			1
1		BEFORE THE	
2	FLORID	A PUBLIC SERVICE COMMISSION	
3	In the Matter of:	DOCKET NO. 070393-EI	
	PETITION FOR DETERM	INATION OF NEED	
4	FOR LAKE AGNES-GIFF	DRD 230 KV	4
5	TRANSMISSION LINE IN COUNTIES, BY PROGRES	SS ENERGY FLORIDA	OTT
6	AND TAMPA ELECTRIC (COMPANY.	(89) (69)
7			
8			
9		- 5 Or 11	(Q) 2
10			7
11			
12			
13		C VERSIONS OF THIS TRANSCRIPT ARE VENIENCE COPY ONLY AND ARE NOT	
14	THE OFF:	ICIAL TRANSCRIPT OF THE HEARING,	
15	THE PDF VI	ERSION INCLUDES PREFILED TESTIMONY.	
16			
17	PROCEEDINGS:	HEARING	
18	BEFORE:	COMMISSIONER MATTHEW M. CARTER, II COMMISSIONER KATRINA J. MCMURRIAN	
19		COMMISSIONER NANCY ARGENZIANO	
20	DATE:	Wednesday, September 12, 2007	
21	TIME:	Commenced at 9:35 a.m. Concluded at 9:38 a.m.	
	PLACE:	Betty Easley Conference Center	
22	FUACE :	Room 148	
23		4075 Esplanade Way Tallahassee, Florida	
24 25	REPORTED BY:	JANE FAUROT, RPR Official FPSC Reporter (850) 413-6732	
	FLOR	IDA PUBLIC SERVICE COMMISSION 08314 SEP 135	8

1 APPEARANCES:

LEE L. WILLIS, ESQUIRE and JAMES D. BEASLEY, ESQUIRE,
Ausley Law Firm, Post Office Box 391, Tallahassee, Florida
32302, appearing on behalf of Tampa Electric Company.

KENNETH A. HOFFMAN, ESQUIRE, Rutledge Law Firm, P.O.
Box 551, Tallahassee, Florida 32302-0551, R. ALEXANDER GLENN,
ESQUIRE, and JOHN BURNETT, ESQUIRE, Progress Energy Service
Company, LLC, P.O. Box 14042, Saint Petersburg, Florida
33733-4042, appearing on behalf of Progress Energy Florida,
Inc.
KEINO YOUNG, ESQUIRE, and MARTHA BROWN, ESQUIRE, FPSC

12 General Counsel's Office, 2540 Shumard Oak Boulevard,
13 Tallahassee, Florida 32399-0850, appearing on behalf of the
14 Florida Public Service Commission Staff.

FLORIDA PUBLIC SERVICE COMMISSION

			3
1		INDEX	
2		WITNESSES	
3			
4	NAME:		PAGE NO.
5	BRANTLEY TILLIS and TH		9
6	Joint Prefiled Di	rect Testimony	9
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
			0.0007-0.007-0.007
	FLORIDA	PUBLIC SERVICE C	OMMISSION

l

				4
1		EXHIBITS		
2	NUMBER:		ID.	ADMTD.
3	1	Comprehensive Exhibit List	8	8
4	2-12	(Description of exhibits	8	8
5		in Comprehensive Exhibit List)		
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
		FLORIDA PUBLIC SERVICE COMMIS	SION	

5 PROCEEDINGS 1 COMMISSIONER CARTER: Good morning. 2 Staff, will you please read the notice. 3 MR. YOUNG: By revised notice issued August 3rd, 4 2007, this time and place has been set for a hearing in Docket 5 Number 070393-EI, petition for determination of need for the 6 Lake Agnes-Gifford 230 kV transmission line in Polk and Orange 7 Counties by Progress Energy Florida and Tampa Electric Company. 8 The purpose of the hearing is set out in the notice. 9 COMMISSIONER CARTER: Okay. Thank you very much. 10 Let's take appearances. 11 MR. WILLIS: I'm Lee L. Willis of Ausley and 12 McMullen, P.O. Box 391, Tallahassee, Florida 32302, appearing 13 on behalf of Tampa Electric Company. 14 MR. HOFFMAN: Good morning, Commissioners. 15 I'm Kenneth Hoffman of Rutledge, Ecenia, Purnell & Hoffman, 215 16 17 South Monroe Street, Suite 420, Tallahassee, Florida. I'd also like to enter an appearance for R. Alexander Glenn and John 18 Burnett of Progress Energy Florida, and we are all appearing on 19 behalf of Progress Energy Florida. 20 MR. YOUNG: Keino Young, Commission Staff, with 21 Martha Carter Brown, Commission Staff, and Lee Colson, 22 Commission staff. 23 COMMISSIONER CARTER: Okay. 24 Mr. Young, are there any preliminary matters? 25 FLORIDA PUBLIC SERVICE COMMISSION

MR. YOUNG: There are no preliminary matters. 1 There is a proposed stipulation on all the issues and 2 the witnesses have been excused. Progress Energy Florida and 3 TECO do not intend to make an opening statement. 4 5 Mr. Commissioner, staff recommends that you finalize the evidentiary record by admitting the prefiled testimony and 6 7 exhibits at the appropriate time, thus the Commission can make 8 a bench decision on proposed stipulations set out in the 9 prehearing order. 10 COMMISSIONER CARTER: Okay. Let's just kind of take it from the top. Let's take up the prefiled testimony. 11 MR. YOUNG: Commissioners, staff asks that the 12 13 prefiled testimony of Mr. Brantley Tillis and Thomas J. 14 Szelistowski be inserted into the record as though read. Cross 15 examination has been waived. 16 COMMISSIONER CARTER: Commissioners, any questions 17 regarding the prefiled testimony? COMMISSIONER ARGENZIANO: 18 No. 19 COMMISSIONER CARTER: Exhibits. 20 MR. YOUNG: Commissioner Carter, all exhibits are 21 stipulated. Staff asks that you mark and move the Comprehensive Stipulated Exhibit List into the record. 22 The list itself is Exhibit Number 1, and all other exhibits on the 23 24 list should be numbered as indicated and moved into the record. 25 COMMISSIONER CARTER: Okay.

6

FLORIDA PUBLIC SERVICE COMMISSION

We will probably -- let's do this first, before we 1 deal with the exhibits. 2 Is there any public testimony? Is there anyone from 3 the public that would like to testify on this matter? 4 Hearing none. Staff, on the exhibits, they are all 5 stipulated? б MR. YOUNG: Yes, sir. 7 COMMISSIONER CARTER: Commissioners, any questions 8 regarding the exhibits? What I'm thinking we'll do is probably 9 at the end we will deal with the prefiled testimony and the 10 exhibits at one time, and then make a determination of whether 11 or not we will do a bench decision. 12 Is that okay with you guys? Okay. 13 Mr. Young, you're recognized. 14 MR. YOUNG: Since the parties are proposing a 15 stipulation on the position of all the issues, staff recommends 16 that the Commission make a bench decision. The likelihood of a 17 bench decision is mentioned in Section VIII of the prehearing 18 order. 19 COMMISSIONER CARTER: Okay. Then on the proposed 20 stipulations. 21 MR. YOUNG: Staff recommends that the proposed 22 stipulations on Page 5 and 6 of the Prehearing Order, Issues 23 1 through 4, be approved by the Commission. 24 COMMISSIONER CARTER: Commissioners, any questions 25

7

FLORIDA PUBLIC SERVICE COMMISSION

1 regarding the proposed stipulation?

Commissioners, at this point in time, if there are no 2 3 questions regarding the proposed stipulation, I think we would want to deal with the prefiled testimony, the exhibits, and the 4 bench decision at one time, if that's appropriate? 5 Any questions regarding that? The chair is now open 6 for a motion as such. 7 COMMISSIONER TEW: I will move the stipulated issues 8 9 as well as the exhibit list and the other exhibits as numbered on the exhibit list, and I guess --10 COMMISSIONER CARTER: And the prefiled testimony. 11 COMMISSIONER TEW: And prefiled testimony. 12 COMMISSIONER CARTER: Commissioner McMurrian has 13 moved the exhibit list, the prefiled testimony, and the 14 proposed stipulation. 15 COMMISSIONER ARGENZIANO: Second. 16 COMMISSIONER CARTER: And seconded by Commissioner 17 18 Argenziano. Any questions? Hearing none, let it be known by the sign of aye, 19 those in favor. 20 (Unanimous affirmative vote.) 21 (Exhibits 1-12 marked for identification and admitted 22 23 into the record.) 24 25 FLORIDA PUBLIC SERVICE COMMISSION

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY DOCKET NO. 070393-EI FILED: 8/1/07

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		JOINT PREFILED DIRECT TESTIMONY
3		OF
4		BRANTLEY TILLIS AND THOMAS J. SZELISTOWSKI
5		
6	Q.	Mr. Tillis, please state your name and business address.
7		
8	A.	My name is Brantley Tillis. My business address is 3300
9		Exchange Place, Lake Mary, Florida 32746.
10		
11	Q.	By whom are you employed and in what capacity?
12		
13	А.	I am employed by Florida Power Corporation, doing
14		business as Progress Energy, Florida, Inc. ("PEF"), in
15		the capacity of Manager of Transmission Planning.
16		
17	Q.	What are your duties and responsibilities as PEF's
18		Manager of Transmission Planning?
19		
20	A.	I am responsible for maintaining overall grid reliability
21		of PEF's transmission system. This includes planning for
22		the expansion of PEF's transmission grid to assure
23		reliability, reviewing generation interconnection
24		requests, conducting system impact and other studies

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY DOCKET NO. 070393-EI FILED: 8/1/07

	1	
1		under PEF's open access transmission tariff ("OATT"), and
2		conducting joint planning studies with other peninsular
3		Florida utilities through the Florida Reliability
4		Coordinating Council ("FRCC").
5		
6	Q.	Please describe your educational background and
7		professional experience.
8		
9	А.	I graduated from the University of Florida with a
10		Bachelors of Science degree in Electrical Engineering in
11		1985. I also have an MBA from the Florida Institute of
12		Technology. I have worked for PEF for 22 years,
13		initially in the area of distribution engineering and
14		operations and then followed by transmission and
15		distribution planning. I also have held various
16		management roles at the company. I am a licensed
17		Professional Engineer in the State of Florida. I have
18		supplied exhibits and provided support in various
19		proceedings before the Florida Public Service Commission
20		("Commission"). I also represent PEF at the FRCC as a
21		member of the FRCC's Planning Committee and as a member
22		of the Transmission Working Group for the Planning
23		Committee.

24

1	Q.	Mr. Szelistowski, please state your name and business
2	**	address.
3	_	Manage is Themas I. Caplistowski. My buginoga oddroga
4	Α.	My name is Thomas J. Szelistowski. My business address
5		is 702 N. Franklin Street, Tampa, Florida 33602.
6		
7	Q.	By whom are you employed and in what capacity?
8		
9	А.	I am employed by Tampa Electric Company ("Tampa
10		Electric") as Director, Energy Control Center.
11		
12	Q.	What are your duties and responsibilities as Tampa
13		Electric's Director, Energy Control Center?
14		
15	А.	My present responsibilities include the areas of day-to-
16		day distribution outage restoration, transmission system
17		operations, system reliability tracking and reporting,
18		Energy Delivery emergency response and planning,
19	-	wholesale energy accounting and billing, and Tampa
20		Electric's long-term transmission and distribution
21		infrastructure planning.
22		
23	ç.	Please describe your educational background and
	×.	professional experience.
24		processional experience.

•

I received a Bachelor of Electrical Engineering degree in Α. 1 1983 from Georgia Institute of Technology and a Masters 2 Degree in Business Administration from the University of 3 Tampa in 1987. I am a licensed professional engineer in 4 the state of Florida. I joined Tampa Electric as a co-5 operative education student in 1978 and became a full 6 time employee as an engineer in 1983. From 1983 through 7 2001, I held various positions in Transmission Planning, 8 Transmission Transmission Engineering, and and 9 Distribution Operation areas of Tampa Electric. In 2001, 10 I was promoted to Director, Transmission and Distribution 11 Operations. In this position, I was responsible for the 12 construction and maintenance of the distribution and 13 transmission facilities of Tampa Electric. Earlier this 14 year, I was promoted to my current position. 15 16 Are you sponsoring any exhibits in this proceeding? 17 Q. 18 Yes, we are sponsoring the following exhibits to our Α. 19 testimony: 20 21 PEF's Historic and Forecasted Exhibit (BT/TJS-1): 22 Peak Demand 23 Exhibit (BT/TJS-2): Tampa Electric's Historic and 24 5

1	Forecasted Peak Demand
2	Exhibit(BT/TJS-3): Project Area Transmission System
3	Мар
4	Exhibit(BT/TJS-4): NERC Reliability Standards
5	Exhibit(BT/TJS-5): FRCC's Transmission Planning
6	Process
7	Exhibit(BT/TJS-6): FRCC Florida Central Coordinated
8	Re-Study Report: Executive
9	Summary
10	Exhibit(BT/TJS-7): FCCS Study/FCCS Re-Study
11	Recommended Series of Projects
12	Exhibit(BT/TJS-8): Excerpts from Commission's
13	December 2006 Review of 2006 Ten
14	Year Site Plans for Electric
15	Utilities
16	Exhibit(BT/TJS-9): FRCC Load and Resource Plan
17	Exhibit(BT/TJS-10): Summary Table of Load Flow
18	Results
19	
20	These exhibits provide the information required under
21	Rule 25-22.076, Florida Administrative Code, in support
22	of the Petition filed by PEF and Tampa Electric (the
23	"companies") for a Determination of Need for the Lake
24	Agnes-Gifford Project (the "Project").

1	Q.	Please describe the purpose and scope of your testimony.
2		
3	Α.	The purpose of our testimony is to sponsor and support
4		the Petition filed by the companies for a Determination
5		of the Need for the Project. Our testimony, as well as
6		the supporting exhibits, present the following
7		information in support of the Project:
8		
9		A general description of the existing load and electric
10		characteristics of the companies' electrical transmission
11		grids;
12		
13		A general description of the Project including the design
14		and operating voltage of the proposed transmission line,
15		the starting and ending points of the line, the
16		approximate cost of the Project and the projected in
17		service date;
18		
19		The specific conditions, contingencies and factors which
20		demonstrate the need for the Project including a
21		discussion of PEF's, Tampa Electric's and the FRCC
22		transmission planning processes and the reliability
23		benefits of the Project;
24		

	1	
1		The major alternatives to the Project that were evaluated
2		and rejected by the companies and the FRCC in favor of
3		the Project; and
4		
5		The adverse consequences to the companies' electric
6		systems and customers if the Project is delayed or
7		denied.
8		
9	Q.	Describe the organization of your testimony.
10		
11	А.	First, we will provide an overview of the companies,
12		their respective existing load characteristics and the
13		composition of their transmission networks. Second, we
14		will describe the Project, the need for and benefits
15		associated with the Project, and the estimated capital
16		cost for each Company's portion of the Project. Third,
17		we will explain the companies' and the FRCC's
18		transmission planning processes. Fourth, we will discuss
19		the evaluation and analyses conducted to demonstrate the
20		need for and benefits of the Projects. Fifth, we will
21		discuss the alternatives considered and explain why they
22		were rejected in favor of the Project. Finally, we will
23		address the adverse consequences to the companies'
24		customers if the Project is denied or not timely

I

approved.

1

2

3

4

6

15

OVERVIEW OF THE COMPANIES

Progress Energy Florida

5 **Q.** Please provide a brief description of PEF.

PEF provides electric service to more than 1.6 million 7 Α. customers in 22 counties in Florida. In general terms, 8 PEF's retail service area in Florida spans about 20,000 9 square miles in Central Florida, including metropolitan 10 St. Petersburg, Clearwater and the Greater Orlando area. 11 In Florida, PEF maintains more than 43,600 miles of 12 transmission lines and distribution and serves а 13 population of more than 3.5 million people. 14

Q. Please provide a general description of the existing load
 and electric characteristics of PEF's electrical
 transmission grid.

19 The PEF transmission system includes approximately 5,000 20 Α. circuit miles of transmission lines. As of December 31, 21 summer capacity resources of 2006, PEF had total 22 approximately 10,752 MW consisting of installed capacity 23 of 8,844 MW (excluding Crystal River 3 joint ownership) 24 9

and 1,908 MW of firm purchased power. 1 2 PEF's summer retail peak demand in 2006 was 9,689 MW and 3 the winter retail peak demand in 2006 was 10,095 MW. Α 4 listing of PEF's historic and forecasted peak demand is 5 provided in Exhibit (BT/TJS-1). 6 7 Tampa Electric Company 8 Please provide a brief description of Tampa Electric. Q. 9 10 Tampa Electric provides electric service to more than 11 Α. 654,000 customers in Hillsborough and parts of Polk, 12 Pasco and Pinellas Counties. In general terms, Tampa 13 Electric's service territory covers 2,000 square miles 14 including metropolitan Tampa, Plant City and Winter Haven 15 The Company maintains approximately in Central Florida. 16 and 13,431 miles of of transmission miles 1200 17 distribution lines serving a population of about 1.4 18 million people. 19 20 Please provide a general description of the existing load Q. 21 Electric's Tampa electric characteristics of and 22 electrical transmission grid. 2.3 24

Α. Tampa Electric's existing load characteristics consists 1 primarily of residential load with limited commercial and 2 industrial load. A listing of Tampa Electric's historic 3 forecasted demand and peak is provided 4 in Exhibit (BT/TJS-2). Tampa Electric's summer coincident 5 peak demand in 2006 was 4,010 MW and the winter peak 6 demand in 2006/2007 was 3,398 MW. 7 8 DESCRIPTION OF THE PROJECT 9 Describe the proposed Project. Q. 10 11 The Lake Agnes-Gifford Project consists of a proposed Α. 12 32.4 mile 230 kV transmission line, co-sponsored by Tampa 13 Electric and PEF with a planned in-service date of June 14 The line will traverse portions of both companies' 2011. 15 The starting and ending points of 16 retail service areas. the line are the existing Lake Agnes and planned Gifford 17 Substations. The Tampa Electric portion of the Project 18 will begin at the existing Lake Agnes Substation in Polk 19 approximately 13.1 miles County and run to an 20 tie point with PEF. The remaining interconnection 21 portion of the line, approximately 19.3 miles, will be 22 built by PEF from the interconnection point to PEF's 23 planned Gifford Substation in Orange County. The 24

companies are seeking a final order from the Commission 1 determining that there is a need for the Project as a whole.

As shown in Exhibit (BT/TJS-3), the Project consists of new 230KV transmission line that will provide а an electrical pathway between the Polk County area to the Greater Metro - Orlando area. This is the Project Service Area.

Please describe in more detail the transmission line for 11 Q. which the companies are seeking a determination of need 12 in this docket. 13

14

2

3

4

5

6

7

8

9

10

transmission line will The proposed connect Α. Tampa 15 Electric's Lake Agnes Substation and PEF's proposed 16 Gifford Substation. The line will be constructed with a 17 single concrete and/or steel pole design and will have a 18 19 design and operating voltage of 230kV. The line will provide an additional 230KV path to relieve congestion on 20 the existing transmission network. The electrical map 21 included in Exhibit (BT/TJS-3) shows the electrical 22 facilities in the Project Service Area that currently 23 exist (shown as solid lines) as well 24 as planned

1

1		facilities in the general area (shown as dashed lines).
2		The locations of the facilities not yet in-service are
3		approximate. In particular, the line depicting the
4		Project is intended to indicate conceptually an
5		electrical connection from the Lake Agnes Substation to
6		the proposed Gifford Substation strictly from an
7		engineering and planning perspective. The final length
8		and routing of the line will be determined in
9		certification proceedings under the Transmission Line
10		Siting Act ("TLSA").
11		
12	Q.	What is the companies' timetable for licensing, design
13		and construction of the Project?
14		

Presently, the companies are evaluating corridors Α. 15 in anticipation of submitting an application to Department 16 of Environmental Protection under the TLSA in 2007. 17 Α 18 final decision by the Siting Board is expected in 2008. Detailed design of the Project will begin as soon as a 19 final corridor is approved. Construction of the Project 20 is expected to begin in 2010 and is expected to be 21 completed by 2011. The final route has not been selected 22 and final costs will be subject to a number of factors 23 including the determination of the final length and route 24

1		of the line as determined under the TLSA. Specifically,
2		the length and route of the line, and other conditions
3		that could be imposed through the TLSA process, will
4		affect land acquisition costs, line construction costs,
5		and other compliance costs. Subject to these types of
6		cost variances that could arise through the TLSA process,
7		the estimated capital cost of the Project is \$67.5
8		million.
9		
10		
11		THE COMPANIES' PLANNING PROCESS
12	Q.	How do the companies determine the need for new
13		transmission lines?
14		
15	Α.	Planning for the companies' transmission systems follows
16		practices and criteria that are consistent with the North
17		American Electric Corporation ("NERC"), the FRCC, and
18		other applicable standards. The NERC Reliability
19		Standards, which have been adopted by the FRCC, specify
20		transmission system operating scenarios that should be
21		evaluated, and the attendant levels of system performance
22		that should be attained. The NERC Reliability Standards
23		are provided in Exhibit(BT/TJS-4).
24		

The FRCC's transmission planning process is explained in 1 Exhibit (BT/TJS-5). The FRCC and respective 2 transmission owners conduct an annual transmission 3 assessment of the effects of forecasted future load 4 growth on the transmission system, the need to serve new 5 larqe customers, future load areas or new 6 interconnections with neighboring utilities, integration 7 facilities and firm contractual of new generation 8 transmission service obligations. The changes in system 9 performance due to these factors simulated and are 10 analyzed for the present and future years to identify 11 existing and future system limitations. Alternative 12 developed, limitations are then solutions to these 13 analyzed, and screened on the basis of their electrical 14 Viable alternatives are compared for their performance. 15 relative merits with respect to economics, reliability, 16 feasibility, compatibility with long ranqe area 17 requirements, and operating flexibility. Transmission 18 facility additions such as a new transmission line are 19 implemented as a result of this process when they provide 20 the best overall solution. 21

Q. What studies did the companies perform to determine the
 need for the Project?

22

	1	
1	Α.	In developing the need for the Lake Agnes-Gifford line,
2		regional assessment studies known as the Florida Central
3		Coordinated Study ("FCCS") and the subsequent FCCS Re-
4		Study were conducted by the FRCC. These studies showed
5		transmission limitations on the existing 230kV
6		transmission network between the Polk County area and the
7		Greater Orlando area due to projected load growth in the
8		2008-2011 timeframe. A copy of the Executive Summary to
9		the FCCS Re-Study Report is attached to our testimony as
10		Exhibit(BT/TJS-6).
11		
12	Q.	Briefly describe the history of the FCCS.
13		
14	А.	The FCCS began in June 2005 to determine the impact of
15		planned additional generation in the 2008 through 2012
16		time frame in the Polk/Hardee County area and the effects
17		of such generation on the transmission networks. The
18		study participants included Florida Municipal Power
19		Agency, Florida Power and Light Company, Kissimmee
20		Utilities Authority, Lakeland Electric, Orlando Utilities
21		Commission, PEF, Reedy Creek Improvement District,
22		Seminole Electric Cooperative, Inc. and Tampa Electric.
23		
24		The original FCCS identified the need for transmission

	1	
1		system improvements along the Interstate 4 (I-4) corridor
2		from existing and planned generation in the Polk/Hardee
3		County area to the Greater Orlando area load center. The
4		FCCS identified the need for major 230 kV transmission
5		additions by 2008 with additional facilities needed by
6		2011. The line loading concerns for the two major lines
7		through this corridor began in 2004 and continue today.
8		In the spring of 2006, Tampa Electric installed a
9		switchable series reactor on the Lake Agnes - Osceola
10		line, which can be used to restrict the flow on this
11		line. While this is an interim remedy, other long-term
12		solutions are necessary.
13		
14	Q.	When was the original FCCS Report issued and what were
15		its essential findings?
16		
17	А.	The original FCCS Report was issued in May 2006. This
18		report recommended the construction of a new 230 kV line
19		from West Lake Wales to Intercession City with bundled
20		954 conductor, and the rebuild of the existing 230 kV
21		line between West Lake Wales and Intercession City with
22		bundled 954 conductor. The study recommended that both
23		of these projects should be completed by the summer of
24		2008, or sooner if possible. PEF has begun work on these

	1	
1		projects and has determined that the new lines should
2		loop into the existing Dundee substation. The FCCS
3		Report also recommended the construction of certain other
4		transmission projects by the summer of 2011.
5		
6	Q.	What action was taken by the FRCC in response to the
7		FCCS?
8		
9	А.	After review by the FRCC Transmission Working Group
10		("TWG"), the FCCS Report was accepted by the FRCC
11		Planning Committee as reflecting the necessary
12		improvements needed for the FRCC to meet the NERC
13		reliability standards. However, there were many changes
14		between the 2005 FRCC databank cases used in the
15		development of the FCCS and new 2006 FRCC databank cases
16		that had become available at or about the time of the
17		issuance of the FCCS. For example, the load in the FRCC
18		region increased by about three percent and several
19		utilities increased (and/or changed the location of) the
20		generation in their ten-year site plans. As a result of
21		these various changes, it was determined that the
22		original study should be reassessed with the new data to
23		verify the results.

1		At the April 2006 meeting of the FRCC Board of Directors,
2		the Board directed the Planning Committee, through the
3		TWG, to conduct a Re-Study of the FCCS. The purpose of
4		this Re-Study was to utilize the most current updated
5		database, which consisted of the 2006 ten-year site
6		plans. Each member company affected by the new study
7		furnished the appropriate transmission planning manpower
8		resources to assist in the Re-Study.
9		
10	Q.	Please describe the FCCS Re-Study.
11		
12	А.	The FCCS Re-Study began in mid-2006 with the 2006
13		loadflow databank, which contained all planned generation
14		additions and contracts from the individual utilities'
15		latest ten-year site plans. In addition, all of the
16		other assumptions and commitments from the original FCCS
17		were reviewed and updated. Any long-term transmission
18		service for generation in the Polk/Hardee County area was
19		assumed to continue (rolled over) to ensure that the
20		transmission system in this area was capable of meeting
21		the transmission owners' long-term transmission service
22		obligations. Each utility located unsited generation
23		based on the most likely location, or the worst case
24		location for the studied area at the discretion of the

utility.

1

2

12

15

The reference cases based on the 2006 loadflow databank 3 existing long-term firm modified continue were to 4 transmission service (rolled over) after the specified 5 end-date, if it were likely that these transactions would 6 continue. This assumption ensures sufficient transmission 7 capability such that the transmission providers would be 8 able to meet their obligations to their respective 9 These contract changes and other modeling customers. 10 changes were reflected in our FCCS Re-Study cases. 11

13 Q. What projects were recommended as a result of the FCCS 14 and FCCS Re-Study?

ensure that the transmission system within FRCC Α. To 16 continues to meet the NERC reliability standards, the 17 FCCS and FCCS Re-Study recommended a series of projects 18 in Central Florida which are listed in Exhibit 19 Among these projects is the Lake Agnes-(BST/TJS-7). 20 Gifford Project which is the subject of this proceeding. 21 In total, the projects encompass a total of 154.7 miles 22 of electrical transmission facilities across the Central 23 Florida region. 24

	1	
1	Q.	Have there been any changes in conditions since the
2		August 2006 FCCS Re-Study of the Central Florida Corridor
3		which affect the need for the Project?
4		
5	A.	No, there have been no changes which affect the need for
6		the project. The study demonstrated the need for
7		multiple upgrades within the region and the study is
8		still valid.
9		
10	Q.	Were employees of PEF and Tampa Electric working under
11		your direction and supervision involved with the FRCC's
12		TWG in the development of the FCCS and FCCS Re-Study?
13		
14	А.	Yes. PEF and Tampa Electric were substantially involved
15		in every step of this process, including participation in
16		the TWG of the FRCC.
17		
18	Q.	Are PEF and Tampa Electric familiar with the assumptions
19		used, data analyzed and conclusions reached by the FRCC
20		as reflected in the FCCS and FCCS Re-Study?
21		
22	А.	Yes. Tampa Electric and PEF have studied and are
23		familiar with the data analyzed and used by the FRCC in
24		developing the recommendations reflected in the FCCS and
		21

T

	1	
1		the FCCS Re-Study. Both companies actively participated
2		in the FRCC TWG study team that performed the FCCS Re-
3		Study Report. We are familiar with the assumptions used
4		in the development of the methodologies employed by the
5		FRCC and believe them to be reasonable and consistent
6		with applicable standards used for transmission planning
7		in the electric industry. Finally, we are intimately
8		familiar with the conclusions and recommendations.
9		
10	Q.	Has the Commission previously commented on the
11		coordinated planning process of the FRCC and on the FCCS
12		Study in particular?
13		
14	А.	Yes. In the Commission's December 2006 Review of 2006
15		Ten-Year Site Plans for Florida's Electric Utilities, the
16		Commission observed:
17		
18		"While generating units supply the energy needs of
19		all Floridians, the transmission system is the backbone
20		that delivers the energy to end users. Utilities must
21		coordinate their individual generation and transmission
22		plans to ensure that needed capacity can be moved from
23		power plant sites to load centers through the state."
24		In commenting on and endorsing the FCCS Study (including

I

I

the Re-Study), the Commission further stated: 1 2 "At the urging of the Commission, the FRCC recently 3 completed a major planning assessment known 4 as the Florida Central Coordinated Study. The assessment 5 identified an immediate need for additional transmission б transfer capability along the Interstate 4 corridor, to 7 move electricity generated in the Polk county region to 8 load centers in the Greater Orlando area." 9 10 The Commission noted, with approval, that the FCCS Study 11 identified approximately \$277 million in transmission 12 projects that would address future needs in the region, 13 Aqnes-Gifford including the Lake Project. 14 The Commission's Ten-Year Site Plan Report "urge[d] 15 Peninsular Florida's utilities to continue working 16 together through the FRCC to identify and address all 17 issues caused by transmission reliability system 18 limitations" and "commend[ed] the FRCC for its efforts in 19 Peninsular coordinating the transmission plans of 20 Florida's utilities". A copy of the relevant portions of 21 the Commission's December 2006 Review of the 2006 Ten-22 Year Site Plan is included as Exhibit (BT/TJS-8). 23

23

1		NEED FOR THE PROJECT
2	Q.	Explain the need for the Project.
3		
4	Α.	The need for the Project is based on the following
5		considerations: 1) The need to provide additional
6		transmission capability to the existing 230kV
7		transmission network between Lake Agnes and Gifford
8		substations in a reliable manner consistent with NERC,
9		FRCC, and other applicable standards; and 2) The need to
10		serve the increasing load and customer base in the
11		region.
12		
13	Q.	Please explain the benefits of this Project.
14		
15	А.	The Project will provide the companies with the best
16		alternative and overall choice of facilities necessary to
17		maintain reliability and reduce congestion in the
18		existing and future areas of customer load in the Project
19		Service Area. The FRCC Load and Resource Plan attached
20		as Exhibit (BT/TJS-9) shows the projected load for the
21		FRCC Region. Specifically, the Project will allow the
22		companies to: 1) Maintain area reliability by providing
23		an additional path to the existing 230kV transmission
24		network in Polk and Orange Counties, and 2) Meet the

Project Service Area's long term growth requirements for 1 2 at least the study period of 2011, based on the regional load forecast. 3 4 5 Q. Please describe the contingencies that require the addition of the Project. б 7 The FRCC analyzed load flows for the 2008-2011 summer and Α. 8 winter peak loads without any new transmission facilities 9 in service. As referenced in Exhibit (BT/TJS-10), 10 these analyses indicate that for 35 different single 11 contingency events a variety of overloads ranging from 12 100 percent to 120 percent of thermal MVA facility 13 The NERC Planning Standards require that the ratings. 14 facility ratings not exceed 100 percent of the applicable 15 thermal MVA facility rating. Without the Project, 16 mitigation of these overloads would require various 17 operational workarounds such as redispatch and the 18 interruption of service to customers, depending on the 19 specific outage, in order to continue to operate the 20 facilities in accordance with NERC Reliability Standards. 21 22 How would construction of the Project provide for further Q. 23 load growth as well as resolve these contingencies? 24

The Project will provide a 230kV transmission path to 1 Α. relieve the existing 230kV transmission network. The 2 construction of the Project, based on a projected in-3 service date of June 2011, would mitigate the thermal 4 in overloads caused by single contingency events 5 accordance with NERC Reliability Standards and would б provide service to existing and new customers at a 7 comparable level of reliability to that delivered to 8 other customers of the companies as the load in the 9 Project Service Area continues to grow. 10 11 Why have the companies proposed that the Project be Q. 12 constructed on a separate right-of-way ("ROW")? 13 14 As part of the FRCC planning process, the planning team Α. 15 looked at potential corridors and routes to determine if 16 a conceptual solution could be feasible. The study team 17 envisioned several possible routes and determined one 18 likely corridor would require TLSA. Placing the new 19 circuit in a separate ROW would provide the transmission 20 system serving the Project Service Area with another 21 diverse path for the transmission of power. However, it 22 is not intended to preclude the detailed engineering and 23 route/site selection process necessary to evaluate other 24

feasible corridors. 1 2 Q. Are there other sensitivity analyses associated with the 3 Project? 4 5 Recommended solutions were tested to ensure that Α. Yes. 6 the system not only meets the NERC reliability standards, 7 but is also robust as it relates to different possible 8 generation dispatch scenarios such as 9 generator unavailable and non-firm power transactions from merchant 10 plants. To test the robustness of the grid with the 11 recommended FCCS projects, a series of sensitivities were 12 performed based on: unit unavailability, 2013 and 2014 13 summer cases, and dispatching uncommitted generation. 14 15 Unit Availability Sensitivities 16 Q. Describe the unit unavailability sensitivities that were 17 conducted. 18 19 Three unit unavailability cases were created and Α. 20 the results were analyzed to determine if any different 21 possible dispatch scenarios created any unforeseen 22 situations. The three unit unavailability scenarios 23 24 were:

1		1. Sanford 4 (CT A, CT B, CT C, CT D, ST) - 952 MW in
2		2011 and 2012
3		2. Stanton A (CT 1, CT 2, ST) - 619 MW in 2011 and 2012
4		3. Cane Island 3 (CT, ST) - 240 MW in 2011 and 2012
5		
6		These cases showed that the flows on the overloaded lines
7		in the base cases could be increased between 10 to 15
8		percent under the most severe generation dispatch
9		scenarios.
10		
11		2013-14 Summer Cases
12	Q.	Please describe the sensitivity cases using the 2013 and
13		2014 base cases.
14		
15	А.	To test the longevity of the proposed projects,
16		additional sensitivity cases were created using the 2013
17		and 2014 base case with all proposed projects and
18		contingency situations. During this sensitivity analysis
19		the proposed projects had a long-term positive impact to
20		the Greater Orlando area. However, the analysis of the
21		2013 and 2014 time frame supported the need to perform an
22		additional long-term study.
23		
24		Dispatching Uncommitted Generation

	1	
1	Q.	Please discuss the sensitivity which varied the dispatch
2		of uncommitted generation.
3		
4	А.	The ability to deliver uncommitted merchant generation
5		was evaluated by varying the generation three different
6		ways:
7		1. Increasing the total FRCC load as generation is
8		increased.
9		2. Increasing the transmission provider's load as
10		generation connected to that transmission provider is
11		increased.
12		3. Decreasing the transmission provider's generation (per
13		economic dispatch) as generation connected to that
14		transmission provider is increased.
15		
16		In addition to assessing the system using the three
17		methods above, the uncommitted merchant generation was
18		further divided. The assessment was done for the entire
19		FRCC uncommitted generation and for only the generation
20		that directly impacts this corridor.
21		
22		
23		DISCUSSION OF ALTERNATIVES
24	Q.	Did the companies consider alternatives to the Project?
		29

Α. Yes. 1 2 What factors were employed to evaluate the alternatives? Q. 3 4 The factors used to evaluate the performance of Α. the 5 alternatives included reliability, cost, construction 6 feasibility, operational flexibility, ROW diversity, and 7 future transmission system expandability. 8 9 Q. Please describe the transmission alternatives that were 10 considered. 11 12 The first area of transmission alternatives considered Α. 13 viable options focused on whether there were for 14 facilitating more flows toward load centers west of the 15 Polk/Hardee County area. Several options were discussed 16 and investigated as to their load flow impacts: 17 18 230/69 transformer addition: kV Gapway Tampa 19 Electric has planned to construct this project in 20 2012 and has determined that it would be possible to 21 accelerate this project by up to three years. The 22 goal under this alternative would be for the Gapway 23 Substation to divert some of the flow from the 24

Recker - Lake Agnes 230 kV line to serve load in the north Winter Haven area.

1

2

3

4

5

б

7

8

9

10

11

12

13

- Interstate Griffin new 230 kV line: This would be a new five mile line that could provide another path from the McIntosh area toward northwest Polk County.
- Crews Lake Willow Oak new 230 kV line: This would be a new nine mile line that could provide another path from the McIntosh/Recker area toward Plant City.
- Griffin Chapman new 230 kV line: This would be a new 24 mile line that could provide another path from northwest Polk County toward north Tampa.

additional of transmission alternatives An area 14 considered focused on whether there were viable options 15 for facilitating more flows toward the load centers from 16 Osceola/Polk area. This evaluation involved the the 17 utilization of the Poinsett - Holopaw 230 kV line as a 18 The option of building a new new source into the area. 19 230 kV line, routing from the Holopaw area to the Taft 20 area was studied for the 2011 to 2014 time frame to 21 determine if building a new flow path for the Greater 22 Orlando area would obviate the need to rebuild the I-4 23 The new line option was explored by modeling a corridor. 24

line from St. Cloud East to Magnolia Ranch along with the 1 Lake Agnes-Gifford line. The new line would allow flow 2 from the south Polk County area using the existing West ٦ Lake Wales - Holopaw - Poinsett 230kV line and reducing 4 the loading on the I-4 corridor. Based on these models 5 it was determined that the new injection point into the б Greater Orlando area would be beneficial; however, the I-7 4 corridor would still have loadings above 95 percent in 8 Based on these results, this project was not 2012. 9 selected but will be evaluated as a part of the longer 10 term study. 11 12 Please describe why distribution alternatives were not Q. 13

considered viable.

14

15

Α. Distribution alternatives such as expanding existing 16 substations were not considered viable because expansion 17 of existing distribution substations will not address the 18 primary need for this Project (i.e. reinforcement of 19 existing 230kV transmission network). 20 Accordingly, а distribution alternative was not considered further. 21 22

Q. What are your conclusions regarding the evaluation of alternatives to the proposed Project?

After reviewing these alternatives, it was determined Α. 1 that each of these projects would only marginally (less 2 than 2 percent) improve the situation on the affected 3 facilities. Therefore, these projects were not included 4 5 in the recommended list of projects in the FCCS Re-Study; however, individual transmission owners will consider 6 these projects in the future planning studies. When 7 compared with the alternatives, the Lake Agnes to Gifford 8 greater reliability line provides and operational 9 feasible flexibility. Further, this line is 10 to construct, can provide ROW diversity, and future 11 things considered, generation flexibility. All the 12 proposed Lake Agnes to Gifford line provides the most 13 cost effective solution to addressing the need for the 14 Project in a manner consistent with NERC and FRCC 15 Reliability Standards. 16

ADVERSE CONSEQUENCES OF DELAY OR DENIAL OF THE PROJECT 9 Q. Would there be adverse consequences to the companies' 20 customers in the Project Service Area if the Project is 21 not timely approved?

17

22

A. Yes. If the Project is not timely approved and no other
 alternative is built, inadequate transmission capability

1		would result, therefore jeopardizing reliable service to
2		existing and future customers in the Project Service
3		Area. The inability to serve additional loads would
4		force the continuation and escalation of operational
5		workarounds to prevent system degradation.
6		
7	Q.	Should the Commission approve the need for the Project?
8	А.	Yes. The Commission should determine that there is a
9		need for a 230 kV transmission line connecting the Lake
10		Agnes and proposed Gifford Substations.
11		
12	Q.	Does this conclude your testimony?
13		
14	Α.	Yes, it does.
15		
16		
17		
18		
19		
20		
21		
22		
23		

	42
1	COMMISSIONER CARTER: Those opposed, like sign?
2	Are there any concluding matters?
3	MR. YOUNG: Commissioner, none at this time.
4	Since the Commission has made a bench decision,
5	post-hearing filings are not necessary. The final order in
6	this case will be issued September 26th, 2007.
7	COMMISSIONER CARTER: Commissioners, anything for the
8	good of the order?
9	Hearing none, we are adjourned.
10	(The hearing concluded at 9:38 a.m.)
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	FLORIDA PUBLIC SERVICE COMMISSION
	I I I I I I I I I I I I I I I I I I I

	43
1	
2	STATE OF FLORIDA)
3	: CERTIFICATE OF REPORTER
4	COUNTY OF LEON)
5	I, JANE FAUROT, RPR, Chief, Hearing Reporter Services
6 7	Section, FPSC Division of Commission Clerk, do hereby certify that the foregoing proceeding was heard at the time and place herein stated.
8	IT IS FURTHER CERTIFIED that I stenographically
9	reported the said proceedings; that the same has been transcribed under my direct supervision; and that this
10	transcript constitutes a true transcription of my notes of said proceedings.
11	I FURTHER CERTIFY that I am not a relative, employee, attorney or counsel of any of the parties, nor am I a relative
12	or employee of any of the parties' attorney or counsel connected with the action, nor am I financially interested in
13	the action.
14	DATED THIS 13th day of September, 2007.
15	(MALO TUNA
16	JANE FAUROT, RPR
17	Official FPSC Hearings Reporter (850) 413-6732
18 19	
20	
21	
22	
23	
24	
25	
	FLORIDA PUBLIC SERVICE COMMISSION

	·			
				4
1		EXHIBITS		
2	NUMBER:		ID.	ADMTD.
3	l	Comprehensive Exhibit List	8	8
4	2-12	(Description of exhibits	8	8
5		in Comprehensive Exhibit List)		
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
		FLORIDA PUBLIC SERVICE COMMIS	SION	


C		Comprehensive into Hearing R		тіза қ
Hearing I.D. #	Witness	I.D. # As Filed	Exhibit Description	Entered
Staff				
1		Exhibit List- 1	Comprehensive Exhibit List	
2		Staff's Composite Exhibits - 2 stipulated	Progress Energy Florida and Tampa Electric Company's Notice of Filing Notices of Final Hearing Published in Newspapers in Areas Where Proposed Line Could Be Placed And Affidavits of Publication. PEF and TECO's response to Staff's First Set of	
Testimony E	xhibit List		Interrogatories (Nos. 1-15).	
PEF / TECO				
3	Tillis / Szelistowski	BT / TJS-1	PEF's Historic and Forecasted Peak Demand	
4	Tillis / Szelistowski	BT / TJS-2	Tampa Electric's Historic and Forecasted Peak Demand	
5	Tillis / Szelistowski	BT / TJS-3	Project Area Transmission System Map	
6	Tillis / Szelistowski	BT / TJS-4	NERC Reliability Standards	
7	Tillis / Szelistowski	BT / TJS-5	FRCC's Transmission Planning Process	
8	Tillis / Szelistowski	BT / TJS-6	FRCC Florida Central Coordinated Re-Study Report: Executive Summary	
9	Tillis / Szelistowski	BT / TJS-7	FCCS Study/FCCS Re- Study Recommended Series of Projects	

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 070393-EJEXHIBIT / COMPANY FPSC Staft WITNESS EXhibit Xist -1 DATE 09-12-67

CORRECTED Comprehensive Exhibit List for Entry into Hearing Record					
Hearing I.D. #	Witness	I.D. # As Filed	Exhibit Description	Entered	
11	Tillis / Szelistowski	BT / TJS-8	Excerpts from Commission's December 2006 Review of 2006 Review of 2006 Ten Year Site Plans for Electric Utilities		
12	Tillis / Szelistowski	BT / TJS-9	FRCC Load and Resource Plan		

HEARING EXHIBITS				
Exhibit #	Witness	Counsel	Description	Moved In/Due Date of Late Filed
13				
14				
15				
16				

<u>DOCKET NO:</u> 070393-EI

WITNESS: VARIOUS

PARTY: PROGRESS ENERGY FLORIDA, INC. and TAMPA ELECTRIC COMPANY

DESCRIPTION: STAFF'S COMPOSITE EXHIBITS – 2

DOCUMENTS:

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY'S NOTICE OF FILING NOTICES OF FINAL HEARING PUBLISHED IN NEWSPAPERS IN AREAS WHERE PROPOSED LINE COULD BE PLACED AND AFFIDAVITS OF PUBLICATION. [Bates numbers 1-9]

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY'S RESPONSES TO STAFF'S FIRST SET OF INTERROGATORIES (NOS. 1-15). [Bates numbers 10-33]

PROFFERED BY: STAFF

FLORIDA PUBLIC SERVICE COMMISSION			
DOCKET NO	. <u>070393</u> EXHIBIT		
COMPANY	FL PSC StatF Statute Composite Skhibits 2		
WITNESS	Start's Composite 74/16/75-2 Stipulated		
DATE	09-12-07		

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In Re: Petition for Determination of Need for Lake Agnes-Gifford 230 kV transmission line in Polk and Orange Counties, by Progress Energy Florida and Tampa Electric Company.

