SCANNED ORIGINAL

DOCUMENT NUMBER-DAT

FPSC-COMMICCIC

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 070007-EI FLORIDA POWER & LIGHT COMPANY

AUGUST 3, 2007

ENVIRONMENTAL COST RECOVERY

ESTIMATED/ACTUAL TRUE-UP JANUARY 2007 THROUGH DECEMBER 2007

TESTIMONY & EXHIBITS OF:

K. M. DUBIN R. R. LABAUVE

- Have you prepared or caused to be prepared under your direction, 1 Q. 2 supervision or control an exhibit in this proceeding? Yes, I have. My exhibit KMD-2 consists of eight forms, PSC Forms 42-1E 3 Α. 4 through 42-8E, included in Appendix I. Form 42-1E provides a summary of the Estimated/Actual True-up amount for the period January 2007 5 through December 2007. Forms 42-2E and 42-3E reflect the calculation 6 of the Estimated/Actual True-up amount for the period. Forms 42-4E and 7 42-6E reflect the Estimated/Actual O&M and Capital cost variances as 8 9 compared to original projections for the period. Forms 42-5E and 42-7E reflect jurisdictional recoverable O&M and Capital project costs for the 10 period. Form 42-8E (pages 1 through 43) reflects return on capital 11 investments, depreciation, and taxes by project. 12
- 13

Q. Please explain the calculation of the ECRC Estimated/Actual True-up amount you are requesting this Commission to approve.

Forms 42-2E and 42-3E show the calculation of the ECRC 16 Α. 17 Estimated/Actual True-up amount. The calculation for the Estimated/Actual True-up amount for the period January 2007 through 18 December 2007 is an under-recovery, including interest, of \$683,962 19 (Appendix I, Page 4, line 5 plus line 6). This Estimated/Actual True-up 20 under-recovery of \$683,962 consists of January through June 2007 21 22 actuals and revised estimates for July through December 2007, compared 23 to original projections for the same period.

ORIGINAL

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION						
2		FLORIDA POWER & LIGHT COMPANY						
3	TESTIMONY OF KOREL M. DUBIN							
4		DOCKET NO. 070007-EI						
5		August 3, 2007						
6								
7								
8	Q.	Please state your name and address.						
9	Α.	My name is Korel M. Dubin and my business address is 9250 West						
10		Flagler Street, Miami, Florida, 33174.						
11								
12	Q.	By whom are you employed and in what capacity?						
13	Α.	I am employed by Florida Power & Light Company (FPL) as Manager of						
14		Cost Recovery Clauses.						
15								
16	Q.	Have you previously testified in this docket?						
17	Α.	Yes, I have.						
18								
19	Q.	What is the purpose of your testimony in this proceeding?						
20	A.	The purpose of my testimony is to present for Commission review and						
21		approval the Estimated/Actual True-up associated with FPL						
22		Environmental Compliance activities for the period January 2007 through						
23		December 2007.						

DOCUMENT NUMBER-DATE 06665 AUG-3 5 FPSC-COMMISSION CLERK Q. Are all costs listed in Forms 42-1E through 42-8E attributable to
 Environmental Compliance projects previously approved by the
 Commission?

A. Yes, with the exception of the Martin Plant Drinking Water System
Compliance Project, which is discussed and supported in the testimony of
Randall R. LaBauve, and the St. Lucie Cooling Water System Inspection
and Maintenance Project, which is discussed and supported in FPL's
petition filed with the Commission on January 8, 2007.

9

10 Q. How do the Estimated/Actual project expenditures for January 2007 11 through December 2007 period compare with original projections? 12 Α. Form 42-4E (Appendix I, Page 7) shows that total O&M project costs were 13 \$5,491,607 (43.3%) higher than projected and Form 42-6E (Appendix I, 14 Page 10) shows that total capital investment project costs were 15 \$4,472,647 (15.7%) lower than projected. Below are variance 16 explanations for those O&M Projects and Capital Investment Projects with 17 significant variances. Individual project variances are provided on Forms 42-4E and 42-6E. Return on Capital Investment, Depreciation and Taxes 18 19 for each project for the Estimated/Actual period are provided as Form 42-20 8E (Appendix I, Pages 13 through 55).

21

22

23

Maintenance of Stationary Above Ground Fuel Storage Tanks
 (Project No. 5a) - O&M

Project expenditures are estimated to be \$41,805 (1.9%) higher than previously projected. The variance is primarily due to the high demand in the tank repair market, which has increased the cost of labor.

4

5

6

1

2

3

2. Disposal of Noncontainerized Liquid Waste (Project No. 17a) -O&M

7 Project expenditures are estimated to be \$22,368 (8.3%) higher than previously projected. The variance is primarily due to greater than 8 9 anticipated ash accumulation in the storage basins. As a result of the 10 increase in ash material to be handled for removal, the site incurred extra 11 expenses due to the use of additional moving equipment to support the job. Also, the time associated with the contractor completing the job 12 contributed to the increases in manpower hours. This increase in time and 13 14 materials to clean out ash accumulation ultimately resulted in increased expenditures. 15

16

17

18

3. Substation Pollutant Discharge Prevention & Removal – Transmission (Project No. 19b) - O&M

Project expenditures are estimated to be \$108,161 (138.4%) higher than
projected. In the first and second quarter of 2007, additional transmission
transformers requiring leak repairs or re-gasket work activities were
discovered and scheduled to be worked during the remainder of 2007.
The original projected work activities included one transmission
transformer re-gaskets and a few leak repairs. The number increased to

- five transmission transformer re-gaskets and additional leak repairs.
- 2

4

5

6

7

1

Amortization of Gains on Sales of Emissions Allowances –
 O&M

The variance of \$523,338 (109%) higher than projected is due to much higher than anticipated gains from the DOE sales of emissions allowances in 2007.

8

9

10

5. Pipeline Integrity Management – Distribution (Project No. 22) -O&M

Project expenditures are estimated to be \$400,354 (47.7%) lower than projected. The variance is primarily due to lower than projected bids for cathodic protection work and the 30"pipeline inspection. Additionally, work was completed prior to the rainy season and costs associated with ground water issues, which were included in the original projections, were avoided.

- 17
- 18
 6.
 Spill Prevention, Control, and Countermeasures SPCC

 19
 (Project No. 23) O&M

Project expenditures are estimated to be \$220,753 (237.4%) higher than
projected. Additional required upgrades at the Sanford Plant, Martin
Plant, Martin Terminal, Port Everglades Plant, Port Everglades Terminal,
Manatee Plant, Manatee Terminal, Turkey Point Plans Units 1 and 2, and
Cape Canaveral Plant were identified during development of the plan.

1 Additional engineering was required to develop conceptual designs and 2 cost estimates for the upgrades, which are scheduled for implementation 3 in 2008. These upgrades were not anticipated at the time FPL filed its 4 original projections for 2007. 5 At Turkey Point Units 3 and 4, longer than estimated construction 6 durations and the replacement of degraded gas tanks that did not pass 7 8 Miami-Dade county inspections contributed to the variance. The original projections planned to utilize existing tanks. Once the work began it was 9 discovered the tanks were degraded and needed to be replaced. 10 11 7. Manatee Reburn (Project No. 24) - O&M 12 13 Project expenditures are estimated to be \$41,868 (8.4%) lower than 14 projected. The variance is primarily due to limited maintenance time available during the May and June high load period. 15 16 8. Port Everglades Electrostatic Precipitator – ESP (Project No. 17 18 25) - O&M Project expenditures are estimated to be \$872,150 (41.4%) lower than 19 projected. Fuel economics to date have dictated that the units at the Port 20 Everglades Plant be run on gas because it is less expensive. Therefore, 21 22 the ESPs have not had to be operated as much as was initially predicted for 2007, which reduced the equipment deterioration and generated 23 24 significantly less ash for disposal.

1 9. Lowest Quality Water Source - LQWS (Project No. 27) - O&M Project expenditures are estimated to be \$161,771 (30.5%) lower than 2 3 projected. The Wastewater Permit for the Cape Canaveral Plant was 4 issued by the Florida Department of Environmental Protection (FDEP). 5 However, there were delays due to water guality technical issues 6 associated with the treatment systems and reclaimed water was not used 7 at the plant; therefore, there was not a cost for the additional water treatment that would be required in order to use reclaimed water. 8 9 10. CWA 316(b) Phase II Rule (Project No. 28) – O&M 10 Project expenditures are estimated to be \$1,018,188 (43.4%) lower than 11 12 projected. This variance is primarily due to economies of scale achieved 13 by the use of one contractor to perform the necessary work. Original 14 estimates included the use of three contractors. 15 11. Selective Catalytic Reduction (SCR) Consumables (Project 16 17 No. 29) – O&M Project expenditures are estimated to be \$34,685 (15.4%) higher than 18 19 projected. The Manatee and Martin Plants are expected to operate at high 20 capacity factors for the remaining months of the year thereby increasing the 21 amount of consumables used. Additionally, catalyst sampling and testing 22 expenses were higher than originally projected. 23 24 12. Hydrobiological Monitoring Plan (HBMP) (Project No. 30) -

1	O&M
2	Project expenditures are estimated to be \$17,895 (71.6%) higher than
3	projected. The variance is primarily due to additional monitoring required
4	due to unexpected drought conditions. The permit requires that while we are
5	on the Emergency Diversion Curves, we conduct additional river monitoring
6	and submit a report.
7	
8	13. CAIR Compliance Project (Project No. 31) – O&M
9	Project expenditures are estimated to be \$156,047 (70.9%) higher than
10	projected. This variance is due to costs associated with the 800 MW unit
11	cycling study, which was not included in the original estimates for 2007.
12	This study and its role in helping FPL cost-effectively comply with CAIR is
13	discussed in the direct testimony of Mr. Randall R. LaBauve.
14	
15	14. Best Available Retrofit Technology (BART) Project (Project
16	No. 32) – O&M
17	Project expenditures are estimated to be \$3,397, whereas FPL did not
18	anticipate any 2007 expenditures for this project originally. The DEP
19	requested additional information on FPL's BART Determination for Turkey
20	Point Units 1 and 2, which necessitated the use of a contractor. This
21	activity was not anticipated at the time FPL filed its original projections for
22	2007.
23	

15. Continuous Emission Monitoring Systems - CEMS (Project

No. 3b) - Capital

2 The variance in depreciation and return is \$60,189, or 5.5% lower than 3 projected. This variance is primarily due to the procurement of a much lower cost per unit pricing from the vendor (California Analytical). In addition, 4 5 several installations and in-service dates shifted from 2007 to 2008 due to 6 equipment availability delays and schedule changes. 7 16. 8 SO2 Allowances – Negative Return on Investment – Capital The variance of \$68,038, or 26.8% lower than projected is due to higher 9 than anticipated gains amortization from the DOE sales of emissions 10 11 allowances in 2007. This higher amortization resulted in a lower balance 12 on which a return was calculated. 13 14 17. Spill Prevention, Control, and Countermeasures - SPCC (Project No. 23) - Capital 15 16 The variance in depreciation and return is \$107,778, or 5.0% lower than 17 projected. Previously planned diversionary structure work activities have been postponed, pending the completion of an assessment of existing 18 19 diversionary structures. The Final Rule issued February 26, 2007 20 amending the existing SPCC Rule allows regulatory relief from 21 containment requirements at facilities with oil-filled equipment by allowing

an oil spill contingency planning option or active containment in addition to
an inspection and monitoring program for oil-filled equipment in lieu of
installing secondary containment or diversionary structures.

1		18. Clean Air Interstate Rule (CAIR) Compliance (Project No. 31) -
2		Capital
3		The variance in the return on CWIP is estimated to be \$2,742,160, or
4		63.9% lower than projected. This variance is primarily due to the Reburn
5		and Low NOx Burner projects at Cape Canaveral Units 1 and 2, Port
6		Everglades Units 3 and 4, and Turkey Point Units 1 and 2 being put on
7		hold. This change in strategy is related to FPL's 800 MW unit cycling
8		project and is discussed in Mr. LaBauve's direct testimony.
9		
10		19. Clean Air Mercury Rule (CAMR) Compliance (Project No. 33) -
11		Capital
12		The variance in the return on CWIP is estimated to be \$1,254,563 or
13		78.7% lower than projected. Engineering and procurement activities
14		associated with Scherer, which were projected for 2007, will now be
15		performed in 2008.
16		
17	Q.	Does this conclude your testimony?

18 A. Yes, it does.

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF RANDALL R. LABAUVE
4		DOCKET NO. 070007-EI
5		August 3, 2007
6		
7	Q.	Please state your name and address.
8	Α.	My name is Randall R. LaBauve and my business address is 700
9		Universe Boulevard, Juno Beach, Florida 33408.
10		
11	Q.	By whom are you employed and in what capacity?
12	A.	I am employed by Florida Power & Light Company (FPL) as Vice
13		President of Environmental Services.
14		
15	Q.	Have you previously testified in predecessors to this docket?
16	Α.	Yes, I have.
17		
18	Q.	What is the purpose of your testimony in this proceeding?
19	A.	The purpose of my testimony is to present for the Commission's review
20		and approval a new ECRC project, the Martin Plant Drinking Water
21		System Compliance Project. Additionally, my testimony provides an
22		update on FPL's approved Clean Air Interstate Rule (CAIR) Compliance
23		and BART (CAVR) Projects, and discusses a new activity that will be
24		required for FPL's approved St. Lucie Turtle Net Project.

1	Q.	Have you prepared, or caused to be prepared under your direction,
2		supervision, or control, an exhibit in this proceeding?
3	Α.	Yes. Exhibits RRL-1 through RRL-8 listed below are included in
4		Appendix II.
5		Exhibit RRL-1 – Florida Department of Environmental Protection Rule
6		62-550.310, Florida Administrative Code – Primary Drinking Water
7		Standards: Maximum Contaminant Levels and Maximum Residual
8		Disinfectant Levels
9		Exhibit RRL-2 – Consent Order in OGC Case Number 06-0744 FPL
10		Martin Plant Public Water System PWS #4431748
11		• Exhibit RRL-3 – Golder Associates Inc. FPL Martin Plant Potable
12		Water System DBP (THM & HAA5) Analysis
13		• Exhibit RRL-4 – Department of Environmental Protection – Letter
14		approving Corrective Action Plan for FPL Martin Plant PWS #4431748
15		• Exhibit RRL-5 – Clean Air Interstate Rule – Summary of FPL 800 MW
16		Unit Cycling Project
17		• Exhibit RRL-6 – Clean Air Interstate Rule – Summary of FPL Peaking
18		Gas Turbine CEMS
19		• Exhibit RRL-7 – Clean Air Visibility Rule – Update Summary of FPL
20		BART Project
21		• Exhibit RRL-8 - Clean Air Visibility Rule - Florida Department of
22		Environmental Protection – Reasonable Progress Rule Workshop
23		Slides

ł

Martin Plant Drinking Water System Compliance Project

2

1

Q. Please describe the law or regulation requiring the Martin Plant
 Drinking Water System Compliance Project.

Florida Department of Environmental Protection (FDEP) Rule 62-Α. 5 550.310(3), Florida Administrative Code, imposed drinking water limits on 6 7 Disinfectants and Disinfection Byproducts (DBPs) to implement the U.S. 8 Environmental Protection Agency's (EPA's) Stage 1 Disinfection and Byproducts Rule, 40 CFR Parts 9, 141, and 142. A copy of Rule 62-9 550.310(3), F.A.C. is provided as Exhibit RRL-1 of Appendix II. The 10 FDEP's Rule applies to community water systems (CWSs) and 11 12 nontransient noncommunity water systems (NTNCWSs) that treat their water with a chemical disinfectant for either primary or residual treatment. 13 Among other things, the FDEP Rule established maximum contaminant 14 levels for four certain trihalomethanes (THMs) and haloacetic acids 15 (HAA5s), which are DBPs. 16

FPL's Martin Plant is a NTNCWS subject to the FDEP Rule. FPL has
tried unsuccessfully for several years to bring the drinking water system at
the Martin Plant into compliance with the FDEP Rule. However, samples
collected from the drinking water system on March 15, 2005, April 12,
2005, September 14, 2005, and December 28, 2005, were all found to be
above the levels permitted for THMs and HAA5s. On September 22,
2006, FPL and the FDEP entered into a Consent Order to reach a

settlement on the matter of the Martin Plant drinking water system's
 continuing non-compliance with the FDEP Rule. The Consent Order is
 provided as Exhibit RRL-2 of Appendix II.

4

5

Q. How is FPL complying with the requirements of the Consent Order?

Per the corrective actions specified in the Consent Order, FPL retained 6 Α. Golder Associates, Inc., which performed a site visit at the Martin Plant 7 and inspected the drinking water system, reviewed well data, performed a 8 literature search, and evaluated FPL's situation. Golder provided 9 recommendations as to how to achieve compliance with the drinking 10 11 water limits for THMs and HAA5s at the plant via a final report dated August 29, 2006. A copy of this final report is provided as Exhibit RRL-3 12 of Appendix II. In its final report, Golder concluded that the two DBP 13 treatment technologies used in the drinking water system, which are 14 aeration and activated carbon filtration, are at present the best 15 technologies for the removal of DBPs and no additional treatment 16 technology is necessary. Nonetheless, Golder concluded that the existing 17 system at the Martin Plant would need corrective modifications in order to 18 19 achieve the THM and HAA5 levels required per the FDEP and EPA 20 Rules.

21

22 Q. What is FPL's corrective action plan and milestone dates?

- A. On November 17, 2006, and pursuant to the Consent Order, FPL
 provided its final corrective action plan and milestone dates to the FDEP.
 FPL's corrective action plan and milestone dates are as follows:
 - September 1, 2006 FPL submits signed Consent Order and signed/sealed corrective action plan
- October 17, 2006 FDEP issues written request for additional
 information (RFI)
 - November 17, 2006 FPL provides additional information to FDEP
 - December 20, 2006 FDEP issues written approval of the plan
- January 12, 2007 FPL completes measurements of physical
 characteristics of aeration system, and takes synoptic samples of inlet
 and outlet water for both the aerator and the carbon filter, and sends
 those samples to the laboratory
- January 26, 2007 FPL receives results/report from laboratory
 - March 23, 2007 Install pilot equipment for testing
- June 20, 2007 Complete testing of pilot

5

8

9

15

- October 1, 2007 FPL issues performance specifications to bidders
 to provide new aerator and carbon filter units
- November 1, 2007 FPL receives bids to provide new aerator and
 carbon filter units
- December 1, 2007 FPL awards contract to successful bidder to
 install new aerator and carbon filter units

- January 2008 Installation of new aerator and carbon filter units is
 complete
- June 2008 Testing of new aerator and carbon filter units is
 complete, FPL submits engineer's certification of completion of
 construction and required supporting documentation
 - July 2008 FDEP issues written clearance to place the system modifications into service
- 8

7

9 Q. What milestones has FPL completed to date?

FPL has completed the pilot testing on a small scale system to test the 10 Α. effectiveness of the proposed treatment process. FPL is awaiting the 11 results of the testing. Once the results are received from the vendor, 12 13 drawings detailing the necessary changes to the existing system will be obtained. These drawings will be used as part of the bid package to 14 select the contractor for the installation of the final system. The next 15 major milestone will be the issuance of the performance specifications to 16 17 the bidders to provide new aerator and carbon filter units. The issuance of the performance specifications is scheduled to be completed on October 18 19 1, 2007.

20

Q. Why has FPL not submitted this Project for cost recovery through the ECRC previously?

A. At the time that the Martin Plant drinking water system became subject to
 the FDEP and EPA rules, FPL reasonably expected that the system would

provide adequate water treatment to comply with the THM and HAA5 1 2 MCLs established by the rules. It was not until after the unsuccessful 3 tests were performed in 2005, Golder completed its evaluation of the 4 System in August 2006, and FPL negotiated the Consent Order with 5 FDEP in September 2006 that FPL was aware that it would have to 6 conduct the pilot test and implement modifications to the drinking water 7 system required by the Consent Order. 8 What activities is FPL asking to recover through the ECRC? 9 Q. FPL is requesting to recover costs associated with implementing the 10 Α. treatment options resulting from the pilot test plan, that are found to be 11 necessary to achieve compliance with the FDEP rule. The results of the 12 13 pilot test plan will determine the most cost-effective and reliable treatment 14 option to achieve compliance. 15 16 Q. Has FPL estimated the cost of the proposed Project? 17 Α. Following are FPL's preliminary capital estimates for potential treatment 18 options: • Addition of larger carbon bed - \$40,000 - \$60,000 19 Addition of multimedia filter bed - \$30,000 - \$50,000 20 • Addition of high velocity stripper - \$15,000 - \$30,000 21 22 Additionally, annual O&M estimates for the removal and replacement of 23 24 the exhausted carbon bed and multimedia filter bed (every 8 to 12

- 1 months) are \$11,000 to \$17,000 to begin in 2008.
- 2

3 Q. Does FPL expect to incur any Project co
--

- A. Yes. FPL expects to incur \$4,000 of Capital expenses associated with
 engineering and drawings detailing the changes to the existing system.
 These expenses are projected for October and November of 2007.
- 7
- 8 Q. Has FPL estimated how much will be spent on the Project in 2008?
- 9 A. Yes. FPL expects to incur \$17,000 of O&M expenses and \$140,000 of
 10 Capital expenses associated with the installation and maintenance of the
 11 new aerator and carbon bed.
- 12
- Q. How will FPL ensure that the costs incurred are prudent and
 reasonable?
- A. The activities outlined in the preceding paragraphs represent a costeffective strategy for complying with the Consent Order. FPL will utilize
 competitive bidding to procure the necessary services.
- 18
- 19Q.Is FPL recovering the costs for the Martin Plant Drinking Water20System Compliance Project through any other mechanism?
- 21 A. No.

CAIR Compliance Project Update

2

1

3 Q. What updates has FPL made to its CAIR Compliance Project?

A. There are two updates. The first relates to FPL's 800 MW Unit Cycling
Project, which FPL believes will help it comply with CAIR more costeffectively. The second update relates to FPL's determination that a more
extensive Continuous Emissions Monitoring System (CEMS) Plan is
needed for its gas turbine units.

9

10 Q. Please discuss FPL's 800 MW Unit Cycling plans.

11 A. FPL commissioned a study, with the Commission's approval, to evaluate 12 emission reductions and necessary countermeasures to implement the 13 800 MW Unit Cycling project. Phase one and two of the 800 MW unit 14 cycling study was completed in June of 2007. FPL has reviewed the 15 results of the study and has concluded that implementation of the project on FPL's 800 MW fossil steam Electric Generating Units (EGUs) at the 16 17 Martin and Manatee Plants would provide cost effective reductions in NOx emissions to help comply with CAIR. The study has identified several 18 19 modifications that must be undertaken to allow the 800 MW units to cycle 20 as needed without adversely affecting unit availability and reliability. 21 Exhibit RRL-5 to this filing provides a summary of the 800 MW Unit 22 Cycling Report, a discussion of the preliminary project scope to implement 23 the 800 MW Unit Cycling project, a preliminary estimate of project costs, 24 and the resultant projected emission reductions. Evaluation of detailed

project cost schedules and implementation plan is currently underway
following the determination that the project would provide highly cost
effective emission reductions for CAIR compliance. I discussed this
project in my October 13, 2006 testimony, but neither its cost nor its
impact on the cost of other CAIR compliance projects was known at the
time of FPL's 2007 ECRC projections.

- As discussed in Exhibit RRL-5, FPL now expects to implement the 800 8 MW unit cycling project from 2007 through 2010 at its Manatee Units 1 & 9 2 and Martin Units 1 & 2, at an estimated capital cost of \$97 million. Upon 10 completion of the plan on all four 800 MW units, FPL projects an annual 11 NOx reduction of 1,773 tons and an ozone season NOx reduction of 12 1,563 tons. As a result, FPL will not need to acquire as many additional 13 allowances from the annual and ozone season NOx allowance markets 14 for compliance with CAIR. FPL has provided a detailed description and 15 implementation plan for the 800 MW Unit Cycling Project in Exhibit RRL-16 5. This exhibit also provides a discussion of FPL's selection of the project 17 18 for compliance with CAIR.
- 19

7

Q. Has FPL identified potential changes to its CAIR compliance plan
 that could affect the decision to proceed on implementation of the
 800 MW Unit Cycling Project on all of the project units?

A. Yes. On July 13, 2007, Florida Governor Charlie Crist signed three
 executive orders initiating climate change requirements for Florida.

1 Executive Order 07-127 requires the FDEP to initiate rulemaking to reduce CO₂ emissions from electricity production to year 2000 levels by 2 3 2017, year 1990 levels by 2025, and to a level 80% below the 1990 levels by 2050. The goals established in Executive Order 07-127 may require 4 significant CO₂ emissions reductions from existing fossil power plants, 5 which may impact FPL's decision to fully implement the 800 MW Unit 6 Cycling Project. FPL is currently participating in the FDEP rulemaking 7 and we will be evaluating strategies that may be required to meet the 8 9 compliance requirements of the new rule. FPL's implementation of the 800 MW Unit Cycling Project, and any other NOx or SO₂ reduction project 10 to comply with the CAIR requirements, will be evaluated to ensure that 11 projects will provide the most cost effective overall compliance strategy to 12 13 meet all new environmental requirements.

14

Q. Please discuss the changes FPL has made to its CEMS plans for gas
 turbine units and why these changes are necessary to comply with
 CAIR.

A. FPL has recently identified the need to change the CEMS Plan for the
 small peaking gas turbine units and to implement a Gas Turbine CEMS
 CAIR Compliance strategy within the CAIR Compliance Project. CAIR
 requires that generating unit emissions from all CAIR affected sources
 monitor NOx and SO₂ emissions through implementation of CEMS that
 comply with the applicable federal emission monitoring requirements
 under 40 CFR Part 75. FPL's fossil generation is compliant with these

requirements of Part 75 through the CEMS, which had been installed to
comply with Acid Rain requirements, with the exception of the small
combustion turbine peaking units located at the Lauderdale, Port
Everglades and Ft. Myers plants. FPL's gas turbine peaking units were
not subject to Acid Rain monitoring requirements and historically have not
had CEMS.

7

Initially, FPL planned to comply with the CEMS monitoring requirements 8 for these peaking units through use of Low Mass Emission (LME) default 9 10 emission rate requirements under Part 75, which require only limited 11 emission monitoring system requirements. Subsequent reviews of FPL's compliance strategy for CAIR identified an increased compliance risk and 12 potential increases in monitoring system costs if FPL adopts the default 13 emission rate monitoring requirements. FPL now proposes to implement 14 15 LME "Identical Units" Part 75 CEMS requirements, which provide for 16 monitoring of representative units for groups of similar generating units. FPL proposes to implement the revised monitoring plan for the peaking 17 gas turbines at an estimated cost of \$396,273 as the least cost alternative 18 19 for compliance with this part of the CAIR requirements. Exhibit RRL-6 to 20 this filing provides a discussion of the LME monitoring options under 40 CFR Part 75.19, a description of "Similar Units" CEMS option 21 22 implementation as the preferred compliance method, and the preliminary 23 cost projections for implementation.

1 Q. What is the status of FPL's legal challenge to CAIR?

2 Α. On December 23, 2007, the Administrative Law Judge (ALJ) ruled against 3 FPL's challenge in the Division of Administrative Hearings of the FDEP's implementation rules for CAIR. FPL appealed the ALJ's decision in the 4 3rd Circuit Court of Appeals. FPL filed its initial brief on June 8, 2007, the 5 FDEP filed its answer brief on July 16, 2007, and FPL will file its reply 6 brief by August 15, 2007. FPL is also continuing its challenge to EPA's 7 CAIR through an appeal filed in the DC Circuit Court. Initial briefs were 8 filed on March 5, 2007 and final briefs are due September 5, 2007. There 9 is no formal timetable for decisions on CAIR challenges, but FPL 10 anticipates that the state and federal appellate courts will decide late this 11 year or in the first half of 2008. 12

- 13
- 14

BART Project Update

15

16 Q. What updates has FPL made to its BART Project?

17 Α. There are two updates to FPL's BART Project, which recovers costs 18 associated with the Regional Haze Rule - Best Available Retrofit Technology (BART), now referred to as the Clean Air Visibility Rule 19 (CAVR). The first relates to the current status of FPL's BART Project. 20 The second relates to the determination that the FDEP's requirement for 21 Reasonable Further Progress towards meeting the visibility goals 22 established in Section 169A of the Clean Air Act will require additional 23 24 analyses to identify generating units within FPL's system that may require additional compliance measures.

2

1

Q. Please explain the purpose of your testimony as it relates to the
BART Project.

5 A. In Order No. PSC-05-1251-FOF-EI, the Commission found that the costs 6 associated with complying with the Clean Air Visibility Rule (CAVR) 7 requirements through the BART Project are eligible for recovery through 8 the ECRC, subject to the demonstration that costs for specific activities 9 are reasonable and prudent. To comply with the requirements of the 10 CAVR, FPL evaluated the impacts of generating units affected by the 11 BART requirements to reduce regional haze.

12

18

In testimony submitted to the Commission on the BART Project in Docket
 No. 050007-EI, and approved in Order No. PSC-05-1251-FOF-EI, FPL
 identified compliance options for FPL units meeting the CAVR
 requirements. The following issues were addressed as part of the CAVR:

- The available retrofit control options
 - Existing pollution control equipment in use at the facility
- Compliance costs associated with each available control
 option

• The remaining useful life of the unit

The energy and non-air impacts associated with
 implementing a control option

• The control options impact on visibility (as determined

through modeling)

The evaluation required FPL to have detailed visibility modeling 3 performed to determine the impacts on Federal Class 1 areas (National 4 Parks and Wildlife Areas). Affected units, which are determined to 5 adversely impact Class 1 areas and meet the CAVR technology 6 7 requirements, will be required to reduce emissions. FPL has now 8 completed the required visibility modeling at a total cost of \$26,203. A summary of the results of this study has been included in Exhibit RRL-7. 9 10 Screening analyses performed to evaluate CAVR applicability identified that most of FPL's BART eligible units were exempt from CAVR control 11 12 requirements. FPL's Turkey Point Fossil Units 1 & 2 did not pass the screening analysis and were subject to the more detailed determination 13 required by the rule. FPL provided the CAVR determination for 14 Particulate Matter impacts from Turkey Point Fossil Units 1 & 2 to the 15 Florida FDEP on January 31, 2007. 16

17

1

2

18 Q. Please discuss FDEP's proposed Reasonable Progress rulemaking.

A. On May 25, 2007 the FDEP published a Notice of Proposed Rulemaking
 to adopt Rule 62-296.341, "Regional Haze – Reasonable Progress,"
 which would implement the Reasonable Progress portion of CAVR.

22

The CAVR requires states to achieve "natural background" visibility in
Class 1 areas by 2064. The Reasonable Progress portion of CAVR

1 requires that a "glide path" be established for each Class 1 area, which is effectively the slope from the baseline visibility to the calculated natural 2 background visibility that must be reached by the year 2064. Periodic 3 points along the "glide path" then become "Reasonable Progress" goals to 4 help assure that the natural background visibility deadline is met. States 5 are required to submit State Implementation Plans which demonstrate 6 that the Reasonable Progress goals will be met through achieving visibility 7 improvements periodically along the "glide path". The FDEP held a 8 workshop on its proposed "Reasonable Progress" rule on June 14, 2007. 9 Materials from that workshop have been included in Exhibit RRL-8. 10

11

In support of the Reasonable Progress requirements of CAVR, the FDEP 12 performed a screening analysis to identify potential applicable sources 13 and made available those results. FDEP has initially identified 12 of 14 FPL's oil-burning units as Proposed Sources subject to the Reasonable 15 Progress Four-Factor analysis. Under the proposed rule, FPL's sources 16 17 will have to undergo an evaluation against those four factors to select the appropriate control technology to reduce impacts to Class 1 areas. Units 18 which have been identified as affected units under the Four-Factor test 19 would be required to implement Reasonable Progress Control Technology 20 21 (RPCT) under the FDEP's proposed rule.

22

Exhibit RRL-8 provides a detailed description of the EPA guidance on the
 Four-Factor test. To determine whether FPL's oil burning units will be

affected by the proposed rule, FPL plans to engage a consultant to prepare the required four-factor analyses. FPL has projected a year 2007 project cost of \$25,000 in O&M costs for the required analyses.

Re

1

2

3

4

5 Results from the FDEP screening study for Reasonable Progress indicated that Turkey Point Fossil Units 1 & 2, Port Everglades Units 1 -6 7 4. Riviera Units 3 & 4. Martin Units 1 & 2, and Manatee Units 1 & 2 have 8 potential adverse impacts to Class 1 Areas within Florida. Results from 9 the required Four-Factor analysis will be used to identify FPL fossil steam 10 generating unit emission reduction requirements under the Reasonable Progress rule. FPL anticipates that some additional reductions in 11 emissions of SO₂ and Particulate Matter from FPL EGUs may be required 12 13 to achieve the Reasonable Progress goals for Florida Class 1 areas. 14 Once the FDEP Reasonable Progress Rule has been finalized, FPL will be required to submit a plan to achieve the Reasonable Progress goals. 15 FPL anticipates that a detailed engineering study to identify the least cost 16 compliance options for Reasonable Progress will be required to develop 17 its compliance plan which is due to the FDEP by January 31, 2008. 18

19

20

<u>St. Lucie Turtle Net Project – New Activity</u>

- 21
- 22
 Q.
 Please briefly describe FPL's currently approved St. Lucie Turtle Net

 23
 Project.
- 24 A. FPL's current St. Lucie Turtle Net Project was approved by the

1 Commission in Order PSC-02-1421-PAA-El, issued on October 17, 2002. 2 The Project included the replacement and enhancement of an existing mesh net system that was located across the intake canal at the St. Lucie 3 4 Plant to prevent several species of endangered sea turtles from being 5 drawn into the cooling water inlets on the generating units. The existing 6 net system had become deformed to the point that it could trap turtles 7 when large influxes of seaweed and jellyfish entered the intake canal. 8 The net replacement and enhancement of the net system was performed 9 in 2002.

10

Q. What new activities is FPL now having to undertake pursuant to the St. Lucie Turtle Net Project?

A. The antifoulant and protective coating on the existing 5-inch net located at
the intake canal at the St. Lucie Plant has deteriorated, permitting marine
growth to adhere to the net material. The net has also experienced UV
damage. Because of this determination, the net must be replaced.

17

18 The existing deteriorated 5-inch net will be removed and sent back to the 19 manufacturer to be re-coated. FPL will purchase and install a new 5-inch 20 barrier net, and the re-coated original net will be stored on-site as a back-21 up.

22

Q. Why didn't FPL include costs for a net replacement in its original
filing in 2002?

Α. FPL's petition for recovery of the St. Lucie Turtle Net Project was filed on 1 2 June 18, 2002. At the time the petition was filed, FPL had not yet selected the manufacturer of the net. When the manufacturer and net 3 4 material were chosen, it was determined that a protective coating would be required in order to maintain the integrity of the net. Per the 5 6 manufacturer, the protective coating had a five-year life expectancy, information that was not known at the time of the original filing. 7 8 How will FPL ensure that the costs incurred for re-coating the 9 Q. current net and the purchase of the net are prudent and reasonable? 10 The project scope will be awarded based on competitive bid. Qualified 11 Α. bidders will be selected to bid on the project. The lowest bid that meets 12 the specification requirements will be awarded the contract. Project 13 14 implementation will be supervised by FPL. 15 When does FPL expect to incur costs for the new activity associated 16 Q. 17 with the St. Lucie Turtle Net Project? FPL expects to purchase the new 5-inch net in the last guarter of 2007. 18 Α. 19 The current net will be sent to the manufacturer for re-coating during the 20 first guarter of 2008 at which time the new net will be installed. 21 What is FPL's estimated cost for the new activities associated with 22 Q. the St. Lucie Turtle Net Project? 23 The estimated capital cost for the new 5-inch net is \$288,000, to be 24 Α.

- incurred in the last quarter of 2007. The estimated O&M cost associated
 with re-coating the existing net is \$10,000, to be incurred in the first
 quarter of 2008.
- 4
- 5 Q. Does this conclude your testimony?
- 6 A. Yes, it does.

APPENDIX I

ENVIRONMENTAL COST RECOVERY COMMISSION FORMS 42-1E THROUGH 42-8E

JANUARY 2007 - DECEMBER 2007 ESTIMATED/ACTUAL TRUE-UP

KMD-2 DOCKET NO. 070007-EI FPL WITNESS: K.M. DUBIN EXHIBIT PAGES 1-52

Form 42-1E

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/Actual True-up for the Period January through December 2007

Line No. 1	Over/(Under) Recovery for the Current Period (Form 42-2E, Page 2 of 2, Line 5)	(\$1,282,604)
2	Interest Provision (Form 42-2E, Page 2 of 2, Line 6)	\$598,642
3	Sum of Current Period Adjustments (Form 42-2E, Page 2 of 2, Line 10)	\$0
4	Estimated/Actual True-up to be refunded/(recovered) in January through December 2008	(\$683,962)

() Reflects Underrecovery

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/Actual True-up Amount for the Period January through December 2007

Line No.		Actual January	Actual February	Actual March	Actual April	Actual May	Actual June
1	ECRC Revenues (net of Revenue Taxes)	\$1,983,736	\$1,707,980	\$1,689,491	\$1,713,020	\$1,891,211	\$2,088,038
2	True-up Provision (Order No. PSC-06-0972-FOF-EI)	1,337,720	1,337,720	1,337,720	1,337,720	1,337,720	1,337,720
3	ECRC Revenues Applicable to Period (Lines 1 + 2)	3,321,456	3,045,700	3,027,211	3,050,739	3,228,931	3,425,758
4	Jurisdictional ECRC Costs a - O&M Activities (Form 42-5E, Line 9) b - Capital Investment Projects (Form 42-7E, Line 9) c - Total Jurisdictional ECRC Costs	566,436 1,629,758 2,196,194	598,119 1,759,288 2,357,407	1,725,067 1,787,917 3,512,984	1,037,492 1,814,741 2,852,233	621,715 1,861,056 2,482,771	1,666,686 1,964,793 3,631,479
5	Over/(Under) Recovery (Line 3 - Line 4c)	1,125,262	688,293	(485,773)	198,506	746,160	(205,721)
ა <mark>6</mark>	Interest Provision (Form 42-3E, Line 10)	76,826	75,201	70,111	63,925	60,412	56,104
7	Prior Periods True-Up to be (Collected)/Refunded in 2007	16,052,637	15,917,005	15,342,779	13,589,397	12,514,109	11,982,961
	a - Deferred True-Up from 2006 (Form 42-1A, Line 7)	1,563,849	1,563,849	1,563,849	1,563,849	1,563,849	1,563,849
8	True-Up Collected /(Refunded) (See Line 2)	(1,337,720)	(1,337,720)	(1,337,720)	(1,337,720)	(1,337,720)	(1,337,720)
9	End of Period True-Up (Lines 5+6+7+7a+8)	17,480,854	16,906,628	15,153,246	14,077,958	13,546,810	12,059,473
10	Adjustments to Period Total True-Up Including Interest						
11	End of Period Total Net True-Up (Lines 9+10)	\$17,480,854	\$16,906,628	\$15,153,246	\$14,077,958	\$13,546,810	\$12,059,473

.

Form 42-2E

Page 1 of 2

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/Actual True-up Amount for the Period January through December 2007

.

L	ine No.	-	Estimated July	Estimated August	Estimated September	Estimated October	Estimated November	Estimated December	End of Period Amount
	1	ECRC Revenues (net of Revenue Taxes)	\$2,360,856	\$2,374,903	\$2,360,601	\$2,216,793	\$1,979,023	\$1,994,994	\$24,360,645
	2	True-up Provision (Order No. PSC-06-0972-FOF-EI)	1,337,720	1,337,720	1,337,720	1,337,720	1,337,720	1,337,720	16,052,637
	3	ECRC Revenues Applicable to Period (Lines 1 + 2)	3,698,576	3,712,622	3,698,320	3,554,512	3,316,742	3,332,713	40,413,282
	4	Jurisdictional ECRC Costs a - O&M Activities (Form 42-5E, Line 9) b - Capital Investment Projects (Form 42-7E, Line 9)	1,435,857 2,060,532	1,427,308 2,101,978	1,966,801 2,145,794	2,431,111 2,184,491	2,162,843 2,212,438	2,290,581 2,243,085	17,930,015 23,765,871
		c - Total Jurisdictional ECRC Costs	3,496,389	3,529,286	4,112,595	4,615,602	4,375,281	4,533,666	41,695,886
	5	Over/(Under) Recovery (Line 3 - Line 4c)	202,187	183,336	(414,275)	(1,061,090)	(1,058,539)	(1,200,953)	(1,282,604)
4	6	Interest Provision (Form 42-3E, Line 10)	50,564	45,748	39,555	30,598	20,183	9,415	598,642
	7	Prior Periods True-Up to be (Collected)/Refunded in 2007	10,495,624	9,410,655	8,302,020	6,589,581	4,221,370	1,845,295	16,052,637
		a - Deferred True-Up from 2006 (Form 42-1A, Line 7)	1,563,849	1,563,849	1,563,849	1,563,849	1,563,849	1,563,849	1,563,849
	8	True-Up Collected /(Refunded) (See Line 2)	(1,337,720)	(1,337,720)	(1,337,720)	(1,337,720)	(1,337,720)	(1,337,720)	(16,052,637)
	9	End of Period True-Up (Lines 5+6+7+7a+8)	10,974,504	9,865,869	8,153,430	5,785,219	3,409,144	879,887	879,887
	10	Adjustments to Period Total True-Up Including Interest							
	11	End of Period Total Net True-Up (Lines 9+10)	\$10,974,504	\$9,865,869	\$8,153,430	\$5,785,219	\$3,409,144	\$879,887	\$879,887

Form 42-2E Page 2 of 2

•

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/Actual True-up Amount for the Period January through December 2007

Interest Provision (in Dollars)

Lin	A								
No		January	February	March	April	May	June		
1	Beginning True-Up Amount (Form 42-2A, Lines 7 + 7a + 10)	\$17,616,486	\$17,480,854	\$16,906,628	\$15,153,246	\$14,077,958	\$13,546,810		
2	Ending True-Up Amount before Interest (Line 1 + Form 42-2A, Lines 5 + 8)	17,404,028	16,831,427	15,083,135	14,014,033	13,486,398	12,003,369		
3	Total of Beginning & Ending True-Up (Lines 1 + 2)	\$35,020,514	\$34,312,281	\$31,989,763	\$29,167,279	\$27,564,356	\$25,550,179		
ഗ 4	Average True-Up Amount (Line 3 x 1/2)	\$17,510,257	\$17,156,141	\$15,994,882	\$14,583,640	\$13,782,178	\$12,775,090		
5	Interest Rate (First Day of Reporting Month)	5.27000%	5.26000%	5.26000%	5.26000%	5.26000%	5.26000%		
6	Interest Rate (First Day of Subsequent Month)	5.26000%	5.26000%	5.26000%	5.26000%	5.26000%	5.28000%		
7	Total of Beginning & Ending Interest Rates (Lines 5 + 6)	10.53000%	10.52000%	10.52000%	10.52000%	10.52000%	10.54000%		
8	Average Interest Rate (Line 7 x 1/2)	5.26500%	5.26000%	5.26000%	5.26000%	5.26000%	5.27000%		
g	Monthly Average Interest Rate (Line 8 x 1/12)	0.43875%	0.43833%	0.43833%	0.43833%	0.43833%	0.43917%		
1	0 Interest Provision for the Month (Line 4 x Line 9)	\$76,826	\$75,201	\$70,111	\$63,925	\$60,412	\$56,104		

Form 42-3E Page 1 of 2 Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/Actual True-up Amount for the Period January through December 2007

Interest Provision (in Dollars)

6

End of Line Period No. July August September October November December Amount 1 **Beginning True-Up Amount** (Form 42-2A, Lines 7 + 7a + 10) \$12,059,473 \$10,974,504 \$9,865,869 \$8,153,430 \$5,785,219 \$3,409,144 \$145,029,621 2 Ending True-Up Amount before Interest 10,923,940 9.820,121 8.113.875 5,754,621 3,388,961 870,472 127,694,380 (Line 1 + Form 42-2A, Lines 5 + 8) Total of Beginning & Ending True-Up (Lines 1 + 2) 3 \$22,983,413 \$20,794,625 \$17,979,744 \$13,908,051 \$4,279,616 \$272,724,001 \$9,174,180 4 Average True-Up Amount (Line 3 x 1/2) \$11,491,707 \$10,397,313 \$8,989,872 \$4,587,090 \$2,139,808 \$136,362,001 \$6,954,026 5 Interest Rate (First Day of Reporting Month) 5.28000% 5.28000% N/A 5.28000% 5.28000% 5.28000% 5.28000% N/A 6 Interest Rate (First Day of Subsequent Month) 5.28000% 5.28000% 5.28000% 5.28000% 5.28000% 5.28000% Total of Beginning & Ending Interest Rates (Lines 5 + 6) 10.56000% 10.56000% 10.56000% 10.56000% N/A 10.56000% 10.56000% 7 N/A 8 Average Interest Rate (Line 7 x 1/2) 5.28000% 5.28000% 5.28000% 5.28000% 5.28000% 5.28000% 0.44000% 0.44000% N/A Monthly Average Interest Rate (Line 8 x 1/12) 0.44000% 0.44000% 0.44000% 0.44000% 9 \$50,564 \$45,748 \$39,555 \$30,598 \$20,183 \$9,415 \$598,642 10 Interest Provision for the Month (Line 4 x Line 9)

Form 42-3E Page 2 of 2

Form 42-4E

Florida Power & Light Company

Environmental Cost Recovery Clause

Calculation of the Estimated/Actual True-Up Amount for the Period

January 2007 - December 2007

Variance Report of O&M Activities (in Dollars)

(in Dolla	ars)	•		
	(1)	(2)	(3)	(4)
	Estimated	Original	Varian	
Linë	Actual	Projections	Amount	Percent
1 Description of O&M Activities				
1 Air Operating Permit Fees-O&M	\$1,822,006	\$1,951,100	(\$129,094)	-6.6%
3a Continuous Emission Monitoring Systems-O&M	\$685,667	\$749,284	(\$63,617)	-8.5%
5a Maintenance of Stationary Above Ground Fuel Storage Tanks-O&M	\$2,239,772	\$2,197,967	\$41,805	1.9%
8a Oil Spill Cleanup/Response Equipment-O&M	\$211,821	\$212,004	(\$183)	-0.1%
13 RCRA Corrective Action-O&M	\$103,706	\$100,000	\$3,706	3.7%
14 NPDES Permit Fees-O&M	\$124,400	\$124,900	(\$500)	-0.4%
17a Disposal of Noncontainerized Liquid Waste-O&M	\$291,368	\$269,000	\$22,368	8.3%
19a Substation Pollutant Discharge Prevention & Removal - Distribution - O&M	\$1,152,314	\$1,147,220	\$5,094	0.4%
19b Substation Pollutant Discharge Prevention & Removal - Transmission - O&M	\$186,311	\$78,150	\$108,161	138.4%
19c Substation Pollutant Discharge Prevention & Removal - Costs Included in Base Rates	(\$560,232)	(\$560,232)	\$ 0	0.0%
20 Wastewater Discharge Elimination & Reuse	\$0	\$0	\$0	0.0%
NA Amortization of Gains on Sales of Emissions Allowances	(\$1,003,674)	(\$480,336)	(\$523,338)	109.0%
21 St. Lucie Turtie Net	(@1,000,011) \$0	\$0	\$0	0.0%
22 Pipeline Integrity Management	\$438,646	\$839,000	(\$400,354)	-47.7%
23 SPCC-Spill Prevention, Control & Countermeasures	\$313,753	\$93,000	\$220,753	237.4%
24 Manatee Reburn	\$458,132	\$500,000	(\$41,868)	-8,4%
25 Port Everglades ESP	\$1,232,950	\$2,105,100	(\$872,150)	-41.4%
26 UST Replacement/Removal	\$6	\$0	\$6	100.0%
27 Lowest Quality Water Source	\$368,233	\$530,004	(\$161,771)	-30.5%
28 CWA 316(b) Phase II Rule	\$1,325,259	\$2,343,447	(\$1,018,188)	-43.4%
29 SCR Consumables	\$259,889	\$225,204	\$34,685	15.4%
30 HBMP	\$42,891	\$24,996	\$17,895	71.6%
31 CAIR Compliance	\$376,055	\$220,008	\$156,047	70.9%
32 BART	\$3,397	\$0	\$3,397	100.0%
	\$8,088,753	\$0 \$0	\$8,088,753	100.0%
33 St. Lucie Cooling Water System Inspection & Maintenance 2 Total O&M Activities	\$18,161,423	\$12,669,816	\$5,491,607	43.3%
• •				
3 Recoverable Costs Allocated to Energy	\$4,330,396	\$5,735,829	(\$1,405,433)	-24.5%
4a Recoverable Costs Allocated to CP Demand	\$12,958,829	\$6,066,883	\$6,891,946	113.6%
4b Recoverable Costs Allocated to GCP Demand	\$872,198	\$867,104	\$5,094	0.6%

Notes:

Column(1) is the 12-Month Totals on Form 42-5E

Column(2) is the approved projected amount in accordance with FPSC Order No. PSC-06-0972-FOF-EI

Column(3) = Column(1) - Column(2)Column(4) = Column(3) / Column(2)

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/actual True-up Amount for the Périod January 2007 - December 2007

.

1

Form 42-5E Page 1 of 2

.

۰.

			January	/ 2007 - Dece	mber 2007	•				
				O&M Activiti (in Dollars				• • •		
ie #	Project #	Actu JAN		Actual FEB	Actual MAR	-	Actual APR	Actual MAY	Actual JUN	6-Month Sub-Total
1.	Description of O&M Activities									SdD-10tar
• •										
	1 Air Operating Permit Fees-O&M		5,075	18,529	165,17	5	153,827	165,175	165,175	833,956
	3a Continuous Emission Monitoring Systems-O&M	16:	3,176	40,359	35,89	6	32,003	25,644	166,212	463,290
	5a Maintenance of Stationary Above Ground Fuel	1	9,206	-7,914	1,31	1	7,249	27,965	365,710	403,527
	Storage Tanks-O&M							-	•	
	8a Oli Spili Cleanup/Response Equipment-O&M	1	7,555	13,168	13,40	1	37,789	13,510	5,498	100,921
·i	13 RCRA Corrective Action-O&M		0	12,483	6,36	3	0	. 0	0	18,846
	14 NPDES Permit Fees-O&M	12	4,400	0		0	0	0	. 0	124,400
	17a Disposal of Noncontainerized Liquid Waste-O&M	2	4,972	37,314	38,48	6	0	61,779	40,017	202,568
	19a Substation Pollutant Discharge Prevention &	6	9,251	141,375	108,25	8	69,302	93,380	67,431	548,997
	Removal - Distribution - O&M						• •			
	19b Substation Pollutant Discharge Prevention &		0	47,846	1,31	0	6,034	0	6	55,196
	Removal - Transmission - O&M						•	2	3	,
	19c Substation Pollutant Discharge Prevention &	-4	6,686	-46,686	-46,68	36	-46,686	-46,686	-46,686	-280,116
	Removal - Costs Included in Base Rates			-				,-55	.0,000	2001110
	20 Wastewater Discharge Elimination & Reuse		0	0		0	0	0	0	. 0
	NA Amortization of Gains on Sales of Emissions Allowances	s -1	1,584	-11,584	-11,58	34	-11.584	-328,710	-89,804	-464,850
	. 21 St. Lucle Turtle Net		0	0	-	0	0	0	. 0	0
	22 Pipeline Integrity Management	•	0	4,376	2,0	36	100.379	10,410	123.200	240,451
· .	23 SPCC - Spill Prevention, Control & Countermeasures		-6.847	8,790	10,9		31.425	67,884	22,687	155,854
	24 Manatee Reburn	:	31,615	13,440	77,5		38,268	-318	1.623.	162,132
	25 Pt. Everglades ESP Technology		29,593	39,645	48,7		45,566	60,373	93,967	317,910
	26 UST Replacement/Removal		-5.504	5,510		0.	0'	0,010	0	6
	27 Lowest Quality Water Source		-840	. 0	39,0			22,911	62,816	123.951
	28 CWA 316(b) Phase II Rule		1,351	92.552	156,2		29,782	127,944	, 209,687	617,568
	29 SCR Consumables		6.805	4,260	26,0		8,456	27,653	44,389	117,592
	30 HBMP		1,504	2,831	5.4		. 2,229	2,229	1,415	15,691
	31 CAIR Compliance	_	10,622	88,727	128,9		22,650	20,417	28,455	278,555
	32 BART		0,022	0',121	120,0	20 0 ··	1,797	1,600	20,400	3,397
	34 St. Lucle Cooling Water System Inspection & Maintene	000	10,351	98,730	940,4	-	. 522,530	255,948	426,940	2,254,960
	35 Martin Plant Drinking Water System Compliance	1100	10,331	ao'120 0	840,4	0 . 0	. 522,550 0	200,840	420,940	2,204,800
	• • •									
	2 Total of O&M Activilies	\$ 5	73,771	\$ 604,751	\$ 1,747,4	18 \$	1,051,016	\$ 629,108	\$ 1,688,738	\$ 6,294,802
								• • • • • • •		
	3 Recoverable Costs Allocated to Energy	-		\$ 245,743	\$ 520,9		327,441	\$ 45,327	\$ 453,737	\$ 2,008,943
	4a Recoverable Costs Allocated to CP Demand	• •			\$ 1,141,5		677,616	\$ 513,744	\$1,190,913	\$ 3,876,920
4	4b Recoverable Costs Allocated to GCP Demand	\$ -	45,908	\$ 118,032	\$ 84,9	15 \$	45,959	\$ 70,037	\$ 44,088	\$ 408,939
	5 Retail Energy Jurisdictional Factor		59030%	98.59030%			98.59030%			
	6a Retail CP Demand Jurisdictional Factor		68536%	98.68536%	98.6853		98.68536%	98.68536%		
6	6b Retail GCP Demand Jurisdictional Factor	100.	00000%	100.00000%	100.0000	00%	100.00000%	100.00000%	100.00000%	I
	7 Jurisdictional Energy Recoverable Costs (A)	S 4	09,928	\$ 242,279	\$ 513,8	563 S	322,825	\$ 44,688	\$ 447,341	\$ 1,980,624
	8a Jurisdictional CP Demand Recoverable Costs (R)			\$ 237,808	\$ 1,126,9			\$ 506,990	• •	
	8b Jurisdictional GCP Demand Recoverable Costs (D)	•		\$ 118,032	\$ 84,9		•	\$ 70,037		
	9 Total Jurisdictional Recoverable Costs for O&M Activities (Lines 7 + 8)							<u>\$ 621.715</u>		
Notes	s:									
	ihe 3 x Line 5									•
	ine 4a x Line 6a									
	ine 4b x Line 6b							-		
	1								•	

Totals may not add due to rounding.

• .

<u>Florida Power & Light Company</u> Environmental Cost Recovery Clause Calculation of the Estimated/actual True-up Amount for the Period January 2007 - December 2007

.

				O&M Activ (în Dolla								
Line	# Project #	Estimated JUL	Estimated AUG	Estimated SEP	Estimated OCT	Estimated NOV	Estimated DEC	6-Month Sub-Total	12-Month Total		hod of Classificatio GCP Demand	n Energy
	1 Description of O&M Activities					-						
	1 Air Operating Permit Fees-O&M	164,675	164,675	164,675	404.075	101.077		•				
	3a Continuous Emission Monitoring Systems-O&M	36,238	36,754	35,751	164,675 39,850	164,675	164,675	988,050	1,822,006			\$1,822,006
	5a Maintenance of Stationary Above Ground Fuel Storage Tanka-O&M	760,427	542,500	225,000	100,000	36,306 100,000	37,478 108,318	222,377 1,636,245	685,667 2,239,772	2,239,772		685,667
	8a Oil Spill Cleanup/Response Equipment-O&M	15,150	25,150	15,150	15,150	25,150	15,150	110,900	211,821		•	044.004
	13 RCRA Corrective Action-O&M	15,000	0	30,000	.0,100	25,000	14,860	84,860	103,706	103,708		211,821
	14 NPDES Permit Fees-O&M		-		-	20,000	14,000	04,000	124,400	124,400		
	17a Disposal of Noncontainerized Liquid Waste-O&M	22,800	10,000	23,000	33,000	0	. 0	88,800	291,368	124,400		291,368
	19a Substation Poliutant Discharge Prevention & Removal - Distribution - O&M	121,810	135,540	74,370	120,560	112,100	38,937	603,317	1,152,314		1,152,314	201,000
	19b Substation Pollutant Discharge Prevention & Removal - Transmission - O&M	26,857	0	32,258	0	70,000	0	131,115	186,311	171,979		14,332
	19c Substation Pollutant Discharge Prevention & Removal - Costs Included in Base Rates	-46,686	-46,686	-46,686	-46,686	-46,686	-46,686	-280,116	-560,232	(258,569)	(280,116)	(21,547)
	20 Wastewater Discharge Elimination & Reuse	0	0	0	0	0	0	0	0	0		
	NA Amortization of Gains on Sales of Emissions Allowances	-89,804	-89,804	-89,804	-89,804	-89.804	-89,804	-538,824	-1,003,674	Ū		(1,003,674)
	21 St. Lucie Turtle Net	0	0		0	0	0	0	0	0		(1,000,014)
9	22 Pipeline Integrity Management	22,115	176,080	0	0	0	Ū	198,195	438,648	438.646		
	23 SPCC - Spill Prevention, Control & Countermeasures	39,500	39,500	42,899	12,000	12,000	12,000	157,899	313,753	313,753		
	24 Manatee Reburn	31,000	41,000	41,000	61,000	61,000	61,000	296,000	458,132			458,132
	25 Pt. Everglades ESP Technology	95,784	110,784	101,562	435,682	76,032	95,196	915,040	1,232,950			1,232,950
	26 UST Replacement/Removal							0	6	6		
	27 Lowest Quality Water Source	24,583		•	24,583	24,583	121,367	244,282	368,233	368,233		
	28 CWA 316(b) Phase II Rule	133,243				85,930		707,691	1,325,259	1,325,259	1	
	29 SCR Consumables	23,542			•	• •	•	142,297	259,889			259,889
	30 HBMP	1,700			•	-		27,200	. 42,891	42,891		
	31 CAIR Compliance	16,250	-			• •	•	97,500				376,055
	32 BART	(· •	a	-		0	-,		_	3,397
	34 St. Lucie Cooling Water System Inspection & Maintenance	37,793	-						• •			
	35 Martin Plant Drinking Water System Compliance 2 Total of O&M Activities	\$1,453,977			\$ 2,462,868					\$ 12,958,829		\$ 4,330,396
	3 Recoverable Costs Allocated to Energy	\$ 316,059	\$ 350,305	\$ 331,794	\$ 691,299	\$ 316,740	\$ 315,254	\$ 2,321,452	\$ 4,330,396			
	4a Recoverable Costs Allocated to CP Demand	\$ 1,039,451	\$ 982,663	\$1,609,821	\$1,674,352		\$ 1,990,343		\$ 12,958,829			
	4b Recoverable Costs Allocated to GCP Demand	\$ 98,467	\$ 112,197	\$ 51,027	\$ 97,217	\$ 88,757	\$ 15,694	\$ 463,259	\$ 872,198			
	5 Retail Energy Jurisdictional Factor	98.590305	6 98.59030	6 98.59030%	98.590309	6 98.590309	% 98.59030%					
	6a Retail CP Demand Jurisdictional Factor	98,685365	% 98.68536	% 98.68536%	68536%	6 98.685369	68.68536%	1				
	6b Retail GCP Demand Jurisdictional Factor	100,00000	% 100.00000	% 100.000009	6 100.00000	6 100.000009	% 100.00000%	6				
	7 Jurisdictional Energy Recoverable Costs (A)							\$ 2,268,726				
	8a Jurisdictional CP Demand Recoverable Costs (B)	• •		4 \$1,588,658				\$ 8,962,516				
	8b Jurisdictional GCP Demand Recoverable Costs (C)	\$ 98,46	7 \$ 112,19	7 \$ 51,027	\$ 97,217	\$ 88,75	7 \$ 15,694	\$ 463,259	\$ 872,198	<u>L</u>		
	9 Total Jurisdictional Recoverable Costs for O&M Activities (Lines 7 + 8)	\$1.435.85	7 \$1.427.30	8 \$ 1. 966.801	\$2.431.11	\$2.162.84	3 \$2,290,581	\$11,714.501	\$ 17.930.010	Ł		
	lotes: A) Line 3 x Line б								· · · ·			
(AY LINE 3 A LINE 0						•					

(A) Line 3 x Line 5 (B) Line 4a x Line 6a (C) Line 4b x Line 6b

Totals may not add due to rounding.

.

Form 42-5E Page 2 of 2

.

.

• .

Florida Power & Light Company

Environmental Cost Recovery Clause

Calculation of the Estimated/Actual True-Up Amount for the Period

January 2007 - December 2007

Variance Report of Capital Investment Projects-Recoverable Costs (in Dollars)

			(1) Estimated		(2) Original		(3) Varianc	(4)
Line		_	Actual		Projections		Amount	Percent
1	Description of Investment Projects							
•	2 Low NOx Burner Technology-Capital	\$	908,197	\$	931,745	\$	(23,548)	-2.5%
	3b Continuous Emission Monitoring Systems-Capital	Ψ	1,025,600	Ψ	1,085,789	Ψ	(60,189)	-5.5%
	4b Clean Closure Equivalency-Capital		3,990		4,148		(158)	-3.8%
	5b Maintenance of Stationary Above Ground Fuel		1.758,715		1,832,742		(74,027)	-4.0%
	Storage Tanks-Capital		1,100,110		1,002,742		(14,027)	4,070
	7 Relocate Turbine Lube Oil Underground Piping		1,600		1,674		(74)	-4.4%
	to Above Ground-Capital		.,				()	
	8b Oil Spill Cleanup/Response Equipment-Capital		73,475		71,718		1.757	2.4%
	10 Relocate Storm Water Runoff-Capital		9,743		10,229		(486)	-4.8%
	NA SO2 Allowances-Negative Return on Investment		(186,275)		(254,313)		68,038	-2 6.8%
	12 Scherer Discharge Pipeline-Capital		64,314		67,361		(3,047)	-4.5%
	17b Disposal of Noncontainerized Liquid Wate-Capital		0		0		0	0.0%
	20 Wastewater Discharge Elimination & Reuse		245,826		257,983		(12,157)	-4.7%
	21 St. Lucie Turtle Net		92,461		97,326		(4,865)	-5.0%
	22 Pipeline Integrity Management		0		0		0	0.0%
	23 SPCC-Spill Prevention, Control & Countermeasures		2,036,766		2,144,544		(107,778)	-5.0%
	24 Manatee Reburn		4,886,546		5,019,067		(132,521)	-2.6%
	25 Pt. Everglades ESP Technology		11,288,005		11,347,320		(59,315)	-0.5%
	26 UST Replacement/Removal		-		67,554		(67,554)	-100.0%
	31 CAIR Compliance		1,551,150		4,293,310		(2,742,160)	-63.9%
	33 CAMR Compliance		340,077		1,594,640		(1,254,563)	-78.7%
	35 Martin Plant Drinking Water System Compliance		0		0		0	100.0%
2	Total Investment Projects-Recoverable Costs	\$	24,100,190	\$	28,572,837	\$	(4,472,647)	-15.7%
3	Recoverable Costs Allocated to Energy	\$	18,397,312	\$	18,932,935	\$	(535,623)	-2.8%
	Recoverable Costs Allocated to Demand	\$	5,702,878	\$	9,639,902	\$	(3,937,024)	-40.8%

Notes:

Column(1) is the 12-Month Totals on Form 42-7E

Column(2) is the approved projected amount in accordance with FPSC Order No. PSC-06-0972-FOF-EI

Column(3) = Column(1) - Column(2)Column(4) = Column(3) / Column(2)

Form 42-7E Page 1 of 2

:

. .

,

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/actual True-up Amount for the Period January 2007 - December 2007

Capital Investment Projects-Recoverable Costs (in Dollars)

		(in Donard)	,					
Line # P	roject #	Actual JAN	Actual FEB	Actual MAR	Actual APR	Actual MAY	Actual JUN	6-Month Sub-Total
1 D	escription of Investment Projects (A)							
	2 Low NOx Burner Technology-Capital	78.002	77,587	77,172	76,730	76,289	75,874	461,654
	3b Continuous Emission Monitoring Systems-Capital	86,718	86,399	86,110	85,787	85,483	85,248	515,745
	4b Clean Closure Equivalency-Capital	338	337	336	335	334	333	2,013
	5b Maintenance of Stationary Above Ground Fuel	148,800	148,393	147,985	147,578	147,171	146,763	886,690
	Storage Tanks-Capital							
	7 Relocate Turbine Lube Oil Underground Piping to Above Ground-Capital	135	135	134	134	134	133	805
	8b Oli Spill Cleanup/Response Equipment-Capital	6,035	5,997	5,961	5,926	5,940	5,947	35,806
	10 Relocate Storm Water Runoff-Capital	819	818	816	815	814	813	4,895
	NA SO2 Allowances-Negative Return on Investment	-19,422	-19,315	-19,208	-19,101	-17,527	-15,592	-110,165
	12 Scherer Discharge Pipeline-Capital	5,417	5,407	5,396	5,386	5,375	5,365	32,346
	17b Disposal of Noncontainerized Liquid Waste-Capital	. 0	0	0	0	0	0	
	20 Wastewater Discharge Elimination & Reuse	20,671	20,637	20,604	20,570	20,536	20,502	123,520
	21 St. Lucie Turtle Net	7,754	7,745	7,736	7,727	7,718	7,710	46,390
	22 Pipeline Integrity Management	0	0	0	. 0	0	. 0	, i
	23 SPCC - Spill Prevention, Control & Countermeasures	163,718	166,878	168,591	168,533	170,666	172,206	1,010,59
	24 Manatee Reburn	382,830	381,974	381,117	380,166	379,142	405,708	2,310,93
	25 Pt. Everglades ESP Technology	732,367	848,999	868,422	887,706	913,016	962,744	5,213,25
	26 UST Removal / Replacement	0	. 0	0	0	0	0	
	31 CAIR Compliance	33,991	46,084	55,584	64,479	83,186	103,675	386,99
	33 CAMR Compliance	4,539	6,005	6,353	7,537	8,988	15,031	48,45
	35 Martin Plant Drinking Water System Compliance	0	0	0	0	0	0	
2 T	otal Investment Projects - Recoverable Costs	\$ 1,652,712	\$ 1,784,080	\$ 1,813,109	\$ 1,840,308	\$ 1,887,265	\$1,992,460	\$ 10,969,934
	Recoverable Costs Allocated to Energy	\$ 1,290,666					\$ 1,550,788	\$ 8,589,772
4 F	Recoverable Costs Allocated to Demand	\$ 362,046	\$ 377,018	\$ 387,227	\$ 396,018	\$ 416,180	\$ 441,672	\$ 2,380,162
	Retail Energy Jurisdictional Factor	98.59030%	98.59030%	98.59030%	98.59030%	98.59030%	98.59030%	
6 F	Retall Demand Jurisdictional Factor	98.68536%	98.68536%	98.68536%	98.68536%	98.68536%	98.68536%	
7 J	urisdictional Energy Recoverable Costs (B)	\$ 1,272,471	\$ 1,387,227	\$ 1,405,781	\$ 1,423,929	\$ 1,450,347	\$ 1,528,927	\$ 8,468,68
8 .	urisdictional Demand Recoverable Costs (C)	\$ 357,287	\$ 372,061	\$ 382,136	\$ 390,812	\$ 410,709	\$ 435,866	\$ 2,348,87
	Total Jurisdictional Recoverable Costs for nvestment Projects (Lines 7 + 8)	\$ 1,629,758	<u>\$ 1,759,288</u>	<u>\$ 1,787,917</u>	<u>\$ 1,814,741</u>	<u>\$1,861,056</u>	<u>\$ 1,964,793</u>	\$ 10,817,55

Investment Projects (Lines 7 + 8)

Notes:

(A) Each project's Total System Recoverable Expenses on Form 42-8E, Line 9
(B) Line 3 x Line 5
(C) Line 4 x Line 6

Florida Power & Light Company Environmental Cost Recovery Clause Calculation of the Estimated/actual True-up Amount for the Period January 2007 - December 2007

		Ca	ipital Investme	nt Projects-Re (in Dollars)	coverable Co	sts					
		Estimated	Estimated	Estimated	Estimated	Estimated	Estimated	6-Month	12-Month	Method of C	lassification
Line	# Project #	JUL	AUG	SEP	OCT	NOV	DEC	Sub-Total	Total	Demand	Energy
	1 Description of Investment Projects (A)										
	2 Low NOx Burner Technology-Capital	75,460	75,045	74,631	74,217	73,802	73,388	446,543	908,197		908,197
	3b Continuous Emission Monitoring Systems-Capital	85,204	85,118	84.841	84,717	84,963	85,012	509,855	1,025,600		1.025.600
	4b Clean Closure Equivalency-Capital	332	331	330	329	328	327	1,977	3,990	3,683	307
	5b Maintenance of Stationary Above Ground Fuel Storage Tanks-Capital	146,356	145,949	145,541	145,134	144,726	144,319	872,025	1,758,715	1,623,429	135,286
	7 Relocate Turbine Lube Oil Underground Piping to Above Ground-Capital	133	133	133	132	132	132	795	1,600	1,477	123
	8b Oil Spill Cleanup/Response Equipment-Capital	6,168	6,307	6,270	6,233	6,195	6,496	37,669	73,475	67,823	5,652
	10 Relocate Storm Water Runoff-Capital	811	810	809	807	806	805	4,848	9,743	8,994	749
	NA SO2 Allowances-Negative Return on Investment	-14,761	-13,931	-13,100	-12,270	-11,439	-10,609	-76,110	-186,275		-186,275
	12 Scherer Discharge Pipeline-Capital	5,354	5,344	5,333	5,323	5,312	5,302	31,968	64,314	59,367	4,947
12	17b Disposal of Noncontainerized Liquid Waste-Capital	0	0	0	0	0	0	0	0	0	0
0	20 Wastewater Discharge Elimination & Reuse	20,469	20,435	20,401	20,367	20,334	20,300	122,306	245,826	226,916	18,910
	21 St. Lucie Turtle Net	7,701	7,692	7,683	7,674	7,665	7,656	46,071	92,461	85,349	7,112
	22 Pipeline Integrity Management	0	0	0	0	0	0	0	0	0	0
	23 SPCC - Spill Prevention, Control & Countermeasures	171,987	171,604	171,221	170,837	170,454	170,071	1,026,174	2,036,766	1,880,092	156,674
	24 Manatee Reburn	432,203	431,029	429,855	428,681	427,507	426,334	2,575,609	4,886,546		4,886,546
	25 Pt. Everglades ESP Technology	1,004,688	1,014,292	1,016,555	1,015,791	1,013,125	1,010,300	6,074,751	11,288,005		11,288,005
	26 UST Removal / Replacement	0	0	0	0	0	0	0	0	0	0
	31 CAIR Compliance	125,719	154,151	185,167	211,672	231,400	256,042	1,164,151	1,551,150	1,431,831	119,319
	33 CAMR Compliance	21,719	27,243	40,287	55,526	68,180	78,669	291,624	340,077 0	313,917 0	26,160 0
	35 Martin Plant Drinking Water System Compliance	0	0	0	0	0	0	0		_	· · · · · · · · · · · · · · · · · · ·
	2 Total Investment Projects - Recoverable Costs	\$ 2,089,543	\$ 2,131,552	\$ 2,175,957	\$ 2,215,170	\$ 2,243,490	\$ 2,274,544	\$13,130,256	\$ 24,100,190	\$ 5,702,878	\$18,397,312
	3 Recoverable Costs Allocated to Energy	\$ 1,621,775	\$ 1,633,091	\$ 1,637,642					\$ 18,397,312		
	4 Recoverable Costs Allocated to Demand	\$ 467,768	\$ 498,461	\$ 538,315	\$ 576,031	\$ 605,106	\$ 637,033	\$ 3,322,715	\$ 5,702,878		
	5 Retail Energy Jurisdictional Factor	98.59030%	98.59030%	98.59030%	98.59030%	98.59030%	98.59030%				
	6 Retail Demand Jurisdictional Factor	98.68536%	98.68536%	98.68536%	98.68536%	98.68536%	98.68536%				
	7 Jurisdictional Energy Recoverable Costs (B)						\$ 1,614,427		\$ 18,137,967		
	8 Jurisdictional Demand Recoverable Costs (C)	\$ 461,619	\$ 491,908	\$ 531,238	\$ 568,459	\$ 597,151	\$ 628,658	\$ 3,279,033	\$ 5,627,904		
	9 Total Jurisdictional Recoverable Costs for	\$ 2,060,532	\$ 2,101,978	\$ 2,145,794	\$ 2,184,491	\$ 2,212,438	\$ 2,243,085	<u>\$12,948,318</u>	\$ 23,765,871		

Investment Projects (Lines 7 + 8)

Notes:

(A) Each project's Total System Recoverable Expenses on Form 42-8E, Line 9 (B) Line 3 x Line 5 (C) Line 4 x Line 6

Form 42-8E Page 1 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Low NOx Burner Technology (Project No. 2)</u> (in Dollars)

Line		Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1.	investments								
	a. Expenditures/Additions								
	b. Clearings to Plant		\$ 0	\$0	\$0	\$0	\$0	\$0	\$0
	c. Retirements					\$35,815			\$35,815
	d. Other (A)								
2.	Plant-In-Service/Depreciation Base (B)	\$17,509,209	17,509,209	17,509,209	17,509,209	17,473,393	17,473,393	17,473,393	n/a
3.	Less: Accumulated Depreciation (C)	13,903,927	13,948,794	13,993,662	14,038,529	14,047,554	14,092,367	14,137,181	n/a
4.	CWIP - Non Interest Bearing	0	. 0	0		0	0	0	0
5.	Net Investment (Lines 2 - 3 + 4)	\$3,605,282	\$3,560,414	\$3,515,547	\$3,470,680	\$3,425,840	\$3,381,026	\$3,336,213	<u>n/a</u>
6.	Average Net Investment		3,582,848	3,537,981	3,493,114	3,448,260	3,403,433	3,358,619	
7.	Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		27,531	27,186	26,842	26.497	26,153	25.808	160,017
`	b. Debt Component (Line 6 x 1.8767% x 1/12)		5,603	5,533	5,463	5,393	5,323	5,253	32,567
8.	Investment Expenses								
	a. Depreciation (E)		44,867	44,867	44,867	44,840	44,813	44,813	269,069
	b. Amortization (F)								
	c. Dismantlement								
	d. Property Expenses								
	e. Other (G)								
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$78,002	\$77,587	\$77,172	\$76,730	\$76,289	\$75,874	\$461,654

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 2 of 43

Florida Power & Light Company

Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes For Project: Low NOx Burner Technology (Project No. 2) (in Dollars)

Line	_	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month
1.	Investments								
	a. Expenditures/Additions		•	•	••	•••		•••	* 0
	b. Clearings to Plant c. Retirements		\$0	\$0	\$0	\$0	\$0	\$0	\$0
	c. Retirements d. Other (A)		. '						\$35,815
2.	Plant-In-Service/Depreciation Base (B)	\$17,473,393	17,473,393	17,473,393	17,473,393	17,473,393	17,473,393	17,473,393	n/a
3.	Less: Accumulated Depreciation (C)	14,137,181	14,181,994	14,226,808	14,271,621	14,316,435	14,361,248	14,406,061	n/
4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	00	0
5.	Net Investment (Lines 2 - 3 + 4)	\$3,336,213	\$3,291,399	\$3,246,586	\$3,201,772	\$3,156,959	\$3,112,145	\$3,067,332	n/
6.	Average Net Investment		3,313,806	3,268,993	3,224,179	3,179,366	3,134,552	3,089,739	
7.	Return on Average Net Investment			•					
	a. Equity Component grossed up for taxes (D)		25,464	25,119	24,775	24,431	24,086	23,742	307,63
	b. Debt Component (Line 6 x 1.8767% x 1/12)	· ·	5,183	5,112	5,042	4,972	4,902	4,832	62,61
8.	Investment Expenses								
	a Depreciation (E)		44,813	44,813	44,813	44,813	44,813	44,813	537,95
	b. Amortization (F)								
	c. Dismantlement	•							
	d. Property Expenses								
	e. Other (G)								
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$75,460	\$75,045	\$74,631	\$74,217	\$73,802	\$73,388	\$908,197

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equily.

