BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 07<u>0150</u>-EI FLORIDA POWER & LIGHT COMPANY

IN RE: FLORIDA POWER & LIGHT COMPANY'S PETITION TO DETERMINE NEED FOR TURKEY POINT NUCLEAR UNITS 6 AND 7 ELECTRICAL POWER PLANT

DIRECT TESTIMONY & EXHIBITS OF:

RENE SILVA

DOCTOMENT NO MOETR-CATE 09462 OCT 165 FPSC-COMMISSION CLERK

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		DIRECT TESTIMONY OF RENE SILVA
4		DOCKET NO. 07EI
5		OCTOBER 16, 2007
6		
7		INTRODUCTION AND CREDENTIALS
8 9	Q.	Please state your name and business address.
10	A.	My name is Rene Silva. My business address is 9250 West Flagler Street,
11		Miami, Florida 33174.
12	Q.	By whom are you employed and what is your position?
13	A.	I am employed by Florida Power & Light Company (FPL or the Company) as
14		Senior Director, Resource Assessment and Planning (RAP).
15	Q.	Please describe your duties and responsibilities in that position.
16	A.	I manage the RAP group, the department that is responsible for developing
17		FPL's integrated resource plan (IRP) and other related activities, such as
18		developing system production cost projections for various generation capacity
19		alternatives, analyzing demand side management (DSM) programs, and
20		negotiating and administering wholesale power purchase agreements (PPAs).
21	Q.	Please describe your educational background business experience.
22	A.	I graduated from the University of Michigan with a Bachelor of Science
23		Degree in Engineering Science in 1974. From 1974 until 1978, I was
24		employed by the Nuclear Energy Division of the General Electric Company in DOCUMENT NO. DATE

69462-0-7 101/607 FPSC - COMMISSION CLERK

the area of nuclear fuel design. While employed by General Electric, I earned a Masters Degree in Mechanical Engineering from San Jose State University in 1978.

4

1

2

3

I joined the Fuel Resources Department of FPL in 1978, as a fuel engineer, 5 responsible for purchasing nuclear fuel. While employed by FPL, I earned a 6 Masters Degree in Business Administration from the University of Miami in 7 In 1987 I became Manager of Fossil Fuel, responsible for FPL's 8 1986. 9 purchases of fuel oil, natural gas and coal. In 1990, I assumed the position of Director, Fuel Resources Department, and in 1991 became Manager of Fuel 10 11 Services, responsible for coordinating the development and implementation of 12 FPL's fossil fuel procurement strategy. In 1998, I was named Manager of Business Services in the Power Generation Division (PGD). In that capacity, 13 14 I managed the group that is responsible for coordinating (a) the development 15 of PGD's long-term plan for the effective and efficient construction, operation and maintenance of FPL's fossil generating plants, (b) the preparation of PGD 16 17 annual budgets and tracking of expenditures, and (c) the preparation of reports related to fossil generating plant performance. On May 1, 2002, I was 18 19 appointed to my current position.

20 Q. Are you sponsoring any exhibits in this case?

A. Yes. I am sponsoring an Exhibits RS-1 through RS-4, which are attached to
 my direct testimony.

23 Exhibit RS-1 FPL's actual energy mix in 2006

1		Exhibit RS-2	FPL's projected energy mix in 2021, with and
2			without the addition of Turkey Point 6 & 7
3		Exhibit RS-3	FPL's flexibility to incorporate increased DSM and
4			renewable resources into the resource plan
5		Exhibit RS-4	Results of FPL's economic analyses regarding the
6			relative cost of adding Turkey Point 6 & 7 to its
7			portfolio.
8	Q.	Are you sponsoring a	ny sections of the Need Study for Electrical Power
9		document included wi	th FPL's Petition for a Determination of Need?
10	A.	Yes. This document	is referred to throughout FPL's filing as the "Need
11		Study." I sponsor Sect	ions I and X, and co-sponsor Sections II and III of the
12		Need Study.	
13			
14			PURPOSE
15			
16	Q.	What is the purpose of	f your testimony in this proceeding?
17	A.	The purpose of my test	timony is to support FPL's request for an affirmative
18		determination of need t	for FPL to proceed, consistent with the provisions of
19		Commission Rule 25-6.	0423, the Nuclear Power Plant Cost Recovery Rule, to
20		construct up to 3,040 m	egawatts (MW) of new nuclear generating capacity at
21		its Turkey Point site, t	o be designated Turkey Point Nuclear Units 6 & 7,
22		including the associated	transmission interconnection and integration facilities
23		(Turkey Point 6 & 7 or	r the Project). FPL seeks to implement a process to