Docket No. 070393-EI

Filed: August 9, 2007

AUG 1 0 2007

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY'S NOTICE OF FILING NOTICES OF FINAL HEARING PUBLISHED IN NEWSPAPERS IN AREAS WHERE PROPOSED LINE COULD BE PLACED AND AFFIDAVITS OF PUBLICATION

Progress Energy Florida and Tampa Electric Company (the "Companies"), by and through

their undersigned counsel and pursuant to Rule 25-22.075(4), Florida Administrative Code, hereby

submit the Notices of Final Hearing published in the following newspapers of general circulation

where the Companies' proposed Lake Agnes-Gifford 230 kV transmission line could be placed:

- 1. The Orlando Sentinel published July 28, 2007;
- 2. The News Chief published July 29, 2007; and
- 3. The Lakeland Ledger published July 29, 2007.

The above-referenced Notices of Final Hearing and the Affidavits of Publication of such

Notices are filed herewith as Composite Exhibit "A" to this Notice of Filing.

Respectfully submitted this 9th day of August, 2007.

Lee L. Willis, Esq. James D. Beasley, Esq. Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302 Telephone: (850) 425-5487 Kenneth A. Hoffman, Esq. Rutledge, Ecenia, Purnell & Hoffman, P.A. P. O. Box 551 Tallahassee, Florida 32302 (850) 681-6788 (Telephone) (850) 681-6515 (Telecopier)

DOCUMENT NUMBER-DAFE

07015 AUG-95

FPSC-COMMISSION CLERK

Hearing Exhibit 000001

R. Alexander Glenn, Esq. Deputy General Counsel - Florida P. O. Box 14042 St. Petersburg, FL 33733-4042 (727) 820-5184 (Telephone) (727) 820-5249 (Telecopier)

Βv

Kenneth A. Hartman, Esq.

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a copy of the foregoing was furnished by U. S. Mail this 9th day of August, 2007 to the following:

Martha Carter Brown, Esq. Keino Young, Esq. Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Lee L. Willis James D. Beasley Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302

Kenneth A. Hoffman, Esq.

Progressenergy\lake Agnes\noticeoffilingnewspapernotices.wpd

COMPOSITE EXHIBIT A

•

.

633 North Orange Avenue • Orlando, Florida 32801

Shirley Gibbons, General Advertising Sales Representative Ph. (407) 420-5332 • Fax (407) 418-4120 <u>Sgibbons@orlandosentinel.com</u>

July 30, 2007

Rutledge, Ecenia, Purnell & Hoffman PO Box 551 215 South Monroe Street Tallahassee, FL 32301 Attn: Kenneth A. Hoffman

Dear Mr. Hoffman:

This letter will serve as confirmation that the following advertisement published in the Orlando Sentinel:

<u>Date</u> July 28, 2007

<u>Size</u> 3 col x 10.5 <u>Section</u> Local & State

<u>Caption</u> Before the FL PSC, Notice of Need Determination Hearing Docket No. 070393-EI

Please accept this letter as proof of publication only. A tearsheet is attached.

Sincerely,

Willy yulons

Shirley Gibbons Sales Representative General Advertising

The foregoing instrument was acknowledged before me this 30th day of July 2007, by <u>Shirley Gibbons</u>, who is personally known to me.

STATE OF FLORIDA COUNTY OF ORANGE

Notary

NOTICE OF NEED DETERMINATION HEARING **DOCKET NO. 070393-EI** PETITION OF PROGRESS ENERGY FLORIDA, INC. AND TAMPA ELECTRIC COMPANY FOR DETERMINATION OF **NEED FOR LAKE AGNES-GIFFORD** 230 KV TRANSMISSION LINE

Notice is hereby given that the Florida Public Service Commission will hold a public hearing in the above docket at the following time and place:

September 12, 2007, Beginning at 9:30 a.m. Florida Public Service Commission Easley Conference Center 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

PURPOSE AND PROCEDURE

The purpose of this hearing will be for a determination of need pursuant to Section 403,537, Florida The purpose of this hearing will be for a determination of need pursuant to Section 403.537, Florida Statutes (2004), for the construction of a 230 kV electrical transmission line. Segments of this 230 kV electrical transmission line may be located in Polk and Orange Counties. The proposed electrical transmission line will start at Tampa Electric Company's existing Lake Agnes Substation in Polk County and will terminate at Progress Energy Florida's planned Offord Substation in Orange County. The proceeding will be governed by the provisions of Chapter 120, Florida Statutes, Section 403.537, Florida Statutes, and Rules 25-22.075 and 25-22.076, Florida Administrative Code. Anyone wishing to become a party to the need determination proceeding should file an appropriate petition pursuant to Rule 25-22.039, Florida Administrative Code, with the Director, Commissioner Clerk and Administrative Services Division, at the following address:

Director, Commissioner Clerk and Administrative Services Division

- Florida Public Service Commission
- 2540 Shumard Oak Boulevard
- Tallahassee, Florida 32399-0850
- Re: Docket No. 070393-EI

PREHEARING CONFERENCE

A prehearing conference will be conducted at the following time and place:

August 27, 2007, Beginning at 1:30 p.m.

Florida Public Service Commission

Easley Conference Center

2540 Shumard Oak Boulevard

Tallahassee, Florida 32399-0850

The purpose of this prehearing conference will be to consider: (1) the simplification of the des (2) the identification of the positions of the parties on the issues; (3) the identification of witnesses and exhibits; (4) the establishment of an order of witnesses; (5) the possibility obtaining stipulations concerning any matters at issue; and (6) the resolution of any remain procedural matters that may aid in the disposition of the action.

APPLICATION

A copy of the Petition for Determination of Need and supporting exhibits will be available public inspection beginning on or about August 1, 2007, at the Florida Public Service Common Web site: www.floridapsc.com by selecting Dockets and then search by Docket No. 07055 These documents may also be reviewed during normal business hours. following location:

Florida Public Service Commission

Easley Conference Center

2540 Shumard Oak Boulevard

Tallahassee, Florida 32399-0850

JURISDICTION

Jurisdiction over Progress Energy Florida and Tampa Electric Company and this action is vested in the Commission pursuant to Chapter 386, Florida Statutes and Section 403.537, Florida Statutes.

By Direction of the Florida Public Service Commission

Ann Cook. Director

9

Б ٠

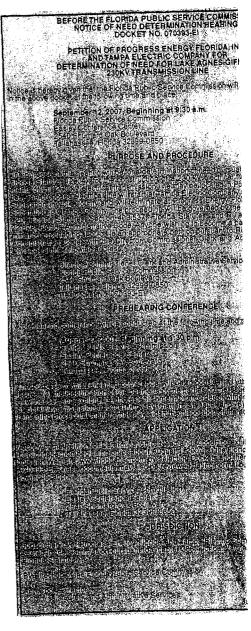
É

t

Commission Clerk and Administrative Services

AFFIDAVIT OF PUBLICATION News Chief Published Daily

STATE OF FLORIDA COUNTY OF POLK


Before the undersigned personally appeared Colleen M. McGee who on oath says that she is the Classified Legal Assistant of the News Chief, a newspaper published at Winter Haven, in Polk County, Florida; that the attached copy of advertisement, being a Notice of Hearing for Need Determination, Docket No. 070393-EI the matter of Petition of Progress Energy Florida, Inc. & Tampa Electric Company in said newspaper in the issues of July 29th, 2007.

Affiant further says that the News Chief is a newspaper published at Winter Haven, in said Polk County, Florida, and that said newspaper has heretofore been continuously published in said Polk County, Florida, daily, and has been entered as second class matter at the post office in Winter Haven, in said Polk County, Florida, for a period of one year next preceding the first publication of the attached copy of advertisement; and affiant further says that he has neither paid nor promised any person, firm or corporation any discount, rebate, commission, or refund for the purpose of securing this advertisement for publication in said newspaper.

Signed Caller M. Mc Ch

Sworn to and subscribed before me this **30**th day of **July, A.D. 2007** by **Colleen M. McGee** who is personally known to me or who has produced (______) as identification.

NDA BD Notary Public My Commission Expires:

BEFORE THE FLORIDA PUBLIC SERVIC	E COMMISSION
NOTICE OF NEED DETERMINATION DOCKET NO. 070393-EI	I REARING
PETITION OF PROGRESS ENERGY FI AND TAMPA ELECTRIC COMPAN DETERMINATION OF NEED FOR LAKE A 230KV TRANSMISSION LIN	Lorida, Inc. YY For GNES-GIFFORD IE
Notice is hereby given that the Florida Public Service Commin the above docket at the following time and place:	mission will hold a public hearing
September 12, 2007, Beginning at 9:30 a.m Florida Public Service Commission Easiey Conference Cénter 2540 Shumard Oak Boulevard Taliahassee, Florida 32399-0850	· · · · · · · · · · · · · · · · · · ·
PURPOSE AND PROCEDUI	
The purpose of this hearing will be for a determination of ne Flortna Statutes (2004), for the construction of a 230 kV i ments of the 230 kV electrical iteramission line may be to the first first proposed electrical iteramission line may be to substation in Orange Caurity. The proceeding will be goven 720. Flortna Statutes, Section 403.337, Florida Statutes, 22.076, Florida Aufministrative Code. Anyone wishing to be mination proceeding should life an eppropriate petition pur Aufministrative Code, with the Director, Commissioner Cit Division, alane following address:	ed pursuant to Section 403.567, electrical fransmission line. Sec cated in Politik and Orange Coun- Company's existing Lake Agnes Energy Florida's planned Grifold ned by the provisions of Chapter and by the provisions of Chapter and Bules 25:22.075 and 255 come a party to the need deter- suant to Fluid 25:22.039, Florida erk and Administrative Services
Director, Commissioner Clerk and Administra Dirtica Public Service Commission	tive Service's Division
2 Bigerol, Commissioner Clerk and Administra Dictore Ruble Service Commission 2540 Shimard Oak Boulevad 2640 Shimard Oak Boulevad 261 Shasee, Findra 22399-0650 Rei Dexet No.070393-E1	
	and the second
A preheating conference will be conducted at the following	time and place:
August 27, 2007, Beginning at 1:30 p.m. Concerning Service Commission	
August 27, 2007, Beginning et 1:30 p.m. Iolida Fublic Serols: Commission Basey Commission Denter Sale Summar Dax Roblevard Falehasses: Fichda 22, 29, 0850	
The purpose of this reheating sonarchick will be to consi using (2) independent of the particle of the parties of of with the sing shows the parties of the parties of of with the sing shows the single shows the single single of oblighing slipulators, concerning any matters at issue remaining processing matters that may ald in the disposibility	Ider: (1) the simplification of the n the issues; (3) the identification r of winesses; (5) the possibility s; and (6) the resolution of any h of the action.
	ul
A servicit the Felician for Determination of Need and support bigBlid (separation beginning on or adout August 1, 2007, at mission Wab site: www.infondapsc.com by selecting Docket 070032 EL These documents may also be reviewed during towing location.	rung exhibits will be available to the Florida Public Savice Come s and then search by Docket No normal busifiess hours at the fol
Florida Public Service Commission Easily: Configration Center 2540 Shumard Cak Boulevard Taliahasses, Florida 32399-0850	
JURISDICTION	
Jurisdiction over Progress Energy Florida and Tampa Electrosted in the Commission pursuant to Chapter 386, Florida Statutes.	tric Company and this action is a Statutes and Section 403.537,
By Direction of the Florida Public Service Commission	* . *
Ann Cook, Director Commission Clerk and Administrative Services	
	July 29, 2007; Ad #17225
<i></i>	
	*
	ĺ
	9 9

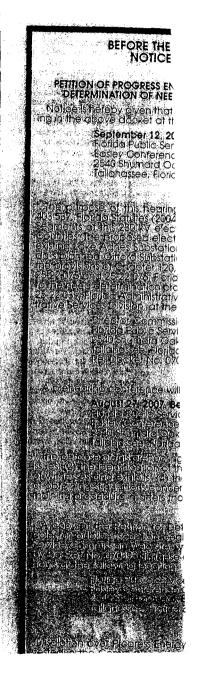
AFFIDAVIT OF PUBLICATION THE LEDGER Lakeland, Polk County, Florida

Case No's:

STATE OF FLORIDA) COUNTY OF POLK)

Before the undersigned authority personally appeared Paula Freeman, who on oath says that she is Inside Classified Sales Manager The Ledger, a daily newspaper published at Lakeland in Polk County, Florida; that the attached copy of advertisement, being A

Notice of Determination Hearing


in the matter of Docket No. 070393-El

Concerning Lake Agnes-Gifford 230 KV Transmission Line

was published in said newspaper in the issues of 7-29;2007

Affiant further says that said The Ledger is a newspaper published at Lakeland, in said Polk County, Florida, and that the said newspaper has heretofore been continuously published in said Polk County, Florida, daily, and has been entered as second class matter at the post office in Lakeland, in said Polk County, Florida, for a period of one year next preceding the first publication of the attached copy of advertisement; and affiant further says that he has neither paid nor promised any person, firm or corporation any discount, rebate, commission or refund for the purpose of securing this advertisement for publication in the said newspaper.

illing Signed PaulaFreeman Inside Classified Sales Manager Who is personally known to me. Sworn to and subscribed before me this ... day of ..! A.D a Notary Public n and a star and an and a star and

appeared Paula Classified Sales 1 at Lakeland in rtisement, being

<u>Line</u>

Z

/spaper published ad that the said .shed in said Polk .cond class matter nty, Florida, for a ublication of the r says that he has . corporation any urpose of securing paper.

J

Sales Manager known to me.

101
SE (F
330516
2008
erwhites 🕌
Marine Control

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION NOTICE OF NEED DETERMINATION HEARING DOCKET NO. 070393-EI

PETITION OF PROGRESS ENERGY FLORIDA, INC. AND TAMPA ELECTRIC COMPANY FOR DETERMINATION OF NEED FOR LAKE AGNES-GIFFORD 230 KV TRANSMISSION LINE

Notice is hereby given that the Florida Public Service Commission will hold a public hearing in the above docket at the following time and place:

September 12, 2007, Beginning at 9:30 a.m. Florida Public Service Commission Easley Conference Center 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

PURPOSE AND PROCEDURE

The purpose of this hearing will be for a determination of need pursuant to Section 403.537, Florida Statutes (2004), for the construction of a 230 kV electrical transmission line. Segments of this 230 kV electrical transmission line may be located in Polk and Orange Counties. The proposed electrical transmission line will start at Tampa Electric Company's existing Lake Agnes Substation in Polk County and will terminate at Progress Energy Florida's planned Gifford Substation in Orange County. The proceeding will be governed by the provisions of Chapter 120, Florida Statutes, Section 403.537, Florida Statutes, and Rules 25-22.075 and 25-22.076, Florida Administrative Code. Anyone wishing to become a party to the need determination proceeding should file an appropriate petition pursuant to Rule 25-22.039, Florida Administrative Code, with the Director, Commissioner Clerk and Administrative Services Division, at the following address:

Director, Commissioner Clerk and Administrative Services Division Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850 Re: Docket No. 070393-El

PREHEARING CONFERENCE

A prehearing conference will be conducted at the following time and place:

August 27, 2007, Beginning at 1:30 p.m. Florida Public Service Commission Easley Conference Center 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

The purpose of this prehearing conference will be to consider: (1) the simplification of the issues; (2) the identification of the positions of the parties on the issues; (3) the identification of witnesses and exhibits; (4) the establishment of an order of witnesses; (5) the possibility of obtaining stipulations concerning any matters at issue; and (6) the resolution of any remaining procedural matters that may aid in the disposition of the action.

APPLICATION

A copy of the Petition for Determination of Need and supporting exhibits will be available for public inspection beginning on or about August 1, 2007, at the Florida Public. Service Commission Web site: www.floridapsc.com by selecting Dockets and then search by Docket No. 070393-EI. These documents may also be reviewed during normal businesshours at the following location:

> Florida Public Service Commission Easley Conference Center 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

JURISDICTION

Jurisdiction over Progress Energy Florida and Tampa Electric Company and this action is vested in the Commission pursuant to Chapter 386, Florida Statutes and Section 403,537, Florida Statutes.

By Direction of the Florida Public Service Commission

Ann Cook, Director Commission Clerk and Administrative Services

X860 7-29; 2007

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

)

)

)

In Re: Petition for Determination of Need for Lake Agnes-Gifford 230 kV transmission line in Polk and Orange Counties, by Progress Energy Florida and Tampa Electric Company.

Docket No. 070393-EI

Filed: August 23, 2007

PROGRESS ENERGY FLORIDA, INC. AND TAMPA ELECTRIC COMPANY'S NOTICE OF SERVICE OF <u>RESPONSES TO STAFF'S FIRST SET OF INTERROGATORIES</u>

Progress Energy Florida, Inc. ("PEF") and Tampa Electric Company ("Tampa Electric"), by and through their undersigned counsel, hereby provide Notice of service of their Responses to Staff's First Set of Interrogatories (Nos. 1-15), by hand delivery on Martha Carter Brown, Esq. and Keino Young, Esq., Florida Public Service Commission, Office of General Counsel, 2540 Shumard Oak Boulevard, Tallahassee, Florida 32399-0850, on August 23, 2007. A copy of the Responses have been provided to other parties of record as indicated on the attached Certificate of Service.

Respectfully submitted this 23rd day of August, 2007.

Lee L. Willis, Esq. James D. Beasley, Esq. Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302 Telephone: (850) 425-5487 Kenneth A. Hoffman, Esq. Rutledge, Ecenia, Purnell & Hoffman, P.A. P. O. Box 551 Tallahassee, Florida 32302 (850) 681-6788 (Telephone) (850) 681-6515 (Telecopier)

R. Alexander Glenn, Esq.
Deputy General Counsel - Florida
P. O. Box 14042
St. Petersburg, FL 33733-4042
(727) 820-5184 (Telephone)
(727) 820-5249 (Telecopier)

By: Kenneth A Hoffman, Esq.

Hearing Exhibit 000010

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a copy of the foregoing was furnished by hand delivery this 23rd day of August, 2007 to the following:

Martha Carter Brown, Esq. Keino Young, Esq. Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Lee L. Willis James D. Beasley Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302

Kenneth A. Hoffman, Esq.

progressenergy\lake agnes\noticeofservice

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition for determination of need for) Lake Agnes - Gifford 230 kV transmission) line, by Progress Energy Florida and Tampa) Electric Company.

DOCKET NO. 070393-EI

DATED: August 23, 2007

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY'S ANSWERS TO FIRST SET OF INTERROGATORIES (NOS. 1-15) OF THE FLORIDA PUBLIC SERVICE COMMISSION STAFF

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY DOCKET NO. 070393-EI INDEX TO STAFF'S FIRST SET OF INTERROGATORIES (NOS. 1-15)

Number	Witness	Subject
1	Brantley Tillis; Thomas Szelostowski	What is the total amount of the estimated Total Project Cost?
2	Brantley Tillis; Thomas Szelostowski	What amount of the estimated Total Project Cost includes the cost of land used for Right-of-Way (ROW)?
3	Brantley Tillis; Thomas Szelostowski	If your response to Staff's Interrogatory No. 2 is zero, please provide the projected costs of the proposed ROW and how TECO and PEF will seek compensation.
4	Brantley Tillis; Thomas Szelostowski	Please state whether TECO and PEF obtained the ROW for the Lake Agnes-Gifford 230 kV transmission line.
5	Brantley Tillis; Thomas Szelostowski	If TECO and PEF obtained the ROW for the Lake Agnes-Gifford 230 kV transmission line, please provide specific details of the ROW for the Lake Agnes-Gifford 230 kV transmission line.
6	Brantley Tillis; Thomas Szelostowski	If your response to Staff's Interrogatory No. 4 is no, please identify when TECO and PEF anticipate obtaining the ROW for the Lake Agnes-Gifford 230 kV transmission line.
7	Brantley Tillis; Thomas Szelostowski	Page 25 of the Joint Prefiled Testimony of Mr. Tillis and Mr. Szelistowski and Exhibit BT/TJS-10 (Attachment 6) to the Companies' Petition, discusses the load range and voltage drop of certain line segments during specified conditions. Please identify the data the companies used in calculating the load range and voltage drop for each line segment as indicated in Exhibit BT/TJS 10.
8	Brantley Tillis; Thomas Szelostowski	Please list any demand side management program (i.e. load control, interruptible customers, etc.) that can delay or replace the need for this line.
9	Brantley Tillis; Thomas Szelostowski	For any demand side management programs listed in your response to Staff's Interrogatory No. 8, please describe and/or explain each program.

Number	Witness	Subject
10	Brantley Tillis; Thomas Szelostowski	Page 24 of the Joint Prefiled Direct Testimony of Brantley Tillis and Thomas Szelostowski states that "the proposed Lake Agnes - Gifford 230 kV transmission line will provide an additional path to the existing 230kV transmission network in Polk and Orange Counties." What is the amount of megawatt (MW) savings for both TECO and PEF that will be attributed to the proposed 230kV line because of reduced line losses?
11	Brantley Tillis; Thomas Szelostowski	Please explain how this figure was derived (provide all assumptions for the MW savings indicated in your response to Staff's Interrogatory No. 10.
12	Brantley Tillis; Thomas Szelostowski	Are the costs associated with the Lake Agnes-Gifford 230 kV transmission line included in any rate case stipulations?
13	Brantley Tillis; Thomas Szelostowski	If your response to Staff's Interrogatory No. 12, is yes, please identify the rate case stipulation(s) where the costs associated with the Lake Agnes-Gifford 230 kV transmission line was included.
14	Brantley Tillis; Thomas Szelostowski	Pages 29 through 33 of the Joint Prefiled Direct Testimony of Brantley Tillis and Thomas Szelostowski discuss alternatives to the construction of the Lake Agnes-Gifford 230 kV transmission line. Please provide the estimated capital cost of each alternative identified on pages 29 through 33.
15	Brantley Tillis; Thomas Szelostowski	Please provide the estimated cost for the Lake Agnes-Gifford 230 kV transmission line if it is built in the existing corridor and providing transmission service to new substations to serve future growth.

- 1. What is the total amount of the estimated Total Project Cost?
- A. The estimated capital cost of the project is \$67.5 million which excludes the cost of land used for right-of-way. This cost estimate is subject to variances arising through the Transmission Line Siting Act process, including the length and the route of the line which will affect land acquisition costs, land construction costs and other compliance costs.

- 2. What amount of the estimated Total Project Cost includes the cost of land used for Rightof-Way (ROW)?
- A. The corridor certification has not been completed by the Siting Board at this time. The estimated total Project costs do not include the acquisition of new right-of-way. The total Project cost may change once the Siting Board has approved the final route.

- 3. If your response to Staff's Interrogatory No. 2 is zero, please provide the projected costs of the proposed ROW and how TECO and PEF will seek compensation.
- A. It is too early to develop an estimate of the projected costs of the proposed right-of-way ("ROW") since the Project has yet to go through site certification before the Siting Board. Once the Siting Board has approved the final route, TECO and PEF would be in a better position to project the costs of the proposed ROW. TECO and PEF intend to recover such costs through base rates.

- 4. Please state whether TECO and PEF obtained the ROW for the Lake Agnes-Gifford 230 kV transmission line.
- A. No.

- 5. If TECO and PEF obtained the ROW for the Lake Agnes-Gifford 230 kV transmission line, please provide specific details of the ROW for the Lake Agnes-Gifford 230 kV transmission line.
- A. Not applicable. <u>See</u> response to Staff Interrogatory No. 4.

- 6. If your response to Staff's Interrogatory No. 4 is no, please identify when TECO and PEF anticipate obtaining the ROW for the Lake Agnes-Gifford 230 kV transmission line.
- A. Acquisition of any new right-of-ways would normally occur after corridor certification by the Siting Board.

- 7. Page 25 of the Joint Prefiled Testimony of Mr. Tillis and Mr. Szelistowski and Exhibit BT/TJS-10 (Attachment 6) to the Companies' Petition, discusses the load range and voltage drop of certain line segments during specified conditions. Please identify the data the companies used in calculating the load range and voltage drop for each line segment as indicated in Exhibit BT/TJS 10.
- A. The load range of the line segments are shown in Exhibit 10 (Attachment 6) table under the column heading "Base Rating" expressed in MVA units. Voltage drop issues were not identified in the study and are not part of project's justification.

- 8. Please list any demand side management program (i.e. load control, interruptible customers, etc.) that can delay or replace the need for this line.
- A. The demand side management programs will not address the need met by the Project of transferring power off of the existing 230 and 69 kV networks which will be overloaded in the 2008-2011 timeframe.

- 9. For any demand side management programs listed in your response to Staff's Interrogatory No. 8, please describe and/or explain each program.
- A. Not applicable. <u>See</u> Response to Staff Interrogatory No. 8.

- 10. Page 24 of the Joint Prefiled Direct Testimony of Brantley Tillis and Thomas Szelostowski states that "the proposed Lake Agnes Gifford 230 kV transmission line will provide an additional path to the existing 230kV transmission network in Polk and Orange Counties." What is the amount of megawatt (MW) savings for both TECO and PEF that will be attributed to the proposed 230kV line because of reduced line losses?
- A. The reduction in losses is 18.5 MW for the FRCC region, which includes a 10.8 MW reduction for PEF and a 1.9 MW increase for Tampa Electric.

11. Please explain how this figure was derived (provide all assumptions) for the MW savings indicated in your response to Staff's Interrogatory No. 10.

A. Using the 2007 Rev 3 databank case for 2011 Summer – compare the system losses across the FRCC region with and without the Lake Agnes-Gifford line in service.

- 12. Are the costs associated with the Lake Agnes-Gifford 230 kV transmission line included in any rate case stipulations?
- A. No.

- 13. If your response to Staff's Interrogatory No. 12, is yes, please identify the rate case stipulation(s) where the costs associated with the Lake Agnes-Gifford 230 kV transmission line was included.
- A. Not applicable. <u>See</u> Response to Staff Interrogatory No. 12.

- 14. Pages 29 through 33 of the Joint Prefiled Direct Testimony of Brantley Tillis and Thomas Szelostowski discuss alternatives to the construction of the Lake Agnes-Gifford 230 kV transmission line. Please provide the estimated capital cost of each alternative identified on pages 29 through 33.
- A. The alternatives discussed in the Joint Prefiled Direct Testimony of Mr. Tillis and Mr. Szelostowski were thoroughly studied and analyzed as part of the FCCS Re-Study. As a result of this analysis, it was concluded that these alternative projects did not fully and effectively resolve and relieve the thermal overload contingencies described in the testimony. Therefore, because these alternatives did not fully and effectively solve and relieve such overload problems, no further study and analysis, including capital cost estimates, was conducted in connection with these alternatives.

- 15. Please provide the estimated cost for the Lake Agnes-Gifford 230 kV transmission line if it is built in the existing corridor and providing transmission service to new substations to serve future growth.
- A. There are no final estimates at this time. The investigation of Alternative corridors including the possible use of existing right-of-way is not complete. The investigation of corridors is a part of the Florida Department of Environmental Protection ("DEP") Transmission Line Siting Act ("TLSA") corridor certification process. The TLSA application will be submitted to the DEP in October of 2007 at which time the estimates would be available.

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

)

)

In Re: Petition for Determination of Need for Lake Agnes-Gifford 230 kV transmission line in Polk and Orange Counties, by Progress Energy Florida and Tampa Electric Company.

Docket No. 070393-EI

Filed: August 29, 2007

PROGRESS ENERGY FLORIDA AND TAMPA ELECTRIC COMPANY'S NOTICE OF FILING AFFIDAVITS ATTESTING TO THE RESPONSES TO STAFF'S FIRST SET OF INTERROGATORIES (NOS. 1-15)

Progress Energy Florida and Tampa Electric Company (the "Companies"), by and through their undersigned counsel, hereby file and serve this Notice of Filing the original Affidavits of Brantley Tillis and Thomas J. Szelistowski attesting to the Companies' Responses to Staff's First Set of Interrogatories (Nos. 1-15).

The above-referenced Affidavits are filed herewith as Composite Exhibit "A" to this Notice

of Filing.

Respectfully submitted this 29th day of August, 2007.

Lee L. Willis, Esq. James D. Beasley, Esq. Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302 Telephone: (850) 425-5487 Kenneth A. Hoffman, Esq. Rutledge, Ecenia, Purnell & Hoffman, P.A. P. O. Box 551 Tallahassee, Florida 32302 (850) 681-6788 (Telephone) (850) 681-6515 (Telecopier)

> DOCUMENT NUMBER-DATE 07794 AUG 29 Earing Exhibit 000030

FPSC-COMMISSION CLERK

R. Alexander Glenn, Esq.
Deputy General Counsel - Florida
P. O. Box 14042
St. Petersburg, FL 33733-4042
(727) 820-5184 (Telephone)
(727) 820-5249 (Telecopier)

By: futher Kenneth A. Hoffman, Esq.

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a copy of the foregoing was furnished by Hand Delivery this 29th day of August, 2007 to the following:

Martha Carter Brown, Esq. Keino Young, Esq. Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, Florida 32399-0850

Lee L. Willis James D. Beasley Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302

Kenneth A. Høffingin, Esq.

Progressenergy\lake Agnes\noticeoffilingaffidavits.wpd

AFFIDAVIT

STATE OF FLORIDA)

COUNTY OF SEMINOLLE

I hereby certify that on this 23^{PD} day of <u>AUGUST</u>, 2007, before me, an officer duly authorized in the State and County aforesaid to take acknowledgments, personally appeared <u>BRANTLEY</u> <u>TILLIS</u>, who is personally known to me, and <u>Resh</u> acknowledged before me that <u>he</u>/she provided the answers to interrogatory number(s) <u>from</u> STAFF'S FIRST SET OF INTERROGATORIES TO PROGRESS ENERGY FLORIDA, INC. AND TAMPA ELECTRIC COMPANY (NOS. 1 - 15) in Docket No. 070393-EI, and that the responses are true and correct based on his/her personal knowledge.

In Witness Whereof, I have hereunto set my hand and seal in the State and County aforesaid as of this 23^{40} day of August, 2007.

Notary Public State of Florida, at Large

My Commission Expires: JUNE 8,2011

EXHIBIT Composite.

<u>AFFIDAVIT</u>

STATE OF FLORIDA)) COUNTY OF HILLSBOROUGH)

I hereby certify that on this 27th day of August, 2007, before me, an officer duly authorized in the State and County aforesaid to take acknowledgments, personally appeared Thomas Szelistowski, who is personally known to me, and he acknowledged before me that he assisted or provided the answers to interrogatory numbers 1 through 15 from STAFF'S FIRST SET OF INTERROGATORIES TO PROGRESS ENERGY FLORIDA, INC. AND TAMPA ELECTRIC COMPANY (NOS. 1-15) in Docket No. 070393-EI, and that the responses are true and correct based on his personal knowledge.

In Witness Whereof, I have hereunto set my hand and seal in the State and County aforesaid as of this 27th day of August, 2007.

State of Florida, at Large

My Commission expires

Notary Public State of Florida Brenda Lee Irizarry My Commission DD551587 Expires 07/29/2010

Docket No. 070393-EI PEF's Historic and Forecasted Peak Demand Exhibit BT/TJS-1 Page 1 of 2

PROGRESS ENERGY FLORIDA

SCHEDULE 3.1.1 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)
					RESIDENTIAL LOAD	RESIDENTIAL	COMM. / IND. LOAD	COMM. / IND.	OTHER DEMAND	NET FIRM
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	MANAGEMENT	CONSERVATION	MANAGEMENT	CONSERVATION	REDUCTIONS	DEMAND
1996	7,470	828	6.642	309	565	69	4]	120	167	6.199
1997	7,786	874	6,912	288	555	78	41	131	170	6,523
1998	8,367	943	7,424	291	438	97	42	142	182	7,175
1999	9,039	1,326	7,713	292	505	113	45	153	183	7,747
2000	8,911	1,319	7,592	277	455	127	48	155	75	7,774
2001	8,841	1,117	, 7,724	283	414	139	54	156	75	7,720
2002	9,421	1,203	8,218	305	390	153	43	159	75	8,296
2003	8,886	887	7,999	300	347	172	44	164	75	7,785
2004	9,554	1,071	8,483	531	283	188	37	166	75	8,274
2005	10,316	1,118	9,198	393	250	203	38	167	75	9,189
2006	9,915	1,105	8,810	419	228	214	39	169	75	8,771
2007	10,226	1,181	9,044	431	202	223	40	171	75	9,084
2008	10,487	1,223	9,264	437	179	232	41	172	75	9,351
2009	10,676	1,201	9,475	433	158	241	42	174	75	9,553
2010	11,039	1,357	9,681	424	140	250	43	176	75	9,931
2011	11,260	1,372	9,888	425	124	259	45	177	75	10,154
2012	11,487	1,396	10,091	426	109	269	46	179	75	10,383
2013	11,699	1,406	10,293	427	97	279	47	180	75	10,593
2014	11,921	1,429	10,492	428	86	289	48	182	75	10,813
2015	12,139	1,446	10,693	429	76	293	48	183	75	11,036

Historical Values (1996 - 2005):

Col. (2) = recorded peak + implemented load control + residential and commercial/industrial conservation and customer-owned self-service cogeneration.

Cols. (5) - (9) = cumulative conservation and load control capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) = voltage reduction and customer-owned self-service cogeneration.

Col. (10) = (2) - (5) - (6) - (7) - (8) - (9) - (OTH).

Projected Values (2006 - 2015):

Cols. (2) - (4) = forecasted peak without load control, conservation, and customer-owned self-service cogeneration.

Cols. (5) - (9) = cumulative conservation and load control capabilities at peak. Col. (8) includes commercial load management and standby generation. Col. (OTH) = customer-owned self-service cogeneration.

Col. (10) = (2) - (5) - (6) - (7) - (8) - (9) - (OTH).

FLORIDA PUBLIC SERVICE COMMISSION

			111331014	
DOCKET !	NO. 070393	EEXHIBIT	3	
COMPANY	PEF	ITECD		
WITNESS	Tillis	Szelistor	DSKI BT/TJS	·- 1)
DATE	09-1	12-07		עי

Docket No. 070393-EI PEF's Historic and Forecasted Peak Demand Exhibit BT/TJS-1 Page 2 of 2

PROGRESS ENERGY FLORIDA

SCHEDULE 3.2.1 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	RESIDENTIAL LOAD MANAGEMENT	RESIDENTIAL CONSERVATION	COMM. / IND. LOAD MANAGEMENT	COMM. / IND. CONSERVATION	OTHER DEMAND REDUCTIONS	NET FIRM DEMAND
1995/96	10,562	1,489	9,073	255	1,156	106	15	95	201	8,734
1996/97	8,486	1,235	7,251	290	917	133	16	104	190	6,836
1997/98	7,752	941	6,811	318	663	164	17	112	168	6,310
1998/99	10,473	1,741	8,732	305	874	196	18	117	187	8,776
1999/00	10,040	1,728	8,312	225	849	229	20	119	182	8,416
2000/01	11,450	1,984	9,466	255	809	254	29	120	194	9,789
2001/02	10,676	1,624	9,052	285	770	278	24	121	188	9,010
2002/03	11,555	1,538	10,017	271	768	313	27	124	201	9,851
2003/04	9,290	1,167	8,123	498	761	343	24	125	227	7,312
2004/05	10,798	1,602	9,196	350	725	371	26	125	247	8,953
2005/06	10,987	1,413	9,574	430	696	405	28	127	254	9,047
2006/07	11,525	1,740	9,786	426	671	429	30	128	258	9,584
2007/08	11,750	1,734	10,016	444	649	453	31	130	262	9,780
2008/09	12,113	1,894	10,220	440	631	479	33	132	265	10,134
2009/10	12,514	2,088	10,426	432	615	506	35	133	269	10,524
2010/11	12,742	2,112	10,629	434	603	534	37	135	272	10,728
2011/12	13,019	2,191	10,828	435	593	566	38	136	276	10,975
2012/13	13,278	2,253	11,025	436	586	597	40	138	279	11,202
2013/14	13,537	2,314	11,223	437	581	628	42	139	282	11,428
2014/15	13,776	2,358	11,418	438	577	660	42	141	285	11,634

Historical Values (1996 - 2005):

Col. (2) = recorded peak + implemented load control + residential and commercial/industrial conservation and customer-owned self-service cogeneration.

Cols. (5) - (9) = cumulative conservation and load control capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) = voltage reduction and customer-owned self-service cogeneration.

Col. $(10) = (2) \cdot (5) \cdot (6) \cdot (7) \cdot (8) \cdot (9) \cdot (OTH)$.

Projected Values (2006 - 2015):

Cols. (2) - (4) = forecasted peak without load control, conservation, and customer-owned self-service cogeneration.

Cols. (5) - (9) = cumulative conservation and load control capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) = voltage reduction and customer-owned self-service cogeneration.

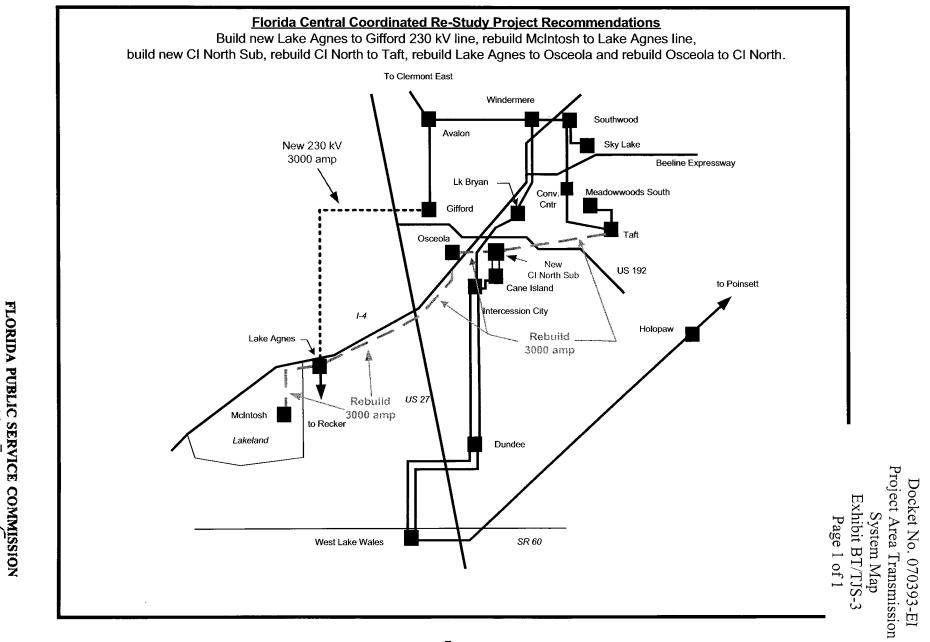
Col. $(10) = (2) \cdot (5) \cdot (6) \cdot (7) \cdot (8) \cdot (9) \cdot (OTH).$

FLORIDA PUBLIC SERVICE COMMISSION DOCKET NO. 070393-ETEXHIBIT <u>4</u> COMPANY <u>GEF/TECO</u> WITNESS <u>Tillis/Szelistowski (BT/</u>TJS-J) DATE <u>09-12-07</u>

History and Forecast of Winter Peak Demand Base Case

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Year	<u>Total •</u>	Wholesale **	<u>Retail *</u>	Interruptible	Residentiał Load <u>Management</u>	Residential <u>Conservation</u>	Comm./Ind. Load <u>Management</u>	Comm./Ind. Conservation	Net Firm Demand
1995/96	3,833	98	3,735	152	260	331	10	36	2,946
1996/97	3,632	109	3,523	228	164	353	21	38	2,719
1997/98	3,231	99	3,132	210	160	370	21	39	2,332
1998/99	3,985	131	3,854	152	266	388	18	40	2,990
1999/00	4,019	125	3,894	212	209	402	19	43	3,009
2000/01	4,405	136	4,269	191	196	410	21	44	3,407
2001/02	4,217	127	4,090	168	176	419	22	46	3,259
2002/03	4,484	129	4,355	195	210	428	21	46	3,455
2003/04	3,949	120	3,829	254	136	437	18	48	2,936
2004/05	4,308	129	4,179	194	189	444	16	49	3,287
2005/06	4,946	187	4,759	168	204	449	19	50	3,869
2006/07	5,093	188	4,905	171	201	452	19	50	4,012
2007/08	5,229	188	5,041	171	194	455	18	51	4,152
2008/09	5,358	188	5,170	171	191	457	18	51	4,282
2009/10	5,470	188	5,282	150	189	460	18	52	4,413
2010/11	5,601	188	5,413	150	187	461	19	52	4,544
2011/12	5,665	117	5,548	150	185	463	19	52	4,679
2012/13	5,786	102	5,684	149	183	464	20	53	4,815
2013/14	5,903	77	5,826	150	182	465	20	53	4,956
2014/15	6,047	77	5,970	150	180	466	21	53	5,100
	•		•						

December 31, 2005 Status


* Includes cumulative conservation.

** Includes sales to Progress Energy Florida, Wauchula, Fort Meade, St. Cloud and Reedy Creek.

Note: Values shown may be affected due to rounding.

Docket No. 070393-EI Rampa Electric's Historic Exhibit BT/TJS-2 Page 1 of 1

<u></u>–

WITNESS DATE

Bulsk

BI/TJS-3

DOCKET N COMPANY

CHIBIT

7

Docket No. 070393-EI NERC Reliability Standards Exhibit BT/TJS-4 Page 1 of 3

Attachment 5: Transmission Planning Criteria

Transmission Planning Criteria

The NERC Reliability Standards under Transmission Planning are divided into categories A, B, C and D and TEC uses these Standards as its planning criteria. Category A addresses normal system conditions with all facilities in service. Category B addresses system conditions following the loss of a single facility. Category C addresses system conditions following the loss of two or more facilities. Finally, Category D addresses system conditions following an extreme event where multiple facilities are removed from service. The primary need for transmission system upgrades is most frequently based on potential overload conditions associated with the Category B contingencies (single contingency) listed in Table 1 of this Attachment 5. Generally, Category C and D multiple contingency analysis is used to identify potential situations of cascading interruptions or instability. The planned transmission system with its expected loads and transfers must be stable and within applicable ratings for all Category A, and B contingency scenarios. The effect of Category C and D contingencies on system stability is also evaluated. The design of new transmission connections should take into account and minimize, to the extent practical, the adverse consequences of Category C and D contingencies. Lower probability Category C and D contingencies, when they occur in combination with forecasted demand levels and firm interchange transactions, must not result in uncontrolled, cascading interruptions. While controlled interruption of load or opening of transmission circuits may be needed, the system should be within its emergency limits and capable of rapid restoration after operation of automatic controls.

FLORIDA P	BLIC SERVICE COMMISSION	
DOCKET NO.	070393-EIEXHIBIT6	
COMPANY	PEF/TECO	
WITNESS	Tillis/Szelistowski (BT/TJS	4)
DATE	09-12-07	

Category	Contingencies	System Limits or Impacts				
Category	Initiating Event(s) and Contingency Element(s)	System Stable and both Thermal and Voltage Limits within Applicable Rating ^a	Loss of Demand or Curtailed Firm Transfers	Cascading Outages		
A No Contingencies	All Facilities in Service	Yes	No	No		
B Event resulting in the loss of a single element.	Single Line Ground (SLG) or 3-Phase (3Ø) Fault, with Normal Clearing: 1. Generator 2. Transmission Circuit 3. Transformer Loss of an Element without a Fault	Yes Yes Yes Yes	No ^b No ^b No ^b No ^b	No No No No		
	Single Pole Block, Normal Clearing ^e : 4. Single Pole (dc) Line	Yes	No ^b	No		
C Event(s) resulting in	SLG Fault, with Normal Clearing ^e : 1. Bus Section	Yes	Planned/ Controlled ^c	No		
the loss of two or more (multiple)	2. Breaker (failure or internal Fault)	Yes	Planned/ Controlled ^e	No		
elements.	 SLG or 3Ø Fault, with Normal Clearing^e, Manual System Adjustments, followed by another SLG or 3Ø Fault, with Normal Clearing^e: 3. Category B (B1, B2, B3, or B4) contingency, manual system adjustments, followed by another Category B (B1, B2, B3, or B4) contingency 	Yes	Planned/ Controlled ^e	No		
	 Bipolar Block, with Normal Clearing^e: 4. Bipolar (dc) Line Fault (non 3Ø), with Normal Clearing^e: 	Yes	Planned/ Controlled ^e	No		
	5. Any two circuits of a multiple circuit towerline ^f	Yes	Planned/ Controlled°	No		
	 SLG Fault, with Delayed Clearing^e (stuck breaker or protection system failure): 6. Generator 	Yes	Planned/ Controlled°	No		
	7. Transformer	Yes	Planned/ Controlled ^c	No		
	8. Transmission Circuit	Yes	Planned/ Controlled ^c	No		
	9. Bus Section	Yes	Planned/ Controlled ^e	No		

Table I. Transmission System Standards – Normal and Emergency Conditions

Adopted by NERC Board of Trustees: February 8, 2005 Effective Date: April 1, 2005

Docket No. 070393-E1 NERC Reliability Standards Exhibit BT/TJS-4 Page 3 of 3

Standard TPL-001-0 — System Performance Under Normal Conditions

D ^d	30 Fault, with Delayed Clearing ^e (stuck breaker or protection system failure):	Evaluate for risks and consequences.
Extreme event resulting in two or more (multiple) elements removed or Cascading out of service.		 consequences. May involve substantial loss of customer Demand and generation in a widespread area or areas. Portions or all of the interconnected systems may or may not achieve a new, stable operating point. Evaluation of these events may require joint studies with neighboring systems.

