented by a so-called compressed SERC region. The development of projected wholesale price involves projections in regional 11 economic activity, hourly loads for the region, the region's generation portfolio 12 13 including units under construction as well as possible new generators in the future, and a range of possible future primary fuel prices. Exhibit BMCC-3, 14 15 pages 1-3, shows supporting details that underlie the wholesale market price projections. Page 1 shows summer demand and generation capacity over the 16 17 2005 – 2012 timeframe for the compressed SERC region for low, moderate, and high demand growth scenarios. Of particular interest are the capacity reserve 18 margins, where reserves stay tightly bundled around fifteen percent. These 19 reserve levels reflect expected reserves for the surrounding regions of the 20 Eastern Interconnection, and are not specific to SERC. Imposing non-SERC 21 22 specific reserves on the simulations for the SERC region is necessary in order to reflect the natural behavior of power markets. Namely, regions that are a little 23 long in capacity or otherwise have cost advantages - and thus have 24 comparatively low marginal costs - will export power to regions that are 25

relatively short. Hence, it is appropriate to utilize non-SERC specific reserve margins in the determination of the projections of regional power prices.

- 4 Exhibit BMCC-3 pages 2 - 3 contain the three scenarios of primary fuel prices 5 and generation expansion for the moderate demand case, respectively. Page 2 6 presents a plausible set of alternative long-term paths for primary fuel prices in 7 the Southeast over the 2008 - 2012 timeframe. These primary fuel price paths 8 are obtained through a combination of analysis and intuition, and represent a 9 combination of current forward prices converted to spot, as well as long-term 10 trends. The fuel prices are utilized to project future electricity prices, also for 11 the Southeast, and incorporate transportation costs as well as, in the case of 12 coal, the costs of environmental compliance for sulfur dioxide. It is worthwhile 13 to mention that SO2 allowance prices have risen fourfold over the most recent 14 eighteen month period.
- 15

1

2

3

As observed, we expect that price pressure for primary fuels will ease somewhat, before assuming the long-term path that roughly follows general inflation. The scenarios of fuel prices reflect possible long-term paths of prices and do not reveal the full range of short-term uncertainty and volatility inherent to primary fuels.

21

The modeling approach develops hourly prices (marginal costs) for six daytypes for the months of each forecast year. The approach uses Monte Carlo
methods to determine generator downtime for maintenance and unit a vailability.
The approach obtains numerous realizations of prices/marginal costs for each

hour of the various day types. The day-type analyses are then mapped to the
various days of a weather normalized year, where the days of the year have been
categorized according to day type and month. The result is a range of possible
hourly prices. The prices embody implicit rents for scarcity, market power, and
various market inefficiencies and friction that cannot be otherwise explicitly
accounted for.

7

8 The modeling approach obtains prices for reserve services using optimization 9 techniques (linear programming methods), based upon assumed operating 10 parameters of generating units within the region.

11

12 As noted above, Page 1 of Exhibit BMCC-2 presents the expected value of 13 wholesale electricity prices over all hours, while page 2 presents the expected 14 prices for peak and off-peak hours. The projected prices are shown by month 15 and year. As can be seen, the analysis suggests that wholesale electricity prices 16 will generally recede from the current highs to levels of about \$55.00 per MWh. 17 and to then rise as primary fuel prices assume trajectories that conform with the 18 respective long-term historical path roughly equivalent to overall expected 19 inflation. Also, the long-term path reflects the gradual evolution in the 20 generator unit portfolio of the region. Model simulations suggest, and market 21 experience confirms, that as a general rule wholesale electricity prices are 22 higher during summer months than non-summary periods. Although not shown, 23 simulated and observed wholesale prices reveal higher variation (volatility) and 24 risk during summer periods than non-summer periods. This result follows from 25 the generally tighter supply margins of the summer, where unexpected demand-

side events (such as weather) and supply-side events (such as generating unit
and transmission line outages) translate into comparatively larger upside risk
than during non-summer periods. Also, summer wholesale market prices for
electricity can reveal distinct up-side skewness in the underlying statistical
distributions.

6

Q. Please discuss the primary fuel prices and the outlook for fuels, as utilized
in the projected wholesale prices.

9 A. In the case of coal, supplies are plentiful although rising demand for coal has 10 been precipitated by high natural gas prices. Essentially, coal and gas are 11 substitutes, with fairly substantial substitution elasticity. This means that 12 generation companies - mainly electric utilities - will tend to utilize coal-based 13 generation more intensively with rising prices for gas relative to coal. In 14 addition, the costs of transportation of coal from locations where it is extracted 15 to locations where it is consumed as fuel (coal-fired generators) has been 16 recently constrained as a result of bottlenecks in railroad lines in key locations, 17 of (as reported) some shortages of locomotives and coal cars and, we suspect, 18 the exercise of market power by major railroads in key areas of the U.S. Also. 19 there are reports that expanded U.S. coal exports are being used to produce steel 20 worldwide.