.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

<u>Florida Power & Light Company</u> Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Continuous Emissions Monitoring (Project No. 3b)</u> (in Dollars)

_Line		Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1.	Investments								
	a. Expenditures/Additions								
	b. Clearings to Plant				(\$2,635)	\$3,268		\$18,307	\$18,939
	c. Retirements					\$3,478		\$32,522	\$36,000
	d. Other (A)								\$0
2.	Plant-In-Service/Depreciation Base (B)	\$12,613,846	12,613,846	12,613,846	12,611,211	12,611,001	12,611,001	12,596,785	0
3.	Less: Accumulated Depreciation (C)	6,949,745	6,984,241	7,018,736	7,053,274	7,084,327	7,118,859	7,120,868	n/a
4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	0	00
5.	Net Investment (Lines 2 - 3 + 4)	\$5,664,101	\$5,629,605	\$5,595,110	\$5,557,937	\$5,526,674	\$5,492,142	\$5,475,917	n/a
6.	Average Net Investment		5,646,853	5,612,358	5,576,523	5,542,305	5,509,408	5,484,030	
7.	Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		43,391	43,126	42,851	42,588	42,335	42,140	256,432
	b. Debt Component (Line 6 x 1.8767% x 1/12)		8,831	8,777	8,721	8,668	8,616	8,577	52,190
8.	Investment Expenses								
	a. Depreciation (E)		34,496	34,496	34,537	34,531	34,531	34,532	207,123
	b. Amortization (F)								
	c. Dismantlement								
	d. Property Expenses								
	e. Other (G)								
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$86,718	\$86,399	\$86,110	\$85,787	\$85,483	\$85,248	\$515,745

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Totals may not add due to rounding.

Form 42-8E Page 3 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Continuous Emissions Monitoring (Project No. 3b)</u> (in Dollars)

_Line		Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$34,000	\$7,000		\$28,000	\$56,000		\$143,939 \$36,000 \$0
2. 3. 4.	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$12,596,785 7,120,868 0	12,630,785 7,155,433 0	12,637,785 7,190,042 0	12,637,785 7,224,662 0	12,665,785 7,259,349 0	12,721,785 7,294,215 0	12,721,785 7,329,194 0	n/a n/a 0
5.	Net Investment (Lines 2 - 3 + 4)	\$5,475,917	\$5,475,352	\$5,447,7 43	\$5,413,123	\$5,406,436	\$5,427,570	\$5,392,591	n/a
6.	Average Net Investment		5,475,635	5,461,548	5,430,433	5,409,780	5,417,003	5,410,080	
7.	Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		42,076 8,563	41,967 8,541	41,728 8,493	41,570 8,460	41,625 8,472	41,572 8,461	506,970 103,181
8.	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		34,565	34,609	34,620	34,687	34,867	34,979	415,450
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$85,204	\$85,118	\$84,841	\$84,717	\$84,963	\$85,012	\$1,025,600

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Totals may not add due to rounding.

Form 42-8E Page 4 of 43

Form 42-8E Page 5 of 43

Florida Power & Light Company

Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Clean Closure Equivalency (Project No. 4b)</u> (in Dotlars)

	Line		Beginning of P e riod Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actuai	Six Month Amount
	1.						•			
		a. Expenditures/Additions								
		b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		c. Retirements								
		d. Other (A)								
	2.	Plant-In-Service/Depreciation Base (B)	\$58,866	58,866	58,866	58,866	58,866	58,866	58,866	n/a
	3.	Less: Accumulated Depreciation (C)	34,252	34,362	34,473	34,584	34,695	34,806	34,916	n/a
<u>د ــــ</u>	4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	0	0
7	5.	Net Investment (Lines 2 - 3 + 4)	\$24,614	\$24,504	\$24,393	\$24,282	\$24,171	\$24,060	\$23,950	n/a
	6.	Average Net Investment		24,559	24,448	24,337	24,227	24,116	24,005	
	7.	Return on Average Net Investment								
		a. Equity Component grossed up for taxes (D)		189	188	187	186	185	184	1,120
		b. Debt Component (Line 6 x 1.8767% x 1/12)		38	38	38	38	38	38	228
	8.	Investment Expenses								
		a. Depreciation (E)		111	111	111	111	111	111	665
		b. Amortization (F)								
		c. Dismantlement								
		d. Property Expenses								
		e. Other (G)								
	a	Total System Recoverable Expenses (Lines 7 & 8)		\$338	\$337	\$336	\$335	\$334	\$333	\$2,013

Notes:

٠

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equily Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 6 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Clean Closure Equivalency (Project No. 4b)</u> (in Dollars)

Li	ine	Beginning of Period Amount	July Estimated	August _Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
	1. Investments								
	a. Expenditures/Additions b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
	c. Retirements		φU	40	40	φU	\$ 0	\$ 0	φU
	d. Other (A)								
:	2. Plant-In-Service/Depreciation Base (B)	\$58,866	58,866	58,866	58,866	58,866	58,866	58,866	n/a
:	3. Less: Accumulated Depreciation (C)	34,916	35,027	35,138	35,249	35,360	35,470	35,581	n/a
ō '	4. CWIP - Non Interest Bearing	0	0	0	0	0	0	0	0
1	5. Net Investment (Lines 2 - 3 + 4)	\$23,950	\$23,839	\$23,728	\$23,617	\$23,506	\$23,396	\$23,285	n/a
	6. Average Net Investment		23,894	23,783	23,673	23,562	23,451	23,340	
	7. Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		184	183	182	181	180	179	2,208
	b. Debt Component (Line 6 x 1.8767% x 1/12)		37	37	37	37	37	37	449
	8. Investment Expenses								
	a. Depreciation (E)		111	111	111	111	111	111	1,330
	b. Amortization (F)								
	c. Dismantlement								
	d. Property Expenses								
	e. Other (G)								
	9. Total System Recoverable Expenses (Lines 7 & 8)	_	\$332	\$331	\$330	\$329	\$328	\$327	\$3,990

Notes:

18

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 7 of 43

<u>Florida Power & Light Company</u> Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Maintenance of Above Ground Storage Tanks (Project No. 5b)</u> (in Dollars)

Line	-	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)								\$0
2.	Plant-In-Service/Depreciation Base (B)	\$13,550,218	13,550,218	13,550,218	13,550,218	13,550,218	13,550,218	13,550,218	n/a
3.	Less: Accumulated Depreciation (C)	2,201,151	2,245,197	2,289,244	2,333,290	2,377,337	2,421,383 0	2,465,430 0	n/a 0
4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	0_	0
5.	Net Investment (Lines 2 - 3 + 4)	\$11,349,067	\$11,305,020	\$11,260,974	\$11,216,927	\$11,172,881	\$11,128,834	\$11,084,788	n/a
6.	Average Net Investment		11,327,044	11,282,997	11,238,951	11,194,904	11,150,858	11,106,811	
7.	Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		87,039	86,700	86,362	86,024	85,685	85,347	517,157 105,254
	b. Debt Component (Line 6 x 1.8767% x 1/12)		17,715	17,646	17,577	17,508	17,439	17,370	103,234
8.	Investment Expenses							44.046	264,279
	a. Depreciation (E)		44,046	44,046	44,046	44,046	44,046	44,046	204,219
	b. Amortization (F) c. Dismantlement								
	c. Dismantlement d. Property Expenses								
	e. Other (G)								
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$148,800	\$148,393	\$147,985	\$147,578	\$147,171	\$146,763	\$886,690

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 8 of 43

<u>Florida Power & Light Company</u> Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Maintenance of Above Ground Storage Tanks (Project No. 5b)</u> (in Dollars)

Line		Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated_	Twelve Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)								\$0
2. 3.	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C)	\$13,550,218 2,465,430	13,550,218 2,509,476	13,550,218 2,553,523	13,550,218 2,597,569	13,550,218 2,641,616	13,550,218 2,685,662	13,550,218 2,729,709	n/a n/a
4. 5.	CWIP - Non Interest Bearing	0	<u> </u>	0 \$10,996,695	0	<u> </u>	00	0 \$10,820,509	00
6.	Average Net Investment	<u> </u>	11,062,765	11,018,718	10,974,672	10,930,625	10,886,579	10,842,532	·····
7.	Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		85,008 17,301	84,670 17,232	84,331 17,163	83,993 17,095	83,654 17,026	83,316 16,957	1,022,128 208,028
8.	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		44,046	44,046	44,046	44,046	44,046	44,046	528,558
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$146,356	\$145,949	\$145,541	\$145,134	\$144,726	\$144,319	\$1,758,715

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 9 of 43

Florida Power & Light Company **Environmental Cost Recovery Clause** For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes For Project: Relocate Turbine Oil Underground Piping (Project No. 7)

(in Dollars)

	Line	Beginning of Period Amount	January Actual	February Actual	March Actuaí	April Actual	May Actual	June Actual	Six Month Amount
	1. Investments								
	a. Expenditures/Additions								
	b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
	c. Retirements								
	d. Other (A)								
	2. Plant-In-Service/Depreciation Base (B)	\$31,030	31,030	31,030	31,030	31,030	31,030	31,030	n/a
	3. Less: Accumulated Depreciation (C)	19,782	19,813	19,844	19,875	19,906	19,937	19,968	n/a
2	4. CWIP - Non interest Bearing	0	0	0	0	0	0	0	0
-	5. Net Investment (Lines 2 - 3 + 4)	\$11,248	\$11,217	\$11,186	\$11,155	\$11,124	\$11,093	\$11,062	n/a
	6. Average Net Investment		11,232	11,201	11,170	11,139	11,108	11,077	
	7. Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		86	86	86	86	85	85	514
	b. Debt Component (Line 6 x 1.8767% x 1/12)		18	18	17	17	17	17	105
	8. Investment Expenses								
	a. Depreciation (E)		31	31	31	31	31	31	186
	b. Amortization (F)								
	c. Dismantlement								
	d. Property Expenses								
	e. Other (G)								
		_				£404	\$134	\$133	\$805
	9. Total System Recoverable Expenses (Lines 7 & 8)		\$135	\$135	\$134	\$134	\$134		

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 10 of 43

<u>Florida Power & Light Company</u> Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Relocate Turbine Oil Underground Piping (Project No. 7)</u> (In Dollars)

Line	<u>e</u>	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
3.	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$31,030 19,968 0	31,030 19,999 0	31,030 20,030 0	31,030 20,061 0	31,030 20,092 0	31,030 20,123 0	31,030 20,154 0_	n/a n/a 00
5.	Net Investment (Lines 2 - 3 + 4)	\$11,062	\$11,031 11,046	\$11,000 11,015	<u>\$10,969</u>	\$10,938 10,953	\$10,907 10,922	<u>\$10,876</u> 10,891	<u>n/a</u>
6. 7.	Average Net Investment Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		85 17	85 17	10,984 84 17	84 17	10,922 84 17	84 17	1,020 208
8.	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		31	31	31	31	31	31	372
9.	. Total System Recoverable Expenses (Lines 7 & 8)	-	\$133	\$133	\$133	\$132	\$132	\$132	\$1,600

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 11 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Oil Spill Cleanup/Response Equipment (Project No. 8b)</u> (In Dollars)

_Lin	<u>e</u>	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$1,997	\$0	\$0	\$0	\$531	\$7,691	\$10,219
2. 3. 2.3 4. 2.3	Less: Accumulated Depreciation (C)	\$342,502 106,058 0	344,499 109,915 0	344,499 113,760 0	344,499 117,605 0	344,499 121,451 0	345,030 125,343 0	352,721 129,241 0	n/a n/a 0
	Net Investment (Lines 2 - 3 + 4)	\$236,445	\$234,585	\$230,739	\$226,894	\$223,049	\$219,687	\$223,480	n/a
6.	Average Net Investment		235,515	232,662	228,817	224,971	221,368	221,584	
7.	 Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		1,810 368	1,788 364	1,758 358	1,729 352	1,701 346	1,703 347	10,488 2,135
8	 Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		3,857	3,845	3,845	3,845	3,893	3,897	23,183
9	. Total System Recoverable Expenses (Lines 7 & 8)	_	\$6,035	\$5,997	\$5,961	\$5,926	\$5,940	\$5,947	\$35,806

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 12 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Oil Spill Cleanup/Response Equipment (Project No. 8b)</u> (in Dollars)

Line	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
 Investments Expenditures/Additions Clearings to Plant Retirements Other (A) 		\$28,000		· · · · · · · · · · · · · · · · · · ·	·		\$32,000	\$70,219
 Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing 	\$352,721 129,241 0	380,721 133,231 0	380,721 137,268 0	380,721 141,306 0	380,721 145,343 0	380,721 149,380 0	412,721 153,608 0	n/a n/a 0
N 5. Net Investment (Lines 2 - 3 + 4) =	\$223,480	\$247,490	\$243,453	\$239,415	\$235,378	\$231,341	\$259,113	n/a
6. Average Net Investment		235,485	245,471	241,434	237,397	233,360	245,227	
 7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		1,810 368	1,886 384	1,855 378	1,824 371	1,793 365	1,884 384	21,541 4,384
 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		3,990	4,037	4,037	4,037	4,037	4,228	47,550
9. Total System Recoverable Expenses (Lines 7 & 8)	-	\$6,168	\$6,307	\$6,270	\$6,233	\$6,195	\$6,496	\$73,475

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 13 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Relocate Storm Water Runoff (Project No. 10)</u> (in Dollars)

	Line	9	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
	1.	Investments								
		a. Expenditures/Additions								
		b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		c. Retirements								
		d. Other (A)								
	2.	Plant-In-Service/Depreciation Base (B)	\$1 17,794	117,794	117,794	117,794	117,794	117,794	117,794	n/a
	З.	Less: Accumulated Depreciation (C)	44,037	44,174	44,311	44,449	44,586	44,724	44,861	n/a
25	4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	0	0_
S	5.	Net Investment (Lines 2 - 3 + 4)	\$73,757	\$7 <u>3,620</u>	\$73,483	\$73,345	\$73,208	\$73,070	\$72,933	n/a
	6.	Average Net Investment		73,689	73,551	73,414	73,277	73,139	73,002	
	7.	Return on Average Net Investment								
		a. Equity Component grossed up for taxes (D)		566	565	564	563	562	561	3,382
		b. Debt Component (Line 6 x 1.8767% x 1/12)		115	115	115	115	114	114	688
	8.	Investment Expenses								
		a. Depreciation (E)		137	137	137	137	137	137	825
		b. Amortization (F)								
		c. Dismantlement								
		d. Property Expenses								
		e. Other (G)								
				\$819	\$818	\$816	\$815	\$814	\$813	\$4,895
	9.	Total System Recoverable Expenses (Lines 7 & 8)								

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 14 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Relocate Storm Water Runoff (Project No. 10)</u> (in Dollars)

_Lin	e	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
\sim		\$117,794 44,861 0	117,794 44,998 0	117,794 45,136 0	117,794 45,273 0	117,794 45,411 0	117,794 45,548 0	117,794 45,686 0	n/a n/a 0
б 5.	Net Investment (Lines 2 - 3 + 4)	\$72,933	\$72,796	\$72,658	\$72,521	\$72,383	\$72,246	\$72,108	n/a
6.	Average Net Investment		72,864	72,727	72,589	72,452	72,315	72,177	
7.	Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		560 114	559 114	558 114	557 113	556 113	555 113	6,725 1,369
8	 Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		137	137	137	137	137	137	1,649
9	. Total System Recoverable Expenses (Lines 7 & 8)	-	\$811	\$810	\$809	\$807	\$806	\$805	\$9,743

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 15 of 43

Florida Power & Light Company Environmental Cost Recovery Clause

For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Scherer Discharge Pipeline (Project No. 12)</u> (in Dollars)

Lin		Beginning of Period Amount	January Actual	February Actual	March Actual	April <u>Actual</u>	May Actual	June Actual	Six Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
2. 3. 27	Less: Accumulated Depreciation (C)	\$864,260 401,043 0	864,260 402,181 0	864,260 403,320 0	864,260 404,459 0	864,260 405,598 0	864,260 406,736 0	864,260 407,875 0	n/a n/a 0
	Net Investment (Lines 2 - 3 + 4)	\$463,217	\$462,079	\$460,940	\$459,801	\$458,662	\$457,524	\$456,385	n/a
6	Average Net Investment		462,648	461,509	460,370	459,232	458,093	456,954	
7.	 Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		3,555 724	3,546 722	3,538 720	3,529 718	3,520 716	3,511 715	21,199 4,315
8	 Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		1,139	1,139	1,139	1,139	1,139	1,139	6,833
9	. Total System Recoverable Expenses (Lines 7 & 8)		\$5,417	\$5,407	\$5,396	\$5,386	\$5,375	\$5,365	\$32,346

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 16 of 43

Florida Power & Light Company

Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Scherer Discharge Pipeline (Project No. 12)</u> (in Dollars)

Line		Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1. Investments a. Expenditure b. Clearings to c. Retirements d. Other (A)			\$0	\$0	\$0	\$0	\$0	\$0	\$0
2. Plant-In-Service/C 3. Less: Accumulate № 4. CWIP - Non Inter	d Depreciation (C)	\$864,260 407,875 0	864,260 409,014 0	864,260 410,153 0	864,260 411,291 0	864,260 412,430 0	864,260 413,569 0	864,260 414,708 0	n/a n/a 0
5. Net Investment (I	.ines 2 - 3 + 4) =	\$456,385	\$455,246	\$454,107	\$452,969	\$ 451,830	\$450,691	\$449,552	
6. Average Net Inve	stment		455,815	454,677	453,538	452,399	451,260	450,122	
	e Net Investment ponent grossed up for taxes (D) ment (Line 6 x 1.8767% x 1/12)		3,503 713	3,494 711	3,485 709	3,476 708	3,468 706	3,459 704	42,083 8,565
 Investment Exper a. Depreciation b. Amortization c. Dismantlem d. Property Experience e. Other (G) 	r (E) (F) ent		1,139	1,139	1,139	1,139	1,139	1,139	13,665
9. Total System Rec	overable Expenses (Lines 7 & 8)		\$5,354	\$5,344	\$5,333	\$5,323	\$5,312	\$5,302	\$64,314

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 17 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Non-Containerized Liquid Wastes (Project No. 17)</u> (in Dollars)

Lin	e	Beginning of Period Amount	January Actual	February Actual	March Actuai	April Actual	May Actual	June Actual	Six Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$ 0	\$ 0	\$0	\$0	\$0
	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	n/a n/a 0
	. Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	n/a
6	Average Net Investment		0	0	0	0	0	0	
7	. Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		0 0	0 0	0 0	0 0	0 0	0 0	0 0
8	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)								o
9	e. Other (G)		\$0	\$0	\$0	\$0	\$0	\$0	\$0

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 18 of 43

Florida Power & Light Company Environmental Cost Recovery Clause

For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes For Project: Non-Containerized Liquid Wastes (Project No. 17) (in Dollars)

Lii	ne	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1	a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
3	 Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing 	\$0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	n/a n/a 0
	5. Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	n/a
	6. Average Net Investment		0	0	0	0	0	0	
;	 Return on Average Net Investment Equity Component grossed up for taxes (D) Debt Component (Line 6 x 1.8767% x 1/12) 		0 0	0 0	0 0	0 0	0 0	0 0	0 0
1	 Investment Expenses a. Depreclation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		0	0	0	0	0	0	0
!	9. Total System Recoverable Expenses (Lines 7 & 8)	-	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 19 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes For Project: Wasterwater/Stormwater Reuse (Project No. 20) (in Dollars)

Lin	<u>e</u>	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$ 0
2. 3. ن ^{4.}	Less: Accumulated Depreciation (C)	\$2,361,662 519,211 0	2,361,662 522,860 0	2,361,662 526,508 0	2,361,662 530,157 0	2,361,662 533,806 0	2,361,662 537,454 0	2,361,662 541,103 0	n/a n/a 00
 5.	Net investment (Lines 2 - 3 + 4)	\$1,842,451	\$1,838,802	\$1,835,153	\$1,831,505	\$1,827,856	\$1,824,207	\$1,820,559	n/a
6.	Average Net Investment		1,840,627	1,836,978	1,833,329	1,829,680	1,826,032	1,822,383	
7.	Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		14,144 2,879	14,116 2,873	14,088 2,867	14,060 2,861	14,032 2,856	14,003 2,850	84,442 17,186
8	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		3,649	3,649	3,649	3,649	3,649	3,649	21,892
9	. Total System Recoverable Expenses (Lines 7 & 8)	_	\$20,671	\$20,637	\$20,604	\$20,570	\$20,536	\$20,502	\$123,520

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 20 of 43

Florida Power & Light Company

Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes For Project: Wasterwater/Stormwater Reuse (Project No. 20)

(in Dollars)

Line	9	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Refirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
2. 3. 32 4.	Less: Accumulated Depreciation (C)	\$2,361,662 \$541,103 0	2,361,662 544,752 0	2,361,662 548,401 0	2,361,662 552,049 00	2,361,662 555,698 0	2,361,662 559,347 0	2,361,662 562,995 0	n/a n/a 0
5.	Net Investment (Lines 2 - 3 + 4)	\$1,820,559	\$1,816,910	\$1,813,261	\$1,809,612	\$1,805,964	\$1,802,315	\$1,798,666	<u>n/a</u>
6.	Average Net Investment		1,818,734	1,815,086	1,811,437	1,807,788	1,804,139	1,800,491	
7.	Return on Average Net Investment Equity Component grossed up for taxes (D) Debt Component (Line 6 x 1.8767% x 1/12)		13,975 2,844	13,947 2,839	13,919 2,833	13,891 2,827	13,863 2,822	13,835 2,816	167,874 34,166
8.	Investment Expenses a. Depreclation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		3,649	3,649	3,649	3,649	3,649	3,649	43,785
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$20,469	\$20,435	\$20,401	\$20,367	\$20,334	\$20,300	\$245,826

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 21 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Turtle Nets (Project No. 21)</u> (in Dollars)

	Line	Beginning of Period Amount	January Actuai	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
-	1. Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$828,789 94,388 0	828,789 95,355 0	828,789 96,322 0	828,789 97,289 0	828,789 98,256 0	828,789 99,223 0	828,789 100,190 0	n/a n/a 0
	5. Net Investment (Lines 2 - 3 + 4)	\$734,401	\$733,434	\$732,467	\$731,500	\$730,533	\$729,566	\$728,599	n/a
	6. Average Net Investment		733,917	732,950	731,983	731,017	730,050	729,083	
	 7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		5,640 1,148	5,632 1,146	5,625 1,145	5,617 1,143	5,610 1,142	5,602 1,140	33,726 6,864
	 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		967	967	967	967	967	967	5,802
	9. Total System Recoverable Expenses (Lines 7 & 8)		\$7,754	\$7,745	\$7,736	\$7,727	\$7,718	\$7,710	\$46,390

Notes:

 ${\boldsymbol{\omega}}_{\boldsymbol{\omega}}$

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 22 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Turtle Nets (Project No. 21)</u> (in Dollars)

<u>_</u>	Line	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
	 Investments Expenditures/Additions Clearings to Plant Retirements Other (A) 		\$0	\$0	\$0	\$0	\$0	\$0	\$0
J	 Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing 	\$828,789 \$100,190 \$0	828,789 101,157 0	828,789 102,124 0	828,789 103,091 0	828,789 104,057 0	828,789 105,024 0	828,789 105,991 0	n/a n/a 0
2	5. Net investment (Lines 2 - 3 + 4)	\$728,599	\$727,632	\$726,665	\$725,698	\$724,732	\$723,765	\$722,798	n/a
	6. Average Net Investment		728,116	727,149	726,182	725,215	724,248	723,281	
	 Return on Average Net Investment Equity Component grossed up for taxes (D) Debt Component (Line 6 x 1.8767% x 1/12) 		5,595 1,139	5,588 1,137	5,580 1,136	5,573 1,134	5,565 1,133	5,558 1,131	67,184 13,674
	 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		967	967	967	967	967	967	11,603
	9. Total System Recoverable Expenses (Lines 7 & 8)		\$7,701	\$7,692	\$7,683	\$7,674	\$7,665	\$7,656	\$92,461

Notes:

34

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Form 42-8E Page 23 of 43

Return on Capital Investments, Depreciation and Taxes <u>For Project: Pipeline Integrity Management (Project No. 22)</u> (in Dollars)

Line	_	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.	Plant-In-Service/Depreciation Base (B)	\$0	0	0	0	0	0	0	n/a
3.	Less: Accumulated Depreciation (C)	0	0	0	0	0	0	0	n/a
4.	CWIP - Non Interest Bearing	0	0	00	0	0	0	0	0
5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	<u>\$0</u>	<u>\$0</u>	\$0	n/a
6.	Average Net Investment		0	0	0	0	0	0	
7.	Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		0	0	0	0	0	0	0
	b. Debt Component (Line 6 x 1.8767% x 1/12)		0	0	0	0	0	0	0
8.	Investment Expenses								_
	a. Depreciation (E)								0
	b. Amortization (F)								
	c. Dismantlement								
	d. Property Expenses								
	e. Other (G)								
9.	Total System Recoverable Expenses (Lines 7 & 8)	-	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Notes:

33

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Pipeline Integrity Management (Project No. 22)</u> (in Dollars)

Line	_	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0	\$0	\$0	\$0	\$0	\$0	\$0
2.	Plant-In-Service/Depreciation Base (B)	\$0	0	0	0	0	0	0	n/a
3.	Less: Accumulated Depreciation (C)	\$0	0	0	0	0	0	0	n/a
4.	CWIP - Non Interest Bearing	\$0 _	00	00	0	0	0	0	0
5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	n/a
6.	Average Net Investment		0	0	0	0	0	0	
7.	Return on Average Net Investment							_	
	 a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		0 0	0 0	0 0	0 0	0 0	0 0	0 0
8.	Investment Expenses a. Depreciation (E)								0
	b. Amortization (F) c. Dismantlement d. Property Expenses								
	e. Other (G)								
9.	Total System Recoverable Expenses (Lines 7 & θ)	-	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Totals may not add due to rounding.

Form 42-8E Page 24 of 43

Form 42-8E Page 25 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes For Project: Spill Prevention (Project No. 23) (in Dollars)

Li	ine	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1	1. Investments a. Expenditures/Additions b. Clearings to Plant		\$241,305	\$360,467	\$31,078	\$28,672	\$382,656	\$30,426	\$1,074,604
	c. Retirements d. Other (A)						\$2,738		
:	 Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing 	\$14,364,448 1,053,048 0	14,605,753 1,092,729 0	14,966,220 1,133,158 0	14,997,298 1,173,864 0	15,025,970 1,214,612 0	15,408,626 1,258,722 0	15,439,052 1,300,119 0	n/a n/a 00
	5. Net Investment (Lines 2 - 3 + 4)	_\$13,311,400	\$13,513,024	\$13,833,062	\$13,823,434	\$13,811,358	\$14,149,904	\$14,138,932	n/a
I	6. Average Net Investment		13,412,212	13,673,043	13,828,248	13,817,396	13,980,631	14,144,418	
	 Return on Average Net Investment Equity Component grossed up for taxes (D) Debt Component (Line 6 x 1.8767% x 1/12) 		103,062 20,976	105,066 21,384	106,259 21,626	106,175 21,609	107,430 21,865	108,688 22,121	636,679 129,580
i	 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		39,681	40,429	40,706	40,749	41,372	41,397	244,334
	9. Total System Recoverable Expenses (Lines 7 & 8)	-	\$163,718	\$166,878	\$168,591	\$168,533	\$170,666	\$172,206	\$1,010,592

.

Notes:

37

(A) Reserve Transfer/Adj.

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equily.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 26 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes For Project: Spill Prevention (Project No. 23) (in Dollars)

L	Line	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
_	1. Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)								\$1,074,604
	 Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing 	\$15,439,052 \$1,300,119 \$0	15,439,052 1,341,540 0	15,439,052 1,382,960 0	15,439,052 1,424,380 0	15,439,052 1,465,800 0	15,439,052 1,507,220 0	15,439,052 1,548,640 0	n/a n/a 0
8	5. Net Investment (Lines 2 - 3 + 4)	\$14,138,932	\$14,097,512	\$14,056,092	\$14,014,672	\$13,973,252	\$13,931,832	\$13,890,412	n/a
	6. Average Net Investment		14,118,222	14,076,802	14,035,382	13,993,962	13,952,542	13,911,122	
	 Return on Average Net Investment Equity Component grossed up for taxes (D) Debt Component (Line 6 x 1.8767% x 1/12) 		108,487 22,080	108,169 22,015	107,850 21,950	107,532 21,885	107,214 21,821	106,895 21,756	1,282,826 261,086
	 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		41,420	41,420	41,420	41,420	41,420	41,420	492,854
	9. Total System Recoverable Expenses (Lines 7 & 8)	-	\$ 171,987	\$171,604	\$171,221	\$170,837	\$170,454	\$170,071	\$2,036,766

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 27 of 43

Florida Power & Light Company

Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Manatee Reburn (Project No. 24)</u> (in Dollars)

	Line	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
	1. Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0 \$11,713 \$0	\$0 \$15,650 \$0	\$0 \$11,534 \$0	\$0 \$654 \$0	\$0 \$0 \$0	\$0 \$4,275,321 \$0	\$0 \$4,314,872 \$0
39	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$30,223,167 789,407	30,234,879 900,491 0	30,250,530 1,011,620 0	30,262,064 1,122,794 0	30,262,718 1,233,989 0	30,262,718 1,345,184 0	34,538,039 1,464,242 0_	n/a n/a n/a
-	5. Net Investment (Lines 2 - 3 + 4)	\$29,433,759	\$29,334,388	\$29,238,910	\$29,139,270	\$29,028,729	\$28,917,533	\$33,073,796	n/a
	6. Average Net Investment		29,384,074	29,286,649	29,189,090	29,083,999	28,973,131	30,995,665	n/a
	 7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		225,792 45,954	225,044 45,802	224,294 45,649	223,486 45,485	222,634 45,312	238,176 48,475	1,359,426 276,677
	 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		111,083	111,129	111,174	111,195	111,196	119,058	674,835
	9. Total System Recoverable Expenses (Lines 7 & 8)		\$382,830	\$381,974	\$381,117	\$380,166	\$379,142	\$405,708	\$2,310,937

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(\$), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 28 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: Manatee Reburn (Project No. 24)</u> (In Dollars)

_	<u>10</u>	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$4,314,872 \$0
3	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$34,538,039 \$1,464,242 \$0	34,538,039 1,591,163 0	34,538,039 1,718,083 0	34,538,039 1,845,003 0	34,538,039 1,971,923 0	34,538,039 2,098,843 0	34,538,039 2,225,764 0	n/a n/a n/a
ŧ	5. Net Investment (Lines 2 - 3 + 4) =	\$33,073,796	\$32,946,876	\$32,819,956	\$32,693,036	\$32,566,116	\$32,439,195	\$32,312,275	n/a
e	. Average Net Investment		33,010,336	32,883,416	32,756,496	32,629,576	32,502,655	32,375,735	
7	 Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		253,657 51,625	252,682 51,427	251,706 51,228	250,731 51,030	249,756 50,831	248,781 50,633	\$2,866,739 \$583,452
ł	 Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		126,920	126,920	126,920	126,920	126,920	126,920	\$1,436,356
Į	 Total System Recoverable Expenses (Lines 7 & 8) 		\$432,203	\$431,029	\$429,855	\$428,681	\$427,507	\$426,334	\$4,886,546

Notes:

40

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equily Component of 5.6640% reflects an 11.75% return on equily.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 29 of 43

Florida Power & Light Company Environmental Cost Recovery Clause

For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes For Project: Port Everglades ESP (Project No. 25) (In Dollars)

Lir		Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
1	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$4,952,476 24,971,594 \$0	\$1,595,352 572,501 \$0	\$2,248,017 42,942 \$0	\$2,100,583 170,427 \$0	\$1,249,385 1,781,492 \$0	\$0 \$22,004,185 \$0	\$12,145,814 \$49,543,141 \$0
2 3 4 1 4		\$29,934,156 2,579,857 23,512,393	54,905,750 2,770,709 14,106,905	55,478,251 2,998,123 15,702,257	55,521,194 3,226,451 17,950,275	55,691,620 3,455,081 20,050,858	57,473,112 3,686,633 21,300,243	79,477,297 3,952,945 0	n/a n/a n/a
5	· · ·	\$50,866,692	\$66,241,946 58,554,319	\$68,182,385 67,212,166	\$70,245,017 69,213,701	\$72,287,397 71,266,207	\$75,086,722 73,687,059	\$75,524,351 75,305,537	n/a
7	 Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		449,941 91,574	516,470 105,114	531,850 108,244	547,621 111,454	566,224 115,240	578,660 117,772	3,190,766 649,399
8	 Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		190,851	227,415	228,328	228,630	231,552	266,312	1,373,088
9	. Total System Recoverable Expenses (Lines 7 & 8)	_	\$732,367	\$848,999	\$868,422	\$887,706	\$913,016	\$962,744	\$5,213,254

Notes:

41

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 30 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes For Project: Port Everglades ESP (Project No. 25) (in Dollars)

	of F	nning 'eriod ount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
	1. Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0 \$1,506,362 \$0	\$0 \$511,848 \$0	\$0 \$319,212 \$0	\$0 \$26,000 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$12,145,814 \$51,906,563 \$0
4	3. Less: Accumulated Depreciation (C)	9,477,297 3,952,945 \$0	80,983,659 4,253,603 0	81,495,507 4,557,326 0	81,814,719 4,862,285 0	81,840,719 5,167,705 0	81,840,719 5,473,164 0	81,840,719 5,778,624 0	n/a n/a n/a
42		5,524,351	\$76,730,056	\$76,938,180	\$76,952,434	\$76,673,014	\$76,367,554	\$76,062,095	n/a
	6. Average Net Investment		76,127,204	76,834,118	76,945,307	76,812,724	76,520,284	76,214,825	
	 7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		584,974 119,057	590,406 120,162	591,261 120,336	590,242 120,129	587,995 119,671	585,647 119,194	\$6,721,291 \$1,367,948
	 8. Investment Expenses a. Depreciation (E) b. Arnortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		300,657	303,724	304,958	305,420	305,459	305,459	\$3,198,766
	9. Total System Recoverable Expenses (Lines 7 & 8)	-	\$1,004,688	\$1,014,292	\$1,016,555	\$1,015,791	\$1,013,125	\$1,010,300	\$11,288,005

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equily.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 31 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes For Project: UST Removal / Replacement (Project No. 26) (in Dollars)

b. Clearings to Plant \$0 <t< th=""><th></th><th>Line</th><th></th><th>Beginning of Period Amount</th><th>January Actual</th><th>February Actual</th><th>March Actual</th><th>April Actual</th><th>May Actual</th><th>June Actual</th><th>Six Month Amount</th></t<>		Line		Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
b. Clearings to Plant \$0 \$		1.	Investments								
b. Clearings to Plant \$0 <t< td=""><td></td><td></td><td>a. Expenditures/Additions</td><td></td><td>\$0</td><td>\$0</td><td>\$0</td><td>\$0</td><td>\$0</td><td>\$0</td><td>\$0</td></t<>			a. Expenditures/Additions		\$0	\$0	\$0	\$0	\$0	\$0	\$0
d. Other (A) 2. Plant-In-Service/Depreciation Base (B) \$0 0			b. Clearings to Plant		\$0	\$0	\$0	\$0		\$0	\$0
2. Plant-In-Service/Depreciation Base (B) \$0 0<			c. Retirements		\$0	\$0	\$0	\$0	\$0	\$0	\$0
3. Less: Accumulated Depreciation (C) 0			d. Other (A)								
L L CWIP - Non Interest Bearing 0		2.	Plant-In-Service/Depreciation Base (B)	\$0	0	0	0	0	0	0	n/a
So SO <th< td=""><td>ĸ</td><td>3.</td><td>Less: Accumulated Depreciation (C)</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>n/a</td></th<>	ĸ	3.	Less: Accumulated Depreciation (C)	0	0	0	0	0	0	0	n/a
6. Average Net Investment 0 0 0 0 0 0 0 0 7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) 0	±3	4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	<u>0</u>	n/a
7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) 0		5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	n/a
a. Equity Component grossed up for taxes (D) 0 0 0 0 0 0 0 0 0 b. Debt Component (Line 6 x 1.8767% x 1/12) 0		6.	Average Net Investment		0	0	0	0	0	0	
b. Debt Component (Line 6 x 1.8767% x 1/12) 0 0 0 0 0 0 0 0 0 0 0 8. Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		7.	Return on Average Net Investment								
8. Investment Expenses a. Depreciation (E) 0 0 0 0 0 0 b. Amortization (F) c. Dismantlement 0 0 0 0 0 0 0 c. Dismantlement 0 0 0 0 0 0 0 0 0 0 e. Other (G) 0 <td></td> <td></td> <td>a. Equity Component grossed up for taxes (D)</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td>			a. Equity Component grossed up for taxes (D)		0	0	0	0	0	0	0
a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)			b. Debt Component (Line 6 x 1.8767% x 1/12)		0	0	0	0	0	0	0
a. Depretation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		8.	Investment Expenses								
c. Dismantlement d. Property Expenses e. Other (G)			a. Depreciation (E)		0	0	0	0	0	0	0
d. Property Expenses e. Other (G)			b. Amortization (F)								
e. Other (G)			c. Dismantlement								
			d. Property Expenses								
9 Total System Recoverable Expenses (Lines 7 & 8) \$0 \$0 \$0 \$0 \$0 \$0 \$0			e. Other (G)								
9 Total System Recoverable Expenses (Lines 7 & 8) \$0 \$0 \$0 \$0 \$0 \$0 \$0			1								
		9.	Total System Recoverable Expenses (Lines 7 & 8)		\$0	\$0	\$0	\$0	\$0	\$0	\$0

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 32 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes For Project: UST Removal / Replacement (Project No. 26) (in Dollars)

Lin	9	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0	\$0 \$0 \$0
3.	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$0 \$0 \$0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	n/a n/a n/a
	Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	n/a
6.	Average Net Investment		0	0	0	0	0	0	
7.	Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		0 0	0 0	0 0	0 0	0 0	0 0	\$0 \$0
8.	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		0						\$ 0
9	. Total System Recoverable Expenses (Lines 7 & 8)	-	\$0	\$0	\$0	\$0	\$0	\$0	\$0

.

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 33 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

atee Rebur

Return on Capital Investments, Depreciation and Taxes <u>For Project: CAIR Compliance (Project No. 31)</u> (in Dollars)

	Line	<u>)</u>	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
	1.	Investments								
		a. Expenditures/Additions		\$1,140,561	\$1,474,564	\$579,965	\$1,343,744	\$2,701,874	\$1,729,136	\$8,969,845
		b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		c. Retirements		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		d. Other (A)								
	2.	Plant-In-Service/Depreciation Base (B)	\$0	0	0	0	0	0	0	n/a
	3.	Less: Accumulated Depreciation (C)	0	0	0	0	0	0	0	n/a
45	4.	CWIP - Non Interest Bearing	3,105,197	4,245,758	5,720,322	6,300,288	7,644,032	10,345,905	12,075,042	n/a
	5.	Net Investment (Lines 2 - 3 + 4)	\$3,105,197	\$4,245,758	\$5,720,322	\$6,300,288	\$7,644,032	\$10,345,905	\$12,075,042	n/a
	6.	Average Net Investment		3,675,477	4,983,040	6,010,305	6,972,160	8,994,968	11,210,473	n/a
	7.	Return on Average Net Investment								
		a. Equity Component grossed up for taxes (D)		28,243	38,291	46,184	53,575	69,119	86,143	321,555
		b. Debt Component (Line 6 x 1.8767% x 1/12)		5,748	7,793	9,400	10,904	14,067	17,532	65,444
	8.	Investment Expenses								
		a. Depreciation (E)		0	0	0	0	0	0	0
		b. Amortization (F)								
		c. Dismantlement								
		d. Property Expenses								
		e. Other (G)								
			_	£20.001	£46.054	\$55.584	\$64,479	\$83,186	\$103,675	\$386,999
	9.	Total System Recoverable Expenses (Lines 7 & 8)	_	\$33,991	\$46,084	a00,004	404,479		\$100,010	

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equilty Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 34 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: CAIR Compliance (Project No. 31)</u> (in Dollars)

Lir	ne	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
-1	. Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$3,037,978 \$0 \$0	\$3,110,808 \$0 \$0	\$3,596,768 \$0 \$0	\$2,135,158 \$0 \$0	\$2,131,205 \$0 \$0	\$3,104,216 \$396,999 \$0	\$26,085,978 \$396,999 \$0
3	2. Plant-In-Service/Depreciation Base (B) 3. Less: Accumulated Depreciation (C) 4. CWIP - Non Interest Bearing	\$0 \$0 \$12,075,042	0 0 15,113,020	0 0 18,223,828	0 0 21,820,596	0 0 23,955,754	0 0 26,086,959	396,999 436 28,794,176	n/a n/a n/a
5	5. Net Investment (Lines 2 - 3 + 4)	<u>\$12,075,042</u>	\$15,113,020	\$18,223,828	\$21,820,596	\$23,955,754	\$26,086,959	\$29,190,739	n/a
6	3. Average Net Investment		13,594,031	16,668,424	20,022,212	22,888,175	25,021,356	27,638,849	
7	 Return on Average Net Investment Equity Component grossed up for taxes (D) Debt Component (Line 6 x 1.8767% x 1/12) 		104,459 21,260	128,083 26,068	153,854 31,313	175,877 35,795	192,268 39,131	212,382 43,225	\$1,288,477 \$262,237
8	 Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G) 		0	0	0	0	0	436	\$436
ç	9. Total System Recoverable Expenses (Lines 7 & 8)	-	\$125,719	\$154,151	\$185,167	\$211,672	\$231,400	\$256,042	\$1,551,150

Notes:

46

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 35 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: CAMR Compliance (Project No. 33)</u> (in Dollars)

	Line	Beginning of Period Amount	January Actuał	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
	 Investments Expenditures/Additions Clearings to Plant Retirements Other (A) 		\$258,550 \$0 \$0	\$58,605 \$0 \$0	\$16,677 \$0 \$0	\$239,395 \$0 \$0	\$74,270 \$0 \$0	\$1,232,705 \$0 \$0	\$1,880,201 \$0 \$0
77	 Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing 	\$0 0 361,479	0 0 620,029	0 0 678,634	0 0 695,311	0 0 934,706	0 0 1,008,976	0 0 <u>2,241,681</u>	n/a n/a n/a
	5. Net Investment (Lines 2 - 3 + 4)	\$361,479	\$620,029	\$678,634	\$695,311	\$934,706	\$1,008,976	\$2,241,681	n/a
	6. Average Net Investment		490,754	649,331	686,972	815,008	971,841	1,625,328	n/a
	 7. Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12) 		3,771 767	4,990 1,016	5,279 1,074	6,263 1,275	7,468 1,520	12,489 2,542	40,259 8,194
	 Investment Expenses Depreciation (E) Amortization (F) Dismantlement Property Expenses Other (G) 		0	0	0	0	0	0	0
	9. Total System Recoverable Expenses (Lines 7 & 8)		\$4,539	\$6,005	\$6,353	\$7,537	\$8,968	\$15,031	\$48,453

Notes:

47

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

•

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equily Component of 5.6640% reflects an 11.75% return on equily.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 36 of 43

<u>Florida Power & Light Company</u> Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Project: CAMR Compliance (Project No. 33)</u> (in Dollars)

	Line	Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
	1. Investments				·				
	a. Expenditures/Additions		\$213,532	\$981,085	\$1,839,993	\$1,455,464	\$1,281,128	\$987,378	\$8,638,781
	b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
	c. Retirements		\$0	\$0	\$0	\$0	\$0	\$0	\$0
	d. Other (A)								
	2. Plant-In-Service/Depreciation Base (B)	\$0	0	0	0	0	0	0	n/a
	3. Less: Accumulated Depreciation (C)	\$0	0	0	0	0	0	0	n/a
48	4. CWIP - Non Interest Bearing	\$2,241,681	2,455,213	3,436,298	5,276,291	6,731,755	8,012,883	9,000,261	n/a
00	5. Net Investment (Lines 2 - 3 + 4)	\$2,241,681	\$2,455,213	\$3,436,298	\$5,276,291	\$6,731,755	\$8,012,883	\$9,000,261	n/a
	6. Average Net Investment		2,348,447	2,945,755	4,356,294	6,004,023	7,372,319	8,506,572	
	7. Return on Average Net Investment								
	a. Equity Component grossed up for taxes (D)		18,046	22,636	33,474	46,136	56,650	65,366	\$282,567
	b. Debt Component (Line 6 x 1.8767% x 1/12)		3,673	4,607	6,813	9,390	11,530	13,304	\$57,509
	8. Investment Expenses								
	a. Depreciation (E)		0	0	0	0	0	0	\$0
	b. Amortization (F)								
	c. Dismantlement								
	d. Property Expenses								
	e. Other (G)								
		_		807.042	\$40,287	\$55,526	\$68,180	\$78,669	\$340,077
	Total System Recoverable Expenses (Lines 7 & 8)	=	\$21,719	\$27,243	\$40,287	<u>a00,020</u>	\$00,100	\$10,003	

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 37 of 43

Florida Power & Light Company Environmental Cost Recovery Clause

For the Period January through June 2007

Return on Capital Investments, Depreciation and Taxes For Project: Martin Drinking Water System Complianace (Project No. 35) (in Dollars)

	Line		Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	Six Month Amount
		Investments		/ lotoda	noudi		Acidai	Actual	Acida	Anoun
		a. Expenditures/Additions		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		b. Clearings to Plant		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		c. Retirements		\$0	\$0	\$0	\$0	\$0	\$0	\$0
		d. Other (A)			·					
	2.	Plant-In-Service/Depreciation Base (B)	\$0	0	0	0	0	0	0	n/a
N	3.	Less: Accumulated Depreciation (C)	0	0	0	0	0	0	0	n/a
49	4.	CWIP - Non Interest Bearing	0	0	0	0	0	0	0_	n/a
	5.	Net Investment (Lines 2 - 3 + 4)	\$0	\$0	\$0	\$0	\$0	\$0	\$0	n/a
	6.	Average Net Investment		0	0	0	0	0	0	n/a
	7.	Return on Average Net Investment								
		a. Equity Component grossed up for taxes (D)		0	0	0	0	0	0	0
		b. Debt Component (Line 6 x 1.8767% x 1/12)		0	0	0	0	0	0	0
	8.	Investment Expenses								
		a. Depreciation (E)		0	0	0	0	0	0	0
		b. Amortization (F)								
		c. Dismantlement								
		d. Property Expenses								
		e. Other (G)								
	•	Tatal Surtem Bessymmetric Expanses (Lines 7 P B)	-	\$ 0	\$ 0	\$0	\$0	\$0	\$0	\$0_
	Э.	Total System Recoverable Expenses (Lines 7 & 8)	-			<u> </u>				

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Form 42-8E Page 38 of 43

Florida Power & Light Company Environmental Cost Recovery Clause For the Period July through December 2007

Return on Capital Investments, Depreciation and Taxes <u>For Protect: Martin Drinking Water System Complianace (Project No. 35)</u> (In Dollars)

Line	9	Beginning of Period Amount	July Estimated	August Estimated	Septemb er Estimated	October Estimated	November Estimated	December Estimated	Twelve Month Amount
1.	Investments a. Expenditures/Additions b. Clearings to Plant c. Retirements d. Other (A)		\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0	\$0 \$0 \$0
2. 3. 50	Plant-In-Service/Depreciation Base (B) Less: Accumulated Depreciation (C) CWIP - Non Interest Bearing	\$0 \$0 \$0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	n/a n/a n/a
	Net Investment (Lines 2 - 3 + 4)	<u>\$0</u>	\$0	\$0	\$0	\$0	\$0	\$0	n/a
6.	Average Net Investment		0	0	0	0	0	0	
7.	Return on Average Net Investment a. Equity Component grossed up for taxes (D) b. Debt Component (Line 6 x 1.8767% x 1/12)		0 0	0 0	0 0	0 0	0 0	0 0	\$0 \$0
8.	Investment Expenses a. Depreciation (E) b. Amortization (F) c. Dismantlement d. Property Expenses e. Other (G)		0	. 0	0	0	0	0	\$0
9.	Total System Recoverable Expenses (Lines 7 & 8)		\$0	\$0	\$0	\$0	\$0	\$0	\$0

Notes:

(A) N/A

(B) Applicable beginning of period and end of period depreciable base by production plant name(s), unit(s), or plant account(s). See Form 42-8E, pages 41-43.

ı

(C) N/A

(D) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equily.

(E) Applicable depreciation rate or rates. See Form 42-8E, pages 41-43.

(F) Applicable amortization period(s). See Form 42-8E, pages 41-43.

(G) N/A

Florida Power & Light Company Environmental Cost Recovery Clause For the Period January through June 2007

Schedule of Amortization of and Negative Return on <u>Deferred Gain on Sales of Emission Allowances</u> (in Dollars)

b Debt Component (Line 6 x 1.87670% x 1/12) (3.284) (3.286) (3.230) (2.964) (2.637) (18.65) 5 Total Return Component (\$19,315) (\$19,315) (\$19,206) (\$19,206) (\$19,206) (\$19,206) (\$19,206) (\$19,206) (\$19,101) (\$17,527) (\$15,592) (\$11,101) 6 Expense Dr (Cr) a 411.800 Gains from Dispositions of Allowances 0	u	ne	Beginning of Period Amount	January Actual	February Actual	March Actual	April Actual	May Actual	June Actual	End of Period Amount
4 Return on Average Net Working Capital Balance a Equity Component grossed up for taxes (A) b Debt Component (Line 6 x 1.87670% x 1/12) (16,138) (16,049) (15,960) (15,871) (14,563) (12,955) (91,52) 5 Total Return Component Gains from Dispositions of Allowances (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (32,87,10) (89,804) (464,84) 6 Expanse Dr (Cr) a 411,800 Losses from Dispositions of Allowances 0		a 158.100 Aliowance inventory b 158.200 Allowances Withheld c 182.300 Other Regulatory Assets-Losses d 254.900 Other Regulatory Liabilities-Gains	0 0 (2,105,917)	0 0 (2,094,333)	0 0 (2,082,750)	0 0 (2,071,166)	0 0 (2,059,583)	0 0 (1,7 <u>30,873)</u>	0 0 (1,641,069)	
a Equity Component grossed up for taxes (A) b (16,138) (16,049) (15,960) (15,871) (14,563) (12,955) (91,53) 5 Total Return Component (16,138) (16,049) (15,960) (15,971) (14,563) (12,955) (91,53) 5 Total Return Component (16,138) (16,049) (15,960) (15,971) (14,563) (12,955) (91,53) 6 Expense Dr (Cr) (519,422) (519,315) (519,208) (519,208) (519,208) (519,208) (511,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (11,584) (511,584) <t< td=""><td></td><td>3 Average Net Working Capital Balance</td><td></td><td>(2,100,125)</td><td>(2,088,542)</td><td>(2,076,958)</td><td>(2,065,374)</td><td>(1,895,228)</td><td>(1,685,971)</td><td></td></t<>		3 Average Net Working Capital Balance		(2,100,125)	(2,088,542)	(2,076,958)	(2,065,374)	(1,895,228)	(1,685,971)	
6 Expense Dr (Cr) a 411.800 Gains from Dispositions of Allowances (11,584) (11,584) (11,584) (328,710) (89,804) (464,84 b 411.900 Losses from Dispositions of Allowances 0	1.5	a Equity Component grossed up for taxes (A) b Debt Component (Line 6 x 1.87670% x 1/12)		(3,284)	(3,266)	(3,248)	(3,230)	(2,964)	(2,637)	(91,535) (18,630) (\$110,165) (D)
b 411.900 Losses from Dispositions of Allowances 0	51	6 Expense Dr (Cr)								
c 50 00 0		a 411.800 Gains from Dispositions of Allowances		(11,584)	(11,584)	(11,584)	(11,584)	(328,710)	(89,804)	(464,848)
C OS.000 Andwards Expense C O O O C State St		b 411.900 Losses from Dispositions of Allowances		0	0	0	0	0	0	-
a Recoverable Costs Allocated to Energy (7,839) (7,731) (7,624) (7,517) 311,183 74,212 b Recoverable Costs Allocated to Demand 0 0 0 0 0 0 0 9 Energy Jurisdictional Factor 98.53348% 98.53348% 98.53348% 98.53348% 98.53348% 98.53348% 98.53348% 98.5224% 98.62224%					00 (\$11,584)			0 (\$328,710)		(\$464,848) (E)
10 Demand Jurisdictional Factor 98.62224% 98.6224% 98.62224% 98.62224% 98.62224% 98.62224% 98.6		a Recoverable Costs Allocated to Energy					(7,517)	311,183	74,212	
11 Retail Demand-Related Recoverable Costs (C) (1.724) (1.615) (1.615) (1.615) (1.615) 12 Retail Demand-Related Recoverable Costs (C) 0 0 0 0 0										
				(7,724) 0		(7,513) 0		-		349,482 0
13 Total Jurisdictional Recoverable Costs (Lines11+12) (\$7,724) (\$7,618) (\$7,513) (\$7,407) \$306,619 \$73,123 \$349,41		13 Total Jurisdictional Recoverable Costs (Lines11+12)	_	(\$7,724)	(\$7,618)	(\$7,513)	(\$7,407)	\$306,619	\$73,123	\$349,482

Notes:

(A) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(B) Line 8a times Line 9

(C) Line 8b times Line 10

(D) Line 5 is reported on Capital Schedule

(E) Line 7 is reported on O&M Schedule

In accordance with FPSC Order No. PSC-94-0393-FOF-EI, FPL has recorded the gains on sales of emissions allowances as a regulatory liability.

Totals may not add due to rounding

Form 42-8E Page 39 of 43

Florida Power & Light Company

Environmental Cost Recovery Clause For the Period July through December 2007

Schedule of Amortization of and Negative Return on <u>Deferred Gain on Sales of Emission Allowances</u> (in Doltars)

Line		Beginning of Period Amount	July Estimated	August Estimated	September Estimated	October Estimated	November Estimated	December Estimated	End of Period Amount	
1	Working Capital Dr (Cr) a 158.100 Allowance Inventory b 158.200 Allowances Withheld c 182.300 Other Regulatory Assets-Losses d 254.900 Other Regulatory Liabilities-Gains	\$0 0 0 (1,641,069)	\$0 0 0 (1,551,265)	\$0 0 0 (1,461,461)	\$0 0 0 (1,371,658)	\$0 0 0 (1,281,854)	\$0 0 0 (1,192,050)	\$0 0 0 (1,102,246)		
2	Total Working Capital	(\$1,641,069)	(\$1,551,265)	(\$1,461,461)	(\$1,371,658)	(\$1,281,854)	(\$1,192,050)	(\$1,102,246)		
3	Average Net Working Capital Balance		(1,596,167)	(1,506,363)	(1,416,560)	(1,326,756)	(1,236,952)	(1,147,148)		
4 5	Return on Average Net Working Capital Balance a Equity Component grossed up for taxes (A) b Debt Component (Line 6 x 1.6698% x 1/12) Total Return Component	_	(12,265) (2,496) (\$14,761)	(11,575) (2,356) (\$13,931)	(10,885) (2,215) (\$13,100)	(10,195) (2,075) (\$12,270)	(9,505) (1,934) (\$11,439)	(8,815) (1,794) (\$10,609)	(154,776) (31,501) (\$186,276)	(
52 ⁶	Expense Dr (Cr)									
	a 411.800 Gains from Dispositions of Allowances		(89,804)	(89,804)	(89,804)	(89,804)	(89,804)	(89,804)	(1,003,670)	
7	b 411.900 Losses from Dispositions of Allowances c 509.000 Allowance Expense Net Expense (Lines 6a+6b+6c)	-	0 0 (\$89,804)	0 0 (\$89,804)	0 0 (\$89,804)	0 0 (\$89,804)	0 0 (\$89,804)	0 0 (\$89,804)	(\$1,003,670)	(
8	Total System Recoverable Expenses (Lines 5+7) a Recoverable Costs Allocated to Energy b Recoverable Costs Allocated to Demand		\$75,042 75,042 0	\$75,873 75,873 0	\$76,703 76,703 0	\$77,534 77,534 0	\$78,364 78,364 0	\$79,195 79,195 0		
9 10	Energy Jurisdictional Factor Demand Jurisdictional Factor		98.53348% 98.62224%	98.53348% 98.62224%	98.53348% 98.62224%	98.53348% 98.62224%	98.53348% 98.62224%	98.53348% 98.62224%		
11 12			73,942 0	74,760 0	75,578 0	76,397 0	77,215 0	78,033 0	805,407 0	
13	Total Jurisdictional Recoverable Costs (Lines11+12)		\$73,942	\$74,760	\$75,578	\$76,397	\$77,215	\$78,033	\$805,407	

Notes:

(A) The Gross-up factor for taxes uses 0.61425, which reflects the Federal Income Tax Rate of 35%; the monthly Equity Component of 5.6640% reflects an 11.75% return on equity.

(B) Line 8a times Line 9

(C) Line 8b times Line 10

(D) Line 5 is reported on Capital Schedule

(E) Line 7 is reported on O&M Schedule

In accordance with FPSC Order No. PSC-94-0393-FOF-EI, FPL has recorded the gains on sales of emissions allowances as a regulatory liability.

Totals may not add due to rounding

Form 42-8E Page 40 of 43

(D)

(E)

Florida Power & Light Company Environmental Cost Recovery Clause 2007 Annual Capital Depreciation Schedule

.