- a) Applicable rating refers to the applicable Normal and Emergency facility thermal Rating or system voltage limit as determined and consistently applied by the system or facility owner. Applicable Ratings may include Emergency Ratings applicable for short durations as required to permit operating steps necessary to maintain system control. All Ratings must be established consistent with applicable NERC Reliability Standards addressing Facility Ratings.
- b) Planned or controlled interruption of electric supply to radial customers or some local Network customers, connected to or supplied by the Faulted element or by the affected area, may occur in certain areas without impacting the overall reliability of the interconnected transmission systems. To prepare for the next contingency, system adjustments are permitted, including curtailments of contracted Firm (non-recallable reserved) electric power Transfers.
- c) Depending on system design and expected system impacts, the controlled interruption of electric supply to customers (load shedding), the planned removal from service of certain generators, and/or the curtailment of contracted Firm (non-recallable reserved) electric power Transfers may be necessary to maintain the overall reliability of the interconnected transmission systems.
- d) A number of extreme contingencies that are listed under Category D and judged to be critical by the transmission planning entity(ies) will be selected for evaluation. It is not expected that all possible facility outages under each listed contingency of Category D will be evaluated.
- e) Normal clearing is when the protection system operates as designed and the Fault is cleared in the time normally expected with proper functioning of the installed protection systems. Delayed clearing of a Fault is due to failure of any protection system component such as a relay, circuit breaker, or current transformer, and not because of an intentional design delay.
- f) System assessments may exclude these events where multiple circuit towers are used over short distances (e.g., station entrance, river crossings) in accordance with Regional exemption criteria.

Docket No. 070393-EI FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 1 of 11

FRCC REVISED REGIONAL TRANSMISSION PLANNING PROCESS

$F_{\text{LORIDA}} \; R_{\text{ELIABILITY}} \; C_{\text{OORDINATING}} \; C_{\text{OUNCIL}}$

Approved by Planning Committee – May 2, 2007

Approved by Board of Directors - July 24, 2007

FLORIDA PUBLIC SERVICE COMMISSION DOCKET NO. 070393-EI EXHIBIT 7 COMPANY PEFITELD Tillis/Szelistowski (BT/TJS-5) WITNESS 09112/07 DATE

FRCC REGIONAL TRANSMISSION PLANNING PROCESS

The objective of the FRCC Regional Transmission Planning Process ("Planning Process") is to ensure coordination of the transmission planning activities within the FRCC Region in order to provide for the development of a robust transmission network in the FRCC Region.

RESPONSIBILITY

The FRCC Board of Directors ("Board") shall have the responsibility to ensure this process is fully implemented.

The FRCC Planning Committee ("Planning Committee") shall direct the Transmission Working Group ("TWG"), and the Stability Working Group (SWG), as appropriate, in conjunction with the FRCC staff, to conduct the necessary studies to fully implement the Planning Process.

PURPOSE

The Planning Process is intended to develop a regional transmission plan to meet the existing and future requirements of all customers/users, providers, owners, and operators of the transmission system in a coordinated, open and transparent transmission planning environment.

The Planning Process is intended to ensure the long-term reliability of the bulk power system in the FRCC region. However, nothing in this process is intended to limit or override rights or obligations of transmission providers, owners and/or transmission customers/users contained in any rate schedules, tariffs or binding regulatory orders issued by applicable federal, state or local agencies. In the event that a conflict arises between the Planning Process and the rights and obligations included in those rate schedules, tariffs or regulatory orders, and the conflict cannot be mutually resolved among the appropriate transmission providers, owners, or customers/users, any affected party may seek a resolution from the appropriate regulatory agencies or judicial bodies having jurisdiction.

STUDY PROCESS

Studies conducted pursuant to the Planning Process will utilize the applicable reliability standards and criteria of the FRCC and NERC that apply to the Bulk Power System as defined by NERC. Such studies shall also utilize the specific design, operating and planning criteria used by FRCC transmission owners/providers to the extent these specific design, operating and planning criteria meet FRCC and NERC reliability standards and criteria or are more stringent than any applicable FRCC and/or NERC standards and criteria.

DOCKET NO. 070393-E1 FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 3 of 11

The 69kV transmission facilities do not fall under the NERC definition of Bulk Power System; however, for the purpose of the Planning Process only, these facilities shall be studied as though they were included in the NERC Bulk Power System definition in order to better coordinate and improve the transmission system in the FRCC Region.

The Planning Process shall begin with the consolidation of the long term transmission plans of all of the transmission owners/providers in the FRCC Region. It is the FRCC's expectation that the long term transmission plans incorporate the integration of new firm resources as well as other firm commitments. This will include all transmission facilities 69 kV and above. Detailed evaluation and analysis of these plans will be conducted by the TWG/SWG, in concert with the FRCC staff, and managed by the Planning Committee. Such evaluation and analysis will provide the basis for possible recommended changes to individual system plans that, if implemented, would result in a more reliable and robust transmission system for the FRCC Region.

The assessment of the long-term transmission plan shall be comprehensive and in-depth. While the final recommended plan may not call for the construction of all transmission facilities identified in various sensitivities, the assessment will provide valuable information on the strength of the transmission system to aid in understanding how the system would perform in various situations. The examination of multiple expected system conditions shall be performed, including an assessment of areas with recurring, significant congestion. As determined by the Planning Committee, these conditions or sensitivities may include any of, but not be limited to, the types listed below:

- Transmission and/or generation facilities unavailable due to scheduled and/or forced outages.
- Weather extremes for summer and winter periods.
- Different load levels (e.g., 100%, 80%, 60%, 40%) and/or periods of the year (Winter, Spring, Summer and Fall).
- Various generation dispatches that will test or stress the transmission system which may include economic dispatch from all generation (firm and non-firm) in the region.
- Reactive supply and demand assessment (e.g. generator reactive limits, power factor, etc.)
- A specific area where a combination/cluster of generation and load serving capability is among various transmission owners/providers in the FRCC that continually experience or is expected in the future to experience significant transmission congestion on their transmission facilities will be reviewed annually and restudied as required. The analysis should reflect the upgrades necessary to integrate new generation resources and/or loads on an aggregate or regional (cluster) basis.

FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 4 of 11

Additionally, such analysis may include an estimate of the cost of congestion as appropriate.

 Other scenarios or system conditions as identified by the Planning Committee (e.g. stability analysis)

For the first 5 years of the planning period, a detailed evaluation will be conducted. For years 6 through 10, a more generalized higher-level study will be conducted.

The Planning Committee shall submit a formal report of the assessment and findings, including any recommendations to the Board. Such report shall include an action plan that identifies:

- Any recommended modifications to transmission owners'/providers' long term plans that, in the judgment of the Planning Committee, offer worthwhile enhancements to regional transmission grid reliability.
- The identification of those elements of the recommended plan that cannot be implemented due to the inability to obtain the required commitments of the affected transmission owner(s)/provider(s) and user(s) to implement the plan.
- The identification of an alternative plan that does have the commitment of the affected transmission owner(s)/provider(s) and user(s) with regard to implementation.
- Any minority views expressed by any member of the Planning Committee as well as the identification of any unresolved issues.

TRANSMISSION PLANNING PROCESS STEPS

A Regional FRCC Transmission Plan ("Regional Plan") shall be developed on an annual basis using the Planning Process. The Regional Plan shall be based on the Ten Year Site Plans that are required to be submitted to the Florida Public Service Commission on April 1st of each year. Any generating or transmission entity not required to submit a ten year plan to the Florida Public Service Commission, shall submit its ten year generation expansion plan to the FRCC on April 1st of each year. These ten year plans shall include the generation expansion plans for load serving entities and firm/network use of transmission submitted by transmission owners/providers.

Docket No. 070393-EI FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 5 of 11

Step 1– Planning Committee Initiates FRCC Transmission Planning Review and Coordination Process

Transmission owners/providers shall submit to the Planning Committee their latest 10-year expansion plan for their transmission system, including a list of transmission projects that provides for all of their firm obligations based on the best available information. FRCC will post on the FRCC web site the 10-year expansion plans.

Step 2 – Feedback from Transmission Customers/Users/Others of Individual 10-Year Expansion Plan

Transmission customers/users and other affected parties shall submit to the Planning Committee and affected transmission owners/providers any issues or special needs they feel have not been adequately addressed by the applicable transmission owner's/provider's 10-year expansion plan, and the underlying evaluation demonstrating the rationale for their concern.

Step 3 – Review and Assessment by Planning Committee

The Planning Committee shall review and assess transmission owner's/provider's plans from an overall FRCC perspective, ensuring that all affected transmission customers'/users' issues have been identified.

The Planning Committee, the transmission owners/providers and the transmission customers/users shall consult, as appropriate, during this period to address the issues of all parties to ensure their due consideration with regard to possible inclusion into the Regional Plan.

The Planning Committee shall address any issue or area of concern not previously or adequately addressed with emphasis on constructing a robust regional transmission system.

As identified under Information Exchange, the databank used in the development of the Regional Plan will be updated at least quarterly by the TWG. Any changes to the databank that could materially impact the Regional Plan, or affected other parties, will be reviewed by the TWG to determine whether or not the Regional Plan should be revised to reflect those changes.

The Planning Committee shall form working group(s), as necessary, to address specific matter(s) that require further technical assessment or evaluation.

Step 4 – Issuance of Preliminary Regional Plan

The Planning Committee shall issue the preliminary Regional Plan to all FRCC members, and shall identify any proposed modification to the original transmission owner's/provider's plan. The purpose of this step is to receive comments and to identify any remaining unresolved issues.

Step 5 – Approval of Regional Plan

The Planning Committee shall present to the transmission owners/providers, affected transmission customers/users, and other FRCC members a general overview and comments on the Regional Plan, including proposed modifications to each transmission owner's/provider's individual transmission plan.

The Planning Committee shall identify and discuss minority opinions and unresolved issues.

The Planning Committee shall approve the Regional Plan and present it to the Board for its consideration. The Plan may include specific matters that require further technical assessment or evaluation that have been assigned to a working group, and some unresolved issues may still be pending final resolution.

The Board shall take action on the Regional Plan. The resultant Board approved Regional Plan shall be posted on the FRCC public web site and shall be sent to the Florida Public Service Commission.

Step 6 – Unresolved Issues

If any member of the Planning Committee eligible to vote has an unresolved issue(s) after the Planning Committee approves the Regional Plan, said member may direct the Planning Committee to present such unresolved issue(s) to the Board at the same time the Regional Plan is presented for approval.

If the Board fails to satisfy the concerns of the party raising the unresolved issue(s), the party may request the matter be set for Dispute Resolution as set forth in this document. At such time, the FRCC will provide written notice to the Florida Public Service Commission of such unresolved regional reliability issue.

OPENNESS & TRANSPARENCY

It is the intent of the FRCC that the Planning Process be conducted in an open manner in such a way that it ensures fair treatment for all customers/users,

Docket No. 070393-EI FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 7 of 11

owners and operators of the transmission system. This will be accomplished through the process described herein.

Coordination of Transmission Requests

Transmission providers will provide their long-term firm transmission service requests queues and generator interconnection service requests queues to the FRCC in a common format. The FRCC will consolidate all individual queues for coordination purposes and will post the individual queues and the consolidated queue for coordination purposes for all FRCC members to view.

Each transmission provider will furnish the FRCC with a study schedule for each system impact study so that other potentially impacted transmission owners/providers can independently assess whether they may be impacted by the request and determine whether they want to submit a request to the appropriate transmission provider to participate in or monitor the study process. Transmission providers shall allow other transmission owners/providers with potentially impacted transmission facilities to participate in or monitor the study. To the extent there is a question regarding whether a transmission owner's/provider's facilities are impacted, the FRCC will make a determination as to whether the transmission owners'/providers' facilities are impacted. If the study schedules are modified based on discussions with the transmission requestor(s), the updated schedule will also be provided to FRCC.

At the time the system impact study is completed and the study results are presented to the applicable transmission requestor, each transmission provider, in consultation with said requestor, will provide the study results and related models to the FRCC. If the results obtained in the system impact study show that more than one option is recommended for further consideration, the results and related models associated with such options will also be provided to the FRCC.

The FRCC shall make available to all transmission owners/providers, through the TWG, the system impact study schedules and results in order for the TWG, SWG, or any transmission owner/provider to review the system impact studies for any adverse impacts on its system.

The TWG, in concert with the FRCC staff, shall review, and if necessary, perform analyses on the system impact studies to determine if there are any reliability concerns. Such review and analysis shall not delay any regulatory requirements for processing Transmission Service or Generation Interconnection Services requests by the transmission provider. Study results/findings will be made available to the FRCC Planning Committee and the applicable transmission provider for discussion and other action as appropriate.

Docket No. 070393-EI FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 8 of 11

Public Notice (Currently under review by the FRCC Standards of Conduct Task Force)

The following process will be followed for any Planning Committee and/or Board meeting in which transmission plans or related study results will be exchanged, discussed or presented:

Meeting Notice

At least two weeks prior to a regular meeting, or 5 business days in the case of a special meeting, the time, place and agenda of that portion of the meeting directly related to discussions of transmission expansion plans or study results will be posted on the FRCC's member web site, as well as each Florida transmission provider's OASIS.

Posting of Documents

Completed FRCC transmission planning studies will be posted on the FRCC's member web site, as well as the OASIS site of any applicable transmission provider(s), subject to possible redaction of user sensitive or critical infrastructure information. A customer/user may enter into a confidentiality agreement with the FRCC and/or applicable transmission owner/provider, as appropriate, to be eligible to review pertinent information relative to the transmission study results subject to critical infrastructure security and market business rules and standards.

Meeting Minutes

Meeting minutes directly related to discussions of transmission expansion plans or study results will be posted as soon as practicable (but no later than one business day) after the end of the meeting on the FRCC's member web site, as well as each Florida transmission provider's OASIS.

INFORMATION EXCHANGE

The FRCC shall maintain a databank of all planned and committed transmission and generation projects, including upgrades, new facilities, and changes to planned in-service dates. This databank shall be updated by the TWG no less frequently than once each quarter and no more frequently than once a month. The frequency of such updates will be determined by the TWG as necessary to ensure that changes that could materially impact the reliability of the transmission system or individual customers/users are reflected in the databank in a timely manner.

The FRCC shall maintain and update the load flow, short circuit and stability models on a quarterly basis, as noted above, utilizing the updated databank to ensure that any changes in transmission or generation projects are

FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 9 of 11

reflected in the above models. In the event the databank is updated, such changes will immediately be sent to the TWG and the Planning Committee for their review.

These updated models will be made available to all transmission owners/providers in the TWG and SWG for their individual use and for the TWG's use.

COST ALLOCATION METHODOLOGY AND PRINCIPLES

(Currently under development by the FRCC Cost Sharing Task Force)

DISPUTE RESOLUTION

Any party raising an unresolved issue may request the Mediator Process as described in this document.

If, after the Mediator Process is completed and the issue is still unresolved, by mutual agreement between the parties, the Independent Evaluator Dispute Resolution Process as described in this document will be utilized.

If the unresolved issue involves the inability to reach agreement on the timing or funding of construction of critical transmission facilities required for regional reliability in a timely manner, and such unresolved issue is not resolved by either of the Dispute Resolution Processes described below, the transmission owners/providers, affected parties, or the FRCC may request that the Florida Public Service Commission address such unresolved dispute. Notwithstanding the foregoing, any unresolved issues may be submitted to any regulatory or judicial body having jurisdiction.

Mediator Dispute Resolution Process (Non-Binding)

The Mediator Process shall be completed within sixty (60) days of commencement.

A mediator shall be selected jointly by the disputing parties. The mediator shall (1) be knowledgeable in the subject matter of the dispute, and (2) have no official, financial, or personal conflict of interest with respect to the issues in controversy, unless the interest is fully disclosed in writing to all participants and all participants waive in writing any objection to the interest.

The disputing parties shall attempt in good faith to resolve the dispute in accordance with the procedures and timetable established by the mediator. In furtherance of the mediation efforts, the mediator may:

9

Docket No. 0/0393-EI FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 10 of 11

- a. Require the parties to meet for face-to-face discussions, with or without the mediator;
- b. Act as an intermediary between the disputing parties;
- c. Require the disputing parties to submit written statements of issues and positions; and
- d. If requested by the disputing parties, provide a written recommendation on resolution of the dispute.

If a resolution of the dispute is not reached by the 30th day after the appointment of the mediator or such later date as may be agreed to by the parties, the mediator shall promptly provide the disputing parties with a written, confidential, non-binding recommendation on resolution of the dispute, including the mediator's assessment of the merits of the principal positions being advanced by each of the disputing parties. At a time and place specified by the mediator after delivery of the foregoing recommendation, but no later than 15 days after issuance of the mediator's recommendation, the disputing parties shall meet in a good faith attempt to resolve the dispute in light of the mediator's recommendation. Each disputing party shall be represented at the meeting by a person with authority to settle the dispute, along with such other persons as each disputing party shall deem appropriate. If the disputing parties are unable to resolve the dispute at or in connection with this meeting, then: (1) any disputing party may commence such arbitral, judicial, regulatory or other proceedings as may be appropriate; and (2) the recommendation of the mediator shall have no further force or effect, and shall not be admissible for any purpose, in any subsequent arbitral, administrative, judicial, or other proceeding.

The costs of the time, expenses, and other charges of the mediator and of the mediation process shall be borne by the parties to the dispute, with each side in a mediated matter bearing one-half of such costs. Each party shall bear its own costs and attorney's fees incurred in connection with any mediation under this Agreement.

Independent Evaluator Dispute Resolution Process (Non-Binding)

The Independent Evaluator Dispute Resolution Process shall be completed within ninety (90) days.

- An assessment of the unresolved issue(s) shall be performed by an Independent Evaluator that will be selected by the Board. The Independent Evaluator shall evaluate the disputed issue(s) utilizing the same criteria that the Planning Committee is held to; that is, "the applicable reliability criteria of FRCC and NERC, and the individual transmission owner's/provider's specific design, operating and planning criteria".

FRCC's Transmission Planning Process Exhibit BT/TJS-5 Page 11 of 11

- The Independent Evaluator shall be a recognized independent expert with substantial experience in the field of transmission planning; with no past business relationship to any of the affected parties within the past two years from the date the Dispute Resolution Process is started. A list of qualified experts should be pre-established so that when an issue arises the Board can expedite the process.
- The Board shall retain an Independent Evaluator within fifteen (15) days of the request to utilize the Independent Evaluator Dispute Resolution Process.
- The Independent Evaluator shall prepare a report of its findings, with recommendations on the unresolved issue(s), to the Board and the Planning Committee within forty-five (45) days from the date the Board selected the Independent Evaluator. The Independent Evaluator's findings and recommendations shall not be binding. The Board, with the assistance of the Planning Committee and the Independent Evaluator's report, shall attempt to resolve the unresolved issue(s) within thirty (30) days from receipt of the Independent Evaluator's report. If the Board fails to resolve the issue(s) to the satisfaction of all parties, any disputing party may commence such arbitral, judicial, regulatory or other proceedings as may be appropriate.
- The costs of the Independent Evaluator shall be borne by the parties to the dispute with each party bearing an equal share of such costs. The FRCC shall be one of the parties. Each party shall bear its own costs and attorney fees incurred in connection with the dispute resolution.

Docket No. 070393-EI FRCC Florida Central Coordinated Re-Study Report: Executive Summary Exhibit BT/TJS-6 Page 1 of 8

FCCS Re-Study Report Executive Summary

Prepared by TWG

$\mathbf{F}_{\text{LORIDA}} \; \mathbf{R}_{\text{ELIABILITY}} \; \mathbf{C}_{\text{OORDINATING}} \; \mathbf{C}_{\text{OUNCIL}}$

1408 N. Westshore Blvd., Suite 1002 Tampa, Florida 33607-4512 www.frcc.com Phone (813) 289-5644

July, 2006

Approved by FRCC Board of Directors – July 25, 2006

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO	<u>). 070393-Егехнівіт</u> Х
COMPANY	<u>PEF/TECO</u>
WITNESS	Tillis/Szelistowski (BT/T35-6)
DATE	09/12/07

Docket No. 070393-EI FRCC Florida Central Coordinated Re-Study Report: Executive Summary Exhibit BT/TJS-6 Page 2 of 8

FCCS Re-Study – Executive Summary

Background

The original Florida Central Coordinated Study (FCCS) was initiated in June 2005 to determine the impact of planned additional generation in the 2008 through 2012 time frame in the Polk/Hardee County area and the effects of such generation on the transmission networks. The FCCS was completed in May 2006 and identified the need for transmission system improvements along the Interstate (I-4) corridor to accommodate power transfers from existing and planned generation in the Polk/Hardee County area to the Greater Orlando area load center. Specifically, the FCCS identified the need for the construction of a new 230 kV line from West Lake Wales to Intercession City with bundled 954 conductor, and the rebuild of the existing 230 kV line between West Lake Wales and Intercession City with bundled 954 conductor by 2008, or sooner if possible. Progress Energy (PEF) has begun work on these projects and has determined that the new lines should loop into the existing Dundee substation. PEF has committed to construct these facilities but the final segments will not be constructed until 2011. In addition, the FCCS also recommended the construction of a new Lake Agnes – Gifford – Avalon 230 kV line or alternatively, the rebuild of the existing McIntosh – Lake Agnes – Osceola – Cane Island – Taft 230 kV line, along with other associated projects, by the summer of 2011.

The original FCCS report was accepted by the FRCC Planning Committee as the necessary improvements needed for the FRCC to meet the NERC reliability standards.

As a result of many significant changes between the 2005 and 2006 FRCC databank cases, including increased load forecast assumptions and additional generation sited in the study area, it was determined that the original study should be reassessed with the new data to verify the results of the original FCCS report. At the April 2006 meeting of the FRCC Board of Directors, the TWG was directed to conduct a re-study with the most current updated database, which consists of the 2006 ten-year site plans. The Board directed that the re-study be completed and sent to the Planning Committee for approval by July 6, 2006. The re-study and report is to be presented to the FRCC Board of Directors for approval no later than August 14, 2006.

Study Assumptions and Sensitivities

The FCCS re-study assumed that 2011 would be the earliest in-service date for any major new or rebuilt transmission project. The re-study focused on transmission construction alternatives for 2011 and 2012, and evaluated the performance of the currently planned transmission system for 2008, 2009 and 2010. In addition to these base cases, study years 2013 and 2014 were examined as sensitivities. Each of the following extended generation outages were also examined as sensitivities: Sanford 4, Stanton A and Cane Island 3. The transmission line segments between McIntosh and Taft were evaluated with a single 2000 amp circuit, a single 3000 amp circuit and two 2000 amp circuits. Also, the presently uncommitted merchant generation resources in the FRCC were dispatched as additional sensitivities.

Recommendation

To ensure that the transmission system within FRCC continues to meet the NERC reliability standards the following transmission construction projects need to be completed:

Original FCCS	Projects Include	d in Re-	Study	Base Cas	Se .		
		New /		Needed	Planned	···	Estimated
From	То	Rebuild	Miles	In-Service	In-Service	Ownership	Cost (\$M)
West Lake Wales	Dundee #2	New	13.2	Before '08	Jun, 2009	PEF	\$28.5
Dundee	Intercession City #2	New	25.9	Before '08	Jun, 2010	PEF	\$54.1
West Lake Wales	Dundee #1	Rebuild	9.7	Before '08	Jun, 2011	PEF	\$20.5
Dundee	Intercession City #1	Rebuild	20.3	Before '08	Jun, 2011	PEF	\$40.5
Avalon	Gifford	New	7	Before '08	Jun, 2008	PEF	\$33.0
Vandolah	Charlotte	Terminal		Dec, 2008	Dec, 2008	FPL	\$0.1
Poinsett	Holopaw	Terminal		Dec, 2008	Dec, 2008	FPL	\$0.1
	I Coordinated R		/				
Lake Agnes	Gifford					PEF/TEC	
Lake Agnes	PEF/TEC tie point	New	13.1	Before '08	,	TEC	\$23.5
Gifford	PEF/TEC tie point	New	19.3	Before '08	Jun, 2011	PEF	\$44.0
McIntosh	Lake Agnes	Rebuild	9.4	Before '08	Jun, 2011	OUC *	\$27.6
Cl North substatio	n	New Sub		Jun, 2011	Jun, 2010	FMPA/KUA/ OUC	\$20.0
CI North	Taft	Rebuild	11.2	Jun, 2011	Jun, 2010	OUC *	\$32.6
Lake Agnes	Osceola	Rebuild	21.5	Before '08	Jun, 2012	OUC/TEC *	\$64.0
Osceola	CI North	Rebuild	4.1	Jun, 2011	Jun, 2013	OUC/TEC *	\$29.0
	Total miles	Rebuild	76.2				
	154.7	New	78.5			Total	\$417.4

* Cost estimates for these projects are based on one 3000 amp circuit. These cost estimates were obtained by adding 45% to OUC's cost estimate for one 2000 amp circuit.

<u>NOTE</u>: Based on the current and future system conditions identified for 2008 - 2010, the projects listed below (and shown above as needed "Before '08") should be constructed as soon as practical based on an expedited schedule to ensure reliable operations:

West Lake Wales – Dundee – Intercession City #2 new 230 kV line West Lake Wales – Dundee – Intercession City #1 230 kV rebuild <u>AND</u> Lake A grees – Occession 220 kV rebuild **OB** A value – Cifford new 220 kV l

Lake Agnes – Osceola 230 kV rebuild <u>OR</u> Avalon – Gifford new 230 kV line, Lake Agnes – Gifford new 230 kV line and McIntosh – Lake Agnes 230 kV rebuild

Docket No. 070393-EI FRCC Florida Central Coordinated Re-Study Report: Executive Summary Exhibit BT/TJS-6 Page 4 of 8

The study concluded that a single 2000 amp design for all the segments of the McIntosh – Taft 230 kV line would be sufficient to meet the needs for 2011 and 2012, but could become a limiting factor in the future. Therefore, all of the recommended transmission line projects should be constructed with the capability of being upgraded to two 3000 amp circuits, in order to take full advantage of the Polk/Hardee County area and the Greater Orlando area existing corridors. All dollars and proposed in-service dates listed above are estimates by the respective utilities and while they represent various levels of engineering and real estate scrutiny, are not detailed engineering level estimates.

Between the Summer of 2008 and 2010 there are various pre-contingency and post contingency overloads. With the original FCCS projects installed per the construction schedule provided by PEF for the West Lake Wales – Intercession City 230 kV projects, interim operational work-arounds will still be needed in 2008, 2009 and 2010. Some of the post contingency overloads on the Lake Agnes – Osceola 230 kV line exceed 130% and would require pre-contingency steps be taken. In general a generation redispatch of between 50 - 200 MW from the Polk/Hardee County area to the Greater Orlando area will be required during peak periods to avoid pre-contingency overloads. For post-contingency scenarios, a generation redispatch of 50 - 450 MW from the Polk/Hardee County area to the Greater Orlando area may be required to mitigate overloads. The switchable series reactor on the Lake Agnes – Osceola 230 kV line increases the loading on other facilities.

Uncommitted Merchant Generation Sensitivities

With the recommended projects constructed by summer 2011, between 500 - 700 MW of the 1400 MW of uncommitted merchant generation in the Polk/Hardee County area can be reliably delivered to the load.

Explanation of Need

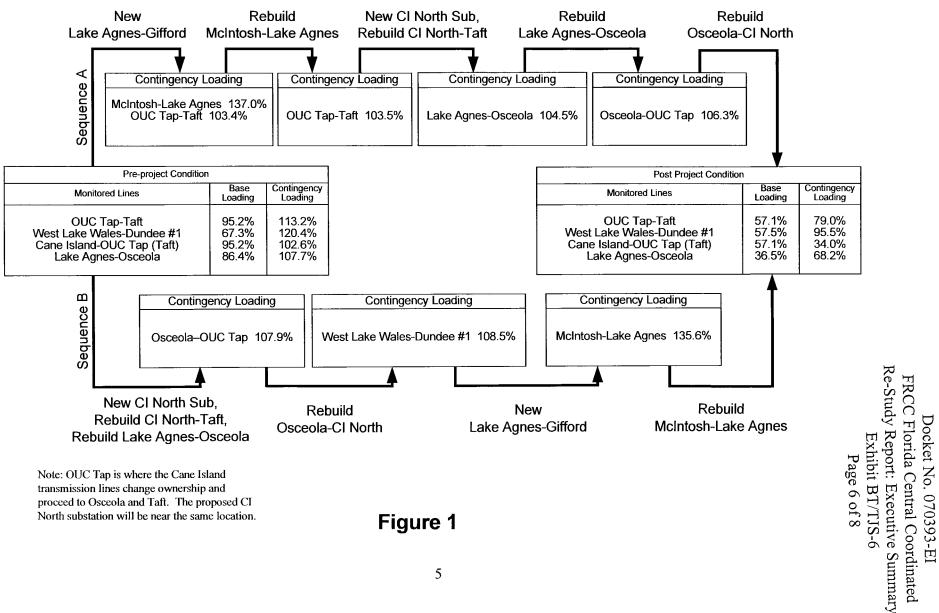
Using the 2011 and 2012 base cases (with West Lake Wales – Dundee – Intercession City projects in service), the following conditions were found:

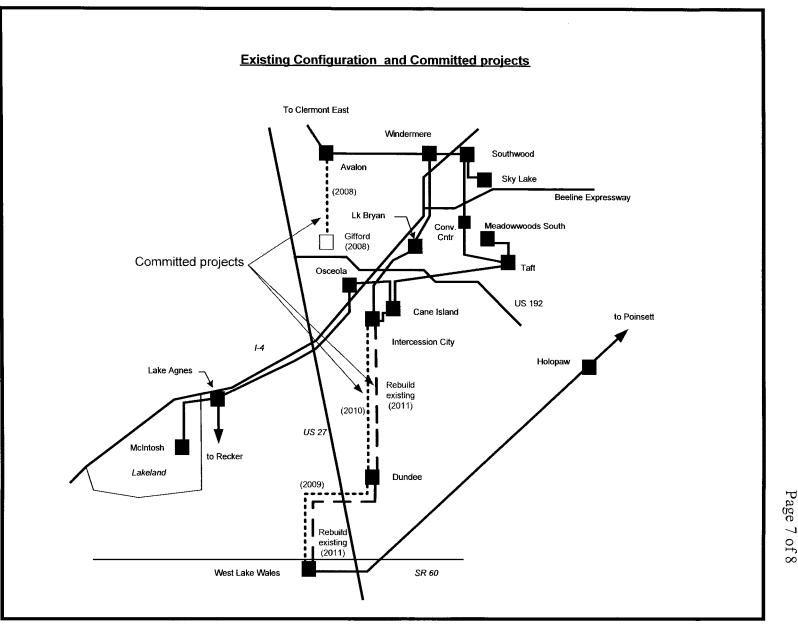
Monitored Lines	Base Loading (%)	Contingency Loading (%)
OUC Tap* – Taft	95.2	113.2
WLW – Dundee #1	67.3	120.4
Cane Island – OUC Tap*	95.2	102.6
Lake Agnes – Osceola	86.4	107.7

* OUC Tap is where the Cane Island transmission lines change ownership and proceed to Osceola and Taft. The proposed CI North substation will be near the same location.

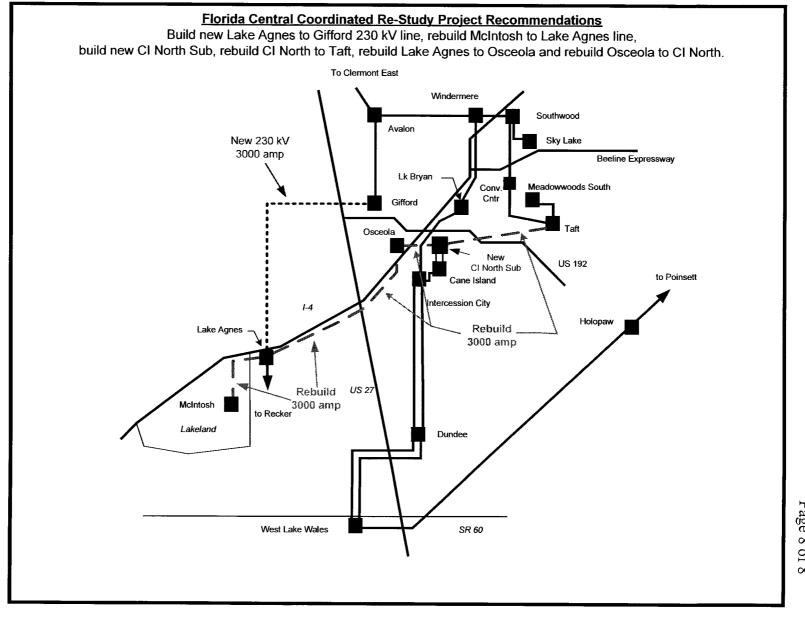
In addition to the base case results, the generation unavailable cases were evaluated to determine the sensitivity of the line loadings to changes in generation dispatch. These cases showed that the flows on the overloaded lines in the base cases could be increased between 10 - 15% under the more severe generation dispatch scenarios.

Docket No. 070393-EI FRCC Florida Central Coordinated Re-Study Report: Executive Summary Exhibit BT/TJS-6 Page 5 of 8


Many different combinations of projects were tested to determine the projects that were needed to resolve the base case and contingency overloads. After this extensive analysis, it was determined that no single set of projects within any corridor would resolve all of the issues for 2011 and 2012. Two sequences of projects were used to ensure that every project on the recommended list of projects was needed by 2011. Each sequence of projects with the most heavily loaded lines shown to justify the next project is shown in Figure 1.


Tonelusion

To ensure that the transmission system within FRCC continues to meet the NERC reliability standards the following actions are recommended:


- The Planning Committee (PC) should consider codifying a process to review all long-term firm transmission service requests that may have an adverse impact on the study area.
- Complete the PEF West Lake Wales Dundee new 230 kV, Dundee Intercession City new 230 kV line and the West Lake Wales Dundee Intercession 230 kV rebuild
- Take full advantage of the Polk/Hardee County area and Greater Orlando area existing corridors by building transmission lines at 3000 amps, with provision for a second circuit.
 Begin detailed engineering and permitting work on the recommended projects
- immediately. • Obtain firm commitment to fund and complete the projects as soon as practical.
- Begin a long-term transmission study in the 4th Quarter of 2006 to further examine the system performance with these recommended projects beyond 2012 with updated assumptions for load and generation siting.

Florida Central Area Contingency Loading and Proposed Projects

Docket No. 070393-EI FRCC Florida Central Coordinated Re-Study Report: Executive Summary Exhibit BT/TJS-6 Page 7 of 8

Docket No. 070393-EI FRCC Florida Central Coordinated Re-Study Report: Executive Summary Exhibit BT/TJS-6 Page 8 of 8

Recommendation

To ensure that the transmission system within FRCC continues to meet the NERC reliability standards the following transmission construction projects need to be completed:

Original FCCS	Projects Include	d in Re-	Study	Base Cas	6e		<u>.</u>
		New /		Needed	Planned		Estimated
From	То	Rebuild	Miles	In-Service	In-Service	Ownership	Cost (\$M)
West Lake Wales	Dundee #2	New	13.2	Before '08	Jun, 2009	PEF	\$28.5
Dundee	Intercession City #2	New	25.9	Before '08	Jun, 2010	PEF	\$54.1
West Lake Wales	Dundee #1	Rebuild	9.7	Before '08	Jun, 2011	PEF	\$20.5
Dundee	Intercession City #1	Rebuild	20.3	Before '08	Jun, 2011	PEF	\$40.5
Avalon	Gifford	New	7	Before '08	Jun, 2008	PEF	\$33.0
Vandolah	Charlotte	Terminal		Dec, 2008	Dec, 2008	FPL	\$0.1
Poinsett	Holopaw	Terminal		Dec, 2008	Dec, 2008	FPL	\$0.1
Elorida Centra	Coordinated R	e-Study	Projec	te			
		e-oluuy I	lojec	13			
Lake Agnes	Gifford					PEF/TEC	
Lake Agnes	PEF/TEC tie point	New	13.1	Before '08	Jun, 2011	TEC	\$23.5
Gifford	PEF/TEC tie point	New	19.3	Before '08	Jun, 2011	PEF	\$44.0
McIntosh	Lake Agnes	Rebuild	9.4	Before '08	Jun, 2011	OUC *	\$27.6
CI North substatio	n	New Sub		Jun, 2011	Jun, 2010	FMPA/KUA/ OUC	\$20.0
CI North	Taft	Rebuild	11.2	Jun, 2011	Jun, 2010	OUC *	\$32.6
Lake Agnes	Osceola	Rebuild	21.5	Before '08	Jun, 2012	OUC/TEC *	\$64.0
Osceola	CI North	Rebuild	4.1	Jun, 2011	Jun, 2013	OUC/TEC *	\$29.0
	Total miles	Rebuild	76.2				
	154.7	New	78.5			Total	\$417.4

* Cost estimates for these projects are based on one 3000 amp circuit. These cost estimates were obtained by adding 45% to OUC's cost estimate for one 2000 amp circuit.

<u>NOTE</u>: Based on the current and future system conditions identified for 2008 - 2010, the projects listed below (and shown above as needed "Before '08") should be constructed as soon as practical based on an expedited schedule to ensure reliable operations:

West Lake Wales – Dundee – Intercession City #2 new 230 kV line West Lake Wales – Dundee – Intercession City #1 230 kV rebuild <u>AND</u>

Lake Agnes – Osceola 230 kV rebuild <u>**OR**</u> Avalon – Gifford new 230 kV line, Lake Agnes – Gifford new 230 kV line and McIntosh – Lake Agnes 230 kV rebuild

FL	ORIDA	PUBLIC	SERVICE	COMMISSION
				\sim

DOCKET NO. <u>070393-ET</u> EXHIBIT 9	
COMPANY	GEF/TECO
WITNESS	Tillis Szelistowski (BT/TJS-7)
DATE	09/12/07

4 of 17

Note to File: See CORRECTED Comprehensive Exhibit List-1 - Hearing I.D. #1

There is No #10

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO.	EXHIBIT	0
COMPANY	\sim /	
WITNESS	X	
DATE		

Docket No. 070393-EI Excerpts from Commission's December 2006 Review of 2006 Ten Year Site Plans for Electric Utilities Exhibit BT/TJS-8 Page 1 of 6

Review of 2006 Ten-Year Site Plans for Florida's Electric Utilities

Florida Public Service Commission Tallahassee, Florida December 2006

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO	0.070393ETEXHIBIT
COMPANY	PEF/TECO
WITNESS	Tillis/Szelistowski (137/TJS-8)
DATE	09/12/07

Docket No. 070393-EI Excerpts from Commission's December 2006 Review of 2006 Ten Year Site Plans for Electric Utilities Exhibit BT/TJS-8 Page 2 of 6

4. TRANSMISSION

While generating units supply the energy needs of all Floridians, the transmission system is the backbone that delivers the energy to end users. Utilities must coordinate their individual generation and transmission plans to ensure that needed capacity can be moved from power plant sites to load centers throughout the state. The Commission has broad authority under certain sections of Chapter 366, Florida Statutes, known as the Grid Bill, to require reliability within Florida's coordinated electric grid and to ensure the planning, development, and maintenance of adequate generation, transmission, and distribution facilities within the state. The Commission will continue to monitor coordinated planning efforts by Florida's utilities and, if necessary, will exercise its Grid Bill authority to ensure the adequacy and reliability of Florida's transmission system.

PAST AND PRESENT ACTIONS

Prior to 1980, Peninsular Florida's transmission interconnections to the rest of the nation were limited, consisting of only a few 69 kV, 115 kV, and 230 kV ties at the Florida-Southern interface. These limited ties allowed Peninsular Florida's utilities to import a maximum of only 400 MW of capacity into the region. Practically speaking, Peninsular Florida was an "electrical island," a region susceptible to disturbances when large generating units such as nuclear units experienced forced, unplanned outages. These outages often caused Peninsular Florida's loads to exceed generation available in the region, which in turn increased the flow of electricity over the limited Florida-Southern interface. Such a scenario frequently caused Peninsular Florida to disconnect from the rest of the nation, further aggravating the problem in the state and increasing the magnitude of customer blackouts.

In response to reliability concerns caused by limitations of the Florida-Southern interface, the Commission worked with Peninsular Florida's utilities to evaluate the feasibility and cost of strengthening transmission interties between the regions. From these evaluations, FPL and JEA agreed to construct two parallel 500 kV transmission lines connecting Peninsular Florida with the Southern Company. Completed in 1982, the new 500 kV lines increased Peninsular Florida's maximum import capability to its present level of 3,600 MW. The intertie supports capacity exports of as much as 2,600 MW out of the region. The import capability normally represents approximately 7.5% of Peninsular Florida's peak demand for winter 2006.

The two 500 kV lines, along with additions to the internal Florida and Southern transmission systems, strengthen the Florida-Southern interface, reduce the incidence of separation, and allow the Florida systems to import significant amounts of low-cost coal energy. In addition, the FCG Operating Committee monitors imports on a real-time basis and determines the hour-by-hour safe import levels. Under these limits, Peninsular Florida should not separate from the Southern Company upon loss of the single largest generating unit or any single transmission line or transformer.

In the early 1990s, FPL and PEF performed studies to determine the cost-effectiveness of constructing a third 500 kV transmission line to increase the import capability of the Florida-Southern interface. However, Federal Energy Regulatory Commission (FERC) wholesale pricing policies and changing economics caused the project to be abandoned. Siting of new transmission facilities has become controversial nationwide, and right-of-way has grown more expensive to purchase. Despite these obstacles, Florida's utilities have added substantial amounts of transmission at 230 kV and lower

Docket No. 070393-EI Excerpts from Commission's December 2006 Review of 2006 Ten Year Site Plans for Electric Utilities Exhibit BT/TJS-8 Page 3 of 6

levels within the state over the years. Given the obstacles to obtaining additional transmission from outside the state, Florida's utilities must continue to seek out self-sustaining solutions to meet the ever growing demand for electricity in the state.

RELIABILITY STANDARDS

Nationwide, electric utilities plan their bulk power systems to comply with NERC and regional reliability standards. NERC's mission is to ensure that the bulk electric system in North America is reliable, adequate and secure. Since its formation in 1968, NERC operated successfully as a self-regulatory organization, and the electric industry voluntarily complied with NERC reliability standards. However, changes in the electric industry have rendered the voluntary compliance system no longer adequate. In response to these changes, Congress required the FERC to develop a new mandatory system of reliability standards and compliance. The Energy Policy Act of 2005 authorized the creation of an electric reliability organization (ERO) with the statutory authority to enforce compliance with reliability standards among all market participants. NERC received certification as the ERO from the FERC in July 2006.

NERC works with all stakeholder segments of the electric industry, including electricity users, to develop standards for the reliable planning and operation of the bulk power systems. Fundamentally, a power system should always operate in such a way that no credible contingency could trigger cascading outages or another form of instability. Reliability standards are generally applied as follows:

- Under a single-contingency criterion, a utility's transmission system experiences no equipment overloads, voltage violations or instability following a contingency outage of the single most crucial element, whether that piece of equipment is a generator, a transmission line, or a transformer. The N-1 criterion is generally the minimum reliability standard at which electric utilities plan their bulk power systems.
- Under a multiple-contingency criterion, a utility's transmission system must withstand the simultaneous failure of two or more elements with a controlled loss of load and no cascading outages which affect neighboring utilities. The transmission system must subsequently be able to adjust such that that all elements operate within their emergency ratings for the duration of the outage.

In response to Congressional actions to require mandatory reliability standards, which were supported by the Commission, the FRCC has implemented a compliance program that will monitor and enforce compliance with NERC and FRCC reliability standards. The program relies on self-assessment, periodic reporting, and on-site audits to ensure compliance. In administering the compliance program, the FRCC works closely with all owners, operators and users of the state's bulk electric system. The Commission staff attends FRCC meetings and maintains an open dialog with the FRCC on reliability matters affecting the state. The Commission will continue to work closely with the FRCC, NERC, and FERC to ensure the adequacy and reliability of Florida's electric grid.

Docket No. 070393-EI Excerpts from Commission's December 2006 Review of 2006 Ten Year Site Plans for Electric Utilities Exhibit BT/TJS-8 Page 4 of 6

FRCC TRANSMISSION PLANNING PROCESS

One of the benefits attributed to the formation of a regional transmission organization (RTO) is centralized, coordinated transmission planning. In April 2006, the Commission closed a lengthy investigation into the prudence of forming an RTO, known as GridFlorida, because it did not appear to be cost-effective. The Commission directed Peninsular Florida's utilities to coordinate their transmission planning activities through the FRCC in an effort to capture some benefits of an RTO. The FRCC's transmission planning process is expected to yield a more complete transmission expansion plan from a peninsular perspective. The process will ensure that the reliability standards and criteria established by the NERC and the FRCC are met, and will utilize the specific design, operating, and planning criteria used by Peninsular Florida transmission owners. The Commission staff has actively participated in the FRCC's meetings on transmission planning. The Commission will continue to monitor coordinated planning efforts by Florida's utilities and, if necessary, will exercise its Grid Bill authority to ensure the adequacy and reliability of Florida's transmission system.