21

Natural gas supply in the U.S. is constrained in the short run because of limits of
economically viable wells and fields at market prices of less than \$3 - \$4
dollars per MCF (MMBTU) within the continental U.S. Second, inventories at
various locations in the U.S. have been limited such that, when coupled with

limited extraction capability, wholesale prices of natural gas can show high
 sensitivity to short-run changes in demand and expectations of future weather
 patterns and forecasts.

4

5 Unlike the difficult years of the 1970s, oil plays a rather insignificant role in 6 electricity supply currently, particularly in the Southeast, and thus need not be 7 considered in the context of the immediate issues at hand. Nonetheless, we 8 wish to mention in passing that oil prices are currently driven by steadily 9 increasing demand for transportation worldwide, mainly automobiles. Second, 10 the retail prices of oil-derived products such as fuel oil for heating are affected 11 by the apparent limits of refinery capacity in the U.S.

12

13 Pages 1 - 4 of Exhibit BMCC-4 present forward contracts for primary fuels for 14 deliveries over future months, as reported by NYMEX during late 2004. It is 15 important to recognize that *forwards* represent composite expectations of 16 traders, both hedgers and speculators, regarding future spot prices for fuels. In 17 essence, these forward prices suggest that traders in late '04 implicitly expected 18 high primary fuel prices to be present over the ensuing months. Page 4 of 19 Exhibit BMCC-4 presents coal price futures for deliveries during 2005 and 20 2006, as of February '05. As can be seen, the more current expectations reveal 21 somewhat lower coal prices prospectively, than that of late 2004.

22

It is useful to view the current high levels of primary fuel prices within the
 context of long-term history. Accordingly, we present on pages 1 – 2 of Exhibit
 BMCC-7 primary fuel prices for crude oil, coal, and natural gas for 1973 – 2004

period for the consideration of the Commission. As can be seen, while primary
 prices are exceptionally high currently, such prices are not unprecedented.
 Specifically, primary fuel prices reached current levels during the 1980 – 1984
 timeframe, stated in real terms.

5

Q. Please describe transmission congestion and the impact of congestion on wholesale prices.

A. Congested network facilities, including specific flowgates and key interfaces among control areas, separate markets. Congestion raises prices for some areas and lowers prices for others. Congestion is a particular issue for load centers that are downstream from constrained flowgates and interfaces, such as the various load centers of the Florida peninsula, as they now face higher costs for wholesale services. Congestion along key flowgates and interfaces leads to the realization of higher profits by downstream generators (constrained on) and

- 15 lower profits by upstream merchant generators (constrained off).
- 16
- Q. Please discuss supply-demand balance, reserve margins, and the effects of
 reserve margins on wholesale prices.

A. Supply-demand balance in the U.S. and Southeast is shown on page 2 of Exhibit
 BMCC-5. As mentioned earlier, supply-demand balance has tightened

- 21 somewhat. In the case of electricity markets, changes in supply margins operate
- 22 together with the characteristic of non-storability to produce instances in which
- 23 small changes in supply margin often translate into fairly sizable impacts on
- 24 power prices. Overall for the Eastern Interconnection, we would guess that the
- 25 brief excess supply bubble of 2002 2003 is largely exhausted. And while the

1	current large-scale volume of wholesale transactions is not altogether new, it is
2	not as if the electricity industry has decades of experience; learning is a key
3	element of market experience and it is reasonable to opine that the bubble of
4	recent years is an infrequent phenomenon that will not be revisited often.
5	
6	In summary, the supply-demand balance of markets is currently in approximate
7	long-run equilibrium with capacity reserve levels near 16%, perhaps a little
8	higher. For the present, we have no reason to expect overall capacity reserves
9	in the future to deviate much from this level over the long run, aside from
10	periodic variations largely attributable to random weather phenomena. One
11	thing that could change long-term optimal capacity reserve margins is a rise in
12	customer participation in reserve markets (curtailment programs) and other
13	demand response programs such as real-time pricing.
14	
15	Q. Please summarize your testimony and recommendations for the
16	consideration of the Commission.
17	A. Florida Public Utilities Company takes very seriously, at the highest level, its
18	duty to provide continued and uninterrupted power supply to its retail customers
19	at reasonable cost. To this end, the Company is in the process of implementing
19 20	at reasonable cost. To this end, the Company is in the process of implementing a least cost long-term procurement strategy for power supply beginning in 2008.
20	a least cost long-term procurement strategy for power supply beginning in 2008.
20 21	a least cost long-term procurement strategy for power supply beginning in 2008. However, contemporary wholesale markets and market prices, in the Southeast
20 21 22	a least cost long-term procurement strategy for power supply beginning in 2008. However, contemporary wholesale markets and market prices, in the Southeast and nationally, reveal sharply higher costs for power as a direct result of a