I

1		license, develop and construct these critical new nuclear baseload facilities
2		with the aim of placing them into commercial operation by June 2018 and
3		June 2020, respectively. Specifically, I explain why the addition of the
4		proposed Turkey Point 6 & 7 nuclear units to FPL's generation portfolio is the
5		best alternative available for FPL to: continue to provide reliable electric
6		service at a reasonable cost; contribute to a balanced, fuel-diverse generation
7		portfolio; and maintain an adequate reserve margin to meet its customers'
8		projected electricity demand beginning in 2018. I also explain why the
9		Project is a critical component of any plan to reduce emissions of carbon
10		dioxide (CO ₂), a key greenhouse gas (GHG), at the same time FPL continues
11		to meet its customers' growing electricity needs.
10	0	How is your testimony excepted?
12	Q.	How is your testimony organized?
12	Q. A.	My testimony consists of 8 sections.
13		My testimony consists of 8 sections.
13 14		My testimony consists of 8 sections.Section 1 introduces FPL's witnesses and FPL's Need Study and
13 14 15		 My testimony consists of 8 sections. Section 1 introduces FPL's witnesses and FPL's Need Study and Appendices.
13 14 15 16		 My testimony consists of 8 sections. Section 1 introduces FPL's witnesses and FPL's Need Study and Appendices. Section 2 outlines FPL's request for an affirmative determination of
13 14 15 16 17		 My testimony consists of 8 sections. Section 1 introduces FPL's witnesses and FPL's Need Study and Appendices. Section 2 outlines FPL's request for an affirmative determination of need and summarizes FPL's need for generation capacity through
 13 14 15 16 17 18 		 My testimony consists of 8 sections. Section 1 introduces FPL's witnesses and FPL's Need Study and Appendices. Section 2 outlines FPL's request for an affirmative determination of need and summarizes FPL's need for generation capacity through 2020.
 13 14 15 16 17 18 19 		 My testimony consists of 8 sections. Section 1 introduces FPL's witnesses and FPL's Need Study and Appendices. Section 2 outlines FPL's request for an affirmative determination of need and summarizes FPL's need for generation capacity through 2020. Section 3 discusses the value of fuel diversity to FPL's customers and
 13 14 15 16 17 18 19 20 		 My testimony consists of 8 sections. Section 1 introduces FPL's witnesses and FPL's Need Study and Appendices. Section 2 outlines FPL's request for an affirmative determination of need and summarizes FPL's need for generation capacity through 2020. Section 3 discusses the value of fuel diversity to FPL's customers and how the Project provides fuel diversity benefits.

1		• Section 5 summarizes the results of the economic evaluation, and
2		explains why the addition of Turkey Point 6 & 7 is the best alternative
3		available for FPL to continue to provide reliable electric service at a
4		reasonable price by maintaining a balanced, fuel-diverse generation
5		portfolio, and maintaining an adequate reserve margin to meet its
6		customers' future electricity demand.
7		• Section 6 describes the many benefits of adding Turkey Point 6 & 7 to
8		FPL's generation portfolio, including the fact that this nuclear addition
9		is an essential part of any plan to reduce GHG emissions while it
10		continues to meet its customers' growing electricity needs.
11		• Section 7 presents a summary of the benefits already provided to our
12		customers by FPL's existing nuclear units.
13		• Section 8 presents the significant adverse consequences FPL and its
14		customers would face if FPL's petition is not granted.
15		
16		SECTION 1 - FPL's WITNESSES AND NEED STUDY DOCUMENT
17		
18	Q.	How many witnesses are supporting FPL's petition through direct pre-
19		filed testimony?
20	A.	Fifteen witnesses are submitting direct testimony. In addition to the various
21		exhibits included with the testimony of these witnesses, many of FPL's
22		witnesses sponsor or co-sponsor a portion of FPL's Need Study and
23		Appendices.

}

- Q. Please summarize the topics addressed in the testimony of each of these
 witnesses.
- A. As President of FPL, Mr. Armando Olivera discusses the overall support for
 the development of new nuclear generation, presents an overview of the need
 for Turkey Point 6 & 7, describes the magnitude of this project from the
 perspective of FPL and its investors, and discusses a few of the key reasons in
 support of FPL's petition in this proceeding.
- 9 Mr. Art Stall, President of FPL Group's Nuclear Energy Division, describes
 10 FPL Group's successful record of operating nuclear plants.
- 11

Mr. Steven Scroggs describes the steps FPL proposes to take in the licensing and deployment process for Turkey Point 6 & 7, discusses the site selection process, outlines the reactor design choices under consideration for this nuclear generation addition and provides the estimated cost range for the Project.

17

Dr. Leonardo Green presents FPL's load forecasting process, discusses the methodologies and assumptions used in that process, and presents the resulting load forecast, which was used in FPL's integrated resource planning process, and in the analysis performed related to the addition of Turkey Point 6 & 7.

1	Dr. Steve Sim describes FPL's integrated planning process, presents the need
2	for new resources to meet customers' demand for electricity in 2007 through
3	2020, explains why DSM alone cannot meet this need and explains the
4	analysis FPL performed to evaluate the addition of Turkey Point 6 & 7. Dr.
5	Sim also presents the results of this analysis, explains his conclusion that
6	based on FPL's evaluation, adding Turkey Point 6 & 7 in 2018 and 2020 is the
7	best choice for FPL's customers, and discusses the adverse consequences of
8	not adding Turkey Point 6 & 7 in 2018 and 2020, respectively.
9	
10	Mr. Dennis Brandt presents FPL's DSM goals and achievements and FPL's
11	DSM plan. In addition, Mr. Brandt discusses FPL's ongoing DSM-related
12	activities and describes FPL's view regarding the potential contribution that
13	DSM can make to help meet FPL's resource needs through 2020.
14	
15	Ms. Henrietta McBee describes FPL's strong record in the development and
16	use of renewables in its resource mix, and describes FPL's plans to pursue
17	such resources, and the anticipated timing and magnitude of additions.
18	
19	Mr. John Reed (Concentric Energy Advisors, Inc.) addresses the magnitude of
20	the projected availability of renewable resources and demand side
21	management that could contribute to meet FPL's future resource needs and
22	explains why these resources will not be adequate to defer the need for Turkey
23	Point 6 & 7. Mr. Reed also discusses the need for regulatory policies and

processes that can effectively support the development of new baseload nuclear generation.

Dr. Nils Diaz presents an overview of the current state of federal nuclear regulation, and explains how it has been modified to provide for a more efficient licensing process. He also describes the importance of nuclear generation as a part of the nation's generating portfolio and explains why new nuclear units can be built and operated safely and reliably.

9

10

11

1

2

3

Mr. Hector Sanchez discusses the transmission interconnection and integration requirements related to the addition of Turkey Point 6 & 7.

12

Mr. Gerard Yupp discusses the benefits of fuel diversity in FPL's system resulting from the addition of Turkey Point 6 & 7. He explains the basis for, and inherent uncertainty in, the various fossil fuel price forecasts used in FPL's economic analyses and discusses why such uncertainty requires the use of scenario analysis.