Through the FRCC's coordinated transmission planning process, Peninsular Florida's utilities recently completed a long-range transmission study for the 2005-2014 period. The long-range transmission study is a single-contingency assessment of Peninsular Florida's transmission system to ensure that it experiences no equipment overloads, voltage violations, or instability at peak demand conditions following the loss of a single transmission line, generating unit, or transformer. The process begins with the consolidation of the long-term transmission plans of all Peninsular Florida transmission owners. All transmission facilities 69 kV and above are included. The first five years of the study are a detailed evaluation and analysis of these independently developed transmission plans, while the second five years are a generalized, long-term evaluation due to the many uncertainties occurring in the latter years of the planning horizon. The FRCC normally begins its annual transmission planning studies in June of each year and completes them by March of the following year. A 2006 update of the recently completed study, comprising new data for already identified critical congestion areas, is scheduled for completion by March 2007.

The FRCC also performs sensitivity studies to test the robustness of Peninsular Florida's transmission system under various conditions. Examples of sensitivities studied are as follows:

- Weather extremes for summer and winter periods;
- Different load levels (e.g., 100%, 80%, 60%, 40%) and/or seasons of the year;
- Various generation dispatches that will test or stress the transmission system;
- Reactive supply and demand assessment (generator reactive limits, power factor); and,
- Other scenarios or system conditions, such as stability analysis.

Consistent with the FRCC transmission planning process, these sensitivity studies will not necessarily call for the construction of transmission facilities identified in the studies. However, these sensitivities will provide insight into how robust the planned transmission system is expected to be. The FRCC plans to complete the sensitivity studies by the spring of 2007 and forward the results of these studies to the Commission.

Docket No. 070393-EI Excerpts from Commission's December 2006 Review of 2006 Ten Year Site Plans for Electric Utilities Exhibit BT/TJS-8 Page 5 of 6

STUDIES OF REGIONAL TRANSMISSION CONSTRAINTS

Florida Central Coordinated Study

Utilities in central Florida have not added enough transmission capacity in the region in recent years to keep pace with sustained customer load growth in the Greater Orlando area. The result is transmission congestion that prevents the full utilization of generating capacity in the Polk County region. At the urging of the Commission, the FRCC recently completed a major planning assessment known as the *Florida Central Coordinated Study*. The assessment identified an immediate need for additional transmission transfer capability along the Interstate 4 corridor, to move electricity generated in the Polk county region to load centers in the Greater Orlando area. The region is shown in Figure 9. The need for additional transmission transfer capability, which cannot be met until 2008 at the earliest, is further exacerbated in 2011 when additional generating capability in the Polk County area is scheduled to enter service.

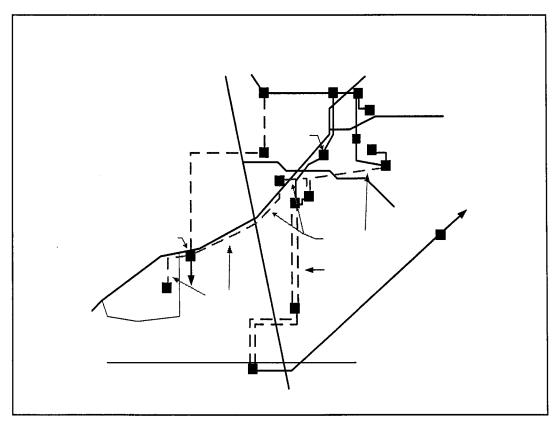


Figure 9: Florida Central Coordinated Study - Region

The *Florida Central Coordinated Study* identified approximately \$277 million in transmission projects that would address future needs in the region. Eight of these projects are expected to be needed before 2008 but not completed until 2009 or later. Permitting activities, as well as construction activities in active transmission corridors, are expected to cause all projects to be completed by 2011. Therefore, the region's utilities anticipate continuing the use of operational strategies such as uneconomic dispatch, voltage reduction, and line switching to mitigate contingency overloads. The Commission believes that operational strategies are essential to the operation of a

Docket No. 070393-EI Excerpts from Commission's December 2006 Review of 2006 Ten Year Site Plans for Electric Utilities Exhibit BT/TJS-8 Page 6 of 6

transmission system under contingencies, but such actions are not appropriate to address transmission needs known through planning studies. Uneconomic dispatch results in higher fuel costs that are borne by ratepayers through higher bills.

FPL, FMPA, the Kissimmee Utility Authority $(KUA)^2$, OUC, PEF, and TECO are responsible for the projects identified in the *Florida Central Coordinated Study*. These projects are listed in Table 2. The proposed Lake Agnes - Gifford line is the only project expected to require certification under the TLSA.

LINE OWNER	TRANSMISSION LINE	PROJECT TYPE	LINE LENGTH (MILES)	NEEDED IN- SERVICE	PLANNED IN- SERVICE	EST. COST (\$M)
PEF	West Lake Wales - Dundee #2	e #2 New		Before 2008	6/2009	28.5
PEF	Dundee - Intercession City #2	New	25.9	Before 2008	6/2010	54.1
PEF	West Lake Wales - Dundee #1	Rebuild	9.7	Before 2008	6/2011	20.5
PEF	Dundee - Intercession City #1	Rebuild	20.3	Before 2008	6.2011	40.5
PEF	Avalon - Gifford	New	7.0	Before 2008	6/2008	33
FPL	Vandollah - Charlotte	Terminal		12/2008	12/2008	0.1
FPL	Poinsett - Holopaw	Terminal		12/2008	12/2008	0.1
TECO/PEF	LAKE AGNES - GIFFORD ³	NEW	32.4	BEFORE 2008	6/2011	67.5
OUC	McIntosh - Lake Agnes	Reconductor	9.4	Before 2008	6/2011	6.1
FMPA/KUA	Cane Island - CI North Tap	Reconductor	6.0	6/2011	6/2010	3.0
OUC	CI North Tap - Taft	Reconductor	11.2	6/2011	6/2010	7.3
OUC/TECO	Lake Agnes - Osceola	Reconductor	21.5	Before 2008	6/2008	14.0
OUC/TECO Osceola - CI North Tap		Reconductor	4.1	6/2011	6/2009	2.7
					TOTAL COST	277.4

Table 2: Florida Central Coordinated Study - Needed Transmission Projects

The Commission urges Peninsular Florida's utilities to continue working together through the FRCC to identify and address all reliability issues caused by transmission system limitations before operational strategies are needed. The Commission commends the FRCC for its efforts in coordinating the transmission plans of Peninsular Florida's utilities. However, the *Florida Central Coordinated Study* identified two areas in which the FRCC can improve its process: (1) formation of a cost allocation methodology for new transmission projects and (2) establishment of a uniform process for queuing transmission service requests made to utilities. The Commission will continue to monitor coordinated planning efforts by Florida's utilities and, if necessary, will exercise its Grid Bill authority to ensure the adequacy of Florida's transmission system.

² KUA is an all-requirements member of FMPA. KUA does not file a Ten-Year Site Plan.

³ Lake Agnes - Gifford line will require certification under the TLSA.

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 1 of 80

2006 Regional Load & Resource Plan

July 2006

FLORIDA PUBLIC SERVICE COMMISSION	X
DOCKET NO. 070393 EXHIBIT 12 COMPANY PEF/TECD	
WITNESS $\frac{1113}{52elistowsKL(D)}$	

F

FLORIDA RELIABILITY COORDINATING COUNCIL

FLORIDA RELIABILITY COORDINATING COUNCIL 2006 REGIONAL LOAD & RESOURCE PLAN INDEX

I. DEMAND AND ENERGY

History and Forecast	1
History and Forecast of Energy Consumption and Number of Customers by Customer Class	2
History and Forecast of Summer Peak Demand (MW)	3
History and Forecast of Winter Peak Demand (MW)	4
History and Forecast of Annual Net Energy for Load (GWH)	5
Summary of Interruptible Load and Load Management (MW)	6

II. GENERATING FACILITIES

Summary of Existing Capacity	7
Existing Generating Facilities	8-19
Planned and Prospective Generating Facility Additions and Changes	20-24
Summary of Capacity, Demand and Reserve Margin	25
Contracted Firm Imports and Firm Exports	26

III. NON-UTILITY GENERATORS

Existing Non-Utility, QF, and Self Service Generation Facilities 2	27-29
Existing Uncommitted Merchant Generation	30
Planned and Prospective Non-Utility, QF, and Self-Service Generation Facilities Installations, Changes, and Removals	31-32
Planned and Prospective Uncommitted Merchant Generating Facilities Installations, Changes, and Removals	33
Non-Utility Generating Facilities Summary	34

IV. CONTRACTS

Summary of Firm Capacity and Energy Contracts	35-37
---	-------

V. FUELS

Fuel Requirements	38
Energy Sources (GWH)	39
Energy Sources (% of GWH)	40

VI. TRANSMISSION

Summary and Specifications of Proposed Transmission Lines	41
Existing Transmission Map	42
Future Transmission Map	43

VII. GLOSSARY

Abbreviations – Electric Market Participants	G-1
Generation Terms	G-2
Contract Terms	G-3
Definitions	G-4

STATE SUPPLEMENT

MERCHANT DATA

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 2 of 80

FLORIDA RELIABILITY COORDINATING COUNCIL

2006

REGIONAL LOAD & RESOURCE PLAN

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 3 of 80

HISTORY AND FORECAST

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	:	SUMMER PEAK [DEMAND (MW))		W	INTER PEAK	DEMAND (MW	/)		ENERGY	
	ACTUAL					ACTUAL					NET	
	PEAK					PEAK					ENERGY	LOAD
	DEMAND					DEMAND					FOR LOAD	FACTOR
YEAR	(MW)				YEAR	(MW)				YEAR	(GWH)	(%)
1996	32,315				1996 / 97	34,762				1996	173,327	57.26%
1997	32,924				1997 / 98	30,932				1997	175,534	57.64%
1998	37,153				1998 / 99	35,907				1998	187,868	57.72%
1999	37,493				1999 / 00	36,394				1999	188,598	57.42%
2000	37,379				2000 / 01	40,258				2000	196,893	60.13%
2001	38,670				2001 / 02	39,675				2001	201,251	57.07%
2002	39,903				2002 / 03	44,472				2002	210,649	60.26%
2003	40,417				2003 / 04	35,564				2003	219,342	56.30%
2004	42,172				2004 / 05	41,090				2004	219,914	59.53%
2005	45,950				2005 / 06	42,493				2005	226,544	56.28%

YEAR	TOTAL PEAK DEMAND (MW)	INTER- RUPTIBLE LOAD (MW)	LOAD MANAGE- MENT (MW)	FIRM PEAK DEMAND (MW)	YEAR	TOTAL PEAK DEMAND (MW)	INTER- RUPTIBLE LOAD (MW)	LOAD MANAGE- MENT (MW)	FIRM PEAK DEMAND (MW)	YEAR	NET ENERGY FOR LOAD (GWH)	LOAD FACTOR (%)	
2006	45,520	857	1,902	42,761	2006 / 07	48,296	869	2,635	44,792	2006	232,561	58.32%	
2007	46,725	875	2,072	43,778	2007 / 08	49,464	890	2,669	45,905	2007	239,897	56.70%	
2008	48,030	884	2,117	45,029	2008 / 09	50,732	888	2,717	47,127	2008	249,200	57.51%	
2009	49,233	884	2,139	46,210	2009 / 10	51,678	862	2,728	48,088	2009	257,088	57.85%	۲Ţ
2010	50,221	855	2,151	47,215	2010 / 11	52,869	867	2,745	49,257	2010	263,792	58.27%	لي لا
2011	51,343	859	2,166	48,318	2011 / 12	53,923	871	2,764	50,288	2011	270,282	58.36%	Ωн
2012	52,490	863	2,185	49,442	2012 / 13	55,086	874	2,792	51,420	2012	277,050	58.65%	H C D
2013	53,686	867	2,208	50,611	2013 / 14	56,271	878	2,822	52,571	2013	283,752	58.80%	EXC
2014	54,830	871	2,233	51,726	2014 / 15	57,674	882	2,852	53,940	2014	290,591	58.95%	cket Load Exhii
2015	56,130	875	2,237	53,018	2015 / 16	59,162	886	2,844	55,432	2015	297,561	58.90%	i bi di T

NOTE: FORECASTED SUMMER AND WINTER DEMANDS ARE NON-COINCIDENT.

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 4 of 80

1

FRCC Form 4.0 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS AS OF JANUARY 1, 2006

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
		I	RURAL & RESIDENT AVERAGE	AVG. KWH		COMMERCIAL AVERAGE	AVG. KWH		INDUSTRIAL AVERAGE	AVG. KWH	STREET & HIGHWAY	OTHER	TOTAL	WHOLESALE PURCHASES FOR	WHOLESALE SALES FOR	UTILITY USE &	NET ENERGY
	YEAR	GWH	NO. OF CUSTOMERS	CONSUMPTION PER CUST.	GWH	NO. OF CUSTOMERS	CONSUMPTION PER CUST.	GWH	NO. OF CUSTOMERS	CONSUMPTION PER CUST.	LIGHTING GWH	SALES GWH	SALES GWH	RESALE GWH	RESALE GWH	LOSSES GWH	FOR LOAD GWH
	1996	81,047	6,066,709	13,359	53,086	720,371	73,693	18,338	25,523	718,489	600	4,278	157,349	0	0	15,978	173,327
	1997	80,727	6,185,747	13,050	55,643	737,205	75,478	18,707	25,936	721,275	620	4,536	160,233	0	0	15,301	175,534
	1998	88,200	6,309,119	13,980	59,052	755,690	78,143	19,560	26,994	724,605	614	4,603	172,029	0	0	15,839	187,868
	1999	87,915	6,711,345	13,099	62,799	812,718	77,270	19,286	31,278	616,600	796	4,324	175,120	0	0	13,478	188,598
	2000	92,468	6,727,796	13,744	65,565	821,876	79,775	19,418	28,286	686,488	781	4,521	182,753	0	6,067	20,207	196,893
	2001	95,049	6,895,042	13,785	68,199	846,796	80,538	19,603	27,915	702,239	752	4,313	187,916	0	7,425	20,760	201,251
	2002	101,307	7,051,608	14,367	70,261	864,098	81,311	19,986	28,340	705,222	768	4,503	196,825	0	6,743	20,567	210,649
	2003	105,720	7,224,624	14,633	72,031	882,244	81,645	20,321	30,792	659,944	775	4,775	203,622	0	7,425	23,145	219,342
	2004	105,151	7,422,229	14,167	72,696	903,916	80,423	21,074	33,710	625,156	773	4,898	204,592	0	8,231	23,553	219,914
	2005	108,836	7,611,707	14,299	75,073	928,969	80,813	21,270	35,893	592,595	790	5,099	211,068	0	9,290	24,766	226,544
96-2005	% AAGR	3.33%			3.93%			1.66%									3.02%
	2006	112,655	7,785,602	14,470	76,410	950,870	80,358	21,533	37,299	577,308	852	5,155	216,605	0	7,347	23,303	232,561
	2007	115,941	7,952,155	14,580	79,681	972,411	81,942	21,970	37,080	592,503	879	5,319	223,790	0	7,718	23,825	239,897
	2008	120,011	8,116,388	14,786	83,456	993,266	84,022	22,541	36,910	610,702	909	5,479	232,396	0	6,751	23,555	249,200
	2009	123,901	8,282,006	14,960	86,583	1,014,486	85,347	22,961	36,891	622,401	937	5,639	240,021	0	6,708	23,775	257,088
	2010	127,323	8,416,168	15,128	89,169	1,029,295	86,631	23,135	37,007	625,152	963	5,791	246,381	0	7,390	24,801	263,792
	2011	130,598	8,573,459	15,233	91,540	1,048,643	87,294	23,515	37,464	627,669	984	5,947	252,584	0	7,274	24,972	270,282
	2012	133,972	8,729,269	15,347	94,023	1,067,715	88,060	23,913	37,849	631,800	1,006	6,103	259,017	0	7,358	25,391	277,050
	2013	137,401	8,884,769	15,465	96,572	1,086,586	88,877	24,306	38,395	633,051	1,029	6,258	265,566	0	7,430	25,616	283,752
	2014	140,745	9,040,649	15,568	99,276	1,105,384	89,811	24,699	39,024	632,918	1,053	6,417	272,190	0	7,441	25,842	290,591
	2015	144,062	9,197,420	15,663	102,041	1,124,126	90,774	25,094	39,712	631,900	1,076	6,582	278,855	0	7,552	26,258	297,561
06-2015	% AAGR	2.77%			3.27%			1.72%									2.78%

FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 5 of 80

FRCC Form 5.0 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(-)	(-)	X-7	· · /	· · ·	()	()	()	•••

[(3)+(4)+(5)+(6)+(7)+(8)+(9)]

		D	EMAND REDUCTIO	N				SUMMER
	SUMMER	• 0.000	RESIDENTIAL	COMM./IND.	QF LOAD	CUMUI	LATIVE	NET FIRM
	TOTAL	INTERRUPTIBLE	LOAD	LOAD	SERVED BY QF	CONSER	RVATION	PEAK
YEAR	DEMAND	LOAD	MANAGEMENT	MANAGEMENT	GENERATION	RESIDENTIAL	COMM./IND.	DEMAND
2004	44,519	61	77	2	243	1,126	838	42,172
2005	48,634	254	184	8	169	1,194	875	45,950
2006	48,071	857	1,223	679	327	1,296	928	42,761
2007	49,371	875	1,322	750	335	1,349	962	43,778
2008	50,761	884	1,329	788	335	1,405	991	45,029
2009	52,043	884	1,330	809	335	1,463	1,012	46,210
2010	53,122	855	1,328	823	350	1,524	1,027	47,215
2011	54,333	859	1,330	836	361	1,587	1,042	48,318 🗄
2012	55,565	863	1,335	850	367	1,652	1,056	48,318 FR 49,442 CC
2013	56,841	867	1,344	864	367	1,718	1,070	2001
2014	58,066	871	1,356	877	367	1,786	1,083	51,726 P Anit 53,018 State
2015	59,447	875	1,355	882	367	1,854	1,096	53,018 age ubit an

CAAGR (%):

FROC 2.42% BT/TJS-9 d Resource Plan

FRCC Form 6.0 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) AS OF JANUARY 1, 2006

(1) (2) (3) (4) (5) (6) (7) (8) ((1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
-----------------------------------	-----	-----	-----	-----	-----	-----	-----	-----	-----

[(3)+(4)+(5)+(6)+(7)+(8)+(9)]

		D	EMAND REDUCTIO	N				WINTER
	WINTER		RESIDENTIAL	COMM./IND.	QF LOAD	CUMUI	LATIVE	NET FIRM
	TOTAL	INTERRUPTIBLE	LOAD	LOAD	SERVED BY QF	CONSER	RVATION	PEAK
YEAR	DEMAND	LOAD	MANAGEMENT	MANAGEMENT	GENERATION	RESIDENTIAL	COMM./IND.	DEMAND
2004/05	43,321	66	91	0	180	1,493	401	41,090
2005/06	44,764	60	104	0	144	1,553	410	42,493
2006/07	50,681	869	1,981	654	312	1,641	432	44,792
2007/08	51,918	890	1,989	680	312	1,699	443	45,905
2008/09	53,256	888	2,010	707	312	1,757	455	47,127
2009/10	54,283	862	2,012	716	327	1,816	462	48,088 <u>1</u>
2010/11	55,556	867	2,020	725	338	1,879	470	48,088 FR 49,257 CC 50,288 CC
2011/12	56,691	871	2,031	733	344	1,946	478	50,288 Ö
2012/13	57,930	874	2,049	743	344	2,013	487	51,420 Exhibit 52,571 age 53,940
2013/14	59,188	878	2,070	752	344	2,078	495	52,571 ag
2014/15	60,663	882	2,093	759	344	2,142	503	53,940 👸 🗮 🛱
2015/16	62,223	886	2,079	765	344	2,206	511	
							CAAGR (%):	55,432 of 80 2.40%
				4				e Plan

FRCC Form 7.0 HISTORY AND FORECAST OF ANNUAL NET ENERGY FOR LOAD (GWH) AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	.,							

[(3)+(4)+(5)+(6)+(7)+(8)+(9)]

		D	EMAND REDUCTIO	N				
	TOTAL	•	RESIDENTIAL	COMM./IND.	QF LOAD	CUMUL	ATIVE	NET
	ENERGY	INTERRUPTIBLE	LOAD	LOAD	SERVED BY QF	CONSER		ENERGY
YEAR	FOR LOAD	LOAD	MANAGEMENT	MANAGEMENT	GENERATION	RESIDENTIAL	COMM./IND.	FOR LOAD
2004	227,635	1	2	0	2,342	3,023	2,353	219,914
2005	234,823	1	12	7	2,632	3,164	2,463	226,544
2006	241,012	0	2	0	2,553	3,340	2,556	232,561
2007	248,608	0	2	0	2,623	3,452	2,634	239,897
2008	258,076	0	2	0	2,624	3,569	2,681	249,200
2009	266,120	0	2	0	2,623	3,692	2,715	257,088
2010	273,104	0	3	0	2,756	3,820	2,733	263,792
2011	279,848	0	3	0	2,856	3,956	2,751	270,282
2012	286,823	0	3	0	2,907	4,094	2,769	277,050
2013	293,683	0	3	0	2,906	4,235	2,787	283,752
2014	300,683	0	3	0	2,906	4,378	2,805	290,591
2015	307,812	0	3	0	2,906	4,520	2,822	297,561

CAAGR (%): 2.78%

SUMMARY OF INTERRUPTIBLE LOAD AND LOAD MANAGEMENT (MW) 2006 THROUGH 2015

SUMMER

		FKE		FF	۶L	JEA	LAK	NSB	OUC		PEF		SI	EC		TEC		FRO	сс тот	ALS	FRCC
YEAR	INT	RES LM	COM LM	RES LM	COM LM	INT	INT	RES LM	INT	INT	RES LM	COM LM	INT	RES LM	INT	RES LM	COM LM	INT	RES LM	COM LM	TOTAL INT + LM
2006	2	3	2	799	619	175	0	5	0	419	228	39	97	95	164	93	19	857	1,223	679	2,759
2007	2	3	2	926	688	177	0	5	0	431	202	40	97	95	168	91	20	875	1,322	750	2,947
2008	2	3	3	962	724	180	0	5	0	437	179	41	97	95	168	85	20	884	1,329	788	3,001
2009	3	3	3	984	744	183	0	6	0	433	158	42	97	95	168	84	20	884	1,330	809	3,023
2010	3	3	3	1,001	756	185	0	6	0	424	140	43	97	95	146	83	21	855	1,328	823	3,006
2011	3	3	3	1,020	767	188	0	6	0	425	124	45	97	95	146	82	21	859	1,330	836	3,025
2012	3	3	3	1,040	779	191	0	6	0	426	109	46	97	95	146	82	22	863	1,335	850	3,048
2013	3	3	3	1,062	791	194	0	6	0	427	97	47	97	95	146	81	23	867	1,344	864	3,075
2014	3	3	3	1,086	803	197	0	6	0	428	86	48	97	95	146	80	23	871	1,356	877	3,104
2015	3	3	3	1,095	807	200	0	7	0	429	76	48	97	95	146	79	24	875	1,355	882	3,112

WINTER

		FKE		FF	۶L	JEA	LAK	NSB	OUC		PEF		SI	EC		TEC		FRO	сс тот	ALS	FRCC
YEAR	INT	RES LM	COM LM	RES LM	COM LM	INT	INT	RES LM	INT	INT	RES LM	COM LM	INT	RES LM	ΙΝΤ	RES LM	COM LM	INT	RES LM	COM LM	TOTAL INT + LM
2006/07	0	0	0	964	605	175	0	5	0	426	671	30	97	140	171	201	19	869	1,981	654	3,504
2007/08	0	0	0	1,001	631	178	0	5	0	444	649	31	97	140	171	194	18	890	1,989	680	3,559
2008/09	0	0	0	1,042	656	180	0	6	0	440	631	33	97	140	171	191	18	888	2,010	707	3,605
2009/10	0	0	0	1,062	663	183	0	6	0	432	615	35	97	140	150	189	18	862	2,012	716	3,590
2010/11	0	0	0	1,084	669	186	0	6	0	434	603	37	97	140	150	187	19	867	2,020	725	3,612
2011/12	0	0	0	1,107	676	189	0	6	0	435	593	38	97	140	150	185	19	871	2,031	733	3,635
2012/13	0	0	0	1,133	683	192	0	7	0	436	586	40	97	140	149	183	20	874	2,049	743	3,666
2013/14	0	0	0	1,160	690	194	0	7	0	437	581	42	97	140	150	182	20	878	2,070	752	3,700
2014/15	0	0	0	1,189	696	197	0	7	0	438	577	42	97	140	150	180	21	882	2,093	759	3,734
2015/16	0	0	0	1,189	696	200	0	8	0	439	564	48	97	140	150	178	21	886	2,079	765	3,730

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 9 of 80

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL SUMMARY OF EXISTING CAPACITY AS OF JANUARY 1, 2006

	NET CAPABI	LITY (MW)
UTILITY	SUMMER	WINTER
FLORIDA KEYS ELECTRIC COOPERATIVE ASSOCIATION INC	21	21
FLORIDA MUNICIPAL POWER AGENCY	636	667
FLORIDA POWER & LIGHT COMPANY	20,777	22,099
FORT PIERCE UTILITIES AUTHORITIES	119	119
GAINESVILLE REGIONAL UTILITIES	612	632
HOMESTEAD CITY OF	53	53
JEA	3,387	3,552
KEY WEST UTILITY BOARD	52	52
KISSIMMEE UTILITY AUTHORITY	294	316
LAKE WORTH UTILITIES CITY OF	94	102
LAKELAND CITY OF	913	995
NEW SMYRNA BEACH UTILITIES COMMISSION OF	66	70
OCALA ELECTRIC UTILITY	11	11
ORLANDO UTILITIES COMMISSION	1,199	1,257
PROGRESS ENERGY FLORIDA	8,842	9,760
REEDY CREEK IMPROVEMENT DISTRICT	43	44
SEMINOLE ELECTRIC COOPERATIVE INC	1,819	1,886
ST CLOUD CITY OF	21	21
TALLAHASSEE CITY OF	744	795
TAMPA ELECTRIC COMPANY	4,071	4,383
US CORPS OF ENGINEERS - MOBILE	44	44
VERO BEACH CITY OF	150	155
TOTALS:	40.000	47.000
FRCC EXISTING CAPACITY:	43,966	47,033
NON-UTILITY GENERATING FACILITIES (FIRM):	1,992	2,064
MERCHANT PLANT FACILITIES (FIRM):	2,686	2,376
TOTAL FRCC EXISTING:	48,645	51,473

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 10 of 80

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

8

08 to 11 əgsq
Exhibit BT/TJS-9
FRCC Load and Resource Plan
Docket No. 070393-EI

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
				DDIA	ARY FUEL		NATE FUEL	ALT. FUEL STORAGE	COMMERCIAL	EXPECTED	GROS	-	NET CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
												(()	_
ORIDA KEYS ELECTRIC COC	PERATIVE AS														
MARATHON	1	MONROE	IC	DFO	тк	RFO	тк	0	6 / 1988	/	2	2	2	2	OP
MARATHON	2	MONROE	IC	DFO	тк	RFO	тк	0	6 / 1988	/	2	2	2	2	OP
MARATHON	3	MONROE	IC	DFO	тк	RFO	тк	0	6 / 1955	/	2.5	2.5	2.5	2.5	OP
MARATHON	4	MONROE	IC	DFO	тк	RFO	тк	0	6 / 1957	/	2.5	2.5	2.5	2.5	OP
MARATHON	5	MONROE	IC	DFO	тк	RFO	тк	0	6 / 1959	/	2.5	2.5	2.5	2.5	OS
MARATHON	6	MONROE	IC	DFO	ŤΚ	RFO	тк	0	6 / 1973	/	2.5	2.5	2.5	2.5	OP
MARATHON	7	MONROE	IC	DFO	тк	RFO	тк	0	6 / 1973	/	2.5	2.5	2.5	2.5	OP
MARATHON	8	MONROE	IC	DFO	тк	RFO	тк	0	1 / 1998	/	3.5	3.5	3.5	3.5	OP
MARATHON	9	MONROE	IC	DFO	ΤK	RFO	тк	0	1 / 2001	/	3.5	3.5	3.5	3.5	OP
											FKE TOTAL:		21	21	
											THE TOTAL				
ORIDA MUNICIPAL POWER	AGENCY														
CANE ISLAND (34/40)*	1GT	OSCEOLA	GT	NG	PL	DFO	тк	0	11 / 1994	/	17	15	17	15	OP
CANE ISLAND (110/120)*	2CT	OSCEOLA	СТ	NG	PL	DFO	тк	0	6 / 1995	/	35	40	35	40	OP
CANE ISLAND (110/120) *	2CW	OSCEOLA	CA	WH	NA	NA	NA	0	6 / 1995	/	39	40	20	20	OP
CANE ISLAND (244/267) *	3CT	OSCEOLA	ст	NG	PL	DFO	тк	0	1 / 2002	/	90.5	90.5	78	80	OP
CANE ISLAND (244/267) *	3CW	OSCEOLA	CA	WH	NA	NA	NA	0	1 / 2002	/	49.3	49.3	45	45	OP
INDIAN RIVER (76/96) *	A-B	BREVARD	GT	NG	PL	DEO	тк	0	7 / 1989	1	28	36	28	36	OP
INDIAN RIVER (218/256) *	C-D	BREVARD	GT	NG	PL	DFO	тк	0	8 / 1992	/	45	52	44	52	OP
ST. LUCIE (878/892) *	2	ST. LUCIE	ST	NUC	тк			0	6 / 1983	/	74	75	74	75	OP
STANTON (467/470) *	1	ORANGE	ST	BIT	RR			0	7 / 1987	/	126	127	117	118	OP
STANTON (469/469) *	2	ORANGE	šт	BIT	RR			0	6 / 1996	/	133	133	127	127	OP
STANTON (403/403) STANTON (667/712) *	A	ORANGE	ст	NG	PL	DFO	тк	3	10 / 2003	/	13	15	12	14	OP
STANTON (667/712) *	A	ORANGE	CA	WH	NA	NA	NA	0	10 / 2003	/	10	10	9	9	OP
STOCK ISLAND	CT2	MONROE	GT	DFO	WA		NA 	0	9 / 1999	/	18	18	9 15		OP
STOCK ISLAND	СТЗ	MONROE	GT	DFO	WA			0	9 / 1999	/	18	18	15	18	OP
STOCK ISLAND	013	WONKOE.	01	DFO	WA	_		0	31 1333	,	10		13		0
											FMPA TOTAL:		636	667	
ORIDA POWER & LIGHT COM	IPANY														
CAPE CANAVERAL	1	BREVARD	ST	RFO	WA	NG	PL.	0	4 / 1965	/	418	423	399	403	OP
CAPE CANAVERAL	2	BREVARD	ST	RFO	WA	NG	PL	0	4 / 1969	/	418	423	399	403	OP
CAPE CANAVERAL	∠ 5	DADE	ST	NG	PL		PL	0	4 / 1969	/	418	423	65	403	OP
OUTEN	5	DADE	31	NG	PL			0	11 / 1904	/	00	70	65	07	
CUTLER	6	DADE	ST	NG	PL			0	7 / 1955	/	110	114	105	109	OP

2006

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 12 of 80

(14)

NET

(13)

GROSS

(15)

(16)

Total Gross Capability for Jointly Owned Unit (Summer/Winter)

(1)

(2) (3)

COMMERCIAL EXPECTED CAPABILITY CAPABILITY PRIMARY FUEL ALTERNATE FUEL STORAGE UNIT FUEL TRANSP. FUEL TRANSP. (DAYS IN-SERVICE RETIREMENT SUMMER WINTER SUMMER WINTER UNIT STATUS LOCATION BURN) MO. / YEAR (MW) PLANT NAME NO. TYPE TYPE METHOD TYPE METHOD MO. / YEAR (MW) (MW) (MW) FT. MYERS LEE GT DFO WA 0 5 / 1974 --- / ---54 65 54 65 OP NA NA 6 / 2002 --- / ---1466 1637 1441 1610 OP FT. MYERS 2 LEE CA NG Ы 0 OP FT. MYERS 2 LEE GT DFO WA 0 5 / 1974 ---- 1 ----54 64 54 64 380 OP FT. MYERS LEE СТ NG PL DFO тκ 0 6 / 2001 ---- / ----326 380 326 3 5 / 1974 --- 1 ---54 64 64 OP GT DFO WA 54 ET MYERS 3 LEE *** ----0 FT. MYERS LEE GT DFO WA --------5 / 1974 --- / ---54 64 54 64 OP 0 5 / 1974 --- 1 --54 OP FT MYERS LEE GT DFO WA 64 54 64 5 0 OP FT. MYERS LEE GT DFO WΔ ----____ ۵ 5 / 1974 --- 1 ----54 64 54 64 6 --- / ---FT. MYERS LEE GT DFO WA --------0 5 / 1974 54 64 54 64 OP 5 / 1974 OP DEO WA 64 FT. MYERS 8 LEE GT --------0 ---- 1 ----54 64 54 54 OP FT. MYERS q LEE GT DFO WA -------0 5 / 1974 --- 1 ----64 54 64 WA 5 / 1974 54 OP FT. MYERS 10 LEE GT DFO --------0 --- / ----64 54 64 OP LEE 5 / 1974 64 FT. MYERS 11 GT DEO WA --------0 ---- / ----54 64 54 GT DFO WA 5 / 1974 --- / ---54 54 64 OP FT. MYERS 12 LEE 0 64 OP LAUDERDALE BROWARD GT NG PL DFO тκ 83 8 / 1970 --- / ---35 43 35 43 1 OP LAUDERDALE 2 BROWARD GT NG PL DFO тк 83 8 / 1970 --- 1 -----35 42 35 42 LAUDERDALE BROWARD GT NG PL DEO тк 83 8 / 1970 --- 1 ----35 42 35 42 OP 3 35 OP Ы DEO тк 8 / 1970 43 43 LAUDERDALE BROWARD GT NG 83 --- / ----35 4 OP LAUDERDALE 5 BROWARD GT NG PL DEO тκ 83 8 / 1970 -- 1 ---35 43 35 43 OP LAUDERDALE 6 BROWARD GT NG PL DFO тк 83 8 / 1970 ----35 42 35 42 LAUDERDALE BROWARD GT NG PL DFO тк 83 8 / 1970 35 42 35 42 OP 7 ---- / ----LAUDERDALE 8 BROWARD GT NG PL DEO тк 83 8 / 1970 ---- / ----35 42 35 42 OP LAUDERDALE BROWARD GT NG PL DFO тκ 83 8 / 1970 ---- / ---35 42 OP 9 42 35 10 OP LAUDERDALE BROWARD GT NG Ы DEO тк 83 8 / 1970 --- 1 ---35 43 35 43 --- / ---LAUDERDALE 11 BROWARD GT NG PL DFO тκ 83 8 / 1970 35 43 35 43 OP LAUDERDALE 12 BROWARD GT NG ΡL DFO тκ 8 / 1970 43 OP 83 ---- / ----35 43 35 LAUDERDALE 13 OP BROWARD GT NG PL DEO TK 77 8 / 1972 --- 1 ----35 43 35 43 LAUDERDALE 14 BROWARD GT NG ΡL DFO тκ 77 8 / 1972 --- / ---35 43 35 43 OP LAUDERDALE BROWARD 15 GT NG PL DFO ΤK 77 8 / 1972 --- / ----35 43 35 43 OP LAUDERDALE 16 BROWARD GT NG Ы DFO тк 77 8 / 1972 --- / ----35 43 35 43 OP LAUDERDALE 17 BROWARD GT NG ΡL DEO тк 77 8 / 1972 --- / ---35 42 35 42 OP LAUDERDALF 18 BROWARD GT NG PI DEO тк 77 8 / 1972 ---- 1 ----35 42 35 42 OP LAUDERDALE 19 BROWARD GT NG PL DFÓ ΤK 77 8 / 1972 --- / ---35 42 35 42 OP LAUDERDALE 20 BROWARD GT NG ΡL DFO тκ 77 8 / 1972 35 42 42 OP --- 1 ----35 LAUDERDALE 21 BROWARD GT NG PL DFO ΤК 77 8 / 1972 ---- / ---35 42 35 42 OP LAUDERDALE 22 BROWARD GT NG PL DFO тκ 77 8 / 1972 --- 1 --35 42 35 42 OP 23 LAUDERDALE BROWARD GT NG PL DEO тк 35 OP 77 8 / 1972 --- / ---42 35 42 LAUDERDALE 24 BROWARD GΤ NG PL DFO тκ 77 8 / 1972 ---- / ----35 42 35 OP 42 LAUDERDALE 4GT1 BROWARD СТ PL DFO NG ΤK OP 5 / 1993 --- / ---LAUDERDALE 4GT2 BROWARD СТ NG Ы DFO TΚ 5 / 1993 --- / ---OP LAUDERDALE ST4 BROWARD CA NG PL DFO PL ø 10 / 1957 ---- / ----435 470 430 465 OP LAUDERDALE 5GT1 BROWARD СТ NG PL DFO ТΚ 6 / 1993 OP --- / ----LAUDERDALE PI 5GT2 BROWARD CT NG DEO тк 4 6 / 1993 -- 1 ---OP LAUDERDALE ST5 BROWARD NG PL CA 0 4 / 1958 --- 1 ---434 469 429 464 OP

9

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(8)

(9)

ALT. FUEL (10) (11)

(12)

2006 AND RESC

(7)

(4)

(5)

(6)

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

(1)

(2) (3)

(4)

(5)

Page 13 of 80 Exhibit BT/TJS-9 FRCC Load and Resource Plan Docket No. 070393-EI

				DDIM	ARY FUEL		NATE FUEL	ALT. FUEL STORAGE	COMMERCIAL	EXPECTED	GROS		NE'I CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	_BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
MANATEE	1	MANATEE	ST	RFO	WA	NG	PL	0	10 / 1976	- /	838	846	810	817	OP
MANATEE	2	MANATEE	ST	RFO	WA	NG	PL	0	12 / 1977	/	838	846	810	817	OP
MANATEE	3	MANATEE	CC	NG	PL			0	6 / 2005	/	1123	1212	1107	1197	OP
MARTIN	1	MARTIN	ST	RFO	PL.	NG	PL	182	12 / 1980	/	858	860	828	830	OP
MARTIN	2	MARTIN	ST	RFO	PL	NG	PL	182	6 / 1981	/	844	859	815	829	OP
MARTIN	8	MARTIN	CC	NG	₽L	DFO	тк	0	6 / 2005	/	1130	1219	1107	1197	OP
MARTIN	3GT1	MARTIN	СТ	NG	PL	DFO	тк	0	2 / 1994	/					OP
MARTIN	3GT2	MARTIN	СТ	NG	PL	DFO	тк	0	2 / 1994	/					OP
MARTIN	3ST	MARTIN	CA	NG	PL			0	2 / 1994	/	455	477	449	471	OP
MARTIN	4GT1	MARTIN	ст	NG	PL	DFO	тк	0	4 / 1994	/					OP
MARTIN	4GT2	MARTIN	СТ	NG	PL	DFO	тк	0	4 / 1994	/					OP
MARTIN	4ST	MARTIN	CA	NG	PL			0	4 / 1994	/	456	478	450	472	OP
PORT EVERGLADES	1	BROWARD	GT	NG	PL.	DFO	WA	52	8 / 1971	/	35	43	35	43	OP
PORT EVERGLADES	2	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	43	OP
PORT EVERGLADES	3	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	43	OP
PORT EVERGLADES	4	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	43	OP
PORT EVERGLADES	5	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	43	OP
PORTEVERGLADES	6	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORTEVERGLADES	7	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORTEVERGLADES	8	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORT EVERGLADES	9	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORTEVERGLADES	10	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORT EVERGLADES	11	BROWARD	G⊤	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORTEVERGLADES	12	BROWARD	GT	NG	PL	DFO	WA	52	8 / 1971	/	35	43	35	42	OP
PORTEVERGLADES	ST1	BROWARD	ST	RFO	WA	NG	PL	0	6 / 1960	/	231	232	219	220	OP
PORTEVERGLADES	ST2	BROWARD	ST	RFO	WA	NG	PL	0	4 / 1961	/	231	232	219	220	OP
PORTEVERGLADES	ST3	BROWARD	ST	REO	WA	NG	PL	0	7 / 1964	1	387	392	377	382	OP
PORT EVERGLADES	ST4	BROWARD	ST	RFO	WA	NG	PL	0	4 / 1965	/	395	400	385	390	OP
PUTNAM	1GT1	PUTNAM	СТ	NG	PL	DFO	WA	3	4 / 1978	/					OP
PUTNAM	1GT2	PUTNAM	СТ	NG	PL	DFO	WA	3	4 / 1978	/					OP
PUTNAM	1ST	PUTNAM	CA	NG	PL	DFO	WA	0	4 / 1978	1	250	287	245	282	OP
PUTNAM	2GT1	PUTNAM	СТ	NG	PL	DFO	WA	3	8 / 1977	- 1					OP
PUTNAM	2GT2	PUTNAM	СТ	NG	PL	DFO	WA	3	8 / 1977	/					OP
PUTNAM	2ST	PUTNAM	CA	NG	PL	DFO	WA	0	8 / 1977	/	254	291	249	286	OP
RIVIERA	3	PALM BEACH	ST	RFO	WA	NG	PL	0	6 / 1962	/	286	288	272	274	OP
RIVIERA	4	PALM BEACH	ST	RFO	WA	NG	PL	0	3 / 1963	-1-	298	300	284	286	OP
SANFORD	4	VOLUSIA	ST	RFO	WA	NG	PL	0	5 / 1959	/	144	149	138	142	OP
SANFORD	4	VOLUSIA	CC	NG	PL	NG		0	10 / 2003	/	963	1057	952	1045	OP
SANFORD	4	VOLUSIA	cc	NG	PL			0		/	963 963	1057	952	1045	OP
SANFORD	5	VOLUSIA		NG	PL			0	6 / 2002	/	963	1057	952	1045	OP

10

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 **EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006**

(8)

(9)

(10) (11)

(12)

(13)

(14)

(15)

(16)

2006

(7)

(6)

Page 14 of 80 Exhibit BT/TJS-9 FRCC Load and Resource Plan Docket No. 070393-EI

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

(1)

PLANT NAME

(2) (3)

UNIT

NO.