£

34

reduced supply margins, and of environmental considerations being increasingly
 manifest in policy at the regional and national level.

3

These market conditions are affecting expectations of market participants over future years and, at this time, the Company and retail customers in all likelihood will face and be burdened with sharply higher prices for power beginning in 2008.

8

9 FPU's retail prices will change abruptly under standard ratemaking mechanisms 10 of the current regulatory framework, and absent needed policy intervention by 11 the Florida Public Service Commission. Accordingly, it is both necessary and 12 appropriate for the Company, with the approval and full support of the 13 Commission, to phase in the much higher prices for power as anticipated. The 14 phase-in plan, as presented herein, has been designed in a manner that improves 15 consumer welfare by mitigating the rate shock that would otherwise occur. Our 16 phase-in plan contains important safeguards and features including interest 17 accruals, accounting audits, regulator checks, and the provision for changes as 18 market expectations evolve. Thus, the plan as proposed is in the general interest 19 of retail consumers and provides the Commission with the necessary level of 20 confidence that facilitates its approval and support.

- 21
- 22 Q. Does this conclude your Direct Testimony?
- 23 A. Yes.

35

Docket No.	·
Witnesses:	Bachman, Martin, Cutshaw and Camfield
Exhibit	(BMCC-1)
Page 1 of 3	

Florida Public Utilities Company

4

PHASE IN PLAN SUMMARY

Eastern Division

Price impacts (cents/kWh)

-	Retail Fuel Prices:			Net Retail	Average	Average
	Current ('06, '07) and		Flow-Back	Fuel	Non-Fuel	Net Retail
<u>ear</u>	Future ('08 - '10) Contracts	<u>Surcharge</u>	<u>Credits</u>	Charge	<u>Charge*</u>	Prices
2006	3.200	0.644		3.844	1.670	5.514
2007	3.200	1.418		4.618	1.670	6.288
800	6.036		1.061	4.975	1.670	6.645
2009	6.080		0.611	5.469	1.670	7.139
2010	6.121		0.352	5.769	1.670	7.439
			Surcharge Rev	venues, Nominal:	2006	\$3,147,560
					2007	\$7,191,467
					Total	\$10,339,02
			Surcharge Reve	nues, w/interest:	2006	\$3,187,516
					2007	\$7,372,509
					Total	\$10,560,02
			Nom	inal Flow Credits:	2008	\$5,586,226
					2009	\$3,338,75
					2010	\$1,995,52
					Total	\$10,920,50

* Base rate charges are held unchanged from current leve for purposes of model simulation only.

Depending upon the costs of delivery services, however, base rate may change over the 2006 - 2010 timeframe.

Docket No. _____ Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-1) Page 2 of 3

Florida Public Utilies Company

.

PHASE IN PLAN SUMMARY

Western Division

	Retail Fuel Prices:			Net Retail	Average	Average
	Current ('06, '07) and		Flow-Back	Fuel	Non-Fuel	Net Retail
Year	Future ('08 - '10) Contracts	<u>Surcharge</u>	Credits	<u>Charge</u>	Charge*	Prices
2006	4.062	0.321		4.383	2.265	6.648
2007	4.170	0.676		4.846	2.265	7.111
2008	6.036		0.518	5.518	2.265	7.783
2009	6.080		0.312	5.768	2.265	8.D33
2010	6.121		0.188	5.933	2.265	8.198
			Surcharge Rev	enues, Nominal:	2006	\$1,024,210
					2007	\$2,196,775
					Total	\$3,220,985
			Surcharge Rever	nues, w/interest:	2006	\$1,037,21
					2007	\$2,253,86
					Total	\$3,291,07
	-		Nomi	nal Flow Credits:	2008	\$1,711,65
					2009	\$1,049,56
					2010	\$643,623
					Total	\$3,404,84

* Base rate charges are held unchanged from current leve for purposes of model simulation only.