2 - Low NOX Burner Technology PEVerglades U1 31200 6.7% 2,700,574.97 2,7450,904.92 2,4450,904.92 2,4450,904.92 2,4450,904.92 2,4450,904.92 2,4450,904.92 2,4450,904.92 2,4450,904.92 2,441,904.93 2,741,904.93 2,741,904.93 2,741,904.93 2,741,904.93 2,741,904.93 2,741,904.93 2,741,904.93 2	Project Number	Function	Plant Name	Plant Account	Depreciation Rate / Amortization Period	Actual 12/31/2006 Plant In Service	Estimated 12/31/2007 Plant in Service
02 - Steam Generation Plant PElverglades U1 31200 6.7% 2.700,574 2.700,574 02 - Steam Generation Plant PRivers U3 31200 1.7% 3.815,922.27 2.383,972.27 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.383,972.277 2.345,924.42 2.444,924.928 2.445,924.42 2.444,924.928 2.445,924.42 2.444,924.928 2.75,751,7 2.2 2.58am Generation Plant CapeCanaveral Comm 31200 1.1% 511,925.43 511,925.43 511,926.24 31272.43 319,922.43 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
02-Steam Generation Plant PElverglades U2 91200 6.1% 2.368/97277 2.368/97277 2.368/97277 2.368/97277 2.368/97277 2.368/97277							0 700 77 / 0-
02 - Steam Generation Plant Riviera U4 31200 1.7% 3.816.802.70 3.346.925.80 02 - Steam Generation Plant Turkey Pt U1 31200 1.4% 3.246.925.80 2.451.904.92 2.451.904.92 2.451.904.92 2.461.904.92 3 - Continuous Enclation Mant Cape Canaveral Comm 31100 1.7% 2.98.92.70 3.96.92.77 3.97.97.93.93.92.93.92 3.96.92.77 3 - Continuous Enclation Monitoring Cape Canaveral Comm 31100 1.7% 5.92.77 5.92.27.1 <t< td=""><td></td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td></td><td>·· · ·</td><td></td></t<>		· · · · · · · · · · · · · · · · · · ·				·· · ·	
02 - Steam Generation Plant Turkey Pt U1 31200 1.4% 32,262,207.8 2,245,207.8 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 2,451,00.92 2,416,089.5 3 - Continuous Enission Monitoring C2 - Steam Generation Plant CapeCanaveral Comm 31100 1.7% 59,227.10			5				
02 - Sham Generation Plant Turkey Pt U2 31200 2.0% 2.265.027.44 2.262.027.4 3 - Continuous Enission Monitoring Total For Project 02 - Low MOX Burner Technology 17.599.202.6.0 17.473.333.1 3 - Continuous Enission Monitoring C2 - Sham Generation Plant CapeCanaveral Comm 31100 1.7% 59.227.1 05.227.10 05.227.1 22 - Sham Generation Plant CapeCanaveral Comm 31200 1.4% 30.059.2 30.059.2 22 - Sham Generation Plant CapeCanaveral U2 31200 1.4% 494.606.8 64.883.8 64.883.8 22 - Steam Generation Plant Cutler Comm 31200 0.5% 27.341.73 27.751.7 22 - Steam Generation Plant Cutler U6 31200 1.0% 314.225.8 33.172.2 22 - Steam Generation Plant Maratee Comm 31200 1.0% 314.225.8 32.727.1 27.272.4 27.351.7 22 - Steam Generation Plant Maratee Comm 31200 1.0% 34.453.7 36.837.6 36.832.7 36.832.7 36.832.7 36.832.7 36.832.7 36.832.7<						• •	3,815,802.70
02 - Steam Generation Plant Turksy Pt U2 1200 1.8% 2.415(0.99.2) 2.416(0.99.2) 3 - Continuous Enission Monitoring 02 - Steam Generation Plant CapeCanaveral Comm 31100 1.7% 59.227.10 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
Total For Project 02 - Low NOX Burner Technology 17,599,209,50 17,473,383.3 2 - Continuous Enission Monitoring CapeCanaveral Comm 31100 1.7% 59,227.10 55,227.1 22 - Steam Generation Plant CapeCanaveral Comm 31200 1.3% 30,059.2 30,059.2 22 - Steam Generation Plant CapeCanaveral U 31200 1.4% 444,608.87 444,608.87 22 - Steam Generation Plant Cutler Comm 31100 0.0% 64,883.87 64,883.87 22 - Steam Generation Plant Cutler Comm 31200 1.4% 434,008.87 319,722.4 22 - Steam Generation Plant Cutler US 31200 0.5% 27,371.7 27,351.7 22 - Steam Generation Plant Maratee US 31200 4.1% 54,432.2 56,430.2 22 - Steam Generation Plant Maratee US 31200 4.0% 56,743.3 56,873.3 22 - Steam Generation Plant Maratee US 31200 4.0% 56,874.3 58,873.3 22 - Steam Generation Plant Maratin US 31200 1.5% 38,845.3							2,925,027.84
3 - Continuous Entission Monitoring CapeCanaveral Comm 31100 1.7% 59.227.10 59.227.10 02 - Steam Generation Plant CapeCanaveral Comm 31200 1.4% 30.059.25 30.059.25 02 - Steam Generation Plant CapeCanaveral U1 31200 1.4% 494.508.57 494.508.57 02 - Steam Generation Plant Cutler Comm 31100 0.0% 64.833.87 64.833.87 02 - Steam Generation Plant Cutler Comm 31100 0.5% 27.351.73 27.751.7 02 - Steam Generation Plant Cutler U5 31200 1.1% 314,129.96 321,122.9 02 - Steam Generation Plant Manatee U1 31200 4.4% 472,770.03 472,677.00 02 - Steam Generation Plant Manatee U1 31200 4.4% 472,770.03 472,677.01 02 - Steam Generation Plant Manatee U1 31200 4.1% 31,631.74 31,631.74 02 - Steam Generation Plant Marin U1 31100 1.5% 36,810.86 36,810.86 02 - Steam Generation Plant Marin U1 31100 </td <td>(</td> <td>02 - Steam Generation Plant</td> <td></td> <td></td> <td></td> <td></td> <td>2,416,089.59</td>	(02 - Steam Generation Plant					2,416,089.59
02 - Steam Generation Plant CapeCanaveral Comm 31100 1.7% 59.227.10 59.227.10 02 - Steam Generation Plant CapeCanaveral U1 31200 1.4% 494.608.67 494.608.67 02 - Steam Generation Plant CapeCanaveral U1 31200 1.4% 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.25 56.430.22 52.84m Generation Plant Cutler U5 31200 1.41% 514.899.00 31.455.00 31.455.00 31.255.00			Total For Project 02	- Low NOX Bu	rner Technology	17,509,208.50	17,473,393.17
02 - Steam Generation Plant CapeCanaveral Comm 31100 1.7% 59.227.10 59.227.10 02 - Steam Generation Plant CapeCanaveral U1 31200 1.4% 494.608.67 494.608.67 02 - Steam Generation Plant CapeCanaveral U1 31200 1.4% 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.24 511.705.25 56.430.22 52.84m Generation Plant Cutler U5 31200 1.41% 514.899.00 31.455.00 31.455.00 31.255.00	Continu	Louis Emission Monitoring				•	
02 - Steam Generation Plant CapeCanaveral U 31200 1.3% 30,059.25 30,059.25 02 - Steam Generation Plant CapeCanaveral U2 31200 1.1% 611,705.24 651,705.24 02 - Steam Generation Plant Cufer Comm 31200 0.5% 27,351,73 27,352,73 56,332,75 56,332,75 56,332,75 56,332,75 56,332,75 56,332,75 56,332,75 56,332,75 56,332,75 36,610,86 02 - Steam Generation Plant Martin U1 31200 4,1% 58,610,86 36,610,86 02 - Steam Generation Plant Martin U1 31200 1,5% 58,610,85 36,610,87 36,645,37 36,645,37 36,645,			CapeCanaveral Comm	31100	1 7%	59,227,10	59,227,10
02 - Steam Generation Plant CapeCanaveral UI 31200 1.4% 541,70524 641,70524 02 - Steam Generation Plant Cutler Comm 31100 0.0% 67,831,73 27,7351,7 02 - Steam Generation Plant Cutler Comm 31200 0.1% 312,722,43 319,722,4 02 - Steam Generation Plant Cutler UG 31200 1.1% 56,430,2 314,926,6 321,128,9 02 - Steam Generation Plant Manatee U1 31200 4.1% 56,430,2 56,430,2 02 - Steam Generation Plant Manatee U2 31200 4.1% 56,332,7 56,532,7 02 - Steam Generation Plant Manatee U2 31200 4.0% 508,734,36 508,734,36 02 - Steam Generation Plant Martin U1 31100 1.5% 56,446,437 36,810,88 36,810,88 36,810,88 36,810,88 36,810,88 36,810,88 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86 36,844,86							
D2 - Steam Generation Plant CapeCanaveral U2 31200 1.1% 511,705.24 511,805.21 511,805.21 511,805.21 511,805.21 511,805.21 511,805.21	-						
02 - Staam Generation Plant Cutier Comm 31100 0.0% 27,351.7 27,351.7 02 - Steam Generation Plant Cutler UG 31200 0.1% 312,722.43 319,722.43 02 - Steam Generation Plant Cutler UG 31200 1.0% 314,259.6 231,128.9 02 - Steam Generation Plant Manatee U1 31200 1.4.1% 56,430.2 56,430.2 02 - Steam Generation Plant Manatee U2 31200 4.1% 56,332.7 56,532.7 02 - Steam Generation Plant Manatee U2 31200 4.0% 508,734.38 508,734.3 02 - Steam Generation Plant Manatee U2 31200 4.0% 51,614.4 51,617.4 02 - Steam Generation Plant Martin U1 31100 1.5% 53,644.8 56,173.7 36,845.37 36,845.37 02 - Steam Generation Plant Martin U2 31100 2.7% 51,944.49.6 51,444.96 51,444.96 51,444.96 51,444.96 51,444.96 51,444.96 51,20.47 61,520.47 61,520.47 61,520.47 61,520.47 61,520			•				
02 - Steam Generation Plant Cutler Cutm 31200 0.5% 27,351.73 27,351.73 02 - Steam Generation Plant Cutler U6 31200 1.0% 314,129.96 321,129.96 02 - Steam Generation Plant Maratee U1 31100 4.1% 314,850.00 314,650.00 02 - Steam Generation Plant Maratee U1 31100 4.1% 56,430.25 56,430.25 02 - Steam Generation Plant Maratee U2 31100 4.1% 56,332.75 56,332.75 02 - Steam Generation Plant Maratee U2 31100 4.1% 58,431.86 36,810.86 02 - Steam Generation Plant Martin U1 31200 4.1% 58,431.86 36,810.86 02 - Steam Generation Plant Martin U2 31200 1.5% 56,445.37 36,845.37 02 - Steam Generation Plant Martin U2 31200 2.7% 179,443.472,471.33 122,914.34 122,914.34 122,914.34 122,914.34 122,914.34 122,914.34 122,914.34 122,914.35 122,914.35 122,914.35 122,914.35 122,914.35 122,			•			•	
02 - Steam Generation Plant Cutler U5 31200 1.0% 312/722.43 319722.4 02 - Steam Generation Plant Manatee Comm 31200 1.4.1% 31.859.00 31.859.00 02 - Steam Generation Plant Manatee U1 31100 4.1% 56.430.25 56.430.25 02 - Steam Generation Plant Manatee U2 31100 4.1% 56.430.25 56.832.75 02 - Steam Generation Plant Manatee U2 31100 4.1% 56.832.75 56.832.75 02 - Steam Generation Plant Martin CUT 31200 4.0% 508,734.33 508,734.33 02 - Steam Generation Plant Martin U1 31200 1.5% 35,610.86 36,610.87 02 - Steam Generation Plant Martin U2 31200 1.5% 519,444.56 519,444.56 02 - Steam Generation Plant Martin U2 31200 1.5% 519,444.66 519,444.56 02 - Steam Generation Plant Martin U2 31200 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant Martin U2 31200 6.1%							
02 - Steam Generation Plant Cutler Ué 31200 1.0% 314,129.96 321,129.9 02 - Steam Generation Plant Manatee U1 31100 4.1% 56,430.25 56,430.2 02 - Steam Generation Plant Manatee U1 31200 4.1% 56,430.25 56,430.2 02 - Steam Generation Plant Manatee U2 31100 4.1% 50,322.75 56,332.77 02 - Steam Generation Plant Manatee U2 31100 4.1% 50,374.33 500,774.33 02 - Steam Generation Plant Martin U1 31100 1.5% 36,810.86 36,910.86 02 - Steam Generation Plant Martin U2 31100 1.5% 36,845.37 36,845.37 02 - Steam Generation Plant Martin U2 31200 1.5% 519,444.96 519,444.96 02 - Steam Generation Plant Martin U2 31200 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant PtEverglades Corm 31200 2.7% 61,620.47 61,620.47 02 - Steam Generation Plant PtEverglades U3 31200 6.7% </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
02 - Steam Generation Plant Manatee U 31200 41,4% 31,859.00 31,859.00 02 - Steam Generation Plant Manatee U 31200 4.8% 472,570.03 472,570.03 02 - Steam Generation Plant Manatee U 31200 4.8% 472,570.03 472,570.03 02 - Steam Generation Plant Manatee U 31200 4.0% 508,734.38 508,734.33 02 - Steam Generation Plant Martin U1 31100 1.5% 36,840.58 36,841.57 02 - Steam Generation Plant Martin U1 31100 1.5% 36,845.37 36,845.37 02 - Steam Generation Plant Martin U2 31100 1.5% 518,444.86 519,444.86 02 - Steam Generation Plant Martin U2 31200 1.5% 518,464.92 528,971.77 522,317.77 522,317.77 522,317.77 522,453.661.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,861.22 425,8661.22 425,861.22 42							•
02 - Steam Generation Plant Manatee U1 31100 4.1% 56,430.25 56,430.25 02 - Steam Generation Plant Manatee U2 31100 4.1% 56,332.75 56,332.75 02 - Steam Generation Plant Manatee U2 31100 4.1% 56,332.75 56,332.75 02 - Steam Generation Plant Martin U1 31200 4.1% 316,811.4 31,511.7 02 - Steam Generation Plant Martin U1 31200 1.5% 36,810.86 36,910.80 02 - Steam Generation Plant Martin U2 31100 1.5% 36,445.37 36,845.37 02 - Steam Generation Plant PtEverglades Comm 31100 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant PtEverglades L0 31200 6.7% 453,661.22 453,661.22 22 - Steam Generation Plant PtEverglades U2 31200 4.0% 503,966.62 503,968.62 02 - Steam Generation Plant PtEverglades U4 31200 4.0% 52,809.90 523,209.90 02 - Steam Generation Plant Rtivera Comm 31200							· · ·
02 - Steam Generation Plant Manatee U1 31200 4.8% 472,570.03 472,570.03 02 - Steam Generation Plant Manatee U2 31200 4.0% 508,734.36 508,734.36 02 - Steam Generation Plant Marin U1 31100 1.5% 36,810.86 38,910.86 02 - Steam Generation Plant Marin U1 31100 1.5% 36,810.86 38,910.86 02 - Steam Generation Plant Marin U2 31100 1.5% 36,845.37 36,845.37 02 - Steam Generation Plant Martin U2 31200 1.5% 519,484.96 519,484.96 02 - Steam Generation Plant PtEverglades Comm 31200 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant PtEverglades U3 31200 6.7% 453,661.22	02	2 - Steam Generation Plant	Manatee Comm				
02 - Steam Generation Plant Manatee U2 31100 4.1% 56,332.75 56,327.3 02 - Steam Generation Plant Maratee U2 31200 4.0% 508,734.33 508,734.33 02 - Steam Generation Plant Martin U1 31200 4.1% 36,810.86 39,810.80 02 - Steam Generation Plant Martin U1 31200 1.5% 36,840.86 39,810.80 02 - Steam Generation Plant Martin U2 31100 1.5% 519,484.96 519,484.96 02 - Steam Generation Plant PEtwerglades Cornm 31100 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant PEtwerglades Cornm 31200 6.7% 453,661.22 455,661.22 02 - Steam Generation Plant PEtwerglades U3 31200 4.0% 503,968.62 503,988.62 02 - Steam Generation Plant PEtwerglades U3 31200 3.6% 512,809.90 522,809.90 522,809.90 522,809.90 523,809.80 522,809.80 523,809.80 523,809.80 523,809.80 523,809.80 523,809.80 52,809.80 523,809.80	02	2 - Steam Generation Plant	Manatee U1	31100	4.1%	56,430.25	56,430.25
02 - Steam Generation Plant Mantate U2 31200 4.0% 508,734.36 508,734.36 02 - Steam Generation Plant Martin Curm 31200 4.1% 31,631.74<	02	2 - Steam Generation Plant	Manatee U1	31200	4.8%	472,570.03	472,570.03
02 - Steam Generation Plant Martin U1 31100 1.5% 38,810.86 38,810.86 02 - Steam Generation Plant Martin U1 31100 1.5% 38,810.86 38,810.86 02 - Steam Generation Plant Martin U2 31100 1.5% 521,075.17 521,075.17 02 - Steam Generation Plant Martin U2 31100 1.5% 519,484.96 519,484.96 02 - Steam Generation Plant PEEverglades Comm 31200 2.7% 61,520.47 61,620.47 02 - Steam Generation Plant PEEverglades U2 31200 6.7% 455,661.22 453,661.2 02 - Steam Generation Plant PEEverglades U3 31200 4.0% 503,968.62 503,968.62 02 - Steam Generation Plant PEEverglades U3 31200 1.7% 449,302.38 449,322.38 02 - Steam Generation Plant Riviera Comm 31100 1.9% 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 <	02	2 - Steam Generation Plant	Manatee U2	31100	4.1%	56,332.75	56,332.75
02 - Steam Generation Plant Martin U1 31200 4.1% 31,631.74 31,631.74 31,631.74 02 - Steam Generation Plant Martin U1 31100 1.5% 38,810.86 52,1075.17 521,075.13 561,561.32 522,562 522,562	02	2 - Steam Generation Plant	Manatee U2	31200	4.0%	508,734.36	508,734.36
02 - Steam Generation Plant Martin U1 31100 1.5% 36,810.86 36,810.86 02 - Steam Generation Plant Martin U1 31200 1.6% 521,075.17 521,075.17 02 - Steam Generation Plant Martin U2 31200 1.5% 36,845.37 36,845.37 02 - Steam Generation Plant PEVerglades Comm 31200 1.5% 519,494.96 519,494.96 02 - Steam Generation Plant PEVerglades Comm 31200 2.7% 412,791.34 127,911.34 02 - Steam Generation Plant PEVerglades U1 31200 6.7% 445,661.22 453,661.22 02 - Steam Generation Plant PEVerglades U3 31200 6.4% 475,113.36 475,113.36 02 - Steam Generation Plant PEVerglades U4 31200 0.6% 512,809.90 522,809.90 02 - Steam Generation Plant Riviera Comm 31200 0.4% 29,117.75 13,315.76 02 - Steam Generation Plant Riviera U4 31200 1.7% 449,392.38 449,392.38 02 - Steam Generation Plant Schror U3 3120	02	2 - Steam Generation Plant	Martin Comm		4.1%	31,631,74	31,631.74
02 - Steam Generation Plant Martin U1 31200 1.8% 521,075,17 521,075,17 02 - Steam Generation Plant Martin U2 31100 1.5% 36,845,37 36,845,37 02 - Steam Generation Plant Martin U2 31100 2.7% 127,911,34 127,911,34 02 - Steam Generation Plant PtEverglades Comm 31100 2.7% 161,820,47 161,820,47 02 - Steam Generation Plant PtEverglades U1 31200 6,1% 475,113,36 475,113,36 02 - Steam Generation Plant PtEverglades U3 31200 3,6% 512,409,90 532,809,90 02 - Steam Generation Plant PtEverglades U3 31200 1,7% 449,392,38 449,392,38 02 - Steam Generation Plant Riviera Comm 31200 1,4% 433,421,96 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18 60,973,18						•	
D2 - Steam Generation Plant Martin U2 31100 1.5% 36,845.37 D2 - Steam Generation Plant Martin U2 31200 1.5% 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 519,484.98 512,944.98 512,944.98 512,944.98 512,945.94 512,952.94 61,620.47 61,620.47 61,620.47 61,620.47 61,620.47 61,620.47 61,620.47 61,620.47 61,620.47 61,620.47 60,936.62 503,968.62							
02 - Steam Generation Plant Martin U2 31200 1.5% 519,484.96 519,484.96 02 - Steam Generation Plant PtEverglades Comm 31100 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant PtEverglades Comm 31200 2.2% 61,820.47 61,820.47 02 - Steam Generation Plant PtEverglades U2 31200 6.1% 475,113.36 475,113.36 02 - Steam Generation Plant PtEverglades U3 31200 4.0% 503,968.62 503,968.62 02 - Steam Generation Plant Rtiverglades U3 31200 3.6% 512,809.90 532,809.90 02 - Steam Generation Plant Rtivera Comm 31200 1.7% 449,392.38 449,392.38 02 - Steam Generation Plant Rtivera U3 31200 1.4% 433,421.96 433,421.96 02 - Steam Generation Plant Sanford U3 31100 4.0% 43,422.08 515,653.32 515,653.22 515,653.22 515,653.22 515,653.22 515,653.22 515,653.22 515,653.22 515,653.22 515,653.22 515,653.22 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
02 - Steam Generation Plant PtEverglades Comm 31100 2.7% 127,911.34 127,911.34 02 - Steam Generation Plant PtEverglades Comm 31200 2.2% 61,620.47 61,620.47 61,620.47 02 - Steam Generation Plant PtEverglades U2 31200 6.1% 475,113.36 475,113.36 475,113.36 02 - Steam Generation Plant PtEverglades U3 31200 4.0% 503,968.62 503,968.62 02 - Steam Generation Plant Riviera Comm 31100 1.9% 60,973.18 6							
02 - Steam Generation Plant PtEverglades Comm 31200 2.2% 61,620.47 61,620.47 02 - Steam Generation Plant PtEverglades U1 31200 6.7% 453,661.22 453,661.22 02 - Steam Generation Plant PtEverglades U2 31200 6.1% 475,113.36 475,113.36 02 - Steam Generation Plant PtEverglades U3 31200 4.0% 503,968.62 503,968.62 02 - Steam Generation Plant Riviera Comm 31100 1.9% 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 60,973.18 63,342.196 433,421.96 <td< td=""><td></td><td></td><td></td><td>,</td><td></td><td></td><td></td></td<>				,			
02 - Steam Generation Plant PtEverglades U1 31200 6.7% 453,661.22 453,661.22 02 - Steam Generation Plant PtEverglades U2 31200 6.1% 475,113.36 475,113.36 02 - Steam Generation Plant PtEverglades U3 31200 4.0% 503,968.62 503,968.62 02 - Steam Generation Plant Riviera Comm 31200 0.4% 29,117.75 13,315.76 02 - Steam Generation Plant Riviera Comm 31200 0.4% 29,117.75 13,315.76 02 - Steam Generation Plant Riviera U4 31200 1.4% 433,421.96 433,421.96 02 - Steam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,282.08 02 - Steam Generation Plant Sanford U3 31200 3.6% 431,831.34 438,831.34 02 - Steam Generation Plant Skhere U4 31200 1.9% 515,653.32 515,653.32 02 - Steam Generation Plant SkRP - Comm 31100 2.9% 66,188.18 66,188.18 02 - Steam Generation Plant SkRP U1 31200							
02 - Steam Generation Plant PtEverglades U2 31200 4.0% 475,113.36 475,113.36 02 - Steam Generation Plant PtEverglades U3 31200 4.0% 503,968.62 503,863.23 449,392.38 449,392.38 449,392.38 449,392.38 429,322.38 602 - Steam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,583,13 56,563,34,43 50,553	=		· · · · · · · · · · · · · · · · · · ·				
02 - Steam Generation Plant PtEverglades U3 31200 4.0% 503,968,62 503,968,62 02 - Steam Generation Plant Riviera Comm 31200 3.6% 512,609,90 532,809,90 02 - Steam Generation Plant Riviera Comm 31100 1.9% 60,973,18 <t< td=""><td></td><td></td><td>. =</td><td></td><td></td><td></td><td></td></t<>			. =				
02 - Steam Generation Plant PEVere glades U4 31200 3.6% 512,809.90 532,809.90 02 - Steam Generation Plant Riviera Comm 31100 1.9% 60,973.18 60,931.44 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 433,421.96 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
02 - Šteam Generation Plant Riviera Comm 31100 1.9% 60,973.18 60,973.18 02 - Šteam Generation Plant Riviera Comm 31200 0.4% 29,117.75 13,315.76 02 - Šteam Generation Plant Riviera U3 31200 1.7% 449,392.38 449,392.38 02 - Šteam Generation Plant Riviera U4 31200 1.4% 433,421.96 433,421.96 02 - Šteam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,282.08 02 - Šteam Generation Plant Sanford U3 31200 3.6% 431,831.34 438,831.34 02 - Šteam Generation Plant SJRPP - Comm 31100 1.9% 515,653.32 515,653.32 02 - Šteam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Šteam Generation Plant SJRPP U1 31200 2.3% 107,564.02 107,554.02 107,554.02 107,554.02 107,554.02 107,556.98 59,556.19 59,556.19 59,556.19 59,556.19 59,556.19 59,556.19 59,556.19 50,553							
02 - Steam Generation Plant Riviera Comm 31200 0.4% 29,117.75 13,515.76 02 - Steam Generation Plant Riviera U3 31200 1.7% 449,392.38 449,392.38 02 - Steam Generation Plant Riviera U4 31200 1.4% 433,421.96 433,421.96 02 - Steam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,282.08 02 - Steam Generation Plant Sanford U3 31200 3.6% 431,831.34 433,831.34 02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.3% 107,594.02 107,594.02 02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,594.02 107,594.02 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 59,056.19 59,056.19 59,056.38.44 505,638.44 505,638.44 505,638.44 505,638.44 505,638.44 505,638.44 505,638.44 505,638.44		,	-				
02 - Steam Generation Plant Riviera U3 31200 1.7% 449,392.38 443,322.38 02 - Steam Generation Plant Riviera U4 31200 1.4% 433,421.96 433,421.96 02 - Steam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,282.08 02 - Steam Generation Plant Sanford U3 31200 3.6% 431,831.34 438,831.34 02 - Steam Generation Plant Scherer U4 31200 1.9% 515,653.32 515,653.32 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP - Comm 31200 2.3% 107,594.02 107,594.02 02 - Steam Generation Plant SJRPP VL 31200 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.38.44 02 - Steam Generation Plant Turkey Pt U2 31200 2.1% 56,638.45 56,638.44 03 - Other Generation Plant Turkey Pt U2 31200	02 -	 Steam Generation Plant 	Riviera Comm	31100			60,973.18
02 - Steam Generation Plant Riviera U4 31200 1.4% 433,421.96 433,421.96 02 - Steam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,282.08 02 - Steam Generation Plant Scherer U4 31200 3.6% 431,831.34 438,831.34 02 - Steam Generation Plant Scherer U4 31200 1.9% 515,653.32 515,653.32 02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U1 31200 2.3% 107,554.02 107,554.02 02 - Steam Generation Plant SJRPP VIC Omm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 505,538.44 505,538.44 02 - Steam Generation Plant Turkey Pt U1 31200 1.8% 505,538.44 505,538.44 05 - Other Generation Plant FiLauderdale Comm	02 -	 Steam Generation Plant 	Riviera Comm	31200	0.4%	29,117.75	13,315.76
02 - Steam Generation Plant Sanford U3 31100 4.0% 54,282.08 54,282.08 02 - Steam Generation Plant Sanford U3 31200 3.6% 431,831.34 438,831.34 02 - Steam Generation Plant Scherer U4 31200 1.9% 515,653.32 515,653.32 515,653.32 02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,562.94 107,554.02 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant FtLaud	02 -	 Steam Generation Plant 	Riviera U3	31200	1.7%	449,392.38	449,392.38
02 - Steam Generation Plant Sanford U3 31200 3.6% 431,831.34 438,831.34 02 - Steam Generation Plant Scherer U4 31200 1.9% 515,653.32 515,653.32 515,653.32 02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U1 31200 2.2% 107,594.02 107,562.94 02 - Steam Generation Plant SJRPP U2 31200 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15 546,534.15	02 -	- Steam Generation Plant	Riviera U4	31200	1.4%	433,421.96	433,421.96
02 - Steam Generation Plant Scherer U4 31200 1.9% 515,653.32 515,653.32 02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,554.02 107,540.02 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 107,562.94 107,562.94 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt U1 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,859.79 58,859.79 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4	02 -	- Steam Generation Plant	Sanford U3	31100	4.0%	54,282.08	54,282.08
02 - Steam Generation Plant Scherer U4 31200 1.9% 515,653.32 515,653.32 02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U2 31200 2.2% 107,554.02 107,554.02 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 107,562.94 107,562.94 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FitLauderdale Comm 34100 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FitLauderdale Comm 34100 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FitLauderda	02 -	- Steam Generation Plant	Sanford U3	31200	3.6%	431,831.34	438,831.34
02 - Steam Generation Plant SJRPP - Comm 31100 3.1% 43,193.33 43,193.33 02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U1 31200 2.2% 107,594.02 107,594.02 02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,562.94 107,562.94 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 3.7% 450,5638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U5 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5	02 -	Steam Generation Plant	Scherer U4	31200	1.9%	515,653,32	515,653,32
02 - Steam Generation Plant SJRPP - Comm 31200 2.0% 66,188.18 66,188.18 02 - Steam Generation Plant SJRPP U1 31200 2.2% 107,594.02 107,594.02 02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,562.94 107,562.94 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale Comm 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 </td <td>02 -</td> <td>Steam Generation Plant</td> <td>SJRPP - Comm</td> <td></td> <td></td> <td></td> <td></td>	02 -	Steam Generation Plant	SJRPP - Comm				
02 - Steam Generation Plant SJRPP U1 31200 2.2% 107,594.02 107,594.02 02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,562.94 107,562.94 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.1% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,659.79 58,859.79 05 - Other Generation Plant FtLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U3 CC<	02 -	Steam Generation Plant					
02 - Steam Generation Plant SJRPP U2 31200 2.3% 107,562.94 107,562.94 02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,859.79 58,859.79 05 - Other Generation Plant FtLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant Martin						107 50 1 00	
02 - Steam Generation Plant Turkey Pt Comm Fsil 31100 2.3% 59,056.19 59,056.19 02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,859.79 58,759.21 34,502.21 34,502.21 34,502.21 34,502.21 34,502.21 3							
02 - Steam Generation Plant Turkey Pt Comm Fsil 31200 2.1% 29,110.85 29,110.85 02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FitLauderdale Comm 34100 4.1% 58,859.79 58,859.79 05 - Other Generation Plant FitLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FitLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FitLauderdale U5 34300 5.7% 106,324.08 106,324.08 05 - Other Generation Plant FitMyers U2 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant FtMyers U3 CC 34300 5.8% 431,927.00 445,927.00 05 - Other Generation Plant Martin U4 34300 5.7% 22,657.00 25,657.00 25,657.00 25,657.00 25,657.00							
02 - Steam Generation Plant Turkey Pt U1 31200 2.0% 546,534.15 546,534.15 02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,859.79 58,859.79 05 - Other Generation Plant FtLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant Martin U3 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.7% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm	-						•
02 - Steam Generation Plant Turkey Pt U2 31200 1.8% 505,638.44 505,638.44 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,859.79 58,859.79 05 - Other Generation Plant FtLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 5.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant Martin U3 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U4 34300 5.7% 25,657.00 25,657.00 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm <t< td=""><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td></t<>	-		-				
05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 58,859.79 58,859.79 05 - Other Generation Plant FtLauderdale Comm 34500 4.1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U2 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 421,026.31 435,026.31 05 - Other Generation Plant Martin U3 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm							•
05 - Other Generation Plant FtLauderdale Comm 34500 4,1% 34,502.21 34,502.21 05 - Other Generation Plant FtLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtLauderdale U5 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U2 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 421,026.31 445,927.00 05 - Other Generation Plant Martin U3 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U4 34300 5.7% 25,657.00 25,657.00 05 - Other Generation Plant Martin U8 34300 5.5% 26,657.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm <							
05 - Other Generation Plant FtLauderdale U4 34300 5.0% 461,080.14 476,456.39 05 - Other Generation Plant FtLauderdale U5 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtMyers U2 CC 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant Martin U3 34300 5.8% 431,927.00 445,927.00 05 - Other Generation Plant Martin U3 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.7% 25,657.00 25,657.00 05 - Other Generation Plant Martin U8 34300 5.5% 26,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 <td></td> <td></td> <td></td> <td></td> <td></td> <td>•</td> <td>•</td>						•	•
05 - Other Generation Plant FtLauderdale US 34300 3.7% 471,313.47 485,313.47 05 - Other Generation Plant FtMyers U2 CC 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant Martin U3 34300 5.8% 431,927.00 445,927.00 05 - Other Generation Plant Martin U4 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.2% 368,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300							•
05 - Other Generation Plant FtMyers U2 CC 34300 5.5% 106,324.08 106,324.08 05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant Martin U3 34300 5.8% 431,927.00 445,927.00 05 - Other Generation Plant Martin U4 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U4 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.2% 368,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U4 34300 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
05 - Other Generation Plant FtMyers U3 CC 34300 5.6% 2,635.22 0.00 05 - Other Generation Plant Martin U3 34300 5.8% 431,927.00 445,927.00 05 - Other Generation Plant Martin U4 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.2% 368,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U4 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7%	05 - 0	Other Generation Plant	FtLauderdale U5	34300		471,313.47	485,313.47
05 - Other Generation Plant Martin U3 34300 5.8% 431,927.00 445,927.00 05 - Other Generation Plant Martin U4 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 6.3% 3,138.97 3,138.97 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.4% 368,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U4 34300 5.6% 104,111.16 53,641.90	05 - 0	Other Generation Plant	FtMyers U2 CC	34300		105,324.08	106,324.08
05 - Other Generation Plant Martin U4 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 6.3% 3,138.97 3,138.97 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.4% 368,844.07 382,844.07 05 - Other Generation Plant Sanford U4 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90	05 - 0	Other Generation Plant	FtMyers U3 CC	34300	5.6%	2,635.22	0.00
05 - Other Generation Plant Martin U4 34300 5.7% 421,026.31 435,026.31 05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 6.3% 3,138.97 3,138.97 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.4% 368,844.07 382,844.07 05 - Other Generation Plant Sanford U4 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90	05 - 0	Other Generation Plant	Martin U3	34300	5.8%	431,927.00	445,927.00
05 - Other Generation Plant Martin U8 34300 5.5% 25,657.00 25,657.00 05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 6.3% 3,138.97 3,138.97 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.4% 368,844.07 382,844.05 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90	-					•	
05 - Other Generation Plant FtLauderdale Comm 34100 4.1% 82,857.82 82,857.82 05 - Other Generation Plant FtLauderdale Comm 34300 6.3% 3,138.97 3,138.97 05 - Other Generation Plant FtLauderdale Comm 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U1 34300 5.2% 356,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90							
05 - Other Generation Plant FtLauderdale Comm 34300 6.3% 3,138.97 3,138.97 05 - Other Generation Plant Putnam U1 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U2 34300 5.4% 368,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90							
05 - Other Generation Plant Putnam U1 34300 5.2% 335,440.55 349,440.55 05 - Other Generation Plant Putnam U2 34300 5.4% 368,844.07 382,844.07 05 - Other Generation Plant Putnam U2 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90							
05 - Other Generation Plant Putnam U2 34300 5.4% 368,844.07 382,844.07 05 - Other Generation Plant Sanford U4 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90							
05 - Other Generation Plant Sanford U4 34300 5.6% 45,032.12 95,501.38 05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90							
05 - Other Generation Plant Sanford U5 34300 5.7% 104,111.16 53,641.90							
Total For Project 03 - Continuous Emission Monitoring 12,613,845.87 12,721,784.91	05 - 0						

Florida Power & Light Company Environmental Cost Recovery Clause 2007 Annual Capital Depreciation Schedule

्रतः । हेर्नुद्धः

Projec	e l		Plant	Depreciation Rate /	Actual 12/31/2006	Estimated 12/31/2
Numbe	i EURCTION	Plant Name	Account	Amortization Period	Plant In Service	Plant in Service
04 01-	n Closure Equivalency Demon	-447 ¹				
04 - Clea	02 - Steam Generation Plant	CapeCanaveral Comr	31100	1.7%	17,254.20	17,254
	02 - Steam Generation Plant	PtEverglades Comm	31100	2.7%	19,812.30	19,812
	02 - Steam Generation Plant	Turkey Pt Comm Fsil	31100	2.3%	21,799.28	21,799
		For Project 04 - Clean Clos	ure Equivalenc	y Demonstration	58,865.78	58,865
05 - Main	tenance of Above Ground Fuel	Tanks				
00 - Main	02 - Steam Generation Plant	CapeCanaveral Comm	31100	1,7%	901,636.88	901,636
	02 - Steam Generation Plant	Manatee Comm	31100	4.9%	3,111,263.35	3,111,263.
	02 - Steam Generation Plant	Manatee Comm	31200	14.1%	174,543.23	174,543.
	02 - Steam Generation Plant	Manatee U1	31200	4.8%	104,845.35	104,845.
	02 - Steam Generation Plant	Manatee U2	31200	4.0%	127,429.19	127,429.
	02 - Steam Generation Plant	Martin Comm	31100	1.7%	1,110,450.32	1,110,450.
	02 - Steam Generation Plant	Martin U1	31100	1.5%	176,338.83	176,338.
	02 - Steam Generation Plant	PtEverglades Comm	31100	2.7%	1,132,078.22	1,132,078.
	02 - Steam Generation Plant	Riviera Comm	31100	1.9%	1,081,354.77	1,081,354.
	02 - Steam Generation Plant	Sanford U3	31100	4.0%	796,754.11	796,754.
	02 - Steam Generation Plant	SJRPP - Comm	31100	3.1%	42,091.24	42,091.
	02 - Steam Generation Plant	SJRPP - Comm	31200	2.0%	2,292.39	2,292.3
	02 - Steam Generation Plant	Turkey Pt Comm Fsil	31100	2.3%	87,560.23	87,560.
	02 - Steam Generation Plant	Turkey Pt U2	31100	2.1%	42,158.96	42,158.9
	05 - Other Generation Plant	FtLauderdale Comm	34200	4.4%	898,110.65	898,110.6
	05 - Other Generation Plant	FtLauderdale GTs	34200	4.5%	584,290.23	584,290.2
	05 - Other Generation Plant	FtMyers GTs	34200	5.0%	68,893.65	68,893.6
	05 - Other Generation Plant	PtEverglades GTs	34200	5.1%	2,359,099.94	2,359,099.9
	05 - Other Generation Plant	Putnam Comm or Project 05 - Maintenance	34200	3.7%	<u>749,025.94</u> 1 3,550,217.48	749,025.9 13,550,217.4
07 - Reloca	te l'urbine Lube VII Pibind		-			
	te Turbine Lube Oil Piping 03 - Nuclear Generation Plant	StLucie U1	32300	1.2%	31,030.00	
		StLucie U1 Total For Project 07 - Reid			31,030.00 31,030.00	
)8 - Oil Spi	03 - Nuclear Generation Plant Il Clean-up/Response Equipme	Total For Project 07 - Rela	ocate Turbine I	ube Oil Piping	31,030.00	31,030.0
98 - Oil Spi	03 - Nuclear Generation Plant Il Clean-up/Response Equipme 02 - Steam Generation Plant	Total For Project 07 - Rele nt Amortizable	ocate Turbine I 31670	ube Oil Piping	31,030.00 273,695.22	31,030.0 283,913.9
08 - Oil Spi	03 - Nuclear Generation Plant Il Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant	Total For Project 07 - Rele nt Amortizable CapeCanaveral Comm	31670 31600	ube Oil Piping	31,030.00 273,695.22 0.00	31,030.0 283,913.9 25,000.0
)8 - Oil Spi	03 - Nuclear Generation Plant Il Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant	Total For Project 07 - Rele nt Amortizable CapeCanaveral Comm Martin Comm	31670 31600 31600 31600	ube Oli Piping 7-Yr 2.8% 3.2%	31,030.00 273,695.22 0.00 23,107.32	31,030.0 283,913.9 25,000.0 23,107.3
)8 - Oil Spi ((03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 15 - Other Generation Plant	Total For Project 07 - Rele nt Amortizable CapeCanaveral Comm Martin Comm Amortizable	31670 31600 31600 31600 34670	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr	31,030.00 273,695.22 0.00 23,107.32 45,699.54	31,030.0 283,913.9 25,000.0 23,107.3 45,699.54
)8 - Oil Spi ((03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 05 - Other Generation Plant 18 - General Plant	Total For Project 07 - Rele ant CapeCanaveral Comm Martin Comm Amortizable Amortizable	31670 31600 31600 34570 39130	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00
)8 - Oil Spi ((03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 05 - Other Generation Plant 18 - General Plant	Total For Project 07 - Rele nt Amortizable CapeCanaveral Comm Martin Comm Amortizable	31670 31600 31600 34570 39130	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr	31,030.00 273,695.22 0.00 23,107.32 45,699.54	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00
08 - Oil Spi (((0 0 0 - Reroute	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 5 - Other Generation Plant 8 - General Plant Total I Storm Water Runoff	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable Amortizable For Project 08 - Oil Spill Cl	31670 31600 31600 34670 39130 ean-up/Respor	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr 7-Yr ase Equipment	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08	31,030.0 283,913.9 25,000.0 23,107.3 45,699.0 35,000.0 412,720.84
08 - Oil Spi (((0 0 0 - Reroute	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 05 - Other Generation Plant 08 - General Plant Total I	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cla StLucie Comm	31670 31600 31600 34570 39130 ean-up/Respor	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ise Equipment 1.4%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83
98 - Oil Spi (((0 0 0 - Reroute	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 5 - Other Generation Plant 8 - General Plant Total I Storm Water Runoff	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable Amortizable For Project 08 - Oil Spill Cl	31670 31600 31600 34570 39130 ean-up/Respor	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ise Equipment 1.4%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83
98 - Oil Spi (() 0 - Reroute 0	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 5 - Other Generation Plant 8 - General Plant Total I Storm Water Runoff	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cla StLucie Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr Ise Equipment	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83 117,793.83
98 - Oil Spi ()) - Reroute 0 2 - Scherer	03 - Nuclear Generation Plant II Clean-up/Response Equipme 22 - Steam Generation Plant 22 - Steam Generation Plant 23 - Steam Generation Plant 25 - Other Generation Plant 26 - General Plant 27 - Total I 27 - Nuclear Generation Plant 29 - Nuclear Generation Plant	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cla StLucie Comm	31670 31600 31600 34570 39130 ean-up/Respor	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ise Equipment 1.4%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 9,936.72	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83 117,793.83 9,936.72
08 - Oil Spi (((0 - Reroute 0 2 - Scherer 0	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 05 - Other Generation Plant 18 - General Plant 18 - General Plant 10 - Storm Water Runoff 3 - Nuclear Generation Plant Discharge Pipline	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cl StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm	31670 31600 31600 34570 39130 ean-up/Respor 32100 Reroute Storm 31000 31100	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ise Equipment 1.4% Water Runoff 0.0% 1.6%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83 117,793.83 9,936.72 524,872.97
98 - Oil Spi (0 0 - Reroute 0 2 - Scherer 0 0 0 0 0	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 18 - General Plant 18 - General Plant 19 - Storm Water Runoff 3 - Nuclear Generation Plant Discharge Pipline 2 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cl StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm	31670 31600 31600 34570 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200	ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr see Equipment 1.4% Water Runoff 0.0% 1.6% 1.6%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62
98 - Oil Spi (0 0 - Reroute 0 2 - Scherer 0 0 0 0 0	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 05 - Other Generation Plant 05 - Other Generation Plant 08 - General Plant Total I 05 - Nuclear Generation Plant 01 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cli StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400	_ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ase Equipment 1.4% Water Runoff 0.0% 1.6% 1.6% 1.6%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62 689.11	31,030.0 283,913.9 25,000.0 23,107.3; 45,699.5 35,000.0 412,720.84 117,793.83 117,793.83 117,793.83 217,793.83 117,793.83
98 - Oil Spi (0 0 - Reroute 0 2 - Scherer 0 0 0 0 0	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 18 - General Plant 18 - General Plant 19 - Storm Water Runoff 3 - Nuclear Generation Plant Discharge Pipline 2 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cl StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400	_ube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ase Equipment 1.4% Water Runoff 0.0% 1.6% 1.6% 1.6%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62	31,030.0 283,913.9 25,000.0 23,107.3; 45,699.5 35,000.0 412,720.84 117,793.83 117,793.83 117,793.83 217,793.83 117,793.83
98 - Oil Spi (0 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	03 - Nuclear Generation Plant II Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 18 - General Plant 18 - General Plant 19 - Storm Water Runoff 3 - Nuclear Generation Plant Discharge Pipline 2 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant 2 - Steam Generation Plant	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cli StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm	31670 31600 31600 34570 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400 - Scherer Disc	ube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62 689.11 864,260.42	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.0 412,720.8 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62 689.11 864,260.42
98 - Oil Spi () 0 - Reroute 0 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 03 - Nuclear Generation Plant II Clean-up/Response Equipme 22 - Steam Generation Plant 23 - Steam Generation Plant 24 - Steam Generation Plant 25 - Other Generation Plant 26 - Other Generation Plant 27 - Steam Generation Plant 28 - General Plant 29 - Steam Generation Plant 20 - Steam Generation Plant 20 - Steam Generation Plant 20 - Steam Generation Plant 21 - Steam Generation Plant 22 - Steam Generation Plant 23 - Steam Generation Plant 24 - Steam Generation Plant 25 - Steam Generation Plant 26 - Steam Generation Plant 27 - Steam Generation Plant 28 - Steam Generation Plant 29 - Steam Generation Plant 20 - Steam Generation Plant 20 - Steam Generation Plant 20 - Steam Generation Plant 21 - Steam Generation Plant 22 - Steam Generation Plant 23 - Steam Generation Plant 24 - Steam Generation Plant 25 - Steam Generation Plant 26 - Steam Generation Plant 27 - Steam Generation Plant 28 - Steam Generation Plant 29 - Steam Generation Plant 20 - Steam Generation Plant 20 - Steam Generation Plant 	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cla StLucie Comm Total For Project 10 - Scherer Comm Scherer	31670 31600 31600 34570 39130 ean-up/Respor 32100 Reroute Storm 31000 31200 31400 - Scherer Disc 31100	ube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62 689.11 864,260.42 706,500.94	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.8 <u>117,793.83</u> <u>117,793.83</u> <u>9,936.72</u> 524,872.97 328,761.62 <u>689.11</u> <u>864,260.42</u> 706,500.94
98 - Oil Spi (0 2 - Reroute 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 03 - Nuclear Generation Plant 03 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Other Generation Plant 05 - Other Generation Plant 16 - General Plant 17 - Total I 18 - Steam Generation Plant 19 - Steam Generation Plant 2 - Steam Generation Plant 3 - Steam Generation Plant 3 - Steam Generation Plant 3 - Steam Generation Plant 4 - Steam Generation Plant 5 - Steam Generation Plant 5 - Steam Generation Plant 5 - Steam Generation Plant 9 - Steam Generation Plant 9 - Steam Generation Plant 	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Cla StLucie Comm Total For Project 10 - Scherer Comm Scherer	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31200 31400 - Scherer Disc 31100 31200	Lube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr Ise Equipment 1.4% Water Runoff 0.0% 1.6% 1.6% 1.6% 1.0% harge Pipline 1.7% 1.8%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.83 117,793.83 9,936.72 524,872.97 328,761.62 689.11 864,260.42 706,500.94 380,994.77	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.8 <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>9,936.72</u> 524,872.97 328,761.62 <u>689.11</u> <u>864,260.42</u> 706,500.94 <u>380,994.77</u>
98 - Oil Spi (0 2 - Reroute 0 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 03 - Nuclear Generation Plant 11 Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Nuclear Generation Plant 04 - General Plant 05 - Other Generation Plant 08 - General Plant 09 - Steam Generation Plant 09 - Steam Generation Plant 01 - Steam Generation Plant 02 - Steam Generation Plant 01 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Nuclear Generation Plant 03 - Steam Generation Plant 02 - Steam Generation Plant 03 - Steam Generation Plant 03 - Steam Generation Plant 03 - Steam Generation Plant 04 - Steam Generation Plant 05 - Steam Generation Plant 	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable Amortizable For Project 08 - Oil Spill Cla StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Scherer Comm Martin U1 Martin U1 Martin U2	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400 - Scherer Disc 31100 31200 31200 31200	Lube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 118,697,192 118	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,793.83</u> <u>117,795.83</u> <u>117,795.83</u>
08 - Oil Spi (((0 0 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 03 - Nuclear Generation Plant 11 Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Other Generation Plant 05 - Other Generation Plant 08 - General Plant 09 - Steam Generation Plant 09 - Steam Generation Plant 09 - Steam Generation Plant 00 - Steam Generation Plant 	Total For Project 07 - Relevant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Clu StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Total For Project 12 hination CapeCanaveral Comm Martin U1 Martin U2 PtEverglades Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400 - Scherer Disc 31100 31200 31200 31200 31200 31200 31200 31200	Lube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 118,675.92 296,707.34	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83 117,
98 - Oil Spi () - Reroute 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 03 - Nuclear Generation Plant 01 Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Other Generation Plant 04 - Steam Generation Plant 05 - Other Generation Plant 05 - Steam Generation Pla	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oll Spill Cli StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Total For Project 12 hination CapeCanaveral Comm Martin U1 Martin U2 PtEverglades Comm Riviera Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400 - Scherer Disc 31200 31200 31200 31200 31200 31200 31200 31200 31200	Lube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.8	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.0 412,720.84 117,793.83 117,7
08 - Oil Spi (((0 0 2 - Scherer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	 03 - Nuclear Generation Plant 01 Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Other Generation Plant 04 - Steam Generation Plant 05 - Other Generation Plant 05 - Steam Generation Pla	Total For Project 07 - Relevant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oil Spill Clu StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Total For Project 12 hination CapeCanaveral Comm Martin U1 Martin U2 PtEverglades Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400 - Scherer Disc 31200 31200 31200 31200 31200 31200 31200 31200 31200	Lube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 118,675.92 296,707.34	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.00 412,720.84 117,793.83 117,
08 - Oil Spi 0 - Reroute 2 - Scherer 0 - Wastewa 02 02 02 02 02 02 02 02 02 02	 03 - Nuclear Generation Plant 01 Clean-up/Response Equipme 02 - Steam Generation Plant 02 - Steam Generation Plant 03 - Other Generation Plant 04 - Steam Generation Plant 05 - Other Generation Plant 05 - Steam Generation Pla	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oll Spill Cli StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Total For Project 12 hination CapeCanaveral Comm Martin U1 Martin U2 PtEverglades Comm Riviera Comm	31670 31600 31600 34670 39130 ean-up/Respor 32100 Reroute Storm 31000 31100 31200 31400 - Scherer Disc 31200 31200 31200 31200 31200 31200 31200 31200 31200	Lube Oil Piping	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.8	31,030.0 283,913.9 25,000.0 23,107.3 45,699.5 35,000.0 412,720.84 117,793.83 117,7
08 - Oil Spi 0 - Reroute 2 - Scherer 0 - Wastewa 02 02 02 02 02 02 02 02 02 02	03 - Nuclear Generation Plant II Clean-up/Response Equipme 22 - Steam Generation Plant 23 - Steam Generation Plant 24 - Steam Generation Plant 35 - Other Generation Plant 36 - General Plant 57 - Total R 58 - Steam Generation Plant 59 - Nuclear Generation Plant 50 - Nuclear Generation Plant 50 - Steam Generation Plant 50 -	Total For Project 07 - Rele ant Amortizable CapeCanaveral Comm Martin Comm Amortizable For Project 08 - Oll Spill Cli StLucie Comm Total For Project 10 - Scherer Comm Scherer Comm Scherer Comm Scherer Comm Total For Project 12 hination CapeCanaveral Comm Martin U1 Martin U2 PtEverglades Comm Riviera Comm	31670 31600 31600 34570 39130 ean-up/Respon 32100 Reroute Storm 31100 31200 31400 - Scherer Disc 31100 31200 31200 31200 31100 31200 31100 31200 31100 31200 31100 31200	Lube Oil Piping 7-Yr 2.8% 3.2% 7-Yr 7-Yr ise Equipment 1.4% Water Runoff 0.0% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.5% 2.7% 1.9% e Elimination 1.4%	31,030.00 273,695.22 0.00 23,107.32 45,699.54 0.00 342,502.08 117,793.83 117,793.8	380,994.77 416,671.92 296,707.34 560,786.81

Florida Power & Light Company Environmental Cost Recovery Clause 2007 Annual Capital Depreciation Schedule

•.

	· .			Depreciation		
Project Number	Function	Plant Name	Plant Account	Rate / Amortization Period	Actual 12/31/2006 Plant In Service	Estimated 12/31/20 Plant In Service
L			1			
	evention Clean-Up & Coun					
-	2 - Steam Generation Plant		31100	1.7%	665,907,33	665,907.
	2 - Steam Generation Plant	CapeCanaveral Comm	31400	0.7%	13,451.85	13,451.
	2 - Steam Generation Plant	CapeCanaveral Comm	31500	1.9%	13,450.30	13,450.
	2 - Steam Generation Plant	Cutler Comm	31400	0.0%	12,236.00	12,236.
-	2 - Steam Generation Plant	Cutler U5	31400	0.2%	18,388.00	18,388.
	2 - Steam Generation Plant	Manatee Comm	31100	4.9%	95,458.00	336,763.
	2 - Steam Generation Plant	Manatee Comm	31500	3.7%	5,000.00	5,000.
	2 - Steam Generation Plant	PtEverglades Comm	31100	2.7% 1.9%	10,379.00	10,379.
	2 - Steam Generation Plant	Riviera Comm	31100		205,014.03 736,958.97	205,014.
	2 - Steam Generation Plant 2 - Steam Generation Plant	Riviera U3	31200	1.7%	894,298.77	736,958.
		Riviera U4	31200	1.4%		894,298.
	2 - Steam Generation Plant	Sanford U3	31100	4.0% 3.6%	213,687.21 211,727.22	213,687.
	2 - Steam Generation Plant 2 - Steam Generation Plant	Sanford U3	31200			211,727.
	3 - Nuclear Generation Plant	Turkey Pt Comm Fsil StLucie U1	31500	2.1% 1.7%	13,559.00 0.00	13,559.0 437,209.0
	- Nuclear Generation Plant	• • •	32400	1.9%	0.00	396,084.
	- Other Generation Plant	StLucie U2 Amortizable	32300	7-Yr	7,065.10	
	- Other Generation Plant		34670	4.1%	189,219.17	7,065.
	- Other Generation Plant	FtLauderdale Comm	34100 34200	4.1%	1,480,169.46	189,219. 1,480,169.4
	- Other Generation Plant	FtLauderdale Comm FtLauderdale Comm	34200	1.8%	28,250.00	
	Other Generation Plant	FtLauderdale GTs	34300 34100	2.2%	92,726.74	28,250. 92,726.
	- Other Generation Plant	FtLauderdale GTs	34100	4.5%	513,250.07	513,250.0
	- Other Generation Plant	FtMyers GTs	34200	2.1%	98,714.92	98.714.9
	- Other Generation Plant	FtMyers GTs	34100	5.0%	629,983.29	629,983.2
	- Other Generation Plant	FtMyers GTs	34200	2.9%	12,430.00	12,430.0
	- Other Generation Plant	FtMyers U2 CC	34300	5.5%	49,727.00	49,727.0
	- Other Generation Plant	FtMyers U3 CC	34500	4.8%	12,430.00	12,430.0
	- Other Generation Plant	Martin Comm	34100	3.4%	61,215.95	61,215.9
	- Other Generation Plant	PtEverglades GTs	34100	1.5%	454,080.68	454,080.6
	- Other Generation Plant	PtEverglades GTs	34200	5.1%	1,703,610.61	1,703,610.6
	Other Generation Plant	Putnam Comm	34100	4.1%	148,511.20	148,511.2
	Other Generation Plant	Putnam Comm	34200	3.7%	1,713,191.94	1,713,191.9
	Other Generation Plant	Putnam Comm	34500	4.2%	60,746.93	60,746.9
	Transmission Plant - Electri		35200	2.5%	951,562.91	951,562.9
	Transmission Plant - Electric	•	35300	2.8%	177,981.88	177,981.8
	Distribution Plant - Electric	•	36100	2.6%	2,862,088.65	2,862,093.4
	General Plant		39000	2.7%	7,975.00	7,975.0
		oject 23 - Spill Prevention Cl			14,364,447.18	15,439,051.3
		· ·		<u></u>		
- Manatee Re	eourn Steam Generation Plant	Manatee U1	31200	4.8%	15,479,973.76	17,690,083.30
	Steam Generation Plant	Manatee U2	31200	4.0%	14,743,192.81	16,847,955.46
02 -	oteam Generation Fiant			natee Reburn	30,223,166.57	34,538,038.76
	•					
- PPE ESP Te						
	Steam Generation Plant	PtEverglades U1	31200	6.7%	13,082,737.27	13,091,907.19
	Steam Generation Plant	PtEverglades U1	31500	2.0%	418,393.78	418,687.04
	Steam Generation Plant	PtEvergiades U2	31200	6.1%	15,794,922.02	15,804,017.73
	Steam Generation Plant	PtEverglades U2	31500	2.1%	638,102.67	638,470.14
	team Generation Plant	PtEverglades U3	31100	2.6%	0.00	4,812,793.71
	team Generation Plant	PtEverglades U3	31200	4.0%	0.00	16,125,920.25
	team Generation Plant	-	31500	2.2%	0.00	2,531,026.34
	team Generation Plant		31200	3.6%	0.00	25,326,653.05
02 - S	team Generation Plant	PtEverglades U4 Total For Project	31500 25 - PPE ESF	2.1% Technology	0.00 29,934,155.74	3,091,243.18 81,840,718.63
		· · · · · · · · · · · · · · · · · · ·		· · · · ·		
	erstate Rule (CAIR)	The surface of the OT	24200	0.0%		400
	ther Generation Plant		34300	2.2%	0.00	132,333.00
	ther Generation Plant		34300	3.1%	0.00	132,333.00
05 - Ot	her Generation Plant		34300	2.6%	0.00	132,333.00
		Total For Project 31 - Clean	Air interstate	KUIE (CAIK)	0.00	396,999.00
- 			. =			
			Total For	All Projects	122,799,944.57	180,635,325.32
			~ ~ ~			

55

FLORIDA POWER & LIGHT COMPANY

Department of Environmental Protection Drinking Water Standards, Monitoring, and Reporting

Rule 62-550.310, F.A.C. Primary Drinking Water Standards: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels

> RRL-1 DOCKET NO. 070007-EI FPL WITNESS: R.R. LABAUVE EXHIBIT

PAGES 1-3

DOCKET NO. 070007-E1 RULE 62-550.310, F.A.C. EXHIBIT RRL-1, PAGE 1 OF 3

62-550.310 Primary Drinking Water Standards: Maximum Contaminant Levels and Maximum Residual Disinfectant Levels.

(These standards may also apply as ground water quality standards as referenced in Chapter 62-520, F.A.C.)

(1) INORGANICS – Except for nitrate and nitrite, which apply to all public water systems, this subsection applies to community water systems and non-transient non-community water systems only.

(a) The maximum contaminant levels for the inorganic contaminants are listed in Table 1, which is incorporated herein and appears at the end of this chapter.

(b) The maximum contaminant level for nitrate (as N) applicable to transient non-community water systems is 10 milligrams per liter. The Department or Approved County Health Department shall allow a contaminant level for nitrate (as N) of up to 20 milligrams per liter upon a showing by the supplier of water that the following conditions are met:

1. The water distributed by the water system is not available to children under 6 months of age or to lactating mothers, and

2. There is continuous public notification of what the nitrate level (as N) is and what the potential health effects of such exposure are.

3. The Department shall require monitoring every 3 months as long as the maximum contaminant level is exceeded. Should adverse health effects occur, the Department shall require immediate compliance with the maximum contaminant level for nitrate (as N).

(c) The revised maximum contaminant level of 0.010 mg/L for arsenic becomes effective January 1, 2005. All community and non-transient non-community water systems shall demonstrate compliance with the revised maximum contaminant level by December 31, 2007.

(2) DISINFECTANT RESIDUALS – Except for the chlorine dioxide maximum residual disinfectant level, which applies to all public water systems using chlorine dioxide as a disinfectant or oxidant, this subsection applies only to community or non-transient non-community water systems adding a chemical disinfectant to the water in any part of the drinking water treatment process. Maximum residual disinfectant levels (MRDLs) are listed in Table 2, which is incorporated herein and appears at the end of this chapter.

(3) DISINFECTION BYPRODUCTS – This subsection applies to all community or non-transient non-community water systems adding a chemical disinfectant to the water in any part of the drinking water treatment process. The Stage 1 maximum contaminant levels (MCLs) for disinfection byproducts are listed in Table 3, which is incorporated herein and appears at the end of this chapter.

(4) ORGANICS - This subsection applies only to community water systems and non-transient non-community water systems.

(a) The maximum contaminant levels for the volatile organic contaminants (VOCs) are listed in Table 4, which is incorporated herein and appears at the end of this chapter. The regulatory detection limit (RDL) for all VOCs is 0.0005 mg/L.

(b) The maximum contaminant levels and the regulatory detection limits (RDLs) for the synthetic organic contaminants (SOCs) are listed in Table 5, which is incorporated herein and appears at the end of this chapter.

(5) MICROBIOLOGICAL – This subsection applies to all public water systems. Monitoring requirements to demonstrate compliance with this subsection are defined in Rule 62-550.518, F.A.C.

(a) The maximum contaminant level is based on the presence or absence of total coliforms in a sample, rather than coliform density. For the purposes of the public notice requirements in Rule 62-560.410, F.A.C., a violation of the standards in this paragraph poses a non-acute risk to health.

1. For a system which collects at least 40 samples per month, if no more than 5.0 percent of the samples collected during a month are total coliform-positive, the system is in compliance with the maximum contaminant level for total coliforms.

2. For a system which collects fewer than 40 samples per month, if no more than one sample collected during a month is total coliform-positive, the system is in compliance with the maximum contaminant level for total coliforms.

(b) Any fecal coliform-positive repeat sample or *E. coli*-positive repeat sample, or any total coliform-positive repeat sample following a fecal coliform-positive or *E. coli*-positive routine sample is a violation of the maximum contaminant level for total coliforms. For the purposes of the public notification requirements in Rule 62-560.410, F.A.C., this is a violation that poses an acute risk to health.

(c) A public water system shall determine compliance with the maximum contaminant level for total coliforms in paragraphs (a) and (b) of this subsection for each month (or quarter for transient non-community water systems that use only ground water not

DOCKET NO. 070007-EI RULE 62-550.310, F.A.C. EXHIBIT RRL-1, PAGE 2 OF 3

under the direct influence of surface water and that serve 1,000 or fewer persons) in which it is required to monitor for total coliforms.

(6) RADIONUCLIDES – This subsection applies only to community water systems. The following are the maximum contaminant levels (MCLs) and regulatory detection limits (RDLs) for radionuclides:

(a) Naturally occurring radionuclides:

MAXIMUM CONTAMINANT LEVELS FOR RADIONUCLIDES

CONTAMINANT	MAXIMUM CONTAMINANT LEVEL
Combined radium226 and radium228	5 pCi/L
Gross alpha particle activity including radium226 but excluding radon and uranium	
Uranium	30 ug/L

pCi/L = picoCuries per liter

ug/L = micrograms per liter

(b) Man-made radionuclides:

1. The average annual concentration of beta particle and photon radioactivity from man-made radionuclides in drinking water shall not produce an annual dose equivalent to the body or any internal organ greater than 4 millirem/year.

2. Except for those radionuclides listed below, the concentration of man-made radionuclides causing 4 mrem total body or organ dose equivalents shall be calculated on the basis of a 2 liter per day drinking water intake using the 168-hour data list in "Maximum Permissible Body Burdens and Maximum Permissible Concentration of Radionuclides in Air or Water for Occupational Exposure," NBS Handbook 69 as amended August 1963, U. S. Department of Commerce.

DOCKET NO. 070007-EI RULE 62-550.310, F.A.C. EXHIBIT RRL-1, PAGE 3 OF 3

Average Annual Concentration Assumed to Produce

an Exposure of 4 millirem/year:

RADIONUCLIDE	CRITICAL ORGAN	pCi/L
Tritium	total body	20,000
Strontium90	bone marrow	8

pCi/L = picoCuries per liter

3. If two or more radionuclides are present, the sum of their annual dose equivalent to the total body or to any organ shall not exceed 4 millirem/year.

(c) For the purposes of monitoring for gross alpha particle activity, radium-226, radium-228, uranium, and beta particle and photon radioactivity in drinking water, the following regulatory detection limits shall be used:

CONTAMINANT	REGULATORY DETECTION LIMIT
Gross alpha particle activity	3 pCi/L
Radium-226	1 pCi/L
Radium-228	1 pCi/L
Uranium	l ug/L
Tritium	1,000 pCi/L
Strontium-89	10 pCi/L
Strontium-90	2 pCi/L
Iodine-131	1 pCi/L
Cesium-134	10 pCi/L
Gross beta	4 pCi/L
Other radionuclides	1/10 of the applicable limit

pCi/L = picoCuries per liter

ug/L = micrograms per liter

Specific Authority 403.861(9) FS. Law Implemented 403.852(12), 403.853(1) FS. History-New 11-19-87, Formerly 17-22.210, Amended 1-18-89, 5-7-90, 1-3-91, 1-1-93, 1-26-93, 7-4-93, Formerly 17-550.310, Amended 9-7-94, 8-1-00, 11-27-01, 4-14-03, 4-25-03, 11-28-04.

FLORIDA POWER & LIGHT COMPANY

Consent Order in OGC Case Number 06-0744 FPL Martin Plant Public Water System PWS #4431748

> RRL-2 DOCKET NO. 070007-EI FPL WITNESS: R.R. LABAUVE EXHIBIT_____ PAGES 1-11

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER Department of EXHIBIT RRL-2, PAGE 1 OF 11 Environmental Protection

Jeb Bush Governor Southeast District 400 N. Congress Avenue, Suite 200 West Palm Beach, Florida 33401

Colleen M. Castille Secretary

SEP 2 2 2006

CERTIFIED MAIL #7006 0100 0002 8783 9555 RETURN RECEIPT REQUESTED

Craig Arcari, General Manager Florida Power & Light Company – Martin Plant P.O. Box 176 Indiantown, Florida 34954

Re: Consent Order in OGC Case Number 06-0744 FPL Martin Plant Public Water System PWS #4431748

Dear Mr. Arcari:

Enclosed for your implementation is the fully executed and filed Consent Order in the above-styled case. Please familiarize yourself with the compliance dates and terms of the Consent Order so the complete and timely performance of those obligations is accomplished.

Thank you for your cooperation in this matter. If you have any questions concerning the Consent Order, please contact **Michele Owens** of this office at 561/681-6700.

Sincerely,

Kevin R. Neal District Director Southeast District Office KRN/LAH/TRB/mo

Enclosure (all)

cc: Jerry Toney – Drinking Water Compliance Section, DEP/PSL Lea Crandall – OGC, MS-35, DEP/Tallahassee

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 2 OF 11

BEFORE THE STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION,

Complainant,

IN THE OFFICE OF THE SOUTHEAST DISTRICT

OGC FILE NO. 06-0744

vs.

FLORIDA POWER & LIGHT COMPANY,

Respondent.

CONSENT ORDER

This Consent Order is entered into between the State of Florida Department of Environmental Protection ("Department") and Florida Power & Light Company ("Respondent") to reach settlement of certain matters at issue between the Department and Respondent.

The Department finds and the Respondent neither admits nor denies the following:

1. The Department is the administrative agency of the State of Florida having the power and duty to protect Florida's air and water resources and to administer and enforce the provisions of the Florida Safe Drinking Water Act, Sections 403.850 et seq., Florida Statutes, and the rules promulgated thereunder, Title 62, Florida Administrative Code. The Department has jurisdiction over the matters addressed in this Consent Order.

2. Respondent is a "person" within the meaning of Section 403.852(5), Florida Statutes.

3. Respondent is the owner and is responsible for the operation of a nontransient noncommunity public water system ("System"), PWS #4431748, located on Warfield Boulevard, northwest of Indiantown, Martin County, Florida, which serves the Florida Power & Light Martin Power Plant.

4. The Department finds that Respondent is in violation of Rule 62-550.310(3), Fla. Admin. Code which establishes the maximum contaminant levels (MCLs) for total

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 2 of 10

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 3 OF 11

trihalomethanes (TTHMs) and haloacetic acids (five) (HAA5s) as 0.080 milligrams per liter (mg/L) and 0.060 mg/L, respectively. The average results for samples collected from the System on March 15, 2005, April 12, 2005, September 14, 2005, and December 28, 2005, and analyzed for total trihalomethanes (TTHMs) and haloacetic acids (five) (HAA5s) are 0.173 milligrams per liter (mg/L) and 0.132 mg/L, respectively.

Having reached a resolution of the matter the Department and the Respondent mutually agree and it is

ORDERED:

5. Respondent shall comply with the following corrective actions within the stated time periods:

a. By September 1, 2006, Respondent shall retain the services of a Floridaregistered professional engineer to evaluate the System and either submit an application, along with any required application fees, to the Department for a permit to construct any modifications needed to address the MCL exceedances, or, if the evaluation determines that no additional treatment is needed, a plan of corrective action ("Plan") with interim milestone dates, signed and sealed by a Florida-registered Professional Engineer.

b. The Department shall review the application/Plan submitted pursuant to paragraph 5.a. above. In the event additional information, modifications or specifications are necessary to process the application/Plan, the Department shall issue a written request for information ("RFI") to Respondent for such information. Respondent shall accordingly submit the requested information in writing to the Department within 30 days of receipt of the request. Respondent shall provide all information requested in any additional RFIs issued by the Department within 30 days of receipt of each request. Within 60 days of the date the Department receives the application/Plan pursuant to paragraph 5.a. above, Respondent shall provide all information necessary to complete the application/Plan. The Department shall notify Respondent in writing of Department approval of the Plan. Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 3 of 10

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 4 OF 11

c. Within 180 days of issuance of any required permit(s), or written Department approval, if no permit is required, Respondent shall complete the Departmentapproved modifications in accordance with the permit/written approval issued pursuant to paragraphs 5.a. and 5.b. above, and submit to the Department the engineer's certification of completion of construction, along with all required supporting documentation. Respondent shall receive written Department clearance prior to placing the System modifications into service.

d. Respondent shall continue to sample quarterly for TTHMs and HAA5s. Results shall be submitted to the Department within ten (10) days of Respondent's receipt of the results.

e. In the event that the modifications approved by the Department pursuant to paragraphs 5.a. and b. are determined to be inadequate to resolve the MCL exceedances, the Department will notify the Respondent in writing. Within 30 days of receipt of written notification from the Department that the results of the quarterly sampling indicate that the System modifications have not resolved the violations, Respondent shall submit another proposal to address the MCL exceedances. Respondent shall provide all information requested in any RFIs issued by the Department within 30 days of receipt of each request. Within 60 days of the date the Department receives the application pursuant to this paragraph, Respondent shall provide all information necessary to complete the application.

f. Within two years of the effective date of this Consent Order, Respondent shall complete all corrective actions needed to resolve the MCL exceedances and submit written certification of completion to the Department for all modifications.

g. Respondent shall continue to issue public notice regarding the MCL exceedances every 90 days in accordance with Rule 62-560.410(1), Fla. Admin. Code, until the Department determines that System is in compliance with all MCLs. Respondent shall submit certification of delivery of public notice, using DEP Form 62-555.900(22), to the Department within ten days of issuing each public notice.

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 5 OF 11

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 4 of 10

6. Within 30 days of the effective date of this Consent Order, Respondent shall reimburse the Department for costs and expenses in the amount of \$500.00 which were incurred by the Department during the investigation of this matter and the preparation and tracking of this Consent Order. Payment shall be made by cashier's check or money order. The instrument shall be made payable to the "Department of Environmental Protection" and shall include thereon the OGC number assigned to this Consent Order and the notation "Ecosystem Management and Restoration Trust Fund."

7. Respondent agrees to pay the Department stipulated penalties in the amount of \$100.00 per day for each and every day Respondent fails to timely comply with any of the requirements of paragraphs 5 and 6 of this Consent Order. A separate stipulated penalty shall be assessed for each violation of this Consent Order. Within 30 days of written demand from the Department, Respondent shall make payment of the appropriate stipulated penalties to "The Department of Environmental Protection" by cashier's check or money order and shall include the OGC number assigned to this Consent Order and the notation "Ecosystem Management and Restoration Trust Fund". Payment shall be sent to the Department of Environmental Protection, 400 North Congress Avenue, Suite 200, West Palm Beach, FL 33401. The Department may make demands for payment at any time after violations occur. Nothing in this paragraph shall prevent the Department from filing suit to specifically enforce any of the terms of this Consent Order. Any penalties assessed under this paragraph shall be in addition to the \$500.00 agreed to in paragraph 6 of this Consent Order.

8. If any event, including administrative or judicial challenges by third parties unrelated to the Respondent, occurs which causes delay or the reasonable likelihood of delay, in complying with the requirements of this Consent Order, Respondent shall have the burden of proving the delay was or will be caused by circumstances beyond the reasonable control of the Respondent and could not have been or cannot be overcome by Respondent's due diligence. Economic circumstances shall not be considered circumstances beyond the control of Respondent, nor shall the failure of a contractor, subcontractor, materialman or other agent Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 5 of 10

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 6 OF 11

(collectively referred to as "contractor") to whom responsibility for performance is delegated to meet contractually imposed deadlines be a cause beyond the control of Respondent, unless the cause of the contractor's late performance was also beyond the contractor's control. Upon occurrence of an event causing delay, or upon becoming aware of a potential for delay, Respondent shall notify the Department's Southeast District Office in West Palm Beach orally within 72 hours or within three working days and shall, within ten calendar days of oral notification to the Department, notify the Department in writing of the anticipated length and cause of the delay, the measures taken or to be taken to prevent or minimize the delay and the timetable by which Respondent intends to implement these measures. If the parties can agree that the delay or anticipated delay has been or will be caused by circumstances beyond the reasonable control of Respondent, the time for performance of one or more of the requirements hereunder shall be extended for a period equal to the agreed delay resulting from such circumstances. Such agreement shall adopt all reasonable measures necessary to avoid or minimize delay. Failure of Respondent to comply with the notice requirements of this Paragraph in a timely manner shall constitute a waiver of Respondent's right to request an extension of time for compliance with the requirements of this Consent Order.

9. Persons who are not parties to this Consent Order, but whose substantial interests are affected by this Consent Order, have a right, pursuant to Sections 120.569 and 120.57, Florida Statutes, to petition for an administrative hearing on it. The Petition must contain the information set forth below and must be filed (received) at the Department's Office of General Counsel, 3900 Commonwealth Boulevard, MS# 35, Tallahassee, Florida 32399-3000 within 21 days of receipt of this notice. A copy of the Petition must also be mailed at the time of filing to the District Office named above at the address indicated. Failure to file a petition within the 21 days constitutes a waiver of any right such person has to an administrative hearing pursuant to Sections 120.569 and 120.57, Florida Statutes.

10. The petition shall contain the following information:

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 6 of 10

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 7 OF 11

a. The name, address, and telephone number of each petitioner; the Department's Consent Order identification number and the county in which the subject matter or activity is located;

b. A statement of how and when each petitioner received notice of the Consent Order;

c. A statement of how each petitioner's substantial interests are affected by the Consent Order;

d. A statement of the material facts disputed by petitioner, if any;

e. A statement of facts which petitioner contends warrant reversal or modification of the Consent Order;

f. A statement of which rules or statutes petitioner contends require reversal or modification of the Consent Order;

g. A statement of the relief sought by petitioner, stating precisely the action petitioner wants the Department to take with respect to the Consent Order.

11. If a petition is filed, the administrative hearing process is designed to formulate agency action. Accordingly, the Department's final action may be different from the position taken by it in this Notice. Persons whose substantial interests will be affected by any decision of the Department with regard to the subject Consent Order have the right to petition to become a party to the proceeding. The petition must conform to the requirements specified above and be filed (received) within 21 days of receipt of this notice in the Office of General Counsel at the above address of the Department. Failure to petition within the allowed time frame constitutes a waiver of any right such person has to request a hearing under Sections 120.569 and 120.57, Florida Statutes, and to participate as a party to this proceeding. Any subsequent intervention will only be at the approval of the presiding officer upon motion filed pursuant to Rule 28-106.205, Florida Administrative Code.

12. A person whose substantial interests are affected by the Consent Order may file a timely petition for an administrative hearing under Sections 120.569 and 120.57, Florida

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 7 of 10

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 8 OF 11

Statutes, or may choose to pursue mediation as an alternative remedy under Section 120.573, Florida Statutes, before the deadline for filing a petition. Choosing mediation will not adversely affect the right to a hearing if mediation does not result in a settlement. The procedures for pursuing mediation are set forth below.

13. Mediation may only take place if the Department and all the parties to the proceeding agree that mediation is appropriate. A person may pursue mediation by reaching a mediation agreement with all parties to the proceeding (which include the Respondent, the Department, and any person who has filed a timely and sufficient petition for a hearing) and by showing how the substantial interests of each mediating party are affected by the Consent Order. The agreement must be filed in (received by) the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, MS #35, Tallahassee, Florida 32399-3000, within 10 days after the deadline as set forth above for the filing of a petition.

14. The agreement to mediate must include the following:

a. The names, addresses, and telephone numbers of any persons who may attend the mediation;

b. The name, address, and telephone number of the mediator selected by the parties, or a provision for selecting a mediator within a specified time;

c. The agreed allocation of the costs and fees associated with the mediation;

d. The agreement of the parties on the confidentiality of discussions and documents introduced during mediation;

e. The date, time, and place of the first mediation session, or a deadline for holding the first session, if no mediator has yet been chosen;

f. The name of each party's representative who shall have authority to settle or recommend settlement;

g. Either an explanation of how the substantial interests of each mediating party will be affected by the action or proposed action addressed in this notice of intent or a

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 8 of 10

statement clearly identifying the petition for hearing that each party has already filed, and incorporating it by reference; and

h. The signatures of all parties or their authorized representatives. As provided in Section 120.573, Florida Statutes, the timely agreement of all parties to mediate will toll the time limitations imposed by Sections 120.569 and 120.57, Florida Statutes, for requesting and holding an administrative hearing. Unless otherwise agreed by the parties, the mediation must be concluded within sixty days of the execution of the agreement. If mediation results in settlement of the administrative dispute, the Department must enter a final order incorporating the agreement of the parties. Persons whose substantial interests will be affected by such a modified final decision of the Department have a right to petition for a hearing only in accordance with the requirements for such petitions set forth above, and must therefore file their petitions within 21 days of receipt of this notice. If mediation terminates without settlement of the dispute, the Department shall notify all parties in writing that the administrative hearing processes under Sections 120.569 and 120.57, Florida Statutes, remain available for disposition of the dispute, and the notice will specify the deadlines that then will apply for challenging the agency action and electing remedies under those two statutes.

15. Respondent shall allow all authorized representatives of the Department access to the facility at reasonable times for the purpose of determining compliance with the terms of this Consent Order and the rules and statutes of the Department.

16. All submittals and payments required by this Consent Order to be submitted to the Department shall be sent to the Florida Department of Environmental Protection, Southeast District Water Facilities Program, 400 North Congress Avenue, Suite 200, West Palm Beach, Florida, 33401.

17. This Consent Order is a settlement of the Department's civil and administrative authority arising under Florida law to resolve the matters addressed herein. This Consent Order is not a settlement of any criminal liabilities, which may arise under Florida law, nor is it a

DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 10 OF 11

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 9 of 10

settlement of any violation which may be prosecuted criminally or civilly under federal law and which Respondent may defend.

18. The Department hereby expressly reserves the right to initiate appropriate legal action to prevent or prohibit any violations arising after the date of this Consent Order of applicable statutes, or the rules promulgated thereunder that are not specifically addressed by the terms of this Consent Order.

19. The terms and conditions set forth in this Consent Order may be enforced in a court of competent jurisdiction pursuant to Sections 120.69 and 403.121, Florida Statutes. Failure to comply with the terms of this Consent Order shall constitute a violation of Section 403.859, Florida Statutes.

20. The Department, for and in consideration of the complete and timely performance by Respondent of the obligations agreed to in this Consent Order, hereby waives its right to seek judicial imposition of damages or civil penalties for alleged violations.

21. Respondent is fully aware that a violation of the terms of this Consent Order may subject Respondent to judicial imposition of damages, civil penalties up to \$5,000.00 per day per violation, and criminal penalties, except as limited by the provisions of this Consent Order.

22. Except as otherwise provided herein, entry of this Consent Order does not relieve Respondent of the need to comply with applicable federal, state or local laws, regulations or ordinances.

23. No modifications of the terms of this Consent Order shall be effective until reduced to writing and executed by both Respondent and the Department.

24. Respondent acknowledges and waives its right to an administrative hearing pursuant to Sections 120.569 and 120.57, Florida Statutes, on the terms of this Consent Order. Respondent acknowledges its right to appeal the terms of this Consent Order pursuant to Section 120.68, Florida Statutes, and waives that right upon signing this Consent Order.

25. This Consent Order is a final order of the Department pursuant to Section 120.52(7), Florida Statutes, and it is final and effective on the date filed with the Clerk of the

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 10 of 10 DOCKET NO. 070007-EI FPL / DEP CONSENT ORDER EXHIBIT RRL-2, PAGE 110F 11

Department unless a Petition for Administrative Hearing is filed in accordance with Chapter 120, Florida Statutes. Upon the timely filing of a petition this Consent Order will not be effective until further order of the Department.

FOR THE RESPONDENT:

8/31/2006

Craig Arcari, General Manager Date Florida Power & Light Company - Martin Plant P.O. Box 176 Indiantown, Florida 34954

DONE AND ORDERED this <u>22</u> day of $\int_{\ell_{1}}^{\ell_{1}} \frac{1}{\ell_{1}}$, 200 ℓ_{2} , in West Palm Beach, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Kevin R. Neal District Director Southeast District

FILED, on this date, pursuant to §120.52 Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

scha DDG Clerk

9-22-06 Date

Copies furnished to: Lea Crandall, Agency Clerk, MS 35 Drinking Water Compliance Section, FDEP/PSL

FLORIDA POWER & LIGHT COMPANY

Golder Associates Inc. FPL Martin Plant Potable Water System DBP (THM & HAA5) Analysis

> RRL-3 DOCKET NO. 070007-EI FPL WITNESS: R.R. LABAUVE EXHIBIT ______ PAGES 1-107

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 1 OF 107

Golder Associates inc.