LOCATION

(4)

UNIT

TYPE

(5)

FUEL

TYPE

OP SCHERER (882/887) * MONROE, GA ST BIT RR 0 7 / 1988 2 / 2029 671 674 639 642 4 ST. JOHNS RIVER (660/672) DUVAL ST BIT RR DEO PL 0 4 / 1987 --- / ----134 137 127 130 OP ST. JOHNS RIVER (660/672) DUVAL ST BIT RR DFO ΡL 7 / 1988 --- 1 ----111 119 105 112 OP 2 C 5 / 1976 878 893 839 853 OP ST. LUCIE ST. LUCIE ST NHC тк ------------ / ----1 ST. LUCIE (878/892) * 2 ST. LUCIE ST NUC тк -------0 6 / 1983 --- / ----747 760 714 726 OP PL OP TURKEY POINT DADE ST RFO WA NG 0 4 / 1967 --- / ---404 407 385 388 419 OP ST REO WA NG PL 4 / 1968 422 400 403 TURKEY POINT 2 DADE ---- / ------ / ---TURKEY POINT DADE ST NUC ΤК --------12 / 1972 726 751 693 717 OP 3 717 OP TURKEY POINT DADE ST ΤК ----9 / 1973 726 751 693 NUC ____ --- 1 ----4 4 / 1968 OP TURKEY POINT IC1 DADE IC DEO ŤΚ ----0 ---- 1 ----- 3 3 3 3 TURKEY POINT IC2 DADE Ю DFO тκ --------4 / 1968 ---- / ----2 2 2 2 OP IC DFO 4 / 1968 2 OP TURKEY POINT IC3 DADE тк ----------- 1 ----2 2 2 IC OP TURKEY POINT IC4 DADE DFO TK **** 4 / 1968 ---- / ----2 2 2 2 IC5 DADE IC DFO тк --------0 4 / 1968 ---- / ----OP TURKEY POINT 3 3 3 FPL TOTAL: 20,777 22,099 FORT PIERCE UTILITIES AUTHORITIES 1 / 1953 OP H. D. KING ST. LUCIE CA WH --- 1 ----8 8 8 8 ----H. D. KING ST. LUCIE ST NG PL RFO тκ 12 / 1958 --- 1 ---17 17 17 17 SB ST RFO тк 1 / 1964 - 1 --32 32 32 32 OP H D KING 7 ST LUCIE NG PL OP ST 50 H. D. KING 8 ST. LUCIE NG PL RFO ΤK 5 / 1976 --- 1 ---50 50 50 ст DFO 5 / 1990 23 23 23 OP H. D. KING 9 ST. LUCIE NG PL тκ -- 1 --23 IC DFO тк 4 / 1970 --- 1 ---3 3 3 OP H. D. KING D1 ST. LUCIE 3 ----____ H. D. KING D2 ST. LUCIE IC DFO тκ ----_--4 / 1970 --- / ---3 3 3 OP 3 FTP TOTAL: 119 119 GAINESVILLE REGIONAL UTILITIES CRYSTAL RIVER (885/898) CITRUS ST NUC 3 / 1977 12.2 12.4 11.6 11.8 OP 3 тк 0 --- 1 ---тк DEERHAVEN FS01 ST RFO OP ALACHUA NG PL 0 8 / 1972 ---- / ----88 88 83 83 DEERHAVEN FS02 ALACHUA ST BIT RR 0 10 / 1981 -- 1 ---249 249 228.4 228.4 OP DEERHAVEN GT01 GT DFO тκ OP ALACHUA NG PL 7 / 1976 19 21 17.5 20 0 ---- 1 ----DEERHAVEN GT02 ALACHUA GT NG ΡL DFO ΤК 8 / 1976 ---- / ----19 21 17.5 20 OP 0 DEERHAVEN GT03 ALACHUA GT NG PL DFO тκ 1 / 1996 --- 1 ---76 82 75 81 OP 0 J. R. KELLY **FS07** ALACHUA ST NG PL RFO ΤК 0 8 / 1961 8 / 2011 24 24 23.2 23.2 OP J. R. KELLY FS08 ALACHUA CA wн 5 / 2001 38 38 37 37 OP NA NA NA 0 --- / ---J. R. KELLY GT01 GT DFO тκ 14 15 OP ALACHUA NG PL2 / 1968 15 0 --- / ---14 J R KELLY GT02 ALACHUA GT NG PL DEO ΤК 0 9 / 1968 --- / ----14 15 14 15 OP J. R. KELLY GT03 ALACHUA GT NG PL DFO тκ 0 5 / 1969 --- 1 ---14 15 14 15 OP J. R. KELLY GT04 ALACHUA СТ NG PL DFO тк 5 / 2001 76 82 OP 0 --- / ----75 81 SOUTHWEST LANDFILL LE1-3 ALACHUA IC. LFG PL NA NA n 12 / 2003 12 / 2015 1.3 1.3 1.3 1.3 OP GRU TOTAL: 612 632

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 **EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006**

(8)

TRANSP.

METHOD

ALTERNATE FUEL

(9)

ALT.

FUEL

STORAGE

(DAYS

BURN)

(10) (11)

COMMERCIAL

IN-SERVICE

MO. / YEAR

(12)

EXPECTED

RETIREMENT

MO. / YEAR

(13)

GROSS

CAPABILITY

WINTER

(MW)

SUMMER

(MW)

(14)

SUMMER

(MW)

NET

CAPABILITY

(15)

WINTER

(MW)

(16)

STATUS

2006

(7)

FUEL

TYPE

(6)

TRANSP.

METHOD

PRIMARY FUEL

11

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 15 of 80

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

12

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13))	(14)	(15)	(16)
								ALT. FUEL			GROS	ss	NET		
				PRIM	ARY FUEL	ALTER	NATE FUEL	STORAGE	COMMERCIAL	EXPECTED	CAPAB		CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
HOMESTEAD CITY OF															
G. W. IVEY	2-3	DADE	IC	NG	PL	DFO	тк	62	3 / 1970	1 / 2014	4	4	3.6	3.6	OP
G. W. IVEY	8	DADE	IC	NG	PL	DFO	тк	94	1 / 1954	1 / 2016	2.5	2.5	2	2	OP
G. W. IVEY	9-10	DADE	iC	NG	PL	DFO	тк	47	1 / 1958	1 / 2016	5	5	4	4	OP
G. W. IVEY	11-12	DADE	iC	NG	PL	DFO	тк	35	1 / 1965	1 / 2016	7	7	6	6	OP
G. W. IVEY	13-17	DADE	iC	NG	PL	DFO	тк	24	11 / 1972	1 / 2016	10	10	9	9	OP
G. W. IVEY	18-19	DADE	iC	NG	PL	DFO	тк	16	2 / 1975	/	18	18	15	15	OP
G. W. IVEY	20-21	DADE	IC IC	NG	PL	DFO	тк	21	5 / 1981	/	13	13	13	13	OP
0. 11. 1121	2021	Dride													
											HST TOTAL:		53	53	
JEA															
BRANDY BRANCH	4	DUVAL	CC	NG	PL	DFO	тк		2 / 2005	/	544.8	580	532	567	OP
BRANDY BRANCH	GT1	DUVAL	GT	NG	PL	DFO	тк	0	5 / 2001	/	160.1	192.7	158	191	OP
GIRVIN LANDFILL	1-4	DUVAL	iC	LFG	PL			0	7 / 1997	/	1.2	1.2	1.2	1.2	OP
J. D. KENNEDY	GT3	DUVAL	GT	DFO	WA			0	8 / 1973	/	51.3	63	51	62.7	OP
J. D. KENNEDY	GT4	DUVAL	GT	DFO	WA			0	7 / 1973	/	51.3	63	51	62.7	SB
J. D. KENNEDY	GT5	DUVAL	GT	DFO	WA			0	11 / 1973	/	51.3	63	51	62.7	SB
J. D. KENNEDY	GT7	DUVAL	GT	NG	PL.	DFÓ	WA	0	6 / 2000	/	160.1	192.7	158	191	OP
NORTHSIDE	1	DUVAL	ST	PC	WA	BIT	WA	0	3 / 1966	5 / 2032	297.5	297.5	275	275	OP
NORTHSIDE	2	DUVAL	ST	PC	WA	BIT	WA	0	6 / 1972	2 / 2032	297.5	297.5	275	275	OP
NORTHSIDE	3	DUVAL	ST	NG	PL.	RFO	WA	0	6 / 1977	6 / 2017	539	539	523	523	OP
NORTHSIDE	GT3	DUVAL	GT	DFO	WA			0	1 / 1975	/	53.4	62	53	61.6	OP
NORTHSIDE	GT4	DUVAL	GT	DFO	WA			0	1 / 1975	/	53.4	62	53	61.6	OP
NORTHSIDE	GT5	DUVAL	GT	DFO	WA			0	12 / 1974	/	53.4	62	53	61.6	OP
NORTHSIDE	GT6	DUVAL	GT	DFO	WA			0	12 / 1974	/	53.4	62	53	61.6	OP
SCHERER (882/887) *	4	MONROE, GA	ST	BIT	RR			0	2 / 1989	/	200	200	200	200	OP
ST. JOHNS RIVER (660/672) *	1	DUVAL	ST	BIT	RR	PC	WA	0	3 / 1987	/	528	537.6	501	510	OP
ST. JOHNS RIVER (660/672) *	2	DUVAL	ST	віт	RR	PC	WA	0	5 / 1988	/	528	537.6	501	510	OP
											JEA TOTAL:		3,387	3,552	
KEY WEST UTILITY BOARD															
BIG PINE KEY PEAKER	1	MONROE	IC	DFO	тк				2 / 1969	/	3	3	3	3	OP
CUDJOE KEY PEAKER	2	MONROE	iC	DFO	тк				8 / 1968	/	3	3	3	3	OP
CUDJOE KEY PEAKER	3	MONROE	iC	DFO	тк				8 / 1968	/	2	2	2	2	OP
STOCK ISLAND	GT1	MONROE	GT	DFO	WA				11 / 1978	/	20	20	20	20	OP
STOCK ISLAND HSD	IC1	MONROE	ic	DFO	WA				1 / 1965	-1-	2	2	2	20	OP
STOCK ISLAND HSD	IC2	MONROE	ic	DFO	WA				1 / 1965	/	2	2	2	2	OP
STOCK ISLAND HSD	IC3	MONROE	IC	DFO	WA				1 / 1965	-1-	2	2	2	2	OP
STOCK ISLAND HSD	MSD1	MONROE	IC	DFO	WA	_			6 / 1991	/	9	9	9	9	OP
STOCK ISLAND MSD	MSD2	MONROE	ic	DFO	WA				6 / 1991	/	9	9	9	9	OP
												-			
											KEY TOTAL:		52	52	

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

2006 AND RESOUR

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
								ALT. FUEL			GROS	s	NET		
				PRIM	ARY FUEL	ALTER	NATE FUEL	STORAGE	COMMERCIAL	EXPECTED	CAPABIL		CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
KISSIMMEE UTILITY AUTHORITY															
CANE ISLAND (34/40) *	1GT	OSCEOLA	GT	NG	PL	DFO	тк	4	11 / 1994	1	17	20	17	20	OP
CANE ISLAND (34/40) CANE ISLAND (110/120) *	2CT	OSCEOLA	СТ	NG	PL	DFO	тк	4	6 / 1995	/	35	40	35	20	OP
CANE ISLAND (110/120)* CANE ISLAND (110/120)*	2C1 2CW	OSCEOLA	CA	NG	NA	NA	NA	0	6 / 1995	/	20	40 20		39 20	OP
CANE ISLAND (110/120)* CANE ISLAND (244/267)*		OSCEOLA	CA	NG		DFO	NA TK	0	1 / 2002	/	20 90.5	20 90,5	75	20	OP
	3CT	OSCEOLA			PL			0	1 / 2002	/	49.3	49.3	45	45	OP
CANE ISLAND (244/267) *	3CW	CITRUS	CA ST	WH NUC	NA TK	NA	NA	0	3 / 1977	- /	49.3	49.3	40	45	OP
CRYSTAL RIVER (885/898) * HANSEL	3	OSCEOLA			PL	DFO		0	2 / 1983	/	31	38	30	38	OP
	21		СТ	NG			тк	-			31				
HANSEL	22	OSCEOLA	CA	NG	PL	DFO	тк	0	11 / 1983	/	8	6	8	6	OP
HANSEL	23	OSCEOLA	CA	NG	PL	DFO	тк	12	11 / 1983	/	8	0	8	6	OP
INDIAN RIVER (76/96) *	A-B	BREVARD	GT	NG	PL	DFO	тк	0	6 / 1999	/	9	12	9	12	OP
STANTON (467/470) *	1	ORANGE	ST	BIT	RR			0	7 / 1987	/	21	21	21	21	OP
STANTON (667/712) *	A	ORANGE	CA	WH	NA	NA	NA	0	10 / 2003	/	10	10	9	9	OP
STANTON (667/712) *	A	ORANGE	СТ	NG	PL	DFO	тк	3	9 / 2003	/	13	15 _	12	14	OP
											KUA TOTAL:		294	316	
LAKELAND CITY OF															
LARSEN	2	POLK	GT	NG	PL	DFO	тк	28	11 / 1962	/	10	14	10	14	OP
LARSEN	3	POLK	GT	NG	PL	DFO	тк	28	12 / 1962	/	9	13	9	13	OP
LARSEN	8CT	POLK	СТ	NG	PL	DFO	тк	5	7 / 1992	/	75	95	73	93	OP
LARSEN	8ST	POLK	CA	WH	UN	***		ō	4 / 1956	/	29	31	29	31	OP
MCINTOSH	1	POLK	ST	NG	PL.	RFO	тк	29	2 / 1971	/	90	90	87	87	OP
MCINTOSH	2	POLK	ST	NG	PL	RFO	тк	25	6 / 1976	/	114	109	106	106	OP
MCINTOSH (365/365) *	3	POLK	ST	BIT	RR			0	9 / 1982	/	219	219	205	205	OP
MCINTOSH	5CT	POLK	СТ	NG	PL			0	5 / 2001	/	211	250	210	250	OP
MCINTOSH	5ST	POLK	CA	WH	UN			0	5 / 2002	/	115	124	112	121	OP
MCINTOSH	D1	POLK	IC	DFO	тк			0	1 / 1970	/	2.5	2.5	2.5	2.5	OP
MCINTOSH	D2	POLK	IC	DFO	тк			0	1 / 1970		2.5	2.5	2.5	2.5	OP
MCINTOSH	GT1	POLK	GT	NG	PL	DFO	 ТК	2	5 / 1973	/	17	2.5	17	2.3	OP
WINSTON	1-20	POLK	IC	NG	PL	DFO	тк	2 3	12 / 2001	/	50	20 50	50	20 50	OP
million	1-20		10	NG	FL	DFU	IN	3	12 / 2001	/	50	30	50		UF
											LAK TOTAL:		913	995	

Docket No. 070393-EI Exhibit BT/TJS-9 Page 16 of 80

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
				PRIM	ARY FUEL	ALTER	NATE FUEL	ALT. FUEL STORAGE	COMMERCIAL	EXPECTED	GROS		NET CAPABI	LITY	
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	<u>NO.</u>	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
LAKE WORTH UTILITIES CITY OF	=														
TOM G. SMITH	GT-1	PALM BEACH	GT	DFO	тк			0	12 / 1976	/	31	31	26	31	OP
TOM G. SMITH	GT-2	PALM BEACH	CT	NG	PL	DFO	тк	2	3 / 1978	/	21	23	20	20	OP
TOM G. SMITH	MU1	PALM BEACH	IC	DFO	тк				12 / 1965	/	2	2	2	2	OP
TOM G. SMITH	MU2	PALM BEACH	IC	DFO	тк				12 / 1965	/	2	2	2	2	OP
TOM G. SMITH	MU3	PALM BEACH	IC	DFO	тк				12 / 1965	/	2	2	2	2	OP
TOM G. SMITH	MU4	PALM BEACH	IC	DFO	тк				12 / 1965	/	2	2	2	2	OP
TOM G. SMITH	MU5	PALM BEACH	IC	DFO	тк				12 / 1965	/	2	2	2	2	OP
TOM G. SMITH	S-1	PALM BEACH	ST	NG	PL	RFO	тк	17	1 / 1961	/	8	8	7	8	OP
TOM G. SMITH	S-3	PALM BEACH	ST	NG	PL	RFO	тк	6	11 / 1967	- /	27	27	22	24	OP
TOM G. SMITH	S-4	PALM BEACH	ST	NG	PL	RFO	ŤΚ		8 / 1971	-/	33	33	32	33	OS
TOM G. SMITH	S-5	PALM BEACH	CA	WH					3 / 1978	/	10	10	9	9	OP
											LWU TOTAL:		94	102	
NEW SMYRNA BEACH UTILITIES	COMMISSIO														
CRYSTAL RIVER (885/898) *	3	CITRUS	ST	NUC	тк			0	3 / 1977	/	5.4	5.4	4	4	OP
FIELD STREET	1	VOLUSIA	GT	DFO	тк			ů	5 / 2001	/	22	24	22	24	OP
FIELD STREET	2	VOLUSIA	GT	DFO	тк			0	5 / 2001	-1	22	24	22	24	OP
SMITH	3	VOLUSIA	iC	DFO	тк			0	1 / 1946	/	1	1	1		OP
SMITH	4	VOLUSIA	ю	DFO	тк			0	1 / 1950	/	1	1	1	, 1	OP
SMITH	4 6	VOLUSIA	ю	DFO	тк			0 0	1 / 1955	/	2	2	2	2	OP
SMITH	7	VOLUSIA	ю	DFQ	тк			0	1 / 1956	/	2	2	2	2	OP
SMITH	8	VOLUSIA	ю	DFO	тк			0	1 / 1960	/	2	1	2	1	OP
SMITH	9	VOLUSIA	ю	DFO	тк			0	1 / 1967	/	2	2	2	2	OP
SMITH	3 10	VOLUSIA	IC IC	DFO	тк			0	1 / 1967	/	2	2	2	2	OP
SMITH	11	VOLUSIA	iC	DFO	тк			0	1 / 1967	/	2	2	2	2	OP
SWOOPE STATION	2	VOLUSIA	IC	DFO	тк			0	11 / 1981		2	1	1		OP
SWOOPE STATION	2	VOLUSIA	IC IC	DFO	тк			0	12 / 1982	/	2	2	2	2	OP
SWOOPE STATION	4	VOLUSIA	IC	DFO	ТК			0	12 / 1982	/	2	2	2	2	OP
SWOOPE STATION	4	VOLUSIA	IC.	DFO	IK			U	12 / 1962	/	2	2 -	2	2	OP
											NSB TOTAL:		66	70	
OCALA ELECTRIC UTILITY															
CRYSTAL RIVER (885/898) *	3	CITRUS	ST	NUC	тк				3 / 1977	/	11.8	12 -	. 11	11	OP
											OEU TOTAL:		11	11	

08 to 81 age 9 Exhibit BT/TJS-9 FRCC Load and Resource Plan

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

15

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
								ALT.				_			
				DDIM	ARY FUEL		NATE FUEL	FUEL	COMMERCIAL	EXPECTED	GROS CAPABI		NET CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	STORAGE (DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
														()	
ORLANDO UTILITIES COMMISSION															
CRYSTAL RIVER (885/898) *	3	CITRUS	ST	NUC	тк	NA	NA	0	3 / 1977	/	14	14	13	13	OP
INDIAN RIVER (76/96) *	A-B	BREVARD	GT	NG	PL	DFO	тк	0	7 / 1989	/	37	47	36	47	OP
INDIAN RIVER (218/256) *	C-D	BREVARD	GT	NG	PL	DFO	тк	0	8 / 1992	/	172	202	171	201	OP
MCINTOSH (365/365) *	ST3	POLK	ST	BIT	RR	NA	NA	0	9 / 1982	/	146	146	133	136	OP
ST. LUCIE (878/892) *	2	ST. LUCIE	ST	NUC	тк	NA	NA	0	6 / 1983	/	54	54	51	52	OP
STANTON (467/470) *	1	ORANGE	ST	BIT	RR	NA	NA	0	7 / 1987	/	320	322	302	304	OP
STANTON (469/469) *	2	ORANGE	ST	BIT	RR	NA	NA	0	6 / 1996	/	336	336	319	319	OP
STANTON (667/712) *	Α	ORANGE	CT	NG	PL	DFO	тк	3	10 / 2003	/	187	199 _	174	185	OP
											OUC TOTAL:		1,199	1,257	
PROGRESS ENERGY FLORIDA															
ANCLOTE		PASCO	ST	RFO	PL	NG	PL		10 / 1974	/	518	535	498	522	OP
ANCLOTE	2	PASCO	ST	RFO	PL	NG	PL		10 / 1978	/	515	535	495	522	OP
AVON PARK	2 P1	HIGHLANDS	GT	NG	PL	DFO	тк	3	12 / 1968	- /	26	32	26	32	OP
AVON PARK	P2	HIGHLANDS	GT	DEO	тк			3	12 / 1968	- 1	26	32	26	32	OP
BAYBORO	P1	PINELLAS	GT	DFO	WA		_		4 / 1973	/	46	58	46	58	OP
BAYBORO	P2	PINELLAS	GT	DFO	WA				4 / 1973	- i	46	58	46	58	OP
BAYBORO	P3	PINELLAS	GT	DFO	WA				4 / 1973	/	46	58	46	58	OP
BAYBORO	P4	PINELLAS	GT	DFO	WA				4 / 1973	/	46	58	46	58	OP
CRYSTAL RIVER	1	CITRUS	ST	BIT	WA				10 / 1966	/	410	410	379	383	OP
CRYSTAL RIVER	2	CITRUS	ST	BIT	WA			0	11 / 1969	/	510	510	486	491	0P
CRYSTAL RIVER (885/898) *	3	CITRUS	ST	NUC	тк			0	3 / 1977	/	812	824	778	798	OP
CRYSTAL RIVER	4	CITRUS	ST	BIT	WA			0	12 / 1982	/	745	755	720	735	OP
CRYSTAL RIVER	5	CITRUS	ST	BIT	WA			0	10 / 1984	/	750	765	717	732	OP
DEBARY	P1	VOLUSIA	GT	DFO	TK				2 / 1976	/	55	66	54	65	OP
DEBARY	P2	VOLUSIA	GT	DFO	тк				3 / 1976	/	55	66	54	65	OP
DEBARY	P3	VOLUSIA	GT	DFQ	тк				12 / 1975	/	55	66	54	65	OP
DEBARY	P4	VOLUSIA	GT	DFO	тк				4 / 1976	/	55	66	54	65	OP
DEBARY	P5	VOLUSIA	GT	DFO	тк				12 / 1975	/	55	66	54	65	OP
DEBARY	P6	VOLUSIA	GT	DFO	тк				4 / 1976	/	55	66	54	65	OP
DEBARY	P7	VOLUSIA	GT	NG	PL	DFO	тк	8	10 / 1992	/	86	93	86	93	OP
DEBARY	P8	VOLUSIA	GT	NG	PL	DFO	TK	0	10 / 1992	/	86	93	86	93	OP
DEBARY	P9	VOLUSIA	GT	NG	PL	DFO	тк	0	10 / 1992	/	86	93	86	93	OP
DEBARY	P10	VOLUSIA	GT	DFO	тк				10 / 1992	/	85	93	85	93	OP
G. E. TURNER	P1	VOLUSIA	GT	DFO	тк				10 / 1970	/	13	16	13	16	OP
G. E. TURNER	P2	VOLUSIA	GŤ	DFO	тк				10 / 1970	/	13	16	13	16	OP
G. E. TURNER	P3	VOLUSIA	GT	DFO	тк				8 / 1974	/	65	82	65	82	OP
G. E. TURNER	P4	VOLUSIA	GT	DFO	тк				8 / 1974	/	63	80	63	80	OP
HIGGINS	P1	PINELLAS	GT	NG	PL	DFO	TK	0	3 / 1969	/	27	32	27	32	OP
HIGGINS	P2	PINELLAS	GT	NG	PL	DFO	тк	0	4 / 1969	/	27	32	27	32	OP
HIGGINS	P3	PINELLAS	GT	NG	PL	DFO	тк	1	12 / 1970	/	34	35	34	35	OP
HIGGINS	P4	PINELLAS	GT	NG	PL	DFO	тк	1	1 / 1971	/	34	35	34	35	OP

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 **EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006**

Docket No. 070393-EI

Exhibit BT/TJS-9 FRCC Load and Resource Plan Docket No. 070393-EI

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

{1}

(2) (3)

(4)

(5)

(6)

08 to 91 age 1

				PRIM	ARY FUEL	ALTER	NATE FUEL	AL1. FUEL STORAGE	COMMERCIAL	EXPECTED	GROS CAPABI		NET CAPABI		
PLANT NAME	UNIT NO.	LOCATION	UNIT TYPE	FUEL	TRANSP. METHOD	FUEL	TRANSP. METHOD	(DAYS BURN)	MO. / YEAR	RETIREMENT	SUMMER (MW)	WINTER (MW)	SUMMER (MW)	WINTER (MW)	STATUS
	NO.	LOCATION			MLINUD	1176	METHOD	BURN	MO. / TEAR	MO. / TEAK	(1114)	(14144)	((()))	(10144)	STATUS
HINES ENERGY COMPLEX	1GT1	POLK	ст	NG	PL	DFO	тк	0	4 / 1999	/					OP
HINES ENERGY COMPLEX	1GT2	POLK	СТ	NG	PL	DFO	тк	0	4 / 1999	/					OP
HINES ENERGY COMPLEX	1ST	POLK	CA	WH	NA			2	4 / 1999	/	487	534	482	529	OP
HINES ENERGY COMPLEX	2GT1	POLK	СТ	NG	PL	DFO	тк	0	12 / 2003	/					OP
HINES ENERGY COMPLEX	2GT2	POLK	СТ	NG	PL	DFO	тк	0	12 / 2003	/					OP
HINES ENERGY COMPLEX	2ST	POLK	CA	WH	NA			0	12 / 2003	/	521	588	516	582	OP
HINES ENERGY COMPLEX	3GT1	POLK	CT	NG	PL	DFO	тк	0	11 / 2005	/					OP
HINES ENERGY COMPLEX	3GT2	POLK	СТ	NG	PL	DFO	тк	0	11 / 2005	/					OP
HINES ENERGY COMPLEX	3ST	POLK	CA	WH	NA			0	11 / 2005	/	507	582	501	576	OP
INTERCESSION CITY	P1	OSCEOLA	GT	DFO	PL				5 / 1974	/	49	61	49	61	OP
INTERCESSION CITY	P2	OSCEOLA	GT	DFO	PL				5 / 1974	/	49	61	49	61	OP
INTERCESSION CITY	P3	OSCEOLA	GT	DFO	PL				5 / 1974	/	49	61	49	61	OP
INTERCESSION CITY	P4	OSCEOLA	GT	DFO	PL				5 / 1974	/	49	61	49	61	OP
INTERCESSION CITY	P5	OSCEOLA	GT	DFO	PL				5 / 1974	/	49	61	49	61	OP
INTERCESSION CITY	P6	OSCEOLA	GT	DFO	PL				5 / 1974	/	49	61	49	61	OP
INTERCESSION CITY	P7	OSCEOLA	GT	NG	PL	DFO	PL	5	10 / 1993	/	88	94	88	94	OP
INTERCESSION CITY	P8	OSCEOLA	GT	NG	PL	DFO	PL	0	10 / 1993	/	88	94	88	94	OP
INTERCESSION CITY	P9	OSCEOLA	GT	NG	PL	DFO	PL.	0	10 / 1993	/	88	94	88	94	OP
INTERCESSION CITY	P10	OSCEOLA	GT	NG	PL	DFO	PL	0	10 / 1993	/	88	94	88	94	OP
INTERCESSION CITY (145/172) *	P11	OSCEOLA	GT	DFO	PL				1 / 1997	/	0	172	0	170	OP
INTERCESSION CITY	P12	OSCEOLA	GT	NG	PL	DFO	PL	5	12 / 2000	/	84	98	84	98	OP
INTERCESSION CITY	P13	OSCEOLA	GT	NG	PL	DFO	PL	0	12 / 2000	1	84	98	84	98	OP
INTERCESSION CITY	P14	OSCEOLA	GT	NG	PL	DFO	PL	0	12 / 2000	1	84	98	84	98	OP
P. L. BARTOW	1	PINELLAS	ST	RFO	WA				9 / 1958	1	128	130	121	123	OP
P. L. BARTOW	2	PINELLAS	ST	RFO	WA				8 / 1961	/	125	127	119	121	OP
P. L. BARTOW	3	PINELLAS	ST	RFO	WA	NG	PL		7 / 1963	-1-	211	215	204	208	OP
P. L. BARTOW	P1	PINELLAS	GT	DFO	WA				5 / 1972	/	46	53	46	53	OP
P. L. BARTOW	P2	PINELLAS	GT	NG	PL	DFO	WA	8	6 / 1972	-1-	46	53	46	53	OP
P. L. BARTOW	P3	PINELLAS	GT	DFO	WA				6 / 1972	/	46	53	46	53	OP
P. L. BARTOW	P4	PINELLAS	GT	NG	PL	DFO	WA	8	6 / 1972	/	49	60	49	60	OP
RIO PINAR	P1	ORANGE	GT	DFO	тк				11 / 1970	/	13	16	13	16	OP
SUWANNEE RIVER	1	SUWANNEE	ST	RFO	тк	NG	PL	0	11 / 1953	/	34	35	32	33	OP
SUWANNEE RIVER	2	SUWANNEE	ST	RFO	тк	NG	PL	ů n	11 / 1954	/	33	34	31	32	OP
SUWANNEE RIVER	3	SUWANNEE	ST	RFO	тк	NG	PL	0	10 / 1956	/	84	85	80	81	OP
SUWANNEE RIVER	3 P1	SUWANNEE	GT	NG	PL	DFO	TK	9	10 / 1930	/	55	67	55	67	OP
SUWANNEE RIVER	P1 P2	SUWANNEE	GT	DFO	PL TK	DF0		9	10 / 1980	/	55	67	54	67	OP
SUWANNEE RIVER	P2 P3	SUWANNEE	GT		PL	DFO	 тк	0		/	55	67	55	67	OP
TIGER BAY			СТ	NG	PL			0	11 / 1980		55	67	55	67	
TIGER BAY	1GT	POLK POLK		NG				0	8 / 1997	/	200	200	207	222	OP
	1ST		CA	WH	NA			U	8 / 1997	/	209	226	207	223	OP
UNIVERSITY OF FLORIDA	P1	ALACHUA	GT	NG	PL				1 / 1994	/	35	41 _	35	41	OP
											PEF TOTAL:		8,842	9,760	

16

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 **EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006**

(8)

(9)

ALT.

(10) (11)

(12)

(13)

(14)

(15)

(16)

2006

(7)

Page 20 of 80 6-SIT/TB ndidxy FRCC Load and Resource Plan Docket No. 070393-EI

Total Gross Capability for Jointly Owned Unit (Summer/Winter)

(1)

(2) (3) (4)

(5)

(6)

PRIMARY FUEL

UNIT UNIT FUEL TRANSP. FUEL TRANSP. (DAYS IN-SERVICE RETIREMENT SUMMER WINTER SUMMER WINTER (<u>MW</u>) STATUS PLANT NAME NO. LOCATION TYPE TYPE METHOD TYPE METHOD BURN) MO. / YEAR MO. / YEAR (MW) (MW) (MW) REEDY CREEK IMPROVEMENT DISTRICT ORANGE cs NG PL DFO тκ 0 1 / 1989 1 / 2019 40 41 38 39 OP CENTRAL ENERGY PLANT DFO тκ ۵ 1 / 1983 1 / 2015 46 4.6 OP ORANGE IC REEDY CREEK DIESEL D1-D --------5 -5 RCI TOTAL: 43 44 SEMINOLE ELECTRIC COOPERATIVE INC OP CRYSTAL RIVER (885/898) CITRUS ST NUC тк 3 / 1977 --- 1 ----15 15.3 15 15 3 PAYNE CREEK CT1A HARDEE СТ NG PL. DFO тк 4 1 / 2002 --- 1 ----162 187 157 183 OP DFO тк 1 / 2002 --- / ---162 187 157 183 OP ст PL. PAYNE CREEK CT1B HARDEE NG 4 OP 175 PAYNE CREEK ST1 HARDEE CA NG PL DFO ΤК 0 1 / 2002 ---- 1 ----178 181 174 ST BIT RR 0 2 / 1984 --- 1 ----693 701 658 665 ÓР SEMINOLE PUTNAM --------1 658 665 OP ST BIT RR --------0 1 / 1985 ---- / ----693 701 SEMINOLE 2 PUTNAM SEC TOTAL: 1,819 1,886 ST CLOUD CITY OF OP 7 / 1982 10 / 2006 2 2 2 2 ST. CLOUD 1 OSCEOLA ю NG PL DFO ΤК 5 ST. CLOUD OSCEOLA IC NG PL DFO тκ 5 12 / 1974 10 / 2006 5 5 5 5 OP 2 OP IC PL DFO ΤК 9 / 1982 10 / 2006 2 ST. CLOUD 3 OSCEOLA NG 5 2 2 2 IC NG DFO тκ 8 / 1961 10 / 2006 3 3 OP ST. CLOUD 4 OSCEOLA PL 5 3 3 PL DFO тк 10 / 2006 OP OSCEULA IC NG 5 3 / 1967 3 3 3 3 ST CLOUD 6 ST. CLOUD OSCEOLA íC NG PL DFO тκ 5 9 / 1982 10 / 2006 6 6 6 6 OP 7 DFO 4 / 1977 10 / 2006 SB ST. CLOUD 8 OSCEOLA IC NG Ρŧ. тκ 5 6 6 6 21 21 STC TOTAL: TALLAHASSEE CITY OF OP ---- / ----C. H. CORN HYDRO 1 LEON HY WAT WA WAT WA 0 9 / 1985 4 4 4 4 C. H. CORN HYDRO GADSDEN ΗY WAT WA WAT WA 8 / 1985 ---- / ----4 OP 2 0 4 4 4 OP C. H. CORN HYDRO LEON HY WAT WA WAT 1 / 1986 --- / ----3 з WA 3 3 3 0 HOPKINS LEON ST NG PL RFO ΤK 5 / 1971 3 / 2016 81 85 78 OP 76 ST OP HOPKINS 2 LEON NG PL RFO тκ 10 / 1977 3 / 2022 238 248 228 238 DEO HOPKINS GT1 LEON GT NG PL ТΚ 2 / 1970 3 / 2015 12 14 12 14 OP 9 / 1972 HOPKINS GT2 LEON GT NG PL DFO тκ 3 / 2017 24 26 24 26 OP HOPKINS GT3 **LEON** GT NG PL DEO тк 9 / 2005 49 48 OP ---- / ----49 46 HOPKINS GT4 LEON GT NG PL DFO ΤК 11 / 2005 ---- 1 ----49 49 46 48 OP 8 PURDOM GT1 WAKULLA GT PL 12 / 1963 3 / 2011 NG DFO тκ 2 10 10 10 10 OP PURDOM GT2 WAKULLA GT NG PL DEO тк 5 / 1964 10 10 2 3 / 2011 10 10 OP PURDOM 7 WAKULLA ST NG PL RFO WA 1 6 / 1966 3 / 2011 51 53 48 50 OP PURDOM 8 WAKULLA сс NG PL, DFO тκ 7 / 2000 12 / 2040 237 233 262 OP 2 266 TAL TOTAL: 744 795

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 **EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006**

(8)

(9)

ALT.

FUEL

STORAGE

(10) (11)

COMMERCIAL

(12)

EXPECTED

(13)

GROSS

CAPABILITY

(14)

NET

CAPABILITY

(15)

(16)

2006

ALTERNATE FUEL

(7)

17

2006

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
				PRIM	ARY FUEL	ALTER	NATE FUEL	ALT. FUEL STORAGE	COMMERCIAL	EXPECTED	GROS CAPABI		NET CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
TAMPA ELECTRIC COMPANY															
BAYSIDE	1A	HILLSBOROUGH	СТ	NG	PL	NA	NA	0	4 / 2003	/	158	185	156	183	OP
BAYSIDE	18	HILLSBOROUGH	СТ	NG	PL	NA	NA	0	4 / 2003	/	158	185	156	183	OP
BAYSIDE	10	HILLSBOROUGH	ст	NG	PL	NA	NA	0	4 / 2003	/	158	185	156	183	OP
BAYSIDE	1ST	HILLSBOROUGH	CA	WH	NA	NA	NA	0	4 / 2003	/	236	246	234	244	OP
BAYSIDE	2A	HILLSBOROUGH	СТ	NG	PL.	NA	NA	0	1 / 2004	/	158	185	156	183	OP
BAYSIDE	2B	HILLSBOROUGH	СТ	NG	PL	NA	NA	0	1 / 2004	/	158	185	156	183	OP
BAYSIDE	2C	HILLSBOROUGH	СТ	NG	PL	NA	NA	0	1 / 2004	/	158	185	156	183	OP
BAYSIDE	2D	HILLSBOROUGH	CT	NG	PL	NA	NA	0	1 / 2004	/	158	185	156	183	OP
BAYSIDE	2ST	HILLSBOROUGH	CA	WH	NA	NA	NA	0	1 / 2004	/	308	318	306	316	OP
BIG BEND	1	HILLSBOROUGH	ST	BIT	WA	NA	NA	0	10 / 1970	/	430	430	411	411	OP
BIG BEND	2	HILLSBOROUGH	ST	BIT	WA	NA	NA	0	4 / 1973	/	410	410	391	391	OP
BIG BEND	3	HILLSBOROUGH	ST	BIT	WA	NA	NA	0	5 / 1976	- /	430	450	414	433	OP
BIG BEND	4	HILLSBOROUGH	ST	BIT	WA	NA	NA	0	2 / 1985	/	485	490	457	462	OP
BIG BEND	GT1	HILLSBOROUGH	GT	DFO	WA	NA	NA	0	2 / 1969	1 / 2015	14	15	14	15	OP
BIG BEND	GT2	HILLSBOROUGH	GT	DFO	WA	NA	NA	0	11 / 1974	1 / 2015	66	80	66	80	OP
BIG BEND	GT3	HILLSBOROUGH	GT	DFO	WA	NA	NA	0	11 / 1974	1 / 2015	66	80	66	80	OP
PARTNERSHIP STATION	1	HILLSBOROUGH	IC	NG	PL	NA	NA	0	5 / 2001	/	3	3	3	3	OP
PARTNERSHIP STATION	2	HILLSBOROUGH	IC	NG	PL	NA	NA	0	5 / 2001	/	3	3	3	3	OP
PHILLIPS	1	HIGHLANDS	IC	RFO	тк	DFO	тк	0	6 / 1983	/	18	18.5	17	18	OP
PHILLIPS	2	HIGHLANDS	IC	RFO	тк	DFO	тк	0	6 / 1983	/	18	18.5	17	18	OP
PHILLIPS	3	HIGHLANDS	CA	WH	NA	NA	NA	0	6 / 1983	/	3	3	3	3	SB
POLK	2	POLK	GT	NG	PL	DFO	тк	168	7 / 2000	/	160	184	160	184	OP
POLK	3	POLK	GT	NG	PL	DFO	тк	168	5 / 2002	/	165	184	165	184	OP
POLK	1CA	POLK	CA	WH	NA	NA	NA	0	9 / 1996	/	128	133	123	128	OP
POLK	1CT	POLK	СТ	OG	WA	DFO	тк	43	9 / 1996	/	192	192	132	132	OP
											TEC TOTAL:		4,071	4,383	

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 1.0 EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
								ALT.							
								FUEL			GROS	iS	NET		
				PRIM	ARY FUEL	ALTER	NATE FUEL	STORAGE	COMMERCIAL	EXPECTED	CAPABI	LITY	CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
US CORPS OF ENGINEERS - MOB	IF														
JIM WOODRUFF		GADSDEN	HY	WAT	NA	NA	NA	0	2 / 1957	/	14.5	14.5	14.5	14.5	OP
			HY	WAT	NA	NA	NA	Ő	3 / 1957	1	14.5	14.5	14,5	14.5	OP
JIM WOODRUFF	2	GADSDEN						-		- /	14.5	14.5	14.5	14.5	OP
JIM WOODRUFF	3	GADSDEN	HY	WAT	NA	NA	NA	0	4 / 1957	/	14.0	14.5	14.5	14.5	0i
											UCEM TOTAL:		44	44	
VERO BEACH CITY OF															
MUNICIPAL PLANT	1	INDIAN RIVER	ST	NG	PL	RFO	TK		11 / 1961	/	13	13	13	13	OP
MUNICIPAL PLANT	2	INDIAN RIVER	CA	NG	PL	RFO	тк		8 / 1964	/	13	13	13	13	OP
MUNICIPAL PLANT	3	INDIAN RIVER	ST	NG	PL	RFO	тк		9 / 1971	/	33	33	33	33	OP
MUNICIPAL PLANT	4	INDIAN RIVER	ST	NG	PL	RFO	тк		8 / 1976	/	56	56	56	56	OP
MUNICIPAL PLANT	5	INDIAN RIVER	СТ	NG	PL	DFO	тк		12 / 1992	/	35	40	35	40	OP
											VER TOTAL:		150	155	

TOTAL FRCC EXISTING:

43,966 47,033

* Total Gross Capability for Jointly Ov	wned Unit (Summer/Winter)
---	---------------------------

2006

LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL

FRCC Form 1.1

PLANNED AND PROSPECTIVE GENERATING FACILITY ADDITIONS AND CHANGES

(JANUARY 1, 2006 THROUGH DECEMBER 31, 2015)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
									ALT. FUEL STORAGE	COMMERICAL IN-SERVICE OR	GRC CAPAE		NE CAPAE		
		UNIT		UNIT	PRIM/	ARY FUEL	ALTERN	ATE FUEL	(DAYS	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
UTILITY	POWER PLANT NAME	NO	LOCATION	TYPE	TYPE	TRANS.	TYPE	TRANS.	BURN)	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
	<u>2006</u>														
RCI	CENTRAL ENERGY PLANT	1	ORANGE	сс	NG	PL	DFO	тк	0	2 / 2006	17	17	17	17	Α
PEF	UNIVERSITY OF FLORIDA	P1	ALACHUA	GT	NG	PL			-	3 / 2006	10	7	10	7	A
TEC	PHILLIPS	3	HIGHLANDS	CA	WH	NA	NA	NA	0	3 / 2006	-3	-3	-3	-3	RT
JEA	BRANDY BRANCH	4	DUVAL	CC	NG	PL	DFO	тк	0	4 / 2006	13	13	13	13	A
FPL	CAPE CANAVERAL	1	BREVARD	ST	RFO	WA	NG	PL	0	6 / 2006	0	0	-5	-5	D
FPL	CAPE CANAVERAL	2	BREVARD	ST	RFO	WA	NG	PL.	0	6 / 2006	0	0	8	7	А
FPL	CUTLER	5	DADE	ST	NG	PL	NA	NA	0	6 / 2006	0	0	3	3	А
FPL	CUTLER	6	DADE	ST	NG	PL	NA	NA	0	6 / 2006	28	28	33	33	A
FPL	FT. MYERS	1	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	10	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	11	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	12	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	2	LEE	CA	NG	PL	NA	NA	0	6 / 2006	0	8	0	8	A
FPL	FT. MYERS	2	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	3	LEE	СТ	NG	PL	DFO	тк	0	6 / 2006	0	4	0	4	A
FPL	FT. MYERS	3	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	4	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	5	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	6	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	7	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	FT. MYERS	8	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	А
FPL	FT. MYERS	9	LEE	GT	DFO	WA			0	6 / 2006	0	1.3	0	1.3	A
FPL	MANATÉE	1	MANATEE	ST	RFO	WA	NG	PL	0	6 / 2006	0	0	-6	-6	D
FPL	MANATEE	2	MANATEE	ST	RFO	WA	NG	PL	0	6 / 2006	0	0	-7	-7	D
FPL	MARTIN	1	MARTIN	ST	RFO	PL.	NG	PL	0	6 / 2006	0	0	6	6	Α
FPL	MARTIN	3	MARTIN	CC	NG	PL	NA	NA	0	6 / 2006	22	18	22	24	А
FPL	MARTIN	4	MARTIN	CC	NG	PL	NA	NA	0	6 / 2006	16	18	22	24	Α
FPL	PORT EVERGLADES	ST1	BROWARD	ST	RFO	PL.	NG	PL	0	6 / 2006	0	0	-7	0	D
FPL	PORT EVERGLADES	ST3	BROWARD	ST	RFO	PL.	NG	PL	0	6 / 2006	16	8	8	8	Α
FPL	PORTEVERGLADES	ST4	BROWARD	ST	RFO	PL.	NG	PL	0	6 / 2006	2	2	12	12	Α
FPL	PUTNAM	1ST	PUTNAM	CA	NG	PL	DFO	WA	0	6 / 2006	0	0	4	4	А
FPL	RIVIERA	3	PALM BEACH	ST	RFO	WA	NG	PL	0	6 / 2006	13	13	14	14	A
FPL	SANFORD	4	VOLUSIA	cc	NG	PL	_		ő	6 / 2006	0	10	0	10	А
FPL	SANFORD	5	VOLUSIA	cc	NG	PL			õ	6 / 2006	0	10	0	10	Α
FPL	ST. JOHNS RIVER	2	DUVAL	ST	BIT	RR	DFO	PL.	ő	6 / 2006	21	17	22	18	А
FPL	TURKEY POINT	1	DADE	ST	RFO	WA	NG	PL	ů 0	6 / 2006	12	21	13	22	A
		•				•••		• •	•	0.2000					