18

19 Mr. Claude Villard presents the nuclear fuel price forecast used in FPL's 20 analysis, explains why FPL projects that nuclear fuel supplies will be readily 21 available in the future, and discusses how delivery schedules for nuclear fuel 22 and operating flexibility of nuclear units contribute to system reliability in a 23 way that other technologies cannot match.

1		Mr. Ken Kosky testifies that the environmental compliance cost scenarios for
2		sulfur dioxide (SO ₂), nitrogen oxide (NO _x), mercury (Hg), and CO ₂
3		considered by FPL as part of its analysis of Turkey Point 6 & 7 effectively
4		address the appropriate range of those potential future costs. In addition, Mr.
5		Kosky discusses the historical contributions of FPL's nuclear generation to
6		lower CO_2 and other GHG emissions, and presents the magnitude of future
7		reductions in emissions that will be realized through the addition of Turkey
8		Point 6 & 7.
9		
10		Ms. Kim Ousdahl describes how FPL will comply with the Commission's
11		Nuclear Cost Recovery Rule as it applies to Turkey Point 6 & 7.
12		
12 13		SECTION 2 - THE NEED FOR TURKEY POINT 6 & 7
		SECTION 2 – THE NEED FOR TURKEY POINT 6 & 7
13	Q.	SECTION 2 – THE NEED FOR TURKEY POINT 6 & 7 Please summarize FPL's request in this proceeding
13 14	Q. A.	
13 14 15	_	Please summarize FPL's request in this proceeding
13 14 15 16	_	Please summarize FPL's request in this proceeding FPL seeks from the Commission an affirmative determination of need for the
13 14 15 16 17	_	Please summarize FPL's request in this proceeding FPL seeks from the Commission an affirmative determination of need for the addition to its generation portfolio of Turkey Point 6 & 7, two nuclear fuel
13 14 15 16 17 18	_	Please summarize FPL's request in this proceeding FPL seeks from the Commission an affirmative determination of need for the addition to its generation portfolio of Turkey Point 6 & 7, two nuclear fuel generating units, each nominally with a net summer capacity rating of up to
 13 14 15 16 17 18 19 	_	Please summarize FPL's request in this proceeding FPL seeks from the Commission an affirmative determination of need for the addition to its generation portfolio of Turkey Point 6 & 7, two nuclear fuel generating units, each nominally with a net summer capacity rating of up to approximately 1,520 MW, currently projected to be placed in commercial
 13 14 15 16 17 18 19 20 	_	Please summarize FPL's request in this proceeding FPL seeks from the Commission an affirmative determination of need for the addition to its generation portfolio of Turkey Point 6 & 7, two nuclear fuel generating units, each nominally with a net summer capacity rating of up to approximately 1,520 MW, currently projected to be placed in commercial operation by June 1, 2018 and June 1, 2020, respectively. FPL's request for a

1 As explained in greater detail by Mr. Scroggs, FPL's petition also requests that, in connection with granting a determination of need for Turkey Point 6 & 2 7, the Commission affirmatively determine that (1) FPL would be prudent to 3 make payments for those long-lead procurement items that are reasonably 4 5 necessary to preserve the potential for 2018-2020 in-service dates for the 6 Project; and (2) when such payments are made prior to the completion of the Project's site clearing work, they are properly characterized as "pre-7 construction costs," to be recovered pursuant to the mechanism provided in 8 9 the Commission's Rule 25-6.0423.

10 Q. Why is the addition of Turkey Point 6 & 7 needed?

The large addition of new nuclear baseload capacity provided by Turkey Point 11 A. 6 & 7 is needed to maintain system reliability and provide fuel diversity at a 12 reasonable cost for its customers. Specifically, this addition is needed to 13 preserve a balanced, fuel diverse generation portfolio for FPL customers, as 14 15 well as to maintain an adequate level of generation reserve margin through 2020. The addition of new baseload nuclear generation, as a component of 16 17 FPL's fuel mix, is even more important given the high likelihood of significant GHG regulation in the near future, including the potential for either 18 federal or state targeted or mandated reductions in emissions being imposed 19 for the relevant planning horizon. The construction of new nuclear generation 20 is necessarily a critical component of any plan to reduce system GHG, 21 including CO₂, emissions. 22

In summary, Turkey Point 6 & 7 will provide needed baseload generating capacity, improve fuel diversity, reduce Florida's dependence on fuel oil and natural gas, reduce air emissions compliance costs, and contribute to the longterm reliability of the electric grid, and, based on FPL's analysis, will meet these criteria in a cost-effective manner.

6 Q. What is FPL's current fuel mix and how is it projected to change in the 7 future?

A. In 2006, FPL's fuel mix consisted of natural gas (50%), nuclear generation 8 9 (21%), coal (18%), fuel oil (9%), and other sources (about 2%). This fuel mix is presented in Exhibit RS-1. If only natural gas-fueled generation were to be 10 11 added to FPL's system to provide its needs through 2020, the contribution of 12 natural gas would increase to about 75% of total electricity delivered to FPL's customers by 2021, while that of nuclear fuel would decrease to about 16%. 13 As will be discussed in Section 3, having such a high degree of dependence on 14 15 natural gas would make FPL's system more susceptible to interruptions in the 16 delivery of natural gas and to the type of gas price spikes that have become 17 frequent in recent years.

18

Alternately, with the proposed addition of Turkey Point 6 & 7, and assuming that the size of each new nuclear unit is 1,100 MW, the share of electricity produced by natural gas would be about 65% in 2021, while that of nuclear generation would be about 27%. These fuel mix projections, both with and without the addition of Turkey Point 6 & 7, are shown in Exhibit RS-2. This

comparison shows how the addition of Turkey Point 6 & 7 begins to remedy what would otherwise be a dramatic long-term imbalance in FPL's fuel mix.