3730 Chamblee Tucker Road Atlanta, GA USA 30341 Telephone (770) 496-1893 Fax (770) 934-9476

063-3495

August 29,2006

FPL Martin Plant PO Box 176 Indiantown FL 34956

Attn: Willie J. Welch, Production Support - Chemistry/ Environmental Leader

RE: FPL MARTIN PLANT POTABLE WATER SYSTEM DBP (THM & HAA5) ANALYSIS

Dear Willie:

Golder Associates Inc. (Golder) is pleased to send you this final report to provide recommendations as to how to achieve compliance with the drinking water limits for trihalomethanes and haloacetic acids within the Martin Plant potable water system.

Very truly yours,

GOLDER ASSOCIATES INC.

Kines (

James J. Daly, P.E Associate

JJCP/sdp

Attachments

X:\Clients\Florida Power and Light\063-3495-Martin DBPs\Report\MartinDBPReport8-27-06.doc

Harold Fredia

Harold A. Frediani, Jr., P.E., P.H. Senior Water Resources Engineer

Florida P.E. Number 36394 Certificate of Authorization No. 1670

OFFICES ACROSS AFRICA, ASIA, AUSTRALIA, EUROPE, NORTH AMERICA AND SOUTH AMERICA\

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 2 OF 107

FPL Martin Plant	-ii-	August 2006 063-3495
1.0 INTRODUCTION	٦	
2.0 BACKGROUND		2
3.1 Existing Equip 3.2 Alternative Dis	ment infectants t	
4.0 CONCLUSIONS	AND RECOMMENDATIONS	4
5.0 PLAN AND MIL	ESTONE DATES	5
APPENDIX A. SYSTE	EM OPERATIONAL MANUAL DRAW	NGS1
APPENDIX B. CONSE	NT ORDER	2
APPENDIX C. CALCU	LATIONS	3

. . .

:

.

: }

]

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 3 OF 107

FPL Martin Plant

-1-

August 2006 063-3495

1.0 INTRODUCTION

FPL retained Golder to assist in analyzing the Martin Plant potable water treatment system to assist FPL with compliance with Florida Department of Environmental Protection (FDEP) drinking water limits on Disinfection Byproducts (DBPs). Golder has performed a site visit to inspect the potable water system, reviewed well data, performed a literature search, and provided recommendations as to how to achieve compliance with the drinking water limits for trihalomethanes and haloacetic acids. This report documents the results of those tasks, and includes a corrective action plan, in the form of project milestones suitable for submittal to FDEP in response to their Consent Order.

OFFICES ACROSS AFRICA, ASIA, AUSTRALIA, EUROPE, NORTH AMERICA AND SOUTH AMERICA

DOCKET NO. 070007-E1	
GOLDER ASSOCIATES, INC	•
EXHIBIT RRL-3, PAGE 4 OF	

-2-

August 2006 063-3495

2.0 BACKGROUND

The Martin potable water system serves Units 1 through 4 of the FPL Martin Plant, located in Indiantown, Florida. The original system was built with Units 1 and 2, and is depicted on the system Operational Manual drawings which are shown in Appendix A. A simplified flow diagram is shown in Figure 1. Water is pumped from the well through a static mixer in which liquid sodium hypochlorite is applied. The water then enters a multiple tray aerator. At the bottom of the aerator, the water is collected in the aerator tank, from which it is pumped in parallel to three mixed media (gravel, garnet, sand and anthracite) filters. From the filters, a portion of the water can be sent through softeners; however, most of the time all of the water is sent on to the activated carbon filter. From the carbon filter, the water is sent to the 15,000 gallon holding tank. Liquid sodium hypochlorite is injected directly into the holding tank. A recirculation pump is energized all the time to pressurize the distribution system to 70 psi; this pump recycles water back to the holding tank when necessary.

When Units 3 and 4 were added, the system was extended, and another pump, hydro-pneumatic tank, and sodium hypochlorite injection system were added.

The system currently is experiencing difficulty meeting the Disinfection Byproduct Rule (62-550 FAC, Table 3), which limits the level of Total Trihalomethanes (TTHM) to no more than 80 ug/L and HaloAcetic Acids Five (HAA5) to no more than 60 ug/L. FPL provided data taken since the DBP rule went into effect. The data are presented in Table 1. All but one of the samples were taken at the Maximum Residence Time (MRT) location, which is in the Units 3&4 laboratory building. The other sample was taken at the Point of Entry (POE) to the distribution system., which is at the outlet to the holding tank.

The TTHM data, along with the standard of 80 ug/L, are plotted in Figure 2. These data indicate that virtually all of the TTHM in the system is in the form of chloroform. The HAA5 data, along with the standard of 60 ug/L, are plotted in Figure 3. These data indicate that virtually all of the HAA5 is in the form of either di- or tri-chloroacetic acid (DCA or TCA). These findings are consistent with the disinfectant being used, which does not contain bromine, but has as the active disinfectant hypochlorite ion (HClO₃).

Figure 4 plots the three contributory compounds as a function of the disinfectant residual. Based on these data, it can be concluded that the DBP levels are not a function of the disinfection residual level. Therefore, it can be surmised that they are a function of the raw water organic content level.

FPL is in receipt of a proposed Consent Order (CO, see Appendix B) from FDEP to determine whether any modifications to the system are necessary, or whether the existing system can be corrected to achieve compliance. If modifications are necessary, the CO requires FPL to submit an application to modify the existing permit. If modifications are not necessary, the CO requires that FPL submit a plan of corrective action ("Plan") with interim milestone dates, signed and sealed by a Florida-registered Professional Engineer.

Golder Associates

-3-

August 2006 063-3495

3.0 DISCUSSION

3.1 Existing Equipment

Within the existing system, there are only two mechanisms for removal of either DBPs or the DBP precursors (organic compounds). The aerator is intended to strip volatile organics out of the water, while the activated carbon filter removes them by adsorption. Since the aerator is the first of these processes that the influent water encounters, it appears that the aerator could accomplish sufficient treatment to achieve the required reduction in concentration of chloroform which is considered volatile. The aerator would not be expected to remove the DCA and TCA as well since they are reported to be of low volatility; however, some removal should be accomplished. A preliminary calculation (see Appendix C. Calculations) indicates that the aerator should work well if it's blower provides about 200 cubic feet per minute of air. Neither the plant operating manual, nor examination of the equipment, gives any indication of the original design capacity of the aerator. A necessary step in the future will be to measure the air flow through the aerator.

The carbon filter can be expected to remove all three of the compounds in question. Based on the flow rate, chloroform content, and size of the unit (39 cubic feet), an Empty Bed Contact time (EBCT) of 5.8 minutes has been calculated. This is borderline relative to AWWA recommendations of 5 to 25 minutes. However, two options are available to increase the EBCT using existing equipment. The first option would be to convert one or both of the softeners to contain activated carbon. The softeners are approximately 2 feet in diameter and 3 feet high, with an estimated volume of about 19 cubic feet between them. The second option would be to replace the anthracite media in the multi-media filters with activated carbon. Each filter contains about 7 cubic feet of anthracite, for a total of 14 cubic feet. Using both of these options would increase the EBCT to about 11 minutes. Another option would be to inject powdered activated carbon (PAC) into the aerator tank, to adsorb the TTHMs and HAA5s and then be removed in the multi-media filters.

3.2 Alternative Disinfectants

Potential alternative disinfectants are chlorine dioxide, ultraviolet light, and ozone. Chlorine dioxide does not produce TTHMs, but produces chlorite, which is also regulated under the DBP rule. Ozone or UV can not be used because neither leaves a residual, which is required in a distribution system. In general, switching to an alternative disinfectant would not be expected to be as effective as improving the existing treatment system.

3.3 New Equipment

Either the aerator or the carbon filter could be replaced with newer, larger versions of the same equipment. Neither the carbon filter nor the aerator were sized when DBPs were a concern, and could certainly be replaced with larger units. This would provide the advantage of longer contact time.

		August 2006
FPL Martin Plant	-4-	063-3495

4.0 CONCLUSIONS AND RECOMMENDATIONS

The literature review indicates (See Appendix C. Calculations for references) that the two DBP treatment technologies within the Martin system, namely aeration and activated carbon filtration, are presently the best technologies for the removal of DBPs. Therefore, it is concluded that no additional treatment technology is necessary, and the existing system needs corrective action to achieve the applicable limits. The first activity that should be undertaken is to perform measurements on the aerator to determine whether it is sized correctly and is working properly. Golder recommends that the following actions be taken:

- Measure the dimensions of the aerator column and stack;
- Measure the air velocity leaving the aerator when it is operating;
- Sample and analyze the inlet and outlet water at the aerator for TTHM and HAA5 to determine its removal performance; and
- Sample and analyze for TTHM and HAA5 the inlet and outlet water at the carbon filter, synoptically with the aerator water measurements.

Based on the results of the first three above actions, it can be determined whether the aerator can be enhanced or replaced to accomplish the desired water quality. Results from the fourth action can likewise be used to determine whether additional activated carbon EBCT would be helpful, and if so, how much would be required to be added, either in conjunction with improved aeration or instead of it.

		August 2006
FPL Martin Plant	-5-	063-3495

5.0 PLAN AND MILESTONE DATES

This plan with milestone dates is predicated on the longest anticipated schedule and assumes that FDEP will issue one request for additional information, and that the measurements taken will lead to the ultimate decision to replace both the aerator and the carbon filter with new equipment. The interim milestone dates are as follows:

- September 1, 2006 FPL submits signed Consent Order and signed/sealed corrective action plan;
- September 22, 2006 FDEP issues written request for additional information (RFI);
- October 23, 2006 FPL provides additional information to FDEP;
- October 30, 2006 FDEP issues written approval of the plan;
- November 22, 2006 FPL completes measurements of physical characteristics of aeration system, and takes synoptic samples of inlet and outlet water for both the aerator and the carbon filter, and sends those samples to the laboratory;
- December 6, 2006 FPL receives results/report from laboratory;
- January 31, 2007 Install pilot equipment for testing;
- September 30, 2007 Complete testing of pilot;
- October 1, 2007 FPL issues performance specifications to bidders to provide new aerator and carbon filter units;
- November 1, 2007 FPL receives bids to provide new aerator and carbon filter units;
- December 1, 2007 FPL awards contract to successful bidder to install new aerator and carbon filter units;
- January 2008 Installation of new aerator and carbon filter units is complete;
- June 2008 Testing of new aerator and carbon filter units is complete, FPL submits engineer's certification of completion of construction and required supporting documentation.
- July 2008 FDEP issues written clearance to place the system modifications into service.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 8 OF 107

.

TABLES

;

. |

. 1

Table 1. Monitoring Data

	1	}	í				· · · · · · · · · · · · · · · · · · ·
Location	MRT	MRT	MRT	MRT	MRT	MRT	Potable POE
Date	5/25/2006	2/13/2006	12/21/2005	9/14/2005	4/12/2005	3/15/2005	8/25/2004
Monochloroacetic acid - ug/L	0.9	2.8	4	4.7	4.9	0.9	5.3
Dichloroacetic acid - ug/L	46.4	59	54	100	87	33	120
Trichloroacetic acid - ug/L	50.9	41	43	99	64	29	100
Monobromoacetic acid - ug/L	0.28	0.46	0.3	0.5	0.28	0.28	0.28
Dibromoacetic acid - ug/L	0.235	2.6	1,2	0.52	0.8	0.47	1.3
HAA5 - ug/L	97.3	105	100	210	160	63	230
HAAF Standard - ug/L	60	60	60	60	60	60	60
Date	5/25/2006	2/13/2006	12/21/2005	9/14/2005	4/12/2005	3/15/2005	8/25/2004
Chloroform - ug/L	123	160	140	210	160	70	250
Bromoform - ug/L	0.205	0.205	0.205	0.205	0.205	0.205	0.205
Bromodichloromethane - ug/L	27.5	46	23	32	32	13	37
Dibromochloromethane - ug/L	5.02	11	2.5	3.3	3,7	1.4	3.9
TTHM - ug/L	155	210	160	240	190	84	290
TTHM Standard - ug/L	80	80	80	80	80	80	80
Chlorine residual	+	0.6	1.2	0.4	0.4	1.1	

8/18/2006 4:03 PM

.

Figures.xls Table 1

•

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 10 OF 107

FIGURES

.

. 1

. 1

.

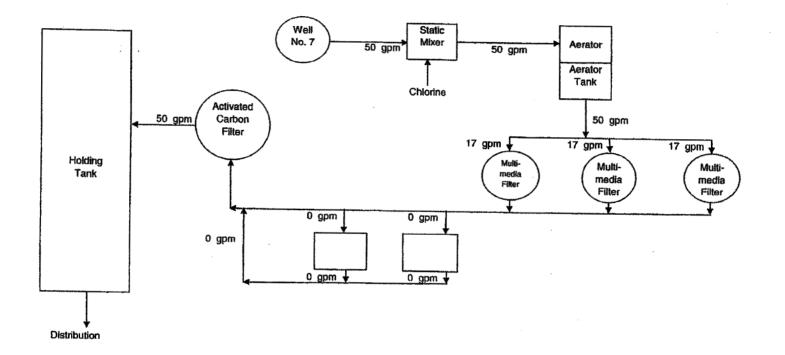
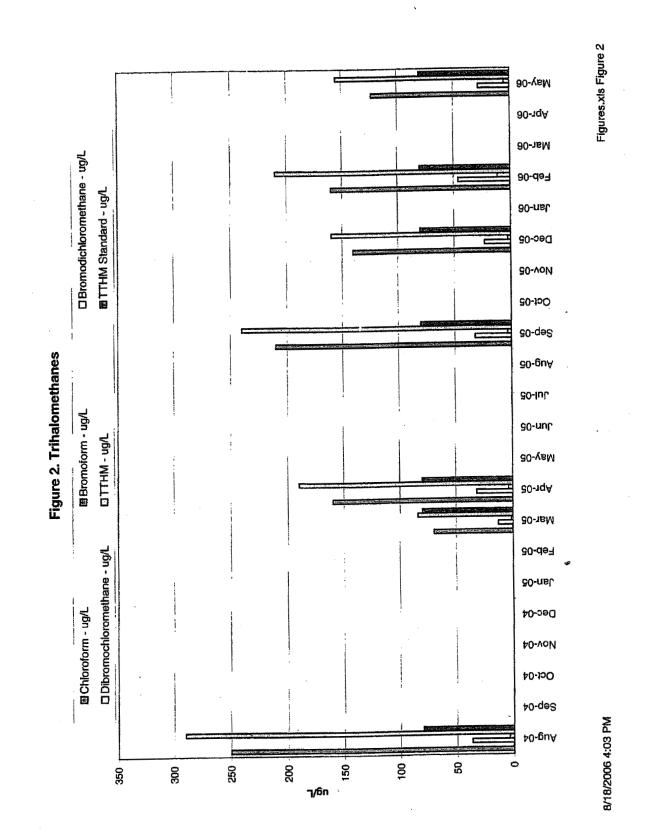

Notes: Flows in gpm shown when pump is on.

Figure 1. Martin Potable Water Flow Diagram

.

-

.



DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 11 OF 107

Figures.xls Fgure 1

8/18/2006 4:03 PM

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 12 OF 107

.

. .

8/18/2006 4:03 PM

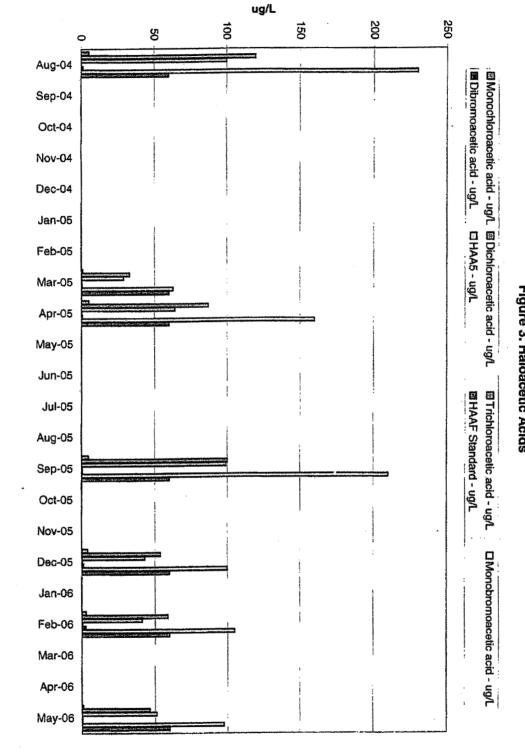
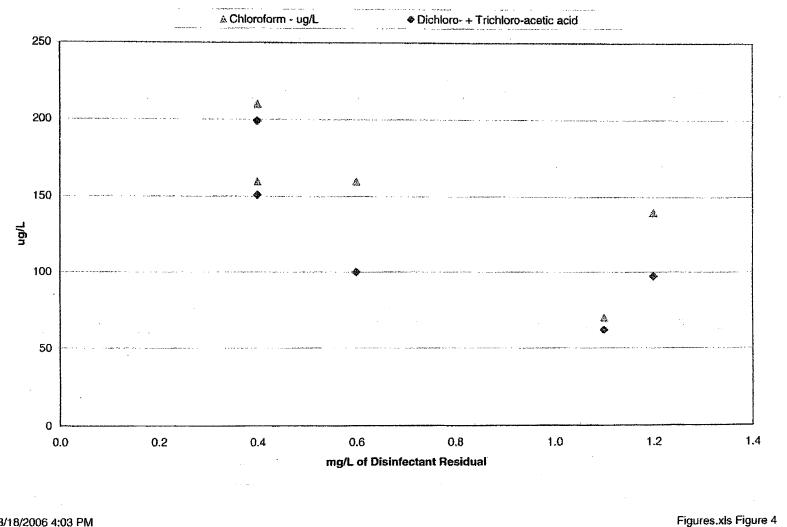



EXHIBIT RRL-3, PAGE 13 OF 107 GOLDER ASSOCIATES, INC. DOCKET NO. 070007-EI

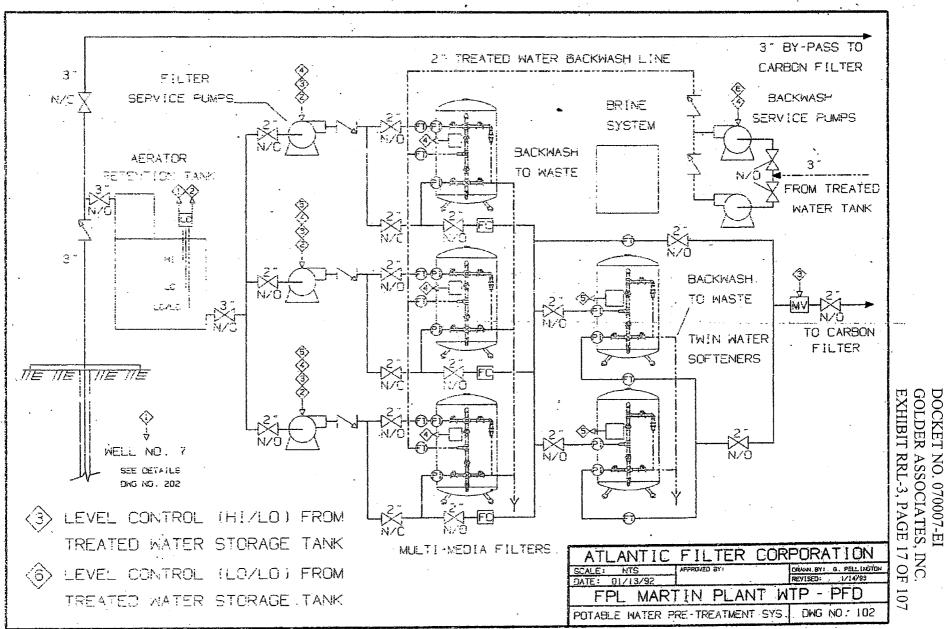
Figures.xls Figure 3

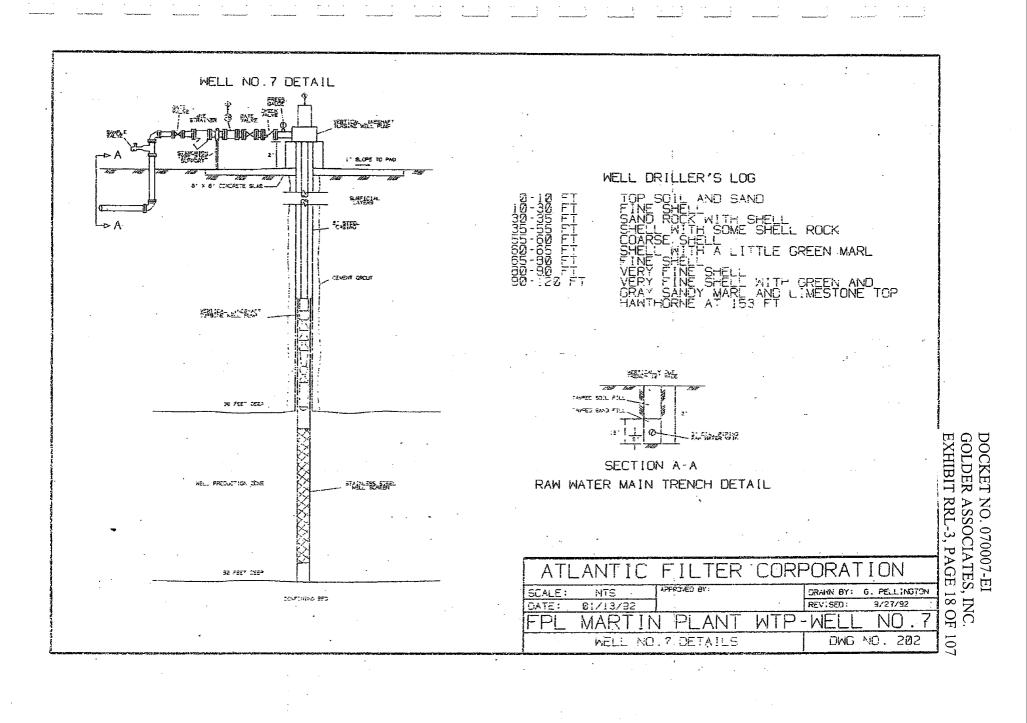
Figure 3. Haloacetic Acids

Figure 4. Effect of Disinfectant Residual

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 14 OF 107

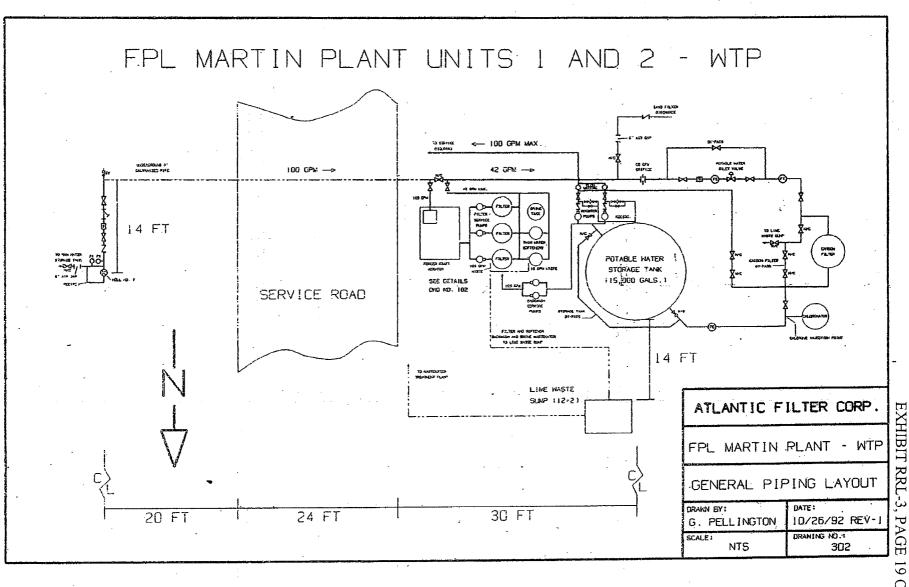
8/18/2006 4:03 PM


APPENDICES

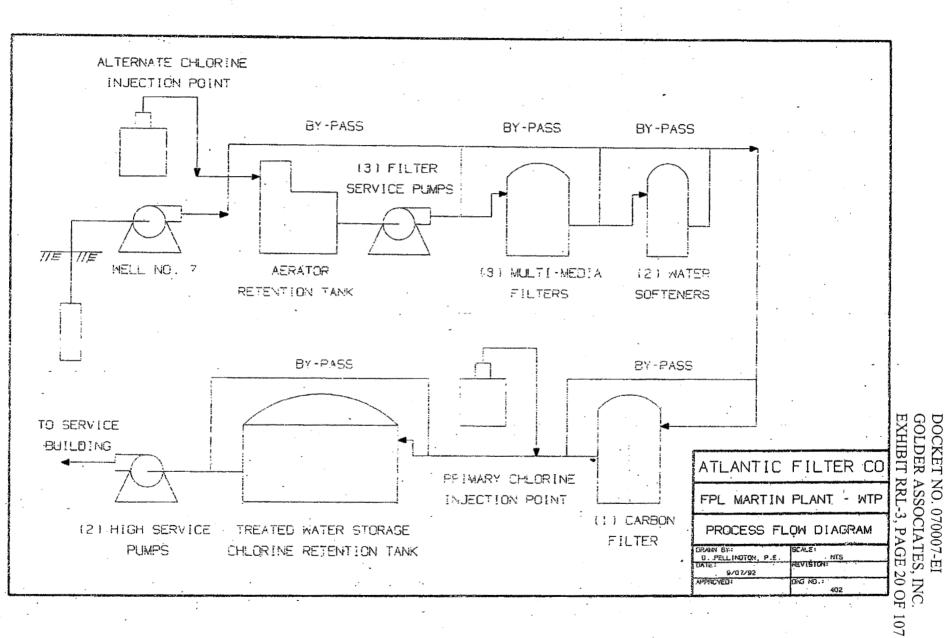

DOCKET NO. 070007-EI

GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 15 OF 107

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 16 OF 107


APPENDIX A. SYSTEM OPERATIONAL MANUAL DRAWINGS

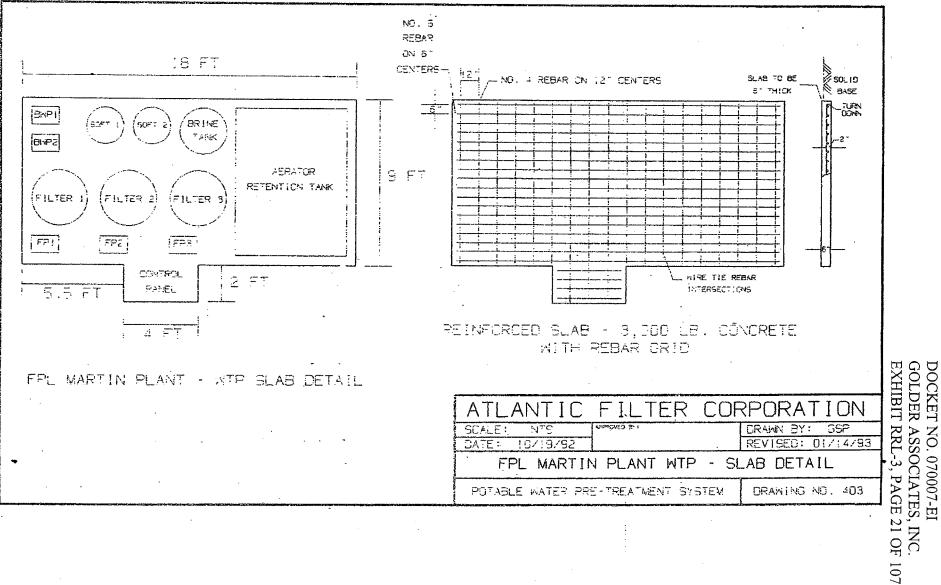
.


÷ • •

· · · •

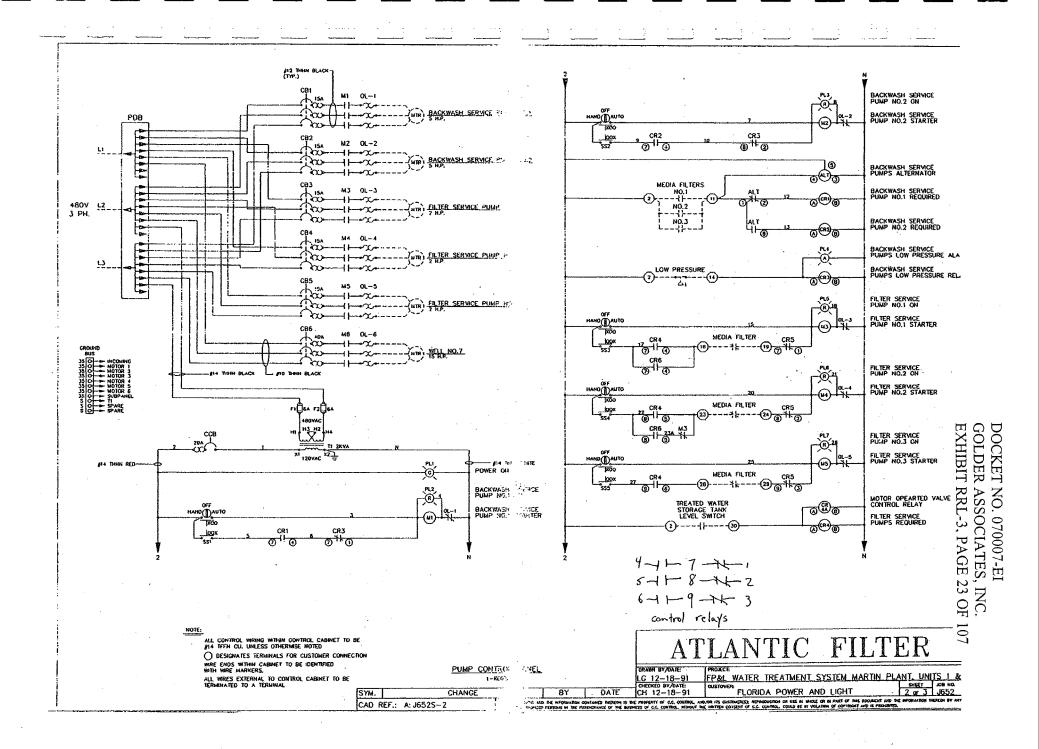
۰.

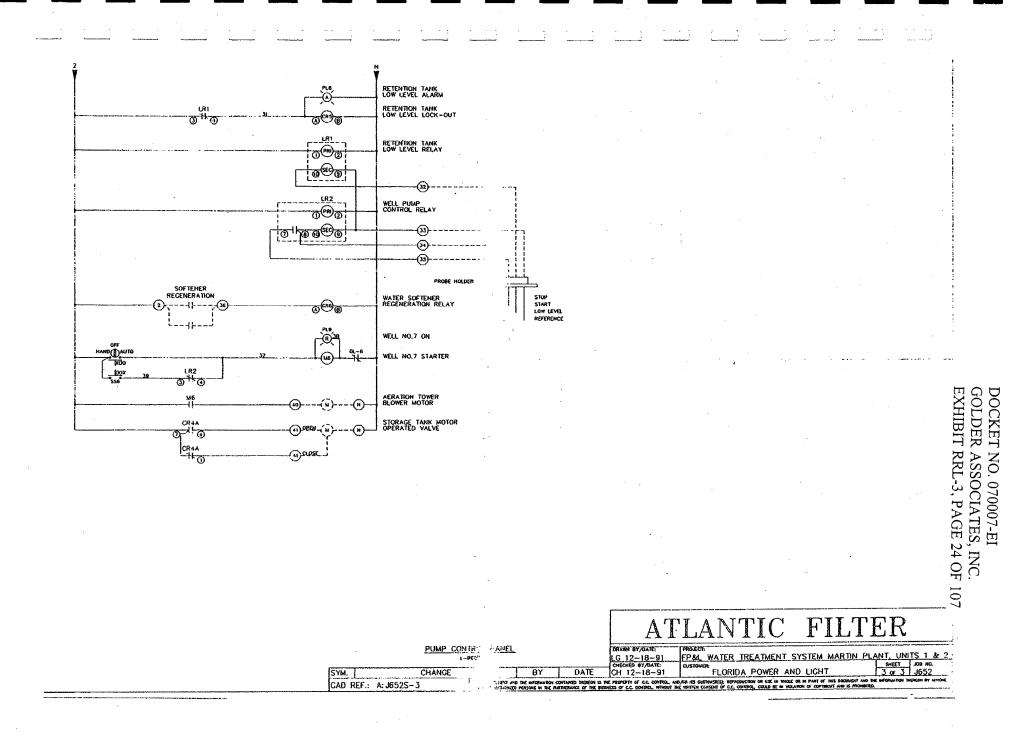
DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 19 OF 107

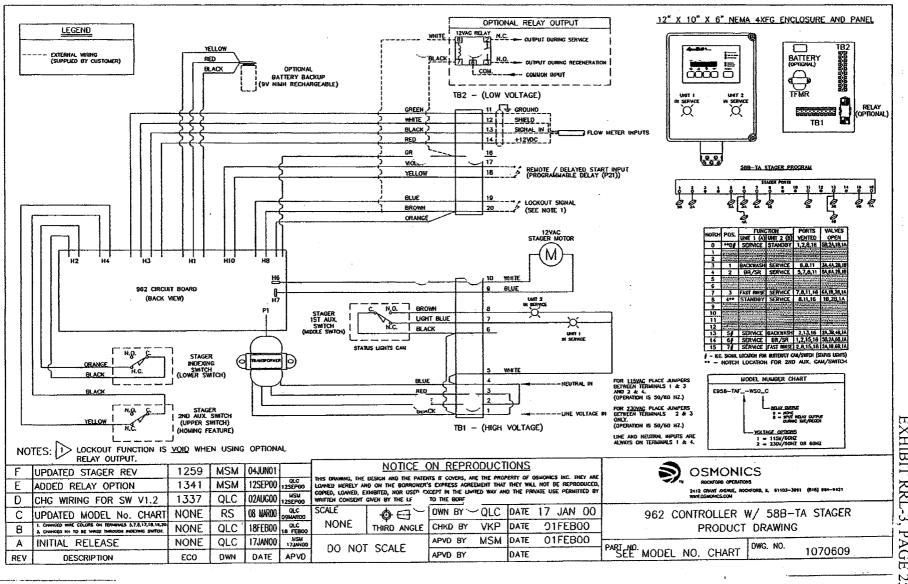


- - - - - -

. . . .


· •


2



and the second second

		NAMEPLATE SCHEDULE
Image: Section 1 Image: Section 1 </td <td></td> <td>1 1" X 3" PUMP CONTROL PANEL 2 1" X 3" BACKWASH PUMPS / LOW PRESSURE 3 1" X 3" BACKWASH PUMPS / LOW LEVEL 4 1" X 3" BACKWASH SERVICE / PUMP NO.1 6 1" X 3" BACKWASH SERVICE / PUMP NO.2 7 1 X 3" FILLER SERVICE / PUMP NO.2 9 1" X 3" FILLER SERVICE / PUMP NO.3 10 1" X 3" WELL NO.7</td>		1 1" X 3" PUMP CONTROL PANEL 2 1" X 3" BACKWASH PUMPS / LOW PRESSURE 3 1" X 3" BACKWASH PUMPS / LOW LEVEL 4 1" X 3" BACKWASH SERVICE / PUMP NO.1 6 1" X 3" BACKWASH SERVICE / PUMP NO.2 7 1 X 3" FILLER SERVICE / PUMP NO.2 9 1" X 3" FILLER SERVICE / PUMP NO.3 10 1" X 3" WELL NO.7
	SUBPLATE LAYOUT	REMOTE 3 WARRICK JR6A4 BFT, PVC COATED SRASS PROBES WARRICK JR6A0 BFT, BRASS PROBE 4 WARRICK JR6A0 BFT, BRASS PROBE 5 WARRICK JR6A0 BFT, BRASS PROBE 4 WARRICK JR6A0 BFT, BRASS PROBE 5 WARRICK JELOD INDUCTION RELAYS 120/300V 1 GLASTC 2165-1B INSULATOR 9 ILSCO SLU-35 GROUND LUG5 4 SOD CLASS 9080 GH-10 END CLANPS 5 SOD CLASS 9080 GR-6B END BARRIER 25 SOD CLASS 9080 GR-6B END BARRIER 71 SOD CLASS 9080 GF-6B END BARRIER 71 CUTLER HAMMER E34TB120H9X NEMA 4X CREEN PILOT LIGHT 71 CUTLER HAMMER E34TB120H9X NEMA 4X AMBER PILOT LIGHT 72,55-7,9 G CUTLER HAMMER E34TB120H9X NEMA 4X AMBER PILOT LIGHTS 5SI-6 CUTLER HAMMER E34TB120H9X NEMA 4X JPOS, SEL. SWITCH M3 1 CUTLER HAMMER E34TB120H9X NEMA 4X JPOS, SEL. SWITCH M3 1 CUTLER HAMMER E34TB120H9X PARA 4X AMBER PILOT LIGHTS 5SI-6 CUTLER HAMMER E34TB120H9X NEMA 4X JPOS, SEL. SWITCH M3 1 CUTLER HAMMER E34TB120H9X PARA 4X JPOS, SEL. SWITCH M3 1 CUTLER HAMMER E34TB120H9X PARA 4X JPOS, SEL. SWITCH 5SI-6 CUTLER HAMMER E34TB120H9X PARA 4X JPOS, SEL. SWITCH 5SI-6 CUTLER HAMMER E34TB120H9X NEMA 4X JPOS, SEL. SWITCH M3 1 CUTLER HAMMER E34TB120H9X PARA 4X JPOS, SEL. SWITCH 5SI-6 CUTLER HAMMER FARA 54 CHEVER 54 CUTLER 45 FARA 54 CH
		CR1-6 7 IDEC SR39-ULC 3PDT RELAYS (120V) 1 OMRON PF08JA 8 PIN SOCKET ALT. DIVERSIFED ELECTRONICS ARA-120-ABA ALTERNATOR TI ACME TA-2-8129 2KVA 480/120V TRANSFORMER PDB 1 GOULD 67083 POWER DISTINBUTION BLOCK MG 1 CUTLER HAMMER H2012-3 HEATER PACK MG 1 CUTLER HAMMER H2012-3 HEATER PACKS MJ.2 2 CUTLER HAMMER H2009-3 HEATER PACKS MJ.2 2 CUTLER HAMMER H2009-3 HEATER PACKS MJ.5 5 CUTLER HAMMER F5310040A 480V 3P 40A CIRCUT BREAKER CUTLER HAMMER F5310040A 480V 3P 40A CIRCUT BREAKER CUTLER HAMMER F5310040A 480V 3P 40A CIRCUT BREAKER CUTLER HAMMER F5310040A 480V 3P 40A CIRCUT BREAKER
	PUMP_CONTROL A 1-REGT DRAWN BY/DATE: 1-REGT DRAWN BY/DATE: 1-REGT US 12-18-91 SYM. CHANGE SYM. CHANGE SYM. CHANGE CAD REF.: A; J652PF-1	CHI-5 S CUILER PRANT CONTRACT OF STATES AND A CONTRACT AND B CONTRACT AND B CONTRACT AND A CONTRACT AND B CONTRACT AND A CONTRACT AND B CONTR

. . .

. .

:

.

-• • • •

.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, I EXHIBIT RRL-3, PAGE 25 25 INC. 25 OF

107

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 26 OF 107

APPENDIX B. CONSENT ORDER

.

ر.,

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 27 OF 107

Department of Environmental Protection

Jeb Bush Governor Southeast District 400 N. Congress Avenue, Suite 200 West Palm Beach, Florida 33401

Colleen M. Castille Secretary

AUG 0 4 2006

CERTIFIED MAIL #7005 2570 0001 9601 9727 RETURN RECEIPT REQUESTED

Craig Arcari, General Manager Florida Power & Light Company – Martin Plant P.O. Box 176 Indiantown, Florida 34954

Re: DEP vs. Florida Power & Light Company OGC File No. 06-0744/FPL Martin Plant PWS #4431748

Dear Mr. Arcari:

1

Enclosed for your review and signature is the Consent Order drafted by the Department in the above-styled case. The Consent Order represents the resolution acceptable to the Department in this matter. Please review, sign, and return the Consent Order to this office within 30 days of receipt for Department signature and distribution.

Thank you for your cooperation in this matter. If you have any questions concerning the Consent Order, please contact Michele Owens of this office at 561/681-6700.

Sincerely,

Kevin R. Neal

District Director Southeast District

Enclosure (all)

cc: Drinking Water Compliance Section – DEP/PSL

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 28 OF 107

BEFORE THE STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

)

}

)

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION,

Complainant,

IN THE OFFICE OF THE SOUTHEAST DISTRICT

OGC FILE NO. 06-0744

vs.

FLORIDA POWER & LIGHT COMPANY,

Respondent.

CONSENT ORDER

This Consent Order is entered into between the State of Florida Department of Environmental Protection ("Department") and Florida Power & Light Company ("Respondent") to reach settlement of certain matters at issue between the Department and Respondent.

The Department finds and the Respondent neither admits nor denies the following:

1. The Department is the administrative agency of the State of Florida having the power and duty to protect Florida's air and water resources and to administer and enforce the provisions of the Florida Safe Drinking Water Act, Sections 403.850 et seq., Florida Statutes, and the rules promulgated thereunder, Title 62, Florida Administrative Code. The Department has jurisdiction over the matters addressed in this Consent Order.

2. Respondent is a "person" within the meaning of Section 403.852(5), Florida Statutes.

3. Respondent is the owner and is responsible for the operation of a nontransient noncommunity public water system ("System"), PWS #4431748, located on Warfield Boulevard, northwest of Indiantown, Martin County, Florida, which serves the Florida Power & Light Martin Power Plant.

4. The Department finds that Respondent is in violation of Rule 62-550.310(3), Fla. Admin. Code which establishes the maximum contaminant levels (MCLs) for total

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 29 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 2 of 10

trihalomethanes (TTHMs) and haloacetic acids (five) (HAA5s) as 0.080 milligrams per liter (mg/L) and 0.060 mg/L, respectively. The average results for samples collected from the System on March 15, 2005, April 12, 2005, September 14, 2005, and December 28, 2005, and analyzed for total trihalomethanes (TTHMs) and haloacetic acids (five) (HAA5s) are 0.173 milligrams per liter (mg/L) and 0.132 mg/L, respectively.

Having reached a resolution of the matter the Department and the Respondent mutually agree and it is

ORDERED:

: |

5. Respondent shall comply with the following corrective actions within the stated time periods:

a. By September 1, 2006, Respondent shall retain the services of a Floridaregistered professional engineer to evaluate the System and either submit an application, along with any required application fees, to the Department for a permit to construct any modifications needed to address the MCL exceedances, or, if the evaluation determines that no additional treatment is needed, a plan of corrective action ("Plan") with interim milestone dates, signed and sealed by a Florida-registered Professional Engineer.

b. The Department shall review the application/Plan submitted pursuant to paragraph 5.a. above. In the event additional information, modifications or specifications are necessary to process the application/Plan, the Department shall issue a written request for information ("RFI") to Respondent for such information. Respondent shall accordingly submit the requested information in writing to the Department within 30 days of receipt of the request. Respondent shall provide all information requested in any additional RFIs issued by the Department within 30 days of receipt of each request. Within 60 days of the date the Department receives the application/Plan pursuant to paragraph 5.a. above, Respondent shall provide all information necessary to complete the application/Plan. The Department shall notify Respondent in writing of Department approval of the Plan.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 30 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 3 of 10

: |

c. Within 180 days of issuance of any required permit(s), or written Department approval, if no permit is required, Respondent shall complete the Departmentapproved modifications in accordance with the permit/written approval issued pursuant to paragraphs 5.a. and 5.b. above, and submit to the Department the engineer's certification of completion of construction, along with all required supporting documentation. Respondent shall receive written Department clearance prior to placing the System modifications into service.

d. Respondent shall continue to sample quarterly for TTHMs and HAA5s. Results shall be submitted to the Department within ten (10) days of Respondent's receipt of the results.

e. In the event that the modifications approved by the Department pursuant to paragraphs 5.a. and b. are determined to be inadequate to resolve the MCL exceedances, the Department will notify the Respondent in writing. Within 30 days of receipt of written notification from the Department that the results of the quarterly sampling indicate that the System modifications have not resolved the violations, Respondent shall submit another proposal to address the MCL exceedances. Respondent shall provide all information requested in any RFIs issued by the Department within 30 days of receipt of each request. Within 60 days of the date the Department receives the application pursuant to this paragraph, Respondent shall provide all information necessary to complete the application.

f. Within two years of the effective date of this Consent Order, Respondent shall complete all corrective actions needed to resolve the MCL exceedances and submit written certification of completion to the Department for all modifications.

g. Respondent shall continue to issue public notice regarding the MCL exceedances every 90 days in accordance with Rule 62-560.410(1), Fla. Admin. Code, until the Department determines that System is in compliance with all MCLs. Respondent shall submit certification of delivery of public notice, using DEP Form 62-555.900(22), to the Department within ten days of issuing each public notice.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 31 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 4 of 10

. |

6. Within 30 days of the effective date of this Consent Order, Respondent shall reimburse the Department for costs and expenses in the amount of \$500.00 which were incurred by the Department during the investigation of this matter and the preparation and tracking of this Consent Order. Payment shall be made by cashier's check or money order. The instrument shall be made payable to the "Department of Environmental Protection" and shall include thereon the OGC number assigned to this Consent Order, and the notation "Ecosystem Management and Restoration Trust Fund."

7. Respondent agrees to pay the Department stipulated penalties in the amount of \$100.00 per day for each and every day Respondent fails to timely comply with any of the requirements of paragraphs 5 and 6 of this Consent Order. A separate stipulated penalty shall be assessed for each violation of this Consent Order. Within 30 days of written demand from the Department, Respondent shall make payment of the appropriate stipulated penalties to "The Department of Environmental Protection" by cashier's check or money order and shall include the OGC number assigned to this Consent Order and the notation "Ecosystem Management and Restoration Trust Fund". Payment shall be sent to the Department of Environmental Protection, 400 North Congress Avenue, Suite 200, West Palm Beach, FL 33401. The Department may make demands for payment at any time after violations occur. Nothing in this paragraph shall prevent the Department from filing suit to specifically enforce any of the terms of this Consent Order. Any penalties assessed under this paragraph shall be in addition to the \$500.00 agreed to in paragraph 6 of this Consent Order.

8. If any event, including administrative or judicial challenges by third parties unrelated to the Respondent, occurs which causes delay or the reasonable likelihood of delay, in complying with the requirements of this Consent Order, Respondent shall have the burden of proving the delay was or will be caused by circumstances beyond the reasonable control of the Respondent and could not have been or cannot be overcome by Respondent's due diligence. Economic circumstances shall not be considered circumstances beyond the control of Respondent, nor shall the failure of a contractor, subcontractor, materialman or other agent

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 32 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 5 of 10

. |

: 1

(collectively referred to as "contractor") to whom responsibility for performance is delegated to meet contractually imposed deadlines be a cause beyond the control of Respondent, unless the cause of the contractor's late performance was also beyond the contractor's control. Upon occurrence of an event causing delay, or upon becoming aware of a potential for delay, Respondent shall notify the Department's Southeast District Office in West Palm Beach orally within 72 hours or within three working days and shall, within ten calendar days of oral notification to the Department, notify the Department in writing of the anticipated length and cause of the delay, the measures taken or to be taken to prevent or minimize the delay and the timetable by which Respondent intends to implement these measures. If the parties can agree that the delay or anticipated delay has been or will be caused by circumstances beyond the reasonable control of Respondent, the time for performance of one or more of the requirements hereunder shall be extended for a period equal to the agreed delay resulting from such circumstances. Such agreement shall adopt all reasonable measures necessary to avoid or minimize delay. Failure of Respondent to comply with the notice requirements of this Paragraph in a timely manner shall constitute a waiver of Respondent's right to request an extension of time for compliance with the requirements of this Consent Order.

9. Persons who are not parties to this Consent Order, but whose substantial interests are affected by this Consent Order, have a right, pursuant to Sections 120.569 and 120.57, Florida Statutes, to petition for an administrative hearing on it. The Petition must contain the information set forth below and must be filed (received) at the Department's Office of General Counsel, 3900 Commonwealth Boulevard, MS# 35, Tallahassee, Florida 32399-3000 within 21 days of receipt of this notice. A copy of the Petition must also be mailed at the time of filing to the District Office named above at the address indicated. Failure to file a petition within the 21 days constitutes a waiver of any right such person has to an administrative hearing pursuant to Sections 120.569 and 120.57, Florida Statutes.

10. The petition shall contain the following information:

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 33 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 6 of 10

: 1

a. The name, address, and telephone number of each petitioner; the Department's Consent Order identification number and the county in which the subject matter or activity is located;

b. A statement of how and when each petitioner received notice of the Consent Order;

c. <u>A statement of how each petitioner's substantial interests are affected by</u> the Consent Order;

d. A statement of the material facts disputed by petitioner, if any;

e. A statement of facts which petitioner contends warrant reversal or modification of the Consent Order;

f. A statement of which rules or statutes petitioner contends require reversal or modification of the Consent Order;

g. A statement of the relief sought by petitioner, stating precisely the action petitioner wants the Department to take with respect to the Consent Order.

11. If a petition is filed, the administrative hearing process is designed to formulate agency action. Accordingly, the Department's final action may be different from the position taken by it in this Notice. Persons whose substantial interests will be affected by any decision of the Department with regard to the subject Consent Order have the right to petition to become a party to the proceeding. The petition must conform to the requirements specified above and be filed (received) within 21 days of receipt of this notice in the Office of General Counsel at the above address of the Department. Failure to petition within the allowed time frame constitutes a waiver of any right such person has to request a hearing under Sections 120.569 and 120.57, Florida Statutes, and to participate as a party to this proceeding. Any subsequent intervention will only be at the approval of the presiding officer upon motion filed pursuant to Rule 28-106.205, Florida Administrative Code.

12. A person whose substantial interests are affected by the Consent Order may file a timely petition for an administrative hearing under Sections 120.569 and 120.57, Florida

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 34 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 7 of 10

. |

÷

Statutes, or may choose to pursue mediation as an alternative remedy under Section 120.573, Florida Statutes, before the deadline for filing a petition. Choosing mediation will not adversely affect the right to a hearing if mediation does not result in a settlement. The procedures for pursuing mediation are set forth below.

13. Mediation may only take place if the Department and all the parties to the proceeding agree that mediation is appropriate. A person may pursue mediation by reaching a mediation agreement with all parties to the proceeding (which include the Respondent, the Department, and any person who has filed a timely and sufficient petition for a hearing) and by showing how the substantial interests of each mediating party are affected by the Consent Order. The agreement must be filed in (received by) the Office of General Counsel of the Department at 3900 Commonwealth Boulevard, MS #35, Tallahassee, Florida 32399-3000, within 10 days after the deadline as set forth above for the filing of a petition.

14. The agreement to mediate must include the following:

a. The names, addresses, and telephone numbers of any persons who may attend the mediation;

b. The name, address, and telephone number of the mediator selected by the parties, or a provision for selecting a mediator within a specified time;

c. The agreed allocation of the costs and fees associated with the mediation;

d. The agreement of the parties on the confidentiality of discussions and documents introduced during mediation;

e. The date, time, and place of the first mediation session, or a deadline for holding the first session, if no mediator has yet been chosen;

f. The name of each party's representative who shall have authority to settle or recommend settlement;

g. Either an explanation of how the substantial interests of each mediating party will be affected by the action or proposed action addressed in this notice of intent or a

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 35 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 8 of 10

,]

statement clearly identifying the petition for hearing that each party has already filed, and incorporating it by reference; and

The signatures of all parties or their authorized representatives. As h. provided in Section 120.573, Florida Statutes, the timely agreement of all parties to mediate will toll the time limitations imposed by Sections 120.569 and 120.57, Florida Statutes, for requesting and holding an administrative hearing. Unless otherwise agreed by the parties, the mediation must be concluded within sixty days of the execution of the agreement. If mediation results in settlement of the administrative dispute, the Department must enter a final order incorporating the agreement of the parties. Persons whose substantial interests will be affected by such a modified final decision of the Department have a right to petition for a hearing only in accordance with the requirements for such petitions set forth above, and must therefore file their petitions within 21 days of receipt of this notice. If mediation terminates without settlement of the dispute, the Department shall notify all parties in writing that the administrative hearing processes under Sections 120.569 and 120.57, Florida Statutes, remain available for disposition of the dispute, and the notice will specify the deadlines that then will apply for challenging the agency action and electing remedies under those two statutes.

15. Respondent shall allow all authorized representatives of the Department access to the facility at reasonable times for the purpose of determining compliance with the terms of this Consent Order and the rules and statutes of the Department.

16. All submittals and payments required by this Consent Order to be submitted to the Department shall be sent to the Florida Department of Environmental Protection, Southeast District Water Facilities Program, 400 North Congress Avenue, Suite 200, West Palm Beach, Florida, 33401.

17. This Consent Order is a settlement of the Department's civil and administrative authority arising under Florida law to resolve the matters addressed herein. This Consent Order is not a settlement of any criminal liabilities, which may arise under Florida law, nor is it a

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 36 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 9 of 10

. |

settlement of any violation which may be prosecuted criminally or civilly under federal law and which Respondent may defend.

18. The Department hereby expressly reserves the right to initiate appropriate legal action to prevent or prohibit any violations arising after the date of this Consent Order of applicable statutes, or the rules promulgated thereunder that are not specifically addressed by the terms of this Consent Order.

19. The terms and conditions set forth in this Consent Order may be enforced in a court of competent jurisdiction pursuant to Sections 120.69 and 403.121, Florida Statutes. Failure to comply with the terms of this Consent Order shall constitute a violation of Section 403.859, Florida Statutes.

20. The Department, for and in consideration of the complete and timely performance by Respondent of the obligations agreed to in this Consent Order, hereby waives its right to seek judicial imposition of damages or civil penalties for alleged violations.

21. Respondent is fully aware that a violation of the terms of this Consent Order may subject Respondent to judicial imposition of damages, civil penalties up to \$5,000.00 per day per violation, and criminal penalties, except as limited by the provisions of this Consent Order.

22. Except as otherwise provided herein, entry of this Consent Order does not relieve Respondent of the need to comply with applicable federal, state or local laws, regulations or ordinances.

23. No modifications of the terms of this Consent Order shall be effective until reduced to writing and executed by both Respondent and the Department.

24. Respondent acknowledges and waives its right to an administrative hearing pursuant to Sections 120.569 and 120.57, Florida Statutes, on the terms of this Consent Order. Respondent acknowledges its right to appeal the terms of this Consent Order pursuant to Section 120.68, Florida Statutes, and waives that right upon signing this Consent Order.

25. This Consent Order is a final order of the Department pursuant to Section 120.52(7), Florida Statutes, and it is final and effective on the date filed with the Clerk of the

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 37 OF 107

Florida Power & Light Company. Consent Order OGC Number 06-0744 Page 10 of 10

÷

Department unless a Petition for Administrative Hearing is filed in accordance with Chapter 120, Florida Statutes. Upon the timely filing of a petition this Consent Order will not be effective until further order of the Department.

FOR THE RESPONDENT:

Craig Arcari, General Manager Date Florida Power & Light Company - Martin Plant P.O. Box 176 Indiantown, Florida 34954

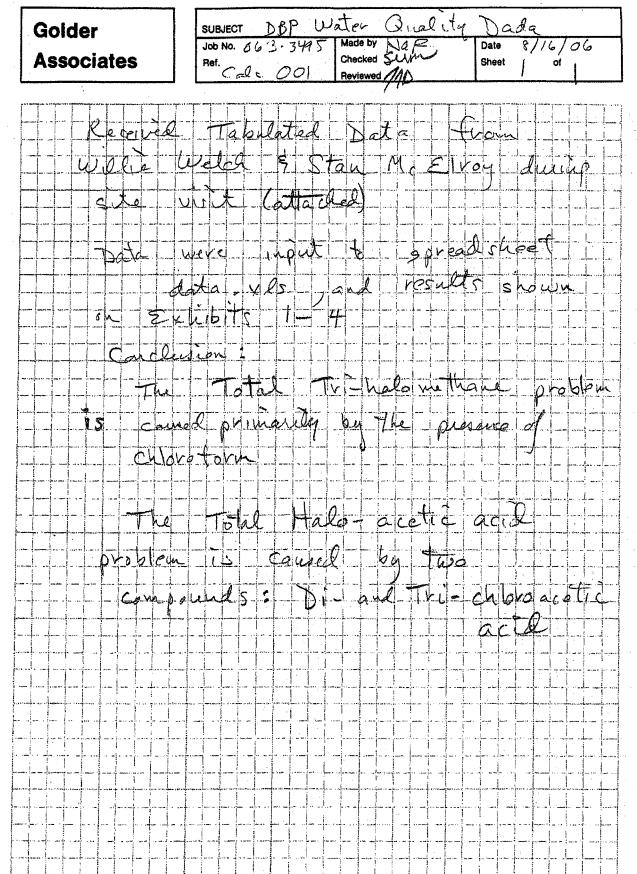
DONE AND ORDERED this ____ day of _____, 200_, in West Palm Beach, Florida.

STATE OF FLORIDA DEPARTMENT OF ENVIRONMENTAL PROTECTION

Kevin R. Neal District Director Southeast District Date

FILED, on this date, pursuant to \$120.52 Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

Clerk


Date

Copies furnished to: Lea Crandall, Agency Clerk, MS 35 Drinking Water Compliance Section, FDEP/PSL

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 38 OF 107

APPENDIX C. CALCULATIONS

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 39 OF 107

: }

1

Location	Potable POE	MRT	MRT	MRT	MRT	MRT	MRT
Date	8/25/2004	5/25/2006	2/13/2006	12/21/2005	9/14/2005	4/12/2005	3/15/2005
Monochloroacetic acid - ug/L	5.3	U	2.8	4 🗸	4.7	4.9	U
Dichloroacetic acid - ug/L	120	46.4	59 [.]	54 🗸	100	87	33
Trichloroacetic acid - ug/L	100	50.9	41	43 -⁄	99	64	29
Monobromoacetic acid - ug/L	U U	U	0.46	0.3 ~	0.5	U	U
Dibromoacetic acid - ug/L	1.3	U	2.6	1.2	0.52	0.8	0.47
HAA5 - ug/L	230	97.3	105	100	210	160	63
HAAF Standard - ug/L	60	60	60	60	60	60	60
Chloroform - ug/L	250	123	160	140	210	160	70
Bromoform - ug/L	U	U U	U	U	U	U.	U
Bromodichloromethane - ug/L	37	27.5	46	23 .	32	32	13
Dibromochloromethane - ug/L	3.9	5.02	11	2.5	3.3	3.7	1.4
TTHM - ug/L	290·	155	210	160	240	190	84
TTHM Standard - ug/L	80	80	80	80	80	80	80
		÷					
Chlorine residual	•		0.6	1.2	0.4	0.4	1.1

.

. . .

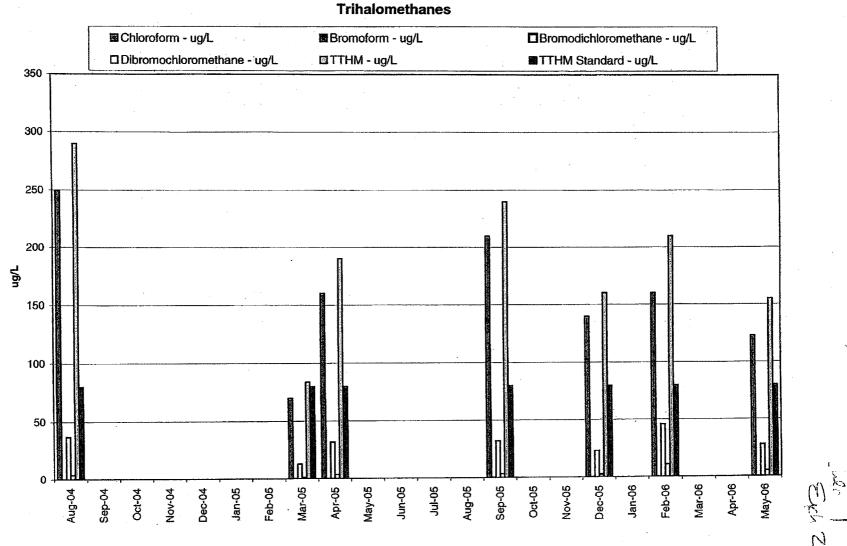
.

;

Data.xls Original Data

500

1>


••••

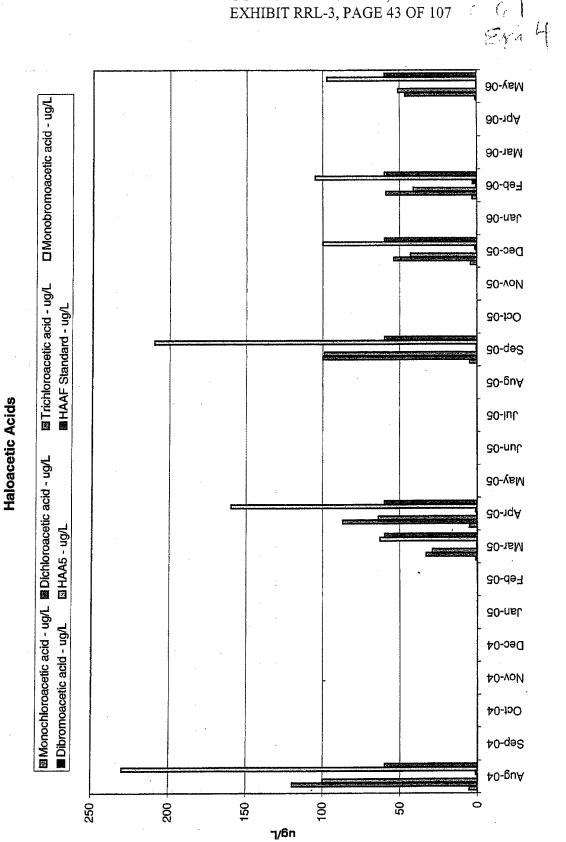
DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 40 OF 107 ~

.....

8/16/2006 4:08 PM

.. .

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 41 OF 107


8/16/2006 4:11 PM

Data.xls Chart2

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 42 OF 107 E44 3 Glet Data.xls Chart3 1.4 1 2 -si 🔶 Dichloro- + Trichloro-acetic acid 1.0 mg/L of Disinfectant Residual 0.8 0.6 1 & Chloroform - ug/L 0.4 Ś 0.2 0.0 0 150 10 20 200 250 ק∕βn

Effect of Disinfectant Residual

8/16/2006 4:21 PM

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC.

8/16/2006 3:59 PM

Data.xls Chart1

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 44 OF 107

Jupiter Environmental Laboratories, Inc. 150 S. Oki Dixle Highway Jupiter, FL 33458 Phone: (561)575-0030 Fax: (561)575-4118

ANALYTICAL RESULTS

Jupiter Environmental Laboratories, Inc.

ı	LOG# 616076					
	Project ID: Q.I. Analysis				<u> </u>	······
).].	Lab ID: 616076004 Sample ID: 3/4 Lab MRT		Date Received: Date Collected:		Matrix: Aque	ous Llquid
	Parameters	Results Units R	eportLimit MDL	DF Prepared E	By Analyzed	By Qual CAS
}	Analysis Desc; EPA 524.2 Scan by		n Method: NONE Method: EPA 524.2			
1	Chloroform	0.123 mg/L 🗸	0.00100	1 05/26/06	ESC 05/29/06	ESC
	Bromodichloromethane	0.0275 mg/L/	0.00100	1 05/26/06	ESC 05/29/06	ESC
	Chlorodibromomethane	0.00502 mg/L	0,00100	1 05/26/06 E	ESC 05/29/06	ESC
1	Bromoform	U mg/L	0.00100	1 05/26/06 E	ESC 05/29/06	ESC
	Total Trihalomethanes	0.155 mg/L	0.00100	1 05/26/06 E	ESC 05/29/06	ESC
]	Analysis Desc EPA 552.2					
}	Bromoacetic acid	U mg/L	0.00200	1 05/26/06 E	ESC 05/29/06	ESC
ĺ	Chioroacetic acid	U mg/L	0.00200	1 05/26/06 E	ESC 05/29/06	ESC
;	Dibromoacetic acid	U mg/L	0.00200		ESC 05/29/06	ESC
	Dichloroacetic acid	0.0464 mg/L∀	0.00200		ESC 05/29/06	ESC
1	chloroacefic acld	0.0509 mg/L	0.00200		ESC 05/29/06	ESC
Į	Jtal Haloacettc acids	0.0973 mg/L	0.00200	1 05/26/06 E	ESC 05/29/06	ESC

Report ID: 616076 - 187938 6/2/2

: |

Page 6 of 7

FDOH# E86546 CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, inc...

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 45 OF 107

Jupiter Environmental Laboratories, Inc. 150 S. Old Dixle Highway Jupiter, FL 33456

> Phone: (661)575-0030 Fex: (581)575-4118

Environmental Laboratories, Inc.

ANALYTICAL RESULTS QUALIFIERS

	616076		
	Q.I. Analysis	 · · · ·	
	IR QUALIFIERS		
SUBCONT	RACTOR NELAC CERTIFICATION		
61607	76 ESC = E87487		

Report ID: 616076 - 187936 6/2/2006

Page 7 of 7

FDOH# E86546

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Jupiter Environmental Laboratories, Inc.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. • EXHIBIT RRL-3, PAGE 46 OF 107

÷.

]	Florida Department of Environmental Protection Safe Drinking Water Program Laboratory Reporting Format						
· · ·	PUBLIC WATER SYSTEM INFORMATION (to be completed by sampler - Please type or print legibly)						
	System Name: FPL - JADJAN TOWAL PWS I.D. #: 4431748						
7	System Type (check one)						
•	Address: 2190 SW WARFIELD BLYD.						
. ,	City: INDIANTOWN State: FL. ZIP Code: 34956						
]	Phone #:						
1	E-Mail Address:						
. 1	SAMPLE INFORMATION (to be completed by sampler)						
	Sample Number: Oct Location Code (if known): ALRT						
. 1	Sample Date: 02/13/06 Sample Time: 3:00 PM						
	Sample Location (be specific): 3/4 Lab MRT Grab						
	Disinfectant Residual (Required when reporting results for trihalomethanes and haloacetic acids): Go mg/L Field pH:						
	Sample Type (Check Only One) Reason(s) for Sample (Check all that apply)						
	Distribution Routine Compliance (with 62-550) Image: Quarterly (Which Qtr?						
)	Plant Tap not for compliance with 62-550) Composite of Multiple Sites**						
. í	Raw (at well or intake)						
	XMax Residence Time Other: Ave Residence Time Sampling Procedure Used or Other Comments:						
.)	Near First Customer						
	*See 62-550.500(6) for requirements and restrictions. Note: See 62-550.512(3) for additional requirements for Nitrale or Nitrite MCL exceedences. ** See 62-550.550(4) for requirements and attach a results page for each site.						
	Sampler's Name: STAN MELROY						
· 1	Sampler's Phone #:						
	Sampler's E-Mail Address: <u>STAN_J_MCELPAY & FPL. Com</u>						
	CERTIFICATION (to be completed by sampler)						
) , ·	1. <u>STAN MCELRO</u> , <u>SR. PLT. TECH-LEAD OP</u> . Print little						
]	do HEREBY CERTIFY that the above public water system and sample collection information is						
ļ	completed and correct.						
	Signature: Date: Date: Date: Date:						
1	Reporting Format 62-550.739 Effective January 1995, Revised January 2004						

..., . Í.

1

ormat			
EXHIBIT RRL-3,	PAGE 47	OF	107
GOLDER ASSOC	CIATES, I	NC.	
DOCKET NO. 07	0007-EI		

.