Page 23 of 80 Exhibit BT/TJS-9 FRCC Load and Resource Plan Docket No. 070393-EI

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

2007 TOTAL:

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
									ALT. FUEL STORAGE	COMMERICAL IN-SERVICE OR	GRC CAPAE		NE CAPAE	BILITY	
		UNIT		UNIT		ARY FUEL		NATE FUEL	(DAYS	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
UTILITY	POWER PLANT NAME	NO.	LOCATION	TYPE	TYPE	TRANS.	TYPE	TRANS.	BURN)	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
	PRANEY PRANEU		DUNAL	07	110	Di	DFO	тк	0	6 / 2006	3.8	4.1	3.8	4.1	Α
JEA	BRANDY BRANCH	1 GT7	DUVAL DUVAL	GT GT	NG NG	PL WA	DFO	WA	0	6 / 2006	3.8	4.1 4.1	3.8	4.1	A
JEA	J. D. KENNEDY	GI7		ST	PC	WA	DFO	WA	0	6 / 2006	3.8 8.9	4.1 8.9	3.8	4.1	A
JEA FMPA	NORTHSIDE	1 CT4	DUVAL MONROE	CT	DFO	WA	DFO	TK	0	7 / 2006	48	48	42	42	TS
STC	STOCK ISLAND ST. CLOUD	C14	OSCEOLA		NG	PL	DFO	тк	5	10 / 2006	-2	-2	-2	-2	RT
STC	ST. CLOUD	1	OSCEOLA	IC	NG	PL	DFO	тк	5	10 / 2006	-2 -5	-2 -5	-2	-2	RT
STC	ST. CLOUD	2	OSCEOLA		NG	PL	DFO	тк	5	10 / 2006	-3	-3	-3	-5 -2	RT
STC	ST. CLOUD	3	OSCEOLA	IC	NG	PL	DFO	тк	5	10 / 2006	-2 -3	-2	-2	-2 -3	BT
STC	ST. CLOUD	4	OSCEOLA	ic	NG	PL	DFO	тк	5	10 / 2006	-3	-3	-3	-3	RT
STC	ST. CLOUD	7	OSCEOLA	IC	NG	PL	DFO	тк	5	10 / 2006	-6	-6	-6	-6	RT
STC	ST. CLOUD	, 8	OSCEOLA	IC	NG	PL	DFO	тк	5	10 / 2006	-6	-6	-6	-6	RT
SEC	PAYNE CREEK	4	HARDEE	GT	NG	PL	DFO	тк	0	11 / 2006	54	62	54	62	v
SEC	PAYNE CREEK	5	HARDEE	GT	NG	PL	DFO	тк	0	11 / 2006	54	62	54	62	v
SEC	PAYNE CREEK	6	HARDEE	GT	NG	PL	DFO	тк	0	11 / 2006	54	62	54	62	v
SEC	PAYNE CREEK	7	HARDEE	GT	NG	PL	DFO	тк	0	11 / 2006	54	62	54	62	v
SEC	PAYNE CREEK	8	HARDEE	GT	NG	PL	DFO	тк	0	11 / 2006	54	62	54	62	v
JEA	NORTHSIDE	2	DUVAL	ST	PC	WA	DFO	WA	ů 0	12 / 2006	9	9	8.9	8.9	Å
JEA	NORTHOIDE	2	OUTAL	-	10		5.0		0	12 / 2000					
											2006 TOTAL:		498	599	
	<u>2007</u>														
TEC	POLK	4	POLK	GT	NG	PL	NA	NA	0	5 / 2007	160	180	160	180	т
FPL	MANATEE	1	MANATEE	ST	RFO	WA	NG	PL	0	6 / 2007	0	0	15	15	Α
FPL	MANATEE	2	MANATEE	ST	RFO	WA	NG	PL	0	6 / 2007	0	0	16	16	Α
FPL	MARTIN	2	MARTIN	ST	RFO	WA	NG	PL	0	6 / 2007	0	0	19	7	А
FPL	PORT EVERGLADES	ST3	BROWARD	ST	RFÓ	WA	NG	PL	0	6 / 2007	0	0	8	8	А
FPL	SCHERER	4	UNKNOWN	ST	BIT	RR	NA	NA	0	6 / 2007	18	23	19	24	Α
FPL	TURKEY POINT	5	DADE	CC	NG	PL			0	6 / 2007	1144	1181	1144	1181	U
TEC	POLK	5	POLK	GT	NG	PL.	NA	NA	0	7 / 2007	160	180	160	180	т
PEF	HINES ENERGY COMPLEX	4	POLK	CC	NG	PL.	DFO	тк	0	12 / 2007	461	517	461	517	U

2,002

2,128

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
									ALT. FUEL STORAGE	COMMERICAL IN-SERVICE OR	GRC	BILITY	NE CAPAE	BILITY	
UTILITY	POWER PLANT NAME	UNIT NO.	LOCATION	UNIT TYPE	TYPE	ARY FUEL TRANS.	ALTERI TYPE	TRANS.	_ (DAYS 	MO. / YEAR	SUMMER (MW)	WINTER (MW)	SUMMER (MW)	WINTER (MW)	STATUS
	POWER PLANT NAME		LUCATION			TRANS.		TRANS.	BURN	MO. / TEAK	(((1)))	(10100)			
	<u>2008</u>														
TAL	HOPKINS	2	LEON	ST	NG	PL	RFO	тк	0	5 / 2008	-91	-90	-88	-88	RP
TAL	HOPKINS	5	LEON	CT	NG	PL	DFO	тк	0	5 / 2008	157	184	156	183	RP
FMPA	TCEC	1	ST LUCIE	CA	WH	NA	NA	NA	0	6 / 2008	150	150	140	150	U
FMPA	TCEC	1	ST LUCIE	СТ	NG	PL	DFO	ΤK	0	6 / 2008	165	168	156	168	U
FPL	CAPE CANAVERAL	1	BREVARD	ST	RFO	WA	NG	PL	0	6 / 2008	0	0	4	3	А
FPL	PORT EVERGLADES	ST1	BROWARD	ST	RFO	WA	NG	PL.	0	6 / 2008	0	0	8	1	Α
FPL	UNSITED CT	6A	BROWARD	СТ	NG	PL	DFO	тк	0	6 / 2008	160	181	160	181	Р
GRU	DEERHAVEN	FS02	ALACHUA	ST	BIT	RR			0	10 / 2008	0	0	-0.5	-0.5	D
JEA	GREENFIELD	1	DUVAL	GT	NG	PL.	DFO	тк	0	12 / 2008	160.1	192.7	158.6	191.2	Р
PEF	BARTOW CT	5	PINELLAS	GT	NG	PL	DFO	тк	0	12 / 2008	322	382	322	382	Р
											2008 TOTAL:		1,016	1,171	
	2009														
JEA	J. D. KENNEDY	GT3	DUVAL	GT	DFO	WA		_	0	1 / 2009	-51.3	-63	-51	-62.7	os
SEC	SEMINOLE	1	PUTNAM	ST	BIT	RR			0	1 / 2009	7	7	7	7	А
SEC	SEMINÓLE	2	PUTNAM	ST	BIT	RR				1 / 2009	9	9	9	9	Α
TEC	FUTURE	CT1	UNKNOWN	GT	NG	PL.	NA	NA	0	1 / 2009	88	97	88	97	Р
TEC	FUTURE	CT2	UNKNOWN	GT	NG	PL	NA	NA	0	1 / 2009	88	97	88	97	Р
TEC	FUTURE	СТЗ	UNKNOWN	GT	NG	PL	NA	NA	0	1 / 2009	88	97	88	97	Р
TEC	FUTURE	CT4	UNKNOWN	GT	NG	PL	NA	NA	Ð	1 / 2009	88	97	88	97	Р
PEF	CRYSTAL RIVER	5	CITRUS	ST	BIT	WA			_	4 / 2009	-22	-22	-22	-22	D
FPL	WEST COUNTY	1	PALM BEACH	CC	NG	PL	DFO	тк	0	6 / 2009	1219	1335	1219	1335	Р
PEF	BARTOW CC	1	PINELLAS	CC	NG	PL	DFO	TK	0	6 / 2009	1159	1279	1159	1279	Р
PEF	BARTOW CT	5	PINELLAS	GT	NG	PL	DFO	тк	0	6 / 2009	-322	-382	-322	-382	RP
PEF	P. L. BARTOW	1	PINELLAS	ST	RFO	WA			0	6 / 2009	-128	-130	-121	-123	RP
PEF	P. L. BARTOW	2	PINELLAS	ST	RFO	WA	-		0	6 / 2009	-125	-127	-119	~121	RP
PEF	P. L. BARTOW	3	PINELLAS	ST	RFO	WA	NG	PL	0	6 / 2009	-211	-215	-204	-208	RP
GRU	DEERHAVEN	FS02	ALACHUA	ST	BIT	RR			0	10 / 2009	0	0	-2.5	-2.5	D
PEF	CRYSTAL RIVER	4	CITRUS	ST	BIT	WA				11 / 2009	-22	-22	-22	-22	D
GRU	SOUTH WEST LANDFILL	LF1-3	ALACHUA	IC	LFG	PL	NA	NA	0	12 / 2009	-0.7	-0.7	-0.7	-0.7	D
JEA	GREENFIELD	2	DUVAL	GT	NG	PL	DFO	тк	0	12 / 2009	160.1	192.7	158.6	191.2	Р
											2009 TOTAL:		2,040	2,265	

Total Gross Capability for Jointly Owned Unit (Summer/Winter)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
									ALT. FUEL STORAGE	COMMERICAL IN-SERVICE OR	GRC CAPAE		NE CAPAE		
		UNIT		UNIT		ARY FUEL		NATE FUEL	(DAYS	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	07.4 71.00
UTILITY	POWER PLANT NAME	<u>NO.</u>	LOCATION	TYPE	TYPE	TRANS.	TYPE	TRANS.	BURN)	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
	<u>2010</u>														
TEC	FUTURE	CT5	UNKNOWN	GT	NG	PL	NA	NA	0	1 / 2010	88	97	88	97	P
TEC	FUTURE	CT6	UNKNOWN	GT	NG	PL	NA	NA	0	1 / 2010	88	97	88	97	Р
FMPA	UNSITED CT	CT1	PALM BEACH	СТ	NG	PL	DFO	тк	0	6 / 2010	42	49	42	49	Р
FMPA	UNSITED CT	CT2	PALM BEACH	СТ	NG	PL	DFO	TK	0	6 / 2010	42	49	42	49	Р
FPL	WEST COUNTY	2	PALM BEACH	cc	NG	PL	DFO	тк	0	6 / 2010	1219	1335	1219	1335	Р
OUC	STANTON	в	ORANGE	OT	SUB	RR	NG	PL	0	6 / 2010	256	283	256	283	Р
PEF	COMBUSTION TURBINE	1	UNKNOWN	GT	NG	PL	DFO	ΤK	0	6 / 2010	161	191	161	191	Р
JEA	GREENFIELD	3	DUVAL	GT	NG	PL	DFO	тк	0	12 / 2010	160.1	192.7	158.6	191.2	Р
											2010 TOTAL:		2,055	2,292	
	<u>2011</u>														
TAL	PURDOM	7	WAKULLA	ST	NG	PL	RFÖ	тк	19	3 / 2011	-51	-53	-48	-50	RT
TAL	PURDOM	GT1	WAKULLA	GT	NG	PL	DFO	тк	1	3 / 2011	-10	-10	-10	-10	RT
TAL	PURDOM	GT2	WAKULLA	GT	NG	PL	DFO	тк	1	3 / 2011	-10	-10	-10	-10	RT
TAL	COMBUSTION TURBINE	A	UNKNOWN	СТ	NG	PL	DFO	тк	0	5 / 2011	49	49	46	48	Р
TEC	FUTURE	CT7	UNKNOWN	GT	NG	PL	NA	NA	0	5 / 2011	88	97	88	97	P
FPL	UNSITED CT	1	UNKNOWN	СТ	NG	PL	DFO	тк	0	6 / 2011	320	362	320	362	Р
PEF	COMBINED CYCLE	1	UNKNOWN	cc	NG	PL	DFO	UN	0	6 / 2011	478	550	478	550	Р
GRU	J. R. KELLY	FS07	ALACHUA	ST	NG	PL	RFO	тк	0	8 / 2011	-24	-24	-23.2	-23.2	RT
											2011 TOTAL:		841	964	
	<u>2012</u>														
SEC	SEMINOLE	3	PUTNAM	ST	BIT	RR			0	5 / 2012			750	750	P
TEC	FUTURE	Ств	UNKNOWN	GT	NG	PL.	NA	NA	0	5 / 2012	88	97	88	97	P
TEC	FUTURE	CT9	UNKNOWN	GT	NG	PL	NA	NA	0	5 / 2012	88	97	88	97	P
PEF	COMBUSTION TURBINE	2	UNKNOWN	GT	NG	PL	DFO	тк	ő	6 / 2012	161	191	161	191	P
FPL	CLEAN COAL	1	UNKNOWN	ST	BIT	RR			0	6 / 2012	850	855	850	855	P
FMPA	TAYLOR ENERGY CENTER (819/819) *	1	TAYLOR	ST	BIT	RR	BIT		0	6 / 2012	288	288	288	288	
JEA	TAYLOR ENERGY CENTER (819/819) *	1	TAYLOR	ST	BIT	RR	PC		0	6 / 2012	236	236	236	236	P
?	TAYLOR ENERGY CENTER (819/819) *	1	TAYLOR	ST	BIT	RR			0	6 / 2012	295	295	230	230	P
				01	011				0	0 / 2012	233	250			•
											2012 TOTAL:		2,691	2,745	

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
									ALT. FUEL	COMMERICAL IN-SERVICE	GRO	22	NE	т	
									STORAGE	OR	CAPAE		CAPAE		
		UNIT		UNIT	PRIMA	ARY FUEL	ALTERN	ATE FUEL	(DAYS	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
UTILITY	POWER PLANT NAME	NO.	LOCATION	TYPE	TYPE	TRANS.	TYPE	TRANS.	BURN)	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
	2013														
TEC	FUTURE	IGCC1	UNKNOWN	CA	BIT	RR	NG	PL	0	1 / 2013	605	630	605	630	Р
FPL	UNSITED CLEAN COAL	2	UNKNOWN	ST	BIT	RR			0	6 / 2013	850	855	850	855	Р
GRU	DEERHAVEN	3	ALACHUA	ST	BIT	RR	PC	RR	60	6 / 2013	244	244	220	220	Р
PEF	P-COAL, SUPERCRITICAL	1	UNKNOWN	ST	BIT	RR	_		0	6 / 2013	750	750	750	750	Р
JEA	GREENFIELD	5	DUVAL	ST	PC	WA	SUB		0	12 / 2013	250	250	250	250	Р
											2013 TOTAL:		2,675	2,705	
	<u>2014</u>														
TAL	COMBUSTION TURBINE	в	UNKNOWN	СТ	NG	PL	DFO	тк	0	5 / 2014	49	49	46	48	Р
FMPA	UNSITED CC	4	UNKNOWN	CC	NG	PL	DFO	тк	0	6 / 2014	296	318	296	318	Р
FPL	UNSITED CT	1	UNKNOWN	СТ	NG	PL			0	6 / 2014	160	181	160	181	Р
PEF	P-COAL, SUPERCRITICAL	2	UNKNOWN	ST	BIT	RR		-	0	6 / 2014	750	750	750	750	Р
											2014 TOTAL:		1,252	1,297	
	<u>2015</u>														
TEC	BIG BEND	GT1	HILLSBOROUGH	GT	DFO	WA	NA	NA	_	1 / 2015	-14	-15	-14	-15	RT
TEC	BIG BEND	GT2	HILLSBOROUGH	GT	DFO	WA	NA	NA		1 / 2015	-66	-80	-66	-80	RT
TEC	BIG BEND	GT3	HILLSBOROUGH	GT	DFO	WA	NA	NA		1 / 2015	-66	-80	-66	-80	RT
TEC	FUTURE	CT10	UNKNOWN	GT	NG	PL	NA	NA	0	1 / 2015	88	97	88	97	Ρ
TAL	HOPKINS	GT1	LEON	GT	NG	PL	DFO	тк		3 / 2015	-12	-14	-12	-14	RT
TEC	FUTURE	CT11	UNKNOWN	GT	NG	PL	NA	NA	0	5 / 2015	88	97	88	97	P
TEC	FUTURE	CT12	UNKNOWN	GT	NG	PL	NA	NA	0	5 / 2015	88	97	88	97	P
FPL	UNSITED CC	5	MARTIN	cc	NG	PL	DFO	тк	0	6 / 2015	553	610	553	610	P
FPL	UNSITED CT	2	UNKNOWN	СТ	NG	PL			0	6 / 2015	160	181	160	181	Р
PEF	COMBINED CYCLE	2	UNKNOWN	cc	NG	PL	DFO	UN	0	6 / 2015	478	550	478	550	Р
GRU	SOUTHWEST LANDFILL	– LF1-3	ALACHUA	IC	LFG	PL	NA	NA	0	12 / 2015	-0.7	-0.7	-0.7	-0.7	RT
JEA	GREENFIELD	6	DUVAL	ST	PC	UN	SUB		0	12 / 2015	250	250	250	250	Р
											2015 TOTAL:		1,546	1,692	

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)

17,858

16,617

FRCC FUTURE TOTAL:

2006
LOAD AND RESOURCE PLAN
FLORIDA RELIABILITY COORDINATING COUNCIL

FRCC Form 10 SUMMARY OF CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF SUMMER PEAK

(1)	(2)	(3) NET	(4) PROJECTED	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		CONTRACTED	FIRM NET	TOTAL		RESER	VE MARGIN	FIRM	RESER	/E MARGIN
	INSTALLED	FIRM	TO GRID	AVAILABLE	TOTAL PEAK	W/O E)	(ERCISING	PEAK	WITH E	XERCISING
	CAPACITY	INTERCHANGE	NUG + MERCH	CAPACITY	DEMAND	LOAD MANA	GEMENT & INT.	DEMAND	LOAD MANA	GEMENT & INT.
YEAR	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	% OF PEAK	(MW)	(MW)	% OF PEAK
2006	44,207	1,552	5,498	51,257	45,520	5,737	13%	42,761	8,496	20%
2007	46,006	1,552	5,272	52,830	46,725	6,105	13%	43,778	9,052	21%
2008	47,003	1,552	5,379	53,934	48,030	5,904	12%	45,029	8,905	20%
2009	49,390	1,552	5,528	56,470	49,233	7,237	15%	46,210	10,260	22%
2010	51,419	1,342	4,818	57,579	50,221	7,358	15%	47,215	10,364	22%
2011	52,419	1,342	4,611	58,371	51,343	7,028	14%	48,318	10,053	21%
2012	55,110	1,342	4,530	60,982	52,490	8,492	16%	49,442	11,540	23%
2013	57,535	1,342	3,876	62,753	53,686	9,067	17%	50,611	12,142	24%
2014	59,037	1,342	3,841	64,220	54,830	9,390	17%	51,726	12,494	24%
2015	60,334	1,342	4,169	65,845	56,130	9,715	17%	53,018	12,827	24%

SUMMARY OF CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF WINTER PEAK

(1)	(2)	(3) NET	(4) PROJECTED	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		CONTRACTED	FIRM NET	TOTAL		RESER	VE MARGIN	FIRM	RESER	VE MARGIN
	INSTALLED	FIRM	TO GRID	AVAILABLE	TOTAL PEAK	W/O E	(ERCISING	PEAK	WITH E	XERCISING
	CAPACITY	INTERCHANGE	NUG + MERCH	CAPACITY	DEMAND	LOAD MANA	GEMENT & INT.	DEMAND	LOAD MANA	GEMENT & INT.
YEAR	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	% OF PEAK	(MW)	(MW)	% OF PEAK
2006 / 07	47,631	1,552	5,494	54,678	48,296	6,382	13%	44,792	9,886	22%
2007 / 08	49,759	1,552	5,899	57,211	49,464	7,747	16%	45,905	11,306	25%
2008 / 09	51,271	1,552	5,707	58,531	50,732	7,799	15%	47,127	11,404	24%
2009 / 10	53,389	1,552	5,177	60,119	51,678	8,441	16%	48,088	12,031	25%
2010 / 11	55,418	1,342	5,159	61,919	52,869	9,050	17%	49,257	12,662	26%
2011 / 12	56,451	1,412	5,080	62,943	53,923	9,020	17%	50,288	12,655	25%
2012 / 13	59,826	1,342	4,273	65,441	55,086	10,355	19%	51,420	14,021	27%
2013 / 14	61,901	1,342	4,669	67,912	56,271	11,641	21%	52,571	15,341	29%
2014 / 15	63,106	1,342	4,378	68,826	57,674	11,152	19%	53,940	14,886	28%
2015 / 16	64,891	930	4,273	70,093	59,162	10,931	18%	55,432	14,661	26%

NOTE: COLUMN 9: "FIRM PEAK DEMAND" = TOTAL PEAK DEMAND - INTERRUPTIBLE LOAD - LOAD MANAGEMENT.

2006 FRCC Form 11 CONTRACTED FIRM <u>IMPORTS</u> AND FIRM <u>EXPORTS</u> FROM/TO OUTSIDE THE FRCC REGION AT TIME OF PEAK (MW) AS OF JANUARY 1, 2006

_				รเ		
_			IM	PORTS	EXPORTS	NET INTER-
<u>YEAR</u>	<u>FPL</u>	PEF	<u>JEA</u>	<u>TOTAL</u>	<u></u> <u></u> <u></u>	CHANGE
2006	931	414	207	1,552	0	1,552
2007	931	414	207	1,552	0	1,552
2008	931	414	207	1,552	0	1,552
2009	931	414	207	1,552	0	1,552
2010	930	412	0	1,342	0	1,342
2011	930	412	0	1,342	0	1,342
2012	930	412	0	1,342	0	1,342
2013	930	412	0	1,342	0	1,342
2014	930	412	0	1,342	0	1,342
2015	930	412	0	1,342	0	1,342

<u></u>			IMPORTS		EXPORTS	<u> </u>	NET INTER-
<u>YEAR</u>	<u>FPL</u>	<u>PEF</u>	<u>JEA</u>	<u>TOTAL</u>		<u>TOTAL</u>	CHANGE
006/07	931	414	207	1,552		0	1,552
007/08	931	414	207	1,552		0	1,552
008/09	931	414	207	1,552		0	1,552
009/10	931	414	207	1,552		0	1,552
10/11	930	412	0	1,342		0	1,342
)11/12	930	412	70	1,412		0	1,412
012/13	930	412	0	1,342		0	1,342
013/14	930	412	0	1,342		0	1,342
014/15	930	412	0	1,342		0	1,342
015/16	930	0	0	930		0	930

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 29 of 80

FRCC Form 3.0 EXISTING NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES AS OF DECEMBER 31, 2005

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
				PC	TENTIAL EXPO	RT TO GRID										
					AT TIME OF	PEAK		GROSS	5	NE	т					
			-	FIRM		UNCOMMI	ITED	CAPABIL	ΙТΥ	CAPAB	ILITY				COMMERCIAL	
		UNIT	-	SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT	FUE	TYPE	IN-SERVICE	
UTILITY	FACILITY NAME	NO.	LOCATION	(MW)	(MW) .	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	TYPE	PRI	ALT	MO. / YEAR	STATUS
FLORID/	MUNICIPAL POWER AGENCY															
	CUTRALE		LAKE	0.0	0.0	0.0	0.0	4.6	4.6	4.6	4.6	сс	NG		12 / 1987	NC
	US SUGAR CORPORATION		HENDRY	0.0	0.0	0.0	0.0	26.5	26.5	26.5	26.5	OT	OBS		2 / 1984	NC
			FMPA TOTAL:	0.0	0.0	0.0	0.0									
FLORID/	POWER & LIGHT COMPANY															
	BROWARD-NORTH	1a	BROWARD	45.0	45.0			62	62	56	56	от	MSW		4 / 1992	С
	BROWARD-NORTH	1b	BROWARD	7.0	7.0			62	62	56	56	ОT	MSW		1 / 1993	С
	BROWARD-NORTH	1c	BROWARD	1.5	1.5			62	62	56	56	от	MSW		1 / 1995	С
	BROWARD-NORTH	1d	BROWARD	2.5	2.5			62	62	56	56	от	MSW	=	1 / 1997	C
	BROWARD-SOUTH	1a	BROWARD	50.6	50.6			68	68	61	61	OT	MSW		4 / 1991	С
	BROWARD-SOUTH	1b	BROWARD	1.4	1.4			68	68	61	61	ОТ	MSW		1 / 1993	С
	BROWARD-SOUTH	1c	BROWARD	1.5	1.5			68	68	61	61	ОТ	MSW		1 / 1995	с
	BROWARD-SOUTH	1d	BROWARD	0.6	0.6			68	68	61	61	от	MSW		1 / 1995	С
	CEDAR BAY	1	DUVAL	250.0	250.0			250	250	250	250	от	BIT		1 / 1994	С
	GEORGIA PACIFIC	1	PUTNAM			14.0	15.0	52	52	52	52	от	WDS		2 / 1983	NC
	INDIANTOWN	1	MARTIN	330.0	330.0			330	330	330	330	OT	BIT		12 / 1995	С
	OKEELANTA	1	PALM BEACH			70.0	69.0	70	70	70	70	OT	OBS	NG	11 / 1995	NC
	PALM BEACH COUNTY	1	PALM BEACH	47.5	47.5			56	56	47.5	47.5	OT	MSW		1 / 2005	С
	TOMOKA FARMS	1	VOLUSIA			4.0	4.0	3.8	3.8	3.8	3.8	OT	OTH		7 / 1998	NC
	US SUGAR-BRYANT	1	PALM BEACH			9.0	8.0	20	20	20	20	OT	OBS		2 / 1980	NC
			FPL TOTAL:	737.6	737.6	97.0	96.0									
JEA																
	ANHEUSER BUSCH		DUVAL	0.0	0.0	0.0	0.0			8	9	ST	NG		4 / 1988	С
	BAPTIST HOSPITAL		DUVAL	0.0	0.0	0.0	1.0			7	8	ST	NG		10 / 1982	С
	RING POWER LANDFILL		DUVAL	0.0	0.0	1.0	1.0			1	1	ST	NG		4 / 1992	С
	ST. VINCENTS HOSPITAL		DUVAL _	0.0	0.0	0.0	0.0			1	1	ST	NG		12 / 1991	С
			JEA TOTAL:	0.0	0.0	1.0	2.0									

Docket No. 070393-EI Exhibit BT/TJS-9 Page 30 of 80

FRCC Form 3.0 EXISTING NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES AS OF DECEMBER 31, 2005

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
				F	OTENTIAL EXPO											
					AT TIME OF			GROS		NE						
				FIRM		UNCOMMI		CAPABIL		CAPAE					COMMERCIAL	
		UNIT		SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT		L TYPE	MO. / YEAR	OTATIO
UTILITY	FACILITY NAME	NO.	LOCATION	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	TYPE	PRI	ALT	MU. / TEAK	STATUS
PROGRE	ESS ENERGY FLORIDA															
	BAY COUNTY RES. RECOV.	1	BAY	11.0	11.0	0.0	0.0	11	11	11	11	ST	MSW		4 / 1988	С
	BEN HILL GRIFFIN	1	POLK	0.0	0.0	0.0	0.0	0.5	0.5	0.5	0.5	ST	NG	DFO	11 / 1981	NC
	CARGILL	1-2	POLK	15.0	15.0	0.0	0.0	15	15	15	15	ST	WH	NG	10 / 1992	С
	CITRUS WORLD	1	POLK	0.0	0.0	0.0	0.0	0.4	0.4	0.4	0.4	ST	NG	DFO	11 / 1979	NC
	CITRUS WORLD	4	POLK	0.0	0.0	0.0	0.0	4	4	4	4	ST	NG	DFO	12 / 1987	NC
	DADE COUNTY RES. RECOV.	1	DADE	43.0	43.0	0.0	0.0	43	43	43	43	ST	MSW		11 / 1991	С
	EL DORADO	1-2	POLK	114.2	114.2	18.8	18.8	133	133	133	133	CA	NG	DFO	7 / 1994	С
	JEFFERSON POWER	1	JEFFERSON	2.0	2.0	6.0	6.0	9.4	9.4	8	8	ST	WDS		7 / 2002	NC
	LAKE COGEN	1	LAKE	110.0	110.0	0.0	0.0	111	111	110	110	CA	NG	DFO	7 / 1993	С
	LAKE COUNTY RES. RECOV.	1	LAKE	12.8	12.8	0.0	0.0	14.8	14.8	12.8	12.8	ST	MSW		9 / 1990	С
	LFC JEFFERSON	1	POLK	8.5	8.5	0.0	0.0	8.5	8.5	8.5	8.5	CA	NG	DFO	6 / 1990	С
	LFC MADISON	1	POLK	8.5	8.5	0.0	0.0	8.5	8.5	8.5	8.5	CA	NG	DFO	9 / 1989	С
	MULBERRY	1	POLK	79.2	79.2	0.0	0.0	80.2	80.2	79.2	79.2	CA	NG	DFO	7 / 1994	С
	ORANGE COGEN (CFR-BIOGEN)	1	POLK	74.0	74.0	0.0	0.0	98	98	97	97	CA	NG	****	6 / 1995	С
	ORLANDO COGEN	1	ORANGE	79.2	79.2	0.0	0.0	115.2	115.2	114.2	114.2	CA	NG		10 / 1993	С
	PASCO COGEN	1-3	PASCO	109.0	109.0	0.0	0.0	110	110	109	109	CA	NG	DFO	7 / 1993	С
	PASCO COUNTY RES. RECOV.	1	PASCO	23.0	23.0	0.0	0.0	26	26	23	23	ST	MSW		3 / 1991	С
	PINELLAS COUNTY RES. RECOV.	1	PINELLAS	40,0	40.0	0.0	0.0	44.6	44.6	40	40	ST	MSW		4 / 1983	С
	PINELLAS COUNTY RES. RECOV.	2	PINELLAS	14,8	14.8	0.0	0.0	17.1	17.1	14.8	14.8	ST	MSW		6 / 1986	С
	POTASH of SASKATCHEWAN	1	HAMILTON	0.0	0.0	1.0	1.0	16.2	16.2	15	15	ST	WH		1 / 1980	NC
	POTASH of SASKATCHEWAN	2	HAMILTON	0.0	0.0	0.2	0.2	28	28	27	27	ST	WH		5 / 1986	NC
	PROCTOR & GAMBLE (BUCKEYE)	1-4	TAYLOR	0.0	0.0	0.0	0.0	38	38	38	38	ST	WDS		1 / 1954	NC
	RIDGE GENERATING STATION	1	POLK	39.6	39.6	0.0	0.0	39.6	39.6	39.6	39.6	ST	WDS		5 / 1994	С
	ROYSTER	1	POLK	30.8	30.8	0.0	0.0	30.8	30.8	30.8	30.8	CA	NG	DFO	7 / 1994	С
	TIMBER ENERGY	1	LIBERTY	0.0	0.0	0.0	0.0	13.5	13.5	12.5	12.5	ST	WDS		6 / 2002	NC
	US AGRICHEM	1	POLK	5.6	5.6	10.0	10.0	44.1	44.1	44.1	44.1	ST	WH		1 / 1997	NC
			PEF TOTAL:	820.2	820.2	36.0	36.0									
<u>REEDY (</u>	CREEK IMPROVEMENT DISTRICT															
	ORLANDO COGEN	1	ORANGE	35.0	35.0	0.0	0,0	35	35	35	35	CA	NG	DFO	1 / 1994	С
			RCI TOTAL:	35.0	35.0	0.0	0.0									

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 31 of 80

FRCC Form 3.0 EXISTING NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES AS OF DECEMBER 31, 2005

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
				I	OTENTIAL EXPO			GROSS		NE	т					
				FIRM		UNCOMMI	TTED	CAPABILI		CAPAB					COMMERCIAL	
		UNIT	•	SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT	FUE	L TYPE	IN-SERVICE	
UTILITY	FACILITY NAME	NO.	LOCATION	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	_(MW)	(MW)	TYPE	PRI	ALT	MO. / YEAR	STATUS
SEMINOL																
OLIMITOLI																
	BIOENERGY	1	BROWARD	6.0	7.0					6	7	ОТ	LFG		1 / 2005	С
	HARDEE POWER STATION	ST1	HARDEE	77.0	86.0					77	86	CA	NG	DFO	1 / 1993	С
	HARDEE POWER STATION	CT1A	HARDEE	71.0	90.0					71	90	СТ	NG	DFO	1 / 1993	С
	HARDEE POWER STATION	CT1B	HARDEE	71.0	90.0					71	90	СТ	NG	DFO	1 / 1993	С
	HARDEE POWER STATION	CT2A	HARDEE	71.0	90.0	*				71	90	СТ	NG	DFO	1 / 1993	С
	LEE COUNTY RES REC	1	LEE	30.0	35,0					30	35	ST	MSW		12 / 1999	С
	TIMBER ENERGY	1	LIBERTY .	12.0	12.0					12	12	ST	WDS		6 / 2004	С
			SEC TOTAL:	338.0	410.0	0.0	0.0									
TAMPA EL	ECTRIC COMPANY															
	AUBURNDALE POWER PARTNERS	1-2	POLK	0.0	0.0	0.0	0.0	123.3	123.3	120	120	СТ	NG	NA	8 / 1994	NC
	CF INDUSTRIES	1	HILLSBOROUGH	0.0	0.0	1.2	1.2	28.5	28.5	27.4	27.4	ST	WH	NA	12 / 1988	NC
	CITY OF TAMPA REFUSE-ENERGY	1	HILLSBOROUGH	15.5	15.5	2.5	2.5	21	21	18	18	ST	MSW	NA	6 / 1985	С
	CITY OF TAMPA SEWAGE	1-5	HILLSBOROUGH	0.0	0.0	0.0	0.0	1.4	1.4	1.4	1.4	IC	OBG	NA	7 / 1989	NC
	CUTRALE CITRUS JUICES	1-3	POLK	0.0	0,0	0.0	0.0	5.9	5.7	5.9	5.7	CT	NG	DFO	12 / 1987	NC
	GREENBAY	1	POLK	0.0	0.0	2.9	2.9	28	28	25.1	25.1	ST	WH	NA	10 / 1990	NC
	HILLSB. CTY REFUSE-ENERGY	1	HILLSBOROUGH	23.0	23.0	0.0	0.0	30.4	30.4	23	23	ST	MSW	NA	4 / 1987	С
	MILLPOINT	1-3	HILLSBOROUGH	0.0	0.0	0.0	0.0	41	41	41	41	ОТ	WH	NĠ	12 / 1995	NC
	MULBERRY	1	POLK	0.0	0.0	0.0	0.0	21	21	21	21	ST	WH	NA	12 / 1985	NC
	NEW WALES	1-2	POLK	0.0	0.0	1.1	1.1	51.9	51.9	50.8	50.8	ST	WH	NA	12 / 1984	NC
	ORANGE COGEN	1	POLK	23.0	23.0	0.0	0.0	98	98	98	98	CT	NG	NA	1 / 1995	С
	PASCO COGEN	1-3	PASCO	0.0	0.0	0.0	0.0	0	0	0	0	CT	NG	DFO	5 / 1993	NC
	RIDGEWOOD	1-2	HILLSBOROUGH	0.0	0.0	0.0	0.0	57.1	57.1	57.1	57.1	ST	WH	NA	10 / 1992	NC
	SOUTH PIERCE	1-2	POLK	0.0	0.0	0.6	0.6	29.1	29.1	28.5	28.5	ST	WH	NA	9 / 1969	NC
	ST. JOSEPHS HOSPITAL	1	HILLSBOROUGH	0.0	0.0	1.0	1.0	1.1	1.1	1	1	IC	NG	NA	4 / 1993	NC
			TEC TOTAL:	61.5	61.5	9.3	9.3									
		ΤΟΤΑΙ	L FRCC EXISTING:	1,992.3	2,064.3	143.3	143.3	(UNCOMMITTEE	D TOTAL EX	CLUDES ME	RCHANT F	ACILITIES	5)			

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 32 of 80

EXISITNG UNCOMMITTED MERCHANT GENERATION AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
							NE				CONTRACT	
					UNCOM	Imitted	CAPAB	LITY			CHANGE/	
		UNIT		UNIT	SUM	WIN	SUM	WIN	FUEL	TYPE	IN-SERVICE	
MECHANT COMPANY PLANT NAME		NO.	LOCATION	TYPE	(MW)	(MVV)	(MW)	(MW)	PRI	ALT	MO. / YEAR	STATUS
<u> </u>												

No Entries

TOTAL: 0.0 0.0 0.0 0.0

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 33 of 80

FRCC Form 3.1 PLANNED AND PROSPECTIVE NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES INSTALLATIONS, CHANGES, AND REMOVALS

JANUARY 1, 2006 THROUGH DECEMBER 31, 2015

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
				Ρ	OTENTIAL EXI AT TIME (PORT TO GRID		GROS	s	NE	T				COMMERCIAL IN-SERVICE/ RETIREMENT/	
				FIR	· · ·	UNCOMMI	TTED	CAPABI		CAPAE					OR CHANGE IN	
		UNIT		SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT		L TYPE	CONTRACT	
UTIL	FACILITY NAME	NO	LOCATION	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	TYPE	PRI	ALT	MO. / YEAR	STATUS
	2006															
PEF	JEFFERSON POWER	1	JEFFERSON	-2.0	-2.0	8.0	8.0	9,4	9.4	8.0	8.0	ST	WDS		1 / 2006	CE
PEF	US AGRICHEM	1	POLK	-5.6	-5.6	15.6	15.6	44.1	44.1	44.1	44.1	ST	WH		1 / 2006	CE
PEF	BAY COUNTY RES. RECOV.	1	BAY	-11.0	-11.0	11.0	11.0	11.0	11.0	11.0	11.0	ST	MSW		12 / 2006	CE
1 21	BAT OCONTENED. NECOV.			-11.0	-11.0	11.0	11.0	11.0	17.0	11.0	11.0	01			12 / 2000	01
	<u>2007</u>															
SEC	LEE COUNTY RES. RECOV.	1	LEE	20.0	20.0	0.0	0.0	20.0	20.0	20.0	20.0	ST	MSW		4 / 2007	С
JEA	TRAILRIDGE	1	DUVAL	9.1	9.1			9.1	9.1	9.1	9.1	IC	OBG		5 / 2007	č
JEA	JEFFERSON SMURFIT	1	DUVAL	13.0	13.0			13.0	13.0	13.0	13.0	ST	WDS		5 / 2007	c
PEF	CARGILL	2	POLK	-15.0	-15.0	15.0	15.0	15.0	15.0	15.0	15.0	ST	WH	NG	12 / 2007	CE
r Li	CANGILL	2	FOER	-15.0	-15.0	15.0	15.0	15.0	10.0	10.0	15.0	01	••••	NO	12 7 2007	ÚL.
	2008															
PEF	G2 ENERGY	1	UNKNOWN	11.0	11.0	3.0	3.0	14.0	14.0	11.0	11.0	IC	LFG		1 / 2008	С
	2009															
																_
FPL	BROWARD-SOUTH	1	BROWARD	-50.6	-50.6	50.6	50.6	68.0	68.0	61.0	61.0	OT	MSW		8 / 2009	С
SEC	BIO-ENERGY PARTNERS	1	BROWARD	-6.0	-7.0	0.0	0.0	6.0	7.0	6.0	7.0	ST	LFG		12 / 2009	CE
	<u>2010</u>															
TEC				22.0	22.0	22.0	22.0	20.4	20.4	22.0	22.0	CT.	MCM		3 / 2010	c
TEC	HILLSB. CTY REFUSE-TO-ENERGY	1	HILLSBOROUGH	-23.0	-23.0	23.0	23.0	30.4	30.4	23.0	23.0	ST	MSW		3 / 2010	С
FPL	PALM BEACH COUNTY	1	PALM BEACH	-47.5	-47.5			56.0	56.0	47.5	47.5	OT	MSW			С
FPL	BROWARD-NORTH	1	BROWARD	-45.0	-45.0	45.0	45.0	62.0	62.0	56.0	56.0	OT	MSW		12 / 2010	С
	<u>2011</u>															
TEC	CITY OF TAMPA REFUSE-TO-ENERGY	1	HILLSBOROUGH	-15.5	-15.5	18.0	18.0	21.0	21.0	18.0	18.0	ST	MSW		9 / 2011	CE

FRCC Form 3.1 PLANNED AND PROSPECTIVE NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES INSTALLATIONS, CHANGES, AND REMOVALS

JANUARY 1, 2006 THROUGH DECEMBER 31, 2015

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
				P FIR	AT TIME C	PORT TO GRID DF PEAK UNCOMM		GROS CAPABII		NE CAPAE					COMMERCIAL IN-SERVICE/ RETIREMENT/ OR CHANGE IN	
		UNIT		SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT	FUE	L TYPE	CONTRACT	
UTIL	FACILITY NAME	NO.	LOCATION	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	TYPE			MO. / YEAR	STATUS
	<u>2012</u>															
SEC	HARDEE POWER STATION	CT1A	HARDEE	-71.0	-90.0	0.0	0.0	71.0	90.0	71.0	90.0	СТ	NG	DFO	12 / 2012	CE
SEC	HARDEE POWER STATION	CT1B	HARDEE	-71.0	-90.0	0.0	0.0	71.0	90.0	71.0	90.0	СТ	NG	DFO	12 / 2012	CE
SEC	HARDEE POWER STATION	ST1	HARDEE	-77.0	-86.0	0.0	0.0	77.0	86.0	77.0	86.0	CA	NG	DFO	12 / 2012	CE
SEC	HARDEE POWER STATION	CT2A	HARDEE	-71.0	-90.0	0.0	0.0	71.0	90.0	71.0	90.0	СТ	NG	DFO	12 / 2012	CE
	<u>2013</u>															
PEF	LAKE COGEN	1	LAKE	-110.0	-110.0	110.0	110.0	111.0	111.0	110.0	110.0	CA	NG	DFO	7 / 2013	CE
PEF	DADE COUNTY RES. RECOV.	1	DADE	-43.0	-43.0	43.0	43.0	43.0	43.0	43.0	43.0	ST	MSW		11 / 2013	CE
PEF	EL DORADO	1-2	Polk	-114.2	-114.2	133.0	133.0	133.0	133.0	133.0	133.0	CA	NG	DFO	12 / 2013	CE
PEF	LFC JEFFERSON	1	POLK	-8.5	-8.5	8.5	8.5	8.5	8.5	8.5	8.5	CA	NG	DFO	12 / 2013	CE
PEF	LFC MADISON	1	POLK	-8.5	-8.5	8.5	8.5	8.5	8.5	8.5	8.5	CA	NG	DFO	12 / 2013	CE
	<u>2014</u>															
PEF	LAKE COUNTY RES. RECOV.	1	LAKE	-12.8	~12.8	12.8	12.8	14.8	14.8	12.8	12.8	ST	MSW		6 / 2014	CE
	<u>2015</u>															
TEC	ORANGE COGEN	1	POLK	-23.0	-23.0	98.0	98.0	98.0	98.0	98.0	98.0	СТ	NG	NA	12 / 2015	С

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 35 of 80 2006 FLORIDA RELIABILITY COORDINATING COUNCIL

PLANNED AND PROSPECTIVE UNCOMMITTED GENERATION FROM MERCHANT GENERATING FACILITIES INSTALLATIONS, CHANGES, AND REMOVALS AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		UNIT		UNIT	TO UNCOM SUM	TAL. MITTED WIN	NE CAPAI SUM	et Bility Win		. TYPE	CONTRACT CHANGE/	
MERCHANT COMPANY	PLANT NAME	NO	LOCATION	TYPE	(MW)	(MW)	(MW)	(MW)	PRI	ALT	IN-SERVICE MO. / YEAR	STATUS
2006												
No Entries												
2007												
No Entries												
2008												
No Entries												
<u>2009</u>												
No Entries												
<u>2010</u>												
 No Entries												
<u>2011</u>												
No Entries												
<u>2012</u>												Ţ
No Entries												Dc FRCC
<u>2013</u>												, X D
No Entries												Docket No. 070393- C Load and Resourc Exhibit BT/TJS-9 Page 36 of 80
<u>2014</u>											(ad hib
												ket No. 07039 oad and Resou xhibit BT/TJS Page 36 of 80
No Entries												
<u>2015</u>												70; 70; 70; 70;
No Entries												070393-EI Resource T/TJS-9 5 of 80
												.9 .9
												PI II
												[Plan

NON-UTILITY GENERATING FACILITIES SUMMARY

		SUMMER				WINTER	
	FIRM	UNCOMMITTED	UNCOMMITTED		FIRM	UNCOMMITTED	UNCOMMITTED
	NET TO GRID	QF GENERATION	NUG GENERATION		NET TO GRID	QF GENERATION	NUG GENERATION
YEAR	(MW)	(MW)	(MW)	YEAR	(MW)	(MW)	(MW)
2006	1,984.7	143.3	0.0	2006/07	2,053.3	154.3	0.0
2007	2,015.8	154.3	0.0	2007/08	2,091.4	172.3	0.0
2008	2,011.8	169.3	0.0	2008/09	2,091.4	172.3	0.0
2009	1,961.2	169.3	0.0	2009/10	1,963.3	245.9	0.0
2010	1,884.7	242.9	0.0	2010/11	1,918.3	290.9	0.0
2011	1,839.7	287.9	0.0	2011/12	1,902.8	308.9	0.0
2012	1,824.2	305.9	0.0	2012/13	1,546.8	308.9	0.0
2013	1,424.2	305.9	0.0	2013/14	1,262.6	611.9	0.0
2014	1,237.2	621.7	0.0	2014/15	1,249.8	624.7	0.0
2015	1,237.2	621.7	0.0	2015/16	1,226.8	722.7	0.0