Q. What quantity of firm resources will FPL need by 2020 and what are
some of the ways in which those needs may be met taking into account the
proposed addition of Turkey Point 6 & 7?

In 2011 through 2020, FPL will need about 8,350 MW of total additional firm Α. 6 resources, including approximately 1,610 MW to replace expiring purchase 7 power agreements (PPA), to continue to meet its reliability criteria. FPL 8 estimates that it can offset approximately 1,490 MW of this resource need 9 through energy efficiency and demand side management gains between 2011 10 and 2020. FPL also projects that about 290 MW of the remaining resource 11 need will be provided from specific renewable resources through new power 12 purchase agreements with existing renewable suppliers that replace expiring 13 contracts, as well as new contracts with all the bidders who proposed firm 14 capacity in response to FPL's April 2007 request for proposals (RFP) for 15 renewable resources. Planned capacity uprates at FPL's four existing nuclear 16 units will contribute about 414 MW. This combination of resources, even if 17 fully achieved, but without the addition of Turkey Point 6 & 7, would only 18 reduce the capacity needed to maintain FPL's 20% reserve margin through 19 2020 to the 6,156 MW shown on Dr. Sim's Exhibit SRS-1. 20

21

1

2

The Commission's approval of the proposed Turkey Point 6 & 7 facilities would provide between 2,200 MW and 3,040 MW of nuclear generation,

1 leaving a remaining capacity need of yet another 3,120 MW to 3,960 MW 2 through 2020. FPL has not yet specified what resources will be implemented 3 in the future to meet this remaining need, and it is anticipated that such need could be met by a combination of future renewable resources, energy 4 efficiency increases, new gas-fueled generation capacity, and other resources, 5 6 depending on the future availability and the cost-effectiveness of these 7 resources. If actual growth in demand were to be lower than projected, FPL's 8 plan would be adjusted to reduce the amount of new gas-fueled generation to 9 be added. However, neither the opportunity to accommodate additional costeffective DSM and renewable resources, nor the need for Turkey Point 6 & 7 10 would be affected. Exhibit RS-3 demonstrates this point graphically, i.e., that 11 12 with even a lower-than-projected rate of growth in FPL's service territory, there will be more than ample opportunity to continue to pursue additional 13 14 DSM and renewable resources as part of FPL's energy portfolio, in addition to Turkey Point 6 & 7. 15

16

However, based on what we know today, it is anticipated that a significant portion of the 3,120 MW to 3,960 MW remaining resource need would have to be met with new natural gas-fueled generation added by FPL or obtained under power purchase agreements. Furthermore, if the addition of Turkey Point 6 & 7 were not approved, even more natural gas-fueled generation would be the only practical substitute. At present, FPL knows of no other alternative that can cost-effectively, provide the reliable baseload capacity to

meet FPL's customers' future resource needs that would be provided by Turkey Point 6 & 7.

3

2

1

In short, even with the addition of Turkey Point 6 & 7, FPL projects an 4 additional need of at least 3,120 MW to 3,960 MW of capacity, which could 5 accommodate even the more aggressive projections of available DSM and 6 renewable resources, discussed more fully by John Reed in his testimony. Any 7 such additional renewable generation capacity and DSM would reduce the 8 need for even more new natural gas-fueled generation, not the need for 9 Turkey Point 6 & 7. In other words, without Commission approval for 10 Turkey Point 6 & 7 it will not be possible to reduce dependence on natural gas 11 in Florida regardless of whether additional renewable generation capacity or 12 DSM is achieved. 13

Q. Please describe the extent to which FPL's plan reflects how additional future DSM programs will help avoid some of the need for new generation capacity that you have identified above.

A. As Dr. Sim explains, FPL's generation capacity need projections already
reflect all of the cost-effective DSM currently known to FPL, including not
only FPL's current DSM Goals, but also significant amounts of additional
DSM that FPL has identified since the DSM Goals were approved. It is
important to note that, as presented by Mr. Brandt, through 2005 FPL's DSM
programs have enabled FPL to avoid the need for more than 4,200 MW of
generation capacity, equivalent to about 20% of FPL's 2006 peak load.

1 Between 2005 and 2011, FPL projects that an additional 710 MW of demand reduction will be achieved through DSM increases. Between 2011 and 2020. 2 FPL currently projects that another 1,490 MW of capacity equivalent DSM 3 demand reduction will have been added for a total cumulative capacity 4 avoidance due to DSM of more than 6,400 MW. To underscore the 5 magnitude of this accomplishment, the avoided capacity achieved through 6 FPL's DSM programs is between two and three times the size of Turkey Point 7 6 & 7. All the projected DSM additions have been reflected in FPL's current 8 resource plan. 9

10

FPL will continue to consider and aggressively pursue new DSM programs to reduce the need for new capacity, and reduce GHG emissions. However, as stated by Dr. Sim and Mr. Brandt, the potential for additional cost-effective DSM is not nearly sufficient to reduce or defer the need for the proposed new baseload nuclear facilities, Turkey Point 6 & 7.

Q. Does FPL's resource plan reflect all currently known potential future
 contributions from renewable resource alternatives?

A. Yes. FPL's resource plan already reflects contributions from all currently
 available renewable resources, as well as new renewable resources that have
 indicated they plan to provide firm generation capacity during this period.
 These projected contributions include resources that FPL plans to obtain
 through new power purchase agreement with existing renewable power
 suppliers to replace expiring contracts, as well as with all bidders that

proposed firm generation capacity using renewable resources in response to FPL's April 2007 RFP. FPL has already initiated discussions with these suppliers.