Florida Department of Environmental Protection EXHIBIT RR Safe Drinking Water Program Laboratory Reporting Format

ļ

LABORATORY CERTIFIC	ATION INFORMATION (to be	completed by lab - Please type or print	legibly)
ATTACH A CURRENT DOH AN			
_ab Name: Harbor Bra	anch Environmental Laboratori	ies, Inc. Florida Certification	n #:E96080
Address: 5600 US 1	North	Certification Expiration Da	ate:06/30/2006
Fort Pierce	e, FL_34946	Phone #:(772	2) 465-2400 Ext. 285
ANALYSIS INFORMATIO	N (to be completed by lab)	Date Sample(s) Received::	2/14/06
PWS ID (From Page 1):	442-1748	Sample Number (From Page 1):	001
Lab Assigned Report Num		2023804001	
		with Chapter 62-550, F.A.C. (C	heck all that apply):
Inorganics	Synthetic Organics	Volatile Organics	Disinfection Byproducts
			A Trihalomethanes
Partial	All Except Dioxin		Haloacetic Acids
Nitrate	Partial		Bromate
Nitrite		Radionuclides	Chlorite
Asbestos Only		Single Sample	Orenedador
robooloo only	• • •	Qtrly Composite**	Secondaries
Were any analyses subcor	ntracted? Yes X		All 14
If yes, please provide DOH			
If yes, please provide DOH ATTACH DOH ANALYTE SHEE	I certification numbers: TFOR EACH SUBCONTRACTED I CERTIF	LAB ICATION	
If yes, please provide DOH ATTACH DOH ANALYTE SHEE	I certification numbers: T FOR EACH SUBCONTRACTED I CERTIF	LAB ICATION Laboratory	Director
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that	I certification numbers: T FOR EACH SUBCONTRACTED I CERTIF	LAB ICATION , Laboratory (Print re correct and unless noted mee	Director Title)
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that	I certification numbers: T FOR EACH SUBCONTRACTED I CERTIF mer t all attached analytical data a	LAB ICATION , Laboratory (Print re correct and unless noted mee	Director Title) at all requirements of the
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that National Environmental Lat Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. ** Please provide radiological sa	CERTIF TFOR EACH SUBCONTRACTED I CERTIF Mer t all attached analytical data a boratory Accreditation Conference urrent Florida DOH lab certification i e enforcement against the public war mple dates locations for each quar	LAB ICATION , Laboratory (Print ire correct and unless noted med ence (NELAC), Date: 06-Ma number and a current Analyte Sheet fo ater system for failure to sample, and m	Director Title) at all requirements of the ar-06 r the attached analysis results will res
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that National Environmental Lal Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. ** Please provide radiological sa COMPLIANCE DETERMIN	CERTIF TFOR EACH SUBCONTRACTED I CERTIF t all attached analytical data a boratory Accreditation Conference urrent Florida DOH lab certification is e enforcement against the public was mple dates locations for each quark IATION (to be completed by DEP	LAB ICATION , Laboratory (Print ire correct and unless noted mea- ence (NELAC), Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and m ter. or DOH)	Director Title) at all requirements of the ar-O6 r the attached analysis results will res hay result in notification of the DOH
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that National Environmental Lat Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. ** Please provide radiological sa COMPLIANCE DETERMIN Sample Collection Info Sati	CERTIF TFOR EACH SUBCONTRACTED I CERTIF ner t all attached analytical data a boratory Accreditation Conference urrent Florida DOH lab certification to e enforcement against the public was mple dates locations for each quart IATION (to be completed by DEP isfactory: Yes No	LAB ICATION , Laboratory (Print ire correct and unless noted mean ence (NELAC). Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and mean ter. or DOH) Sample Analysis Info	Director Title) at all requirements of the ar-06 r the attached analysis results will res hay result in notification of the DOH Satisfactory: Yes N
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that National Environmental Lat Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. ** Please provide radiological sa COMPLIANCE DETERMIN Sample Collection Info Sati	CERTIF TFOR EACH SUBCONTRACTED I CERTIF ner t all attached analytical data a boratory Accreditation Conference urrent Florida DOH lab certification to e enforcement against the public was mple dates locations for each quart IATION (to be completed by DEP isfactory: Yes No	LAB ICATION , Laboratory (Print ire correct and unless noted mea- ence (NELAC), Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and m ter. or DOH)	Director Title) at all requirements of the ar-06 r the attached analysis results will res hay result in notification of the DOH Satisfactory: Yes N
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that National Environmental Lat Signature * Failure to provide a valid and c In rejection of the report, possible Bureau of Laboratory Services. ** Please provide radiological sa COMPLIANCE DETERMIN Sample Collection Info Sati	CERTIF TFOR EACH SUBCONTRACTED I CERTIF ner t all attached analytical data a boratory Accreditation Conference urrent Florida DOH lab certification to e enforcement against the public was mple dates locations for each quart IATION (to be completed by DEP isfactory: Yes No	LAB ICATION , Laboratory (Print ire correct and unless noted mea- ence (NELAC), Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and m ter. or DOH) Sample Analysis Info up(s) above) Revised Report Re- bove)	Director Title) at all requirements of the ar-O6 r the attached analysis results will res hay result in notification of the DOH Satisfactory: Yes N quested (circle or highlight group(s) abo
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, <u>Cindy Cror</u> (Print Name) do HEREBY CERTIFY that National Environmental Lat Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. ** Please provide radiological sa COMPLIANCE DETERMIN Sample Collection Info Sati []Replacement Sample(s []Additional Monitoring R Reason(s): []MCL(s) E []Missing A	Certification numbers: T FOR EACH SUBCONTRACTED I CERTIF ner t all attached analytical data a boratory Accreditation Conference wrent Florida DOH lab certification to e enforcement against the public was mple dates locations for each quart IATION (to be completed by DEP isfactory: Yes No) Requested (circle or highlight grouped) equired (circle or highlight grouped) acceeded analyte Sheet(s)	LAB ICATION , Laboratory (Print ire correct and unless noted mee ence (NELAC). Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and m ter. or DOH) Sample Analysis Info up(s) above) Revised Report Re bove) Detection(s) Location Unsatisfactory	Director Title) at all requirements of the ar-06 r the attached analysis results will res hay result in notification of the DOH Satisfactory: Yes N
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, (Print Name) do HEREBY CERTIFY that National Environmental Lat Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. * Please provide radiological sa COMPLIANCE DETERMIN Sample Collection Info Sati []Replacement Sample(s []Additional Monitoring Re Reason(s):MCL(s) E []Other:	CERTIF	LAB ICATION. , Laboratory (Print ire correct and unless noted med ence (NELAC). Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and m ter. or DOH) Sample Analysis Info up(s) above) Revised Report Re- bove) Detection(s) Location Unsatisfactory	Director Title) at all requirements of the ar-06 r the attached analysis results will res hay result in notification of the DOH Satisfactory: Yes N equested (circle or highlight group(s) above Incomplete Report Analysis Unsatisfactory
If yes, please provide DOH ATTACH DOH ANALYTE SHEE I, Cindy Cror (Print Name) do HEREBY CERTIFY that National Environmental Lal Signature * Failure to provide a valid and c in rejection of the report, possible Bureau of Laboratory Services. * Please provide radiological sa COMPLIANCE DETERMIN Sample Collection Info Sati []Replacement Sample(s []Additional Monitoring R Reason(s):MCL(s) E []Missing A []Other:Person Notified:	Certification numbers: T FOR EACH SUBCONTRACTED I CERTIF ner t all attached analytical data a boratory Accreditation Conference of a constant of the public was urrent Florida DOH lab certification for e enforcement against the public was mple dates locations for each quart IATION (to be completed by DEP isfactory: Yes No) Requested (circle or highlight grouped) a Exceeded Analyte Sheet(s)	LAB ICATION. , Laboratory (Print ire correct and unless noted med ence (NELAC). Date: 06-Ma number and a current Analyte Sheet for ater system for failure to sample, and m ter. or DOH) Sample Analysis Info up(s) above) Revised Report Re- bove) Detection(s) Location Unsatisfactory	Director Title) at all requirements of the ar-06 r the attached analysis results will res hay result in notification of the DOH Satisfactory: Yes N quested (circle or highlight group(s) above Incomplete Report Analysis Unsatisfactory

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 48 OF 107

DISINFECTION BYPRODUCTS ANALYSES

62-550.310(3)

Report Number/ Job ID	Martin Plant DW THM/HAA5

•	
Disinfectant Residual (mg/L	. 60

Sample Location:	3/4 Lab MRT Grab
Sample Number:	2023804001
Sampling Date:	2/13/06 15:00
Date Received:	2/14/06 12:35

Client:

HARBOR BRANCH ENVIRONMENTAL

ABORATORIES. INC. 7600 U.S. I North, Fort Plence FL 34946 Thome: (772) 465-2400, Ext. 285 Fax: (772) 467-1584

Florida Power & Light

1001	PWS ID	443	1748
15:00		(
12:35			

-	Conta			1 1 - 14 -	Analysis	Ó un litter	Analytical		Analysis	Analysis	
	D	Contam Name	MCL	Units	Result	Qualifier	Method	Lab MDL	Date	Time	Lab ID
. Г					1. A.						
)											
			v. *								
2	450	Monochloroacetic Acid	[N/A]	ug/L	2.8 🗸		EPA 552.1	0.88	2/21/06	10:11 PM	E96080
. 2	451	Dichloroacetic Acid	[N/A]	ug/L	59 🗹 🦲		EPA 552.1	1.3	2/23/06	6:46 AM	E96080
where the	152	Trichloroacetic acid	[N/A]	ug/L	41 ×		EPA 552.1	0.39	2/23/06	6:46 AM	E96080
· -	453	Monobromoacetic Acid	[N/A]	ug/L	0.46		EPA 552.1	0.28	2/21/06	10:11 PM	E96080
2	454	Dibromoacetic Acid	[N/A]	ug/L	2.6		EPA 552.1	0.18	2/21/06	10:11 PM	E96080
2	456	Total Haloacetic Acids (HAA5)	[60]	ug/L		•	•				
			, t.,								
,,2	941	Chloroform	[N/A]	ug/L	160		EPA 524.2	2.5	2/27/06	11:15 AM	E96080
2	942	Bromoform	[N/A]	ug/L	0.41 U		EPA 524.2	0.41	2/22/06	5:18 PM	E96080
2	943	Bromodichloromethane	[N/A]	ug/L	46		EPA 524.2	0.25	2/22/06	5:18 PM	E96080
129	944	Dibromochloromethane	[N/A]	ug/L	11		EPA 524.2	0.30	2/22/06	5:18 PM	E96080
2	950	Total Trihalomethanes	[80]	ug/L			· . ·				

JOTE: Do not round values. Report results to the accuracy, precision, and sensitivity of the analytical method used. Totals for haloacetic acids and total trihalomethanes will be calculated by DEP or DOH.

Reporting Format 62-550 730 Effective January 1995, Revised January 2004

Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are hacceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To oid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring peri

600 US 1 North ort Pierce, FL 34946 FDOH # E96080

4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370

2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

7inted: 3/6/06

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 49 OF 107

HARBOR BRANCH ENVIRONMENTAL LABORATORIES, INC. 5600 U.S. I. North, Fort Pierce FL 34946 Thome: (772) 465-2400, etc 285 74946 Text: (772) 467-1584

CERTIFICATE OF ANALYSIS [2023804]

Client: Florida Power & Light

Workorder ID: Martin Plant DW THM/HAA5

	Parameter Qualifier	Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
	Laboratory ID: 2023804001 Sample ID: 3/4 Lab MR1	^r Grab			Sampled: 02/13/06 Matrix: Water		Received reported on			
1	Bromodichloromethane	46	ug/L	0.25	EPA 524.2	VOC2600		02/22/06 17:18	3 WR	E96080
	Bromoform	0.41 U	ug/L	0.41	EPA 524.2	VOC2600		02/22/06 17:18	3 WR	E96080
,	Chloroform	160	ug/L	2.5	EPA 524.2	VOC2600		02/27/06 11:1:	5 WR	E96080
1	Dibromochloromethane	11	ug/L	0.30	EPA 524.2	VOC2600		02/22/06 17:18	B WR	E96080
ļ	Total THMs	210 ´	ug/L	0.50	EPA 524.2	VOC2600		02/22/06 17:18	B WR	E96080
t	Dibromoacetic Acid	2.6	ug/L	0.18	EPA 552.1	PES14659	02/22/06 15.27	02/21/06 22:11	1 RS	E96080
,	Dichloroacetic Acid	59	ug/L	1.3	EPA 552.1	PEST4659	02/22/06 15:27	02/23/06 6:46	RS	E96080
	Monobromoacetic Acid	0.46	ug/L	0.28	EPA 552.1	PEST4659	02/22/06 15:27	02/21/06 22:1	1 RS	E96080
1	Monochloroacetic Acid	2.8	ug/L	0.88	EPA 552.1	PEST4659	02/22/06 15:27	02/21/06 22:1	I RS	E96080
	Total HAAs	100	ug/L	0.37	EPA 552.1	PEST4659	02/22/06 15:27	02/23/06 6:46	RS	E96080
	Total HAAs	110	ug/L	0.18	EPA 552.1	PEST4659	02/22/06 15:27	02/21/06 22:1	1 RS	E96080
	Trichloroacetic acid	41	ug/L	0.39	EPA 552.1	PEST4659	02/22/06 15:27	02/23/06 6:46	RS	E96080
1	Laboratory ID: 2023804002				Sampled: 02/13/06	3 0:00	Received	: 02/14/06	12:35	
	Sample ID: Trip Blank				Matrix: Water	Results	reported on	Wet Weight I	Basis	1
,	Bromodichloromethane	0.25 U	ug/L	0.25	EPA 524.2	VOC2600		02/22/06 17:5	1 WR	E96080
1	Bromoform	0.41 U	ug/L	0.41	EPA 524.2	VOC2600		02/22/06 17:5	1 WR	E96080
	Chloroform	0.25 U	ug/L	0.25	EPA 524.2	VOC2600		02/22/06 17:51	t WR	E96080
j	Dibromochloromethane	0.30 U	ug/L	0.30	EPA 524.2	VOC2600		02/22/06 17:5	1 WR	E96080
1	Total THMs	0.50 U	ug/L	0.50	EPA 524.2	VOC2600		02/22/06 17:5	1 WR	E96080
	4									

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 4155 St. Johns Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

Printed: 3/6/06

Page 3 of 4

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 50 OF 107

Florida Department of Environmental Protection Safe Drinking Water Program Laboratory Reporting Format						
PUBLIC WATER SYSTEM INFORMATION (to be completed by sampler - Please type or print legibly)						
System Name: FPL MARTIN PLANT PWS I.D. # 4431748						
System Type (check one) Community Nontransient Noncommunity Transient Noncommunity						
Address: 21900 SW WARFIELD BLVD.						
City: INDIANTOLIA State: FL: ZIP Code: 34956						
Phone #: 772-597-7211 Fax #: 772-597-7416						
E-Mail Address:						
SAMPLE INFORMATION (to be completed by sampler)						
Sample Number:						
Sample Date: 12/21/05 Sample Time: 8:00 AM						
Sample Location (be specific): 3/4 Lab MRT Grab						
Disinfectant Residual (Required when reporting results for trihalomethanes and haloacetic acids):mg/L Field pH;						
Sample Type (Check Only One) Reason(s) for Sample (Check all that apply)						
Distribution Routine Compliance (with 62-550)						
Entry Point (to Distribution)						
Plant Tap not for compliance with 62-550) Composite of Multiple Sites**						
Raw (at well or intake) Clearance (permitting) Replacement (of Invalidated Sample)						
Max Residence Time						
Ave Residence Time Sampling Procedure Used or Other Comments:						
Near First Customer *See 62-550.550(4) for requirements and ** See 62-550.550(4) for requirements and						
*See 62-550.500(6) for requirements and restrictions. Note: See 62-550.512(3) for additional requirements for Nitrate or Nitrite MCL exceedences. ** See 62-550.550(4) for requirements and attach a results page for each site.						
Sampler's Name: STAN MCELROY						
Sampler's Phone #: 172 ~ 597 - 7640 Sampler's Fax #: 178 - 597 - 74/6						
Sampler's E-Mail Address:						
CERTIFICATION (to be completed by sampler)						
I, <u>STANMUELROV</u> , <u>LEAS</u> Print Name Print Title						
do HEREBY CERTIFY that the above public water system and sample collection information is completed and correct.						
Signature: Date: Date:						
Reporting Format 62-550.730 Effective January 1995, Revised January 2004						
\sim						

1

.

. |

. 1

, J

> > .

. }

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 51 OF 107

	f Environmental Protection ram Laboratory Reporting Format					
LABORATORY CERTIFICATION INFORMATION (10						
ATTACH A CURRENT DOH ANALYTE SHEET						
Lab Name: Harbor Branch Environmental Labora	tories, Inc. Florida Certification #:E96080					
Address:5600 US 1 North	Certification Expiration Date:06/30/2006					
Fort Pierce, FL 34946	Phone #: (772) 465-2400 Ext. 285					
ANALYSIS INFORMATION (to be completed by lab)	Date Sample(s) Received::12/21/05					
PWS ID (From Page 1): 4431748	Sample Number (From Page 1):					
Lab Assigned Report Number or Job ID:	2023325001					
Group(s) Analyzed and Results attached for complian	ce with Chapter 62-550, F.A.C. (Check all that apply):					
Inorganics Synthetic Organics	Volatile Organics Disinfection Byproducts					
All 17 All 30	All 21					
Partial All Except Dioxin	Partial XHaloacetic Acids					
Nitrate Partial	Bromate					
Nitrite Dioxin Only	Radionuclides Chlorite					
Asbestos Only	Single Sample Secondaries					
	Qtrly Composite**					
Were any analyses subcontracted? Yes _>	K No Partial					
If yes, please provide DOH certification numbers: ATTACH DOH ANALYTE SHEET FOR EACH SUBCONTRACTE						
CERT	TIFICATION					
I, Cindy Cromer	Laboratory Director					
(Print Name)	(Print Title)					
National Environmental Laboratory Accreditation Conf	a are correct and unless noted meet all requirements of the ference (NELAC)					
Signature Crity Come	Date: 05-Jan-06					
	on number and a current Analyte Sheet for the attached analysis results will result					
in rejection of the report, possible enforcement against the public	water system for failure to sample, and may result in notification of the DOH					
Bureau of Laboratory Services. ** Please provide radiological sample dates Jocations for each qu	Jarter.					
COMPLIANCE DETERMINATION (to be completed by Di						
Sample Collection Info Satisfactory: Yes						
Replacement Sample(s) Requested (circle or highlight g	group(s) above) Revised Report Requested (circle or highlight group(s) above)					
Additional Monitoring Required (circle or highlight group(s	s) above)					
Reason(s): MCL(s) Exceeded Detection(s) Incomplete Report						
Missing Analyte Sheet(s)	Carlo Constitution Constitutio					
Other: Person Notified:						
Comments:						
Date Reviewed:DEP	/DOH Reviewing Official:					
Reporting Format 62-550.73	0 Effective January 1995, Revised January 2004					

. |

. 1

. .

: |

. .

. j

HARBOR BRANCH ENVIRONMENTAL LABORATORIES, INC.

CERTIFICATE OF ANALYSIS [2023325]

Workorder ID: Martin Plant DW THM/HAA5 Client: Florida Power & Light Laboratory Prep Analyzed Lab Reporting Method Batch Date/Time Date/Time Analyst D Qualifier Result Parameter Units Limit Sampled: 12/21/05 8:00 Received: 12/21/05 12:50 Laboratory ID: 2023325001 Matrix: Water Sample ID: 3/4 Lab MRT Grab Results reported on Wet Weight Basis VOC2576 12/28/05 3:28 23 🖑 ug/L 0.25 EPA 524.2 WR E96080 Bromodichloromethane 0.41 EPA 524.2 VOC2576 12/28/05 3:28 WR E96080 Bromoform 0.41 U. ug/L ug/L 12/28/05 9:33 Chloroform 140 -2.5 EPA 524.2 VOC2576 WR E96080 0.30 VOC2576 12/28/05 3:28 WR E96080 Dibromochloromethane 2.5 ug/L EPA 524.2 0.50 VOC2576 12/28/05 3:28 WR E96080 160 -EPA 524.2 Total THMs ug/L **PEST4626** 01/2/06 7:41 01/2/06 18:58 RS E96080 0.18 EPA 552.1 **Dibromoacetic Acid** 1.2 ug/L 54 🦨 PEST4626 01/2/06 7:41 01/2/06 18:58 RS E96080 0.66 EPA 552.1 **Dichloroacetic Acid** ug/L 0.28 EPA 552.1 PEST4626 01/2/06 7:41 01/2/06 18:58 RS E96080 Monobromoacetic Acid 0.30 ~ ug/L PEST4626 01/2/08 7:41 01/2/06 18:58 RS ug/L 0.88 EPA 552.1 E96080 Monochloroacetic Acld 4.0 🗸 100 1 0.18 EPA 552.1 **PEST4626** 01/2/06 7:41 01/2/06 18:58 RS E96080 Total HAAs ug/Ľ **PEST4626** 01/2/06 7:41 01/3/06 10:31 R\$ E96080 0.98 EPA 552.1 Trichloroacetic acid 43 ug/L

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 4155 St. John's Pkwy Suite 1300 Sanford, FL 32771 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

Printed: 1/5/06

: |

: 1

Page 3 of 4

DISINFECTION BYPRODUCTS ANALYSES

62-550.310(3)

Client:	Florida Power & Light	Report Number/ Job ID Martin Plant DW THM/HAA5
Sample Location:	3/4 Lab MRT Grab	Disinfectant Residual (mg/L
Sample Number:	2023325001	PWSID 4471748
Sampling Date:	12/21/05 8:00	
Date Received:	12/21/05 12:50	

3	Conta	m			Analysis		Analytical		Analysis	Analysis	
	ID	Contam Name	MCL	Units	Result	Qualifier	Method	Lab MDL	Date	Time	Lab ID
;				· · · ·							
1								•			
					•						
	2450	Monochloroacettic Acid	[N/A]	ug/L	4.0		EPA 552.1	0.88	1/02/06	6:58 PM	E96080
ļ	2451	Dichloroacetic Acid	[N/A]	ug/L	54		EPA 552.1	0.66	1/02/06	6;58 PM	E96080
	2452	Trichloroacetic acid	[N/A]	ug/L	43		EPA 552.1	0.98	1/03/06	10:31 AM	E96080
	<i>_</i> '453	Monobromoacetic Acid	[N/A]	ug/L	0.30		EPA 552.1	0.28	1/02/06	6:58 PM	E96080
}	2454	Dibromoacetic Acid	[N/A]	ug/L	1.2		EPA 552.1	0.18	1/02/06	6:58 PM	E96080
,	2456	Total Haloacetic Acids (HAA5)	[60]	ug/L							
ĺ											
}	0044										
,	2941	Chloroform	[N/A]	ug/L	140		EPA 524.2	2.5	12/28/05	9:33 AM	E96080
ĺ	2942	Bromoform	[N/A]	ug/L	0.41 U		EPA 524.2	0.41	12/28/05	3:28 AM	E96080
]	2943	Bromodichloromethane	[N/A]	ug/L	23		EPA 524.2	0.25	12/28/05	3:28 AM	E96080
	2944	Dibromochloromethane	`[N/A]	ug/L	2.5		EPA 524.2	0.30	12/28/05	3:28 AM	E96080
	2950	Total Trihalomethanes	[80]	ug/L							
1	2000	Total Thildionie Indres	Inol	uyru							

NOTE: Do not round values. Report results to the accuracy, precision, and sensitivity of the analytical method used. Totals for haloacetic acids and total trihalomethanes will be calculated by DEP or DOH.

Reporting Format 62-550.730 Effective January 1995, Revised January 2004

* Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 82-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are unacceptable for compliance with 82-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To avoid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring period.

70 US 1 North Jrt Pierce, FL 34946 FDOH # E96080 4155 St. John's Pkwy Suite 1300 Sanford, FL 32771 FDOH # EB3509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

. . .

^j Printed: 1/5/06

, I

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 54 OF 107

	Florida Department of Environmental Protection Safe Drinking Water Program Laboratory Reporting Format
. 1	PUBLIC WATER SYSTEM INFORMATION (to be completed by sampler - Please type or print legibly)
• 1	stem Name: FPL MARTIN PLANT PWS I.D. #: 4431748
	System Type (check one) Community Nontransient Noncommunity Transient Noncommunity
. 1	Address: 21900 5W WARFIELD BLYD.
]	City: INDIANTOWN State: FL. ZIP Code: 34956
. 1	Phone #: <u>712-597-7211</u> Fax #: <u>772-597-7416</u>
~}	E-Mail Address:
. 1	SAMPLE INFORMATION (to be completed by sampler)
	Sample Number: PMR - 091405 Location Code (if known):
. }	Sample Date: 09/14/05 Sample Time: 7:00 AM
	Sample Location (be specific): 3/4 Lab - MRT Grab
-)	Disinfectant Residual (Required when reporting results for trihalomethanes and haloacetic acids): mg/L Field pH:
:	Sample Type (Check Only One) Reason(s) for Sample (Check all that apply)
	Distribution Routine Compliance (with 62-550) Quarterly (Which Qtr? 3 RD
. 1	Entry Point (to Distribution)
$\left(\right)$	Plant Tap not for compliance with 62-550) Composite of Multiple Sites**
· .)	Raw (at well or intake)
- 1	XMax Residence Time
.	Ave Residence Time Sampling Procedure Used or Other Comments:
	Near First Customer *See 62-550.500(6) for requirements and restrictions. Note: See 62-550.512(3) for additional requirements for Nitrate or Nitrite MCL exceedences. ** See 62-550.550(4) for requirements and attach a results page for each site.
:	Sampler's Name: STAN MCELROY
• }	Sampler's Phone #:
	Sampler's E-Mail Address: STAN J MGELDEY CFPL. COM
•	CERTIFICATION (to be completed by sampler)
	1. STAN MCELRAY LEAD OP,
	Print Name Print Title To HEREBY CERTIFY that the above public water system and sample collection information is
• •	sompleted and correct.
	Signature: Date: 10/10/05
. }	Reporting Format 62-550.730 Affective January 1995, Revised January 2004

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 55 OF 107 Ormat

Florida Department of Environmental Protection	n ^{EXHIBIT}
Safe Drinking Water Program Laboratory Reporting	J Format

، }	Florida Department of Environmental Protection EXHIBIT RRL-3, PAGE 55 OF Safe Drinking Water Program Laboratory Reporting Format
	LABORATORY CERTIFICATION INFORMATION (to be completed by lab - Please type or print legibly)
;)	ATTACH A CURRENT DOH ANALYTE SHEET
: !	b Name: Harbor Branch Environmental Laboratories, Inc. Florida Certification #: E96080
	Address: 5600 US 1 North Certification Expiration Date: 06/30/2006
.)	Fort Pierce, FL 34946 Phone #: (772) 465-2400 Ext. 285
•	ANALYSIS INFORMATION (to be completed by lab) Date Sample(s) Received:: 9/14/05
	PWS ID (From Page 1): Sample Number (From Page 1):
	Lab Assigned Report Number or Job ID: 2022517001
,	Group(s) Analyzed and Results attached for compliance with Chapter 62-550, F.A.C. (Check all that apply):
	Inorganics Synthetic Organics Volatile Organics Disinfection Byproducts
	All 17 All 30 All 21 All Commethanes
	Partial All Except Dioxin Partial All All Except Dioxin
• • • •	Nitrite Dioxin Only Radionuclides Chlorite
. }	
····}	
:	Were any analyses subcontracted? Yes X No
	yes, please provide DOH certification numbers;
<u>.</u>	CERTIFICATION
	I, Cindy Cromer Laboratory Director
	(Print Name) (Print Title)
	do HEREBY CERTIFY that all attached analytical data are correct and unless noted meet all requirements of the
1	National Environmental Laboratory Accreditation Conference (NELAC).
	Signature Crig ann Date: 28-Sep-05
)	 * Failure to provide a valid and current Florida DOH lab certification number and a current Analyte Sheet for the attached analysis results will result in rejection of the report, possible enforcement against the public water system for failure to sample, and may result in notification of the DOH Bureau of Laboratory Services. ** Please provide radiological sample dates locations for each quarter.
,	COMPLIANCE DETERMINATION (to be completed by DEP or DOH)
ļ	Sample Collection Info Satisfactory: Yes No Sample Analysis Info Satisfactory: Yes No
, [.]	[]Replacement Sample(s) Requested (circle or highlight group(s) above) Revised Report Requested (circle or highlight group(s) above)
	Additional Monitoring Required (circle or highlight group(s) above)
-	Reason(s): MCL(s) Exceeded Detection(s) Incomplete Report Missing Analyte Sheet(s) Location Unsatisfactory Analysis Unsatisfactory Other: Detection(s) Detection(s) Incomplete Report
•	Person Notified: Date Notified:
	Comments:
]	Date Reviewed: DEP/DOH Reviewing Official:
}	Reporting Format 62-550.730 Effective January 1995, Revised January 2004

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 56 OF 107

A R B O R B F NVIRONME LABORATOF	RIES. INC.	34		GOLD EXHII	ER ASSOCI. 3IT RRL-3, F	ATES, IN 'AGE 56 '	IC. OF 107
· · ·	DISINFE			ALYSES	۰. ۲		
		62-55	0.310(3)				
Client: F	florida Power & Ligh	it "	Report Num	ber/ Job ID M	artin Plant DW	THM/HAA	5
ample Location: 3	/4 Lab - MRT Grab		Disinfectant	Residual (mg/L	. 4		
Sample Number: 2	022517001		•	PWS ID	447-	1748	•
ampling Date: 9	/14/05 7:00						
Date Received: 9	/14/05 10:50						•
Contam D Contam Name	MCL Uni	Analýsis Is Result (Analyt Qualifier Metho		Analysis L Date	Analysis Time	Lab ID
			an a				
2450 Monochloroacetic A			🔆 🚲 EPA 55	1 - ANA	9/26/05	8:15 PM	E96080
2451 Dichloroacetic Acid 2452 Trichloroacetic acid	(N/A) Ug/L		EPA 55	·	9/27/05	5:52 PM	E96080 E96080
			EPA 55 EPA 55		9/27/05	5:52 PM	E96080
3 Monobromoacetic A 2454 Dibromoacetic Acid	747 F		EPA 55		9/26/05 9/26/05	8:15 PM 8:15 PM	E96080
2456 Total Haloacetic Acids (I					0120100	0.1011	
	[NA] ug/L	210	EPA 52	4.2 2.5	9/23/05	10:31 AM	E96080
2942 Bromoform	[NA] UG/L	0.41 U	EPA 52	4.2 0.41	9/22/05	9:39 PM	E96080
2943 Bromodichlorometh	ane [N/A] ug/L	32	EPA 52	4.2 0,25	9/22/05	9:39 PM	E96080
2944 Dibromochlorometh		3.3	EPA 52	4.2 0.30	9/22/05	9:39 PM	E96080
2950 Total Trihalomethan	ies [80] Ug(L					. •	
NOTE: Do not round Totals for halo	values. Report res acetic acids and t					ical metho	xd used.
ļ				•			
Reporting Format 62-550.730 Effective January 1995, Revised Ja	inuary 2004		•				
Results must be reported with app inacceptable for compliance with 6 4 a monitoring violation, unacce	2-550. Results qualified wit	h a J, Q, R, or Y must be	e accompanied by writt	en justification and will be	evaluated on a case		
600 US 1 North ort Pierce, FL 34946 FDOH # E96080 Yinted: 9/28/05	255 Enterprise Road Deltona, FL 32725 FDOH # E83509	, Suite 1	IN ADCOMPANY	307 Coolidge Aver Lehigh Acros, FL FDOH # E85370	33936 Spriı	l Osawaw B ng Hill, FL 3 H # E84418	4607

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 57 OF 107

ample Location: Trip Blank ample Number: 2022517002 ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 tontam Do Contam Name MCL Units, Result Qualifier Méthod Analytical Qualifier Méthod Lab MDL Date Time Analysis Date Time Disinfectant Residual (mg/L 4442 - 1748 Analysis Date Time Date Time Date Time Date Time P442 - 1748 Analysis Date Time	62-550.310(3) Report Number/ Job ID Martin Plant DW THM/HAA5 Disinfectant Residuai (mg/L PWS ID 442 - 1148 Analysis Analysis Qualifier Analysis Analysis Analysis Besuit Qualifier Analysis Analysis Analysis Besuit Qualifier Analysis Date Time Lab ID Analysis Besuit Qualifier Method Lab MDL Date Time Lab ID PA 524.2 0.25 9/22/05 10:12 PM E96080 PA 524.2 0.30 J22/05 10:12 PM E96080 S25 LU EPA 524.2 0.30 EPA 524.2 0.30	ARBOR BRANC	H		EATH		,1102	
62-550.310(3) lient: Florida Power & Light: Report Number/ Job ID Martin Plant DW THM/HAA ample Location: Trip Blank Disinfectant Residual (mg/L -4 ample Number: 2022517002 PWS ID 44/2 - 11/42 ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 contam MCL Units Result Qualifier Method Lab MDL Analysis 0 Contam Name MCL Units Result Qualifier Method Lab MDL Analysis Date Time 941 Chloroform IVA ug/L 0.28 U EPA 524.2 0.25 9/22/05 10:12 PM 942 Bromodichloromethane IVA ug/L 0.28 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Ditoromochloromethanes IVA ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes IVA ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	62-550.310(3) Report Number/ Job ID Martin Plant DW THM/HAA5 Disinfectant Residual (mg/L PWS ID 942-1148 Analysis Analytical Qualifier Method Lab MDL Date Date Time Lab MDL Date Date Time Lab MDL Date Date Time Lab ID EPA 524.2 0.25 9/22/05 10:12 PM E96080 110 EPA 524.2 0.25 9/22/05 10:12 PM E96080	ABORATORIES	INC.					
62-550.310(3) lient: Florida Power & Light: Report Number/ Job ID Martin Plant DW THM/HAA ample Location: Trip Blank Disinfectant Residual (mg/L -4 ample Number: 2022517002 PWS ID 44/2 - 11/42 ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 contam MCL Units Result Qualifier Method Lab MDL Analysis 0 Contam Name MCL Units Result Qualifier Method Lab MDL Analysis Date Time 941 Chloroform IVA ug/L 0.28 U EPA 524.2 0.25 9/22/05 10:12 PM 942 Bromodichloromethane IVA ug/L 0.28 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Ditoromochloromethanes IVA ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes IVA ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	62-550.310(3) Report Number/ Job ID Martin Plant DW THM/HAA5 Disinfectant Residual (mg/L PWS ID 942-1148 Analysis Analytical Qualifier Method Lab MDL Date Date Time Lab MDL Date Date Time Lab MDL Date Date Time Lab ID EPA 524.2 0.25 9/22/05 10:12 PM E96080 110 EPA 524.2 0.25 9/22/05 10:12 PM E96080) U.S. North, Fort Pierce FL 34946 Le: (772) 455-2400, Ext 285 Fax: (77	72) 467-1584				•	
ient: Florida Power & Light Report Number/ Job ID Martin Plant DW THM/HAAs ample Location: Trip Blank Disinfectant Residual (mg/L -4 ample Number: 2022517002 PWS ID 44/2 - 11/4/2 ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 contam MCL Units Result Qualifier Analytical Analysis Contam Name MCL Units Result Qualifier Method Lab MDL Analysis 941 Chloroform IVA ug/L 0.28 U EPA 524.2 0.25 9/22/05 10:12 PM 942 Bromodichloromethane IVA ug/L 0.28 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Ditromochicromethanes IVA ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes IPO ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	Report Number/ Job ID Martin Plant DW THM/HAA5 Disinfectant Residual (mg/L 4 PWS ID 4421748 Analysis Analytical Qualifier Mathing Mathing 4431748 Analysis Analysis Qualifier Mathing Lab MDL Date Date Time Lab ID Date Analysis Lab ID Date Time Lab ID Date Date Time Lab ID Date Date Discontraction Discontraction Discontraction	D	ISINFECTION BYP	RODUCTS ANALYS	ES			
ample Location: Trip Blank ample Number: 2022517002 ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 contam MCL Units Result Qualifier Analysis Qualifier Method Lab MDL Analysis Analysis Time MCL Units Result Qualifier Method Lab MDL Analysis Analysis Time Time Time 941 Choroform N/A) ug/L 0.22 U EPA 524.2 0.25 9/22/05 10:12 PM 942 Bromodinkoromethane N/A) ug/L 0.23 U EPA 524.2 0.41 9/22/05 10:12 PM 944 Dibromochloromethane N/A) ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 944 Dibromochloromethanes (N) ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes (B) Ug/L 0.30 U EPA 524.2	Disinfectant Residual (mg/L PWS ID 443-1148 Analysis Analysis Result Qualifier Method Lab MDL Date Time Lab ID Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 141 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 126 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 127 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 128 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 128 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 128 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 129 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 120 U EPA 524.2 0.30 9/22/05		62-5	50.310(3)		i.		
ample Number: 2022517002 ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 contam Analysis D Contam Name MCL Units, Result Qualifier Měthod Lab MDL Date Time 941 Chloroform V NAI, ug/L 0.25 U EPA 524.2 0.25. 9/22/05 10:12 PM 943 Bromodichloromethane NAI, ug/L 0.25 U EPA 524.2 0.25. 9/22/05 10:12 PM 943 Bromodichloromethane NAI, ug/L 0.25 U EPA 524.2 0.25.3 9/22/05 10:12 PM 944 Dibromochloromethane NAI, ug/L 0.30 U EPA 524.2	PWS ID 442-1148 Analysis Analytical Analysis Analysis Besult Qualifier Method Lab MDL Date Time Lab ID 225 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 241 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 225 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 25 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 23 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 2.30 U EPA 524.2 0.38 9/22/05 10:12 PM E96080 3.30 U EPA 524.2 0.38 9/22/05 10:12 PM E96080	ent: Florida Pow	er & Light	Report Number/ Jo	b ID Marti	n Plant DW	THM/HAA	5,
ampling Date: 9/14/05 0:00 ate Received: 9/14/05 10:50 ontam MCL Analysis Analysis O Contam Name MCL Units, Result Qualifier Method Lab MDL Analysis Analysis O Contam Name MCL Units, Result Qualifier Method Lab MDL Analysis Analysis Add Choroform MA Ug/L 6,25 U EPA 524.2 0.25 9/22/05 10:12 PM Add Bromodichloromethane N/A Ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM Add Bromodichloromethane N/A Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM Add Dibromochloromethane N/A Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM Add Dibromochloromethane B0 Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	Analysis Analytical Analysis Analysis Analysis Qualifier Method Lab MDL Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 241 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 25 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 25 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 25 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 26 to the accuracy, precision, and sensitivity of the analytical method used	mple Location: Trip Blank		Disinfectant Residu	ual (mg/L	. 4	(
Analysis Analysis Contam Name MCL Units Result Qualifier Method Lab MDL Date Time MCL Units Result Qualifier Method Lab MDL Date Time MCL Units Result Qualifier Method Lab MDL Date Time MCL Units Result Qualifier Method Lab MDL Date Time NAL Ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM PA12 Bromoform PNAI ug/L 0.41-U EPA 524.2 0.41 9/22/05 10:12 PM PA33 Bromodichloromethane PNAI ug/L 0.30 U EPA 524.2 0.25 9/22/05 10:12 PM PA44 Dibromochloromethane PNAI ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM PA45 Total Trihalomethanes PNAI ug/L	Result Qualifier Method Lab MDL Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 144 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 130 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 130 U EPA 524.2 0.30 9/22/05 10:12 PM E96080	mple Number: 2022517002	2		PWSID	442-	1148	/
Analysis Contam Name Analysis MCL Analysis Units Analysis Result Analytical Qualifier Analytical Méthod Analysis Lab MDL Analysis Date Analysis Time P41 Chloroform N/A) Ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM P42 Bromoform N/A) Ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM P43 Bromodichloromethane N/A) Ug/L 0.25 U EPA 524.2 0.41 9/22/05 10:12 PM P44 Dibromochloromethane N/A) Ug/L 0.30 U EPA 524.2 0.36 9/22/05 10:12 PM P44 Dibromochloromethane N/A) Ug/L 0.30 U EPA 524.2 0.36 9/22/05 10:12 PM P450 Total Trihalomethanes R/A) Ug/L 0.30 U EPA 524.2 0.36 9/22/05 10:12 PM	Result Qualifier Method Lab MDL Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 144 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 125 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 125 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 125 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 120 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 130 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 144 U EPA 524.2 0.30 9/22/05 10:12 PM E9608	mpling Date: 9/14/05 0:00)		·		1/4	
Ontam MCL Units Analysis Analytical Lab MDL Analysis Analysis 0 Contam Name MCL Units Result Qualifier Method Lab MDL Date Time 0 Mathod Lab MDL Date Time Date Time 0 Mathod Units Result Qualifier Method Lab MDL Date Time 0 Mathod Ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 041 Choroform IVA Ug/L 0.25 U EPA 524.2 0.41 9/22/05 10:12 PM 042 Bromodichloromethane IVA Ug/L 0.25 U EPA 524.2 0.41 9/22/05 10:12 PM 043 Bromodichloromethane IVA Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 044 Dibromochloromethanes IVA Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 050 Total Trihaiomethanes IVA Ug/L 0.30 U	Result Qualifier Method Lab MDL Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E96084 144 U EPA 524.2 0.41 9/22/05 10:12 PM E96084 125 U EPA 524.2 0.41 9/22/05 10:12 PM E96084 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96084 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96084 125 U EPA 524.2 0.30 9/22/05 10:12 PM E96084 130 U EPA 524.2 0.30 9/22/05 10:12 PM E96084 144 U EPA 524.2 0.30 9/22/05 10:12 PM E96084	te Received: 9/14/05 10:6	50	·				
O Contam Name MCL Units Result Qualifier Method Lab MDL Date Time 041 Chioroform IVA ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 042 Bromoform IVA ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 043 Bromodichloromethane IVA ug/L 0.25 U EPA 524.2 0.41 9/22/05 10:12 PM 044 Dibromochloromethane IVA ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 044 Dibromochloromethane IVA ug/L 0.30 U EPA 524.2 0.38 9/22/05 10:12 PM 050 Total Trihalomethanes [80] ug/L 0.30 U EPA 524.2 0.38 9/22/05 10:12 PM	Result Qualifier Method Lab MDL Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 144 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.41 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 125 U EPA 524.2 0.25 9/22/05 10:12 PM E96080 130 U EPA 524.2 0.30 9/22/05 10:12 PM E96080 130 U EPA 524.2 0.30 9/22/05 10:12 PM E96080		- -		· .	• .		
O Contam Name MCL Units Result Qualifier Method Lab MDL Date Time 041 Chioroform IVA ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 042 Bromoform IVA ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 043 Bromodichloromethane IVA ug/L 0.25 U EPA 524.2 0.41 9/22/05 10:12 PM 044 Dibromochloromethane IVA ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 044 Dibromochloromethane IVA ug/L 0.30 U EPA 524.2 0.38 9/22/05 10:12 PM 050 Total Trihalomethanes [80] ug/L 0.30 U EPA 524.2 0.38 9/22/05 10:12 PM	Result Qualifier Method Lab MDL Date Time Lab ID 25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 144 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 125 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 125 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 125 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 120 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 130 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 144 U EPA 524.2 0.30 9/22/05 10:12 PM E9608	ontam	Analysis	Analytical		Analysis	Analysis	
942 Bromoform IN/A) ug/L 0.41 EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane IN/A) ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane IN/A) ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	1.41 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 at to the accuracy, precision, and sensitivity of the analytical method user	Contam Name MC	L Units Result		Lab MDL			Lab IC
H42 Bromoform [N/A] Ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM H43 Bromodichloromethane [N/A] Ug/L 0.25.U EPA 524.2 0.25 9/22/05 10:12 PM H44 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM H44 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM H450 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use Sensitivity of the analytical method use Sensitivity of the analytical method use					· · · · · ·		
942 Bromoform [N/A] ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	1.41 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 at to the accuracy, precision, and sensitivity of the analytical method user	•			يونون مورد موجوع المورد			
942 Bromoform [N/A] ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	1.41 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use	Į.	No. AND	No.				
942 Bromoform IN/A) ug/L 0.41 EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane IN/A) ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane IN/A) ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 944 Dibromochloromethane IN/A) ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] ug/L 4	1.41 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 at to the accuracy, precision, and sensitivity of the analytical method user	. 44		· · · · · · · · · · · · · · · · · · ·	1.0			
942 Bromoform (N/A) ug/L 0.41 EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	1.41 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 at to the accuracy, precision, and sensitivity of the analytical method user					. '		
942 Bromoform [N/A] ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use Sensitivity of the analytical method use Sensitivity of the analytical method use	i hijote su	And And			х 	· · ·	
H42 Bromoform [N/A] Ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM H43 Bromodichloromethane [N/A] Ug/L 0.25.U EPA 524.2 0.25 9/22/05 10:12 PM H44 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM H44 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM H450 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use Sensitivity of the analytical method use Sensitivity of the analytical method use					. : •••	· ·	
H42 Bromoform [N/A] Ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM H43 Bromodichloromethane [N/A] Ug/L 0.25.U EPA 524.2 0.25 9/22/05 10:12 PM H44 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM H44 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM H450 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use Sensitivity of the analytical method use Sensitivity of the analytical method use	and the second			تېرو زې	. <u>1</u>		
942 Bromoform [N/A] ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use Sensitivity of the analytical method use Sensitivity of the analytical method use				· • · ·			a.
942 Bromoform [N/A] ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use Sensitivity of the analytical method use Sensitivity of the analytical method use	1943 - 1943 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -				•		
942 Bromoform [N/A] ug/L 0.41 U EPA 524.2 0.41 9/22/05 10:12 PM 943 Bromodichloromethane [N/A] ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 944 Dibromochloromethane [N/A] ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 950 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	141 U EPA 524.2 0.41 9/22/05 10:12 PM E9608 1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use							
043 Bromodichloromethane [N/A] Ug/L 0.25 U EPA 524.2 0.25 9/22/05 10:12 PM 044 Dibromochloromethane [N/A] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM 050 Total Trihalomethanes [80] Ug/L 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM	1.25 U EPA 524.2 0.25 9/22/05 10:12 PM E9608 0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use EPA 524.2 0.30 9/22/05 10:12 PM E9608		在了自己的 有些有些不可能。	EPA 524.2		9/22/05	. 10:12 PM	E9608
Dibromochloromethane [N/A] Lig/L 0.30 U EPA 524.2 0.38 9/22/05 10:12 PM Total Trihalomethanes [80] Ug/L	0.30 U EPA 524.2 0.30 9/22/05 10:12 PM E9608 s to the accuracy, precision, and sensitivity of the analytical method use			EPA 524.2		9/22/05	10:12 PM	E9608
50 Total Trihalomethanes [80] Ug/L	to the accuracy, precision, and sensitivity of the analytical method use	an an in a stand of the stand of the stand	「「「「「「「「」」」を見ていた。	EPA 524.2		9/22/05	10:12 PM	
	to the accuracy, precision, and sensitivity of the analytical method use	Presidenter entrediction frand			and the	9/22/05	10:12 PM	E9608
	to the accuracy, precision, and sensitivity of the analytical method use	50 Total Trihalomethanes [80]	ug/L	an a			· ·	
	to the accuracy, precision, and sensitivity of the analytical method use							
DTE: Do not round values, Report results to the accuracy, precision, and sensitivity of the analytical metho						-		
	trihalomethanes will be calculated by DEP or DOH.						cal metho	od use

eporting Format 62-550.730 =flective January 1995, Revised January 2004

Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are acceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To

00 US 1 North of Pierce, FL 34946 FDOH # E96080 255 Enterprise Road, Suite 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370

2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

inted: 9/28/05

-

41

• •

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 58 OF 107

HARBOR BRANCH ENVIRONMENTAL LABORATORIES, INC.

CERTIFICATE OF ANALYSIS [2022517]

Client: Florida Power & Light

Workorder ID: Martin Plant DW THM/HAA5

Parameter	Qualifier	Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Laboratory ID: Sample ID:	2022517001 3/4 Lab - MF				Sampled: 09/14/0 Matrix: Water		Received reported on			
Bromodichloromet	hane	32	ug/L	0.25	EPA 524.2	VOC2539		09/22/05 21:39	WR	E96080
Bromoform		0.41 U	ug/L	0.41	EPA 524.2	VOC2539		09/22/05 21:39	} wr	E96080
Chloroform		210	ug/L	2.5	EPA 524.2	VOC2539		09/23/05 10:31	1 WR	E96080
Dibromochlorome	hane	3.3	ug/L	0.30	EPA 524.2	VOC2539		09/22/05 21:3	9 WR	E96080
Total THMs		240	ug/L	0.50	EPA 524.2	VOC2539		09/22/05 21:3	9 WR	E96080
Dibromoacetic Aci	d .	0.52	ug/L	0.18	EPA 552.1	PEST4569	09/26/05 7:13	09/26/05 20:1	5 RS	E96080
Dichloroacetic Aci	d	100	ug/L	3.3	EPA 552.1	PEST4569	09/26/05 7:13	09/27/05 17:5	2 RS	E96080
Monobromoacetic	Acid	0.50	ug/L	0.28	EPA 552.1	PEST4569	09/28/05 7:13	09/26/05 20:1	5 RS	E96080
Monochioroacetic	Acid	4.7	ug/L	0.88	EPA 552.1	PEST4569	09/26/05 7:13	09/26/05 20:1	5 RS	E96080
Total HAAs		210	ug/L	0.18	EPA 552.1	PEST4569	09/26/05 7:13	09/26/05 20:1	5 RS	E96080
Trichloroacetic aci	d	99	ug/L	0.98	EPA 552.1	PEST4569	09/26/05 7:13	09/27/05 17:5	2 RS	E96080
Laboratory ID:	2022517002				Sampled: 09/14/0	5 0:00	Received	: 09/14/05	10:50	
Sample ID:	Trip Blank				Matrix: Water	Result	s reported on	Wet Weight	Basis	
Bromodichloromet	hane	0.25 U	ug/L	0.25	EPA 524.2	VOC2539		09/22/05 22:1	2 WR	E96080
		0.41 U	ug/L	0.41	EPA 524.2	VOC2539		09/22/05 22:1	2 WR	E96080
roform		0.25 U	ug/L	0.25	EPA 524.2	VOC2539		09/22/05 22:1	2 WR	E96080
Dibromochloromet	hane	0.30 U	ug/L	0.30	EPA 524.2	VOC2539		09/22/05 22:1	2 WR	E96080
, Total THMs	·	0.50 U	ug/L	0.50	EPA 524.2	VOC2539		09/22/05 22:1	2 WR	E96080
								•		

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 Printed: 9/28/05 255 Enterprise Road, Suite 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 59 OF 107

Florida Department of Environmental Protection Safe Drinking Water Program Laboratory Reporting Format							
PUBLIC WATER SYSTEM INFORMATION (10	b be completed by sampler - Please type or print legibly)						
System Name: FPL MARTIN PLANT PWS I.D. #: 4431741							
System Type (check one)	[X]Nontransient Noncommunity []]Transient Noncommunity						
Address: 31900 5W WAI	OFIELD BLYD.						
· ·	· · · · · · · · · · · · · · · · · · ·						
•	City: INDIANTOAN State: PL. ZIP Code: 34955						
Phone #: 112-597-7211	Fax#: 772-597-7416						
E-Mail Address:							
SAMPLE INFORMATION (to be completed by sa	mpler)						
Sample Number: PnR-041205	Location Code (if known):						
Sample Date: 04/12/05	Sample Time:1:00 PM						
Sample Location (be specific): 3/4 Lab - MR	f Grab						
Disinfectant Residual (Required when reporting res	sults for trihalomethanes and haloacetic acids): <u>4 mg/L Field pH:</u>						
Sample Type (Check Only One)	Reason(s) for Sample (Check all that apply)						
	Routine Compliance (with 62-550)						
Entry Point (to Distribution)	Confirmation of MCL Exceedence* Special (not for compliance with 62-550)						
Plant Tap not for compliance with 62-550)	Composite of Multiple Sites**						
	Clearance (permitting) Replacement (of Invalidated Sample)						
	Other						
	ampling Procedure Used or Other Comments:						
Near First Customer *See 62-550.500(6) for requirements and	restrictions. ** See 62-550.550(4) for requirements and						
Note: See 62-550.512(3) for additional re for Nitrate or Nitrite MCL exceeded	equirements attach a results page for each site.						
Sampler's Name: STAN MCEL	Roy						
Sampler's Phone #: 772-597-7640 Sampler's Fax #: 772-597-7416							
Sampler's E-Mail Address: STAN-J_MCELROY C FPL, Com							
CERTIFICATION (to be completed by sampler)							
I, <u>STAN MCELACY</u> , <u>LIBAD OPERATUR</u> Print Name							
do HEREBY CERTIFY that the above public water system and sample collection information is completed and correct.							
Signature:Date: 7-6-05							
Reporting Format 62-550.730 Effective January 1995, Revised January 2004							

.

. |

. |

. |

. 1

]

. 1

•

.]

. |

, I

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 60 OF 107

Florida Department of Environmental Protection Safe Drinking Water Program Laboratory Reporting Format					
LABORATORY CERTIFICATION INFORMATION (to be	e completed by lab - Please type or print legibly)				
ATTÁCH A CURRENT DOH ANALYTE SHEET					
Lab Name: Harbor Branch Environmental Laborate	pries, Inc. Florida Certification #: E96080				
Address: 5600 US 1 North	Certification Expiration Date: 06/30/2005				
*-	Phone #: (772) 465-2400 Ext. 285				
ANALYSIS INFORMATION (to be completed by lab)	Date Sample(s) Received:: 4/13/05				
PWS ID (From Page 1):	Sample Number (From Page 1):				
Lab Assigned Report Number or Job ID:					
Group(s) Analyzed and Results attached for compliance					
Inorganics Synthetic Organics	Volatile Organics Disinfection Byproducts				
	All 21				
Partial All Except Dioxin	Partial XHaloacetic Acids				
Nitrate Partial	Bromate				
Nitrite Dioxin Only	Radionuclides Chlorite				
Asbestos Only	Single Sample Secondaries				
· ·	Qtrly Composite**				
Were any analyses subcontracted?YesX	K. No				
If yes, please provide DOH certification numbers: ATTACH DOH ANALYTE SHEET FOR EACH SUBCONTRACTE					
CĘRŢ	FIFICATION				
I, Cindy Cromer	Laboratory Director				
(Print Name)	(Print Title)				
	a are correct and unless noted meet all requirements of the				
National Environmental Laboratory Accreditation Con	efficient en la selection de la companya de la comp				
	Date: <u>26-Apr-05</u>				
* Failure to provide a valid and current Florida DQH lab certificati in rejection of the report, possible enforcement against the public Bureau of Laboratory Services. ** Please provide radiological sample dates Jocations for each qu	lon number and a current Analyte Sheet for the attached analysis results will result a water system for failure to sample, and may result in notification of the DOH uarter.				
COMPLIANCE DETERMINATION (to be completed by D					
Sample Collection Info Satisfactory: Yes					
Replacement Sample(s) Requested (circle or highlight	group(s) above) Revised Report Requested (circle or highlight group(s) above)				
Additional Monitoring Required (circle or highlight group)	(s) above)				
Reason(s): MCL(s) Exceeded Missing Analyte Sheet(s)	Detection(s) Incomplete Report Location Unsatisfactory Analysis Unsatisfactory				
Person Notified:	Date Notified:				
Comments:					
Date Reviewed:DEF	P/DOH Reviewing Official:				
Reporting Format 62-550.7	30 Effective January 1995, Revised January 2004				

 (\cdot, \cdot)

.

. .

. .

.

.)

.]

1

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 61 OF 107

HARBOR BRANCH ENVIRONMENTAL 'ABORATORIES, INC. - 00 US. | North Fort Place R. 34946 - mone (772) 465-2400, ext 285 - 762 (772) 467-1584

DISINFECTION BYPRODUCTS ANALYSES

62-550.310(3)

Client:	Florida Power & Light	Report Number/ Job ID Martin Plant DW THM/HAA5
Sample Location:	3/4 Lab - MRT Grab	Disinfectant Residual (mg/L
Sample Number:	2021241001	PWS ID
Sampling Date:	4/12/05 13:00	
Date Received:	4/13/05 11:25	

	Contai ID	m Contam Name	MCL	Linite	Analysis Result	Qualifier	Analytical Method	Lab MDL	Analysis Date	Analysis Time	Lab iD
1		Contain Name				Quanner				11110	
1											
)							3				
	2450	Monochloroacelic Acid	[N/A]	ug/L	4.9		EPA 552.1	0.88	4/22/05	4:22 PM	E96080
	2451	Dichloroacetic Acid	[N/A]	ug/L	87		EPA 552.1	3.3	4/22/05	6:30 PM	E96080
1	452	Trichloroacetic acid	[N/A]	ug/L	64		EPÁ 552.1	0.98	4/22/05	6:30 PM	E96080
}	∠453	Monobromoacetic Acid	[N/A]	ug/L	0.28 U		EPA 552.1	0.28	4/22/05	4:22 PM	E96080
	2454	Dibromoacetic Acid	[N/A]	ug/L	0.80		EPA 552.1	0.18	4/22/05	4:22 PM	E96080
	2456	Total Haloacetic Acids (HAA5)	[60]	ug/L	· · · ,	•					
· j	2941	Chioroform	[N/A]	ug/L	160		EPA 524.2	1.2	4/20/05	4:43 PM	E96080
	2942	Bromoform	[NVA]	ug/L	0.41 U	·	EPA 524.2	0.41	4/19/05	11:44 PM	E96080
1	2 9 43	Bromodichloromethane	[N/A]	.ug/L	32		EPA 524.2	0.25	4/19/05	11:44 PM	E96080
1	2944	Dibromochloromethane	[N/A]	ųg/L	3.7	*s., *	EPA 524.2	0,30	4/19/05	11:44 PM	E96080
	2950	Total Trihalomethanes	[80]	ướ/Ľ				; , ·			

NOTE: Do not round values. Report results to the accuracy, precision, and sensitivity of the analytical method used. Totals for haloacetic acids and total trihalomethanes will be calculated by DEP or DOH.

Reporting Format 82-550.730

....

. . .

Effective January 1995, Revised January 2004

* Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, are unacceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis. To avoid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring peri

OUS 1 North Fort Plerce, FL 34946 FDOH # E96080 Printed: 4/26/05

255 Enterprise Road, Suite 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 62 OF 107

Received:	Florida Power D: Martin Plant D 4/13/05 11:25	W THM/HAA5	[202124
HBEL Sample Number		nple LCSD=Laboratory Control Sample Duplicate MS Method Narratives (If Applic cal Method	S=Matrix Spike MSD=Matrix Spike Duplicate DUP=Sample Duplica ca ble) Description
EPA 552.1 PES ⁻ 2021241001 2021241001	<u>Batch Analyte</u> T4475 Dichloroacetic Acid Dichloroacetic Acid Dichloroacetic Acid	Quality Control Summary Analytical Issue Accuracy - Outside acceptance limits in Accuracy - Outside acceptance limits in Precision - Outside acceptance limits b	n the MSD.
	,	Precision demonstrated with other QC samp	
•			

•

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 63 OF 107

HARBOR BRANCH ENVIRONMENTAL 'ABORATORIES, INC.

CERTIFICATE OF ANALYSIS

[2021241]

Client: Florida Power & Light

Workorder ID: Martin Plant DW THM/HAA5

Parameter	Qualifier	Result	Units	Reporting Limit	Method	Laboratory Batch	Prep Date/Time	Analyzed Date/Time	Analyst	Lab ID
Laboratory ID: Sampie ID:	2021241001 3/4 Lab - MF	RT Grab			Sampled: 04/12/0 Matrix: Water		Received reported on			
Bromodichlorometh	nane	32	ug/Ł	0.25	EPA 524.2	VOC2471		04/19/05 23:44	WR	E96080
Bromoform		0.41 U	ug/L	0.41	EPA 524.2	VOC2471		04/19/05 23:44	WR	E96080
Chloroform		160	ug/L	. 1.2	EPA 524.2	VOC2471		04/20/05 16:43	3 WR	E96080
Dibromochlorometi	nane	3.7	ug/L	0.30	EPA 524.2	VOC2471		04/19/05 23:44	4 WR	E96080
Total THMs		190	ug/L	0.50	EPA 524.2	VOC2471		04/19/05 23:44	4 WR	E96080
Dibromoacetic Acid	j	0.80	ug/L	0.18	EPA 552.1	PEST4475	04/22/05 9:12	04/22/05 16:23	2 RS	E96080
Dichloroacetic Acid	1	87	ug/L	3.3	EPA 552.1	PEST4475	04/22/05 9:12	04/22/05 18:30	RS	E96080
Monobromoacetic.	Acid	0.28 U	ug/L	0.28	EPA 552.1	PEST4475	04/22/05 9:12	04/22/05 16:23	2 RS	E96080
Monochloroacetic /	Acid	4.9	ug/L	0.88	EPA 552.1	PEST4475	04/22/05 9:12	04/22/05 16:2:	2 RS	E96080
Total HAAs		160	ug/L	0.18	EPA 552.1	PEST4475	04/22/05 9:12	04/22/05 16:2	2 RS	E96080
Trichloroacetic acl	đ	64	ug/L	0.98	EPA 552.1	PEST4475	04/22/05 9:12	04/22/05 18:3	D RS	E96080

¹Result Qualifiers: U = Not Detected I = Analyte detected between the Laboratory Method Detection Limit and Laboratory Reporting Limit Applicable Florida Department of Environmental Protection Qualifiers defined below. Statement of Estimated Uncertainty available upon request.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 Printed: 4/26/05 255 Enterprise Road, Suite 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

Page 3 of 4

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 64 OF 107

March 30, 2005

To: Stan McElroy Florida Power & Light Martin Plant PO Box 176 Indiantown, FL 34956

HARBOR BRANCH ENVIRONMENTAL

LABORATORIES, INC. 5600 U.5. J. North, Fort Pierce FL 34946 Phone: (772) 455-2400, Ext 285 Pax (772) 467-1584

Client:Florida Power & LightWorkorder ID:Drinking WaterTHM/HAA5Received:3/15/05 11:30

[2021035]

Dear Stan McElroy;

Analytical results presented in this report have been reviewed for compliance with the HARBOR BRANCH Environmental Laboratories Inc.'s (HBEL) Quality Systems Manual and have been determined to meet applicable Method guidelines and Standards referenced in the July 2002 National Environmental Laboratory Accreditation Program (NELAP) Quality Manual unless otherwise noted. The Analytical Results within these report pages reflect the values obtained from tests performed on Samples As Received by the laboratory unless indicated differently.

. FDOH Safe Drinking Water Act, Clean Water Act and RCRA Certification #'s:

E96080, E83509, E85370, E84418

Questions regarding this report should be directed to the Report Signatory at (772) 465-2400 Ext. 285 referencing the HBEL Workorder ID [Number].

Respectfully submitted,

Cindy Cromer Technical Director or Designee Note: This report is not to be copied, except in full, without the expressed written consent of the HARBOR BRANCH Environmental Laboratories, inc.

5600 US 1 North Fort Pierce, FL 34946 FDOH # E96080 Printed: 3/30/05 255 Enterprise Road, Sulte 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

Page 1 of 4

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 65 OF 107

HARBOR BRANCH ENVIRONMENTAL	
LABORATORIES, INC. 5600 U.S. North, Fort Pierce FL 34946 Phone (772) 455-2400, ext 285 Fax (772) 457-152	

Method Narratives/FDEP Data Qualifiers

Client:Florida Power & LightWorkorder ID:Drinking WaterTHM/HAA5Received:3/15/05 11:30

[2021035]

MB=Method Blank	LCS=Laboratory	Control Sample	LCSD=Laboratory Co	ntrol Sample Duplicate	MS=Matrix Splke	MSD=Matrix Spike Duplicate DUP=Sample Duplicate
HBEL Sample			Method Na	rratives (If App	licable)	
Number	<u>Sample ID</u>	<u>Analytical</u>	Method	. ,,		Description
HBEL Sample	· · · ·		Data Quali	fiers (if Applica	able)	
Number	Sample ID	Parameter	<u>Method</u>	Qualifier Code		Qualifier Definition
••••••	477	· · · · · · · · · · · · · · · · · · ·	Quality C	onfrol Summar		

Method HBEL Batch Analyte

Analytical Issue

5 F F Fl Pr

HE

L हा

C

-

Pi

Tr

Ti 1 Fi A

: 1

ſ

5600 US 1 North Fort Plerce, FL 34946 FDOH # E96080 Printed: 3/30/05

255 Enterprise Road, Suite 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Bouleva Spring Hill, FL 34607 FDOH # E84418 Page 2 of

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 66 OF 107

Florida Department of Environmental Protection Safe Drinking Water Program Laboratory Reporting Format
PUBLIC WATER SYSTEM INFORMATION (to be completed by sampler - Please type or print legibly)
System Name: <u>FAL-MARTIN PLANT</u> PWS I.D. #: 4443 1748 System Type (check one) []Community [Nontransient Noncommunity []Transient Noncommunity Address: <u>21900 SW WARFIELD BLVD</u> .
City: INDIANTOWN State: FL. ZIP Code: 34956 Phone #: 112-591-7211 Fax #: 112-597-7416 E-Mail Address:
SAMPLE INFORMATION (to be completed by sampler) Sample Number:
Disinfectant Residual (Required when reporting results for trihalomethanes and haloacetic acids // mg/L Field pH:
Sample Type (Check Only One) Reason(s) for Sample (Check all that apply)
Distribution Image: Routine Compliance (with 62-550) Image: Routine Compliance (with 62-550) Entry Point (to Distribution) Image: Confirmation of MCL Exceedence* Image: Special (not for compliance with 62-550) Image: Plant Tap not for compliance with 62-550) Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550) Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550) Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550) Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550) Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550) Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550 Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550 Image: Composite of Multiple Sites** Image: Violation Resolution Image: Plant Tap not for compliance with 62-550 Image: Composite of Multiple Sites** Image: Composite of Multiple Sites** Image: Plant Tap not for compliance with 62-550 Image:
Sampler's Name: <u>S, MCELABY</u> Sampler's Phone #: <u>772-597-7846</u> Sampler's Fax #: <u>212-591-74/6</u> Sampler's E-Mail Address: <u>CERTIFICATION (to be completed by sampler)</u> I. <u>Stan MCELAGY</u> , <u>LEAB ADERATOR</u> Print Name do HEREBY CERTIFY that the above public water system and sample collection information is completed and correct.
Signature: J. McConn Date: Date: Réforting Format 62-550.730 Effective January 1995, Revised January 2004

: • •

. |

: }

. 1

. 1

;

77

. 1

Ĩ |

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 67 OF 107

	of Environmental Protection gram Laboratory Reporting	
ABORATORY CERTIFICATION INFORMATION	(to be completed by lab - Please type or print leg	ibly)
ATTACH A CURRENT DOH ANALYTE SHEET		
Lab Name: <u>Harbor Branch Environmental Labo</u>	pratories, Inc. Florida Certification #	E96080
Address: 5600 US 1 North	Certification Expiration Date	06/30/2005
•	Phone #:(772) 4	
ANALYSIS INFORMATION (to be completed by lab)	Date Sample(s).Received::	
PWS ID (From Page 1):	Sample Number (From Page 1):	
Lab Assigned Report Number or Job ID:		
Group(s) Analyzed and Results attached for compl		ck all that apply):
inorganics Synthetic Organics	Volatile Organics	Disinfection Byproducts
		X Trihalomethanes
Partial All Except Dioxin		X Haloacetic Acids
Nitrate Partial		Bromate
Nitrite	Radionuclides	
Asbestos Only	Single Sample	Secondaries
	Qtrly Composite**	
Vere any analyses subcontracted? Yes	_X_ No	☐Partial
f yes, please provide DOH certification numbers: ATTACH DOH ANALYTE SHEET FOR EACH SUBCONTRA		
CI	ERTIFICATION	
, Cindy Cromer	Laboratory E	
(Print Name to HEREBY CERTIFY that all attached analytical	Print Til data are correct and unless noted meet	
National Environmental Laboratory Accreditation C		
· · · ·	Date: 30-Mar-	05
Failure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu	Ication number and a current Analyte Sheet for t	he attached analysis results will result
Fallure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu sureau of Laboratory Services.	Ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may	he attached analysis results will result
Failure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu sureau of Laboratory Services. * Please provide radiological sample dates Jocations for eac	ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter.	he attached analysis results will result
Pailure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu Bureau of Laberatory Services. * Please provide radiological sample dates Jocations for eac COMPLIANCE DETERMINATION (to be completed b	ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter.	he attached analysis results will result y result in notification of the DOH
* Failure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu sureau of Laboratory Services. ** Please provide radiological sample dates Jocations for eac COMPLIANCE DETERMINATION (to be completed b	ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. by DEP or DOH) No Sample Analysis Info S	he attached analysis results will result y result in notification of the DOH
Failure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu- gureau of Laboratory Services. Please provide radiological sample dates Jocations for each COMPLIANCE DETERMINATION (to be completed b Sample Collection Info Satisfactory: Yes	ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. by DEP or DOH) No Sample Analysis Info S light group(s) above) Revised Report Req	he attached analysis results will result y result in notification of the DOH
 Failure to provide a valid and current Florida DOH lab certifin rejection of the report, possible enforcement against the pusureau of Laboratory Services. Please provide radiological sample dates Jocations for each COMPLIANCE DETERMINATION (to be completed be Sample Collection Info Satisfactory: 'Yes 'Replacement Sample(s) Requested (circle or highlight grant and the context of the	ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. by DEP or DOH) No Sample Analysis Info S light group(s) above) Revised Report Req oup(s) above)	he attached analysis results will result y result in notification of the DOH atisfactory: Yes No uested (circle or highlight group(s) above)
 Patiure to provide a valid and current Florida DOH lab certifin rejection of the report, possible enforcement against the pustreau of Laboratory Services. * Please provide radiological sample dates Jocations for each COMPLIANCE DETERMINATION (to be completed be Sample Collection Info Satisfactory:YesYesYes	Ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. by DEP or DOH) No Sample Analysis Info S light group(s) above) Revised Report Req cup(s) above) Detection(s) Location Unsatisfactory	he attached analysis results will result y result in notification of the DOH atisfactory: Yes No uested (circle or highlight group(s) above)
Failure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu Bureau of Laboratory Services. ** Please provide radiological sample dates Jocations for eac COMPLIANCE DETERMINATION (to be completed b Sample Collection Info Satisfactory: Yes Replacement Sample(s) Requested (circle or highlight gr Reason(s): MCL(s) Exceeded Missing Analyte Sheet(s) Other:	Ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. by DEP or DOH) No Sample Analysis Info S light group(s) above) Revised Report Req cup(s) above) Detection(s) Location Unsatisfactory	he attached analysis results will result y result in notification of the DOH atisfactory: Yes No uested (circle or highlight group(s) above) Incomplete Report Analysis Unsatisfactory
Paliure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu- sureau of Laboratory Services. Please provide radiological sample dates Jocations for each COMPLIANCE DETERMINATION (to be completed by Sample Collection Info Satisfactory: 'Yes ' Replacement Sample(s) Requested (circle or highlight gr Reason(s): 'MCL(s) Exceeded Missing Analyte Sheet(s) Other: ' Person Notified: '	Ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. Dy DEP or DOH) No Sample Analysis Info S light group(s) above) Revised Report Req oup(s) above) Detection(s) Location Unsatisfactory Date Notified	he attached analysis results will result y result in notification of the DOH atisfactory: Yes No uested (circle or highlight group(s) above) Incomplete Report Analysis Unsatisfactory
Paliure to provide a valid and current Florida DOH lab certif n rejection of the report, possible enforcement against the pu- sureau of Laboratory Services. Please provide radiological sample dates Jocations for each COMPLIANCE DETERMINATION (to be completed by Sample Collection Info Satisfactory: 'Yes ' Replacement Sample(s) Requested (circle or highlight gr Reason(s): 'MCL(s) Exceeded Missing Analyte Sheet(s) Other: ' Person Notified: '	Ication number and a current Analyte Sheet for t ublic water system for failure to sample, and may ch quarter. by DEP or DOH) No Sample Analysis Info S light group(s) above) Revised Report Req cup(s) above) Detection(s) Location Unsatisfactory	he attached analysis results will result y result in notification of the DOH atisfactory: Yes No uested (circle or highlight group(s) above) Incomplete Report Analysis Unsatisfactory

.

.]

.

; |

-

. 1

DISINFECTION BYPRODUCTS ANALYSES

62-550.310(3)

Client:	Florida Power & Light	Report Number/ Job ID	Drinking WaterTHM/HAA5
Sample Location:	3/4 Lab-MRT Grab	Disinfectant Residual (mg/l	
Sample Number:	2021035001	PWSID	
Sampling Date:	3/15/05 7:10		
Date Received:	3/15/05 11:30		

	Conta				Analysis		Analytical		Analysis	Analysis	
ţ		Contam Name	MCL	Units	Result	Qualifier	Method	Lab MDL	Date	Time	Lab ID
1					,						,
ļ											
]											
ļ	2450	Monochloroacetic Acid	[N/A]	ug/L	1.8 U		EPA 552.1	1.8	3/22/05	4:13 PM	E96080
	2451	Dichioroacetic Acid	[N/A]	ug/L	33		EPA 552.1	1.3	3/22/05	4:13 PM	E96080
1	<u>\</u> 452	Trichloroacetic acid	[N/A]	ug/L	29		EPA 552.1	0.39	3/22/05	4:13 PM	E96080
]	2450	Monobromoacetic Acid	[N/A]	ug/L	0.56 U		EPA 552.1	0.56	3/22/05	4:13 PM	E96080
	2454	Dibromoacetic Acid	[N/A]	ug/L	0.47		EPA 552.1	0.37	3/22/05	4:13 PM	E96080
	2456	Total Haloscetic Acids (HAA5)	[60]	ug/L							
1	2941	Chloroform	[N/A]	ug/L	70		EPA 524.2	0.25	3/28/05	6:41.PM	E96080
	2942	Bromoform	[N/A]	ug/L	0.41 U		EPA 524.2	0.41	3/28/05	6:41 PM	E96080
	2943	Bromodichloromethane	[N/A]	ug/L	13		EPA 524.2	0.25	3/28/05	6:41 PM	E96080
]	2944	Dibromochloromethane	[N/A]	ug/L	1.4		EPA 524.2	0.30	3/28/05	6:41 PM	E96080
	2950	Total Trihalomethanes	[80]	ug/L							

NOTE: Do not round values. Report results to the accuracy, precision, and sensitivity of the analytical method used. Totals for haloacetic acids and total trihalomethanes will be calculated by DEP or DOH.