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 12 SUMMARY OF FIRM CAPACITY AND ENERGY CONTRACTS AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	
PURCHASING		CONTRA	CT TERM	NET CAP	PABILITY		
ENTITY	SELLING ENTITY	FROM	то	SUMMER	WINTER	DESCRIPTION	
ENTIT		(MM/DD/YY)	(MM/DD/YY)	(MW)	(MW)		
FKE	FPL.	01/01/92	12/31/11	144	113	FKEC committed to purchase PR of capacity and energy from FPL. Contract limits FPL to 108.5 MW.	
FTM	TEC	01/01/06	12/31/06	10	11	Partial Requirements - Firm Tariff AR-1 Period: 1/1/1997 - 12/31/2013	
FTM	TEC	01/01/07	12/31/07	10	12	Partial Requirements - Firm Tariff AR-1 Period: 1/1/1997 - 12/31/2013	
FTM	TEC	01/01/08	12/31/08	10	12	Partial Requirements - Firm Tariff AR-1 Period: 1/1/1997 - 12/31/2013	
FTM	TEC	01/01/09	12/31/09	10	12	Partial Requirements - Firm Tariff AR-1 Period: 1/1/1997 - 12/31/2013	
FTM	TEC	01/01/10	12/31/10	10	13	Partial Requirements - Firm Tariff AR-1 Period: 1/1/1997 - 12/31/2013	
FTM	TEC	01/01/11	12/31/13	11	13	Partial Requirements - Firm Tariff AR-1 Period: 1/1/1997 - 12/31/2013	
FMPA	CAL	01/01/06	12/31/06	75	75	UPS; Included as part of FMPAs Firm Peak Demand	
FMPA	CAL	01/01/07	12/31/09	100	100	UPS; Included as part of FMPAs Firm Peak Demand	
FMPA	FPL	06/01/02	10/31/07	75	75	Scheduled D; Included as part of Firm Peak Demand	
FMPA	FTP	01/01/98	12/31/15	118	118	Existing Unit Purch; Included as part of Firm Peak Demand	
FMPA	GRU	10/01/97	12/31/06	3	3	Scheduled D, Included as part of FMPAs Firm Peak Demand	
FMPA	KEY	04/01/98	12/31/15	50	50	Existing Unit Purch; Included as part of FMPAs Firm Peak Demand	
FMPA	KUA	10/01/02	12/31/15	292	292	Existing Unit Purch; Included as part of FMPAs Firm Peak Demand	
FMPA	LAK	06/01/01	12/14/07	100	100	Scheduled D; Included as part of FMPAs Firm Peak Demand. Firm Power Sale.	
FMPA	LWU	01/01/03	12/31/15	88	97	Existing Unit Purch; Included as part of FMPAs Firm Peak Demand	
FMPA	OUC	01/01/06	12/31/06	22	22	UPS; Included as part of FMPAs Firm Peak Demand	
FMPA	SOU	10/01/03	09/30/15	41	41	Stanton A CC - UPS, Included as part of FMPAs Firm Peak Demand	
FMPA	SOU	10/01/03	09/30/15	41	41	Stanton A CC - UPS; KUAs PPA from SOU; Included as part of FMPAs Firm Peak Demand	
FMPA	SOU	12/16/07	12/16/32	157	157	Oleander Plant Purchase; Included as part of FMPAs Firm Peak Demand	
FMPA	VER	06/01/97	12/31/09	150	155	Existing Unit Purch; Included as part of FMPAs Firm Peak Demand	
FPL	DESOTO	06/01/02	12/31/06	140	362	Progress Energy Ventures	
FPL	DESOTO	04/01/06	12/31/06	55	0	Progress Energy Ventures	
FPL	DESOTO	01/01/07	03/31/09	105	105	Progress Energy Ventures	
FPL	IRPPA	01/01/06	12/31/06	130	130	Reliant/Indian River	_
FPL	IRPPA	05/01/06	12/31/06	346	0	Reliant/Indian River	_
FPL	IRPPA	01/01/07	12/31/07	222	0	Reliant/Indian River	_
FPL	IRPPA	01/01/07	12/31/07	354	354	Reliant/Indian River	_
FPL	IRPPA	01/01/08	12/31/08	576	576	Reliant/Indian River	_
FPL	IRPPA	01/01/09	12/31/09	250	250	Reliant/Indian River	_
FPL	IRPPA	01/01/09	12/31/09	325	0	Reliant/Indian River	– v
FPL	JEA	03/01/87	09/30/21	381	390	Unit Power Sales - Firm Contract	- 20
FPL	PASCO	01/01/05	04/01/07	474	474	Reliant / Pasco / Shady Hills	Page
FPL	SOU	07/19/88	05/31/10	931	931	Unit Power Sales - Firm Contract	- 38
FPL	SOU	06/01/02	05/31/07	156	180	Oleander.	- ~
FPL	SOU	05/01/07	05/31/12	158	180	Oleander.	- of
FPL	SOU	06/01/10	12/31/21	930	930	To replace UPS.	08.
FPL	WILLIAMS	03/01/06	12/31/06	56	0		_ 0
FPL	WILLIAMS	01/01/07	12/31/09	106	106		

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 38 of 80

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 12 SUMMARY OF FIRM CAPACITY AND ENERGY CONTRACTS AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	
PURCHASING			CT TERM	NET CAF			
ENTITY	SELLING ENTITY	FROM (MM/DD/YY)	TO (MM/DD/YY)	SUMMER (MW)	WINTER (MW)	DESCRIPTION	
GRU	TBD	05/01/11	10/15/11	21	0	Firm Capacity with energy from generating entity or DLC either contracted or self operated	
GRU	TBD	05/01/12	10/15/12	32	0	Firm Capacity with energy from generating entity or DLC either contracted or self operated	
HST	PEF	01/01/06	12/31/06	15	15		
HST	PEF	01/01/07	12/31/09	30	30	Have the option to increase amount by 5 MWs.	
HST	PEF	01/01/10	12/31/12	35	35	Have the option to increase amount by 5 MWs.	
HST	PEF	01/01/13	12/31/19	40	40	Have the option to increase amount by 5 MWs.	
JEA	SOU	01/01/80	05/31/10	207	207	UPS Contract with Southern Company	
JEA	TEA	12/15/11	03/15/12	0	70	Seasonal Winter Purchase to be supplied by The Energy Authority (TEA).	
NSB	PEF	01/01/98	12/31/08	15	15	Partial Requirements	
NSB	TEC	01/01/06	12/31/07	10	10	Schedule D	
OUC	SOU	01/01/06	12/31/16	322	343	OUC PPA with SOU for Stanton A capacity.	
PEF	CPL	12/01/05	12/31/10	133	133	133 MW Firm Purchase	
PEF	MIR	04/01/07	04/30/14	478	520	Shady Hills PPA	
PEF	SEPA	01/01/00	12/31/11	36	36	Back-Up Contract for Jim Woodruff Dam Capacity (SEPA)	
PEF	SOU	01/01/94	06/01/10	207	207	Unit Power Purchase #1	
PEF	SOU	01/01/94	06/01/10	207	207	Unit Power Purchase #2	
PEF	SOU	06/01/10	12/31/15	412	412	Southern UPS Extension	
PEF	TEA	06/01/06	09/30/06	200	0	200 MW summer seasonal purchase (under negotiation)	
PEF	TEA	12/01/06	03/16/07	0	500	500 MW winter seasonal purchase (under negotiation)	
PEF	TEA	06/01/07	09/30/07	158	0	158 MW summer seasonal purchase (under negotiation)	
PEF	TEC	01/01/05	03/16/11	70	70	Partial Requirements - Firm AR-1 period: 1/1/2005 - 2/28/2011 Included in PEFs Reserve Margin	
RCI	ORLANDO COGEN	01/01/02	01/01/13	35	35	Firm Purchase 1994-2013. Reedy has a Firm take of 35MW.	
RCI	PEF	01/01/06	12/31/06	94	66	Firm Base Load Purchase for the period 2006-2010	
RCI	PEF	01/01/07	12/31/07	117	89	Firm Base Load Purchase for the period 2006-2010	
RCI	PEF	01/01/08	12/31/08	117	90	Firm Base Load Purchase for the period 2006-2010	
RCI	PEF	01/01/09	12/31/09	118	91	Firm Base Load Purchase for the period 2006-2010	1
RCI	PEF	01/01/10	12/31/10	119	92	Firm Base Load Purchase for the period 2006-2010	
RCI	TEC	01/01/95	12/31/17	75	75	Partial Requirements Contract purchased from TECO.	
SEC	BIOENERGY	01/01/05	12/31/09	6	7	Bio-Energy Partners: Landfill gas-to-energy facility	
SEC	CAL	06/01/04	12/01/12	170	180	Intermediate firm capacity purchase - Osprey 1	
SEC	CAL	06/01/04	12/01/12	170	180	Intermediate firm capacity purchase - Osprey 2	
SEC	HPP	01/01/93	12/31/12	290	356	First call reserve power purchase	
SEC	LEE	12/01/99	03/31/07	30	35	Municipal solid waste facility	Page
SEC	LEE	04/01/07	07/31/20	50	55	Municipal solid waste facility, Increase in capability.	90
SEC	PEF	01/01/99	12/31/13	150	150	System firm intermediate capacity purchase	O.
SEC	PEF	06/01/06	12/31/13	150	150	System firm intermediate capacity purchase	39
SEC	PEF	12/01/06	12/31/13	150	150	System firm capacity purchase (notification given to convert to from peaking to intermediate)	of

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL FRCC Form 12 SUMMARY OF FIRM CAPACITY AND ENERGY CONTRACTS AS OF JANUARY 1, 2006

(1)	(2)	(3)		(5)	(6)	(7)	
PURCHASING			CT TERM	NET CAF			
ENTITY	SELLING ENTITY	FROM	TO	SUMMER	WINTER	DESCRIPTION	
		(MM/DD/YY)	(MM/DD/YY)	(MW)	(MW)		
SEC	RES	12/01/01	12/31/06	153	182	CT firm capacity purchase - Osceola 2	
SEC	RES	12/01/08	05/31/14	153	182	CT firm capacity purchase - Osceola 2	
SEC	RES	12/01/01	12/31/06	153	182	CT firm capacity purchase - Osceola 3	
SEC	RES	12/01/08	05/31/14	153	182	CT firm capacity purchase - Osceola 3	
SEC	SOU	12/01/02	04/01/16	153	182	CT firm capacity purchase - Oleander 2	
SEC	SOU	12/01/02	04/01/16	153	182	CT firm capacity purchase - Oleander 3	
SEC	SOU	05/01/03	04/01/16	153	182	CT firm capacity purchase - Oleander 4	
SEC	TELOGIA	06/01/04	12/31/19	12	12	DG Telogia Power LLC: Wood waste fueled biomass facility	
SEC	UNKNOWN	11/01/13	04/01/16	680	680	SEC BASE	
SEC	UNKNOWN	11/01/14	04/01/16	170	170	SEC BASE	
SEC	UNKNOWN	11/01/09	04/01/16	85	97	SEC INTERMEDIATE 1	
SEC	UNKNOWN	11/01/10	04/01/16	141	160	SEC INTERMEDIATE 2	
SEC	UNKNOWN	11/01/11	04/01/16	93	106	SEC INTERMEDIATE 3	
SEC	UNKNOWN	11/01/12	04/01/16	155	177	SEC INTERMEDIATE 4	
SEC	UNKNOWN	11/01/14	04/01/16	158	180	SEC INTERMEDIATE 5	
SEC	UNKNOWN	11/01/07	04/01/16	112	112	SEC PEAKING 1	
SEC	UNKNOWN	11/01/09	04/01/16	62	62	SEC PEAKING 2	
SEC	UNKNOWN	05/01/14	04/01/16	256	256	SEC PEAKING 3	
STC	OUC	01/01/06	09/30/06	95	0	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/06	09/30/07	120	123	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/07	09/30/08	125	128	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/08	09/30/09	131	133	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/09	09/30/10	136	139	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/10	09/30/11	142	145	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/11	09/30/12	148	152	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/12	09/30/13	169	173	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/13	09/30/14	176	180	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/14	09/30/15	183	187	Interchange between OUC and STC per Interlocal Agreement.	
STC	OUC	10/01/15	04/01/16	183	195	Interchange between OUC and STC per Interlocal Agreement.	
STC	TEC	01/01/06	12/31/12	15	15	Partial Requirements - Firm Tariff AR-1 Period 1/1/97 - 12/31/2012	
TAL	PEF	10/01/99	09/01/16	11	11	System firm capacity and energy with firm transmission.	H-1
TEC	CAL	05/01/06	04/30/11	170	170	Long-term firm purchase from Calpine - 05/01/2006 thru 04/30/2011 for up to 170 MW	ല്
TEC	INVE	01/01/93	12/31/12	69	88	Firm contract with Invenergy (INVE), owners of Hardee Power Station.	Page
TEC	INVE	01/01/93	12/31/12	287	353	Firm contract with Invenergy (INVE), owners of Hardee Power Station	4
TEC	PEF	01/01/06	03/31/07	50	50	Firm contract with PEF to purchase 50 MW - 01/01/2006 - 03/31/2007	40
TEC	UNKNOWN	01/01/08	03/16/08	0	230	230 MW Need For The Winter of 2008 Unknown Seller	of
WAU	TEC	01/01/05	12/31/13	12	12	Partial Requirements - Firm Tariff AR-1 Period: 1/1/97 - 12/31/2013	08

FRCC Form 9.0 FUEL REQUIREMENTS AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5) ACTUAL	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	FUEL REQUIRI	EMENTS	UNITS	ACTUAL 2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
(1)	NUCLEAR		TRILLION BTU	309	344	331	351	332	346	344	347	341	349	342
(2)	COAL		1000 TON	23,849	23,384	24,813	25,197	25,046	25,942	26,612	29,187	34,019	37,959	39,402
	RESIDUAL													
(3)		STEAM	1000 BBL	42,942	32,085	32,121	27,931	16,540	10,128	10,574	9,187	7,927	7,475	6,811
(4)		CC	1000 BBL	110	54	49	132	143	114	132	133	114	162	197
(5)		СТ	1000 BBL	0	0	0	0	0	0	0	0	0	0	0
(6)		TOTAL:	1000 BBL	43,052	32,139	32,170	28,063	16,683	10,242	10,706	9,320	8,041	7,637	7,008
	DISTILLATE													
(7)		STEAM	1000 BBL	198	131	142	146	139	151	155	171	183	194	207
(8)		CC	1000 BBL	302	140	119	146	105	105	114	118	120	122	109
(9)		СТ	1000 BBL	1,741	1,707	1,738	1,703	1,714	1,835	1,872	1,765	1,786	1,749	1,845
(10)		TOTAL:	1000 BBL	2,241	1,978	1,999	1,995	1,958	2,091	2,141	2,054	2,089	2,065	2,161
	NATURAL GAS													
(11)		STEAM	1000 MCF	54,710	35,931	33,528	31,000	69,323	92,532	84,694	72,803	79,321	66,965	64,987
(12)		CC	1000 MCF	472,064	463,523	601,404	670,275	767,801	834,162	891, 3 89	899,940	853,587	823,954	855,936
(13)		СТ	1000 MCF	32,999	43,252	46,140	47,398	50,149	57,966	70,080	69,648	66,298	64,972	74,922
(14)		TOTAL:	1000 MCF	559,773	542,706	681,072	748,673	887,273	984,660	1,046,163	1,042,391	999,206	955,891	995,845
(15)	OTHER		TRILLION BTU	1,823	2,268	3,240	3,280	3,168	3,342	3,435	3,317	4,624	4,512	4,502

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 41 of 80

38

FRCC Form 9.1 ENERGY SOURCES (GWH) AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	ENERGY SOU		UNITS	ACTUAL 2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
(1)	FIRM INTER-REC	GION INTERCHANGE	GWH	16,169	16,979	16,988	16,950	17,169	13,808	11,016	11,029	10,769	10,429	10,072
(2)	NUCLEAR		GWH	28,632	31,807	30,715	32,645	30,655	32,055	31,975	32,245	31,581	32,468	31,642
(3)	COAL		GWH	56,003	54,769	56,161	56,512	56,146	57,864	59,180	67,394	80,587	91,652	95,314
	RESIDUAL													
(4)		STEAM	GWH	27,135	20,485	20,516	17,781	10,552	6,445	6,778	5,863	5,024	4,748	4,317
(5)		CC	GWH	71	36	32	87	92	73	86	94	80	111	131
(6)		СТ	GWH	0	0	0	0	0	0	0	0	0	0	0
(7)		TOTAL:	GWH	27,206	20,521	20,548	17,868	10,644	6,518	6,864	5,957	5,104	4,859	4,448
	DISTILLATE													
(8)		STEAM	GWH	26	25	26	25	24	26	26	36	40	51	53
(9)		CC	GWH	178	73	60	84	51	52	52	51	52	52	49
(10)		СТ	GWH	685	665	639	665	761	787	776	669	711	634	636
(11)		TOTAL:	GWH	889	763	725	774	836	865	854	756	803	737	738
	NATURAL GAS													
(12)		STEAM	GWH	5,211	3,438	3,196	2,946	6,757	9,103	8,337	7,187	7,806	6,600	6,375
(13)		CC	GWH	67,848	79,263	84,238	93,667	108,097	117,425	125,542	125,482	117,794	115,222	119,499
(14)		СТ	GWH	2,694	3,238	3,169	3,437	4,183	4,503	5,254	5,283	5,187	5,346	6,156
(15)		TOTAL:	GWH	75,753	85,939	90,603	100,050	119,037	131,031	139,133	137,952	130,787	127,168	132,030
(16)	NUG		GWH	7,550	7,452	7,447	7,385	7,511	8,092	8,482	8,242	6,155	5,166	5,496
(17)	HYDRO		GWH	27	14	18	18	18	18	18	18	18	18	18
(18)	OTHER		GWH	14,315	14,317	16,692	16,998	15,072	13,541	12,760	13,457	17,948	18,094	17,803
(19)	NET ENERGY FO	IR LOAD	GWH	226,544	232,561	239,897	249,200	257,088	263,792	270,282	277,050	283,752	290,591	297,561
												0840	Page 42 c	
							39							
												/T16_0	TH tidida	ь. Н

Docket No. 070393-EI

FRCC Load and Resource Plan

FRCC Form 9.2 **ENERGY SOURCES (%)** AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	ENERGY SOURC	ES		ACTUAL 2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
(1)	FIRM INTER-REGIO	N INTERCHANGE	%	7.14%	7.30%	7.08%	6.80%	6.68%	5.23%	4.08%	3.98%	3.80%	3.59%	3.38%
(2)	NUCLEAR		%	12.64%	13.68%	12.80%	13.10%	11.92%	12.15%	11.83%	11.64%	11.13%	11.17%	10.63%
(3)	COAL		%	24.72%	23.55%	23.41%	22.68%	21.84%	21.94%	21.90%	24.33%	28.40%	31.54%	32.03%
	RESIDUAL													
(4)		STEAM	%	11.98%	8.81%	8.55%	7.14%	4.10%	2.44%	2.51%	2.12%	1.77%	1.63%	1.45%
(5)		CC	%	0.03%	0.02%	0.01%	0.03%	0.04%	0.03%	0.03%	0.03%	0.03%	0.04%	0.04%
(6)		СТ	%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
(7)		TOTAL:	%	12.01%	8.82%	8.57%	7.17%	4.14%	2.47%	2.54%	2.15%	1.80%	1.67%	1.49%
	DISTILLATE													
(8)		STEAM	%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.02%	0.02%
(9)		сс	%	0.08%	0.03%	0.03%	0.03%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
(10)		СТ	%	0.30%	0.29%	0.27%	0.27%	0.30%	0.30%	0.29%	0.24%	0.25%	0.22%	0.21%
(11)		TOTAL:	%	0.39%	0.33%	0.30%	0.31%	0.33%	0.33%	0.32%	0.27%	0.28%	0.25%	0.25%
	NATURAL GAS													
(12)		STEAM	%	2.30%	1.48%	1.33%	1.18%	2.63%	3.45%	3.08%	2.59%	2.75%	2.27%	2.14%
(13)		СС	%	29.95%	34.08%	35.11%	37.59%	42.05%	44.51%	46.45%	45.29%	41.51%	39.65%	40.16%
(14)		СТ	%	1.19%	1.39%	1.32%	1.38%	1.63%	1.71%	1.94%	1.91%	1.83%	1.84%	2.07%
(15)		TOTAL:	%	33.44%	36.95%	37.77%	40.15%	46.30%	49.67%	51.48%	49.79%	46.09%	43.76%	44.37%
(16)	NUG		%	3.33%	3.20%	3.10%	2.96%	2.92%	3.07%	3.14%	2.97%	2.17%	1.78%	1.85%
(17)	HYDRO		%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%
(18)	OTHER		%	6.32%	6.16%	6.96%	6.82%	5.86%	5.13%	4.72%	4.86%	6.33%	6.23%	5.98%
(19)	NET ENERGY FOR I	_OAD	%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
. ,							40					08.	to E4 9gs	d
							40						r\TH tidir	
												0 51.	г\тя +:Ч:г	1^ <u>1</u>

FRCC Load and Resource Plan

DOCKET NO. U/U395-EI

FRCC Form 13 SUMMARY AND SPECIFICATIONS OF PROPOSED TRANSMISSION LINES AS OF JANUARY 1, 2006

(1)		(2)	(3)	(4)	(5)	(6)	(7)
LINE OWNERSHIP		TERMINALS	LINE LENGTH CKT. MILES	COMMERCIAL IN-SERVICE (MO/YR)	NOMINAL VOLTAGE (kV)	CAPACITY (MVA)	SITED UNDER
FPL	Collier	Orange River #3	54	12 / 2006	230	759	TLSA
PEF	Vandolah	Charlotte	55	12 / 2006	230	1141	NA
SEC	Hardee	Vandolah 1	9	12 / 2006	230	1195	NA
SEC	Hardee	Vandolah 2	9	12 / 2006	230	1195	NA
SEC	Hardee	Payne Creek 1	1	12 / 2006	230	1195	NA
SEC	Hardee	Payne Creek 2	1	12 / 2006	230	1195	NA
SEC	Vandolah	Charlotte	49	12 / 2006	230	796	NA
PEF	Hines Energy Complex	West Lake Wales #1	21	6 / 2007	230	1141	NA
TEC	Gannon	SR 60	2	9 / 2007	230	749	NA
PEF	Lake Bryan	Windermere #1	10	1 / 2008	230	1141	NA
PEF	Lake Bryan	Windermere #2	10	1 / 2008	230	1141	NA
FMPA	TCEC	(Midway-Turpike Tie Point (FPL))	3	5 / 2008	230	759	NA
FMPA	TCEC	Midway (FPL)	3	5 / 2008	230	759	NA
PEF	Avalon	Gifford	7	7 / 2008	230	1141	NA
FPL	St. Johns	Pringle	26	12 / 2008	230	759	TLSA
TEC	Pebbledale	Willow Oak	12	6 / 2009	230	1013	NA
PEF	Intercession City	West Lake Wales #2	30	6 / 2010	230	1141	NA
TEC	Wheeler Road	Davis	13	6 / 2010	230	1348	NA
TEC	Gannon	11th Avenue	5	9 / 2010	230	1013	NA
PEF	Hines Energy Complex	West Lake Wales #2	21	5 / 2011	230	1141	NA
PEF	Intercession City	West Lake Wales #1	30	6 / 2011	230	1141	NA
TEC	Davis	Chapman	8	6 / 2011	230	1013	NA
TEC	Willow Oak	Wheeler Road	20	6 / 2011	230	1013	NA
FPL	Manatee	BobWhite	30	12 / 2011	230	1190	TLSA
FPL	Eve	Sweatt	25	6 / 2012	230	759	TLSA
TEC	Davis Road	Dale Mabry	14	6 / 2012	230	749	NA
TEC	Polk Power Station	Hardee Power Station	9	6 / 2012	230	1013	NA

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 44 of 80

"EXISTING" TRANSMISSION MAP

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 45 of 80

"FUTURE" TRANSMISSION MAP

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 46 of 80

ABBREVIATIONS

ELECTRIC MARKET PARTICIPANTS

AEC Alabama Electric Cooperative, Inc. -CAL Calpine -CPS -**Constellation Power Source** CPV -**Competitive Power Ventures** DYN -Dynegy FKE -Florida Keys Electric Cooperative Association, Inc. FMD Ft. Meade, City of -FMPA -Florida Municipal Power Agency FPL Florida Power & Light -FTP -Ft. Pierce Utilities Authority GRU -**Gainesville Regional Utilities** GPC _ Gulf Power Company HPP -Hardee Power Partners HST -Homestead, City of JEA Jacksonville Electric Authority -KEY _ Key West, City of KUA **Kissimmee Utility Authority** -LAK -Lakeland, City of Lake Worth Utilities, City of LWU -MIR **Mirant Americas** -NSB _ Utilities Commission of New Smyrna Beach NSG Northern Star Generation ~ OEU _ Ocala Electric Utility

- OUC -Orlando Utilities Commission PEF -**Progress Energy Florida** PG&E -PG&E National Energy Group **Progress Energy Ventures** PGN -RCI Reedy Creek Improvement District _ Reliant Energy Services, Inc. RES -SEC -Seminole Electric Cooperative, Inc. SEPA -Southeastern Power Administration SCS -Southern Company Services SOU -Southern Company STC _ St. Cloud, City of TAL -Tallahassee, City of TEA -The Energy Authority TEC Tampa Electric Company -TPS **TECO** Power Services -VER _ Vero Beach, City of WAU -Wauchula, City of
- OTHER FRCC - Florida Reliability Coordinating Council

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 47 of 80

GENERATION TERMS

Types of Generation Units

Types of Fuel

Types of Ge	enerat	ion Units	Types of Fue	<u></u>	
CA		Combined Cycle Steam Part	AB		Agriculture Byproducts, Bagasse, Straw, Energy Crops
CC		Combined Cycle Total Unit	BIT		Bituminous Coal
CE		Compressed Air Energy Storage	BFG		Blast-Furnace Gas
CS		Combined Cycle Single Shaft	BL		Black Liguor
CT		Combined Cycle Combustion Turbine Part	DFO		Distillate Fuel Oil (Diesel, No 1 Fuel Oil, No 2 Fuel Oil, No 4 Fuel Oil)
		•	GEO		Geothermal
FC		Fuel Cell	JF		Jet Fuel
GT		Combustion Turbine (includes Jet Engine Design)	KER		Kerosene
HY			LFG		Landfill Gas
IC		Internal Combustion Engine	LIG		Lignite
NA		Not Available	MSW		Municipal Solid Waste
OT		Other	NA		Not Available or Not Applicable
PS		Hydraulic Turbine - Reversible (Pumped Storage)	NG		Natural Gas
PV		Photovoltaic	NUC		Nuclear
ST		Steam Turbine, including nuclear, geothermal and solar steam	OBG		Other BioMass Gases
WT		Wind Turbine			
			OBL		Other BioMass Liquids
Fuel Transp	ortati	on Method	OBS		Other BioMass Solids
			OG		Other Gas
CV		Conveyor	00		Other Oil
NA		Not Applicable	OTH		Other Color
PL		Pipeline	PC		Petroleum Coke
RR		Railroad	PG		
TK		Truck	RFO		Residual Fuel Oil (No 5 Fuel Oil, No 6 Fuel Oil)
UN		Unknown at this time	SLW		Sludge Waste
WA		Water Transportation	SUB		Subbituminous Coal
			SUN		Solar (Photovoltaic, Thermal)
Status of Ge	enerat	tion Facilities	TDF		Tires
			WAT		Water
А		Generating unit capability increased	WDS		Wood/Wood Waste Solids
CO		Change of ownership (including change of shares of jointly owned units)	WDL		Wood/Wood Waste Liquids
D		Generating unit capability decreased	WH		Waste Heat
FC		Existing generator planned for conversion to another fuel or energy source	WND		Wind
IP		Planned generator indefinitely postponed or canceled	WOC		Waste/Other Coal
L		Regulatory approval pending. Not under construction			
М		Generating unit put in deactivated shutdown status	<u>Ownership</u>		
NS		Merchant Plant - No system impact study, not under construction			
OP		Operating, available to operate, or on short-term scheduled or forced outage	COG		Cogenerator
OS		On long-term scheduled or forced outage; not available to operate	IPP		Independent Power Producer
ОТ		Other	J		Utility, joint ownership with one or more other utilities
Р		Planned for installation but not utility-authorized. Not under construction	MER		Merchant Generator
RA		Previously deactivated or retired generator planned for reactivation	SPP		Small Power Producing qualifying facility
RE		Retired	U		Utility, single ownership by respondent
RP		Proposed for repowering or life extension			
RT		Existing generator scheduled for retirement			
SB		Cold Standby: deactivated, in long-term storage and cannot be	Contracts		
		made available for service in a short period of time			
SD		Sold to independent power producer	С		Contract in place
SI		Merchant Plant - System impact study completed, not under construction	ČE		Contract Ends
T		Regulatory approval received but not under construction	D		Decrease in Contract Amount
, TS		Construction complete, but not yet in commercial operation	NC		No Contract
Ű		Under construction, less than or equal to 50% complete			
v		Under construction, more than 50% complete			
-		· · · · · · · · · · · · · · · · · · ·			

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 48 of 80

CONTRACT TERMS

FR	 Full requirement service agreement
PR	 Partial requirement service agreement
Schd D	 Long term firm capacity and energy interchange agreement
Schd E	 Non-Firm capacity and energy interchange agreement
Schd F	 Long term non-firm capacity and energy interchange agreement
Schd G	 Back-up reserve service
Schd J	 Contract which the terms and conditions are negotiated yearly
UPS	 Unit Power Sale

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 49 of 80

DEFINITIONS

CAAGR

- Compound Average Annual Growth Rate, usually expressed as a percent.

INTERRUPTIBLE LOAD

- Load which may be disconnected at the supplier's discretion.

LOAD FACTOR

- A percent which is the calculation of NEL / (annual peak demand * the number of hours in the year).

NET CAPABILITY OR NET CAPACITY

- The continous gross capacity, less the power required by all auxillaries associated with the unit.

NET ENERGY FOR LOAD (NEL)

- The net system generation PLUS interchange received MINUS interchange delivered.

PEAK DEMAND OR PEAK LOAD

- The net 60-minute integrated demand, actual or adjusted. Forecasted loads assume normal weather conditions.

PENINSULAR FLORIDA

- Geographically, those Florida utilities located east of the Apalachicola River.

QUALIFYING FACILITY (QF)

- The cogenerator or small power producer which meets FERC criteria for a qualifying facility.

SALES FOR RESALE

- Energy sales to other electric utilities.

STATE OF FLORIDA

 Utilities in Peninsular Florida plus Gulf Power Company, West Florida Electric Cooperative, Choctawhatchee Electric Cooperative, Escambia River Electric Cooperative, Gulf Coast Electric Cooperative, and Alabama Electric Cooperative.

SUMMER

- June 1 through August 31 of each year being studied.

WINTER

- January 1 through March 15.

YEAR

- The calendar year, January 1, through December 31. Unless otherwise indicated, this is the year used for historical and forecast data.

STATE OF FLORIDA SUPPLEMENT

TO THE

FLORIDA RELIABILITY COORDINATING COUNCIL

2006

REGIONAL LOAD & RESOURCE PLAN

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 51 of 80

HISTORY AND FORECAST

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
	S	UMMER PEAK	DEMAND (MW)		w	INTER PEAK	DEMAND (M)	N)		ENERGY	
	ACTUAL					ACTUAL					NET	
	PEAK					PEAK					ENERGY	LOAD
	DEMAND					DEMAND					FOR LOAD	FACTOR
YEAR	(MW)				YEAR	<u>(MW)</u>				YEAR	<u>(GWH)</u>	(%)
										1000	101110	50.070/
1996	34,551				1996 / 97	36,930				1996	184,142	56.87%
19 9 7	35,254				1997 / 98	32,896				1997	186,603	57.68%
1998	38,526				1998 / 99	38,281				1998	199,550	59.13%
1999	38,767				1999 / 00	38,659				1999	200,374	59.00%
2000	39,582				2000 / 01	42,333			-	2000	207,634	59.88%
2001	40,823				2001 / 02	41,780				2001	212,095	57.19%
2002	42,279				2002 / 03	46,880				2002	222,175	59.99%
2003	42,949				2003 / 04	37,944				2003	232,505	56.62%
2004	44,886				2004 / 05	43,541				2004	233,351	59.35%
2005	48,688				2005 / 06	44,871				2005	240,167	56.31%

	TOTAL PEAK DEMAND	INTER- RUPTIBLE LOAD	LOAD MANAGE- MENT	FIRM PEAK DEMAND		TOTAL PEAK DEMAND	INTER- RUPTIBLE LOAD (MW)	LOAD MANAGE- MENT	FIRM PEAK DEMAND (MW)	YEAR	NET ENERGY FOR LOAD (GWH)	LOAD FACTOR
YEAR	(MW)	(MW)	(MW)	(MW)	YEAR	(MW)	(14144)	(MW)		TEAK	(000)	(%)
2006	48,307	857	1,902	45,548	2006 / 07	51,034	869	2,635	47,530	2006	246,376	58.22%
2007	49,588	875	2,072	46,641	2007 / 08	52,267	890	2,669	48,708	2007	254,073	56.83%
2008	50,953	884	2,117	47,952	2008 / 09	53,603	888	2,717	49,998	2008	263,783	57.61%
2009	52,221	884	2,139	49,198	2009 / 10	54,579	862	2,728	50,989	2009	272,010	57.93%
2010	53,272	855	2,151	50,266	2010 / 11	55,813	867	2,745	52,201	2010	278,999	58.35%
2011	54,448	859	2,166	51,423	2011 / 12	56,923	871	2,764	53,288	2011	285,714	58.44%
2012	55,635	863	2,185	52,587	2012 / 13	58,141	874	2,792	54,475	2012	292,785	58.72%
2013	56,888	867	2,208	53,813	2013 / 14	59,356	878	2,822	55,656	2013	299,752	58.85%
2014	58,093	871	2,233	54,989	2014 / 15	60,802	882	2,852	57,068	2014	306,855	59.02%
2015	59,461	875	2,237	56,349	2015 / 16	62,374	886	2,844	58,644	2015	314,103	58.97%

NOTE: FORECASTED SUMMER AND WINTER DEMANDS ARE NON-COINCIDENT.

FRCC Form 4.0 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS AS OF JANUARY 1, 2006

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
	YEAR	F	RURAL & RESIDENT AVERAGE NO. OF CUSTOMERS	IAL AVG. KWH CONSUMPTION PER CUST.	GWH	COMMERCIAL AVERAGE NO. OF CUSTOMERS	AVG. KWH CONSUMPTION PER CUST.	GWH	INDUSTRIAL AVERAGE NO. OF CUSTOMERS	AVG. KWH CONSUMPTION PER CUST.	STREET & HIGHWAY LIGHTING GWH	OTHER SALES GWH	TOTAL SALES GWH	WHOLESALE PURCHASES FOR RESALE GWH	WHOLESALE SALES FOR RESALE GWH	UTILITY USE & LOSSES GWH	NET ENERGY FOR LOAD GWH
	1996	85.207	6,354,461	13.409	55,895	762,752	73,281	20,146	25,804	780,732	617	5.432	167.297	0	0	16,845	184,142
	1997	84.847	6,482,244	13,089	58,541	781,160	74,941	20,610	26,213	786.251	638	5.718	170,354	0	0	16,249	186,603
	1998	92,637	6,613,532	14.007	62,164	801,200	77,589	21,393	27,257	784,863	632	4,603	181,429	0	0	18,121	199,550
	1999	92,386	7,023,628	13,154	66,022	860,010	76,769	21,132	31,529	670,240	814	4,324	184,678	0	0	15,696	200,374
	2000	97,258	7,047,302	13,801	68,945	869,460	79,296	21,343	28,556	747,409	799	4,521	192,866	0	7,850	22,618	207,634
	2001	99,765	7,220,385	13,817	71,616	895,278	79,993	21,621	28,192	766,920	773	4,313	198,088	0	9,180	23,187	212,095
	2002	106,451	7,383,245	14,418	73,814	913,237	80,827	22,040	28,612	770,306	789	4,503	207,597	0	8,660	23,238	222,175
	2003	110,821	7,563,255	14,653	75,645	932,664	81,106	22,468	31,077	722,978	797	4,775	214,506	0	9,345	27,344	232,505
	2004	110,366	7,767,696	14,208	76,391	955,897	79,916	23,187	33,989	682,191	796	4,898	215,638	0	10,224	27,937	233,351
	2005	114,156	7,962,111	14,337	78,809	981,885	80,263	23,431	36,188	647,480	813	5,099	222,308	0	11,370	29,229	240,167
96-2005	% AAGR	3.30%			3.89%			1.69%									3.00%
	2006	118,025	8,147,858	14,485	80,228	1,005,687	79,774	23,581	37,634	626,588	875	5,155	227,864	0	9,499	28,011	246,376
	2007	121,451	8,323,498	14,591	83,599	1,028,674	81,269	24,051	37,432	642,525	902	5,319	235,322	0	9,946	28,697	254,073
	2008	125,697	8,495,211	14,796	87,508	1,050,795	83,278	24,630	37,265	660,942	933	5,479	244,247	0	9,053	28,589	263,783
	2009	129,723	8,668,479	14,965	90,743	1,073,307	84,545	25,056	37,249	672,662	961	5,639	252,122	0	9,084	28,972	272,010
	2010	133,268	8,810,748	15,126	93,427	1,089,479	85,754	25,211	37,368	674,668	987	5,791	258,684	0	9,838	30,153	278,999
	2011	136,638	8,976,488	15,222	95,874	1,110,248	86,354	25,571	37,828	675,981	1,008	5,947	265,038	0	9,790	30,466	285,714
	2012	140,145	9,141,049	15,331	98,463	1,130,789	87,075	25,950	38,216	679,035	1,031	6,103	271,692	0	9,947	31,040	292,785
	2013	143,686	9,305,890	15,440	101,106	1,151,225	87,825	26,323	38,765	679,040	1,054	6,258	278,427	0	10,089	31,414	299,752
	2014	147,139	9,471,772	15,534	103,904	1,171,693	88,679	26,696	39,397	677,615	1,078	6,417	285,234	0	10,172	31,793	306,855
	2015	150,575	9,639,008	15,621	106,765	1,192,183	89,554	27,070	40,088	675,264	1,101	6,582	292,093	0	10,357	32,367	314,103
06-2015	% AAGR	2.74%			3.23%			1.54%									2.74%

FRCC Form 5.0 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
-----	-----	-----	-----	-----	-----	-----	-----	-----

[(3)+(4)+(5)+(6)+(7)+(8)+(9)]

		D	EMAND REDUCTIO	N				SUMMER
	SUMMER		RESIDENTIAL	COMM./IND.	QF LOAD	CUMUL	ATIVE	NET FIRM
	TOTAL	INTERRUPTIBLE	LOAD	LOAD	SERVED BY QF	CONSER		PEAK
YEAR	DEMAND	LOAD	MANAGEMENT	MANAGEMENT	GENERATION	RESIDENTIAL	COMM./IND.	DEMAND
2004	47,443	61	77	2	441	1,134	842	44,886
2005	51,592	254	184	8	367	1,209	882	48,688
2006	51,089	857	1,223	679	525	1,319	938	45,548
2007	52,477	875	1,322	750	533	1,380	976	46,641
2008	53,938	884	1,329	788	533	1,445	1,007	47,952
2009	55,296	884	1,330	809	533	1,512	1,030	49,198
2010	56,448	855	1,328	823	548	1,581	1,047	50,266
2011	57,725	859	1,330	836	559	1,653	1,065	51,423
2012	59,007	863	1,335	850	565	1,726	1,081	52,587
2013	60,351	867	1,344	864	565	1,801	1,097	53,813
2014	61,648	871	1,356	877	565	1,878	1,112	54,989
2015	63,107	875	1,355	882	565	1,954	1,127	56,349

CAAGR (%): 2.39%

FRCC Form 6.0 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)

[(3)+(4)+(5)+(6)+(7)+(8)+(9)]

		D	EMAND REDUCTIO	N				WINTER
	WINTER		RESIDENTIAL	COMM./IND.	QF LOAD	CUMUL	ATIVE	NET FIRM
	TOTAL	INTERRUPTIBLE	LOAD	LOAD	SERVED BY QF	CONSER	VATION	PEAK
YEAR	DEMAND	LOAD	MANAGEMENT	MANAGEMENT	GENERATION	RESIDENTIAL	COMM./IND.	DEMAND
2004/05	46,005	66	91	0	378	1,524	405	43,541
2005/06	47,397	60	104	0	342	1,603	417	44,871
2006/07	53,698	869	1,981	654	510	1,713	441	47,530
2007/08	55,024	890	1,989	680	510	1,793	454	48,708
2008/09	56,455	888	2,010	707	510	1,874	468	49,998
2009/10	57,536	862	2,012	716	525	1,956	476	50,989
2010/11	58,877	867	2,020	725	536	2,042	486	52,201
2011/12	60,093	871	2,031	733	542	2,132	496	53,288
2012/13	61,415	874	2,049	743	542	2,225	507	54,475
2013/14	62,730	878	2,070	752	542	2,315	517	55,656
2014/15	64,273	882	2,093	759	542	2,403	526	57,068
2015/16	65,943	886	2,079	765	542	2,491	536	58,644

CAAGR (%): 2.36%

FRCC Form 7.0 HISTORY AND FORECAST OF ANNUAL NET ENERGY FOR LOAD (GWH) AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
	.,							

[(3)+(4)+(5)+(6)+(7)+(8)+(9)]

		D	EMAND REDUCTIO	N				
	TOTAL		RESIDENTIAL	COMM./IND.	QF LOAD	CUMUL	NET	
	ENERGY	INTERRUPTIBLE	LOAD LOAD MANAGEMENT MANAGEMENT		SERVED BY QF	CONSER	ENERGY	
YEAR	FOR LOAD	LOAD			GENERATION	RESIDENTIAL	COMM./IND.	FOR LOAD
2004	242,131	1	2	0	3,383	3,036	2,358	233,351
2005	249,524	1	12	7	3,673	3,190	2,474	240,167
2006	255,924	0	2	0	3,594	3,380	2,572	246,376
2007	263,902	0	2	0	3,664	3,507	2,656	254,073
2008	273,798	0	2	0	3,665	3,639	2,709	263,783
2009	282,203	0	2	0	3,664	3,778	2,749	272,010
2010	289,494	0	3	0	3,797	3,922	2,773	278,999
2011	296,485	0	3	0	3,897	4,074	2,797	285,714
2012	303,784	0	3	0	3,948	4,227	2,821	292,785
2013	310,932	0	3	0	3,947	4,385	2,845	299,752
2014	318,220	0	3	0	3,947	4,546	2,869	306,855
2015	325,648	0	3	0	3,947	4,704	2,891	314,103

CAAGR (%): 2.74%

SUMMARY OF INTERRUPTIBLE LOAD AND LOAD MANAGEMENT (MW) 2006 THROUGH 2015

SUMMER

	GPC		FRCC TOTALS	6		STATE		
YEAR	INT + LM	INT	RES LM	COM LM	INT	RES LM	COM LM	TOTAL INT + LM
2006	0	857	1,223	679	857	1,223	679	2,759
2007	0	875	1,322	750	875	1,322	750	2,947
2008	0	884	1,329	788	884	1,329	788	3,001
2009	0	884	1,330	809	884	1,330	809	3,023
2010	0	855	1,328	823	855	1,328	823	3,006
2011	0	859	1,330	836	859	1,330	836	3,025
2012	0	863	1,335	850	863	1,335	850	3,048
2013	0	867	1,344	864	867	1,344	864	3,075
2014	0	871	1,356	877	871	1,356	877	3,104
2015	0	875	1,355	882	875	1,355	882	3,112

WINTER

	GPC		FRCC TOTALS	3		STATE		
YEAR	INT + LM	INT	RES LM	COM LM	INT	RES LM	COM LM	TOTAL INT + LM
2006/07	0	869	1,981	654	869	1,981	654	3,504
2007/08	0	890	1,989	680	890	1,989	680	3,559
2008/09	0	888	2,010	707	888	2,010	707	3,605
2009/10	0	862	2,012	716	862	2,012	716	3,590
2010/11	0	867	2,020	725	867	2,020	725	3,612
2011/12	0	871	2,031	733	871	2,031	733	3,635
2012/13	0	874	2,049	743	874	2,049	743	3,666
2013/14	0	878	2,070	752	878	2,070	752	3,700
2014/15	0	882	2,093	759	882	2,093	759	3,734
2015/16	0	886	2,079	765	886	2,079	765	3,730

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 57 of 80

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA SUMMARY OF EXISTING CAPACITY AS OF JANUARY 1, 2006

	NET CAPABIL	<u>ITY (MW)</u>		
UTILITY	SUMMER	WINTER		
ALABAMA ELECTRIC COOPERATIVE INC	1,674	1,736		
GULF POWER COMPANY	2,796	2,824		
TOTALS:				
FRCC REGION:	43,966	47,033		
STATE OF FLORIDA:	48,436	51,593		
FRCC NON-UTILITY GENERATING FACILITIES (FIRM):	1,992	2,064		
FRCC MERCHANT PLANT FACILITIES (FIRM):	2,686	2,376		
TOTAL STATE NON-UTILITY GENERATING FACILITIES:	4,683	4,445		
TOTAL FRCC Region:	48,645	51,473		
TOTAL STATE OF FLORIDA:	53,120	56,038		