Depending upon the costs of delivery services, however, base rate may change over the 2006 - 2010 timeframe.

Docket No.	
Witnesses:	Bachman, Martin, Cutshaw and Camfield
Exhibit	(BMCC-1)
Page 3 of 3	

Fiorida Public Utilities Company

ANTICIPATED RATE SHOCK IMPACTS, 2008

WESTERN DIVISION		Monthly U	sage Level		
Residential Customers	250	kWh) kWh	
	\$ Change In Bill	% Change In Bill	\$ Change In Bill	% Change In Bill	
	\$5.43	22.2%	\$21.70	32.0%	
		Monthly U	sage Level	,	
Commercial and industrial Customers	1,000	0 kWh	15,00	0 kWh	
	\$ Change In Bill	% Change in Bill	\$ Change in Bill	% Change in Bill	
	\$21.70	30.0%	\$372.75	45.0%	
EASTERN DIVISION					
		Monthly U	sage Level		
Residential Customers	250) kWh	1,00	0 kWh	
	\$ Change In Bill	% Change in Bill	\$ Change In Bill	% Change In Bill	
	\$7.98	35.2%	\$31.91	52.6%	
		Monthly U	sage Level		
Commercial and Industrial Customers	1,00	0 kWh	15,00	00 kWh	
	\$ Change In Bill	% Change in Bill	\$ Change In Bill	% Change in Bill	
	\$31.02	48.1%	\$561.88	77.9%	

Docket No.	
Witnesses: Ba	hman, Martin, Cutshaw and Camfield
Exhibit	(BMCC-2)
Page 1 of 2	

Florida Public Utilities Company

PROJECTIONS OF WHOLESALE ELECTRICITY PRICES

Southeast Region

Expected Prices for All Hours (\$/MWh)

	20	005	20	106	2	007	20	108	20)09	20)10	20	011	20	012
Month	Plausib	le Range	Plausib	le Range	Plausib	le Range	Plausib	e Range	Plausib	le Range						
January	48	60	45	59	41	57	38	55	40	55	42	54	43	56	44	58
February	44	55	42	55	39	54	36	52	38	52	40	51	41	53	42	55
March	43	53	41	53	38	52	35	51	37	50	39	50	40	52	41	54
April	47	59	43	58	39	55	36	53	38	53	40	52	41	54	42	56
May	56	70	51	67	46	64	42	62	44	61	47	60	48	62	49	65
June	66	86	59	80	52	74	47	71	50	69	53	68	54	71	55	73
July	73	94	65	88	58	81	53	78	56	77	59	75	60	77	61	80
August	75	97	68	90	60	84	55	80	58	79	61	77	62	80	63	83
September	61	79	54	74	48	68	44	66	46	64	49	63	50	65	51	68
October	60	80	53	73	47	68	42	65	45	63	47	62	48	64	49	66
November	56	75	50	70	45	65	40	62	42	60	45	59	46	61	47	63
December	46	58	43	57	40	55	37	54	39	53	41	52	42	54	43	56
Annuai	57	74	52	70	47	66	43	63	45	62	48	61	49	63	50	66
	•					I									÷	

Docket No. ______ Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit ______ (BMCC-2) Page 2 of 2

.

Florida Public Utilities Company

PROJECTIONS OF WHOLESALE ELECTRICITY PRICES

Southeast Region

Expected Prices for Peak Hours (\$/MWh)

	21	005	20	006	20	907	20	08	20	09	20)10	20	11	20	012
Month	Plausib	le Range	Plausib	le Range	Plausib	le Range	Plausib	e Range	Plausibl	e Range	Plausib	le Range	Plausibl	e Range	Plausib	le Range
January	51	64	48	62	44	60	40	58	42	58	45	57	46	59	47	61
February	46	58	44	58	40	56	37	54	39	54	41	53	42	55	43	57
March	45	58	43	57	40	55	37	54	39	53	41	52	42	54	42	56
Aptil	51	66	47	63	42	60	39	57	41	56	43	55	44	57	45	60
May	64	80	58	76	51	71	47	68	49	67	52	66	54	69	55	72
June	76	98	68	91	60	84	54	81	58	78	61	77	62	80	63	83
July	85	109	76	101	68	93	62	90	65	88	69	86	70	89	71	92
August	87	111	78	104	70	96	64	92	67	90	71	88	71	91	73	95
September	69	90	62	83	54	77	49	74	53	72	55	70	56	73	57	76
October	65	87	57	79	50	73	45	69	48	67	50	65	51	67	53	70
November	59	80	52	73	47	68	42	64	44	63	47	61	48	63	48	65
December	48	60	45	59	41	57	38	55	40	55	42	54	43	56	44	58
Annual	64	82	58	77	52	72	47	70	50	68	53	67	54	69	55	72

Expected Prices for Off Peak Hours (\$/MWh)

.