Reporting Format 62-550.730 Effective January 1995, Revised January 2004

* Results must be reported with appropriate qualifiers in accordance with Florida Administrative Code Rule 62-160, Table 1. Results Qualified with A, F, H, N, O, T, Z, ?, *, unacceptable for compliance with 62-550. Results qualified with a J, Q, R, or Y must be accompanied by written justification and will be evaluated on a case by case basis, avoid a monitoring violation, unacceptable results must be replaced with acceptable results from samples collected during the same monitoring peri

Fort Pierce, FL 34946

255 Enterprise Road, Suite 1 Deltona, FL 32725 FDOH # E83509

307 Coolidge Avenue Lehigh Acres, FL 33936 FDOH # E85370 2514 Osawaw Boulevard Spring Hill, FL 34607 FDOH # E84418

Printed: 3/30/05

		· ·	 			·	· · · · · ·	·	· · · · · · · · · · · · · · · · · · ·		,				`]	· · · · ·	· · · ·	
			_				•												* *
À	EN C	N R B O IVIR() R NNI	В I М <i>с</i>	R A Eni	N T		Chain-	of-Custody	7 - 1	Ű			INT PEN	Lab	/	t responsible fo		
	LA	BOR	AT	OF	214	:4	. INC.		and	'	C		ESS H Etely	ard Fill out	560	_FDOH # 0 U.S. 1 N			OH # E85370 Idge Avenue
	5600 Phone	US I North,	Fort Pi	erce, f	÷L 34	946	772) 467-158	Agreement	to Perform Services	5		NON	GREY	ED AREA		Pierce, F			cres, FL 33936
Commence	~	2, 1	nn.	n n-	21	~ [// 40/ 130	Method(s) of	HBEL	:		PRI	NT LEC			_FDOH#	E83509	FI	DOH # E84418
Company		L - I	<u> </u>	ΤÝ.				Shipment			ė	<i>A</i> Fe		ALC: NO.		Enterprise ona, FL 3			sawaw Bivd. Hill, FL 34607
Address:		700 S	NI	SIJ.	RF.	EL	oAlm),				IN IL SO	HACK rkab	Use Only					
	TAB	ANTON	N	FL	,Zip:	3	4956			Temper	rature		stody S		· pł-	1			
Phone:	112.5		2.1	Far:	201	, ,	for Trin	e-mail:	andard Laboratory	Chec (Y)	ckeđ N		Intact Y	n/a	Chec Y	ked N	LAB# _e	202	1030
	1.0-	1/= / (<i>*</i> //_`	-	₩₩ .1	43	1/1/10		Around Time		IN			RVATIVE	1		<u>]</u>		
Client Co	ntact:	_ 4//	14	26	LE.	L¢	:H		Or		NH4 CL			•			Pres H=Hydrochloric		ON KOY P=Phosphoric Add
Project N	ame;	Rott	BLL	<u> </u>	ĹΗ.	an	HAAR			5263		ANAL	YSES	REQUEST	ED		N=Nitric Acid		ST=Sodlum
Sampled	Bv [.]		nA	C.F.	- ,	0		Rush in	Business Days	2 XXE	-2A	3					S=Suitaric Acid SH=Sodium Hyd	iroxidə	Thiosulfate U=Unpreserved
J1	-	21			~~~	40			RIPTION	4 2	V.	,							-
LABID	COLLE	CTION	면 다	MATRIX*	tainer	1	SAMPL	E DESC		E	0A	9 					co	MME	ENTS
	DATE	TIME	Sample	MAT	0 7		As Wil	Appear C	On Report		Ц	>							
ADA	3.16.15	ATA	G	الام	3	,	3/4 /	AR - nn	RT	V							1.1	6 100	Cla
sab	016.1	3712		N1	1		2/11 1	AR - H	IR+		\checkmark						1.1	000-	Cla Un
(DI)	3-12-12	0/10	9	wrw		f	<u></u>	/ /									1	7	
1							······												
								· .		╉╍╍╋						-			a.
an a								. <u></u>	<u>,</u>	+	. <u></u>								
178 AN AN				-															
							·····			-									
		·····																	
			+	-+						+}						-			
	Sample Typ	e: G=Grab	C=Con	nposite		7	7	** Matrix: S=S	iolid SL=Sludge DW	=Drinking	Water	G₩≍G	round V	Vater SW≃	Surface V	Vater WV	V=Wastewater	M ≕M a	rine
	RELINQUISH		8		c d	Z		ELINQUISHED B	βY					UISHED B					
A 7	DATE/TIME	3-1	-0	5		1		Te/TIME					DATEЛ		<u></u>	001/01/	12	- 77	
State of the second	RECEIVED B	1 Lines	1	Led	12.			CEIVED BY						ED FOR HE			Ciay M	the	7
- s/~ o	DATE/TIME	3/15/	05		712		D/	TETIME					DATE/1	IME 3-1	5-05	the state of the s	N PAGE	1 of	

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 69 OF 107

.E; P 1;

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 70 OF 107

Volatile Organic Analysis 62 - 550.310 (2) (b) (PWS028)

Glient:		Florida	Florida Power & Light			korder: F	otable Tri-Annu	al Samples		
	imple Lo	cation: Potabl	e P.O.E. Gra	ab				· ·		
<u>_</u> 6	Imple NL	mber: 20196	80001							
ampling Date: 8/25			/25/04 15:00							
- "Jr	Treservative:		1:1 Hydrochloric Acid and Sodium Thiosulfate							
Jate Received: 8/			4 12:05							
•	ID	Parameter	MCL	Result		Method	MDL	Date	Lab ID	
	2378	1,2,4-Trichlorobenzer	ne [70]	0.41 U	ug/L	EPA 524.2	0.41	9/01/04	E96080	
	2380	cis-1,2-Dichloroeth	ene [70]	0.21 U	ug/L	EPA 524.2	0.21	9/01/04	E96080	
	2955	Total Xylenes	[10000]	0.46 U	ug/L	EPA 524.2	0.46	9/01/04	E96080	
	2964	Methylene chloride	[5]	0.23 U	ug/L	EPA 524.2	0.23	9/01/04	E96080	
•••)	2968	1,2-Dichlorobenzer	ne [600]	0.21 U	ug/L	EPA 524.2	0.21	9/01/04	E96080	
	2969	1,4-Dichlorobenzer	ne [75]	0.23 U	ug/L	EPA 524.2	0.23	9/01/04	E96080	
	2976	Vinyl chloride	[1]	0.32 U	ug/L	EPA 524.2	0.32	9/01/04	E96080	
•	2977	1,1-Dichloroethene	[7]	0.23 U	ug/L	EPA 524.2	0.23	9/01/04	E96080	
. 1	2979	trans-1,2-Dichloroethe	ene [100]	0.35 U	ug/L	EPA 524.2	0.35	9/01/04	E96080	
····)	2980	1,2-Dichloroethane	[3]	0.29 U	ug/L	EPA 524.2	0.29	9/01/04	E96080	
	2981	1,1,1-Trichloroetha	ne [200]	0.21 U	ug/L	EPA 524.2	0.21	9/01/04	E96080	
	2982	Carbon tetrachiorid	e [3]	0.24 U	ug/L	EPA 524.2	0.24	9/01/04	E96080	
	2983	1,2-Dichloropropan	e [5]	0.40 U	ug/L	EPA 524.2	0.40	9/01/04	E96080	
.	2984	Trichloroethene	[3]	0.36 U	ug/L	EPA 524.2	0.36	9/01/04	E96080	
	2985	1,1,2-Trichloroetha	ne [5]	0.44 U	ug/L	EPA 524.2	0.44	9/01/04	E96080	
	2987	Tetrachloroethene	[3]	0.24 U	ug/L	EPA 524.2	0.24	9/01/04	E96080	
. 1	2989	Chlorobenzene	[100]	0.30 U	ug/L	EPA 524.2	0.30	9/01/04	E96080	
1	2990	Benzene	[1]	0.20 U	ug/L	EPA 524.2	0.20	9/01/04	E96080	
	2991	Toluene	[1000]	0.22 U	ug/L	EPA 524.2	0.22	9/01/04	E96080	
	2992	Ethylbenzene	[700]	0.21 U	ug/L	EPA 524.2	0.21	9/01/04	E96080	

outheast Florida FDOH **# E96080**

Central Florida FDOH # E83509 [70]

0.21 U

ug/L

EPA 524.2

Southwest Florida FDOH # E85370

0.21

West Central Florida FDOH # E84418

9/01/04

E96080

inted: 10/14/04

...

2996

Styrene

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 71 OF 107

HARBOR BRANCH ENVIRONMENTAL LABORATORY

5600 U.S. 1 North, Fort Pierce, FL 34946 (561) 465-2400, Ext. 285

Volatile Organic Analysis 62 - 550.310 (2) (b)

(PWS028)

Client: Florida F			la Power & Light			korder:	Martin Plant DW Sc	an	
Sa	ample Lo	cation: Potable P	OE Grab	,					
-Si	ampie Nu	mber: 20088100	01						
್ರಿ	ampling D	Date: 10/31/01	15:30						
P I	eservativ	ve: 1:1 Hydro	chloric A	cid and Soc	lium Thiosulfa	te			
ال -	ate Recei	ived: 11/01/01 9	9:55						
[]	ID	Parameter	MCL	Result		Method	MDL.	Date	Lab ID
. ۲	2378	1,2,4-Trichlorobenzene	[70]	ND	ug/L	EPA 524.2	2 0.37	11/08/01	E96080
	2380	cis-1,2-Dichloroethene	[70]	ND	ug/L	EPA 524.2	2 0.23	11/08/01	E96080
	2955	Total Xylenes	[10000]	ND	ug/L	EPA 524.2	2 0.30	11/08/01	E96080
	2964	Methylene chloride	[5]	ND	ug/L	EPA 524.	2 0.49	11/08/01	E96080
·'')	2968	1,2-Dichlorobenzene	[600]	ND	ug/L	EPA 524.2	2 0.35	11/08/01	E96080
;]	2969	1,4-Dichlorobenzene	[75]	ND	ug/L	EPA 524.	2 0.28	11/08/01	E96080
	2976	Vinyl chloride	[1]	ND.	ug/L	EPA 524.2	2 0.33	11/08/01	E96080
	2977	1,1-Dichloroethene	[7]	ND	ug/L	EPA 524.3	2 0.21	11/08/01 ⁻	E96080
	2979	trans-1,2-Dichloroethene	[100]	ND	ug/L	EPA 524.3	2 0.18	11/08/01	E96080
,	2980	1,2-Dichloroethane	[3]	ND	ug/L	EPA 524.	2 0.45	11/08/01	E96080
	2980	1,1,1-Trichloroethane	[200]	ND	ug/L	EPA 524.2	2 0.25	11/08/01	E96080
i, ,i	2982	Carbon tetrachloride	[3]	ND	ug/L	EPA 524.3	2 0.28	11/08/01	E96080
- 1	2983	1,2-Dichloropropane	[5]	ND	ug/L	EPA 524.2	2 0.23	11/08/01	E96080

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

ug/L

EPA 524.2

Southeast Florida ort Pierce, FL 34946 . DOH # E96080 Printed: 11/19/01

2984

2985

2987

2989

2990

2991

2992

2996

Trichloroethene

1,1,2-Trichloroethane

Tetrachloroethene

Chlorobenzene

Ethylbenzene

Benzene

Toluene

Styrene

Orlando Area Deltona, FL 32725 FDOH # E83509

[3]

[5]

[3]

[1]

[100]

[1000]

[700]

[70]

ND

ND

ND.

ND

ND

ND

ND

ND

Jacksonville Årea Femandina Beach, FL 32034 FDOH # E82417 Fort Myers Area Lehigh Acres, FL 33936 FDOH # E85370 West Central Florida Spring Hill, FL 34607 FDOH # E84418

11/08/01

11/08/01

11/08/01

11/08/01

11/08/01

11/08/01

11/08/01

11/08/01

0.21

0.23

0.26

0.23

0.090

0.18

0.19

0.24

E96080

E96080

E96080

E96080

E96080

E96080 E96080

E96080

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 72 OF 107

DISINFECTION BYPRODUCTS ANALYSES

62-550.310(3)

Client: Simple Location:		Florida Power & Light Potable P.O.E. Grab				Repo	Report Number/ Job ID Potable			le Tri-Annual Samples		
						Disir	Disinfectant Residual (mg/L					
Samp	le Number: 2	019680	001					PWS ID				
s mp	ling Date: 8	3/25/04	15:00								//	
Date	Received: 8	/26/04	12:05									
Cont	am				Analysis		Analytical		Analysis	Analysis		
חי	Contam Name	:	MCL	Units	Result	Qualifier	Method	Lab MDL	Date	Time	Lab ID	
-						· · · · · · · · · · · · · · · · · · ·						
1												
_												
150	Monochloroacetic /	Acid	[N/A]	ug/L	5.3		EPA 552.1	0.88	9/01/04	7:26 PM	E96080	
51			[N/A]	ug/L	120	L	EPA 552.1.	0.66	9/01/04	7:26 PM	E96080	
2452			[N/A]	ug/L	100	L	EPA 552.1	0.20	9/01/04	7:26 PM	E96080	
153	Monobromoacetic /	Acid	[N/A]	ug/L	0.28 U		EPA 552.1	0.28	9/01/04	7:26 PM	E96080	
- 454	Dibromoacetic Acid	i i	[N/A]	ug/L	1.3		EPA 552.1	0.18	9/01/04	7:26 PM	E96080	
<u>2</u> 456	Total Haloacetic Acids (HAA5)	[60]	ug/L	230		EPA 552.1	0.18	9/01/04	7:26 PM	E96080	
2941	Chloroform		[N/A]	ug/L	250	L	EPA 524.2	0.25	9/01/04	2:00 AM	E96080	
942	Bromoform		[N/A]	ug/L	0.41 U		EPA 524.2	0.41	9/01/04	2:00 AM	E96080	
·2943	Bromodichlorometh	nane	[N/A]	ug/L	37		EPA 524.2	0.25	9/01/04	2:00 AM	E96080	
.2944			[N/A]	ug/L	3,9		EPA 524.2	0.30	9/01/04	2:00 AM	E96080	
950	Total Trihalomethane		[80]	ug/L	290		EPA 524.2	0.50	9/01/04	2:00 AM	E96080	

2 utheast Florida FDOH # E96080 Printed: 10/14/04

: [

Central Florida FDOH # E83509

ARBOR BRANCH NVIRONMENTAL ABORATORIES, INC. (772) 465-2400, Ext 285 Fax: (772) 467-584

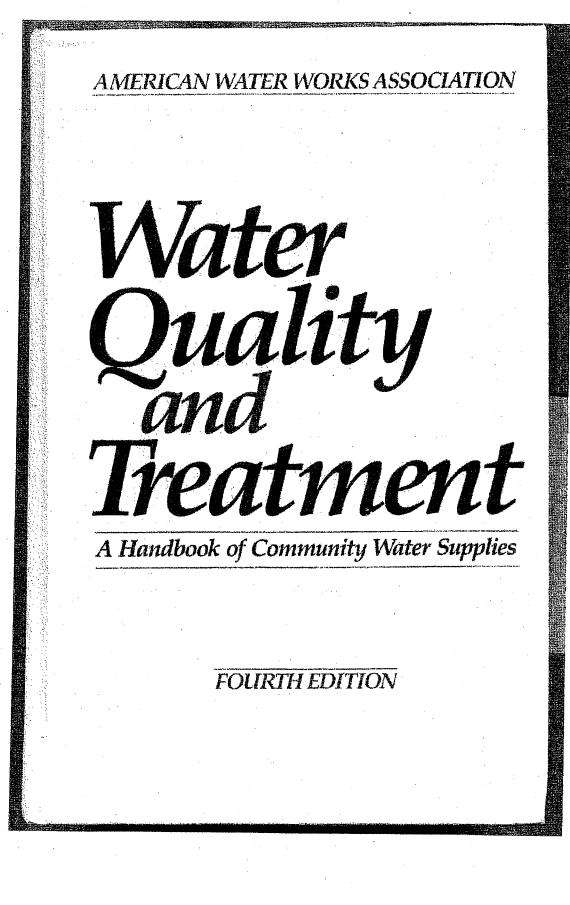
Southwest Florida FDOH # E85370 West Central Florida FDOH # E84418

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 73 OF 107

Golder	SUBJECT Aerator Reguired Size Job No. 063-3495 Made by NOF Date 8/16/06				
Associates		002	hecked SUM	Sheet of	
[R	aviewed		
- Martin	- Pla			Stan McE(Voy	
suggested	Th	e plac	2 potab	le water	
arrator	me	en not	be ad	equate for	
he /	equire	é du	4, 500	DN - 402	
Calte che	45	÷ p1		uata	
	Man	<u> </u>			
We	Law	2 a	multiple -	-tray revetor	
mannfacture	et. E	a De	Loch II	ndustrier	
I Do H L	X I C	alord f	or vin base	a a ale	
- 1 assure	250	uell	- low =	_50,9pm	
			2- plan	-Stan Metro	
Basedo		Sherple	problem		
page 245	of _	AWWA	s turat	et Quality	
	eatm	out "			
				1, marga cocin	
		2 g.pm		Volume assum	
30:1.7		AS IL	sample	problem	
I gal	777	31 cu i	n = 231	cn f = 0.1336 +3/	
50*	1336	= 6,-	1 1431	0179a-	
	X	30	- 201 4		
			· · · · · · · · · · · · · · · · · · ·		

. . .

•


. .

. |

.]

1

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 74 OF 107

Air Stripping and Aeration 245

where c_i is the concentration of gas in the water at the influent to the tower, and c_e is the concentration of gas in the water at the exit to the tower.

Again care must be exercised so that the units are consistent. The log mean of the driving force is given by-

$$DF_{bu} = \frac{DF_e - DF_i}{\ln (DF_e/DF_i)}$$
(5.30)

Example Problem t Chloroform at a concentration of 119 µg/L is to be reduced to 11.9 µgL by an air stripping tower. What is the required height for the following conditions?

Ŀ 73 m³ water/(m² tower cross section)(hear (h))

2200 m⁴ air/m⁴ tower cross section (h); (30:1 air-to-water volume ratio) ${\cal G}$ q: 20°C = 293 K

23

•

ka di

いないというないないないないという

;

2.55 x 10⁻⁵ atm L/mg (Table 5.1) Hp.

30 h⁻¹ (given value) $K_{r,0}$

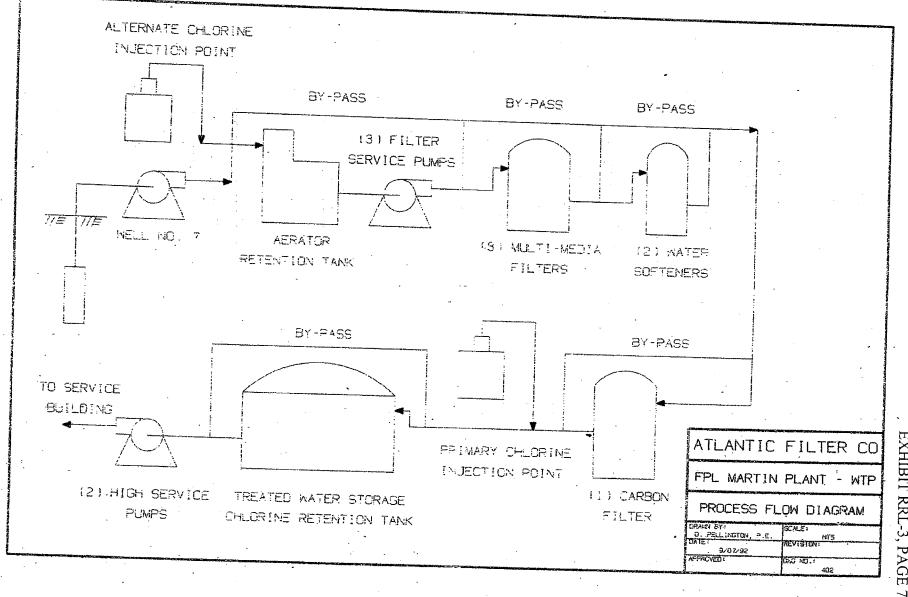
Solution Assume $p_i = 0$ (that is, no chlorolorm exists in the air entering the tower) and calculate p_e by the material balance equation, Eq. (5.24). Because the molecular weight of chloreform is 119, $C_i = 1 \times 10^{-3} \text{ mol/m}^3$. Therefore,

$$Ldc = Gdp$$
 [Eq. (5.24)]

 $73(1 \times 10^{-3} - 1 \times 10^{-4}) = 2200(p_e - 0)$

$$p_{z} = 2.99 \times 10^{-5} \frac{\text{mol gas}}{\text{m}^{3} \text{ air}}$$

Because 0.0827 L of air are in each mole of air,


$$p_e = 2.99 \times 10^{-5} \frac{\text{mol gas}}{\text{m}^3 \text{ air}} \frac{0.082(293) \times 10^{-3} \text{ m}^3 \text{ air}}{\text{mol air}}$$

~ 7.2 × 10-7 mol gas mol air

The driving forces are then calculated.

		and have the many star to a color to a second to a second to a			
		Concentration in air p. mol gas/mol air	Concentration in water o, mg/L	$c_s = p/H_D,$ mg/L	$DF = c - c_s$
	Exit (top) Entrance (hottom)	7.2 × 10 ⁻⁷ 0	0.119 0.0119	. 0.0282	0.0908
		a the total of the second states and the second states	the surger with an inference a second rate of a factor in		

The log mean of the driving force is found by Eq. (5.30)

N :

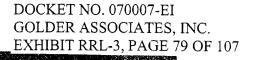
DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 76 OF 107

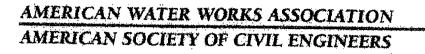
. . . .

 $(1,\ldots,n) = (1,\ldots,n) + (1,\ldots$

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 78 OF 107

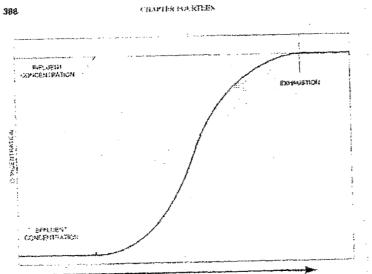
Golder	SUBJECT GAC Unit Size JOD NO. 063-5475 Made by Nave Date 8/16/06	
Associates	Ref. Calc 003 Checked SUM Sheet of Reviewed	<u> </u>
	ren actuated carbon (GAC)	- /
	es DN-402 attached to Cald 2)	
- contains	40 du At A media as reporte	
by the	the site usit and system	1Vd
	e is SO gpm when the well	
pump 15		
Ceculate		
(EBCT)	= Bell Volume 40 /+3 + 1 gal Elow Rate 613	12
	6 minutes v 50 gal hu	·
······································	m co 2 (AWWA Water Treatment Plan	
Desgn)	EBCT Should be bellieur 55	
	Placet Data Book Saching 19	
	11, to actually 39 / 31	
	EBCT = 5.8 minutes	


. |


.]

. |

.]


.]

Water Treatment Plant Design

THIRD EDITION

THE IN OPERATION

FIGURE 14.3 Encoutrough patients for Give aner

the type and depth of carbon and specific solute characteristics. Breakthrough curves are important to the designer because they define the relationship between the physical and chemical parameters of the carbon system (e.g., flow rate, bed size, carbon exhaustion rate), the determination of the number of beds or columns, their arrangement leither series or parallel), and treatment plant ethnicit requirements.

Empty Brd Contact Time. Empty bed contact tune (FBCT) is calculated as the valnuc of the empty bed toccupied by the GAC tabuled by the volumentic flow rate of water uniting the cathon. Alternatively, EBC f can be defined as the depist of GAC divided by the line of the cathon of water flowing through the cathon bed. It should be noted that EBCT is a false-residence tune.

EBCT is used instead of detention time because of the case of calculation. An actual detention time would have to account for the perosity of the bed, a variable that changes with carbon size and type. EBCT can be varied by changing the bed depth at constant flow units, changing the with constant bed depth. Together, the design EBCT and the design they take the design they take the design to be contained in the adsorption units.

Longer ERCTs can delay breakthrough its a pointi and improve carbon usage rule: shorter ERCTs can expedite breakthrough. Thus the tirac of GAC operation between replacement or regeneration depends on the EBCT. For most water meatinest applications, EBCTs inner between 5 and 25 minutes. In addition, a taster having a greater influence on operating costs that.ERCT is voising throughput, which is the number of hed volumes of where processed before the breakthrough concentration is trached.

Advanther Volume and Bed Depth. After the EBCT has been determined, rathon depth much selected. The advanter design volume depends on red volume and the invente of treeboard preserve sessel copie at beyond design openang levelse. Processorid constance up WTRATED CARNON PROCESSES

329

to about 50% for fixed and expanded bod systems. If bed expansion is unnecessary, a freehoard of 20% to 30% may be adequate to allow for proper bed expansion during backwashing.

No freeboard is needed for uptime pulsed beds. An economic evolution is usually made of capital and operating costs to compare carbon columns of various simplis.

Hydraulic Louding Rate. The surface loading rate for GAC tilters is related to the design flow of a particular treatment plant. Surface loading rates are defined in the some manner as conventional genuitar media filters. The surface loading rate is the rate of a volume of water passing through a given area of GAC filter bed, usually expressed as cube, meters per square vector (m^2/m^2) or gallons per minute per square toot ($gpovff^2$). Surface loading rates for GAC filters range from 2 to 10 gput/fit² (5 to 24 m/h), although rates of 2 to 6 gput/fit² (5 to 15 m/h) are more commonly used as design enterta.

Surface loading should be kept large for compounds, where the mass transfer rate is controlled by the rate of transfer of the chemical from the bulk liquid to the unterior purces of the GAC. Typically this is the case for highly adsorbable compounds (e.g., many SOCs-When mass transfer is controlled by the rate of adsorption (and transport) within the GAC particle, surface loading is not important. This is the case with must less-adsorbable compounds. Figure 14.4 illustrates the relationship between hydraulic loading and pressure drop for several brands of GAC.

Backwashing. A GAC filter bed is backwashed using the same general procedures typically used for backwashing conventional granular gravity filters. If GAC is astalled as a sind filter reptacement, a redesign of the backwash supply system, including the rate of flow control and washwater troughs height, is often necessary. This redesign is uccessary because of the difference in particle density between GAC and sund--about 1.4 g/om/ and 2.65 g/cm³ respectively. If GAC is used as a simple replacement for anthracte coul as a filter medium, the backwash system may be adequate bocause particle densities are nearly identical.

GAC particle size distribution and wented density vary among different carbon brands and even among different deliveries of the same carbon. Appropriate backwash rates can be obtained from the manifecturer for each type of carbon (Figure 14.5). Backwash rates must be adjusted to account for specific mudia characteristics and for changes in backwash water temperature (Figure 14.6). Installing a surface wash or at secur system to assist with filter chaning may be necessary to control mudial formation.

A good conservative design should allow for 75% to 10194 expansion of light GAU media, but SIP2 is generally consultered to be adequate. The design should provide for sufficient freedoard to reduce media losses during the backwashing cycle.

Carbon Usage Rate. The carbon usage rate (CUR) determines the rate at which carbon will be exhausted and how often the carbon must be replaced. The CUR essentially determines the size of the entire regeneration system. The CUR for GAC systems removing organic compounds may be determined using physical models or adsorption isotherm modely. A pilor-scale text is often used to evaluate the complexity of multiple chemical interactions. A quicker and more economical method for evaluating GAC column performance is the rapid small-scale column text (RSSCT). Small systems can be designed to be a simulate the performance of a full-scale system using dimensional analysis. Dumensionless parameters for the full-scale system and the small system are designed to be equal.

Carbon treatment effectiveness improves as contact time increases. The percentage of total carbon in a bed that is exhausted at breakthrough is greater in a deeper bed that in a shallower bed. At a point beyond the optimum bed depile, the additional disorber vulnume provided acts primarily as a storage, capterny fits speni carbon. The actual selection of bed depile and corresponding, absorber vulnume also depends on

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 80 OF 107

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 81 OF 107

PAGE

1

1

3

3

5

5

6

7

7

8

9 9

10

10

11

11

12

13

14

14

15

16

16 17

17

18

18

19 19

20

20

21

21

SECTION 10 - WATER TREATMENT SYSTEM

1.

2.

3.

4.

5.

SECTIONS CONTENTS General System Description Pre-Treatment System Potable Water Treatment System Demineralizer System Equipment Data, Data Sheets & Curves 5.1 Raw Water Chlorinator 5.2 Coagulator 5.3 Lime Feed System 5.4 Alum Feed System Acid Feed System 5.5 5.6 Clearwell 5.7 Treated Water Transfer Pumps Pressure Sand Filters 5.8 5.9 Carbon Filter Potable Water Chlorinator 5.10 Sulfite Feed System 5.11 5.12 Demineralizer Feed Pumps 5.13 Cation Exchangers 5.14 Weak Base Anion Exchangers 5.15 Strong Base Anion Exchangers 5.16 Mixed Bed Exchangers Air Blower - wrenn one 5.17 Caustic Dilution Water Heat Exchanger 5.18 5.19 Acid Regeneration Pumps 5.20 Caustic Regeneration Pumps 5.21 Acid Storage Tank 5.22 Caustic Storage Tank 5.23 Brine Mixing Tank 5.24 Brine Measuring Tank 5.25 Brine Solution Heat Exchanger 5.26 Brine Recirculation Pump 5.27 Control Panel 5.28 Bulk Lime Handling System

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 82 OF 107

EQUIPMENT DATA SHEETS

.]

: |

.

:

. |

. 1

. 1

	· · · · · · · · · · · · · · · · · · ·	PAGE	
Coagulator Feed Pump	22		
Sand Filter Backwash Pumps		23	
CURVE SHEETS	· ·		
Coagulator Feed Pump		24	
Sand Filter Backwash Pumps		25	

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 83 OF 107

SECTION 10 - WATER TREATMENT SYSTEM

GENERAL SYSTEM DESCRIPTION

1.

Prechlorinated well water from the raw water storage tank is pumped through the pretreatment system where it is lime softened and filtered. The pretreating equipment consists of a coagulator, clearwell, two treated water transfer pumps and four pressure sand filters. The treated water effluent from the sand filters is routed to the 500,000-gallon treated water storage tank which supplies the treated water requirements of the demineralizer units and miscellaneous plant services. Water from an on-site well serves the potable water system, which consists of a carbon filter, chlorinator, storage tank and two service pumps. The demineralizer system is of the two parallel train design with each train consisting of a strong acid cation unit, a weak base anion unit, a strong base anion unit and a polishing mixed bed unit. Most of the controls and instrumentation are mounted in a control panel conveniently located in the water treating area.

2. PRETREATMENT SYSTEM

The 885 gpm capacity pretreatment system includes prechlorination, cold lime softening, coagulation and filtration of raw well water.

Two coagulator feed pumps, taking suction from the raw water storage tank, deliver the prechlorinated well water through a flow metering device, a pneumatically actuated modulating control valve, and to the coagulator.

The coagulator inlet flow control valve is positioned based on system demand from the clearwell. This is accomplished by positioning the inlet control valve so that the inlet flow rate to the coagulator matches system demand which is derived from the clearwell level. The minimum clearwell level is analogous to maximum demand. At this point, the inlet control valve to the coagulator should be wide open.

The system is automatically shut down at maximum clearwell level which corresponds to essentially zero inlet flow rate. At this point, the inlet control valve closes, the coagulator feed pumps are stopped, and the chemical feeder decanting mechanisms are lifted.

-1-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 84 OF 107

As the system demand increases to approximately 25 percent of the design flow rate, with a corresponding drop in the clearwell level, the inlet control valve opens, the coagulator feed pumps start, and the decanting mechanisms in the chemical feed tanks are lowered.

The coagulator is equipped with an automatic type, timer controlled blowdown system to permit effective removal of sludge. pH monitors are provided for the coagulator effluent, before and after acid addition.

Alum and lime are fed to the coagulator for the purpose of softening and coagulating the raw water supply. Both chemicals are gravity fed through a swing drawoff pipe in each tank which is positioned by a decanting drive. The chemical feed rates are proportional to the service flow. The alum and lime tanks are provided with mechanical agitators and are sized to hold a charge of chemical sufficient for 36 hours of operation at design flow. An additional chemical feed line is provided for the coagulator to permit future injection of coagulant aid, if required.

A bulk lime handling system is provided in order to facilitate and automate the storage, slaking, transfer and conversion of quick lime into lime slurry. Quick pebble lime from the delivery truck is pneumatically conveyed to the top of the lime silo for storage and then gravimetrically fed to the slaker through the discharge hopper. The slaked lime, after removal of grit, flows to the slurry suction tank. A transfer pump, equipped with automatic flushing and recirculation, is provided to transport lime slurry from the suction tank to the holding tank. Lime slurry transfer is automatically initiated based on level in the holding tank. A manual outlet valve is provided for the holding tank to allow gravity transfer of lime slurry into the lime feed tank. Treated water is to be used for the slaking and dilution of lime.

Acid solution is fed to the coagulator effluent in order to reduce the pH of the softened water, thereby, minimizing the possibility of scale formation in the filter beds and related equipment. The acid feed pump is of the positive displacement diaphragm type, equipped with pneumatic stroke adjustor. The signal from the pH meter, which monitors the clearwell influent, regulates the acid feed rate. The capacity of the acid solution feed tank is adequate for 36 hours of operation at design flow.

-2-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 85 OF 107

The coagulated, softened and pH adjusted effluent from the coagulator flows by gravity to a 30,000-gallon clearwell. Two, full capacity treated water transfer pumps transport the water from the clearwell, through four parallel sand filters and to the treated water storage tank. The sand filters are designed to operate at a normal rate of 222 gpm and a maximum rate of 295 gpm while one of the filters is being backwashed or rinsed. Each filter unit is provided with a set of manual valves to permit isolation and manual backwashing, rinsing and return to service. The need for filter backwashing is indicated by high pressure drop and reduced flow through any filter units. Water for filter backwashing is taken from the raw water storage tank. The treated water storage tank level is controlled by an inlet flow control valve.

3. POTABLE WATER TREATMENT SYSTEM

Approximately 50 gpm of well water is routed through a carbon filter. Then, the carbon filter effluent is chlorinated prior to storage. The chlorine feed rate is proportional to potable water flow which, in turn, is regulated by the level controller in the potable water storage tank. The carbon filter is also backwashed based on increase in pressure drop and reduction in service flow. Manual valves for isolation, backwash, rinse and return to service are also provided. Potable water is used for backwashing the carbon filter.

4. DEMINERALIZER SYSTEM

Two 700 gpm capacity demineralizer feed pumps provide the treated water requirements of the ion exchangers. The demineralizer system includes two parallel trains of ion exchange units with each train consisting of a strong acid cation, weak base anion, strong base anion and a mixed bed polisher. Each primary train is designed for 350 gpm; whereas, each mixed bed polisher is nominally rated at 700 gpm capacity. The primary cation units have provisions for future addition of ion exchange resins. The net volumetric throughput between regenerations is 378,000 gallons per primary train and 7,700,000 gallons per mixed bed polisher. Acid and caustic regeneration systems are provided in order to restore the ion exchangeability of the demineralizer units upon exhaustion. Sulfite solution is fed into the demineralizer influent line in order to protect the resins from the oxidative effect of residual chlorine. The treated water influent to the demineralizer units is continuously monitored by a chlorine analyzer. The cleaning of organically fouled ion exchangers is accomplished by the use of the brine recirculation system.

-3-

Two 100% capacity, vertical pumps mounted on top of the 10,000gallon acid storage tank, together with strong acid flow controller, teflon lined mixing tee, dilution water flow controllers, conductivity indicators and control valves, are provided to regenerate the primary cation and mixed bed cation resin beds. The acid solution from the dilution station is also intended for filling up the acid feed tank which serves the coagulator effluent.

Two 100% capacity, vertical pumps mounted on top of the 10,000gallon caustic storage tank, including strong caustic and dilution water flow controllers, saran lined mixing tee, conductivity indicator, dilution water heat exchanger, thermostatic controller, temperature indicator with alarm switch, and control valves, are all provided to serve the primary weak base and strong base anion, and mixed bed anion resin beds. An air blower is also furnished to properly mix the freshly regenerated and stratified resin layers in the mixed bed unit. The temperature of the dilute caustic solution is to be automatically maintained at 120°F by controlling the steam supply to the dilution water heat exchanger. The caustic storage tank is provided with immersion type electrical heaters in order to maintain a minimum caustic temperature of 70°F.

The brine recirculation system is designed for manual operation with the exception of the brine heater. This system consists of rubber lined brine mixing tank and brine measuring tank, brine solution heat exchanger, thermostatic controller, temperature indicator with alarm switch, pressure gauges, valves and a brine recirculation pump. The dilution water source is demineralized water. The brine recirculation system serves all ion exchangers except the primary cation units. Termination of brine recirculation is determined by visual observation of the brine solution. A manual "dump" valve is provided in the brine return line to the measuring tank, and this allows draining of highly contaminated brine solution.

During normal service conditions, only one demineralizer feed pump is expected to be operating. The influent treated water passes through the cation units where ions of calcium, magnesium and sodium are trapped in and hydrogen ion released from the resin media. The acidic effluent then flows through the weak base anion units where sulfates and chlorides are removed and exchanged for hydroxyl ions. The partially demineralized water then flows through the strong base anion units in order to remove carbon dioxide and silica. Cation and anion leakages, consisting primarily of sodium and silica ions, are removed in the polishing mixed bed unit(s).

-4-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 87 OF 107

After a certain service period, depending on the flow rate and quality of treated water supply, the demineralizer units reach their exhausted state. This service period is determined by volumetric end of run (gallons) or by high conductivity (umhos/cm) in the primary anions and mixed bed units. At the operator's option, the exhausted primary train is regenerated by pushbutton. initiation; all succeeding steps are fully automatic. The regeneration system controls are designed to allow regeneration of the cation unit prior to both primary anion units. Regeneration of the primary units essentially includes backwashing, settling, chemical regenerant introduction, displacement and rinse. Another step is included in the anion regeneration procedure, i.e. conductivity check. The regeneration of the primary anion units is accomplished by passing fresh caustic solution first through the strong base and then routing the spent caustic to the weak base unit. The primary cation is regenerated using treated water; decationized water is used for primary anion regeneration.

Regeneration of the mixed bed units is performed in a similar manner except that acid regeneration of the lower and relatively heavier cation resin layer is done countercurrently and prior to caustic regeneration of the upper anion layer. A mid-bed collector serves as a drainage for the chemical waste and the rinse waste. The air blower is turned on after chemical regeneration of the mixed bed. The pressurized air uplifts and mixes the freshly regenerated anion and cation resin layers. Fast rinse and conductivity check are the two last steps in the mixed bed regeneration. Backwash and rinse water is taken from the strong base anion effluent.

Return to service of a newly regenerated primary train or mixed bed polisher is also a pushbutton initiated operation.

All recorders, indicators, annunciators, controls and instrumentation are mounted on the totally enclosed NEMA Class 3, walk-in type control panel. The panel is also provided with air conditioning equipment and glass windows. Individual solenoid valve cabinets are also provided for each skid-mounted demineralizer unit.

- 5. EQUIPMENT DATA
- 5.1 Raw Water Chlorinator

Manufacturer

Fisher & Porter

Quantity

One

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 88 OF 107

F & P Model 70C3430 gas chlorinator, vacuum type, with automatic proportioning control, using 3-15 psig square root signal from raw water flowmeter.

75 lbs. Cl_2/day

Internal heater, weighing scale, gas mask, ejector, diffuser, gauges, valves and connectors.

Chlorinate and condition incoming well water to the raw water storage tank.

Hungerford & Terry, Inc.

One

Circular steel shell and bottom with internal coating of vinyl copolymer, sludge recirculating type with full bottom scraper.

885 gpm.

37' - 0" dia. x 16' - 0" straight shell.

1.0 gpm/ft^2 .

90 minutes (minimum) at design rate.

Inlet meter totalizer and automatically initiated time span blowdown, which will be pneumatically operated.

Two Proquip Model No. 12EX50 top entering, right angle, turbine trip agitators with 1-1/2 hp motor; one Winsmith speed reducer, Model No. 15CVD.

150 gpm for 3 minutes every 15-minute cycle.

Type

Capacity

Accessories

Use

5.2 Coagulator

Manufacturer

Quantity

Type

Capacity

Dimension

Rinse Rate

Retention Time

Blowdown System

Recirculation Agitator & Drive

Blowdown Rate & Frequency

-6

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 89 OF 107

Bottom Scraper & Drive

Accessories

Sample Connections

Ŭse

5.3 Lime Feed System

Manufacturer

Quantity

Type

Capacity

Dimension

Mixer

Туре

Motor Rating & Enclosure

Accessories

Use

5.4 Alum Feed System

Manufacturer

Quantity

1/4 hp, Reeves "Motodrive," rated for 115 V, single phase, 60 Hz.

One set of pH measuring equipment for monitoring of effluent pH.

Sample connections, piping and valves, sink mounted on coagulator shell.

Softening and coagulation of raw well water.

Hungerford & Terry, Inc.

One

Vertical, cylindrical steel tank with bottom dished head, top cover and top loading door for gravity feeding into the coagulator.

5000 gallons of 10% by weight lime slurry.

11' - 0'' dia. x 7' - 0" straight side.

Lightnin Model 71Q2 with type 316 stainless steel shaft and impellers.

2 hp, 460 V, 3 phase, 60 Hz, TEFC.

1/6 hp, Graham Model N27MW60 gear motor for swing pipe drive, 115 V, single phase, 60 Hz, reversible 0-9 rpm output; dust evacuator.

Softening of raw well water.

Hungerford & Terry, Inc.

0ne

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 90 OF 107

Type

Capacity

Dimension

Mixer

Type

Motor Rating & Enclosure

Accessories

Use

5.5 Acid Feed System

Manufacturer

Quantity

Type

Capacity

Dimension

Feed Pump

Type

Motor Rating & Enclosure

Vertical, cylindrical, type 316 stainless steel tank with bottom dished head, top cover and top loading door for gravity feeding into the coagulator.

500 gallons of 5% by weight alum solution.

4' - 6'' dia. x 4' - 0'' straight side.

Lightnin Model NLDG-33 with type 316 stainless steel shaft and impellers.

1/3 hp, 115 V, single phase, 60 Hz, TEFC

1/6 hp, Graham Model N27MW60 gear motor for swing pipe drive, 115 V, single phase, 60 Hz, reversible 0-9 rpm output; dissolving basket.

Coagulation of raw well water.

Hungerford & Terry, Inc.

One

-8-

Vertical, cylindrical, rubber lined steel tank with flat bottom and top cover plate.

500 gallons of 10% by weight H2SO4 solution.

 $4^{*} - 6^{"}$ dia. x 5' - 0" high

Milton Roy Model AFR-125A-117, diaphragm type metering pump with TFE diaphragm and pneumatic stroke adjustor.

1/4 hp, 115 V, 1 phase, 60 Hz. TESXT.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 91 OF 107

Feed Rate

Accessories

Use

5.6 Clearwell

Manufacturer

Quantity

Туре

Capacity

Dimension

Accessories

Üse

5.7 Treated Water Transfer Pumps

Manufacturer

Quantity

Type

Capacity and Head

Speed

Motor Rating & Enclosure

5 gal/hr. of 10% acid solution

One set of pH measuring equipment for automatic control of acid feed pump, level switch for automatic filling of tank.

Prevention of carbonate post-precipitation in the clearwell, piping and sand filters.

Hungerford & Terry, Inc.

One

Circular, steel shell, top conical roof, flat bottom with internal coating of vinyl copolymer.

30,000 gallons

18' - 6" dia. x 16' - 0" high

Level indicator, horizontal internal baffles.

Surge tank for softened and coagulated water.

Worthington

Two

Horizontal, centrifugal type, Worthington Model D1011 with bronze impeller and cast iron casing.

885 gpm at 115 ft. tdh

1750 rpm

-9-

50 hp, 460 V, 3 phase, 60 Hz, TEFC.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 92 OF 107

Accessories

Pressure indication, isolation and check valves, recycle valve

Supply coagulated and softened water to the sand filter units.

5.8 Pressure Sand Filters

Manufacturer

Quantity

Туре

Use

Design Pressure

Design Flow

Dimension

Filter Media & Support Bed

Backwash Rate & Duration

Rinse Rate & Duration

Accessories

Use

5.9 Carbon Filter

Manufacturer

Quantity

Type

Design Pressure

Hungerford & Terry, Inc.

Four

Skid-mounted, manual pressure filters designed for parallel operation.

75 psig ASME Code

295 gpm (maximum rating per unit)

9' - 0'' dia. x 5' - 0'' straight shell

189 ft³ of filter sand and 84 ft³ of graded gravel

950 gpm per unit for 10 minutes

200 gpm per unit for 5 minutes

Individual flow meters and differential pressure gauges.

Removal of suspended solids from coagulated and softened water.

Hungerford & Terry, Inc.

One

Skid-mounted, manual pressure filter.

75 psig ASME Code

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 93 OF 107

Design Flow

Dimension

Vessel Lining

Filter Media

Backwash Rate & Duration

Rinse Rate & Duration

Accessories

Üse

5.10 Potable Water Chlorinator

Manufacturer

Quantity

Type

Capacity

Accessories

Use

5.11 Sulfite Feed System

Manufacturer

Quantity

Type

50 gpm

4' - 6'' dia. x 5' - 0'' straight shell

3/16" thick rubber

39 ft³ of activated carbon

100 gpm for 10 minutes

50 gpm for 5 minutes

Inlet flow meter and differential pressure gauge.

Removal of trace color and odor.

Fischer & Porter

One .

F & P Model 70C3430 gas chlorinator with automatic proportioning control using 3-15 psig square root signal from carbon filter effluent flowmeter.

3 lbs. $C1_2/day$

Internal heater, weighing scale.

Chlorinate carbon filter effluent in order to meet potable water requirements.

Hungerford & Terry, Inc.

One

-11-

Vertical, cylindrical, type 304 stainless steel tank with flat bottom and hinged cover.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 94 OF 107

Capacity

Feed Pump

Type

Motor Rating & Enclosure Feed Rate

Mixer

Type

Motor Rating & Enclosure

Accessories

Use

5.12 Demineralizer Feed Pumps

Manufacturer

Quantity

Type

Capacity and Head

Speed

Motor Rating & Enclosure

.

100 gallons of 5% by weight sodium

sulfite solution.

Milton Roy Model FR-111A-117, diaphragm type metering pump with manual stroke adjustor.

1/4 hp, 115 V, 1 phase, 60 Hz, TESXT.

2.8 gal/hr. of 5% sulfite solution.

Milton Roy, with type 316 stainless steel shaft and impellers.

1/4 hp, 115 V, 1 phase, 60 Hz, TESXT.

Polyethylene floating cover, type 316 stainless steel dissolving basket, low level pump cut-off switch, external relief valve.

React with residual chlorine present in treated water supply.

Aurora

Two

Horizontal, centrifugal type, Aurora Model 411 with bronze impeller and cast iron casing.

700 gpm at 290 ft tdh.

3500 rpm

75 hp, 460 V, 3 phase, 60 Hz, TEFC.

-12-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 95 OF 107

Accessories

Use

5.13 Cation Exchangers

Manufacturer

Quantity

Type

Design Pressure

Design Flow

Dimension

Vessel Lining

Resin Volume

Regeneration Level

Service Run Between Regeneration

Accessories

Ũse

Pressure regulating valves, pressure indication, relief valve, isolation and check valves.

Supply treated water to the demineralizer units for removal of dissolved solids.

Hungerford & Terry, Inc.

Two

Skid-mounted, automatic strong acid cation units designed for parallel operation.

150 psig ASME Code

350 gpm per unit

7' - 6" dia. x 8' - 8" straight shell

3/16" thick rubber

184 ft³ of strongly acidic cation resin, Rohm & Haas IR-120

5.0 lbs. of 66° Be H2SO4/ft³ resin

418,000 gallons per unit

Inlet flow meters, differential conductivity meters, sight windows, resin traps, inlet chlorine analyzer, solenoid valve cabinets.

Removal of cations such as calcium, magnesium and sodium from treated water supply.

-13-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 96 OF 107

5.14 Weak Base Anion Exchangers

Manufacturer

Quantity

Туре

Design Pressure

Design Flow

Dimension

Vessel Lining

Resin Volume

Regeneration Level

Service Run Between Regeneration

Accessories

Use

Hungerford & Terry, Inc.

Two

Skid-mounted, automatic weak base anion units designed for parallel operation.

150 psig ASME Code

350 gpm per unit

7' - 6" dia. x 6' - 2" straight shell

3/16" thick rubber

132 ft³ of weakly basic anion resin, Rohm & Haas IRA-93

Spent caustic from strong base anion unit

398,000 gallons per unit

Conductivity meters, sight windows, solenoid valve cabinets.

Removal of strongly ionized anions such as sulfate and chloride; entrapment of certain organic compounds.

5.15 Strong Base Anion Exchangers

Manufacturer

Quantity

Type

Design Pressure

Hungerford & Terry, Inc.

Two

Skid mounted, automatic strong base anion units designed for parallel operation.

150 psig ASME Code.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 97 OF 107

Design Flow

Dimension

Vessel Lining

Resin Volume

Regeneration Level

Service Run Between Regeneration

Accessories

Use

5.16 Mixed Bed Exchangers

Manufacturer

Quantity

Type

Design Pressure

Design Flow

Dimension

Vessel Lining

Resin Volume

Regeneration Levels

Service Run Between Regeneration 350 gpm per unit

7'-6" dia. x 6'-2" straight shell

3/16" thick rubber

132 ft³ of strongly basic anion resin, Rohm & Haas IRA-402

5.0 lbs. of 100% NaOH/ft³ resin

378,000 gallons per unit

Effluent and in-bed probe conductivity meters, sight windows, resin traps, solenoid valve cabinets.

Removal of weakly ionized anions such as silica and carbon dioxide.

Hungerford & Terry, Inc.

Two

Skid-mounted, automatic mixed bed units with one unit serving as a spare.

150 psig ASME Code

700 gpm per unit

7' - 6" dia. x 6' - 0" straight shell

3/16" thick rubber

83 ft³ of Dow's HGR and 66 ft³ of Dow's SBR-P

6 lbs. of 66° Be $\rm H_2SO_4/ft^3$ of cation resin and 6 lbs. of 100% NaOH/ft^3 of anion resin

7,700,000 gallons per unit

-15-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 98 OF 107

Accessories

Inlet flow meters, effluent and in-bed probe conductivity meters, sight windows, resin traps, solenoid valve cabinets

Removal of cation and anion leakages, primarily sodium and silica, from the primary units effluent.

Roots

One

Rotary, positive displacement type, Model 76 RAI-V with cast iron impeller, headplate and case, steel shafts.

400 cfm at 10 psig

1280 rpm

25 hp, 460 V, 3 phase, 60 Hz, TEFC

Filter-silencer, pressure relief valve, V-belt drive, flowmeter.

Resin mixing in the mixed bed unit.

Bell & Gosset

One

Horizontal shell and U-tube heat exchanger, Model SU-66-21 of type 316 stainless steel construction on tube side.

150 psig ASME Code

Heat 35 gpm of water from 55° to 120°F

5.17 Air Blower

Use

Manufacturer

Quantity

Type

Inlet Capacity

Speed

Motor Rating & Enclosure

Accessories

Use

5.18 <u>Caustic Dilution Water</u> Heat Exchanger

Manufacturer

Quantity

Type

Design Pressure

Heating Capacity

-16-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 99 OF 107

Steam Requirements

Heating Surface Area Accessories

Üse

5.19 Acid Regeneration Pumps

Manufacturer

Quantity

Type

Capacity and Head

Speed

Motor Rating & Enclosure

Accessories

Use

5.20 Caustic Regeneration Pumps

Manufacturer

Quantity

Type

1175 1bs./hr. of 25 psig saturated steam

22.1 ft²

Pressure relief valve, steam control valve, steam traps, strainers.

Preheat caustic dilution water to achieve better silica removal during anion regeneration.

Taber

Two

Vertical, submerged centrifugal type, Taber Model 1292 with Alloy 20 impeller and casing.

3 gpm at 115 ft. tdh

1750 rpm

7-1/2 hp, 460 V, 3 phase, 60 Hz, TEFC.

Pressure indication, isolation and check valves, recycle valve, strainer

Supply 66° Be H2SO4 to the acid regeneration system and to the acid day tank in the pretreatment system.

Taber

Two

Vertical, submerged centrifugal type, Taber Model 1292 with type 316 stainless steel impeller and casing.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 100 OF 107

Capacity and Head

Speed

Motor Rating & Enclosure

Accessories

Use

5.21 Acid Storage Tank

Manufacturer

Quantity

Type

Coating

Dimension

Capacity

Accessories

Use ·

5.22 Caustic Storage Tank

Manufacturer

Quantity

Туре

Coating

2 gpm at 115 ft. tdh

1750 rpm

5 hp, 460 V, 3 phase, 60 Hz, TEFC

Pressure indication, isolation and check valves, recycle valve, strainer.

Supply 50% NaOH to the caustic regeneration system.

Hungerford & Terry, Inc.

One

Horizontal, 25 psig design pressure, ASME code steel tank with ASME F & D heads

Interior coated with 5 to 6 mils of Plasite No. 3066

10' - 0'' dia. x 16' - 0'' straight shell

10,000 gallons

Saddle supports, ladders and platforms.

Storage for 66° Be H2SO4.

Hungerford & Terry, Inc.

0ne

Horizontal, 25 psig design pressure, ASME code steel tank with ASME F & D heads

Interior coated with 8 to 10 mils of Plasite No. 7133.

-18-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 101 OF 107

Dimension

Capacity

Accessories

Use

5.23 Brine Mixing Tank

Manufacturer

Quantity

Type

Lining

Dimension

Accessories

Use

5.24 Brine Measuring Tank

Manufacturer

Quantity

Туре

Lining

Dimension

Accessories

Ũse

10' - 0" dia. x 16' - 0" straight shell

10,000 gallons

Saddle supports, ladders and platforms

Storage for 50% NaOH.

Hungerford & Terry, Inc.

One -

Vertical, cylindrical steel tank with flat bottom and cover plate.

3/16" thick rubber for interior and 6 mils epoxy for exterior surfaces.

 $5^{i} - 6^{ii}$ dia. x $4^{i} - 0^{ii}$ high

Strainers

Batching and dissolving tank for brine

Hungerford & Terry, Inc.

One

Vertical, cylindrical steel tank with bottom dished head and cover plate.

3/16" thick rubber for interior and 6 mils epoxy for exterior surfaces

9' - 0" dia. x 11' - 0" straight side

Level gauge, vent

Surge tank during brine recirculation

-19-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 102 OF 107

5.25 Brine Solution Heat Exchanger

Manufacturer

Quantity

Type

Design Pressure

Heating Capacity

Steam Requirements

Heating Surface Area

Accessories

Use

5.26 Brine Recirculation Pump

Manufacturer

Quantity

Type

Capacity and Head

Speed

Motor Rating & Enclosure

Accessories

Bell & Gossett

One

Horizontal shell and U-tube heat exchanger, Model SU-66, of type 316 stainless steel construction on tube side.

150 psig ASME Code

Heat 35 gpm of 26% saturated brine solution from 55° to 120°F.

1175 1bs./hr. of 25 psig saturated steam

22.1 ft^2

Pressure relief valve, steam control valve, steam traps, strainers

Preheat and maintain the temperature of recirculating brine solution

LaBour

One

Horizontal, centrifugal type, LaBour Model LV with Alloy 20 impeller and casing.

35 gpm at 115 ft. tdh.

3500 rpm

5 hp, 460 V, 3 phase, 60 Hz, TEFC.

Pressure and flow indication, isolation and check valves, strainer, recycle valve, flush valve.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 103 OF 107

Supply brine solution to the anion resin beds.

Hungerford & Terry, Inc.

One

NEMA 3 construction, double-tunnel walk-through type, with sloping roof and removable sun canopy

 $16' - 0'' \log x 9' - 0'' \operatorname{deep} x 8' - 7 - 1/2''$ high

Air conditioning equipment, recorders, indicators, annunciators and other instrumentation and controls

Serves as a central operating cubicle for monitoring operations and abnormalities in the water treatment system.

Hungerford & Terry, Inc.

One

Bulk lime handling system consisting of a lime storage silo, a feeder and slaker, a slurry transfer pump, a slurry holding tank, and a control panel.

Bolted steel construction with bakeon epoxy coating, including bin unloader, truck load line assembly, guardrails, access ladder with cage, high and low level indicators, discharge hopper, vacuum pressure valve, bag filter assembly, a 6" rotary valve with 1/2 hp motor and drive, shear protector and manual slide gate, as supplied by Butler Manufacturing Co.

Use

5.27 Control Panel

Manufacturer

Quantity

Туре

Dimension

Accessories

Use

5.28 Bulk Lime Handling System

Manufacturer

Quantity

Туре

Lime Storage Silo

Туре

-21-

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 104 OF 107

Capacity

Dimension

Accessories

.

40 tons

12' - 0" dia. x 32' - 0" high

One Wallace & Tiernan Series A-758 lime slaking system complete with gravimetric feeder and stop-start controls; and one Hungerford & Terry control panel with controls and contacts for starting, stopping and controlling the system.

Lime Slurry Transfer Pump

Type

Capacity

Speed

.

Motor Rating & Enclosure

Accessories

Slurry Holding Tank

Туре

Dimension

Accessories

Use

LaBour type DZT, size 14 2" x 1-1/2" horizontal centrifugal pump, with cast iron casing and type 316 stainless steel open impeller.

10 gpm at 75 ft. tdh.

1800 rpm

3 hp, 460 V, 3 phase, 60 Hz, TEFC

Isolation valves for suction and discharge, slurry pump suction tank (36" dia. x 36" high)

Vertical, cylindrical tank of carbon steel construction with top cover and access door, round bottom, and structural steel support.

11' - 0" dia. x 4' - 0" straight shell

Two Lightnin Model NLDG-200 mixers with 2 hp motors; level controller with type 316 stainless steel probes; control and manual valves.

Storage, gravimetric feeding, slaking and transfer of lime slurry into the holding tank.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 105 OF 107

		EXHIBIT RRL-3, PAGE I			
Manufac	1ürer	Ingersoll-Rand Company	2		
Z Size and	Туре	5'' × 9'' SB	3		
2 Tao Nur	nber(s)	M-107.1.5	4		
	umber(s)	1750/Single Stage	5		
	imber of Stages	72/9.9/100	6		
	Efficiency·%/BHP <u>/WR2</u> f Head FT	54	7		
	{P Des 1 mp.	9.9	8		
1140. 01			10		
Liquid	Pumped	Raw Water			
Pumpin	g Temperature · ^O F	95°	1		
	Gravity @ P.T.	1.0			
	ressure @ P.T. · PSIA		1		
	y @ P.T SSU		11		
	y - GPM	735	1		
	ge Pressure - PSIG Pressure - PSIG		1		
	ntial Head - FT.	35	11		
	Available/Required - FT.	/7	1		
	m Flow - GPM	80	2		
			2		
11	Connection: Size/Rating	<u>8'' - 125# ANSI</u>	2		
	acing/Position	Flat Face/Side	2		
	ge Connection: Size/Rating	5" - 125# ANSI Flat Face/Side	2		
Z F	acing/Position		2		
	r Diameter: Design/Maximum Type: Thrust/Radial	Ball	2		
	tion	Grease	2		
1000 E 1	ng: (Yes) (No) /Type		2		
	Type/Manufacturer	Mechanical/Borg-Warner	3		
S Couolie	ng: Type/Manufacturer/Guard		3		
	Required: GPM/Pressure		3		
	ate: Type/Material	Drip Lip - Fab. Steel	3		
			3		
	Inner/Outer	ASTM A-48 C1.30	3		
impelle	rs	ASTM B-143	3		
≤ Diffuse	rs	AISI - 316 S.S.	3		
will Share .	leeves	AISI - 316 S.S.	3		
	ings: Case/Impeller	Bronze/None			
Packin	-		. 4		
			4		
v Hydros	tatic/Witnessed		4		
	Witnessed				
Perfor	nance/Witnessed				
<u> </u>		DBW 3 Dhase 60 Cycle TEEC Frame 21			
	Type 10HP Motor 1800		21 4		
	Sectorer/Furnished By Westing	ith base 740# Motor 120#	. 4		
VEIGHIS:	Pump/Base/Driver Pump w:		1		
PECIAL FE	ATURES & ACCESSORIES:				
HORIZONTAL CENTRIFUGAL PUMP DAT		TAL OCHTOICHOAL BURED DATA CHECT	CONTRACT NO		
		IAL CENTRIFUGAL FUMP DATA SHEET	CR-0163		
·M		COAGULATOR FEED PUMP	SPEC. NO.		
			M-107.1.5		
.ENGINE		OWER & LIGHT CO MIAMI, FLORIDA			
	TOPC III	IN PLANT UNITS #1 8 #2			
CONSTRUCT	MA MA	MINAL CHAINE ONLY CONTROL CO	22		

.]

.

.)

.]

. 1

.

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 106 OF 107

Im	anutacturer	Ingersoll-Rand Company 5" x 4" x 12" HC (Dual)	
llei	re and Type	M-107.1.9	
11	an Number (s)		
ls	erial Number(s)	1750/Single Stage	
1	nat/Number of States	75/39/	
110	Section Efficiency %/BHP/WD	141	
) li e	Shut Off Head-FT, Max. BHP Dos Imp	39	
N.	Max. BMP Des Imp.		
#	Linut Pumined	Water	
	Liquid Pumped Pumping Temperature - ^O F	95°	
<u>S</u>	Specific Gravity @ P.T.	1.0	
2	Pumping Temperature • • • Specific Gravity @ P.T Vapor Pressure @ P.T. • PSIA Viscosity @ P.T. • SSU		
ā	Viscosity @ P.T SSU	1000	
S	Capacity · GPM Discharge Pressure · PSIG		
2	Discharge Pressure - PSIG		
0	Suction Pressure - PSIG		
S	Differential Head - FT NPSH: Available/Required - FT	/18	
9	Minimum Flow · GPM		
-	Suction Connection: Size/Rating	5" - 125# AUSI Flat Face/Front	
	Facing/Position Discharge Connection: Size/Rating	Flat Face/Front 4" - 125# ANS1	
	Discharge Connection: Size/Rating		
_	Facing/Position		
õ	Impeller Diameter: Design/Maxim	Ball	
5	Bearing Type: Thrust/Radial	011	
B C	Lubrication		
ST.	Oil Piping: (Yes) (No) /Type	Mechanical/Borg-Warner	· · · ·
S	Seals: Type/Manufacturer/Gu Coupling: Type/Manufacturer/Gu	Gear-Spacer/Fast -"B"/Yes	
0	Water Required: GPM/Pressure	the lite / Eah Steel	
	Base Plate: Type/Material	Drip Lip/Fab. Steel	
		1 1074 - A-48 C. 1. 30	
	Casing: Inner/Outer		
U	Casing: Initer Control	Institute 112	
	Diffusers	AISI - 1045	
C t	Shaft	SAE 660	
	Shaft Sleeves Wear Rings: Case/Impeller	SAE 660/None	
	El Wear Rings: Case/Imperer		
	Packing		
	Hydrostatic/Witnessed		
	NPSH/Witnessed		
	NPSH/Witnessed		
		a prist 60 Cycle TEFC Frame 346TS	
Ē	RIVER: Type _ 50 HP Motor	1800 RPM 3 PRASE 60 Cycle REFC Frame 346TS	
	Manustant (FRT/ FMT)))))	Allis Chalmers 512# Motor 835#	
ł	VEIGHIS: Pump Desci Ditte	rump water.	
F	PECIAL FEATURES & ACCESSORI	ES:	,
S	PECIAL PEATORES & ROLLIOS		
1			
+			CONT
Ł		DRIZONTAL CENTRIFUGAL PUMP DATA SHEET	CR
	HID-VALLEY, INC. HC		
ŀ		SAND FILTER BACKWASH PUMP	SPEC
		RIDA POWER & LIGHT CO MIAMI, FLORIDA	M-1
	FLO	MARTIN PLANT UNITS #1 8 #2	PAG
٤	ENGINEERS	MADTIN DIANT UNITS #10#4	
	CONSTRUCTORS.	MARTIN CARL	23

. . .

5 .

. . 1

. 1 .. . 1 • • .]

> . 1 • ') . 1 . . 1

. } : } . }

DOCKET NO. 070007-EI GOLDER ASSOCIATES, INC. EXHIBIT RRL-3, PAGE 107 OF 107

.

,

¥,		HEI7AS	AN107.1.51	(ROVG2)MAR 15 B COAGU	LATOR	FEED RUM	SIALIS		#41502		
	CUSTOMER Mid	VALLEY INC .	·	DER CONDITIONS	,	PUNP .	5X95B	TES	1750	DATE 8	30/76
		3/6.54 ITEM 2	ари <i>735</i> Т. н. агт. 35	EFF 7/95		SSB3B	SHROUD DIA	VANE DIA.	DIFFUSOR	CASING MAT	L
	0375 C		RP# 1750		> H₽		1 2 200			DIFF. MATL	
	0375-6			Mora,						11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	
											E.
										<u>BH</u>	E E
										HUSTE	
	20										
	B0										
6											
											12
50											
	40 9 1										
\$0											
30	30 8 1										
20	20										
							1				285
' <i>1</i> 0	10/			H F			TE X100			PERFORM	IANCE
N.									E Servin	Lone	
ø	/	2	3	4	6			1	<u>9</u> ′	 ₩ Ŧ 	
	•				•					••••	
				: 1		•,	· · · · ·	•	· .		• .
						· · ·					
	•										
		,		·							
		•	·								
							•				
MID-V/	LLEY, INC.	<u> </u>									RACT
	A		COACT	PUMP	CURV	E SHEE	T A & IB				- 016
•	V	FL	DRIDA F	ULATOR FE	ĨĽIĠ	HT CC	D. – MÍĂM	II, FLOF	RIDA	SPEC.	
+EN	SINEERS.		МА	RTIN PL	ANT	-UNIT	S #18	#2		<u>M-107</u> PAGE	<u>/.1</u>
CONS	TRUCTORS.									PAGE	NO.

:

FLORIDA POWER & LIGHT COMPANY

Department of Environmental Protection Letter approving Corrective Action Plan For FPL Martin Plant PWS #4431748

> RRL-4 DOCKET NO. 070007-EI FPL WITNESS: R.R. LABAUVE EXHIBIT ______ PAGES 1-3

Department of EXHIFE Environmental Protection

DOCKET NO. 070007-EI DEPT. LETTER APROVING CORRECTIVE ACTION PLAN EXHIBIT RRL-4, PAGE 1 OF 3

Jeb Bush Governor Southeast District 400 N. Congress Avenue, Suite 200 West Palm Beach, Florida 33401

Colleen M. Castille Secretary

DEC - 1 2006

Craig W. Arcari, Plant General Manager Florida Power & Light Company Martin Plant P.O. Box 176 Indiantown, Florida 34956-0176

SUBJECT: Consent Order in OGC File No.: 06-0744 Florida Power & Light Martin Plant PWS #4431748

Received 12/7/2006 hay ward

Craig W. Arcari General Manager

Dear Mr. Arcari:

The Department would like to thank you for your correspondence of November 17, 2006 regarding the proposed corrective action plan (Plan) required by paragraph 5a of the referenced Consent Order. Based on the additional information provided in your November 17, 2006 letter, the Department hereby approves the Plan and proposed compliance schedule (copy attached). Since the pilot study is proposed to last no more than three months and the water from the pilot plant will not be discharged into the public water system, no Department permit is required for the pilot study.

Please keep the Department apprised as each milestone of the Plan is completed. If you have any questions regarding this matter, please contact Michele Owens of this office at (561) 681-6700 or via email at <u>Michele.Owens@dep.state.fl.us</u>.

Sincerely.

Todd R. Brown, C.P.M. Environmental Manager Water Facilities Compliance/Enforcement Program

TRB/mo

Enclosure (all)

cc: Harold A. Frediani, Jr., P.E., P.H., Golder Associates, Inc., 3730 Chamblee Tucker Road, Atlanta, GA 30341
 Willie Welch - FPL, P.O. Box 176, Indiantown, FL, 34956 <u>Willie Welch@FPL.com</u>
 Jerry Toney - DEP/PSL <u>Jerry.Toney@dep.state.fl.us</u>
 Jose Calas - DEP/WPB <u>Jose.Calas@dep.state.fl.us</u>

Florida Power & Light Company Martin Plant, P. O. Box 176, Indiantown, FL 34956-0176

MU

DOCKET NO. 070007-EI DEPT. LETTER APROVING CORRECTIVE ACTION PLAN EXHIBIT RRL-4, PAGE 2 OF 3

0.275. 1939 - an 1999 1949 - Angel Angel

November 17, 2006

Mr. Todd Brown, Environmental Manager Water Facilities Compliance/Enforcement Program Florida Department of Environmental Protection Southeast District Office 400 N. Congress Avenue, Suite 200 West Palm Beach, FL 33401

Re: Florida Power & Light Company Martin Plant PWS #4431748 OGC File No. 06-0744

Dear Mr. Brown:

FPL is in receipt of the Department's letter dated October 17, 2006, for the FPL Martin Plant nontransient noncommunity public water system, PWS #4431748. In response to the Department's letter, FPL has revised its schedule so that its pilot study will last less than three months. In addition, the water from the pilot study will not be discharged into the public water system. Provided are the revised interim milestone dates for the schedule provided in the Golder Associates submittal dated August 29, 2006. Please note that the remaining dates have not been changed.

- October 17, 2006 FDEP issues written request for additional information (RFI);
- November 17, 2006 FPL provides additional information to FDEP;
- December 20, 2006 FDEP issues written approval of the plan;
- January 12, 2007 FPL completes measurements of physical characteristics of aeration system, and takes synoptic samples of inlet and outlet water for both the aerator and the carbon filter, and sends those samples to the laboratory;
- January 26, 2007 FPL receives results/report from laboratory;
- March 23, 2007 Install pilot equipment for testing; May 20
- June 20, 2007 Complete testing of pilot;

DOCKET NO. 070007-EI DEPT. LETTER APROVING CORRECTIVE ACTION PLAN EXHIBIT RRL-4, PAGE 3 OF 3

2224

Mr. Brown, C.P.M. November 17, 2006 Page 2

In addition, please address any future correspondence to Mr. Craig W. Arcari, FPL Martin Plant General Manager. If you have any questions or need additional information, please contact Willie Welch or Jill Watson at (772) 597-7211 and (561) 694-4304, respectively.

Sincerely,

N licans

Craig W. Arcari Plant General Manager

cc: Willie Welch Jill Watson Harold Frediani FPL Martin Plant Power Generation Golder Associates

Docket No. 070007-EI FPL 800 MW Unit Cycling Project Exhibit RRL-5, Page 1 of 8

Florida Power & Light Company

Clean Air Interstate Rule

800 MW Cycling Project

Docket No. 070007-EI FPL 800 MW Unit Cycling Project Exhibit RRL-5, Page 2 of 8

Project Summary

FPL identified significant potential reductions in annual and ozone season NOx emissions through removal of the "must-run" status from the Martin and Manatee Plant 800 MW units. The "must run" status requires system dispatch to keep the 800 MW units from cycling off line during the May through September period once dispatched for load to avoid premature component failure from unit thermal cycling. FPL identified several strategies which, upon completion, would allow removal of "must run" status without subjecting the 800 MW units to premature failure from cycling off-line in response to reduced system load requirements.

Project Details

The analyses of components and systems which would require specific initiatives to allow for increased unit cycling identified seven (7) changes to component systems: 1)Condenser; 2)Superheater; 3)Economizer; 4)Aux Steam System; 5) Steam Turbine Components; 6)Water Treatment Plant upgrades; & 7)Instrument/Control upgrades. Systems and components were identified based on engineering analysis of impacts to unit reliability resulting from increased unit cycling operation. Figure 1 illustrates the specific project tasks which FPL has identified to allow reliable cycling of the 800 MW units.

ITEM	COUNTEMEASURE	BUDGET TYPE
2	Bullnose Thermocouples	Capital
6	Auxiliary Steam Warming	Capital
8	Steam Line Before Seat Drains	Capital
9	Induced Draft Fan Outlet Isolation Dampers	Capital
10	Nitrogen Blanket	Capital
11	Reheat Dissimilar Welds	Capital
12	Final Super Heater Tube Replace	Capital
13	Reheat Flex Modification	Capital
15	Water Treatment Plant	Capital
17	Condenser Retube	Capital
22	Water Induction Prevention	Capital
24	Rotor Stress Monitor	Capital
30	High Pressure Lower Shell Heating Blankets	Capital
1	Final Super Heater Outlet Header Condition Assessment	0 & M
4	Automatic Heat Recovery Area Drains	0 & M
5	Boiler Corrosion Fatigue Condition Assessment	0 & M

Figure 1

Docket No. 070007-EI FPL 800 MW Unit Cycling Project Exhibit RRL-5, Page 3 of 8

20	Feed Water Recirculation Regulator Inspection	0 & M
21	Low Pressure Turbine Inspections	0&M
26	Solid Particle Erosion Coating 2 Stages	0 & M
33	Mid-Standard Low Friction Skids	0 & M

FPL also identified additional initiatives that would be necessary for implementation of the 800 MW cycling project but were not exclusive to removal of the must run status. FPL intends to perform the additional tasks during planned outages recovering those costs through existing funding sources. Those activities and costs which were identified as specifically required for implementation of the 800 MW cycling project have been included in FPL's request for recovery under the ECRC CAIR docket.