1

2

3

4

As shown on Exhibit RS-3, to the extent that additional cost-effective 5 renewable resource alternatives become available in the future, they could be 6 applied to reduce the sizable remaining capacity need described above 7 (between 3,120 MW and 3,960 MW) and incorporated into FPL's resource 8 plan. Unfortunately, the magnitude and timing of additional renewable 9 resources is highly uncertain; thus, their contribution cannot be counted on 10 when considering the need for Turkey Point 6 & 7. Mr. Reed also addresses 11 this in his testimony. But it is important to emphasize that renewable 12 resources will continue to be an important potential resource option to meet 13 FPL's significant needs even beyond those met by the addition of Turkey 14 Point 6 & 7. The potential for future contributions from other renewable 15 resources is discussed further in Section 4 of my testimony. 16

Q. What would the reserve margin be without the addition of Turkey Point 6
& 7 in 2018 and 2020?

A. First, it is important to understand that if no generation capacity is added
between 2011 and 2017, FPL's reserve margin would be about 1%, effectively
no reserve margin, by 2018. However, if we start with the premise that FPL
will have added sufficient resources to meet its 20% reserve margin reliability
criterion through 2017, without the addition of Turkey Point 6 & 7 in 2018

and 2020, FPL's reserve margin would fall to 17.5% in 2018, 15.1% in 2019 1 2 and 12.6% in 2020, far less than the reserve margin requirement that FPL and the Commission have agreed is necessary to ensure system reliability. Also, it 3 should be noted that without Turkey Point 6 & 7 a very significant portion of 4 the reserve margin in those years would be provided by DSM rather than 5 generation resources, rendering FPL's system less reliable. Furthermore, 6 without the addition of Turkey Point 6 & 7 in 2018 and 2020, FPL's capacity 7 need would exceed 2,700 MW by 2021, and continue to grow thereafter. For 8 9 these reasons, pursuing the potential addition of Turkey Point 6 & 7 as FPL has proposed is a critical part of FPL's overall resource plan to maintain 10 system reliability and ensure FPL meets its capacity needs through 2020 and 11 12 beyond.

Q. Did FPL consider other large baseload alternatives to meet its generation capacity need in 2018 and 2020?

A. Yes. FPL evaluated coal-fired Integrated Gasification Combined Cycle 15 (IGCC) and gas-fired combined cycle (CC) generation in 2018 and 2020 as 16 baseload alternatives to Turkey Point 6 & 7. The results of FPL's evaluation 17 are discussed in detail by Dr. Sim and summarized in Section 5 of my 18 testimony. These results, combined with the advantages provided by the 19 20 addition of Turkey Point 6 & 7 discussed in Section 6, demonstrate that the addition of Turkey Point 6 & 7 is the best, cost-effective and technically 21 feasible alternative to meet FPL's needs in 2018 and 2020. 22

Q. Does the addition of Turkey Point 6 & 7 also help reduce system GHG
 emissions?

A. Yes. Turkey Point 6 & 7 will add up to 3,040 MW of non-GHG emitting
generation. Further, because these units will operate at very high capacity
factors, FPL's least efficient generating units that emit GHG will operate less
and overall system GHG emissions will be significantly reduced. Mr. Kosky
and Dr. Sim address this in more detail in their testimonies.

- In summary, it is clear that without the addition of Turkey Point 6 & 7 in 2018
 and 2020, FPL's customers would be served by a far less fuel-diverse, less
 reliable system with greater fuel cost volatility and significantly higher GHG
 emissions. The addition of Turkey Point 6 & 7 is needed to provide adequate
 electricity at a reasonable cost to FPL's customers.
- 14

8

It is also important to recognize that granting a determination of need is not an 15 irreversible commitment to a specific resource development path. Rather, the 16 determination of need for Turkey Point 6 & 7 is a first, crucial step in a 17 process that, as Mr. Scroggs describes in detail, is equivalent to purchasing an 18 option to maintain the possibility of adding new nuclear generation capacity to 19 FPL's portfolio in 2018 and 2020. FPL will retain substantial flexibility to 20 adjust the future development and construction process in light of additional 21 22 information that will become available in future years; and the Commission will retain the ability to review and evaluate future decisions regarding the 23

1		Project contemporaneously, thus ensuring that the final result is prudent and in
2		FPL customers' long-term best interest.
3		
4		SECTION 3 – VALUE OF FUEL DIVERSITY
5		
6	Q.	What are the benefits of maintaining fuel diversity in FPL's system?
7	A.	The primary benefits of fuel diversity are greater system reliability and
8		reduced fuel price volatility. An electric system that relies on a single fuel
9		and a single technology to generate all the electricity needed to meet its
10		customers' demand, all else equal, is less reliable than a system that uses a
11		more balanced, fuel-diverse generation portfolio. In addition, greater fuel
12		diversity mitigates the impact of wide or sudden swings in the price of one
13		fuel, as we have witnessed in natural gas markets over the last several years.
14	Q.	Please explain how fuel diversity enhances system reliability.
15	A.	An electric system that relies exclusively on one fuel is inherently more
16		susceptible to events that cause delays or interruptions in the supply of that
17		fuel. Such a system cannot rely on alternative generation facilities that use
18		other fuels to make up for reductions in the constrained fuel.
19		
20		A generation portfolio that relies upon a fuel-diverse system with adequate
21		generation reserve margin is capable of producing electricity using a number
22		of different fuels and has sufficient redundancy in generation capacity. Such

a system retains the flexibility to offset the reduced availability of one constrained fuel by generating sufficient electricity using other fuels.

3 Q. Does diversity related to the process of fuel transportation and delivery 4 also improve system reliability?

5 A. Yes. The ability of a generating system that relies on only one fuel transportation and delivery process to serve its customers can be severely 6 impaired by interruptions in the transportation and delivery of that single fuel 7 to the generating plants. This is particularly true when the generating plants 8 9 use natural gas, because the reliable operation of these plants depends on uninterrupted, hour by hour delivery of natural gas to the plants. Diversity in 10 11 fuel transportation and delivery processes enables a utility to mitigate the 12 effects of any such fuel delivery interruptions by limiting the amount of generation that is affected by a single event and makes replacement of 13 unavailable generating capacity more attainable. 14

15

1

2

Because different fuels usually originate from different geographical areas and are transported and delivered via different processes, having a fuel diverse generation system helps mitigate the effect of interruptions in fuel transportation and delivery, as well as production.