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 58 of 80

2006
LOAD AND RESOURCE PLAN
STATE OF FLORIDA
FRCC Form 1.0
EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
				PRIMA	ARY FUEL	ALTER	NATE FUEL	ALT. FUEL STORAGE	COMMERCIAL	EXPECTED	GROS CAPABI		NET CAPABI	LITY	
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAYS	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
PLANT NAME	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
ALABAMA ELECTRIC COOPERATI	VEINC	MUCH INCOMEN		0.17	14/4			0	6 / 1969	/	80	80	80	80	OP
CHARLES R. LOWMAN CHARLES R. LOWMAN	1	WASHINGTON AL WASHINGTON AL	ST ST	BIT BIT	WA WA			0	6 / 1978	··· /	80 238	238	238	238	OP
CHARLES R. LOWMAN CHARLES R. LOWMAN	2	WASHINGTON AL	ST	BIT	WA			0	6 / 1980		238	238	238	238	OP
GANTT	3	COVINGTON AL	HY	WAT	WA			0	1 / 1926		230	230	2.50	230	OP
GANTT	3	COVINGTON AL	нү	WAT	WA			0	2 / 1945	/	1	1	1	1	OP
JAMES H. MILLER JR. (684/705) *	4	JEFFERSON AL	ST	BIT	WA			0	6 / 1978	/	57	57	57	57	OP
JAMES H. MILLER JR. (684/705) *	2	JEFFERSON AL	ST	BIT	WA			0	6 / 1985		57	57	57	57	OP
MCINTOSH	1	WASHINGTON AL	CE	NG	PL			0	6 / 1991		110	110	110	110	OP
MCINTOSH	2	WASHINGTON AL	GT	NG	PL	DFO	тк	0	6 / 1998	/	114	120	114	120	OP
MCINTOSH	3	WASHINGTON AL	GT	NG	PL	DFO	тк	0 0	6 / 1998	/	114	120	114	120	OP
MCWILLIAMS	1	COVINGTON AL	ČA	NG	PL			õ	12 / 1954	/	10	10	10	10	OP
MCWILLIAMS	2	COVINGTON AL	CA	NG	PL			0	12 / 1954	· /	10	10	10	10	OP
MCWILLIAMS	3	COVINGTON AL	CA	NG	PL			0	8 / 1959	/	20	20	20	20	OP
MCWILLIAMS	4	COVINGTON AL	GT	NG	PL	DFO	тк	0	12 / 1996	/	109	119	109	119	OP
MCWILLIAMS	VAN1	COVINGTON AL	СТ	NG	PL			0	1 / 2002	/	163	177	163	177	OP
MCWILLIAMS	VAN2	COVINGTON AL	CT	NG	PL			0	1 / 2002	/	163	177	163	177	OP
MCWILLIAMS	VAN3	COVINGTON AL	CA	NG	PL			0	1 / 2002	/	176	186	176	186	OP
POINT A	1	COVINGTON AL	HY	WAT	WA			0	1 / 1945	/	2	2	2	2	OP
POINT A	2	COVINGTON AL	HY	WAT	WA			0	1 / 1925	/	2	2	2	2	OP
POINTA	3	COVINGTON AL	HY	WAT	WA			0	1 / 1949	~ 1	2	2	2	2	OP
PORTLAND	1	WALTON	СТ	DFO	ŤΚ			o	3 / 1964	/	7	9	7	9	OP
												-			
											AEC TOTAL:		1,674	1,736	

S - 8

2006
LOAD AND RESOURCE PLAN
STATE OF FLORIDA
FRCC Form 1.0
EXISTING GENERATING FACILITIES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10) (11)	(12)	(13)		(14)	(15)	(16)
								ALT.			0000	~	NET		
								FUEL			GROS				
					ARY FUEL		NATE FUEL	STORAGE	COMMERCIAL	EXPECTED	CAPABI		CAPABI		
	UNIT		UNIT	FUEL	TRANSP.	FUEL	TRANSP.	(DAY\$	IN-SERVICE	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
	NO.	LOCATION	TYPE	TYPE	METHOD	TYPE	METHOD	BURN)	MO. / YEAR	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
GULF POWER COMPANY															
CRIST	2	ESCAMBIA	ST	NG	PL	RFO	тк	0	6 / 1949	5 / 2006	25	25	24	24	OP
CRIST	3	ESCAMBIA	ST	NG	PL	RFO	тк	0	9 / 1952	5 / 2006	37	37	35	35	OP
CRIST	4	ESCAMBIA	ST	BIT	WA	NG	PL.		7 / 1959	12 / 2014	82	82	78	78	OP
CRIST	5	ESCAMBIA	ST	BIT	WA	NG	PL		6 / 1961	12 / 2016	82	82	80	80	OP
CRIST	6	ESCAMBIA	ST	BIT	WA	NG	PL	0	5 / 1970	12 / 2025	320	320	302	302	OP
CRIST	7	ESCAMBIA	ST	BIT	WA	NG	PL	0	8 / 1973	12 / 2028	500	500	477	477	OP
DANIEL (549/549) *	1	JACKSON MS	ST	BIT	RR	RFO	тк	0	9 / 1977	12 / 2022	270	270	264	264	OP
DANIEL (549/549) *	2	JACKSON MS	ST	BIT	RR	RFO	тк	0	6 / 1981	12 / 2026	270	270	264	264	OP
LANSING SMITH	1	BAY	ST	BIT	WA			0	6 / 1965	12 / 2020	172	172	162	162	OP
LANSING SMITH	2	BAY	ST	BIT	WA			0	6 / 1967	12 / 2022	201	201	189	189	OP
LANSING SMITH	ЗA	BAY	СТ	NG	PL.			0	4 / 2002	/					OP
LANSING SMITH	3B	BAY	СТ	NG	PL			0	4 / 2002	/					OP
LANSING SMITH	35	BAY	CA	NG	PL			0	4 / 2002	12 / 2027	577	595	566	584	OP
LANSING SMITH	А	BAY	GT	DFO	тк			0	5 / 1971	12 / 2017	32	40	32	40	OP
PEA RIDGE	1	SANTA ROSA	GT	NG	PL			0	5 / 1998	/	4	5	4	4.6	OP
PEA RIDGE	2	SANTA ROSA	GT	NG	PL			0	5 / 1998	/	4	5	4	4.6	OP
PEA RIDGE	3	SANTA ROSA	GT	NG	PL			0	5 / 1998	/	4	5	4	4.6	OP
SCHERER (915/915) *	3	MONROE GA	ST	BIT	RR			0	1 / 1987	12 / 2042	229	229	219	219	OP
SCHOLZ	1	JACKSON	ST	BIT	RR				3 / 1953	12 / 2011	49	49	46	46	OP
SCHOLZ	2	JACKSON	ST	BIT	RR				10 / 1953	12 / 2011	48	48	46	46	OP

FRCC TOTAL:	43,966	47,033	
STATE TOTAL:	48,436	51,593	

2,796

2,824

* Total Gross Capability for Jointly Owned Unit (Summer/Winter)	

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA FRCC Form 1.1 PLANNED AND PROSPECTIVE GENERATING FACILITY ADDITIONS AND CHANGES (JANUARY 1, 2006 THROUGH DECEMBER 31, 2015)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
									ALT. FUEL STORAGE	COMMERICAL IN-SERVICE OR	GROSS CAPABILITY		NET CAPABILITY		
		UNIT		UNIT		RY FUEL		ATE FUEL	(DAYS	RETIREMENT	SUMMER	WINTER	SUMMER	WINTER	
_UTILITY	POWER PLANT NAME	NO.	LOCATION		TYPE	TRANS.	TYPE	TRANS.	BURN)	MO. / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
	2006														
GPC	CRIST	2	ESCAMBIA	ST	NG	PL	RFO	тк	0	5 / 2006	-25	-25	-24	-24	RT
GPC	CRIST	3	ESCAMBIA	ST	NG	PL	RFO	тк	0	5 / 2006	-37	-37	-35	-35	RT
GPC	LANSING SMITH	2	BAY	ST	BIT	WA			0	6 / 2006	6	6	6	6	A
GPC	LANSING SMITH	3S	BAY	CA	NG	PL			0	6 / 2006	-10	0	-10	0	D
0.0	Endeline on the	55	Bitt	0/1		• =			•						-
											2006 TOTAL:		-63	-53	
	2007														
	2007														
	<u>2008</u>														
	2009														
AEC	UNSITED	1	UNKNOWN	СТ	NG	PL	NA	UN	0	6 / 2009	98	119	98	119	Р
											2009 TOTAL:		98	119	
											2009 TOTAL:		98	119	
	<u>2010</u>														
GPC	CRIST		ESCAMBIA	6 7	віт	WA	NG	51		6 / 2010	c	<u>,</u>	c	-6	
GPC	CRIST	6 7	ESCAMBIA	ST ST	BIT	WA	NG	PL PL	0	6 / 2010	-6 -9	-6 -9	-6 -9	-0 -9	D D
GPC	CRIST	1	ESCAMBIA	51	ы	VVA	NG	PL	0	672010	-9	-9	-9	-9	D
											2010 TOTAL:		-15	-15	
	2011														
AEC	UNSITED	2	UNKNOWN	СТ	NG	PL	NA	UN	0	6 / 2011	98	119	98	119	Р
GPC	SCHOLZ	1	JACKSON	ST	BIT	RR			0	12 / 2011	-49	-49	-46	-46	RT
GPC	SCHOLZ	2	JACKSON	ST	BIT	RR			0	12 / 2011	-49	-49	-46	-46	RT
											2011 TOTAL:		6	27	

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA FRCC Form 1.1 PLANNED AND PROSPECTIVE GENERATING FACILITY ADDITIONS AND CHANGES (JANUARY 1, 2006 THROUGH DECEMBER 31, 2015)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
		UNIT		UNIT	DDIM/	ARY FUEL		NATE FUEL	ALT. FUEL STORAGE (DAYS	COMMERICAL IN-SERVICE OR RETIREMENT	GRC CAPAE SUMMER		NE CAPAE SUMMER		
UTILITY	POWER PLANT NAME	NO.	LOCATION	TYPE	TYPE	TRANS.	TYPE	TRANS.	BURN)	MO, / YEAR	(MW)	(MW)	(MW)	(MW)	STATUS
														<u> </u>	
	<u>2012</u>														
GPC	DANIEL	1	JACKSON MS	ST	BIT	RR	RFO	ТК	0	6 / 2012	-1	-1	-1	-1	D
GPC	DANIEL	2	JACKSON MS	ST	BIT	RR	RFO	тк	0	6 / 2012	-1	-1		-1	D
											2012 TOTAL:		-2	-2	
											ZUIZ TOTAL.		-1	-	
	<u>2013</u>														
AEC	UNSITED	3	UNKNOWN	СТ	NG	PL	NA	UN	0	6 / 2013	98	119	98	119	Р
											2013 TOTAL:		98	119	
	<u>2014</u>														
GPC	DANIEL	1	JACKSON MS	ST	BIT	RR	RFO	тк		6 / 2014	-5	-5	-5	-5	D
GPC	DANIEL	2	JACKSON MS	ST	BIT	RR	RFO	тк	0	6 / 2014	-5	-5	-5	-5	D
GPC	UNLOCATED UNIT	А	UNKNOWN	CC	NG	PL	NA	NA	0	6 / 2014	611	631	600	620	Р
AEC	UNSITED	4	UNKNOWN	СТ	NG	PL.	NA	UN	0	6 / 2014	98	119	98	119	P
GPC	CRIST	4	ESCAMBIA	ST	BIT	WA	NG	PL		12 / 2014	-82	-82	-78	-78	D
											2014 TOTAL:		610	651	

<u>2015</u>

FRCC FUTURE TOTAL: 16,617 17,858 STATE FUTURE TOTAL: 18,704

17,349

FRCC Form 10 SUMMARY OF CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF SUMMER PEAK

(1)	(2)	(3) NET	(4) PROJECTED	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
		CONTRACTED	FIRM NET	TOTAL		RESER	/E MARGIN	FIRM	RESER	/E MARGIN	
	INSTALLED	INSTALLED FIRM		AVAILABLE	TOTAL PEAK	W/O EX	ERCISING	PEAK	WITH EXERCISING		
	CAPACITY	INTERCHANGE	NUG + MERCH	CAPACITY	DEMAND	LOAD MANA	GEMENT & INT.	DEMAND	LOAD MANA	GEMENT & INT.	
YEAR	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	% OF PEAK	(MW)	(MW)	% OF PEAK	
2006	48,614	1,341	5,503	55,458	48,307	7,151	15%	45,548	9,910	22%	
2007	50,413	1,341	5,277	57,031	49,588	7,443	15%	46,641	10,390	22%	
2008	51,410	1,341	5,384	58,135	50,953	7,182	14%	47,952	10,183	21%	
2009	53,895	1,791	5,983	61,669	52,221	9,448	18%	49,198	12,471	25%	
2010	55,909	1,581	5,273	62,763	53,272	9,491	18%	50,266	12,497	25%	
2011	57,007	1,581	5,066	63,653	54,448	9,205	17%	51,423	12,230	24%	
2012	59,604	1,581	4,985	66,170	55,635	10,535	19%	52,587	13,583	26%	
2013	62,127	1,581	4,331	68,039	56,888	11,151	20%	53,813	14,226	26%	
2014	64,317	1,131	3,846	69,294	58,093	11,201	19%	54,989	14,305	26%	
2015	65,536	1,131	4,174	70,841	59,461	11,380	19%	56,349	14,492	26%	

SUMMARY OF CAPACITY, DEMAND, AND RESERVE MARGIN AT TIME OF WINTER PEAK

(1)	(2)	(3) NET	(4) PROJECTED	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
		CONTRACTED	FIRM NET	TOTAL		RESER	RESERVE MARGIN		RESER	/E MARGIN	
	INSTALLED	FIRM	TO GRID	AVAILABLE	TOTAL PEAK	W/O EXERCISING		PEAK	WITH E	XERCISING	
	CAPACITY	INTERCHANGE	NUG + MERCH	CAPACITY	DEMAND	LOAD MANA	GEMENT & INT.	DEMAND	LOAD MANAGEMENT & INT.		
YEAR	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	% OF PEAK	(MW)	(MW)	% OF PEAK	
2006 / 07	52,138	1,341	5,499	58,978	51,034	7,944	16%	47,530	11,448	24%	
2007 / 08	54,266	1,341	5,904	61,512	52,267	9,245	18%	48,708	12,804	26%	
2008 / 09	55,778	1,341	5,712	62,832	53,603	9,229	17%	49,998	12,834	26%	
2009 / 10	58,015	1,791	5,632	65,438	54,579	10,859	20%	50,989	14,449	28%	
2010 / 11	60,028	1,581	5,614	67,224	55,813	11,411	20%	52,201	15,023	29%	
2011 / 12	61,089	1,651	5,535	68,275	56,923	11,352	20%	53,288	14,987	28%	
2012 / 13	64,462	1,581	4,728	70,771	58,141	12,630	22%	54,475	16,296	30%	
2013 / 14	66,656	1,581	5,124	73,361	59,356	14,005	24%	55,656	17,705	32%	
2014 / 15	68,512	1,131	4,383	74,026	60,802	13,224	22%	57,068	16,958	30%	
2015 / 16	70,296	719	4,278	75,293	62,374	12,919	21%	58,644	16,649	28%	

NOTE: COLUMN 9: "FIRM PEAK DEMAND" = TOTAL PEAK DEMAND - INTERRUPTIBLE LOAD - LOAD MANAGEMENT.

Page 63 of 80 Exhibit BT/TJS-9 Docket No. 070393-El

S - 12

FRCC Form 3.0 EXISTING NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES AS OF DECEMBER 31, 2005

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)

			POTENTIAL EXPORT TO GRID					GROSS	6	NE	т						
			-	FIR	N .	UNCOMMI	TTED	CAPABILITY		CAPABILITY					COM'L IN-		
		UNIT		SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT		L TYPE		VICE	
UTILITY	FACILITY NAME	NO.	LOCATION	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	<u>TYPE</u>	PRI	ALT	<u>MO.</u> /	YEAR	STATUS
<u>GULF PC</u>	OWER COMPANY																
	INTERNATIONAL PAPER COMPANY	1	ESCAMBIA	0.0	0.0	0.0	0.0	37.4	37.4	37.4	37.4	ST	WDS	NG	5/	1983	NC
	INTERNATIONAL PAPER COMPANY	2	ESCAMBIA	0.0	0.0	0.0	0.0	40.8	40.8	40.8	40.8	ST	WDS	NG	5 /	1983	NC
	MONTENAY BAY LLC	1	BAY	0.0	0.0	11.0	11.0	12.5	12.5	12.5	12.5	ST	MSW		2 /	1987	NC
	PENSACOLA CHRISTIAN COLLEGE	1	ESCAMBIA	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1	ST	NG		4 /	1988	NC
	PENSACOLA CHRISTIAN COLLEGE	2	ESCAMBIA	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1	ST	NG		4 /	1988	NC
	PENSACOLA CHRISTIAN COLLEGE	3	ESCAMBIA	0.0	0.0	0.0	0.0	1.1	1.1	1.1	1.1	ST	NG		4 /	1988	NC
	SANTA ROSA ENERGY	1A	SANTA ROSA	0.0	0.0	165.5	165.5	165.5	165.5	165.5	165.5	CT	NG		6 /	2003	NC
	SANTA ROSA ENERGY	1S	SANTA ROSA	0.0	0.0	74.5	74.5	74.5	74.5	74.5	74.5	CA	NG		6 /	2003	NC
	SOLUTIA	1	ESCAMBIA	0.0	0.0	0.0	0.0	5	5	5	5	ST	NG	DFO	1 /	1954	NC
	SOLUTIA	2	ESCAMBIA	0.0	0.0	0.0	0.0	5	5	5	5	ST	NG	DFO	1 /	1954	NC
	SOLUTIA	3	ESCAMBIA	0.0	0.0	0.0	0.0	6	6	6	6	ST	NG	DFO	1 /	1954	NC
	SOLUTIA	4	ESCAMBIA	0.0	0.0	0.0	0.0	86	86	86	86	ST	NG		8 /	1993	NC
	STONE CONTAINER	1	BAY	0.0	0.0	0.0	0.0	4	4	4	4	ST	WDS	NG	1 /	1960	NC
	STONE CONTAINER	2	BAY	0.0	0.0	0.0	0.0	5	5	5	5	ST	WDS	NG	1 /	1960	NC
	STONE CONTAINER	3	BAY	0.0	0.0	0.0	0.0	10	10	10	10	ST	WDS	NG	1 /	1960	NC
	STONE CONTAINER	4	BAY	0.0	0.0	0.0	0.0	20	20	20	20	ST	WDS	NG	1 /	1960	NC
			GPC TOTAL:	0.0	0.0	251.0	251.0										
		FRCC REGION TOTAL:		1,992.3	2,064.3	143.3	143.3	(UNCOMMITTE	D TOTAL EX	CLUDES MI	ERCHANT F	ACILITIES	5)				
			STATE TOTAL:	1,992.3	2,064.3	394.3	394.3										

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 64 of 80

2006 LOAD AND RESOURCE PLAN

STATE OF FLORIDA

FRCC Form 3.1 PLANNED AND PROSPECTIVE NON-UTILITY, QF, AND SELF SERVICE GENERATION FACILITIES INSTALLATIONS, CHANGES, AND REMOVALS

JANUARY 1, 2006 THROUGH DECEMBER 31, 2015

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)
					POTENTIAL EXPORT TO GRID AT TIME OF PEAK FIRM UNCOMMITTED				GROSS CAPABILITY						COMMERCIAL IN-SERVICE/ RETIREMENT/ OR CHANGE IN	
		UNIT		SUM	WIN	SUM	WIN	SUM	WIN	SUM WIN		UNIT	FUEL TYPE		CONTRACT	
UTIL	FACILITY NAME	<u>NO.</u>	LOCATION	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	TYPE	PRI	ALT	MO. / YEAR	STATUS
	<u>2006</u>															
AEC	SPRINGHILL REGIONAL LANDFILL	1	JACKSON	5.0	5.0			5.0	5.0	5.0	5.0	IC	LFG		6 / 2006	С
GPC	PENSACOLA CHRISTIAN COLLEGE	4	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	5	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	6	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	7	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	8	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	9	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	10	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
GPC	PENSACOLA CHRISTIAN COLLEGE	11	ESCAMBIA	0.0	0.0	0.0	0.0	1.8	1.8	1.8	1.8	IC	NG		6 / 2006	NC
	<u>2007</u>															

<u>2008</u>

<u>2009</u>

<u>2010</u>

<u>2011</u>

<u>2012</u>

<u>2013</u>

<u>2014</u>

<u>2015</u>

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 65 of 80

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA

NON-UTILITY GENERATING FACILITIES SUMMARY

		SUMMER				WINTER	
	FIRM	UNCOMMITTED	UNCOMMITTED		FIRM	UNCOMMITTED	UNCOMMITTED
	NET TO GRID	QF GENERATION	NUG GENERATION		NET TO GRID	QF GENERATION	NUG GENERATION
YEAR	(MW)	(MW)	(MW)	YEAR	(MW)	(MW)	(MW)
2006	1,989.7	394.3	0.0	2006/07	2,058.3	405.3	0.0
0007		105.0	2.2	0007/00	0.000.4	100.0	
2007	2,020.8	405.3	0.0	2007/08	2,096.4	423.3	0.0
2008	2,016.8	420.3	0.0	2008/09	2,096.4	423.3	0.0
2009	1,966.2	420.3	0.0	2009/10	1,968.3	496.9	0.0
2010	1,889.7	493.9	0.0	2010/11	1,923.3	541.9	0.0
2010	1,000.1	100.0	0.0	2010/11	1,02010	••••••	
2011	1,844.7	538.9	0.0	2011/12	1,907.8	559.9	0.0
				0040440		550.0	0.0
2012	1,829.2	556.9	0.0	2012/13	1,551.8	559.9	0.0
2013	1,429.2	556.9	0.0	2013/14	1,267.6	862.9	0.0
2014	1,242.2	872.7	0.0	2014/15	1,254.8	875.7	0.0
2015	1 040 0	872.7	0.0	2015/16	1,231.8	973.7	0.0
2015	1,242.2	012.1	0.0	2015/10	1,201.0	313.1	0.0

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA FRCC Form 12 SUMMARY OF FIRM CAPACITY AND ENERGY CONTRACTS AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)
PURCHASING	SELLING	CONTRA	CT TERM	NET CAF	PABILITY	
ENTITY	ENTITY	FROM (MM/DD/YY)	TO (MM/DD/YY)	SUMMER (MW)	WINTER (MW)	DESCRIPTION
FPL	GPC	07/20/88	05/31/10	126	126	GPC allocation of Southern Unit Power Sale
FPL	GPC	06/01/10	05/31/15	111	111	GPC Scherer 3 allocation of Southern Unit Power Sale
GPC	MKT	06/01/09	05/31/14	450	450	Request for Proposals issued. Proposals due Mar 21, 06. PPA negotiations complete Aug 1, 06.
JEA	GPC	08/17/88	05/31/10	28	28	GPC allocation of Southern Unit Power Sale
PEF	GPC	07/19/88	05/31/10	57	57	GPC allocation of Southern Unit Power Sale
PEF	GPC	06/01/10	05/31/15	50	50	GPC Scherer 3 allocation of Southern Unit Power Sale

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA

FRCC Form 9.0 FUEL REQUIREMENTS AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5) ACTUAL	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	FUEL REQUIRE	MENTS	UNITS	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
(1)	NUCLEAR		TRILLION BTU	309	344	331	351	332	346	344	347	341	349	342
(2)	COAL		1000 TON	30,356	30,433	31,960	32,299	32,096	32,242	32,950	35,241	40,306	44,365	45,938
	RESIDUAL													
(3)		STEAM	1000 BBL	42,942	32,085	32,121	27,931	16,540	10,128	10,574	9,187	7,927	7,475	6,811
(4)		CC	1000 BBL	110	54	49	132	143	114	132	133	114	162	197
(5)		СТ	1000 BBL	0	0	0	0	0	0	0	0	0	0	0
(6)		TOTAL:	1000 BBL	43,052	32,139	32,170	28,063	16,68 3	10,242	10,706	9,320	8,041	7,637	7,008
	DISTILLATE													
(7)		STEAM	1000 BBL	217	141	151	156	149	162	165	182	193	204	216
(8)		CC	1000 BBL	302	140	119	146	105	105	114	118	120	122	109
(9)		СТ	1000 BBL	1,743	1,707	1,738	1,704	1,715	1,836	1,872	1,765	1,786	1,749	1,845
(10)		TOTAL:	1000 BBL	2,262	1,988	2,008	2,006	1,969	2,103	2,151	2,065	2,099	2,075	2,170
	NATURAL GAS													
(11)		STEAM	1000 MCF	54,837	35,964	33,528	31,000	69,323	92,532	84,694	72,803	79,321	66,965	64,987
(12)		CC	1000 MCF	488,219	476,838	617,700	688,231	790,671	863,270	920,680	928,258	883,901	860,416	892,067
(13)		СТ	1000 MCF	33,078	43,346	46,254	47,544	50,330	58,191	70,364	70,132	66,888	65,705	75,863
(14)		TOTAL:	1000 MCF	576,134	556,148	697,482	766,775	910,324	1,013,993	1,075,738	1,071,193	1,030,110	993,086	1,032,917
(15)	OTHER		TRILLION BTU	1,823	2,268	3,240	3,280	3,168	3,342	3,435	3,317	4,624	4,512	4,502

Docket No. 070393-EI

FRCC Load and Resource Plan

6-SfT/TB	ношул
0_21T\TA	1999

	ENERGY SOURCES	UNITS	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
(1)	FIRM INTER-REGION INTERCHANGE	GWH	14,056	12,664	12,384	12,595	12,530	10,436	7,736	8,845	8,036	6,850	6,483
(2)	NUCLEAR	GWH	28,632	31,807	30,715	32,645	30,655	32,055	31,975	32,245	31,581	32,468	31,642
(3)	COAL	GWH	69,683	71,204	72,840	73,100	72,609	72,424	73,838	81,403	95,131	106,430	110,410
	RESIDUAL												
(4)	STEAM	GWH	27,135	20,485	20,516	17,781	10,552	6,445	6,778	5,863	5,024	4,748	4,317
(5)	CC	GWH	71	36	32	87	92	73	86	94	80	111	131
(6)	СТ	GWH	0	0	0	0	0	0	0	0	0	0	0
(7)	TOTAL:	GWH	27,206	20,521	20,548	17,868	10,644	6,518	6,864	5,957	5,104	4,859	4,448
	DISTILLATE												
(8)	STEAM	GWH	26	25	26	25	24	26	26	36	40	51	53
(9)	CC	GWH	178	73	60	84	51	52	52	51	52	52	49
(10)	СТ	GWH	686	665	639	666	762	788	776	669	711	634	636
(11)	TOTAL:	GWH	890	763	725	775	837	866	854	756	803	737	738
	NATURAL GAS												
(12)	STEAM	GWH	5,212	3,440	3,196	2,946	6,757	9,103	8,337	7,187	7,806	6,600	6,375
(13)	СС	GWH	70,054	81,050	86,436	96,123	111,295	121,553	129,701	129,486	122,081	120,378	124,611
(14)		GWH	2,766	3,359	3,294	3,564	4,314	4,637	5,393	5,439	5,352	5,524	6,352
(15)		GWH	78,032	87,849	92,926	102,633	122,366	135,293	143,431	142,112	135,239	132,502	137,338
(16)	NUG	GWH	7,564	7,462	7,457	7,395	7,521	8,102	8,492	8,252	6,165	5,176	5,506
(17)	HYDRO	GWH	33	19	23	23	23	23	23	23	23	23	23
(18)	OTHER	GWH	14,071	14,087	16,455	16,749	14,825	13,282	12,501	13,192	17,670	17,810	17,515
(19)	NET ENERGY FOR LOAD	GWH	240,167	246,376	254,073	263,783	272,010	278,999	285,714	292,785	299,752	306,855	314,103
,			·								0	8 to 69 9	Pap
					S	5 - 18						it BT/TJ	

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA

FRCC Form 9.1 **ENERGY SOURCES (GWH)** AS OF JANUARY 1, 2006

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(6)

(7)

(1)

(2)

(3)

(4)

(5)

ACTUAL


Docket No. 070393-EI

FRCC Load and Resource Plan

						ENERGY	SOURCE	S (%)						
(1)	(2)	(3)	(4)	(5) ACTUAL	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	ENERGY SOUR	RCES	UNITS	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015
(1)	FIRM INTER-REGI	ON INTERCHANGE	%	5.85%	5.14%	4.87%	4.77%	4.61%	3.74%	2.71%	3.02%	2.68%	2.23%	2.06%
(2)	NUCLEAR		%	11.92%	12.91%	12.09%	12.38%	11.27%	11.49%	11.19%	11.01%	10.54%	10.58%	10.07%
(3)	COAL		%	29.01%	28.90%	28.6 7%	27.71%	26.69%	25.96%	25.84%	27.80%	31.74%	34.68%	35.15%
	RESIDUAL													
(4)		STEAM	%	11.30%	8.31%	8.07%	6.74%	3.88%	2.31%	2.37%	2.00%	1.68%	1.55%	1.37%
(5)		CC	%	0.03%	0.01%	0.01%	0.03%	0.03%	0.03%	0.03% 0.00%	0.0 3% 0.00%	0.03% 0.00%	0.04% 0.00%	0.04% 0.00%
(6) (7)		CT TOTAL:	%	0.00% 11.33%	0.00% 8.33%	0.00% 8.09%	0.00% 6.77%	0.00% 3.91%	0.00% 2.34%	0.00% 2.40%	2.03%	0.00% 1.70%	1.58%	1.42%
(7)		TOTAL.	70	11.5570	0.0070	0.0970	0.7770	3.3170	2.5470	2.4070	2.0370	1.1070	1.5070	1.42 /0
	DISTILLATE													
(8)		STEAM	%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.02%	0.02%
(9)		CC	%	0.07%	0.03%	0.02%	0.03%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%	0.02%
(10)		СТ	%	0.29%	0.27%	0.25%	0.25%	0.28%	0.28%	0.27%	0.23%	0.24%	0.21%	0.20%
(11)		TOTAL:	%	0.37%	0.31%	0.29%	0.29%	0.31%	0.31%	0.30%	0.26%	0.27%	0.24%	0.23%
	NATURAL GAS													
(12)		STEAM	%	2.17%	1.40%	1.26%	1.12%	2.48%	3.26%	2.92%	2.45%	2.60%	2.15%	2.03%
(13)		CC	%	29.17%	32.90%	34.02%	36.44%	40.92%	43.57%	45.40%	44.23%	40.73%	39.23%	39.67%
(14)		СТ	%	1.15%	1.36%	1.30%	1.35%	1.59%	1.66%	1.89%	1.86%	1.79%	1.80%	2.02%
(15)		TOTAL:	%	32.49%	35.66%	36.57%	38.91%	44.99%	48.49%	50.20%	48.54%	45.12%	43.18%	43.72%
(16)	NUG		%	3.15%	3.03%	2.93%	2.80%	2.76%	2.90%	2.97%	2.82%	2.06%	1.69%	1.75%
(17)	HYDRO		%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%	0.01%
(18)	OTHER		%	5.86%	5.72%	6.48%	6.35%	5.45%	4.76%	4.38%	4.51%	5.89%	5.80%	5.58%
(19)	NET ENERGY FOR	RLOAD	%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%
							S - 19						Ta jididy Page 70 c	

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA

FRCC Form 9.2

2006 LOAD AND RESOURCE PLAN STATE OF FLORIDA

FRCC Form 13 SUMMARY AND SPECIFICATIONS OF PROPOSED TRANSMISSION LINES AS OF JANUARY 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)
LINE OWNERSHIP	TERMINALS	LINE LENGTH CKT. MILES	COMMERCIAL IN-SERVICE (MO/YR)	NOMINAL VOLTAGE (kV)	CAPACITY (MVA)	SITED UNDER*

No Entries

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 71 of 80

* PPSA Power Plant Siting Act TLSA Transmission Line Siting Act

S - 20

MERCHANT GENERATION IN FLORIDA

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 72 of 80

MERCHANT GENERATION IN FLORIDA

FRCC requested information on merchant generation facilities from the following companies to include in the 2006 Regional Load & Resource Plan:

- 1. Calpine
- 2. Cogentrix (formerly PG&E National Energy Group)
- 3. Competitive Power Ventures
- 4. Dynegy

- 5. Mirant Americas
- 6. Northern Star Generation
- 7. Reliant Energy
- 8. Southern Power Company (formerly Constellation Power Source)

The following companies responded to FRCC's request for information. Prior data from non-respondent(s) was replicated for the 2006 Plan:

- 1. Calpine
- 2. Competitive Power Ventures
- 3. Dynegy
- 4. Mirant Americas

- 5. Northern Star Generation
- 6. Reliant Energy
- 7. Southern Power Company

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 73 of 80

CODES USED IN FORMS FOR MERCHANT GENERATING FACILITIES

Unit Status	Contract Status	Ownership
NS – Merchant plant –No system impact study, not under construction	C – Contract in place	COG – Cogenerator
SI – Merchant plant – System impact study completed, not under construction	CC – Contract Change	IPP – Independent Power Producer
U – Under construction, less than or equal to 50% complete	NC – No Contract	MER – Merchant Generator
V – Under construction, more than 50% complete	R – Retirement	SPP – Small Power Producer
TS – Construction complete, but not yet in commercial operation		
M – Generating unit put in deactivated shutdown status		
RA – Previously deactivated or retired generator planned for reactivation		
OP – In commercial operation		
 D – Generating unit capability decreased (rerated or relicensed) 		
 A – Generating unit capability increased (rerated or relicensed) 		
FC – Existing generator planned for conversion to another fuel or energy source		Exhibit Page
RP – Proposed for repowering or life extension		e 74 c
CO – Change of ownership (including change of shares of jointly-owned units)		Page 74 of 80
OT – Other		

Docket No. 070393-EI

EXISTING MERCHANT GENERATION FACILITIES IN FLORIDA As of December 31, 2005

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	
			PO	TENTIAL EXI	PORT TO GR	RID													
				AT TIME (loss		ET									
				RM	UNCOM			ABILITY		BILITY				COMMERCIAL					
	UNIT	LOCATION	SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT		. TYPE	IN-SERVICE	RETIREMENT		UNIT	CONTRA	
FACILITY NAME	NO.	(COUNTY)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	(MW)	TYPE	<u>PRI</u>	ALT	MO. / YEAR	MO. / YEAR	OWNERSHIP	STATUS	STATUS	<u> </u>
CALPINE																			
AUBURNDALE POWER PARTNERS	ст	POLK	131.2	131.2	23.5	14,7	121.5	(1)	105.1	110.9	СТ	NG	DFO	4 / 1994		MER	OP	С	(2)
AUBURNDALE POWER PARTNERS	ST	POLK	(3)	(3)	(3)	(3)	52.0	.,	49,6	35.0	CA	WH	0.0	4 / 1994		MER	OP	c	(2)
AUBURNDALE PEAKER ENERGY CTR	СТ	POLK	(0)	(0)	118.0	130.0	130.1		118.0	130.0	GT	NG	DFO	6 / 2002		MER	OP	c	(2)
OSPREY ENERGY CENTER	CT1	POLK					226.0	• •	169.8	196.9	СТ	NG		5 / 2004		MER	OP	c	
OSPREY ENERGY CENTER	CT2	POLK					226.0	.,	169.8	196.9	СТ	NG		5 / 2004		MER	OP	с	
OSPREY ENERGY CENTER	ST	POLK					306.0	.,	258.3	208.7	CA	wн		5 / 2004		MER	OP	С	
SANTA ROSA ENERGY CENTER	СТ	SANTA ROSA					200.0	.,	161.4	173.4	СТ	NG		6 / 2003		MER	OP		
SANTA ROSA ENERGY CENTER	ST	SANTA ROSA					74.5	(1)	74.5	74.5	ST	WН		6 / 2003		MER	OP		
								()											
SOUTHERN POWER COMPANY (form	<u>erly Co</u>	onstellation)																	
OLEANDER POWER PLANT	1	BREVARD	155	182			156	183	155	182	GT	NG	DFO	6 / 2002		MER	OP	С	
OLEANDER POWER PLANT	2	BREVARD	155	182			156	183	155	182	GT	NG	DFO	6 / 2002		MER	OP	c	
OLEANDER POWER PLANT	3	BREVARD	155	182			156	183	155	182	GT	NG	DFO	7 / 2002		MER	OP	c	
OLEANDER POWER PLANT	4	BREVARD	155	182			156	183	155	182	GT	NG	DFO	8 / 2002		MER	OP	č	
	4	BILLEVALD	100	102			100	100	100	102	0.		5.0	OF LODE		inc. it	0.	, in the second s	
NORTHERN STAR GENERATION																			
VANDOLAH POWER COMPANY LLC	1	HARDEE	630	630			650	670	640	655	СТ	NG	DFO	6 / 2002	6 / 2042	MER	OP	с	
MIRANT AMERICAS																			
MILCANT AMERICAO																			
SHADY HILLS POWER CO, LLC	1 GT	PASCO	158	173					158	173	CT	NG	DFO	2 / 2002		MER	OP	С	
SHADY HILLS POWER CO, LLC	2 GT	PASCO	158	173					158	173	CT	NG	DFO	2 / 2002		MER	OP	С	
SHADY HILLS POWER CO, LLC	3 GT	PASCO	158	173					158	173	СТ	NG	DFO	2 / 2002		MER	OP	С	
COGENTRIX (formerly PG&E National	l Enera	v Group)																	
INDIANTOWN GENERATING PLANT		MARTIN	330	330			360	360	330	330	ST	віт		12 / 1995		MER	OP	с	
RELIANT ENERGY																			
RELIANT ENERGY - INDIAN RIVER	1-3	BREVARD	576	576					576	576	ST	NG	RFO	2 / 1960		MER	OP	С	
RELIANT ENERGY - OSCEOLA	1-3	OSCEOLA	318	340	159	170			477	510	GT	NG	DFO	12 / 2001		MER	OP	С	
		TOTALS:	3,079.2	3,254.2	300.5	314.7			4,223.5	4,444.3									
Notes:																			

(1) Generator nameplate rating

(2) Both of the Auburndale Power Partners units together are part of the same contract.

(3) Both of the Aubumdale Power Partners units together produce the electricity for these contracts.

Pocket No. 070393-EI Exhibit BT/TJS-9 Page 75 of 80

PLANNED AND PROSPECTIVE MERCHANT GENERATION FACILITIES IN FLORIDA January 1, 2006 Through December 31, 2015 ORDERED BY ENTITY

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)
			РОТ	ENTIAL EX	PORT TO G	RID												
				AT TIME			GR	oss	N	ET				COMMERCIAL				
			FII	RM	UNCOM	MITTED	CAPA	BILITY	CAPA	BILITY				IN-SERVICE				
	UNIT	LOCATION	SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT	FUEL	TYPE	DATE	RETIREMENT		UNIT	CONTRACT
FACILITY NAME	NO.	(COUNTY)	(MW)	(MW)	(MW)	(MW)	(MW)	_(MW)	(MW)	(MW)	TYPE	PRI	ALT	MO. / YEAR	MO. / YEAR	OWNERSHIP	STATUS	STATUS

No Activity Reported

SOUTHERN POWER COMPANY (formerly Constellation)

No Activity Reported

NORTHERN STAR GENERATION

No Activity Reported

MIRANT AMERICAS

No Activity Reported

COGENTRIX (formerly PG&E National Energy Group)

No Activity Reported

RELIANT ENERGY

No Activity Reported

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 76 of 80

PLANNED AND PROSPECTIVE MERCHANT GENERATION FACILITIES IN FLORIDA January 1, 2006 Through December 31, 2015 ORDERED BY IN-SERVICE DATE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)
					POTENTIAL E	XPORT TO GR	ID												
				-	AT TIM	E OF PEAK		GR	OSS	NE	T				COMMERCIAL				
					RM	UNCOM	IMITTED	CAPA	BILITY	CAPA	BILITY				IN-SERVICE				
		UNIT	LOCATION	SUM	WIN	SUM	WIN	SUM	WIN	SUM	WIN	UNIT	FUEL 1	ГҮРЕ	DATE	RETIREMENT		UNIT	CONTRACT
ENTITY	FACILITY NAME	NO	(COUNTY)	(MW)	(MW)	(MW)	(MW)	(MW)	<u>(MV)</u>	(MW)	(MW)	TYPE	PRI	ALT	MO. / YEAR	MO. / YEAR	OWNERSHIP	STATUS	STATUS

<u>2006</u>

No Activity Reported

<u>2007</u>

No Activity Reported

2008

No Activity Reported

<u>2009</u>

No Activity Reported

<u>2010</u>

No Activity Reported

<u>2011</u>

No Activity Reported

<u>2012</u>

No Activity Reported

<u>2013</u>

No Activity Reported

<u>2014</u>

No Activity Reported

<u>2015</u>

No Activity Reported

2006 - 2015 TOTALS: 0.0 0.0 0.0 0.0 0.0 0.0	0.0
---	-----

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 77 of 80

SUMMARY OF MERCHANT FIRM CAPACITY AND ENERGY CONTRACTS

As of January 1, 2006

(1)	(2)	(3)	(4)	(5)	(6)	(7)	
		CONTRA	CT TERM	NET CAPABILITY (MW)			
PURCHASING ENTITY	SELLING ENTITY	FROM (MM/DD/YY)	TO (MM/DD/YY)	SUMMER	WINTER	DESCRIPTION	
FMPA	CAL	1/1/2006	12/31/2006	75	75	Firm capacity and energy. FMPA has rights to partial dispatch of energy.	
FMPA	CAL	1/1/2007	12/31/2009	100	100	Firm capacity and energy. FMPA has rights to partial dispatch of energy.	
FPL	SOU	6/1/2002	5/31/2007	155	182	Unit 1 (Oleander Power)	
FPL	RES	1/1/2006	12/31/2009	576	576	Schedule D (Indian River)	
PEF	MIR	4/1/2007	4/30/2014	474	520	Toll to Florida Progress for 100% of output (Capability based on contract ambient conditions)	
RES	NSG	6/1/2002	5/31/2012	630	630	Tolling agreeement pursuant to which VANDOLAH supplies all of its capacity and energy to RES for 10 years.	
SEC	CAL	10/7/2005	5/31/2012	340	360	Firm capacity and energy. SEC has rights to partial dispatch of energy.	
SEC	SOU	12/1/2002	12/31/2009	155	182	Unit 2 (Oleander Power)	
SEC	SOU	12/1/2002	12/31/2009	155	182	Unit 3 (Oleander Power)	
SEC	SOU	5/1/2003	12/31/2009	155	182	Unit 4 (Oleander Power)	
SEC	RES	12/1/2001	12/31/2006	318	340	CT Capacity Purchase (Osceola)	

Docket No. 070393-EI FRCC Load and Resource Plan Exhibit BT/TJS-9 Page 78 of 80

SUMMARY OF MERCHANT FIRM CAPACITY AND ENERGY CONTRACTS

As of January 1, 2006

(1) (2)		(3)	(4)	(5) (6)		(7)		
		CONTRACT TERM		NET CAPABILITY (MW)				
PURCHASING ENTITY	SELLING ENTITY	FROM (MM/DD/YY)	TO (MM/DD/YY)	SUMMER	WINTER	DESCRIPTION		
TECO	CAL	5/1/2006	12/31/2006	42	42	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2007	12/31/2007	17	17	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2008	12/31/2008	17	17	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2009	12/31/2009	17	17	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2010	12/31/2010	117	117	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2011	12/31/2011	117	117	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	5/1/2006	12/31/2006	128	128	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2007	12/31/2007	153	153	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2008	12/31/2008	153	153	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2009	12/31/2009	153	153	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2010	12/31/2010	53	53	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
TECO	CAL	1/1/2011	12/31/2011	53	53	Firm capacity and energy. Total capacity and energy is 170 MW, shared supply with APEC.		
Confidential	MIR		3/31/2007			100% tolled to non-utility counteparty	۲ P	

2006 LOAD AND RESOURCE PLAN FLORIDA RELIABILITY COORDINATING COUNCIL SUMMARY OF MERCHANT GENERATING FACILITIES IN THE FRCC REGION

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
		SUMMER				WINTER		
	FIRM		NET		FIRM		NET	
YEAR	NET TO GRID (MW)	UNCOMMITTED (MW)	CAPABILITY (MW)	YEAR	NET TO GRID (MW)	UNCOMMITTED (MW)	CAPABILITY (MW)	
	(1111)	(1111)	(((())))		()	()	()	
2006	3,079.2	300.5	4,223.5	2006/07	3,254.2	314.7	4,444.3	
2007	3,079.2	300.5	4,223.5	2007/08	3,254.2	314.7	4,444.3	
2008	3,079.2	300.5	4,223.5	2008/09	3,254.2	314.7	4,444.3	
2009	3,079.2	300.5	4,223.5	2009/10	3,254.2	314.7	4,444.3	
2010	3,079.2	300.5	4,223.5	2010/11	3,254.2	314.7	4,444.3	
2011	3,079.2	300.5	4,223.5	2011/12	3,254.2	314.7	4,444.3	
2012	3,079.2	300.5	4,223.5	2012/13	3,254.2	314.7	4,444.3	
2013	3,079.2	300.5	4,223.5	2013/14	3,254.2	314.7	4,444.3	
2014	3,079.2	300.5	4,223.5	2014/15	3,254.2	314.7	4,444.3	тį
2015	3,079.2	300.5	4,223.5	2015/16	3,254.2	314.7	4,444.3	FRC

NOTE: Only columns (4) and (8) are cumulative on a seasonal basis. Columns (2), (3), (6), and (7) represent the seasonal capabilities available as they have been modified by contract terms.