Project Revenue Requirements

FPL has projected the total cost for implementation of the 800 MW cycling project at \$109.3 million for the period of 2007 through project completion in 2010. FPL has identified \$101.6 million of project costs which FPL proposes to recover through the ECRC. Figure 2 provides the project funding requirements for implementation of the 800 MW cycling strategy.


Figure 2 800 MW Cycling Project ECRC Funding Requirement

	2007	2008	2009	2010	Total
Capital	\$0	\$31,215,000	\$47,700,000	\$18,150,000	\$97,065,000
0&M	\$0	\$800,000	\$2,500,000	\$1,248,000	\$4,548,000

Docket No. 070007-EI FPL 800 MW Unit Cycling Project Exhibit RRL-5, Page 4 of 8

> AES 07016369-2-1 April 2007

Draft Report for Review and Recommendations for Martin and Manatee Power Stations with Future Operation Mode Changes

Phase 1: Analysis of Martin Unit 2 Cycling Impacts on Reliability, Future Costs, and Evaluation of Countermeasures to Reduce Impacts

Prepared By

G. Paul Grimsrud Steven A. Lefton James J. Yavelak Dwight D. Agan Joseph Lesiuk Philip M. Besuner

APTECH

Prepared For

Florida Power & Light Company Power Generation 700 Universe Boulevard Juno Beach, FL 33408

Section 1 INTRODUCTION

1.1 BACKGROUND AND OBJECTIVES

Florida Power & Light Company (FPL) owns and operates four large gas-fired steam units at the Martin and Manatee power plants. The Martin plant went on-line commercially in 1980. It consists of two conventionally fired oil and gas-fired units. Each unit has a Foster Wheeler boiler, a Westinghouse turbine, and an ABB generator. These units were originally designed to burn oil and were retrofitted in 1985 to also burn natural gas. The Manatee plant first went on-line commercially in 1976. It too consists of two conventionally fired oil and gas-fired units. Each unit has a Foster Wheeler boiler, a Westinghouse turbine, and a Westinghouse generator. Like the Martin plant, the Manatee units were originally designed to burn oil only and were retrofitted in 2002 to also burn natural gas. The Unit 1 boiler at Manatee has been converted to include "re-burn" technology. The Unit 2 boiler is also in the process of installing the "re-burn" technology.

FPL anticipates that the "operating modes" for these units may involve more off-on cycling. FPL is concerned that increased cycling will cause accelerated damage to many unit components, causing increased equipment failures with resulting higher equipment forced outage rates and higher non-routine maintenance and capital replacement costs. The specific operating modes FPL desires to investigate are: (1) cycling off during weekends and (2) cycling off each weeknight (e.g., approximately five startups per week during the seasons of operation).

APTECH

AES 07016369-2-1

1-1

6.5 RECOMMENDATIONS ON SELECTED COUNTERMEASURES

Based on analyses presented in Table 6-4, we recommend the following cycling countermeasure for detailed design and implementation. These recommendations would apply for both the weekly cycling and daily cycling scenarios.

 Add auxiliary steam from Unit 8 during periods before startups to lower temperature ramp rates and thermal fatigue in several components, including HP FW heaters; boiler pressure parts; air pre-heater; turbine casing and valves; main steam and hot reheat piping; steam jet air ejector, and the BFP. The economics presented in Table 6-4 do not include the possible benefit to Unit 8 of reducing offon cycles of a CT. The avoidance of an overnight CT cycle could more than offset the cost of lost MWhs from the Unit 8 steam turbine. In comparing the incremental costs and benefits of including turbine warming from this system to using electric turbine blankets, we think it's more beneficial and less expensive to use the electric turbine blankets.

APTECH

6-12

AES 07016369-2-1

- 2. Add Automatic drains in HRA headers with motor-operated valves. This is based on our diagnosis that condensate is present in the lower HRA system left over from the boiler cold or warm condition that causes high thermal shocks to the HRA, division walls, and primary SH. This countermeasure is relatively inexpensive, and will likely significantly decrease problems in the HRA and division walls.
- 3. Add turbine blankets for keeping warm during shutdowns. We prefer this option compared to using an auxiliary steam source because it is a little cheaper, and much less costly to operate (per hour), meaning it could be used throughout the shutdowns rather than just before startups, thus reducing temperature ranges on warm and cold start cycles.
- 4. Install a nitrogen blanketing system for the boiler during shutdowns and for continuous use on the condensate storage tank. This system will allow better control of oxygen levels during cycling and help prevent corrosion in the boiler.

The candidate countermeasure that is near the margin in terms of cost-benefit is the condenser re-tube. Part of the reason for this is its high cost, about \$7 million per unit. The re-tube option becomes economically viable when one of two adverse effects occur with the current condensers: (1) the condenser tube leaks become frequent and cause significant increases in EFOR and also carryover of bad water to the boiler and turbine and (2) the increasing number of plugged tubes causes condenser backpressure problems that increase heat rates. We think that if the Martin units go to daily cycling that the condensers will degrade very quickly causing and unacceptable level of EFORs. Thus, at least for the daily cycling scenario, we think this countermeasure should be designed and implemented. Since the condenser of Martin Unit 1 appears to be in the worst condition, it should probably be re-tubed first. If the Martin units go to weekly cycling FPL may want to take a wait-and-see approach to re-tubing, thus deferring a large capital cost. However, based on the recent studies on the condensers, they will need to be replaced soon in any case.

APTECH

AES 07018369-2-1

The countermeasures that don't appear to be economically viable are the :

- 1. Bypass system, which is quite expensive and does not offer as much benefit as the auxiliary steam system which is recommended
- 2. Motor-driven BFP, which appears to be too expensive. We think the auxiliary steam supply could be helpful in reducing BFP problems during initial startup
- 3. Replacement of selected sections of the SH and RH or replacement of DMWs, which is also too expensive. We think that more information on the damage mechanisms and remaining useful lives of these boiler sections are needed to justify the costs of these options.

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 1 of 21

Florida Power & Light Company

Clean Air Interstate Rule

Peaking Gas Turbine CEMS

Project Summary

FPL's Simple Cycle Gas Turbine Peaking Units located at the Port Everglades, Lauderdale and Ft. Myers plants are CAIR affected units which require compliance with the emission monitoring requirements under 40 CFR Part 75. Monitoring requirements under Part 75 provide several compliance options for peaking units. The flexibility for monitoring systems for peaking units allows facilities to implement less data intensive monitoring systems at lower costs exchange for typically higher estimated emissions. The Low Mass Emissions (LME) monitoring option under Part 75.19 is available to units which emit less than 100 NOx tons annually and 50 NOx tons during the May through September Ozone Season.

FPL had initially chosen to comply with the CAIR Part 75 monitoring requirements at the Gas Turbine Peaking Units through fuel flow monitoring methodology of Subpart B – Monitoring Provisions. Compliance utilizing the fuel flow methodology would have required a limited CEMS implementation to capture fuel flow to each unit and calculated the emissions through use of the emission factors provided by EPA for similar LME units.

During a subsequent review of the LME compliance option it was identified that an unacceptable risk to operation of the Gas Turbine Peaking Units could occur under several operating scenarios. The Part 75 rules do not allow for exceptions to compliance requirements and limitations for operating issues including emergency operations resulting from impacts of storms to FPL. FPL identified that exceedance of the LME limits for use of the fuel flow methodology was possible and theat exceedance of the limit would require compliance with full Part 75 CEMS requirements for all units within 12 months of the exceedance. Full Part 75 CEMS compliance would require the installation of stack sampling ports, pollutant analyzers, on data acquisition & reporting systems on each combustion turbine. FPL has estimated compliance with implementation of a full Part 75 CEMS on all of the Peaking Gas Turbine Units at a total cost in excess of \$1.5 million for installation.

To reduce the potential exposure to a required implementation of full Part 75 CEMS on all Gas Turbine Peaking Units FPL has identified that compliance with the Similar Units methodology under the LME provisions would be a more cost effective alternative for CEMS compliance. FPL plans to implement the Similar Units provision through establishing emission factors from actual unit emission testing and monitoring of representative units. Emission factors will be developed for one of every four similar Gas Turbine Peaking Units to estimate emissions from the other units in the group.

Docket No. 070007-EI FPL GT CEMS Project

Exhibit RRL-6, Page 3 of 21

The CAIR Gas Turbine Peaking Unit CEMS project requires the following milestones:

- Installation of emission testing ports on stacks of monitored units
- Purchase and installation of monitoring components
- Implementation of Data Acquisition & Handling Systems (DAHS)
- Compliance Testing & System Certification

FPL has estimated the cost for implementation of the Similar Units LME option for the CAIR Gas Turbine Peaking Unit CEMS at \$396,273.

Title 40: Protection of Environment

PART 75—CONTINUOUS EMISSION MONITORING Subpart B—Monitoring Provisions

Browse Previous

§ 75.19 Optional SO₂, NOX, and CO₂ emissions calculation for low mass emissions (LME) units.

(a) Applicability and qualification. (1) For units that meet the requirements of this paragraph (a)(1) and paragraphs (a)(2) and (b) of this section, the low mass emissions excepted methodology in paragraph (c) of this section may be used in lieu of continuous emission monitoring systems or, if applicable, in lieu of excepted methods under appendix D or E to this part, for the purpose of determining hourly heat input and hourly NO_x , SO_2 , and CO_2 mass emissions under this part.

(i) A low mass emissions unit is an affected unit that is gas-fired, or oil-fired (as defined in §72.2 of this chapter), and for which:

(A) An initial demonstration is provided, in accordance with paragraph (a)(2) of this section, which shows that the unit emits:

(*f*) No more than 25 tons of SO₂annually and less than 100 tons of NO_Xannually, for Acid Rain Program affected units. If the unit is also subject to the provisions of subpart H of this part, no more than 50 of the allowable annual tons of NO_xmay be emitted during the ozone season; or

(2) Less than 100 tons of NO_Xannually and no more than 50 tons of NO_Xduring the ozone season, for non-Acid Rain Program units subject to the provisions of subpart H of this part, for which the owner or operator reports emissions data on a year-round basis, in accordance with §75.74(a) or §75.74(b); or

(3) No more than 50 tons of NO_xper ozone season, for non-Acid Rain Program units subject to the provisions of subpart H of this part, for which the owner or operator reports emissions data only during the ozone season, in accordance with §75.74(b); and

(B) An annual demonstration is provided thereafter, using one of the allowable methodologies in paragraph (c) of this section, showing that the low mass emissions unit continues to emit no more than the applicable number of tons of SO_2 and/or NO_x specified in paragraph (a)(1)(i)(A) of this section.

(C) This paragraph, (a)(1)(I)(C), applies only to a unit that is subject to an SO_2 emission limitation under the Acid Rain Program, and that combusts a gaseous fuel other than pipeline natural gas or natural gas (as defined in §72.2 of this chapter). The owner or operator of such a unit must quantify the sulfur content and variability of the gaseous fuel by performing the demonstration described in section 2.3.6 of appendix D to this part, in order for the unit to qualify for LME unit status. If the results of that demonstration show that the gaseous fuel qualifies under paragraph (b) of section 2.3.6 to use a default SO_2 emission rate to report SO_2 mass emissions under this part, the unit is eligible for LME unit status.

(ii) Each qualifying LME unit must start using the low mass emissions excepted methodology as follows:

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 5 of 21

(A) For a unit that reports emission data on a year-round basis, begin using the methodology in the first unit operating hour in the calendar year designated in the certification application as the first year that the methodology will be used; or

(B) For a unit that is subject to Subpart H of this part and that reports only during the ozone season according to §75.74(c), begin using the methodology in the first unit operating hour in the ozone season designated in the certification application as the first ozone season that the methodology will be used.

(C) For a new or newly-affected unit, see paragraph (b)(4) of this section for additional guidance.

(2) A unit may initially qualify as a low mass emissions unit if the designated representative submits a certification application to use the LME methodology (as described in §75.83(a)(1)(ii) and in this paragraph, (a)(2)) and the Administrator (or permitting authority, as applicable) certifies the use of such methodology. The certification application shall be submitted no later than 45 days prior to the date on which use of the low mass emissions methodology is expected to commence, and the application must contain:

(i) A statement identifying the projected date on which the LME methodology will first be used. The projected commencement date shall be consistent with paragraphs (a)(1)(ii) and (b)(4) of this section, as applicable; and

(ii) Either:

(A) Actual SO $_{\rm p}$ and/or NO $_{\rm x}$ mass emissions data (as applicable) for each of the three calendar years (or ozone seasons) prior to the calendar year in which the certification application is submitted demonstrating to the satisfaction of the Administrator or (if applicable) the permitting authority, that the unit emitted less than the applicable number of tons of SO₂ and/or NO_X specified in paragraph (a)(1)(i)(A) of this section. For the purposes of this paragraph, (a)(2)(ii)(A), the required actual SO $_2$ or NO $_X$ mass emissions for each qualifying year or ozone season shall be determined using the SO_2, NO_X and heat input data reported to the Administrator in the electronic quarterly reports required under §75.64 or under the Ozone Transport Commission (OTC) NO_xBudget Trading Program. Notwithstanding this requirement, in the absence of such electronic reports, an estimate of the actual emissions for each of the previous three years (or ozone seasons) shall be provided, using either the maximum rated heat input methodology described in paragraph (c)(3)(i) of this section or procedures consistent with the long term fuel flow heat input methodology described in paragraph (c)(3)(ii) of this section, in conjunction with the appropriate SO₂ or NO_X emission rate from paragraph (c)(1)(i) of this section for SO₂, and paragraph (c)(1)(ii) or (c)(1)(iv) of this section for NO_{χ} . Alternatively, the initial estimate of the NO_{χ} emission rate may be based on historical emission test data that is representative of operation at normal load or historical data from a CEMS certified under part 60 of this chapter or under a state CEM program; or

(B) When the three full years (or ozone seasons) of actual $\rm SO_2$ and $\rm NO_X$ mass emissions data (or reliable estimates thereof) described under paragraph (a)(2)(ii)(A) of this section do not exist, the designated representative may submit an application to use the low mass emissions excepted methodology based upon a combination of actual historical SO2 and NO2 mass emissions data and projected SO2 and NO₂ mass emissions, totaling three years (or ozone seasons). Except as provided in paragraph (a)(3) of this section, actual data must be used for any years (or ozone seasons) in which such data exists and projected data should be used for any remaining future years (or ozone seasons) needed to provide emissions data for three consecutive calender years (or ozone seasons). For example, if a unit commenced operation two years ago, the designated representative may submit actual, historical data for the previous two years and one year of projected emissions for the current calendar year or, for a new unit, the designated representative may submit three years of projected emissions, beginning with the current calendar year. Any actual or projected annual emissions must demonstrate to the satisfaction of the Administrator that the unit will emit less than the applicable number of tons of SO2 and/or NO_v specified in paragraph (a)(1)(i)(A) of this section. Projected emissions shall be calculated using either the appropriate default emission rates from paragraphs (c)(1)(i) and (c)(1)(i) of this section (or, alternatively for NO $_{\chi}$, a conservative estimate of the NO $_{\chi}$ emission rate, as described in paragraph (a)(4)

of this section), in conjunction with projections of unit operating hours or fuel type and fuel usage, according to one of the allowable calculation methodologies in paragraph (c) of this section; and

(iii) A description of the methodology from paragraph (c) of this section that will be used to demonstrate

on-going compliance under paragraph (b) of this section; and

(iv) Appropriate documentation demonstrating that the unit is eligible to use projected emissions to qualify for LME status under paragraph (a)(3) of this section (if applicable).

(3) In the following circumstances, projected emissions for a future year (or years) may be used in lieu of the actual emissions data from one (or more) of the three years (or ozone seasons) preceding the year of the certification application:

(i) If the owner or operator takes an enforceable permit restriction on the number of annual or ozone season unit operating hours for the future year (or years), such that the unit will emit no more than the applicable number of tons of SO₂and/or NO_Xspecified in paragraph (a)(1)(i)(A) of this section; or

(ii) If the actual emissions for one (or more) of the three years (or ozone seasons) prior to the year of the certification application is not representative of the present and expected future emissions from the unit, because the owner or operator has recently installed emission controls on the unit.

(4) When the owner or operator elects to demonstrate initial LME qualification and on-going compliance using a fuel-and-unit-specific NOvemission rate in accordance with paragraph (c)(1)(iv) of this section. there will be instances (e.g., for a new or newly-affected unit) where it is not possible to determine that NOvemission rate prior to submitting the certification application. In such cases, if the generic default NO_xemission rates in Table LM-2 of this section are inappropriately high for the unit, the owner or operator may use a more representative, but conservatively high estimate of the expected NO_xemission rate, for the purposes of the initial monitoring plan submittal and to calculate the unit's projected annual or ozone season emissions under paragraph (a)(2)(ii)(B) of this section. For example, the NO_x emission rate could, as described in paragraph (a)(2)(ii)(A) of this section, be estimated using historical CEM data or historical emission test data that is representative of operation at normal load. The NO emission limit specified in the operating permit for the unit could also be used to estimate the NOvemission rate (except for units equipped with SCR or SNCR), or, consistent with paragraph (c)(1)(v)(C)(4) of this section, for a unit that uses SCR or SNCR to control NO_Xemissions, an estimated default NO_Xemission rate of 0.15 lb/mmBtu could be used. However, these estimated NO_Xemission rates may not be used for reporting purposes in the time period extending from the first hour in which the LME methodology is used to the date and hour on which the fuel-and-unit-specific NO_Xemission rate testing is completed. Rather, in that interval, the owner or operator shall either report the appropriate default NOvemission rate from Table LM-2, or shall report the maximum potential NO $_{\chi}$ emission rate, calculated in accordance with §72.2 of this chapter and section 2.1.2.1 of appendix A to this part. Then, beginning with the first unit operating hour after completion of the tests, the appropriate default NO_xemission rate (s) obtained from the fuel-and-unit-specific testing shall be used for emissions reporting.

(b) On-going qualification and disqualification. (1) Once a low mass emissions unit has qualified for and has started using the low mass emissions excepted methodology, an annual demonstration is required, showing that the unit continues to emit no more than the applicable number of tons of SO_2 and/or NO_X specified in paragraph (a)(1)(i)(A) of this section. The calculation methodology used for the annual demonstration shall be the methodology described in the certification application under paragraph (a)(2) (iii) of this section.

(2) If any low mass emissions unit fails to provide the required annual demonstration under paragraph (b)(1) of this section, such that the calculated cumulative emissions for the unit exceed the applicable number of tons of SO₂and/or NO_Xspecified in paragraph (a)(1)(i)(A) of this section at the end of any calendar year or ozone season, then:

(i) The low mass emissions unit shall be disqualified from using the low mass emissions excepted methodology; and

(ii) The owner or operator of the low mass emissions unit shall install and certify monitoring systems that meet the requirements of §§75.11, 75.12, and 75.13, and shall report SO₂(Acid Rain Program units, only), NO_X, and CO₂(Acid Rain Program units, only) emissions data and heat input data from such monitoring systems by December 31 of the calendar year following the year in which the unit exceeded

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 7 of 21

the number of tons of SO₂ and/or NO_{χ} specified in paragraph (a)(1)(i)(A) of this section; and

(iii) If the required monitoring systems have not been installed and certified by the applicable deadline in paragraph (b)(2)(ii) of this section, the owner or operator shall report the following values for each unit operating hour, beginning with the first operating hour after the deadline and continuing until the monitoring systems have been provisionally certified: the maximum potential houry heat input for the unit, as defined in §72.2 of this chapter: the SO₂emissions, in lb/hr, calculated using the applicable default SO₂emission rate from paragraph (c)(1)(i) of this section and the maximum potential hourly unit heat input; the CO₂emissions, in tons/hr, calculated using the applicable default CO₂emission rate from paragraph (c)(1)(ii) of this section and the maximum potential hourly unit heat input; and the maximum potential hourly unit heat input; and the maximum potential hourly unit heat input; and the maximum potential NO₂emission rate, as defined in §72.2 of this chapter.

(3) If a low mass emissions unit that initially qualifies to use the low mass emissions excepted methodology under this section changes fuels, such that a fuel other than those allowed for use in the low mass emissions methodology is combusted in the unit, the unit shall be disqualified from using the low mass emissions excepted methodology as of the first hour that the new fuel is combusted in the unit. The owner or operator shall install and certify $SO_2(Acid Rain Program units, only)$, NO_X , and $CO_2(Acid Rain Program units, only)$.

Rain Program units, only) and flow (if necessary) monitoring systems that meet the requirements of §§75.11, 75.12, and 75.13 prior to a change to such fuel, and shall report emissions data from such monitoring systems beginning with the date and hour on which the new fuel is first combusted in the unit. If the requirements of systems are not installed and certified prior to the fuel switch, the owner or operator shall report (as applicable) the maximum potential concentration of SO₂, CO₂ and NO_X, the maximum potential NO_xemission rate, the maximum potential flowrate, the maximum potential hourly

heat input and the maximum (or minimum, if appropriate) potential moisture percentage, from the date and hour of the fuel switch until the monitoring systems are certified or until probationary calibration error tests of the monitors are passed and the conditional data validation procedures in §75.20(b)(3) begin to be used. All maximum and minimum potential values shall be specific to the new fuel and shall be determined in a manner consistent with section 2 of appendix A to this part and §72.2 of this chapter. The owner or operator must notify the Administrator (or the permitting authority) in the case where a unit switches fuels without previously having installed and certified a SO₂, NO_X and CO₂monitoring system meeting the requirements of §§75.11, 75.12, and 75.13.

(4) If a new of newly-affected unit initially qualifies to use the low mass emissions excepted methodology under this section and the owner or operator wants to use the low mass emissions methodology for the unit, he or she must

(i) Keep the records specified in paragraph (c)(2) of this section, beginning with the date and hour of commencement of commercial operation, for a new unit subject to an Aoid Rain emission limitation, and beginning with the date and hour of the commencement of operation, for a new unit subject to a NO_Xmass reduction program under subpart H of this part. For newly-affected units, the records in paragraph (c)(2) of this section shall be kept as follows:

(A) For Acid Rain Program units, begin keeping the records as of the first hour of commercial operation of the unit following the date on which the unit becomes affected; or

(B) For units subject to a NO_X mass reduction program under subpart H of this part, begin keeping the records as of the first hour of unit operation following the date on which the unit becomes an affected unit;

(ii) Use these records to determine the cumulative heat input and SO₂, CO₂, and/or NO_Xmass emissions in order to continue to qualify as a low mass emissions unit; and

(iii) Determine the cumulative SO₂and/or NO_Xmass emissions according to paragraph (c) of this section using the same procedures used after the certification deadline for the unit, for purposes of demonstrating eligibility to use the excepted methodology set forth in this section. For example, use the default emission rates in Tables LM-1, LM-2, and LM-3 of this section or use the fuel-and-unit-specific NO_Xemission rate determined according to paragraph (c)(1)(iv) of this section. For Acid Rain Program LME units, the Administrator will not count SO₂mass emissions calculated for the period between commencement of commercial operation and the certification deadline for the unit under §75.4 against

SO₂allowances to be held in the unit account.

(5) A low mass emissions unit that has been disqualified from using the low mass emissions excepted methodology may subsequently submit an application to qualify again to use the low mass emissions methodology under paragraph (a)(2) of this section only if, following the non-compliant year (or ozone season), at least three full years (or ozone seasons) of actual, monitored emissions data is obtained showing that the unit emitted no more than the applicable number of tons of SO₂ and/or NO_X specified in paragraph (a)(1)(i)(A) of this section. Further, the designated representative or authorized account representative must certify in the application that the unit operation for the years or ozone seasons for which the emissions were monitored are representative of the projected future operation of the unit.

(c) Low mass emissions excepted methodology, calculations, and values —(1) Determination of SO 2, NO X, and CO 2 emission rates. (i) If the unit combusts only natural gas and/or fuel oil, use Table LM-1 of this section to determine the appropriate SO₂emission rate for use in calculating hourly SO₂mass emissions under this section (Acid Rain Program units, only). If the unit combusts gaseous fuel(s) other than natural gas, the owner or operator shall use the procedures in section 2.3.6 of appendix D to this SO₂emission rate for each such fuel and to determine the appropriate default SO₂emission rate for each such fuel.

(ii) If the unit combusts only natural gas and/or fuel oil, use either the appropriate NO_Xemission factor from Table LM–2 of this section, or a fuel-and-unit-specific NO_Xemission rate determined according to paragraph (c)(1)(iv) of this section, to calculate hourty NO_Xmass emissions under this section. If the unit combusts a gaseous fuel other than pipeline natural gas or natural gas, the owner or operator shall determine a fuel-and-unit-specific NO_Xemission rate according to paragraph (c)(1)(iv) of this section.

(iii) If the unit combusts only natural gas and/or fuel oil, use Table LM-3 of this section to determine the appropriate CO_2 emission rate for use in calculating hourly CO_2 mass emissions under this section (Acid Rain Program units, only). If the unit combusts a gaseous fuel other than pipeline natural gas or natural gas, the owner or operator shall determine a fuel-and-unit-specific CO_2 emission rate for the fuel, as follows:

(A) Derive a carbon-based F-factor for the fuel, using fuel sampling and analysis, as described in section 3.3.6 of appendix F to this part; and

(B) Use Equation G-4 in appendix G to this part to derive the default CO₂emission rate. Rearrange the equation, solving it for the ratio of W_{CO2} /H (this ratio will yield an emission rate, in units of tons/mmBtu). Then, substitute the carbon-based F-factor determined in paragraph (c)(1)(iii)(A) of this section into the rearranged equation to determine the default CO₂emission rate for the unit.

(iv) In lieu of using the default NO_Xemission rate from Table LM-2 of this section, the owner or operator may, for each fuel combusted by a low mass emissions unit, determine a fuel-and-unit-specific NO_Xemission rate for the purpose of balculating NO_Xmass emissions under this section. This option may be used by any unit which qualifies to use the low mass emission excepted methodology under paragraph (a) of this section, and also by groups of units which combust fuel from a common source of supply and which use the long term fuel flow methodology under paragraph (c)(3)(ii) of this section to determine heat input. The testing must be completed in a timely manner, such that the test results are reported electronically no later than the end of the calendar year or ozone season in which the LME methodology is first used. If this option is chosen, the following procedures shall be used.

(A) Except as otherwise provided in paragraphs (c)(1)(iv)(F), (c)(1)(iv)(G), and (c)(1)(iv)(I) of this section, determine a fuel-and-unit-specific NO_X emission rate by conducting a four load NO_X emission rate test procedure as specified in section 2.1 of appendix E to this part, for each type of fuel combusted in the unit. For a group of units sharing a common fuel supply, the appendix E testing must be performed on each individual unit in the group, unless some or all of the units in the group belong to an identical group of units, as defined in paragraph (c)(1)(iv)(B) of this section, in which case, representative testing may be conducted on units in the identical group of units, as described in paragraph (c)(1)(iv)(B) of this section. For the purposes of this section, make the following modifications to the appendix E test

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 9 of 21

(1) Do not measure the heat input as required under 2.1.3 of appendix E to this part.

(2) Do not plot the test results as specified under 2.1.8 of appendix E to this part.

(3) When using Method 20 for turbines do not correct the NO $_{\chi}$ concentration to 15% O $_{2}.$

(4) If the testing is performed on an uncontrolled diffusion flame turbine, a correction to the observed average NO_Xconcentration from each run of the Method 20 test must be applied using the following Equation LM-1a.

$$NO_{\chi_{out}} = NO_{\chi_{ob}} \left(\frac{P_r}{P_s}\right)^{0.5} e^{10(R_s - R_r)} \left(\frac{T_r}{T_a}\right)^{1.53} \qquad (Eq. LM-la)$$

Where:

NO_xcorr= Corrected NO_xconcentration (ppm).

NO_xobs= Average measured NO_xconcentration for each run of the Method 20 test (ppm).

 P_r = Average annual atmospheric pressure (or average ozone season atmospheric pressure for a Subpart H unit that reports data only during the ozone season) at the nearest weather station (e.g., a standardized NOAA weather station located at the airport) for the year (or ozone season) prior to the year of the test (mm Hg).

P_o= Observed atmospheric pressure during the test run (mm Hg).

 H_r = Average annual atmospheric humidity ratio (or average ozone season humidity ratio for a Subpart H unit that reports data only during the ozone season) at the nearest weather station, for the year (or ozone season) prior to the year of the test (g H₂O/g air).

 H_{o} = Observed humidity ratio during the test run (g $H_{2}O/g$ air).

 T_r = Average annual atmospheric temperature (or average ozone season atmospheric temperature for a Subpart H unit that reports data only during the ozone season) at the nearest weather station, for the year (or ozone season) prior to the year of the test (* K).

T_a= Observed atmospheric temperature during the test run (* K).

(B) Representative appendix E testing may be done on low mass emission units in a group of identical units. All of the units in a group of identical units must combust the same fuel type but do not have to share a common fuel supply.

(f) To be considered identical, all low mass emission units must be of the same size (based on maximum rated hourly heat input), manufacturer and model, and must have the same history of modifications (e.g., have the same controls installed, the same types of burners and have undergane major overhauls at the same frequency (based on hours of operation)). Also, under similar operating conditions, the stack or turbine outlet temperature of each unit must be within ± 50 degrees Fahrenheit of the average stack or turbine outlet temperature for all of the units.

(2) If all of the low mass emission units in the group qualify as identical, then representative testing of the units in the group may be performed according to Table LM-4 of this section.

(3) [Reserved]

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 10 of 21

(4) If the acceptance criteria in paragraph (c)(1)(iv)(B)(7) of this section are not met then the group of low mass emission units is not considered an identical group of units and individual appendix E testing of each unit is required.

(5) Fuel and unit specific NO_Xemission rates determined according to paragraphs (o)(1)(iv)(F) and (c) (1)(iv)(G) of this section may be used in lieu of appendix E testing for one or more low mass emission units in a group of identical units.

(C) Based on the results of the part 75 appendix E testing, determine the fuel-and-unit-specific NO $_{\rm X}$ emission rate as follows:

(f) Except for LME units that use selective catalytic reduction (SCR) or selective non-catalytic reduction (SNCR) to control NO_Xemissions, the highest three-run average NO_Xemission rate obtained at any load in the appendix E test for a particular type of fuel shall be the fuel-and-unit-specific NO_Xemission rate, for that type of fuel.

(2) [Reserved]

(3) For a group of identical low mass emissions units (except for units that use SCR or SNCR to control NO_{χ} emissions), the fuel-and-unit-specific NO_{χ} emission rate for all units in the group, for a particular type of fuel, shall be the highest three-run average NO_{χ} emission rate obtained at any tested load from any unit tested in the group, for that type of fuel.

(4) Except as provided in paragraphs (c)(1)(iv)(C)(7) and (c)(1)(iv)(C)(8) of this section, for an individual low mass emissions unit which uses SCR or SNCR to control NO_Xemissions, the fuel-and-unit-specific NO_Xemission rate for each type of fuel combusted in the unit shall be the higher of:

(*i*) The highest three-run average emission rate from any load of the appendix E test for that type of fuel; or

(ii) 0.15 lb/mm6tu.

(5)[Reserved]

(6) Except as provided in paragraphs (c)(1)(iv)(C)(7) and (c)(1)(iv)(C)(8) of this section, for a group of identical low mass emissions units that are all equipped with SCR or SNCR to control NO_Xemissions, the fuel-and-unit-specific NO_Xemission rate for each unit in the group of units, for a particular type of fuel, shall be the higher of:

(i) The highest three-run average NO_Xemission rate at any load from all appendix E tests of all tested units in the group, for that type of fuel; or

(*ii*) 0.15 lb/mmBtu.

(7) Notwithstanding the requirements of paragraphs (o)(1)(iv)(C)(4) and (o)(1)(iv)(C)(6) of this section, for a unit (or group of identical units) equipped with SCR (or SNCR) and water (or steam) injection to pontrol NO_xemissions:

(i) If the appendix E testing is performed when the water (or steam) injection is in use and either upstream of the SCR or SNCR or during a time period when the SCR or SNCR is out of service; then

(\vec{x}) The highest three-run average emission rate from the appendix E testing may be used as the fueland-unit-specific NO_Xemission rate for the unit (or, if applicable, for each unit in the group), for each unit operating hour in which the water-to-fuel ratio is within the acceptable range established during the appendix E testing.

 $\{ \beta \}$ Notwithstanding the requirements of paragraphs $(c)(1)(iv)(C)(| 4 \rangle)$ and $(c)(1)(iv)(C)(| 6 \rangle)$ of this

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 11 of 21

section, for a unit (or group of identical units) equipped with SCR (or SNCR) and uses dry low-NO $_{\rm v}$ technology to control NO $_{\rm v}$ emissions:

(1) If the appendix E testing is performed during a time period when the dry low-NO_X controls are in use, but the SCR or SNCR is out of service; then

(*ii*) The highest three-run average emission rate from the appendix E testing may be used as the fueland-unit-specific NO_Xemission rate for the unit (or, if applicable, for each unit in the group), for each unit operating hour in which the parametric data described in paragraph (c)(1)(iv)(H)(2) of this section demonstrate that the dry low-NO_Xcontrols are operating in the premixed or low-NO_Xmode.

(9) For an individual combustion turbine (or a group of identical turbines) that operate principally at base load (or at a set point temperature), but are capable of operating at a higher peak load (or higher internal operating temperature), the fuel-and-unit-specific NO_X emission rate for the unit (or for each unit in the group) shall be as follows:

(*i*) If the testing is done only at base load, use the three-run average NO_Xemission rate for base load operating hours and 1.16 times that emission rate for peak load operating hours; or

(ii) if the testing is done at both base load and peak load, use the three-run average NO_Xemission rate from the base load testing for base load operating hours and the three-run average NO_Xemission rate from the peak load testing for peak load operating hours.

(D) For each low mass emissions unit, or group of identical units for which the provisions of paragraph (c)(1)(iv) of this section are used to account for NO_xemission rate, the owner or operator shall determine a new fuel-and-unit-specific NO $_{\rm X}$ emission rate every five years (20 calendar quarters), unless changes in the fuel supply, physical changes to the unit, changes in the manner of unit operation, or changes to the emission controls occur which may cause a significant increase in the unit's actual NOvemission rate. If such changes occur, the fuel-and-unit-specific NO_xemission rate(s) shall be re-determined according to paragraph (c)(1)(iv) of this section. Testing shall be done at the number of loads specified in paragraph (c)(1)(iv)(A) or (c)(1)(iv)(I) of this section, as applicable. If a low mass emissions unit belongs to a group of identical units and it is required to retest to determine a new fuel-and-unit-specific NO_vemission rate because of changes in the fuel supply, physical changes to the unit, changes in the manner of unit operation or changes to the emission controls occur which may cause a significant increase in the unit's actual NO_xemission rate, any other unit in that group of identical units is not required to re-determine the fuel-and-unit-specific NO_xemission rate unless such unit also undergoes changes in the fuel supply, physical changes to the unit, changes in the manner of unit operation or changes to the emission controls occur which may cause a significant increase in the unit's actual NO_xemission rates.

(E) Each low mass emissions unit or each low mass emissions unit in a group of identical units for which a fuel-and-unit-specific NO_X emission rate(s) are determined shall meet the quality assurance and quality control provisions of paragraph (e) of this section.

(F) Low mass emission units may use the results of appendix E testing, if such test results are available from a test conducted no more than five years prior to the time of initial certification, to determine the appropriate fuel-and-unit-specific NO_Xemission rate(s). However, fuel-and-unit-specific NO_Xemission rates from historical testing may not be used longer than five years after the appendix E testing was conducted.

(G) Low mass emissions units for which at least 3 years of quality-assured NO_X -emission rate data from a NO_X -diluent CEMS and corresponding fuel usage data are available may determine fuel-and-unit-specific NO_X -emission rates from the actual data using the following procedure. Separate the actual NO_X -emission rate data into groups, according to the type of fuel combusted. Disoard data from periods when multiple fuels were combusted. Each fuel-specific data set must contain at least 168 hours of data and must represent all normal operating ranges of the unit when combusting the fuel. Sort the data in each fuel-specific data set in ascending order according to NO_X -emission rate. Determine the 95th

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 12 of 21

percentile NO_xemission rate for each data set as defined in §72.2 of this chapter. Use the 95th percentile value for each data set as the fuel-and-unit-specific NO_xemission rate, except that for a unit that uses SCR or SNCR for NO_xemission control, if the 95th percentile value is less than 0.15 lb/mmBtu, a value of 0.15 lb/mmBtu shall be used as the fuel-and-unit-specific NO_xemission rate.

(H) For low mass emission units with add-on NO_Xemission controls, and for units that use dry low-NO_Xtechnology, the owner or operator shall, during every hour of unit operation during the test period, monitor and record parameters, as required under paragraph (e)(5) of this section, which indicate that the NO_Xemission controls are operating properly. After the test period, these same parameters shall be monitored and recorded and kept for all operating hours in order to determine whether the NO_Xcontrols are operating properly and to allow the determination of the correct NO_Xemission rate as required under paragraph (c)(1)(iv) of this section.

(1) For low mass emission units with steam or water injection, the steam-to-fuel or water-to-fuel ratio used during the testing must be documented. The water-to-fuel or steam-to-fuel ratio must be maintained during unit operations for a unit to use the fuel and unit specific NO_X emission rate determined during the test. Owners or operators must include in the monitoring plan the acceptable range of the water-to-fuel or steam-to-fuel ratio shall be used to indicate hourly, proper operation of the NO_X controls for each unit. The water-to-fuel or steam-to-fuel ratio shall be monitored and recorded during each hour of unit operation. If the water-to-fuel or steam-to-fuel ratio is not within the acceptable range in a given hour the fuel and unit specific NO_X emission rate may not be used for that hour, and the appropriate default NO_X emission rate from Table LM–2 shall be reported instead.

(2) For a low mass emissions unit that uses dry low-NO_X premix technology to control NO_X emissions, proper operation of the emission controls means that the unit is in the low-NO_X or premixed combustion mode, and fired with natural gas. Evidence of operation in the low-NO_X or premixed mode shall be provided by monitoring the appropriate turbine operating parameters. These parameters may include percentage of full load, turbine exhaust temperature, combustion reference temperature, compressor discharge pressure, fuel and air valve positions, dynamic pressure pulsations, internal guide vane (IGV) position, and flame detection or flame scanner condition. The acceptable values and ranges for all parameters monitored shall be specified in the monitoring plan for the unit, and the parameters shall be monitored during each subsequent operating hour. If one or more of these parameters is not within the acceptable range or at an acceptable value in a given operating hour, the fuel-and-unit-specific NO_Xemission rate may not be used for that hour, and the appropriate default NO_Xemission rate from Table LM-2 shall be reported.

(3) For low mass emission units with other types of add-on NO_X controls, appropriate parameters and the acceptable range of the parameters which indicate hourly proper operation of the NO_X controls must be specified in the monitoring plan. These parameters shall be monitored during each subsequent operating hour. If any of these parameters are not within the acceptable range in a given operating hour, the fuel and unit specific NO_X emission rates may not be used in that hour, and the appropriate default NO_x emission rate from Table LM-2 shall be reported instead.

(I) Notwithstanding the requirements in paragraph (c)(1)(iv)(A) of this section, the appendix E testing to determine (or re-determine) the fuel-specific, unit-specific NO_{χ} emission rate for a unit (or for each unit in a group of identical units) may be performed at fewer than four loads, under the following circumstances:

(1) Testing may be done at one load level if the data analysis described in paragraph (c)(1)(iv)(J) of this section is performed and the results show that the unit has operated (or all units in the group of identical units have operated) at a single load level for at least 85.0 percent of all operating hours in the previous three years (12 calendar quarters) prior to the calendar quarter of the appendix E testing. For combustion turbines that are operated to produce approximately constant output (in MW) but which use internal operating and exhaust temperatures and not the actual output in MW to control the operation of the turbine, the internal operating temperature set point may be used as a surrogate for load in demonstrating that the unit qualifies for single-load testing. If the data analysis shows that the unit does not qualify for single-load testing, testing may be done at two (or three) load levels if the unit has operated (or if all units in the group of identical units have operated) cumulatively at two (or three) load

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 13 of 21

levels for at least 85.0 percent of all operating hours in the previous three years; or

(2) If a multiple-load appendix E test was initially performed for a unit (or group of identical units) to determine the fuel-and-unit specific NO_{χ} emission rate, then the periodic retests required under paragraph (c)(1)(iv)(D) of this section may be single-load tests, performed at the load level for which the highest average NO_{χ} emission rate was obtained in the initial test.

(J) To determine whether a unit qualifies for testing at fewer than four loads under paragraph (c)(1)(iv)(l) of this section, follow the procedures in paragraph (c)(1)(iv)(J)(-1-) or (c)(1)(iv)(J)(-2-) of this section, as applicable.

(f) Determine the range of operation of the unit, according to section 6.5.2.1 of appendix A to this part. Divide the range of operation into four equal load bands. For example, if the range of operation extends from 20 MW to 100 MW, the four equal load bands would be: band #1: from 20 MW to 40 MW; band #2: from 41 MW to 80 MW; band #3: from 61 MW to 80 MW; and band #4: from 81 to 100 MW. Then, perform a historical load analysis for all unit operating hours in the 12 calendar quarters preceding the quarter of the test. Alternatively, for sources that report emissions data only during the ozone season, the historical load analysis may be based on unit operation in the previous three ozone seasons, rather than unit operation in the previous 12 calendar quarters. Determine the percentage of the data that fall into each load band. For a unit that is not part of a group of identical units, if 95.0% or more of the data fall into one load band, single-load testing may be performed at any point within that load band. For a group of identical units, if each unit in the group meets the 85.0% criterion cannot be met to qualify for single-load testing but this criterion can be met cumulatively for two (or three) load levels, then testing may be performed at two (or three) loads instead of four.

(2) For a combustion turbine that uses exhaust temperature and not the actual output in megawatts to control the operation of the turbine (or for a group of identical units of this type), the owner or operator must document that the unit (or each unit in the group) has operated within ±10% of the set point temperature for 85.0% of the operating hours in the previous 12 calendar quarters to qualify for single-load testing. Alternatively, for sources that report emissions data only during the ozone season, the historical set point temperature analysis may be based on unit operation in the previous three ozone seasons, rather than unit operation in the previous 12 calendar quarters. When the set point temperature is used rather than unit load to justify single-load testing, the designated representative shall certify in the monitoring plan for the unit that this is the normal manner of unit operation and shall document the setpoint temperature.

(2) Records of operating time, fuel usage, unit output and NO _X emission control operating status. The owner or operator shall keep the following records on-site, for three years, in a form suitable for inspection, except that for unmanned facilities, the records may be kept at a central location, rather than on-site:

(i) For each low mass emissions unit, the owner or operator shall keep hourly records which indicate whether or not the unit operated during each clock hour of each calendar year. The owner or operator may report partial operating hours or may assume that for each hour the unit operated the operating time is a whole hour. Units using partial operating hours and the maximum rated hourly heat input to calculate heat input for each hour must report partial operating hours.

(ii) For each low mass emissions unit, the owner or operator shall keep hourly records indicating the type (s) of fuel(s) combusted in the unit during each hour of unit operation.

(iii) For each low mass emissions unit using the long term fuel flow methodology under paragraph (c)(3)
 (ii) of this section to determine hourly heat input, the owner or operator shall keep hourly records of unit load (in megawatts or thousands of pounds of steam per hour), for the purpose of apportioning heat input to the individual unit operating hours.

(iv) For each low mass emissions unit with add-on NO_X emission controls of any kind and each unit that uses dry low-NO_X technology, the owner or operator shall keep hourly records of the hourly value of the parameter(s) specified in (c)(1)(iv)(H) of this section used to indicate proper operation of the unit's NO_X controls.

(3) Heat input. Hourly, quarterly and annual heat input for a low mass emissions unit shall be determined

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 14 of 21

using either the maximum rated hourly heat input method under paragraph (c)(3)(i) of this section or the long term fuel flow method under paragraph (c)(3)(ii) of this section.

(i) Maximum rated hourly heat input method. (A) For the purposes of the mass emission calculation methodology of paragraph (c)(3) of this section. Hi_{hr} the hourly heat input (mmBiu) to a low mass emissions unit shall be deemed to equal the maximum rated hourly heat input, as defined in §72.2 of this chapter, multiplied by the operating time of the unit for each hour. The owner or operator may choose to record and report partial operating hours or may assume that a unit operated for a whole hour for each hour the unit operated. However, the owner or operator of a unit may petition the Administrator under §75.68 for a lower value for maximum rated hourly heat input than that defined in §72.2 of this chapter. The Administrator may approve such lower value if the owner or operator demonstrates that either the maximum hourly heat input specified by the manufacturer or the highest observed hourly heat input, or both, are not representative, and such a lower value is representative, of the unit's current capabilities because modifications have been made to the unit, limiting its capacity permanently.

(B) The quarterly heat input, $\mathrm{HI}_{\mathrm{qtr}}$ in mmBtu, shall be determined using Equation LM-1:

$$HI_{qbr} = \sum_{1}^{n} HI_{br} \qquad (Eq. LM-1)$$

Where:

n = Number of unit operating hours in the quarter.

HI hr= Hourty heat input under paragraph (c)(3)(i)(A) of this section (mmBtu).

(C) The year-to-date cumulative heat input (mmBtu) shall be the sum of the quarterly heat input values for all of the calendar quarters in the year to date.

(D) For a unit subject to the provisions of subpart H of this part, which is not required to report emission data on a year-round basis and elects to report only during the ozone season, the quarterly heat input for the second calendar quarter of the year shall, for compliance purposes, include only the heat input for the months of May and June, and the cumulative ozone season heat input shall be the sum of the heat input values for May, June and the third calendar quarter of the year.

(ii) Long term fuel flow heat input method. The owner or operator may, for the purpose of demonstrating that a low mass emissions unit or group of low mass emission units sharing a common fuel supply meets the requirements of this section, use records of long-term fuel flow, to calculate hourly heat input to a low mass emissions unit.

(A) This option may be used for a group of low mass emission units only if:

(1) The low mass emission units combust fuel from a common source of supply; and

(2) Records are kept of the total amount of fuel combusted by the group of low mass emission units and the hourty putput (in megawatts or pounds of steam) from each unit in the group; and

(3) All of the units in the group are low mass emission units.

(B) For each fuel used during the quarter, the volume in standard cubic feet (for gas) or gallons (for oil) may be determined using any of the following methods;

(1) Fuel billing records (for low mass emission units, or groups of low mass emission units, which purchase fuel from non-affiliated sources);

(2) American Petroleum Institute (API) standard, American Petroleum Institute (API) Petroleum Measurement Standards, Chapter 3, Tank Gauging: Section 1A, Standard Practice for the Manual Gauging of Petroleum and Petroleum Products, December 1994; Section 1B, Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Tanks by Automatic Tank Gauging, April 1992

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 15 of 21

(reaffirmed January 1997); Section 2, Standard Practice for Gauging Petroleum and Petroleum Products in Tank Cars, September 1995; Section 3, Standard Practice for Level Measurement of Liquid Hydrocarbons in Stationary Pressurized Storage Tanks by Automatic Tank Gauging, June 1996; Section 4, Standard Practice for Level Measurement of Liquid Hydrocarbons on Marine Vessels by Automatic Tank Gauging, April 1995; and Section 5, Standard Practice for Level Measurement of Light Hydrocarbon: Liquids Onboard Marine Vessels by Automatic Tank Gauging, March 1997; Shop Testing of Automatic Liquid Level Gages, Bulletin 2509 B, December 1961 (Reaffirmed August 1987, October 1992) (incorporated by reference under §75.6); or:

(3) A fuel flow meter certified and maintained according to appendix D to this part.

(C) Except as provided in paragraph (c)(3)(ii)(C)(3) of this section, for each fuel combusted during a quarter, the gross calorific value of the fuel shall be determined by either.

(1) Using the applicable procedures for gas and oil analysis in sections 2.2 and 2.3 of appendix D to this part. If this option is chosen the highest gross calorific value recorded during the previous calendar year shall be used (or, for a new or newly-affected unit, if there are no sample results from the previous year, use the highest GCV from the samples taken in the current year); or

(2) Using the appropriate default gross calorific value listed in Table LM-5 of this section.

(3) For gaseous fuels other than pipeline natural gas or natural gas, the GCV sampling frequency shall be daily unless the results of a demonstration under section 2.3.5 of appendix D to this part show that the fuel has a low GCV variability and qualifies for monthly sampling. If daily GCV sampling is required, use the highest GCV obtained in the calendar guarter as GCV_{max} in Equation LM-3, of this section.

(D) If Eq. LM-2 is used for heat input determination, the specific gravity of each type of fuel oil combusted during the quarter shall be determined either by:

(1) Using the procedures in section 2.2.6 of appendix D to this part. If this option is chosen, use the highest specific gravity value recorded during the previous calendar year (or, for a new or newly-affected unit, if there are no sample results from the previous year, use the highest specific gravity from the samples taken in the ourrent year); or

(2) Using the appropriate default specific gravity value in Table LM-6 of this section.

(E) The quarterly heat input from each type of fuel combusted during the quarter by a low mass emissions unit or group of low mass emissions units sharing a common fuel supply shall be determined using either Equation LM-2 or Equation LM-3 for oil (as applicable to the method used to quantify oil usage) and Equation LM-3 for gaseous fuels. For a unit subject to the provisions of subpart H of this part, which is not required to report emission data on a year-round basis and elects to report only during the ozone season, the quarterly heat input for the second calendar quarter of the year shall include only the heat input for the months of May and June.

$$H_{frd,qr} = M_{qr} \frac{GCV_{max}}{10^6}$$
 Eq. LM-2 (for fuel oil)

Where:

HI fuel-gtr= Quarterly total heat input from oil (mmBtu).

 M_{qtr} = Mass of oil consumed during the quarter, determined as the product of the volume of oil under paragraph (c)(3)(ii)(B) of this section and the specific gravity under paragraph (c)(3)(ii) (D) of this section (ib).

GCV max= Gross calorific value of oil, as determined under paragraph (c)(3)(ii)(C) of this section (Btu/lb)

 10^6 = Conversion of Btu to mmBtu.

$$HI_{\text{part qt}} = Q_{\text{qt}} \frac{GCV_{\text{max}}}{10^6}$$

Eq. LM-3 (for gaseous fuel or fuel oil)

Where:

HI fuel-qtr= Quarterly heat input from gaseous fuel or fuel oil (mmBtu).

 $Q_{qtr} = Volume of gaseous fuel or fuel oil combusted during the quarter, as determined under paragraph (c)(3)(ii)(B) of this section standard cubic feet (scf) or (gai), as applicable.$

 GCV_{max} = Gross catorific value of the gaseous fuel or fuel oil combusted during the quarter, as determined under paragraph (c)(3)(ii)(C) of this section (Btu/scf) or (Btu/gal), as applicable.

10⁶ = Conversion of Btu to mmBtu.

(F) Use Eq. LM-4 to calculate Higtr-total, the quarterly heat input (mmBtu) for all fuels. Higtr-totalshall be the sum of the Hifuel-gtrvalues determined using Equations LM-2 and LM-3.

$$HI_{ghreeds} = \sum_{all finels} HI_{nul-gr}$$
 (Eq. LM-4)

(G) The year-to-date cumulative heat input (mmBtu) for all fuels shall be the sum of all quarterly total heat input (High-total) values for all calendar quarters in the year to date. For a unit subject to the provisions of subpart H of this part, which is not required to report emission data on a year-round basis and elects to report only during the ozone season, the cumulative ozone season heat input shall be the sum of the quarterly heat input values for the second and third calendar quarters of the year.

(H) For each low mass emissions unit or each low mass emissions unit in a group of identical units, the owner or operator shall determine the cumulative quarterly unit load in megawatts or thousands of pounds of steam per hour. The quarterly cumulative unit load shall be the sum of the hourly unit load values recorded under paragraph (c)(2) of this section and shall be determined using Equations LM=5 or LM=6. For a unit subject to the provisions of subpart H of this part, which is not required to report emission data on a year-round basis and elects to report only during the ozone season, the quarterly cumulative load for the section data on a year-round basis and elects to report only during the ozone season, the months of May and June.

$$MW_{ggr} = \sum_{aE \text{ lower}} MW \qquad Eq. \text{ LM-5 (for MW output)}$$
$$ST_{ggr} = \sum ST \qquad Eq. \text{ LM-6 (for steam output)}$$

Where:

ed-hours

MW_{obr}=Sum of all unit operating loads recorded during the quarter by the unit (MW).

ST fuel-qtr= Sum of all hourly steam loads recorded during the quarter by the unit (kib of steam/hr).

MW = Unit operating load for a particular unit operating hour (MW).

ST = Unit steam load for a particular unit operating hour (kib of steam/hr).

(I) For a low mass emissions unit that is not included in a group of low mass emission units sharing a common fuel supply, apportion the total heat input for the quarter, Higtr-totalto each hour of unit operation using either Equation LM-7 or LM-8:

$$HI_{kr} = HI_{qkr-total} \frac{MW_{kr}}{MW_{qtr}}$$

(Eq LM-7 for MW output)

$$HI_{kr} = HI_{stricture} \frac{ST_{kr}}{ST_{str}}$$

(Eq LM-8 for steam output)

Where:

HI_{br}= Hourly heat input to the unit (mmBtu).

MW_{br}= Houriy operating load for the unit (MW).

ST_{hr}= Hourly steam load for the unit (kib of steam/hr).

(J) For each low mass emissions unit that is included in a group of units sharing a common fuel supply, apportion the total heat input for the quarter, Highr-totalto each hour of operation using either Equation LM-7a or LM-8a:

$$HI_{lor} = HI_{qtr-total} \frac{MW_{lor}}{\sum_{all-wint} MW_{qtr}}$$

(Eq LM--7a for MW output)

$$HI_{kp} = HI_{qp-\text{trial}} \frac{ST_{kr}}{\sum_{\text{all-trains}} ST_{qk}}$$

(Eq LM-8a for steam output)

Where:

HI_{br}= Hourly heat input to the individual unit (mmBtu).

MW_{hr}= Hourly operating load for the individual unit (MW).

ST_{br}= Hourly steam load for the individual unit (klb of steam/hr).

 Σ MW qtr= Sum of the quarterly operating

all-units loads (from Eq. LM-5) for all units in the group (MW).

 Σ ST qtr= Sum of the quarterly steam

all-units loads (from Eq. LM--6) for all units in the group (klb of steam/hr)

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 18 of 21

(4) Calculation of SO 2, NO X and GO 2 mass emissions. The owner or operator shall, for the purpose of demonstrating that a low mass emissions unit meets the requirements of this section, calculate SO₂, NO_X and CO₂ mass emissions in accordance with the following.

(i) SO 2 mass emissions. (A) The hourly SO₂mass emissions (lbs) for a low mass emissions unit (Acid Rain Program units, only) shall be determined using Equation LM-9 and the appropriate fuel-based SO₂emission factor from Table LM-1 of this section for the fuels combusted in that hour. If more than one fuel is combusted in the hour, use the highest emission factor for all of the fuels combusted in the hour, lif records are missing as to which fuel was combusted in the hour, use the highest emission factor for all of the fuels capable of being combusted in the unit.

 $W_{SO2} = EF_{SO2} \times HI_{hr}$ (Eq. LM-9)

Where:

W_{S02}= Hourly SO₂mass emissions (lbs.)

 EF_{SC2} = Either the SO₂emission factor from Table LM-1 of this section or the fuel-and-unit-specific SO₂emission rate from paragraph (c)(1)(i) of this section (lb/mmBtu).

 HI_{hr} = Either the maximum rated hourly heat input under paragraph (c)(3)(i)(A) of this section or the hourly heat input under paragraph (c)(3)(ii) of this section (mmBtu).

(B) The quarterly SO₂mass emissions (tons) for the low mass emissions unit shall be the sum of all the hourty SO₂mass emissions in the quarter, as determined under paragraph (c)(4)(i)(A) of this section, divided by 2000 lb/ton.

(C) The year-to-date cumulative SO₂mass emissions (tons) for the low mass emissions unit shall be the sum of the quarterly SO₂mass emissions, as determined under paragraph (c)(4)(i)(B) of this section, for all of the calendar quarters in the year to date.

(ii) NO $_{\rm X}$ mass emissions. (A) The hourly NO $_{\rm X}$ mass emissions for the low mass emissions unit (lbs) shall be determined using Equation LM-10. If more than one fuel is combusted in the hour, use the highest emission rate for all of the fuels combusted in the hour. If records are missing as to which fuel was combusted in the hour, use the highest emission factor for all of the fuels capable of being combusted in the unit. For low mass emission units with NO $_{\rm X}$ emission controls of any kind and for which a fuel-and-unit-specific NO $_{\rm X}$ emission rate is determined under paragraph (o)(1)(iv) of this section, for any hour in which the parameters under paragraph (o)(1)(iv)(A) of this section do not show that the NO $_{\rm X}$ emission controls are operating properly, use the NO $_{\rm X}$ emission rate from Table LM-2 of this section for the fuel combusted during the hour with the highest NO $_{\rm X}$ emission rate.

 $W_{NOX} = EF_{NOX} \times HI_{hr}$ (Eq. LM-10)

Where:

W_{NOX}= Hourly NO_xmass emissions (lbs).

 EF_{NOX} = Either the NO_Xemission factor from Table LM-2 of this section or the fuel- and unitspecific NO_Xemission rate determined under paragraph (c)(1)(iv) of this section (lb/mmBtu).

 HI_{hr} = Either the maximum rated hourly heat input from paragraph (c)(3)(i)(A) of this section or the hourly heat input as determined under paragraph(c)(3)(ii) of this section (mmBtu).

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 19 of 21

(B) The quarterly NO_Xmass emissions (tons) for the low mass emissions unit shall be the sum of all of the hourly NO_Xmass emissions in the quarter, as determined under paragraph (c)(4)(ii)(A) of this section, divided by 2000 lb/ton.

(C) The year-to-date cumulative NO_X mass emissions (tons) for the low mass emissions unit shall be the sum of the quarterly NO_X mass emissions, as determined under paragraph (c)(4)(ii)(B) of this section, for all of the calendar quarters in the year to date. For a unit subject to the provisions of subpart H of this part, which is not required to report emission data on a year-round basis and elects to report only during the ozone season, the ozone season NO_X mass emissions for the unit shall be the sum of the quarterly NO_X mass emissions, as determined under paragraph (c)(4)(ii)(B) of this section, for the duriterly NO_X mass emissions, as determined under paragraph (c)(4)(ii)(B) of this section, for the second and third calendar quarters of the year, and the second quarter report shall include emissions data only for May and June.

(iii) CO 2 Mass Emissions. (A) The hourly CO_2 mass emissions (tons) for the affected low mass emissions unit (Acid Rain Program units, only) shall be determined using Equation LM-11 and the appropriate fuel-based CO_2 emission factor from Table LM-3 of this section for the fuel being combusted in that hour. If more than one fuel is combusted in the hour, use the highest emission factor for all of the fuels combusted in the hour. If records are missing as to which fuel was combusted in the hour, use the highest emission factor for all of the fuels capable of being combusted in the unit.

 $WCO_2 = EFCO_2 \times HI_{hr}$ (Eq. LM-11)

Where:

WCO₂= Hourly CO₂mass emissions (tons).

EF CO2= Either the fuel-based CO₂emission factor from Table LM–3 of this section or the fuel-and-unit-specific CO₂emission rate from paragraph (c)(1)(iii) of this section (tons/mmBtu).

 HI_{pr} = Either the maximum rated hourly heat input from paragraph (c)(3)(i)(A) of this section or the hourly heat input as determined under paragraph (c)(3)(ii) of this section (mmBtu).

(B) The quarterly CO₂mass emissions (tons) for the low mass emissions unit shall be the sum of all of the hourly CO₂mass emissions in the quarter, as determined under paragraph (c)(4)(iii)(A)of this section.

(C) The year-to-date cumulative CO_2 mass emissions (tons) for the low mass emissions unit shall be the sum of all of the quarterly CO_2 mass emissions, as determined under paragraph (c)(4)(iii)(B) of this section, for all of the calendar quarters in the year to date.

(d) Each unit that qualifies under this section to use the low mass emissions methodology must follow the record keeping and reporting requirements pertaining to low mass emissions units in subparts F and G of this part.

(e) The quality control and quality assurance requirements in §75.21 are not applicable to a low mass emissions unit for which the low mass emissions excepted methodology under paragraph (c) of this section is being used in lieu of a continuous emission monitoring system or an excepted monitoring system under appendix D or E to this part, except for fuel flowmeters used to meet the provisions in paragraph (c)(3)(ii) of this section. However, the owner or operator of a low mass emissions unit shall implement the following quality assurance and quality control provisions:

(1) For low mass emission units or groups of units which use the long term fuel flow methodology under paragraph (o)(3)(ii) of this section and which use fuel billing records to determine fuel usage, the owner or operator shall keep, at the facility, for three years, the records of the fuel billing statements used for long term fuel flow determinations.

(2) For low mass emissions units or groups of units which use the long term fuel flow methodology under

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 20 of 21

paragraph (c)(3)(ii) of this section and which use one of the methods specified in paragraph (c)(3)(ii)(B) (2) of this section to determine fuel usage, the owner or operator shall keep, at the facility, a copy of the standard used and shall keep records, for three years, of all measurements obtained for each quarter using the methodology.

(3) For low mass emission units or groups of units which use the long term fuel flow methodology under paragraph (c)(3)(ii) of this section and which use a certified fuel flow meter to determine fuel usage, the owner or operator shall comply with the quality control quality assurance requirements for a fuel flow meter under section 2.1.6 of appendix D of this part.

(4) For each low mass emissions unit for which fuel-and-unit-specific NO_Xemission rates are determined in accordance with paragraph (c)(1)(iv) of this section, the owner or operator shall keep, at the facility, records which document the results of all NO_Xemission rate tests conducted according to appendix E to this part. If CEMS data are used to determine the fuel-and-unit-specific NO_Xemission rates under paragraph (c)(1)(iv)(G) of this section, the owner or operator shall keep, at the facility, records of the CEMS data and the data analysis performed to determine a fuel-and-unit-specific NO_Xemission rate. The appendix E test records and historical CEMS data records shall be kept until the fuel and unit specific NO_Xemission rates are re-determined.

(5) For each low mass emissions unit for which fuel-and-unit-specific NO_Xemission rates are determined in accordance with paragraph (c)(1)(iv) of this section and which has add-on NO_Xemission controls of any kind or uses dry low-NO_Xtechnology, the owner or operator shall develop and keep on-site a quality assurance plan which explains the procedures used to document proper operation of the NO_Xemission controls. The plan shall include the parameters monitored (e.g., water-to-fuel ratio) and the acceptable ranges for each parameter used to determine proper operation of the unit's NO_Xcontrols.

(6) For unmanned facilities, the records required by paragraphs (e)(1), (e)(2) and (e)(4) of this section may be kept at a central location, rather than at the facility.

Table LM-1-SO₂Emission Factors (Ib/mmBtu) for Various Fuel Types

Fuel type	SO ₂ emission factors
Pipeline Natural Gas	0.0006 lb/mmBtu.
Other Natural Gas	0.06 lb/mmBtu.
Residual Oil	2.1 lb/mmBtu.
Diesel Fuel	0.5 lb/mmBtu.

Table LM-2-NO_xEmission Rates (lb/mmBtu) for Various Boiler/Fuel Types

Unit type	Fuel type	NO _x emission rate
Turbine	Gas	0.7
Turbine	Oil	1.2
Boiler	Gas	1.5
Boiler	Oil	2

Docket No. 070007-EI FPL GT CEMS Project Exhibit RRL-6, Page 21 of 21 Table LM-3-CO₂Emission Factors (ton/mmBtu) for Gas and Oil

Fuel type	CO ₂ emission factors
Pipeline (or other) Natural Gas	0.059 ton/mmBtu.
Oil	0.081 ton/mmBtu.

Table LM-4-Identical Unit Testing Requirements

Number of identical units in the group	Number of appendix E tests required
2	1
3 to 6	2
7	3
>7	n tests; wheren n = number of units divided by 3 and rounded to nearest integer.

Table LM-5—Default Gross Calorific Values (GCVs) for Various Fuels

Fuel	GCV for use in equation LM-2 or LM-3
Pipeline Natural Gas	1050 Btu/scf.
Other Natural Gas	1100 Btu/scf.
Residual Oil	19,700 Btu/lb or 167,500 Btu/gallon.
Diesel Fuel	20,500 Btu/lb or 151,700 Btu/gallon.

Table LM-6-Default Specific Gravity Values for Fuel Oil

Fuel	Specific gravity (lb/gal)
Residual Oil	8.5
Diesel Fuel	7.4

[63 FR 57500, Oct. 27, 1998, as amended at 64 FR 28592, May 26, 1999; 64 FR 37582, July 12, 1999; 67 FR 40424, 40425, June 12, 2002; 67 FR 53504, Aug. 16, 2002]

Docket No. 070007-EI CAVR - FPL BART Project Exhibit RRL-7, Page 1 of 22

Florida Power & Light Company

Clean Air Visibility Rule

Best Available Retrofit Technology (BART)/ Reasonable Progress Control Technology (RPCT) Project

Docket No. 070007-El CAVR - FPL BART Project Exhibit RRL-7, Page 2 of 22

Project Summary

The results from the BART exemption modeling analysis and the BART Determination Analysis conducted by FPL's consultant, Golder Associates, indicated that FPL's fossil units were exempt with the exception of Turkey Point Fossil Units 1 & 2 which are located adjacent to the Everglades National Park Class 1 area. Final recommendations for BART controls at Turkey Point will be presented to the FDEP based on the analysis results of the five evaluation criteria presented in the final regulations.

In June 2007 FDEP held a Reasonable Progress Rulemaking Workshop to identify reductions which may be required beyond BART. The Department identified 12 of FPL's oil-burning units as Proposed Sources Subject to Reasonable Progress Four-Factor analysis. The Department has initiated new Rulemaking (62-296.341) – "Regional Haze - Reasonable Progress Control Technology (RPCT)" for evaluation of impacts to Class 1 Areas by affected sources. Under the proposed Rule our FPL's sources will have to undergo a 4-factor evaluation for selecting the appropriate control technology to mitigate visibility impacts at one or more Federally Mandated Class 1 Areas, and submit Air Construction permit applications by Jan 31, 2008. Installation of the controls must be in place no later than December 31, 2013.

To determine whether FPL's oil burning units will be affected by the proposed rule, FPL plans to engage a consultant to prepare RPCT analyses required in Rule 62.296.341 Florida Administrative Code (F.A.C.) for FPL facilities identified by Florida Department of Environmental Protection (FDEP). The facilities identified by FDEP are Turkey Point Units 1 and 2, Port Everglades Units 1 through 4, Riviera Units 3 and 4, Martin Units 1 and 2, and Manatee Units 1 and 2. Although Cape Canaveral has not been identified, FDEP has not finalized the rule and the potential exists that this facility may be included.

The scope of work will be a control technology analysis meeting the requirements of 40 Code of Federal Regulations (CFR) Part 51 Appendix Y, Section IV.D. While the rule has not been finalized, recent discussions (7-19-07) with the Trina Vielhauer, Chief of the FDEP Bureau of Air Regulation indicate that air modeling to assess control effectiveness would not be part of the FDEP RPCT evaluation as stated in the EPA regulations. FPL has projected a year 2007 project cost of \$25,000 in O&M costs for the required analyses. Exhibit C of this filing discusses FPL's CAVR compliance plan.

Docket No. 070007-EI CAVR - FPL BART Project Exhibit RRL-7, Page 3 of 22

BART EXEMPTION MODELING ANALYSIS FOR AFFECTED FPL PLANTS UPDATED APRIL 2007

.

Prepared For: Florida Power & Light Company 700 Universe Boulevard Juno Beach, Florida 33408

Prepared By: Golder Associates Inc. 6241 NW 23rd Street, Suite 500 Gainesville, Florida 32653-1500

> April 2007 063-7549

DISTRIBUTION:

1 Сору FDEP Florida Power and Light Co. 1 Copy Golder Associates Inc. 1 Copy

iii

063-7549

INTRODUCTION

Based on comments received from the Florida Department of Environmental Protection (FDEP), the "BARI Exemption Modeling Analysis for Affected FPL Plants" report submitted in January 2007 has been revised to include updated particulate matter (PM) emissions for four Florida Power and Light Co. (FPL) plants using the maximum PM emissions measured during annual stack tests performed from 2001 to 2003. Supportive stack test data and maximum heat input rates used for the FPL plants are presented in Appendices B and C Based on the updated PM emissions, regional haze modeling was performed, which demonstrated that the maximum visibility impairment values for each plant are still predicted to be less than FDEP's Best Available Retrofit Technology (BARI) exemption criteria of 0.5 deciview (dv). Therefore, exemptions from BARI determination are requested for each of the FPL power plants addressed in this report.

Pursuant to Section 403 061(35), Florida Statutes, the Federal Clean Air Act, and the regional haze regulations contained in Title 40, Part 51 of the Code of Federal Regulations (40 CFR 51), Subpart P – Protection of Visibility, the FDEP is required to ensure that certain sources of visibility impairing pollutants in Florida use BARI to reduce the impact of their emissions on regional haze in federal Class I areas Requirements for individual source BARI control technology determinations and for BARI exemptions are in Rule 62-296.340 of the Florida Administrative Code (F A.C.).

Rule 62-296 340(5)(c), F A C, states that a BARI eligible source may demonstrate that it is exempt from the requirement for BARI determination for all pollutants by performing an individual source attribution analysis in accordance with the procedures contained in 40 CFR 51, Appendix Y. A BARI-eligible source is exempt from BART determination requirements if its contribution to visibility impairment, as determined below, does not exceed 0 5 dv above natural conditions in any Class I area.

For electric generating units subject to the Clean Air Interstate Rule (CAIR) program, the source attribution analysis need only consider PM emissions (including primary sulfate) for comparison with the contribution threshold

Ihe 98th percentile, i.e., the 8th highest 24-hour average visibility impairment value in any year or the 22^{nd} highest 24-hour average visibility impairment value over 3 years combined, whichever is higher, is compared to 0.5 dv in the source attribution analysis

0637549/4 2/FPL BART Modeling Report

iv

063-7549

Based on Rule 62-296 340(5)(c), F.A.C, if the owner or operator of a BARI-eligible source requests exemption from the requirement for BART determination for all pollutants by submitting its source attribution analysis to the FDEP by January 31, 2007, and the FDEP ultimately grants such exemption, the requirement for submission of an air construction permit application pursuant to $62-296\ 340(3)(b)1$, F.A.C., shall not apply.

This report is submitted to the FDEP to present the source attribution analysis for the following BARI-eligible emissions units at the FPL power plants that are BARI-eligible sources:

- Cape Canaveral Power Plant Unit No 1, Unit No. 2;
- Port Everglades Power Plant Unit No. 3, Unit No. 4;
- Manatee Power Plant Unit No. 1, Unit No. 2;
- Martin Power Plant Unit No. 1, Unit No. 2; and
- Riviera Power Plant Unit No. 4.

This report contains the following five sections that present a brief source description, visibility modeling methodology, and visibility modeling analysis results for each of the power plants:

- Section A Cape Canaveral Power Plant;
- Section B Port Everglades Power Plant;
- Section C Manatee Power Plant;
- Section D Martin Power Plant; and
- Section E Riviera Power Plant

The objective of the analysis is to demonstrate that these emissions units are exempt from BARI determination.

It should be noted that the Turkey Point Power Plant has two BART-eligible units. Because the visibility impacts for these units were predicted to be greater than 0.5 dv, these units are not exempt from BARI determination. As a result, a separate report will be submitted for the plant that includes a BARI determination analysis.

The source information and methodologies used for the BARI exemption analysis are the same as those presented in the document entitled "Air Modeling Protocol to Evaluate Best Available Retrofit I echnology (BART) Options for Affected FPL Plants." A copy of this document has been included for reference in Appendix A. The summaries of the annual PM stack emission tests performed for the

0637549/4 2/FPL BART Modeling Report

Docket No. 070007-EI CAVR - FPL BART Project Exhibit RRL-7, Page 6 of 22

April 5, 2007

063-7549

FPL power plants are presented in Appendix B. In addition, the maximum heat input rate used to develop the maximum PM emission rate for the affected units at the Port Everglades Power Plant was obtained from the stack test data. The updated PM emission rates that were modeled in the visibility impairment analysis for the Cape Canaveral, Manatee, Martin, and Riviera Power Plants are presented in Appendix C.

v

0637549/4 2/FPL BART Modeling Report

A-1

063-7549

SECTION A- CAPE CANAVERAL POWER PLANT

1.0 SOURCE DESCRIPTION

The Cape Canaveral Power Plant (PCC) consists of two oil-fired and natural gas-fired conventional steam electric generating units, designated as Unit No.1 and Unit No. 2. Each steam unit is a nominal 400 megawatt (MW) class (electric) steam generator that drives a single reheat turbine generator. Both units are best available retrofit technology (BARI)-eligible emission units.