Q. Does diversity, not only in fuel type but in generation technology, also
improve reliability?

A. Yes. Occasionally, equipment design or manufacturing problems manifest
 themselves in the form of systematic failure of the same part in a number of

generating plants that utilize the same part design, or those plants that use 1 2 parts produced in the same production batch. Having diversity in generation technology is also important because if a generic equipment problem occurs, it 3 would affect a smaller portion of a utility's generation portfolio, making it 4 easier for the utility to mitigate the effect of that problem without adversely 5 affecting service to its customers. Because generating units that use different 6 fuels usually also use different technologies, a fuel diverse system also helps 7 mitigate the effect of equipment problems that affect one specific type of 8 9 generation technology, such as for example, gas turbines.

Q. Which of the reliability benefits attributed to fuel diversity that you have
discussed are applicable to the proposed addition of Turkey Point 6 & 7?

12 A. All of the benefits I have described above are applicable to the addition of Turkey Point 6 & 7. Adding up to 3,040 MW of nuclear baseload generation 13 14 to FPL's system would significantly reduce FPL's reliance on natural gas and 15 will enable FPL to more effectively address and offset decreases in natural gas supply. The factors that could affect gas production and transportation would 16 not affect nuclear fuel. In his testimony, Mr. Villard describes how the 17 production, transportation and delivery of nuclear fuel is completely different 18 19 from the process of production, transportation and delivery of natural gas that 20 is described by Mr. Yupp. Therefore, any events that would affect gas production, transportation and delivery would not similarly affect Turkey 21 Point 6 & 7. Also, the technology to be used in Turkey Point 6 & 7 will be 22

2

different from that used in all of FPL's gas-fueled units, so technical problems that may affect the gas units will not affect Turkey Point 6 & 7.

3 Q. Does Turkey Point 6 & 7 provide additional reliability benefits?

A. Yes. Nuclear generating facilities typically have sufficient fuel in the core to 4 operate at full power for approximately eighteen months without the need for 5 additional fuel. A natural gas-fired generating facility, however, requires that 6 natural gas be delivered through an interstate pipeline to the plant site 7 8 continuously in order to continue to operate. As explained by Mr. Villard, this is a fuel advantage over natural gas because it provides certainty that the 9 nuclear units will not be affected by future fuel supply interruptions or delays. 10 In addition, nuclear fuel is typically delivered to Turkey Point 6 & 7 at least 11 two months prior to the time the fuel is needed to conduct the refueling of 12 each unit. In effect, at any point in time a nuclear unit has at least sixty days 13 of full power fuel inventory, and as much as twenty months of inventory, 14 compared to natural gas-fueled generation which cannot cost-effectively 15 provide similar on-site fuel inventory capability. In other words, nuclear 16 generation adds significant additional reliability value related to fuel supply 17 18 and transportation.

19

In addition, as discussed by Mr. Villard in his testimony, because reserves of uranium in North America are so large, nuclear fuel supply from secure sources is assured for the entire operating life of the plant.

Q.

Does fuel diversity offer value other than increased reliability?

A. Yes. This point is also discussed by Mr. Yupp. Fuel diversity helps mitigate 2 the effects of price volatility in one or two fuels on the price of electricity. 3 For example, if a utility relies solely on natural gas to produce all the 4 5 electricity needed by its customers, any increase or decrease in the market 6 price of natural gas would translate into a direct and comparable increase or decrease in the cost of electricity. Because natural gas prices are projected to 7 be volatile in the future, electricity customers would be subject to significant 8 9 volatility in the future cost of electricity. Recent history has demonstrated just how volatile natural gas prices can be. Also, as Mssrs. Villard and Yupp 10 11 testify, the prices of nuclear fuel are low and stable relative to other fuels, and changes in the price of nuclear fuel are not directly linked to changes in the 12 prices of natural gas and fuel oil. Therefore, having a fuel diverse portfolio 13 14 that includes significant contributions from nuclear fuel would necessarily help dampen the effect of volatility in natural gas prices. 15

16 17

SECTION 4 – RESOURCE PLANS UTILIZED IN ANALYSIS

18

19 Q. What resource plans were used by FPL in the economic analysis of
20 Turkey Point 6 & 7?

A. FPL utilized three resource plans in its analysis of Turkey Point 6 & 7. The
three plans are presented in Exhibit SRS-4 attached to Dr. Sim's testimony.
The three plans are (1) the Plan with Nuclear, that includes Turkey Point 6 &

7 in 2018 and 2020, respectively, and further assumes that the size of each 1 2 nuclear unit is 1,100 MW, (2) the Plan without Nuclear- CC, that includes the construction of two gas-fueled baseload combined cycle units in 2018 and 3 2020, respectively, instead of nuclear units, and (3) the Plan without Nuclear-4 IGCC, that includes the construction of two baseload IGCC units in 2018 and 5 2020, respectively, instead of nuclear units. All plans include an identical set 6 of new resources through 2017, and the plans differ only slightly after 2020. 7 8 The objective of the economic analysis is to isolate the addition of Turkey Point 6 & 7 in 2018 and 2020, respectively, and compare it to the effect of 9 adding gas-fueled combined cycle generation instead of nuclear generation, or 10 IGCC generation instead of nuclear generation, in those years. 11

Q. Is it possible that the other resource additions reflected in the resource plans between 2011 and 2017 would change in the future?