	20	105	20	106	20)07	20	08	20	09	20	10	20	11	20	12
Month	Plausib	e Range	Plausib	e Range	Plausib	le Range	Plausib	le Range	Plausibl	e Range	Plausib	e Range	Plausibl	e Rang e	Plausib	le Range
January	45	57	42	56	39	54	36	53	38	52	40	51	41	54	42	56
February	43	52	40	53	37	51	34	50	36	50	38	49	39	52	40	54
March	41	48	38	49	36	48	33	47	35	47	37	47	38	49	39	52
April	43	53	40	52	36	51	33	49	35	49	37	48	39	50	39	53
May	46	58	43	57	39	55	36	53	38	53	40	52	41	54	42	56
June ,	54	71	48	66	43	61	39	59	41	58	43	57	45	59	46	61
July	60	79	54	73	48	68	43	66	46	64	49	63	50	65	50	67
August	60	79	54	74	48	69	44	66	46	64	49	63	50	65	51	68
September	51	67	46	63	41	59	37	57	40	56	42	55	43	56	44	59
October	54	72	48	67	43	63	39	60	41	59	44	58	45	60	45	62
November	53	70	47	66	42	62	38	59	40	58	43	56	44	58	44	60
December	44	55	42	55	38	53	35	52	37	51		51	40	53	41	55
Annual	50	64	46	61	41	58	38	56	40	55	42	54	43	57	44	59

Docket No. ______ Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit ______ (BMCC-3) Page 1 of 3

Florida Public Utilities Company

DEMAND AND SUPPLY SUMMARY

For Estimation of Regional Wholesale Prices Compressed SERC Region*

	Low E)emand Growt	h Scenario (M	Ws)	Moderat	e Demand Gro	wth Scenario	(MWs)	High (Demand Growt	h Scenario (N	IWs)
Year	Summer		Marg	in	Summer	······································	Març	gin	Summer	·	Març	jin
	Demand	Supply	MWs	<u>%</u>	Demand	Supply	<u>MWs</u>	<u>%</u>	Demand	Supply	<u>MWs</u>	<u>%</u>
2005	104,233	122,604	18,370	15.0%	105,510	124,104	18,594	15.0%	106,793	125,604	18,811	15.0%
2006	106,553	126,208	19,655	15.6%	108,391	127,708	19,317	15.1%	110,249	129,783	19,534	15.1%
2007	108,924	128,393	19,468	15.2%	111,350	130,993	19,642	15.0%	113,816	133,993	20,177	15.1%
2008	111,348	130,943	19,594	15.0%	114,391	134,568	20,177	15.0%	117,499	138,268	20,769	15.0%
2009	113,826	133,943	20,116	15.0%	117,515	138,243	20,728	15.0%	121,301	142,693	21,392	15.0%
2010	116,359	136,943	20,583	15.0%	120,723	142,018	21,294	15.0%	125,226	147,393	22,167	15.0%
2011	118,949	139,943	20,994	15.0%	124,020	145,893	21,873	15.0%	129,278	152,093	22,814	15.0%
2012	121,596	143,018	21,422	15.0%	127,406	149,868	22,461	15.0%	133,461	156,993	23,531	15.0%

* The projections of wholesale prices for SERC are estimated for a so-called compressed SERC region. This means that both hourly demands and the portfolio of generation capacity is scaled back from that of the entire SERC region. This scaling procedure is necessary to reduce computation time. As discussed within the documentation, the structural model approach includes iterative methods. Altogether, the modeling approach involves 225 iterations of supply by season. Demand is dimensioned as hours by day type and month. The analysis is conducted over several forecast years.

Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit ______ (BMCC-3) Page 2 of 3

Florida Public Utilities Company

PROJECTED PRICES OF PRIMARY FUELS

For Estimation of Regional Wholesale Prices, SERC Region

				Nominal Dollar	s per MMBTU	Г .					
• <u>-</u>		Natural Gas			Oll		Coal				
Year	Low	Mid	High	Low	Mid	<u>High</u>	Low	Mid	<u>High</u>		
2005	6.67	7.77	8.32	7.50	7,58	7.65	3.17	3.23	3.30		
2006	6.24	7.16	8.05	6.09	6.23	6.98	2.88	2.96	3.14		
2007	5.83	6.60	7.79	4.94	5.12	6.36	2.62	2.71	3.00		
2008	5.45	6.08	7.54	4.01	4.21	5.80	2.39	2.49	2.86		
2009	5.55	6.25	7.30	4.04	4.29	5.29	2.41	2.53	2.73		
2010	5.66	6.41	7.07	4.08	4.37	4.82	2.43	2.58	2.61		
2011	5.77	6,58	7.31	4.11	4.46	4.96	2.45	2.62	2.68		
2012	5.88	6.76	7.56	4.15	4.54	5.11	2.48	2.67	2.75		

Docket No. ______ Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit ______ (BMCC-3) Page 3 of 3

•

Florida Public Utilities Company

PROJECTIONS OF CAPACITY ADDITIONS

For Estimation of Regional Wholesale Prices

Compressed SERC Region*

			Technology Share (%) of Capacity Additions, Capacity Additions (MWs), and Total Capability (MWs)										
Generating Technology		Average Unit Size (MWs)	Average Unit Heat Rate (BTU/kWh)	Total Installed Capacity (MWs)	<u>2004</u>	<u>2005</u>	<u>2006</u>	<u>2007</u>	<u>2008</u>	<u>2009</u>	<u>2010</u>	<u>2011</u>	<u>2012</u>
Coal		171	10,398	47,975	0%			33%	31%	31%	30%	29%	28%
Natural Gas:	cc	386	7,046	20,442	0%	34%		22%	29%	29%	28%	27%	26%
	ст	70	11,789	23,130	100%	66%	98%	44%	39%	41%	42%	44%	45%
	Other	2	10,721	169		0%	2%	0%					
Hydro		150		10,367									
Nuclear		942	10,486	16,963									
Added Capaci	ty (MWs)				1,700	3,358	3,604	3,285	3,575	3,675	3,775	3,875	3,975
Total Capability (MWs) 119,046				119,046	120,746	124,104	127,708	130,993	134,568	138,243	142,018	145,893	149,868

* The projections of wholesale prices for SERC are estimated for a so-called compressed SERC region. This means that both hourly demands and the portfolio of generation capacity is scaled back from that of the entire SERC region. This scaling procedure is necessary to reduce computation time. As discussed within the documentation, the structural model approach includes iterative methods. Altogether, the modeling approach involves 225 iterations of supply by season. Demand is dimensioned as hours by day type and month. The analysis is conducted over several forecast years.

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-4) Page 1 of 4

Florida Public Utilities Company

.

CENTRAL APPALACHIAN COAL FUTURES, \$/Ton

Settlement Prices Observed On NYMEX at Identified Dates, 2004-2005

Month	June 23,2004	August 10,2004	November 24,2004
July, '04	\$52.80		
August	\$53.00		
September	\$54.30	\$61.38	
October	\$55.50	\$64.00	
November	\$55.50	\$64.00	
December	\$55.50	\$64.00	\$59.50
January, '05	\$53.90	\$62.00	\$60.75
February	\$53.90	\$62.00	\$61.58
March	\$53.90	\$62.00	\$60.83
April	\$51.60	\$58.14	\$61.00
May	\$51.60	\$58.14	\$60.00
June	\$51.60	\$58.14	\$59.25

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-4) Page 2 of 4

. ÷

Florida Public Utilities Company

٩

NATURAL GAS FUTURES, \$/MCF

Settlement Prices Observed On NYMEX at Identified Dates, 2004-2005

Month	August 10,2004	November 24,2004
September	\$5.69	
October	\$5.83	
November	\$6.30	
December	\$6.72	\$7.98
January, '05	\$6.95	\$8.64
February	\$6.91	\$8.71
March	\$6.79	\$8.36
April	\$6.21	\$7.25
Мау	\$6.09	\$7.02
June	\$6.11	\$7.05

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-4) Page 3 of 4

Florida Public Utilities Company

٨

OIL FUTURES, \$/Barrel

Settlement Prices 2004-2005, Observed On NYMEX at Identified Dates

Month	August 10,2004	November 24,2004		
September	\$44.84			
October	\$44.44			
November	\$43.96			
December	\$43.38			
January, '05	\$42.77	\$49.44		
February	\$42.23	\$49.45		
March	\$41.75	\$49.37		
April	\$41.30	\$49.04		
May	\$40.87	\$48.56		
June	\$40.48	\$48.06		

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-4) Page 4 of 4

٠

Florida Public Utilities Company

٨

CENTRAL APPALACHIAN COAL FUTURES, \$/Ton

Settlement Prices Observed On NYMEX, Febuary 7, 2005

Month	2005	2006
January		\$55.75
February		\$55.50
March	\$57.75	\$55.50
April	\$58.15	\$52.50
Мау	\$58.05	\$52.50
June	\$57.80	\$52.50
July	\$58.50	\$52.50
August	\$58.25	\$52.50
September	\$58.00	\$52.50
October	\$57.18	\$50.90
November	\$57.18	\$50.90
December	\$57.18	\$50.90

https://www.services.nymex.com/otcsettlement/OTCSettle.jsp

.