PCC is located on the west side of the Indian River, approximately 8 miles north of Cocoa, Florida on U.S. Highway No. 1, Brevard County. An area map showing PCC and prevention of significant deterioration (PSD) Class I areas located within 300 kilometers (km) of PCC is presented in Figure 1-1 of the Protocol. The PSD Class I areas and their distances from the plant are as follows:

- Chassahowitzka National Wilderness Area (NWA) 182 km;
- Okefenokee NWA 270 km; and
- Everglades National Park (NP) 295 km.

The general location of this plant, in Universal Transverse Mercator (UTM) coordinates, is 523.1 km, East; 3,148.7 km, North; Zone 17.

The stack, operating, and particulate matter (PM) emission data, including PM speciation, for the BAR I-eligible emissions units are presented in detail in the Protocol in Appendix A. The supportive annual PM stack test data from 2001 to 2003 and updated PM emission data used in the modeling are presented in Appendices B and C, respectively.

Because there are minimal fugitive PM emissions and the plant is more than 50 km from the nearest PSD Class I area, fugitive PM emissions from this station were not addressed in the BART evaluation.

Building downwash effects were not considered in the modeling since the distance of the nearest PSD Class I area is more than 50 km from the plant.

A-2

063-7549

2.0 AIR QUALITY MODELING METHODOLOGY

The California Puff (CALPUFF) model, Version 5.756, was used to predict the maximum visibility impairment at the PSD Class I areas located within 300 km of PCC. Recent technical enhancements, including changes to the over-water boundary layer formulation and coastal effects modules (sponsored by the Minerals Management Service), are included in this version. The methods and assumptions used in the CALPUFF model are presented in the Protocol in Appendix A. The 4-km spacing Florida domain was used for the BART exemption. The refined California Meteorology (CALMET) domain used for this modeling analysis has been provided by the Florida Department of Environmental Protection (FDEP). The major features used in preparing these CALMET data have also been described in Section 4.0 of the Protocol.

Currently, the atmospheric light extinction is estimated by an algorithm developed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) committee and adopted by the US Environmental Protection Agency (EPA) under the 1999 Regional Haze Rule (RHR) and referred to in this report as the "1999 IMPROVE algorithm." This algorithm tends to underestimate light extinction for the highest haze conditions and overestimate it for the lowest haze conditions and does not include light extinction due to sea salt, which is important at sites near the seacoasts. As a result of these limitations, the IMPROVE Steering Committee recently developed a new algorithm (the "new IMPROVE algorithm") for estimating light extinction from PM component concentrations, which provides a better correspondence between measured visibility and that calculated from PM component concentrations. A detailed description of the new IMPROVE algorithm and its implementation is presented in Section 3.4 of the Protocol.

Ihe new IMPROVE algorithm will be used if the visibility impairment values predicted with the 1999 IMPROVE algorithm are greater than 0.5 deciview (dv) If the new IMPROVE algorithm is used, the maximum predicted visibility impairment values will be lower than those predicted with the 1999 IMPROVE algorithm.

Visibility impacts were predicted at each PSD Class I area using receptors provided by the National Park Service and are represented in Figures 4-1 through 4-3 of the Protocol.

A-3

063-7549

3.0 AIR QUALITY MODELING METHODOLOGY

Summaries of the updated maximum visibility impairment values for Unit No. 1 and Unit No. 2 at PCC estimated using the 1999 IMPROVE algorithm are presented in Tables A-1 and A-2. The 98th percentile 24-hour average visibility impairment values (i.e., 8th highest) for the years 2001, 2002, and 2003, and the 22^{nd} highest 24-hour average visibility impairment value over the 3 years, are presented in Table A-1. The number of days and receptors for which the visibility impairment was predicted to be greater than 0.5 dv is also presented in Table A-1. The eight highest visibility impairment values predicted for each modeled year at the PSD Class I areas are presented in Table A-2.

As shown in Tables A-1 and A-2, the 8th highest visibility impairment values predicted for each year at all of the PSD Class I areas using the 1999 IMPROVE algorithm are less than 0.5 dv. The 22nd highest visibility impairment values predicted over the 3-year period at the PSD Class I areas are also less than 0.5 dv. As discussed previously, if the new IMPROVE algorithm were used, the maximum predicted visibility impairment values would be lower using the new IMPROVE algorithm than those predicted with the 1999 IMPROVE algorithm.

Based on these results, which demonstrate that the maximum visibility impairment values for Unit No 1 and Unit No. 2 are predicted to be less than the FDEP's BARI exemption criteria of 0.5 dv, an exemption from BARI determination is requested for PCC

The input and output files (excluding CALMET) used for the exemption modeling are provided on a CD submitted with this report Quality assurance procedures were followed, as described in the Protocol, to ensure that the setup and execution of the CALPUFF model and processing of the modeling results satisfy the regulatory objectives of the BART program.

B-1

063-7549

SECTION B- PORT EVERGLADES POWER PLANT

1.0 SOURCE DESCRIPTION

The Port Everglades Power Plant (PPE) consists of four fossil fuel steam generators and 12 simple-cycle combustion turbines. Two of the steam generators, Unit No 3 and Unit No 4, are best available retrofit technology (BARI)-eligible emission units Each of these steam units is a nominal 402-megawatt (MW) class (electric) steam generator that fires natural gas and fuel oil

PPE is located at 8100 Eisenhower Boulevard, Fort Lauderdale, Broward County. An area map showing PPE and prevention of significant deterioration (PSD) Class I areas located within 300 kilometers (km) of the plant is presented in Figure 1-1 of the Protocol. The only PSD Class I area located within 300 km of the plant is the Everglades National Park (NP), located about 54 km away.

The general location of this plant, in Universal Transverse Mercator (UTM) coordinates, is 587 4 km, East; 2,885.3 km, North; Zone 17.

The stack, operating and particulate matter (PM) emission data, including PM speciation, for the BART-eligible emissions units are presented in detail in the Protocol provided in Appendix A The supportive annual PM stack test data from 2001 to 2003 that present the maximum heat input rates for each unit are provided in Appendix B. The PM emission rates used in the modeling were based on the permitted PM emission rate and the maximum heat input rate obtained from the stack tests over the 3-year period. As a result, no additional modeling was required based on FDEP's comments.

Because there are minimal fugitive PM emissions and the plant is more than 50 km from the nearest PSD Class I area, fugitive PM emissions from this station were not addressed in the BART evaluation.

Building downwash effects were not considered in the modeling since the distance of the nearest PSD Class I area is more than 50 km from the plant.

B-2

063-7549

2.0 AIR QUALITY MODELING METHODOLOGY

The California Puff (CALPUFF) model, Version 5 756, was used to predict the maximum visibility impairment at the PSD Class I areas located within 300 km of PPE. Recent technical enhancements, including changes to the over-water boundary layer formulation and coastal effects modules (sponsored by the Minerals Management Service), are included in this version. The methods and assumptions used in the CALPUFF model are presented in the Protocol. The 4-km spacing Florida domain was used for the BART exemption. The refined CALMET domain used for this modeling analysis has been provided by the Florida Department of Environmental Protection (FDEP). The major features used in preparing these CALMET data have also been described in Section 4.0 of the Protocol in Appendix A.

Currently, the atmospheric light extinction is estimated by an algorithm developed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) committee, which was adopted by the U.S Environmental Protection Agency (EPA) under the 1999 Regional Haze Rule (RHR) and referred to in this report as the "1999 IMPROVE algorithm." This algorithm tends to underestimate light extinction for the highest haze conditions and overestimate it for the lowest haze conditions and does not include light extinction due to sea salt, which is important at sites near the seacoasts As a result of these limitations, the IMPROVE Steering Committee recently developed a new algorithm (the "new IMPROVE algorithm") for estimating light extinction from PM component concentrations, which provides a better correspondence between measured visibility and that calculated from PM component concentrations. A detailed description of the new IMPROVE algorithm and its implementation is presented in Section 3.4 of the Protocol.

The new IMPROVE algorithm will be used if the visibility impairment values predicted with the 1999 IMPROVE algorithm are greater than 0.5 deciview (dv) If the new IMPROVE algorithm is used, the maximum predicted visibility impairment values will be lower than those predicted with the 1999 IMPROVE algorithm.

Visibility impacts were predicted at the PSD Class I area using receptors provided by the National Park Service and are represented in Figure 4-2 of the Protocol

B-3

063-7549

3.0 AIR QUALITY MODELING METHODOLOGY

Summaries of the maximum visibility impairment values for Unit No 3 and Unit No. 4 at PPE estimated using the 1999 IMPROVE algorithm are presented in Tables B-1 and B-2. The 98th percentile 24-hour average visibility impairment values (i e, 8th highest) for the years 2001, 2002 and 2003, and the 22nd highest 24-hour average visibility impairment value over the 3 years, are presented in Table B-1. The number of days and receptors for which the visibility impairment was predicted to be greater than 0.5 dv is also presented in Table B-1. The eight highest visibility impairment values predicted for each modeled year at the PSD Class I area are presented in Table B-2.

As shown in Tables B-1 and B-2, the 8th highest visibility impairment values predicted at the PSD Class I area are 0 59 dv in 2003 while the 22^{nd} highest visibility impairment value predicted over the 3-year period is 0 56 dv. As a result, the visibility impacts were evaluated at the Everglades NP with the new IMPROVE algorithm Similar to the results presented using the 1999 IMPROVE algorithm, summaries of the maximum visibility impairment values estimated using the new IMPROVE algorithm are presented in Tables B-3 and B-4. As shown in Tables B-3 and B-4, the highest 8th highest visibility impairment value predicted at the Everglades NP with the new IMPROVE algorithm is 0.46 dv. The 22^{nd} highest visibility impairment value predicted at this PSD Class I area over the 3-year period is 0.43 dv.

Based on these results, which demonstrate that the maximum visibility impairment values for Unit No. 3 and Unit No. 4 are predicted to be less than the FDEP's BART exemption criteria of 0.5 dv, an exemption from BART determination is requested for PPE

The input and output files (excluding CALMEI) used for the exemption modeling are provided on a CD submitted with this report Quality assurance procedures were followed, as described in the Protocol, to ensure that the setup and execution of the CALPUFF model and processing of the modeling results satisfy the regulatory objectives of the BART program.

C-1

063-7549

SECTION C- MANATEE POWER PLANT

1.0 SOURCE DESCRIPTION

The Manatee Power Plant (PMT) consists of two oil-fired and natural gas-fired conventional steam electric generating units, designated as Unit No 1 and Unit No 2, a "4-on-1" gas-fired combined cycle unit (Unit No 3) and associated support equipment Each steam unit is a nominal 800-megawatt (MW) class (electric). Both steam units are best available retrofit technology (BART)-eligible emission units.

PMI is located at 19050 State Road 62, Parrish, Manatee County. An area map showing the PMI Plant and prevention of significant deterioration (PSD) Class I areas located within 300 kilometers (km) of the plant is presented in Figure 1-1 of the Protocol. The PSD Class I areas and their distances from the plant are as follows:

- Chassahowitzka National Wilderness Area (NWA) 116 km; and
- Everglades National Park (NP) 212 km.

The general location of this plant, in Universal Transverse Mercator (UIM) coordinates, is 367.3 km, East; 3,054.3 km, North; Zone 17.

The stack, operating, and particulate matter (PM) emission data, including PM speciation, for the BARI-eligible emissions units are presented in detail in the Protocol in Appendix A The supportive annual PM stack test data from 2001 to 2003 and updated PM emission data used in the modeling are presented in Appendices B and C, respectively

Because there are minimal fugitive PM emissions and the plant is more than 50 km from the nearest PSD Class I area, fugitive PM emissions from this station were not addressed in the BARI evaluation.

Building downwash effects were not considered in the modeling since the distance of the nearest PSD Class I area is more than 50 km from the plant.

C-2

063-7549

2.0 AIR QUALITY MODELING METHODOLOGY

The California Puff (CALPUFF) model, Version 5 756, was used to predict the maximum visibility impairment at the PSD Class I areas located within 300 km of PMT. Recent technical enhancements, including changes to the over-water boundary layer formulation and coastal effects modules (sponsored by the Minerals Management Service), are included in this version. The methods and assumptions used in the CALPUFF model are presented in the Protocol The 4-km spacing Florida domain was used for the BART exemption. The refined CALMET domain used for this modeling analysis has been provided by the Florida Department of Environmental Protection (FDEP). The major features used in preparing these CALMET data have also been described in Section 4.0 of the Protocol.

Currently, the atmospheric light extinction is estimated by an algorithm developed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) committee, which was adopted by the EPA under the 1999 Regional Haze Rule (RHR) and referred to in this report as the "1999 IMPROVE algorithm " This algorithm tends to underestimate light extinction for the highest haze conditions and overestimate it for the lowest haze conditions and does not include light extinction due to sea salt, which is important at sites near the seacoasts. As a result of these limitations, the IMPROVE Steering Committee recently developed a new algorithm (the "new IMPROVE algorithm") for estimating light extinction from PM component concentrations, which provides a better correspondence between measured visibility and that calculated from PM component concentrations. A detailed description of the new IMPROVE algorithm and its implementation is presented in Section 3 4 of the Protocol.

The new IMPROVE algorithm will be used if the visibility impairment values predicted with the 1999 IMPROVE algorithm are greater than 0.5 deciview (dv). If the new IMPROVE algorithm is used, the maximum predicted visibility impairment values will be lower than those predicted with the 1999 IMPROVE algorithm

Visibility impacts were predicted at each PSD Class I area using receptors provided by the National Park Service and are represented in Figures 4-1 through 4-2 of the Protocol

0637549/4 2/FPL BARI Modeling Report

C-3

063-7549

3.0 AIR QUALITY MODELING METHODOLOGY

Summaries of the updated maximum visibility impairment values for Unit No 1 and Unit No 2 at PMI estimated using the 1999 IMPROVE algorithm are presented in Tables C-1 and C-2. The 98th percentile 24-hour average visibility impairment values (i.e., 8th highest) for the years 2001, 2002, and 2003, and the 22nd highest 24-hour average visibility impairment value over the 3 years, are presented in Table C-1. The number of days and receptors for which the visibility impairment was predicted to be greater than 0.5 dv is also presented in Table C-1. The eight highest visibility impairment values predicted for each modeled year at the PSD Class I areas are presented in Table C-2

As shown in Tables C-1 and C-2, the 8^{th} highest visibility impairment values predicted for each year at all of the PSD Class I areas using the 1999 IMPROVE algorithm are less than 0.5 dv. The 22^{nd} highest visibility impairment values predicted over the 3-year period at the PSD Class I areas are also less than 0.5 dv As discussed previously, if the new IMPROVE algorithm were used, the maximum predicted visibility impairment values would be lower using the new IMPROVE algorithm than those predicted with the 1999 IMPROVE algorithm.

Based on these results, which demonstrate that the maximum visibility impairment values for Unit No. 1 and Unit No. 2 are predicted to be less than the FDEP's BART exemption criteria of 0.5 dv, an exemption from BART determination is requested for PMT.

The input and output files (excluding CALMET) used for the exemption modeling are provided on a CD submitted with this report Quality assurance procedures were followed, as described in the Protocol, to ensure that the setup and execution of the CALPUFF model and processing of the modeling results satisfy the regulatory objectives of the BARI program

D-1

063-7549

SECTION D- MARTIN POWER PLANT

1.0 SOURCE DESCRIPTION

The Martin Power Plant (PMR) consists of two oil-fired and natural gas-fired conventional steam-electric generating units, designated as Unit No 1 and Unit No 2; combined cycle units (Units 3A, 3B, 4A, and 4B) consisting of 170 megawatt (MW) gas turbines matched with heat recovery steam generators (HRSGs) [each pair of gas turbines (3A/3B and 4A/4B) provides steam to a common steam-electrical turbine (160 MW each)]; and two simple cycle gas turbines (Units 8A and 8B), each rated at 170 MW.

Each steam unit is a nominal 863 MW class (electric) Both steam units are best available retrofit technology (BART)-eligible emission units.

PMR is located approximately 7 miles north of Indiantown on State Road 710 and east of Lake Okeechobee in Martin County, Florida. An area map showing PMR and prevention of significant deterioration (PSD) Class I areas located within 300 kilometers (km) of the plant is presented in Figure 1-1 of the Protocol. The PSD Class I areas and their distances from the plant are as follows:

- Chassahowitzka National Wilderness Area (NWA) 145 km; and
- Everglades National Park (NP) 267 km

The general location of this plant, in Universal Transverse Mercator (UTM) coordinates, is 543.1 km, East; 2,993.0 km, North; Zone 17.

The stack, operating and particulate matter (PM) emission data, including PM speciation, for the BART-eligible emissions units are presented in detail in the Protocol in Appendix A The supportive annual PM stack test data from 2001 to 2003 and updated PM emission data used in the modeling are presented in Appendices B and C, respectively.

Because there are minimal fugitive PM emissions and the plant is more than 50 km from the nearest PSD Class I area, fugitive PM emissions from this station were not addressed in the BARI evaluation.

Docket No. 070007-EI CAVR - FPL BART Project Exhibit RRL-7, Page 17 of 22

April 5, 2007

D-2

063-7549

Building downwash effects were not considered in the modeling since the distance of the nearest PSD Class I area is more than 50 km from the plant.

0637549/4 2/FPL BARI Modeling Report

Golder Associates

D-3

063-7549

2.0 AIR QUALITY MODELING METHODOLOGY

The California Puff (CALPUFF) model, Version 5 756, was used to predict the maximum visibility impairment at the PSD Class I areas located within 300 km of PMR. Recent technical enhancements, including changes to the over-water boundary layer formulation and coastal effects modules (sponsored by the Minerals Management Service), are included in this version. The methods and assumptions used in the CALPUFF model are presented in the Protocol. The 4-km spacing Florida domain was used for the BART exemption. The refined CALMET domain used for this modeling analysis has been provided by the Florida Department of Environmental Protection (FDEP). The major features used in preparing these CALMET data have also been described in Section 4.0 of the Protocol.

Currently, the atmospheric light extinction is estimated by an algorithm developed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) committee, which was adopted by the U.S. Environmental Protection Agency (EPA) under the 1999 Regional Haze Rule (RHR) and referred to in this report as the "1999 IMPROVE algorithm." This algorithm tends to underestimate light extinction for the highest haze conditions and overestimate it for the lowest haze conditions and does not include light extinction due to sea salt, which is important at sites near the seacoasts. As a result of these limitations, the IMPROVE Steering Committee recently developed a new algorithm (the "new IMPROVE algorithm") for estimating light extinction from PM component concentrations, which provides a better correspondence between measured visibility and that calculated from PM component concentrations A detailed description of the new IMPROVE algorithm and its implementation is presented in Section 3 4 of the Protocol

The new IMPROVE algorithm will be used if the visibility impairment values predicted with the 1999 IMPROVE algorithm are greater than 0.5 deciview (dv) If the new IMPROVE algorithm is used, the maximum predicted visibility impairment values will be lower than those predicted with the 1999 IMPROVE algorithm

Visibility impacts were predicted at each PSD Class I area using receptors provided by the National Park Service and are represented in Figures 4-1 through 4-2 of the Protocol

D-4

063-7549

3.0 AIR QUALITY MODELING METHODOLOGY

Summaries of the updated maximum visibility impairment values for Unit No. 1 and Unit No. 2 at PMR estimated using the 1999 IMPROVE algorithm are presented in Tables D-1 and D-2. The 98th percentile 24-hour average visibility impairment values (i.e., 8th highest) for the years 2001, 2002, and 2003, and the 22nd highest 24-hour average visibility impairment value over the 3 years, are presented in Table D-1. The number of days and receptors for which the visibility impairment was predicted to be greater than 0.5 dv is also presented in Table D-1. The eight highest visibility impairment values predicted for each modeled year at the PSD Class I areas are presented in Table D-2.

As shown in Tables D-1 and D-2, the 8th highest visibility impairment values predicted for each year at all of the PSD Class I areas using the 1999 IMPROVE algorithm are less than 0.5 dv. The 22^{nd} highest visibility impairment values predicted over the 3-year period at the PSD Class I areas are also less than 0.5 dv. As discussed previously, if the new IMPROVE algorithm were used, the maximum predicted visibility impairment values would be lower using the new IMPROVE algorithm than those predicted with the 1999 IMPROVE algorithm

Based on these results, which demonstrate that the maximum visibility impairment values for Unit No. 1 and Unit No. 2 are predicted to be less than the FDEP's BART exemption criteria of 0 5 dv, an exemption from BART determination is requested for PMR

The input and output files (excluding CALMET) used for the exemption modeling are provided on a CD submitted with this report. Quality assurance procedures were followed, as described in the Protocol, to ensure that the setup and execution of the CALPUFF model and processing of the modeling results satisfy the regulatory objectives of the BARI program

Docket No. 070007-EI CAVR - FPL BART Project Exhibit RRL-7, Page 20 of 22

April 5, 2007

E-1

063-7549

SECTION E- RIVIERA BEACH POWER PLANT

1.0 SOURCE DESCRIPTION

The Riviera Beach Power Plant (PRV) consists of two oil-fired and natural gas-fired conventional steam electric generating units, designated as Unit No 3 and Unit No 4 Each steam unit is a nominal 300 megawatt (MW) class (electric). Unit No 4 is a best available retrofit technology (BARI)-eligible emission unit; Unit No 3 is not

PRV is located at 200-300 Broadway, Riviera Beach, Palm Beach County An area map showing the PRV Plant and prevention of significant deterioration (PSD) Class I areas located within 300 kilometers (km) of the plant is presented in Figure 1-1 of the Protocol I he only PSD Class I area located within 300 km of the plant is the Everglades National Park (NP), located about 122 km away.

The general location of this plant, in Universal Transverse Mercator (UTM) coordinates, is 594.2 km, East; 2,960.7 km, North; Zone 17

The stack, operating and particulate matter (PM) emission data, including PM speciation, for the BAR I-eligible emissions units are presented in detail in the Protocol in Appendix A The supportive annual PM stack test data from 2001 to 2003 and updated PM emission data used in the modeling are presented in Appendices B and C, respectively

Because there are minimal fugitive PM emissions and the plant is more than 50 km from the nearest PSD Class I area, fugitive PM emissions from this station were not addressed in the BARI evaluation.

Building downwash effects were not considered in the modeling since the distance of the nearest PSD Class I area is more than 50 km from the plant

E-2

063-7549

2.0 AIR QUALITY MODELING METHODOLOGY

The California Puff (CALPUFF) model, Version 5.756, was used to predict the maximum visibility impairment at the PSD Class I areas located within 300 km of PRV. Recent technical enhancements, including changes to the over-water boundary layer formulation and coastal effects modules (sponsored by the Minerals Management Service), are included in this version. The methods and assumptions used in the CALPUFF model are presented in the Protocol. The 4-km spacing Florida domain was used for the BART exemption. The refined CALMET domain used for this modeling analysis has been provided by the Florida Department of Environmental Protection (FDEP). The major features used in preparing these CALMET data have also been described in Section 4.0 of the Protocol.

Currently, the atmospheric light extinction is estimated by an algorithm developed by the Interagency Monitoring of Protected Visual Environments (IMPROVE) committee, which was adopted by the U.S. Environmental Protection Agency (EPA) under the 1999 Regional Haze Rule (RHR) and referred to in this report as the "1999 IMPROVE algorithm " This algorithm tends to underestimate light extinction for the highest haze conditions and overestimate it for the lowest haze conditions and does not include light extinction due to sea salt, which is important at sites near the seacoasts As a result of these limitations, the IMPROVE Steering Committee recently developed a new algorithm (the "new IMPROVE algorithm") for estimating light extinction from PM component concentrations, which provides a better correspondence between measured visibility and that calculated from PM component concentrations A detailed description of the new IMPROVE algorithm and its implementation is presented in Section 3.4 of the Protocol.

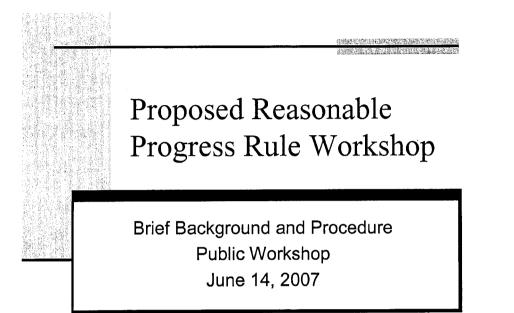
The new IMPROVE algorithm will be used if the visibility impairment values predicted with the 1999 IMPROVE algorithm are greater than 0.5 deciview (dv). If the new IMPROVE algorithm is used, the maximum predicted visibility impairment values will be lower than those predicted with the 1999 IMPROVE algorithm

Visibility impacts were predicted at the PSD Class I area using receptors provided by the National Park Service and are represented in Figure 4-2 of the Protocol.

063-7549

3.0 AIR QUALITY MODELING METHODOLOGY

Summaries of the updated maximum visibility impairment values for Unit No 4 at PRV estimated using the 1999 IMPROVE algorithm are presented in Tables E-1 and E-2. The 98th percentile 24-hour average visibility impairment values (i.e., 8^{th} highest) for the years 2001, 2002 and 2003, and the 22^{nd} highest 24-hour average visibility impairment value over the 3 years, are presented in Table E-1. The number of days and receptors for which the visibility impairment was predicted to be greater than 0.5 dv is also presented in Table E-1. The eight highest visibility impairment values predicted for each modeled year at the PSD Class I area are presented in Table E-2.


E-3

As shown in Tables E-1 and E-2, the 8th highest visibility impairment values predicted for each year at all of the PSD Class I areas using the 1999 IMPROVE algorithm are less than 0.5 dv. The 22nd highest visibility impairment value predicted over the 3-year period at the PSD Class I area is also less than 0.5 dv. As discussed previously, if the new IMPROVE algorithm were used, the maximum predicted visibility impairment values would be lower using the new IMPROVE algorithm than those predicted with the 1999 IMPROVE algorithm

Based on these results, which demonstrate that the maximum visibility impairment values for Unit No. 4 are predicted to be less than the FDEP's BARI exemption criteria of 0.5 dv, an exemption from BARI determination is requested for PRV Unit No. 4

The input and output files (excluding CALMET) used for the exemption modeling are provided on a CD submitted with this report. Quality assurance procedures were followed, as described in the Protocol, to ensure that the setup and execution of the CALPUFF model and processing of the modeling results satisfy the regulatory objectives of the BART program.

0637549/4 2/FPL BARI Modeling Report

FDEP Reasonable Further Progress Workshop Slide 2

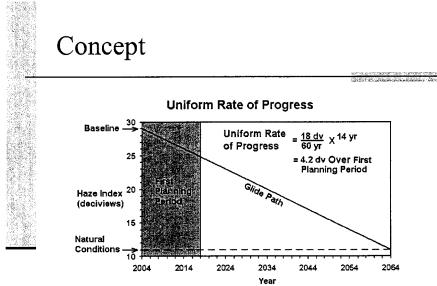
Regulatory Requirements

- Clean Air Act Sections 169A and B
- Federal Rules
 - Federal Register, Vol. 64, No. 126, Thursday, July 1, 1999 "Regional Haze Rule"
 - 40 CFR Part 51, Subpart P Protection of Visibility
- Federal Guidance on Reasonable Progress
 - Guidance for Setting Reasonable Progress Goals
 Under the Regional Haze Program, U.S. EPA, June 1, 2007, rev

National Goal

- "Congress hereby declares as a national goal the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory Class I Federal areas which impairment results from manmade air pollution."
- Achieve natural visibility conditions within Class I areas by 2064

FDEP Reasonable Further Progress Workshop Slide 4


Regional Haze Rule - Purpose

 Section 51.300 – "... require states to develop programs to assure reasonable progress toward meeting the national goal of preventing any future, and remedying any existing, impairment of visibility in mandatory Class I Federal areas which impairment results from manmade air pollution …"

RH Program Requirements

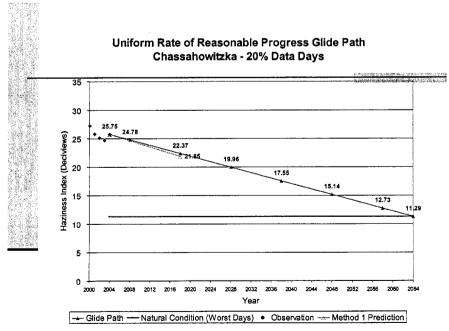
- State must submit an implementation plan (SIP)
 - Must establish goals (expressed in deciviews) that provide for reasonable progress towards achieving natural visibility conditions

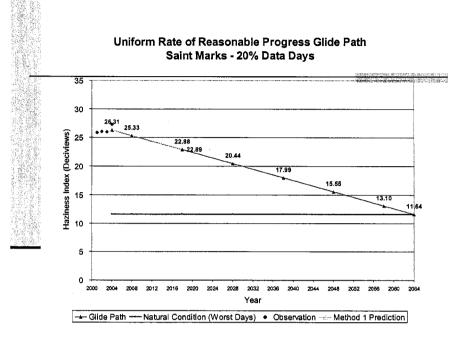
FDEP Reasonable Further Progress Workshop Slide 6

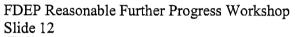
Four Factors in Determining the Reasonable Progress Goal

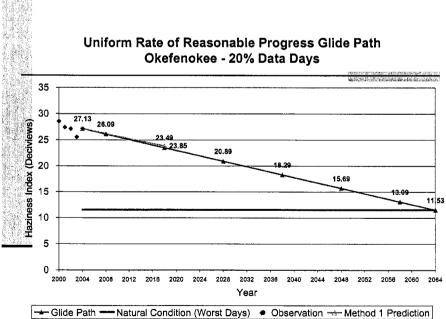
- Cost of compliance
- Time necessary for compliance
- Energy and non-air quality environmental impacts of compliance
- Remaining useful life of any potentially affected sources

FDEP Reasonable Further Progress Workshop Slide 8


Three Components to Consider


- Evaluation of 2018 visibility considering current or "on the books" requirements for emissions reductions (e.g., CAIR, motor vehicle emissions standards, and many other already commanded reductions). VISTAS has completed this component.
- Regional Haze Rule directed **BART** requirements, section 51.302. Not completed.
- Regional Haze Rule directed Reasonable Progress requirement, section 51.308. Subject of this rulemaking.


Uniform Rate of Reasonable Progress Glide Path Everglades - 20% Data Days 35 30 (Deciviews) 50 22,30 21.64 19.97 16.63 Haziness Index 14.97 15 12 30 10 5 0 2000 2004 2008 2012 2016 2028 2032 2040 2044 2048 2052 2020 2024 Year Method 1 Prediction


FDEP Reasonable Further Progress Workshop Slide 9

FDEP Reasonable Further Progress Workshop Slide 10

Docket No. 070007-EI Proposed Reasonable Progress Rule Exhibit RRL-8, Page 7 of 34

FDEP Reasonable Further Progress Workshop Slide 13 Uniform Rate of Reasonable Progress Glide Path Breton - 20% Data Days 35 30 25.0 +aziness Index (Deciviews) 25 22.80 20.52 20 15.95 15 1230 10 5 C Year Glide Path ---- Natural Condition (Worst Days) • Observation Method 1 Prediction

FDEP Reasonable Further Progress Workshop Slide 14

IPM Projections

- Converts all oil-fired boilers to gas
- Affects sources throughout the state, but largely in South Florida.
- Primary power company (FPL) has indicated no intention of gas-only operation.
- Result, projected glidepaths (esp. Everglades) overly optimistic.

			2002 Actual SO2	2018 VISTAS Projected SO2
	Plant Name	Point ID	Emissio ns (TPV)	Emissions (TPY)
	FLORIDA POWER & LIGHT (PPE) PORT EVERGLA	1	3,053	0
		2	3,284	. 0
		3	6,409	0
		4	6,205	0
	FLORIDA POWER & LIGHT (PTF) TURKEY POINT	1	4,327	o
		2	4,610	0
	FLORIDA POWER & LIGHT (PMT) MANATEE POWE	t t	13,930	٥
		2	15,073	° 0
	FLORIDA POWER & LIGHT (PMR) FPL / MARTIN	1	6,886	¢
		2	7,603	O
	FLORIDA POWER & LIGHT (PRV) RIVIERA POWE	3	4,630	
		4	4,291	0
A.	PROGRESS ENERGY FLORIDA, INC. ANCLOTE PO	1	13,679	٥
		2	13,225	0
	PROGRESS ENERGY FLORIDA, INC. BARTOW PLA	t	6,149	o
		2	6,483	0
		3	11,249	0
	NORTHSIDE	3	7,146	0
	PROGRESS ENERGY FLORIDA, INC. FL POWER S	1	657	0
		2	809	O
		3	740	0

FDEP Reasonable Further Progress Workshop Slide 16

Applicability of Reasonable Progress Applies to all sources and all visibilityimpairing pollutants. Purpose of this rule is to use the information

derived from VISTAS to target the most relevant sources (i.e., pair-down the number of sources and pollutants needed to evaluate for reasonable progress). FDEP Reasonable Further Progress Workshop Slide 17

Important Results from VISTAS

- Sulfate is the dominate component of regional haze in the Southeast.
 - Implication focus on SO2 reductions
- Nearly all of the SO2 emissions are from coal and oil-fired EGU's, and industrial plants.
 - Implication focus on point source EGUs' and industrial facilities.

FDEP Reasonable Further Progress Workshop Slide 18

Important Product Produced by VISTAS -- Area of Influence

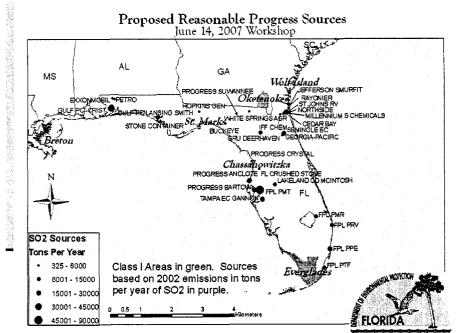
- VISTAS developed information based on wind trajectories that indicate the likelihood that a source at a given location will impact each Class I area.
- A value (RTmax) is determined for each source location that is proportional to each sources probability that it would impact a particular Class I area on days of poor visibility.

- Selection based on modified Georgia criteria with RTmax*Q/d:
 - VISTAS residence time data (within 5% for EGU's and 10% non-EGU's)
 - 2002 actual emissions (units > 250 tpy)
 - >= 0.5% unit contribution, considering only Florida units
- Selection based on each Class I area potentially affected by Florida sources (EVER,CHAS,SAMA,OKEF,WOLF,BRET)

FDEP Reasonable Further Progress Workshop Slide 20

Explanation of Terms

- RTmax -- This term is a metric for the frequency that air flows from the source to the Class I area on days of poor visibility.
- Q Actual 2002 SO2 emissions in tons per year
- d Distance (km), this term is a surrogate for dispersion.


Procedure

- For each unit with SO2 emissions >=250 tpy, identify all EGU's with an RTmax >=5% and all non-EGU's with an RTmax>=10% for each Class I area.
- For each of these units, calculate RTmax*Q/d for each Class I area.
- For each Class I area, sum RTmax*Q/d over all units and calculate the relative contribution for each unit.
- Select all units that contribute 0.5% or greater.

FDEP Reasonable Further Progress Workshop Slide 22

Proposed Selection (see handouts)

- 30 Facilities comprising 69 units
 - 17 power plants
 - ы 4 pulp and paper
 - 9 other (chemical, phosphate,etc.)

Florida Administrative Weekly

FLORIDA ADMINISTRATIVE WEEKLY UNDER SECTION VI, "NOTICES OF MEETINGS, WORKSHOPS AND PUBLIC HEARINGS."

THE PRELIMINARY TEXT OF THE PROPOSED RULE DEVELOPMENT IS NOT AVAILABLE.

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Notices for the Department of Environmental Protection between December 28, 2001 and June 30, 2006. go to http://www.dep.state.fl.us/ under the link or button titled "Official Notices."

DEPARTMENT OF ENVIRONMENTAL PROTECTION

RULE NO.:	RULE TITLE:	
62-296.341	Regional Haze – Reasonable	
	Progress	

PURPOSE AND EFFECT: The proposed rule development involves amendments to rule Chapter 62-296, F.A.C., to implement the reasonable progress portion of the U.S. Environmental Protection Agency's (EPA's) regional haze regulations. Pursuant to these regulations, the department is required to ensure that certain sources of visibility-impairing pollutants in Florida limit their emissions such that reasonable progress is made toward the goal of achieving natural visibility conditions in federal Class I areas. New Rule 62-296.341, F.A.C., is created to set forth procedural requirements by which reasonable progress determinations will be made for affected sources. There is no draft rule language available at this time; however, it is expected the department will post draft rule language at the following web site by June 6, 2007: http://www.dep.state.fl.us/Air/rules/regulatory.htm.

SUBJECT AREA TO BE ADDRESSED: The proposed new rule section addresses air permitting and control technology requirements for sources subject to the reasonable progress portion of EPA's regional haze regulations.

SPECIFIC AUTHORITY: 403.061 FS.

LAW IMPLEMENTED: 403.031, 403.061, 403.087 FS.

A RULE DEVELOPMENT WORKSHOP WILL BE HELD AT THE DATE, TIME AND PLACE SHOWN BELOW:

DATE AND TIME: Thursday, June 14, 2007, 10:00 a.m.

PLACE: Department of Environmental Protection, Bob Martinez Center, Room 609, 2600 Blair Stone Rd., Tallahassee, Florida

Pursuant to the provisions of the Americans with Disabilities Act, any person requiring special accommodations to participate in this workshop/meeting is asked to advise the agency at least 48 hours before the workshop/meeting by contacting: Ms. Lynn Scearce, (850)921-9551. If you are hearing or speech impaired, please contact the agency using the Florida Relay Service, 1(800)955-8771 (TDD) or 1(800)955-8770 (Voice). Volume 33, Number 21, May 25, 2007

THE PERSON TO BE CONTACTED REGARDING THE PROPOSED RULE DEVELOPMENT AND A COPY OF THE PRELIMINARY DRAFT, IF AVAILABLE, IS: Mr. Tom Rogers, (850)921-9554 or tom.rogers@dep.state.fl.us THE PRELIMINARY TEXT OF THE PROPOSED RULE DEVELOPMENT IS NOT AVAILABLE.

DEPARTMENT OF ENVIRONMENTAL PROTECTION

RULE NO.: RULE TITLE: 62-347.100 Purpose

PURPOSE AND EFFECT: The Department, in coordination with the water management districts, proposes to develop a new Chapter 62-347, F.A.C., to develop updated stormwater quality treatment design and performance standards. These design and performance standards will update the existing criteria and reflect new research on design and performance standards, and particularly today's understanding of the impact of nutrient discharges from surface water management systems on water quality. The goal of the rule is to provide stormwater quality treatment design and performance standards that can be applied state-wide. The proposed rule will apply to new systems.

SUBJECT AREA TO BE ADDRESSED: Develop updated stormwater quality treatment design and performance standards for surface water management systems, with particular emphasis on standards that will reduce nutrient discharges.

SPECIFIC AUTHORITY: 373.026(7), 373.043, 373.418, 403.805(1) FS.

LAW IMPLEMENTED: 373.042, 373.409, 373.413, 373.4142, 373.4145, 373.416, 373.4132, 373.426, 373.429 FS. IF REQUESTED IN WRITING AND NOT DEEMED UNNECESSARY BY THE AGENCY HEAD, A RULE DEVELOPMENT WORKSHOP WILL BE NOTICED IN THE NEXT AVAILABLE FLORIDA ADMINISTRATIVE WEEKLY.

THE PERSON TO BE CONTACTED REGARDING THE PROPOSED RULE DEVELOPMENT AND A COPY OF THE PRELIMINARY DRAFT, IF AVAILABLE, IS: Alice Heathcock, Florida Department of Environmental Protection, Office of Submerged Lands and Environmental Resources, MS 2500, 2600 Blair Stone Road, Tallahassee, FL 32399-2400, telephone (850)245-8483, or e-mail: Alice.Heathcock@dep. state.fl.us. Further information and updates on this proposed rule also may be obtained from the Department's Web Site at: http://www.dep.state.fl.us/water/

wetlands/erp/rules/rulestat.htm. (OGC No. 07-0552)

THE PRELIMINARY TEXT OF THE PROPOSED RULE DEVELOPMENT IS NOT AVAILABLE.

Section I - Notices of Development of Proposed Rules and Negotiated Rulemaking 2379

Table C1FDEP Screening Results for Four-Factor Eligibility

Plant ID 0010006 0050009	Plant Name CITY OF GAINESVILLE, GRU DEERHAVEN GENER STONE CONTAINER CORPORATION	Point ID 5 15 16	2002 Actual SO2 Emissions (TPY) 6,969 714 629 1,871	744 735	SO2 BART Determination	Affected Class I Area(s) CHAS,OKEF,SAMA,WOLF SAMA SAMA
0050014	GULF POWER COMPANY LANSING SMITH PLANT	19	687 6,564	7,351		SAMA BRET,SAMA
0110036	FLORIDA POWER & LIGHT (PPE) PORT EVERGLA	2 1 2 3	6,742 3,053 3,284 6,409	0		BRET,SAMA EVER EVER EVER
0170004	PROGRESS ENERGY FLORIDA, INC. CRYSTAL RI	4 1 2 3	6,205 18,998 20,728 26,436	13,536 15,240 3,634		EVER CHAS,OKEF,SAMA CHAS,OKEF,SAMA CHAS,OKEF,SAMA
0250003	FLORIDA POWER & LIGHT (PTF) TURKEY POINT	4	24,635 4,327 4,610	0		CHAS,OKEF,SAMA
0310039 0310045-A	MILLENNIUM SPECIALTY CHEMICALS SAINT JOHNS RIVER	6 16 17	505 11,076 10,185	590 5,882		OKEF,WOLF OKEF,SAMA,WOLF OKEF,SAMA,WOLF
	NORTHSIDE	26 27 3	2,421 5,090 7,146			OKEF,WOLF OKEF,SAMA,WOLF OKEF,SAMA,WOLF
0310071 0310337	IFF CHEMICAL HOLDINGS, INC. CEDAR BAY COGENERATION INC.	3 1 2 3	624 650 641 628	742		OKEF,WOLF OKEF,WOLF OKEF,WOLF OKEF,WOLF
0330045	GULF POWER COMPANY CRIST ELECTRIC GENERA	4 5 6 7	2,464 2,711 10,889 21,546	304 277 1,242		BRET BRET BRET,SAMA BRET,SAMA
0470002	WHITE SPRINGS AGRICULTURAL CHEMICALS, INC	66 67	1,140	1,496	Yes Yes	OKEF,SAMA
0530021 0570040	FLORIDA CRUSHED STONE CO., INC. TAMPA ELECTRIC COMPANY F.J. GANNON STATI	18 1 2 3 4 5	2,906 5,157 4,942 5,602 5,577 8,043	0 0 0 0 0		CHAS,SAMA EVER EVER EVER EVER EVER EVER,SAMA
0730003 0810010	CITY OF TALLAHASSEE ARVAH B. HOPKINS GENE FLORIDA POWER & LIGHT (PMT) MANATEE POWE	6 4 1 2	16,097 325 13,930 15,073	0		CHAS.EVER.SAMA SAMA EVER.SAMA EVER.SAMA
	FLORIDA POWER & LIGHT (PMR) FPL / MARTIN	1	6,836 7,603	0	ĺ	EVER EVER
	JEFFERSON SMURFIT CORPORATION (US) RAYONIER PERFORMANCE FIBERS LLC FLORIDA POWER & LIGHT (PRV) RIVIERA POWE	15 6 3	3,242 257 1,075 4,630			okef, wolf Wolf Okef, wolf Ever
	PROGRESS ENERGY FLORIDA, INC. ANCLOTE PO	4	4,291 13,879	0		EVER CHAS.EVER.SAMA
1030011	PROGRESS ENERGY FLORIDA, INC. BARTOW PLA	2 1 2 3	13,225 6,149 6,483 11,249	0		CHAS,EVER,SAMA EVER,SAMA EVER,SAMA EVER,SAMA
1050004 1070005 1070025	LAKELAND ELECTRIC C.D. MCINTOSH, JR. POW GEORGIA-PACIFIC CORP. PULP/PAPER MILL SEMINOLE ELECTRIC COOPERATIVE, INC.	6 15 1	6,994 3,703 10,912	3,842 4,329 6,779		EVER OKEF,WOLF CHAS,OKEF,SAMA,WOLF
	EXXONMOBIL PRODUCTION COMPANY	2 34	12,775 1,789	1,705		CHAS,OKEF,SAMA,WOLF
	PETRO OPERATING COMPANY PROGRESS ENERGY FLORIDA, INC. FL POWER S	10 1 2 3	417 657 809 740			BRET SAMA SAMA SAMA
1230001	BUCKEYE FLORIDA, LIMITED PARTNERSHIP	3 11 2 4 6	385 449 736 554	450 _524 _860		SAMA SAMA SAMA SAMA SAMA

Workshop Draft 6-12-07 - Proposed Sources Subject to Reasonable Progress Four-Factor Analysis

Docket No. 070007-El Proposed Reasonable Progress Rule Exhibit RRL-8, Page 15 of 34

> June 1, 2007 rev

Guidance for Setting Reasonable Progress Goals Under the Regional Haze Program

U.S. Environmental Protection Agency Office of Air Quality Planning and Standards Air Quality Policy Division Geographic Strategies Group Research Triangle Park, NC

TABLE OF CONTENTS

eviatio	ns and Aeronyms iii				
INTRODUCTION I - 1					
1.1	Legislative and Regulatory History1 - 1				
1.2	Meaning of the Term "Reasonable Progress Goal" 1 - 2				
13	Relationship of Reasonable Progress to BART and the Long Term Strategy				
Over	RVIEW OF THE PROCESS FOR DEVELOPING THE RPG				
2.1	Establish Baseline and Natural Visibility Conditions				
2.2	Determine the Glidepath, or Uniform Rate of Progress 2 - 2				
2.3	Identify and Analyze the Measures Aimed at Achieving the Uniform Rate of Progress				
2.4	Establish a RPG 2 - 4				
Identifying Key Pollutants and Source Categories for the First Planning Period					
3.1	Identification of Source Categories From Which These Pollutants and Their Precursors Are Emitted				
Identify Control Measures for Contributing Source Categories for the First Planning Period					
4.1	Consideration of Emissions Reductions from State, Federal, and Local Control Measures				
	ENTR 1.1 1.2 1.3 OVEF 2.1 2.2 2.3 2.4 IDENT PERIO 3.1 IDENT FIRST				

	4.2	Identification of Additional Emission Control Strategies for the Source Categories Identified
5.0		VING STATUTORY FACTORS TO POTENTIALLY AFFECTED STATIONARY RCES
	5.1	Reasonable Progress Statutory Factor (a): Costs of Compliance
	5.2	Reasonable Progress Statutory Factor (b): Time Necessary for Compliance
	5.3	Reasonable Progress Statutory Factor (c): Energy and Non-Air Impacts 5 - 2
	5.4	Reasonable Progress Statutory Factor (d): The Remaining Useful Life of the Source

li

Abbreviations and Acronyms

- BACT Best Available Control Technology
- BART Best Available Retrofit Technology
- CAA Clean Air Act
- CAIR Clean Air Interstate Rule
- CFR Code of Federal Regulations
- dv Deciviews
- EPA Environmental Protection Agency
- FLM Federal Land Manager
- FR Federal Register
- NOx A mixture of nitrogen dioxide (NO2), nitric oxide (NO), and other nitrogen oxide gases
- NAAQS National Ambient Air Quality Standard
- OAQPS Office of Air Quality Planning and Standards
- PM25 Particulate Matter of 2.5 microns or less in size
- **RHR** Regional Haze Rule
- RPG Reasonable Progress Goal
- **RPO** Regional Planning Organization
- SIP State Implementation Plan
- yr Year

1.0 INTRODUCTION

The purpose of this document is to provide guidance to States in setting reasonable progress goals (RPGs) as part of their regional haze state implementation plans (SIPs) and in deciding those measures necessary to meet these goals. We emphasize that this document is merely guidance and that States or the Environmental Protection Agency (EPA) may elect to follow or deviate from this guidance, as appropriate. The ultimate determination of whether a given SIP submission by a State meets the statutory requirements of sections 169A and 169B of the Clean Air Act (CAA) and the regional haze regulations at 40 CFR 51.300 - 309 will be accomplished through notice and comment rulemaking in which the facts and circumstances of each State submission will be evaluated by EPA.

Under the Tribal Authority Rule, 40 CFR part 49, Tribes have the authority to seek "treatment as a State" for purposes of administering certain CAA programs, including the regional haze program. Whether Tribes seek this authority or not, EPA encourages Tribes to participate in the regional planning efforts to address visibility and to consult with neighboring States as they develop their regional haze SIPs. We hope that this guidance will provide Tribes with an understanding of the process for establishing RPGs that will assist them in the consultation process.

1.1 Legislative and Regulatory History

The CAA was amended in August 1977, and a new section 169A was added for the protection of visibility in mandatory class I Federal areas (Class I areas) of great scenic importance. In section 169A(a)(1), Congress established the national goal for visibility protection:

Congress hereby declares as a national goal the prevention of any future, and the remedying of any existing, impairment of visibility in mandatory class I Federal areas which impairment results from manmade air pollution.

Section 169A(a)(4), in part, requires EPA to "promulgate regulations to assure reasonable progress toward meeting the national goal." The CAA also requires States to submit SIPs containing such emission limits, schedules of compliance, and other measures as may be necessary to make reasonable progress toward meeting the goal.¹

¹ CAA §169A(b)(2).

1-1

In the CAA Amendments of 1990, Congress added section 169B to strengthen and reaffirm the national goal. Section169B(e) calls for EPA to "carry out the Administrator's regulatory responsibilities under [section 169A], including criteria for measuring 'reasonable progress' toward the national goal."

In response to these mandates, EPA promulgated the regional haze rule (RHR) on July 1, 1999.³ Under section 51.308(d)(1) of this rule, States must "establish goals (expressed in deciviews) that provide for reasonable progress towards achieving natural visibility conditions" for each Class I area within a State. These RPGs must provide for an improvement in visibility for the most impaired days over the period of the implementation plan and ensure no degradation in visibility for the least impaired days over the same period.³

The RHR also requires States to submit a long-term strategy that includes such measures as are necessary to achieve the RPG for each Class I area.⁴ The regulations require States to consider major and minor stationary sources, mobile sources, and area sources in developing their long-term strategies. In addition, States must submit a SIP that contains either emission limitations representing best available retrofit technology (BART) for certain sources put into operation between 1962 and 1977 or alternative measures that provide for greater reasonable progress than BART.³ The BART requirements were addressed in a rule revising certain provisions of the regulations in section 51.308(e) and promulgating the BART Guidelines.⁶

1.2 Meaning of the Term "Reasonable Progress Goal"

States must establish RPGs, measured in deciviews (dv), for each Class I area for the purpose of improving visibility on the haziest days and ensuring no degradation in visibility on the clearest days over the period of each implementation plan.⁷ RPGs are interim goals that represent incremental visibility improvement over time toward the goal of natural background conditions and are developed in consultation with other affected States and Federal Land

- 5 40 CFR 51.308(e).
- ⁸ 70 FR 39104 (July 6, 2005).
- 7 40 CFR 51.308(d)(1).

1-2

² 64 FR 35714 (codified at 40 CFR 51300-309).

³ 40 C FR 51.308(d)(1).

⁴⁰ CFR 51.308(d)(3).

Managers (FLM).8

In determining what would constitute reasonable progress, section 169A(g) of the CAA requires States to consider the following four factors:

- The costs of compliance;
- The time necessary for compliance;
- The energy and non-air quality environmental impacts of compliance; and
- The remaining useful life of existing sources that contribute to visibility impairment.⁹

States must demonstrate in their SIPs how these factors are taken into consideration in selecting the RPG for each Class I area in the State.

The discussion of the statutory factors in this guidance is largely aimed at helping States apply these factors in considering measures for point sources. States may find that the factors can be applied to sources other than point sources; the meaning of the factors, however, should not be unduly strained in order to fit non-point sources. In other words, if common sense dictates that a particular statutory factor cannot be applied to a particular source category, then the State's analysis may reflect that fact, and emissions reductions from such sources may still be included in the SIP.

As noted above, the RHR establishes an additional analytical requirement for States in the process of establishing the RPG. This analytical requirement requires States to determine the rate of improvement in visibility reeded to reach natural conditions by 2064, and to set each RPG taking this "glidepath" into account.⁶⁰ (The process for determining the glidepath is discussed later in this document.) EPA adopted this approach, in part, to ensure that States use a common analytical framework that accounts for the regional differences affecting visibility and, in part, to ensure an informed and equitable decision making process. The glidepath is not a presumptive target, and States may establish a RPG that provides for greater, lesser, or equivalent visibility improvement as that described by the glidepath.

⁹ CAA §169A(g)(1); 40 C FR 51.308(d)(1)(d)(A).

¹⁰ 40 CFR 51.308(d)(1)(i)(B).

^{* 40} CFR 51.308(d)(1)(iv) and 51.308(i).

In deciding what amount of emissions reduction is appropriate in setting the RPG, you should take into account the fact that the long-term goal of no manmade impairment encompasses several planning periods. It is reasonable for you to defer reductions to later planning periods in order to maintain a consistent glidepath toward the long-term goal.

1.3 Relationship of Reasonable Progress to BART and the Long-Term Strategy

The RPGs, the long-term strategy, and BART (or alternative measures in lieu of BART) are the three main elements of the regional haze SIPs that States are required to submit by December 17, 2007. The long-term strategy and BART emissions limitations or other alternative measures, including cap-and-trade programs or other economic incentive approaches, are inherently related to the RPG. The long-term strategy is the compilation of "enforceable emissions limitations, compliance schedules, and other measures as necessary to achieve the [RPGs],"¹¹ and is the means through which the State ensures that its RPG will be met. BART emissions limits (or alternative measures in lieu of BART, such as the Clean Air Interstate Rule (CAIR)) are one set of measures that must be included in the SIP to ensure that an area makes reasonable progress toward the national goal, and the visibility improvement resulting from BART (or a BART alternative) is included in the development of the RPG.

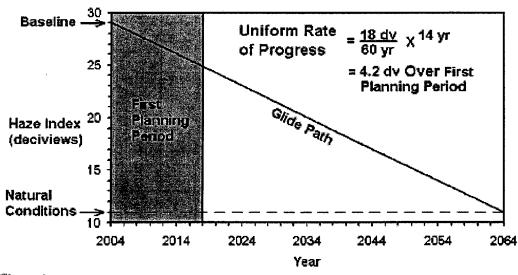
11 40 CFR \$1.308(d)(3),

2.0 OVERVIEW OF THE PROCESS FOR DEVELOPING THE RPG

Development of the RPG for each Class I area should be a collaborative process among State, local, and Tribal authorities, Regional Planning Organizations (RPOs), and FLMs. Steps for developing RPGs will be briefly outlined in this section of the guidance, along with references to other guidance and rules where additional detail can be found. The remaining sections of this guidance expand on particular aspects of these steps. In addition, as this is guidance for States in developing RPGs, the use of "you" through the rest of the document refers to States.

2.1 Establish Baseline and Natural Visibility Conditions

To track progress toward the national goal, the RHR, among other things, requires you to establish the "baseline conditions" representing visibility for the best and worst days at the time the regional haze program is established for each Class I area. Once established, the baseline represents the starting point from which reasonable progress will be measured. The RHR also requires you to estimate "natural conditions" for each Class I area that represents the visibility conditions that would exist in the absence of man-made impairment.


As explained in the RHR, the baseline for each Class I area is the average visibility (in dv) for the 20 percent most impaired days, or "worst days", and for the 20 percent least impaired days, or "best days," for the years 2000 through 2004.¹⁰ Using available monitoring data for the 2000 to 2004 time period, you are required to calculate the baseline by averaging the annual values (in dv) for the 20 percent worst days in each year (yr) to produce a single value (in dv) that represents the baseline conditions for the worst days. You should follow the same approach for determining the value that represents the baseline conditions for the best days. Natural conditions at each Class I area are also expressed by reference to the level of visibility (in dv) for the 20 percent most impaired days.¹³

^{12 64} FR at 35730.

¹³ For more detail on determining baseline and natural conditions, you can review the preamble and regulations in the RHR, 64 FR at 35728 - 35730, 40 CFR 51.308(d)(2), BPA's Guidance for Tracking Progress Under the Regional Haze Rule, BPA-454/B-03-004 (September 2003) available at <u>www.cpa.opv/ttn/oarpg/1/incmoranda/rh_tpurkr_gd.pdf</u> and BPA's Guidance for Estimating Natural Visibility Conditions Under the Regional Haze Rule, EPA-454/B-03-005 (September 2003) available at <u>www.cpa.opv/ttn/oarpg/1/incmoranda/rh_tpurkr_gd.pdf</u>.

2.2 Determine the Glidepath, or Uniform Rate of Progress

By comparing baseline conditions with natural conditions, you can determine the uniform rate of visibility improvement, or progress, needed to reach natural conditions by 2064 for each Class I area. Figure 1, below, illustrates the basic steps in the process for calculating the uniform rate of progress toward natural conditions for the first planning period at a hypothetical Class I area.

Uniform Rate of Progress

Figure 1

Figure 1 Example of a Uniform Rate of Progress

- Compare baseline conditions to natural conditions. The difference between these two
 represents the amount of progress needed to reach natural visibility conditions. In this
 example, the State has determined that the baseline for the 20 percent worst days for the
 Class I area is 29 dv and estimated that natural background is 11 dv, a difference of 18
 dv.
- Calculate the annual average visibility improvement needed to reach natural conditions by 2064 by dividing the total amount of improvement needed by 60 years (the period between 2004 and 2064). In this example, this value is 0.3 dv/yr.

 Multiply the annual average visibility improvement needed by the number of years in the first planning period (the period from 2004 until 2018). In this example, this value is 4.2 dv. This is the uniform rate of progress that would be needed during the first planning period to attain natural visibility conditions by 2064.

If you were to achieve this steady improvement in visibility over the next 60 years, you would reach the national goal by 2064.

2.3 Identify and Analyze the Measures Aimed at Achieving the Uniform Rate of Progress.

The next step in setting an RPG is to identify and analyze the measures aimed at achieving the uniform rate of progress and to determine whether these measures are reasonable based on the statutory factors identified in Section 1.2 above. To meet this requirement, we suggest the following approach which ensures that States consider all reasonable measures in developing their regional haze SIPs:

- Identify the key pollutants and sources and/or source categories that are contributing to visibility impairment at each Class I area. The sources of impairment for the most impaired and least impaired days may differ. Section 3 discusses this process.
- Identify the control measures and associated emission reductions that are expected to result from compliance with existing rules *and* other available measures for the sources and source categories that contribute significantly to visibility impairment. This is covered in more detail in Section 4.
- Determine what additional control measures would be reasonable based on the statutory factors and other relevant factors for the sources and/or source categories you have identified.
- Estimate through the use of air quality models the improvement in visibility that would
 result from implementation of the control measures you have found to be reasonable and
 compare this to the uniform rate of progress.

Another possible approach that some States and RPOs are using is to "back out" the measures necessary to achieve the uniform rate of progress. In this process, States are using dispersion modeling to estimate the visibility impacts of a specific percentage reduction in visibility impairing pollutants. The resulting visibility conditions are then compared to the uniform rate of progress. Using this process, States will be able to identify a percentage

reduction in visibility impairing pollutants that would provide progress at or beyond the uniform rate of progress. In a separate step, States would consider the statutory factors along with other relevant factors to select appropriate measures to achieve the identified reduction in emissions. States can thus identify the measures that would be needed to achieve the uniform rate of progress at a Class I area and determine whether such measures are reasonable.

2.4 Establish a RPG

In developing a RPG, you must consult with other States with emissions sources that may reasonably be anticipated to cause or contribute to visibility impairment at Class I areas in your State.¹⁴ The regulations anticipate that States may not always agree on what measures would be reasonable or on the appropriateness of a RPG. We encourage States to work together early and often to resolve such issues. In addition, the FLMs may provide insight and assistance to States in identifying regional approaches to address the RPG.

The improvement in visibility resulting from implementation of the measures you have found to be reasonable, considering the uniform rate of progress, is the amount of progress that represents your RPG. The regional haze rule requires you to clearly support your RPG determination in your SIP submission based on the statutory factors.¹⁵

¹⁴ 40 CFR 51.308(d)(1)(iv).

⁴⁵ 40 CFR 51.308(4)(1)(i)(A).

3.0 Identifying Key Pollutants and Source Categories for the First Planning Period

This process begins with the identification of key pollutants and source categories that contribute to visibility impairment at the Class I area. Such analysis has been the subject of considerable study over the past decade, including studies by the Grand Canyon Visibility Transport Commission and ongoing work by RPOs. For the purpose of this document, it is assumed that analyses identifying the key pollutants contributing to visibility impairment have been conducted for each Class I area.

3.1 Identification of Source Categories From Which These Pollutants and Their Precursors Are Emitted

Once the key pollutants contributing to visibility impairment at each Class I area have been identified, the sources or source categories responsible for emitting these pollutants or pollutant precursors can also be determined. There are several tools and techniques being employed by the RPOs to do so, including analysis of emission inventories, source apportionment, trajectory analysis, and atmospheric modeling. Technical guidance on these tools and techniques is beyond the scope of this document. Instead, this document focuses on policy considerations relevant to the identification of which source categories should be considered as part of the regional haze SIP development process.

When identifying the sources or source categories responsible for regional haze, you should consider the relationship between the RPG and the requirements for long-term strategies. The regulations require States to consider major and minor stationary sources, as well as mobile and area sources, in developing long-term strategies.¹⁸ At a minimum, the regulations require you to consider several factors when developing a long-term strategy, including the following:

- Emissions reductions due to ongoing air pollution control programs, including measures to address reasonably attributable visibility impairment and those taken to attain the fine particulate matter (PM_{2.5}) national ambient air quality standards (NAAQS).
- Measures to mitigate the impact of construction activities.
- Smoke management techniques for agricultural and forestry management purposes.

16 40 CFR 51.308(d)(3)(iv).

 Anticipated visibility effects from changes in point, area, and mobile source emissions.¹⁷

As illustrated by these factors, States should consider a broad array of sources and activities when deciding which sources or source categories contribute significantly to visibility impairment.

¹⁷ 40 CFR 51.308(d)(3)(v).

3-2

4.0 IDENTIFY CONTROL MEASURES FOR CONTRIBUTING SOURCE CATEGORIES FOR THE FIRST PLANNING PERIOD

There are numerous possible conceptual approaches that you can use to identify control measures for the long-term strategy and the related RPG. We suggest beginning by concentrating on possible emissions reductions of several pollutant species from a few selected source sectors, focusing on those source categories that may have the greatest impact on visibility at Class I areas, considering cost and the other factors discussed further in Section 5.0.

4.1 Consideration of Emissions Reductions from State, Federal, and Local Control Measures

One important factor to keep in mind when establishing a RPG is that you cannot adopt a RPG that represents less visibility improvement than is expected to result from the implementation of other CAA requirements.¹³ You must therefore determine the amount of emission reductions that can be expected from identified sources or source categories as a result of requirements at the local, State, and federal levels during the planning period of the SIP and the resulting improvements in visibility at Class I areas. Given the significant emissions reductions that we anticipate to result from BART, the CAIR, and the implementation of other CAA programs, including the ozone and PM₂₅ NAAQS, for many States this will be an important step in determining your RPG, and it may be all that is necessary to achieve reasonable progress in the first planning period for some States.

The first step in this process is to identify the baseline emissions inventory year on which your strategies are based. For the first RHR SIP, we anticipate that States will use 2002 as the baseline year for emission inventories.¹⁹ If you do use 2002, you may take credit in your long-term strategy for emission reductions achieved after 2002. This includes emission reductions from measures implemented to attain the ozone and PM_{2.5} NAAQS,²⁰ and Federal programs, such as the national mobile source program and federal standards for hazardous air pollutants (air toxics).

2002 El Memo at 3-4.

4 - 1

¹⁸ 40 CFR 51.308(d)(1)(vi).

¹⁹ 40 CFR 51 308(d)(3)(iii) provides that the baseline emission inventory year is presumed to be the most recent year of the consolidated emissions inventory for the SIP. A memorandum from OAQPS, entitled 2002 Base Tear Emission Inventory SIP Planning: 8-hr Ozone, PM 2.5, and Regional Haze Programs (November 18, 2002) (*2002 EI Memo"), identifies 2002 as the anticipated baseline emission inventory year for regional haze. See www.epa.gov/tu/oarp.g/11/memoranda/2002 bye_gm.pdf

4.2 Identification of Additional Emissions Control Strategies for the Source Categories Identified

After determining the amount of emissions reductions of visibility impairing pollutants that may be expected from implementation of other CAA programs, you will be ready to identify any additional measures that are reasonable. The RHR gives States wide latitude to determine additional control requirements, and there are many ways to approach identifying additional reasonable measures; however, you must at a minimum, consider the four statutory factors. Based on the contribution from certain source categories and the magnitude of their emissions you may determine that little additional analysis is required to determine further controls are not warranted for that category. As discussed further in section 5, you have considerable flexibility in how you take these factors into consideration. In addition to source-specific controls, emissions cap-and-trade programs may be considered. Sources of information on control techniques for specific source categories include the RACT/BACT/LAER Clearinghouse and EPA's AIRControlNet database.²¹

One approach that you could take to streamline what could be an extremely complex task would be to first identify alternative control scenarios with different levels of stringency. Each control scenario would assume application of specific control levels or measures to the sources or source categories you have identified as the significant sources of visibility impairment. As indicated previously in section 4.1, the starting point for this assessment is the visibility improvement achieved as a result of BART, the CAIR, and the implementation of other CAA programs, including other measures for attainment of the ozone and PM_{2.5} NAAQS. You would then consider whether any additional control scenarios are reasonable based on your consideration of the statutory factors and any other factors you have determined are relevant.

Another approach you could take, consistent with the "back out" approach discussed in section 2.3, would involve identifying the set of emissions control measures that achieves the target percentage reductions in visibility-impairing pollutants associated with progress at or beyond the uniform rate of progress. The selection of control measures to include in this set would be guided by your consideration of the statutory factors and any other factors you have determined are relevant.

Note that for some sources determined to be subject to BART, the State will already have completed a BART analysis. Since the BART analysis is based, in part, on an assessment of many of the same factors that must be addressed in establishing the RPG, it is reasonable to

²⁷ Information on AirControlNETcan be found at <u>www.eps.gov/tin/ccas/ccontool.html</u>. The RACT/BACT/LABR Clearinghouse is located at <u>http://cfpub.epa.gov/rble/htm/bl02.cfm</u>.

conclude that any control requirements imposed in the BART determination also satisfy the RPG-related requirements for source review in the first RPG planning period. Hence, you may conclude that no additional emissions controls are necessary for these sources in the first planning period.

5.0 APPLYING STATUTORY FACTORS TO POTENTIALLY AFFECTED STATIONARY SOURCES

In determining reasonable progress, CAA $\S169A(g)(1)$ requires States to take into consideration a number of factors. However, you have flexibility in how to take into consideration these statutory factors and any other factors that you have determined to be relevant. For example, the factors could be used to select which sources or activities should or should not be regulated, or they could be used to determine the level or stringency of control, if any, for selected sources or activities, or some combination of both. The factors may be considered both individually and/or in combination. As noted in section 4.1, given the significant emissions reductions that we anticipate to result from BART, the CAIR, and the implementation of other CAA programs, these reductions may be all that is necessary to achieve reasonable progress in the first planning period for some States. Also, as noted in section 4.2, it is not necessary for you to reassess the reasonable progress factors for sources subject to BART for which you have already completed a BART analysis.

5.1 Reasonable Progress Statutory Factor (a): Costs of Compliance

The first factor to take into consideration is the "costs of compliance." In this context we believe that the cost of compliance factor can be interpreted to encompass the cost of compliance for individual sources or source categories, and more broadly the implication of compliance costs to the health and vitality of industries within a state. For additional guidance on applying the cost of compliance factor to stationary sources, you may wish to consult the BART guidelines, referenced above.

To assess compliance costs for individual sources or source categories potentially subject to emission limitations, we suggest that you use established control cost analysis techniques. For stationary sources, generally this involves the following:²²

- a) Identify the emissions units to be controlled;
- b) Identify the design parameters for emissions controls; and
- c) Develop cost estimates based upon those design parameters.

²² As noted above, application of the cost factor to non-point sources is beyond the scope of this guidance. This is also true for mobile sources.

You should evaluate both average and incremental costs. To maintain and improve consistency wherever possible, cost estimates should be based on EPA's Air Pollution Control Cost Manual.²³

In considering the cost of compliance factor, you should keep in mind that different pollutants differently impact visibility impairment. For example, on a ton basis, sulfur dioxiderelated particles have a greater impact on visibility impairment than crustal material. Therefore, in assessing additional emissions reduction strategies for source categories or individual, large scale sources, simple cost effectiveness estimates based on a dollar-per-ton calculation may not be as meaningful as a dollar-per-deciview calculation, especially if the strategies reduce different groups of pollutants.

5.2 Reasonable Progress Statutory Factor (b): Time Necessary for Compliance

The second factor is the "time necessary for compliance." It may be appropriate for you to use this factor to adjust the RPG to reflect the degree of improvement in visibility achievable within the period of the first SIP if the time needed for full implementation of a control measure (or measures) will extend beyond 2018. For example, if you anticipate that constraints on the availability of construction labor will preclude the installation of controls at all sources of a particular category by 2018, the visibility improvement anticipated from installation of controls at the percentage of sources that *could* be controlled within the strategy period should be considered in setting the RPG and in establishing the SIP requirements to meet the RPG.

5.3 Reasonable Progress Statutory Factor (c): Energy and Non-Air Impacts

The third factor is "energy and non-air environmental impacts." In assessing energy impacts, you may want to consider whether the energy requirements associated with a control technology result in energy penalties. For example, controls on diesel engines may decrease the engine's fuel efficiency, leading to an increase in diesel fuel consumption. Or, a particular control may require a fuel unavailable in the area. To the extent that these considerations are quantifiable they should be included in the engineering analyses supporting compliance cost estimates.

Some examples of non-air environmental impacts that you may wish to consider, are the effects of the waste stream that may be generated by a particular control technology, and/or other

²³ Any additional information used for the cost calculations, including any information supplied by vendors that affects your assumptions regarding purchased equipment costs, equipment life, replacement of major components, and any other element of the calculation that differs from the *Control Cost Manual*, should be documented. EPA's *Control Cost Manual* is located at: <u>www.epa.gov/tmeste1/products.html#cccinfo</u>.

resource consumption rates such as water, water supply, and waste water disposal. To the extent that these considerations are quantifiable, they should also be included in the analyses supporting compliance cost estimates.

For additional guidance on applying this factor to stationary sources, you may wish to consult the BART Guidelines, referenced above.

5.4 Reasonable Progress Statutory Factor (d): The Remaining Useful Life of the Source

The fourth statutory factor is "the remaining useful life of any existing source subject to [reasonable progress] requirements." This factor is generally best treated as one element of the overall cost analysis. The "remaining useful life" of a source, if it represents a relatively short time period, may affect the annualized costs of retrofit controls. For example, the methods for calculating annualized costs in EPA's *Air Pollution Control Cost Manual* require the use of a specified time period for amortization that varies based upon the type of control. If the remaining useful life of the source will clearly exceed this time period, the remaining useful life factor has essentially no effect on control costs and on the reasonable progress determination process. Where the remaining useful life of the source is less than the time period for amortizing the costs of the retrofit control, you may wish to use this shorter time period in your cost calculations.

For additional guidance on applying this factor to stationary sources, you may wish to consult the BART Guidelines, referenced above.