Yes. A utility's resource plan is not, and cannot be, static. The objective of 14 A. the generation additions reflected for the period 2011-2017 and those shown 15 after 2021 in the resource plans presented by Dr. Sim is to provide a 16 reasonable, neutral backdrop against which the proposed addition of Turkey 17 Point 6 & 7 can be fairly compared to other available generation capacity 18 alternatives that FPL could use to meet its future capacity needs in 2018 19 through 2020 in place of Turkey Point 6 & 7. At this time, FPL is only 20 21 committed to pursuing those resources that have been specifically outlined in my testimony: that is, the projected DSM increases, the nuclear uprates, the 22 purchase of capacity from renewable resources, and Turkey Point 6 & 7. 23

Therefore, as the projected need for new resources in the future changes, and as other resource alternatives become available, and as factors that affect some or all of the resource alternatives change, FPL's resource plan would be modified. Nevertheless, these resource plans reflect reasonable choices for meeting FPL's needs between 2011 and 2017, and after 2020, based on what is known today. In summary, they provide appropriate frames of reference within which to assess the need for and viability of Turkey Point 6 & 7.

8 Q. How many megawatts of new and replacement resources does FPL 9 project it will need for the period 2011 through 2020?

As stated previously in my testimony, FPL projects it will need to add A. 10 approximately 8,350 MW of new and replacement resources from 2011 11 12 through 2020. FPL estimates that the equivalent of 1,490 MW, or almost 18% of these needed resources, will be provided by increases in DSM during this 13 period. These resource plans also include 414 MW of additional nuclear 14 generation resulting from uprates of FPL's existing nuclear units and 15 approximately 290 MW of renewable resources. The proposed facility at 16 Turkey Point 6 & 7 will provide between 2,200 MW and 3,040 MW. Natural 17 18 gas-fueled advanced combined cycle units are included in the plan to provide the remaining 3,120 MW to 3,960 MW of new resources required in this 19 period. As discussed earlier in this testimony, FPL has not committed to these 20 21 natural gas-fueled additions although, at present, we do not know to what 22 extent other resource alternatives could be developed and implemented to meet this need. Nevertheless, FPL will continue to pursue and encourage 23

development of such alternatives and would welcome any that could cost effectively and reliably reduce gas dependence.

3 Q. What is FPL doing to promote greater renewable development from non4 affiliated generators?

5 A. FPL is committed to promoting greater renewable investment in Florida by 6 working with existing and potential renewable generators and offering for 7 negotiation contract terms that enable developers of renewable resources to 8 choose, from a diverse portfolio of avoided units, the payment profile that is 9 most suitable for their projects while protecting the interest of our customers. 10 In addition, FPL has filed a new standard offer contract for renewable 11 generation consistent with the Commission's new rule on renewable energy.

FPL also issued in April 2007 a request for proposals to provide to FPL 12 electric capacity and/or energy produced from renewable resources. On July 13 14 2, 2007 FPL received five proposals. Two proposals (combined) offered 100 15 MW of capacity using biomass. One proposal offered 44 MW from municipal solid waste. One proposal offered 876,000 MWh of annual energy (but no 16 17 capacity). One proposal expressed interest in developing and implements rooftop photovoltaic technology. FPL is currently evaluating these proposals 18 and will seek to enter into contracts that will benefit FPL's customers, with all 19 bidders that proposed to sell capacity and energy from renewable resources. 20

Q. Has FPL reflected in its resource plan all of the renewable contract extension opportunities and renewable proposals submitted in response to FPL's request for proposals?

1 A. Yes. FPL has assumed that all expiring contracts with renewable generators that provide firm capacity will be extended and has counted that capacity as 2 part of its resource plan. FPL also has assumed that all proposals submitted in 3 response to the request for proposals that offered firm capacity from 4 renewable resources will result in contracts and has reflected that capacity in 5 its resource plan. Thus, from the standpoint of the resource plan, FPL has 6 already optimistically assumed that it will be able to contract for all of these 7 renewable projects. 8

9 Q. What are FPL's plans regarding the development of additional renewable 10 resources?

A. As noted by Ms. McBee in her testimony, in June 2007 FPL announced the St. 11 12 Lucie Wind Project, a 3 to 4.5 MW wind generation project that FPL proposes to site near its St. Lucie nuclear generating plant. FPL is currently pursuing 13 the necessary permits, as well as conducting the review of all aspects of this 14 project. FPL will continue to consider additional wind generation 15 opportunities to add to its renewable portfolio. FPL is also developing the 250 16 17 kW solar photovoltaic facility in Sarasota that is part of FPL's Sunshine Energy Program and will continue to consider additional solar generation 18 opportunities to add to its portfolio. Additionally, FPL recently announced a 19 20 major solar energy initiative in Florida which is expected to result in installation of up to 300 MW of solar generation capacity based on a 21 22 technology that, although unproven, is very promising. As Ms. McBee explains, this initiative will begin with installation of about 10 MW of 23

capacity, subject to business due diligence and any necessary regulatory 1 approvals. These proposed renewable resource development efforts have not 2 been reflected in the analysis performed by FPL. However, the results would 3 not have been different because the effect of these renewable resources would 4 have been reflected equally in all three resource plans considered in FPL's 5 analyses, in the form reduced use of natural gas and fuel oil to produce 6 electricity. Further, as I explain below, significant amounts of additional 7 renewable resources, were they to become available, could be incorporated 8 9 into FPL's resource plan without reducing the need for Turkey Point 6 & 7 in 2018 and 2020, respectively. 10

11

FPL is also actively involved with Florida Atlantic University's Center of Excellence for Ocean Energy Technology in its effort to develop this nonemitting renewable technology.