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-5) Page 2 of 2

Florida Public Utilities Company

CAPACITY MARGINS OF U.S. REGIONS

Shown As % Reserve With Reference To Installed Capacity

NERC REGION	2003	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993	1992
ECAR	20.4	15.4	11.4	14.5	12.5	12.5	13.3	15.6	16.9	16.4	18.0	19.5
ERCOT	20.7	27.3	22.2	22.9	21.0	15.9	14.4	17.4	18.3	19.5	21.5	21.6
FRCC	13.7	12.4	7.9	17.2	14.3	13.0	17.0	16.7	17.3	18.7	18.7	16.4
MAAC	18.7	14.7	9.3	15.4	14.7	14.2	17.1	19.6	20.5	20.8	20.1	19.8
MAIN	20.5	20.5	19.6	19.2	15.8	13.6	13.4	15.9	17.0	16.4	16.6	15.9
MAPP, U.S.	13.6	15.9	15.9	18.2	13.5	14.4	17.1	17.6	15.9	16.8	19.0	19.6
NPCC, U.S.	23.9	16.7	12.3	14.4	15.3	14.4	17.3	16.5	22.6	23.3	25.3	25.7
SERC	16.3	10.5	15.8	10.7	11.1	12.8	12.9	13.4	17.1	15.1	15.4	15.7
SPP	13.9	18.9	14.8	15.3	12.3	14.5	15.1	14.9	16.4	18.5	18.9	22.7
WECC	19.6	17.9	13.6	17.5	17.7	17.5	23.0	24.7	23.5	21.8	24.5	24.9
Contiguous U.S.	18.6	16.4	14.5	15.7	14.6	14.3	16.2	17.5	18.9	18.7	19.9	20.5

Sources: Energy Information Administration, Form EIA-411, "Coordinated Bulk Power Supply Program."

Docket No. ______ Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit ______ (BMCC-6) Page 1 of 1

.

*

Florida Public Utilities Company

COMPARISON OF RETAIL ELECTRIC PRICES

SAMPLES OF ELECTRIC UTILITIES AND FLORIDA PUBLIC UTILITIES COMPANY

(Cents/kWh)

<u>Florida Utilities</u> Residential	<u>1994</u> 7.74	<u>1995</u> 7.82	<u>1996</u> 8.07	<u>1997</u> 8.14	<u>1998</u> 7.95	<u>1999</u> 7.77	<u>2000</u> 7.81	<u>2001</u> 8.74	<u>2002</u> 8.25	Average 8.03
Commercial/Industrial	5.90	5.99	6.24	6.22	6.01	5,89	5.96	6.85	6.43	6.16
<u>South Atlantic Utilities</u> Residential	<u>1994</u> 7.71	<u>1995</u> 7.80	<u>1996</u> 7.84	<u>1997</u> 7.85	<u>1998</u> 7.77	<u>1999</u> 7.64	<u>2000</u> 7.60	<u>2001</u> 7.97	<u>2002</u> 7.78	7.77
Commercial/Industrial	5.49	5.55	5.54	5.48	5.40	5.33	5.32	5.58	5.38	5.45
Small Electric Companies Residential	<u>1994</u> 8.16 5.29	<u>1995</u> 7.84 5.37	<u>1996</u> 7.80 5.34	<u>1997</u> 8.00 5.35	<u>1998</u> 7.97 5.27	<u>1999</u> 7.69 5.22	2000 7.54 5.30	<u>2001</u> 7.82 5.68	<u>2002</u> 7.64 5.32	7.83 5.35
Florida Public Utilitiës Company Residential	<u>1994</u> 7.13	<u>1995</u> 7.03	<u>1996</u> 7.21	<u>1997</u> 6.85	<u>1998</u> 6.41	<u>1999</u> 6.17	<u>2000</u> 5.97	<u>2001</u> 5.93	<u>2002</u> 6.32	6.56
Commercial/Industrial	6.11	5.88	5.90	5.58	5.11	4.75	4.65	4.73	4.91	5.29

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-7) Page 1 of 2

Florida Public Utilities Company

- 12

HISTORICAL VIEW OF PRIMARY FUEL PRICES

NOMINAL DOLLARS PER MMBTU

			_	NATURAL GAS	
Year	CRUDE OIL	COAL*	Wellhead	City Gate	Utilities
1973	0.67	0.40	0.22		0.38
1974	1.18	0.73	0.30		0.51
1975	1.32	0.90	0.44		0.77
1976	1.41	0.91	0.58		1.06
1977	1.48	0.94	0.79		1.32
1978	1.55	1.03	0.91		1.48
1979	2.18	1.24	1.18		1.81
1980	3.72	1.33	1.59		2.27
1981	5.48	1.43	1.98		2.89
1982	4.92	1.46	2.46		3.48
1983	4.52	1.41	2.59		3.58
1984	4.46	1.39	2.66	3.95	3.70
1985	4.15	1.40	2.51	3.75	3.55
1986	2.16	1.31	1.94	3.22	2.43
1987	2.66	1.28	1.67	2.87	2.32
1988	2.17	1.26	1.69	2.92	2.33
1989	2.73	1.25	1.69	3.01	2.43
1990	3.45	1.25	1.71	3.03	2.38
1991	2.85	1.25	1.64	2.90	2.18
1992	2.76	1.22	1.74	3.01	2.36
1993	2.46	1.19	2.04	3.21	2.61
1994	2.27	1.17	1.85	3.07	2.28
1995	2.52	1.16	1.55	2.78	2.02
1996	3.18	1.14	2.17	3.34	2.69
1997	2.97	1.12	2.32	3.66	2.78
1998	1.87	1.13	1.96	3.07	2.40
1999	2.68	1.09	2.19	3.10	2.62
2000	4.61	1.10	3.68	4.62	4.38
2001	3.71	1.15	4.00	5.72	4.6 1
2002	3.88	1.21	2.95	4.12	3.68
2003	4.75	1.49	4.88	5.85	5.54
2004	6.34	2.47	5.49	6.65	6.03

* Coal prices 2004 reflect July futures prices for August - December deliveries, and are thus overstated.

Docket No. Witnesses: Bachman, Martin, Cutshaw and Camfield Exhibit _____ (BMCC-7) Page 2 of 2

Florida Public Utilities Company

HISTORICAL VIEW OF PRIMARY FUEL PRICES

2004 DOLLARS PER MMBTU

				NATURAL GAS			
<u>Year</u>	CRUDE OIL	COAL	Wellhead	City Gate	Utilities		
1973	2.28	1.35	0.75		1.29		
1974	3.69	2.27	0.93		1.59		
1975	3.77	2.56	1.25		2.19		
1976	3.80	2.46	1.56		2.85		
1977	3.74	2.37	2.00		3.34		
1978	3.67	2.44	2.15		3.50		
1979	4.76	2.71	2.58		3.95		
1980	7.45	2.66	3.18		4.55		
1981	10.03	2.62	3.62		5.29		
1982	8.48	2.52	4.24		6.00		
1983	7.50	2.35	4.30		5.94		
1984	7.14	2.23	4.26	6.32	5.92		
1985	6.45	2.17	3.90	5.82	5.51		
1986	3.28	1.99	2.95	4.89	3.69		
1987	3.93	1.89	2.47	4.24	3.43		
1988	3.10	1.80	2.42	4.18	3.33		
1989	3.77	1.72	2.33	4.15	3.35		
1990	4.58	1.65	2.27	4.02	3.16		
1991	3.66	1.60	2.10	3.72	2.79		
1992	3.45	1.53	2.18	3.77	2.96		
1993	3.01	1.46	2.50	3.93	3.20		
1994	2.73	1.40	2.22	3.68	2.73		
1995	2.96	1.37	1.82	3.27	2.37		
1996	3.67	1.32	2.50	3.85	3.10		
1997	3.37	1.27	2.63	4.15	3.15		
1998	2.10	1.27	2.20	3.44	2.69		
1999	2.97	1.20	2.42	3.43	2.90		
2000	4.99	1.19	3.98	5.00	4.74		
2001	3.92 .	1.22	4.23	6.05	4.87		
2002	4.04	1.26	3.07	4.28	3.83		
2003	4.85	1.52	4.98	5.97	5.66		
2004	6.34	2.47	5.49	6.65	6.03		