Q. Can renewable resources eliminate or defer the need for Turkey Point 6
& 7 in 2018 and 2020?

A. No. The need for Turkey Point 6 & 7, as identified in Dr. Sim's testimony, is
in addition to the available renewable resources. Further, as I noted at the
outset of my testimony, in addition to Turkey Point 6 & 7, FPL estimates that
it will need between 3,120 MW and 3,960 MW of new generation capacity
between 2011 and 2020, of which more than 1,600 MW would replace
expiring PPAs. Moreover, it is projected that new capacity will be needed to
meet additional demand growth beyond 2020.

As Ms. McBee indicates in her testimony, FPL is actively pursuing additional 1 renewable resources. The technology of many of these renewable options is 2 still developing and will not be commercially available in significant 3 quantities during this period, and some of these options (such as wind 4 5 generation) cannot be counted on to reliably operate during the system peak hours. However, it is not necessary to select between renewable technology 6 and new nuclear generation because to the extent that new reliable, cost-7 effective renewable resources become available they could be incorporated 8 9 into FPL's resource plan in place of the uncommitted new generation that 10 would otherwise use natural gas, without affecting the need for Turkey Point 6 & 7. 11

12

For these reasons, I believe it would be unreasonable for the Commission to deny a need determination for Turkey Point 6 & 7, based on an assumption that other technologies which, at least in Florida, have not yet demonstrated their ability to provide sufficient firm capacity to meet demand growth or generate large quantities of electricity cost-effectively, may become available in sufficient quantities and may be economically competitive in the future.

Q. Would your answer change if a significant Renewable Portfolio Standard
is adopted?

A. No. Turkey Point 6 & 7 will still be needed even if a Renewable Portfolio
 Standard (RPS) is adopted at the state or federal level. Although FPL will
 continue to pursue power from both traditional renewable resources such as

wind, solar, biomass, landfill gas, and municipal solid waste, and emerging
technologies such as ocean current, with or without an RPS, these sources will
not be sufficient to provide all the generation capacity needed to meet the 20%
reserve margin reliability criterion through 2017, let alone defer the need for
Turkey Point 6 & 7 in 2018 and 2020.

6

- In addition, FPL believes that growing concern with global warming will likely require FPL to significantly reduce its future GHG emissions while continuing to serve growing customer demand. Because new nuclear generation is the most effective means of meeting growing demand while adding no GHG emissions to the atmosphere, the construction of new baseload nuclear generating facilities at Turkey Point 6 & 7 is an essential part of any successful plan to reduce GHG emissions in the future.
- Q. How would FPL accommodate additional increases in DSM and/or future
 renewable resource generation facilities that may be developed in the
 future?
- A. Proceeding with the addition of Turkey Point 6 & 7 will provide the baseload capacity addition necessary to ensure that FPL's customers will continue to receive reliable electric service at reasonable cost, while FPL maintains the flexibility to utilize additional cost-effective renewable resources as they are developed and to facilitate increased customer participation in additional costeffective DSM programs. As indicated earlier in my testimony and as shown in Exhibit RS-3, the extent these measures are successful, all the incremental

cost-effective DSM that could be implemented and all other renewable generation that could be obtained could be easily incorporated into FPL's resource plan without reducing the need for Turkey Point 6 & 7 in 2018 and 2020.

5

1

2

3

4

The only way one could conclude that there is no need for Turkey Point 6 & 7 6 in 2018 and 2020 would be to assume that the magnitude of additional 7 customer participation in DSM programs and renewable resources available 8 by 2020, above the levels already projected by FPL, would be sufficient to 9 10 eliminate the need for not only the entire 3,120 MW - 3,960 MW of need that, in the analysis performed for this filing, are assumed to be met by natural gas 11 12 generation, but also the capacity (between 2,200 MW and 3,040 MW) that Turkey Point 6 & 7 will provide. It would not be prudent to base FPL's 13 resource planning decisions on such a far fetched theory. 14

15 Q. What other alternatives exist to new nuclear generation?

As a practical matter, at present the only reliable alternative to nuclear 16 A. 17 generation for meeting FPL's projected capacity need is to add more gasfueled combined cycle generation. The Commission's recent rejection of the 18 FPL Glades Power Park project shows that FPL cannot expect to add 19 20 pulverized coal generation. The results of FPL's economic analysis presented as part of this testimony and that of Dr. Sim show that the total cost of IGCC, 21 22 even without carbon capture and sequestration (CCS), would be significantly greater than both FPL's estimated cost range for new nuclear generation and 23

Furthermore, until CCS technology can be 1 new gas-fueled generation. effectively implemented, adding IGCC generation would be inconsistent with 2 FPL's objective of reducing GHG emissions in the future. Lastly, the 3 magnitude of FPL's projected future capacity need is so large compared to 4 even the more optimistic reasonable expectations for additional cost-effective 5 DSM and renewable resources, that any increased development in these areas 6 - over and above the aggressive goals already reflected in FPL's resource plan 7 - would only help reduce the need for additional gas-fueled generation. 8

9

10 Furthermore, even in an extremely unrealistic scenario in which much greater amounts of cost-effective DSM and renewable resources than currently 11 estimated were to become available and demand growth were to be much 12 lower than projected, such that such reduced demand could be met by DSM 13 and renewable resources, it would be possible for FPL to adjust the pace of 14 development of Turkey Point 6 & 7 to match the timing of the need. On the 15 other hand, failure to initiate full development of this option, which would be 16 17 the consequence of the Commission not granting FPL's petition, would irrevocably close off the possibility of new nuclear generation in 2018 and 18 very likely in 2020 as well. The prudent course of action is to grant the 19 determination of need sought in FPL's petition to preserve the option of 20 adding Turkey Point 6 & 7 in 2018 and 2020. 21

SECTION 5 – RESULTS OF FPL'S EVALUATION

- Q. Did FPL perform an economic analysis to compare the cost to customers 3 that would result from adding Turkey Point 6 & 7 by 2018 and 2020. 4 respectively, versus that resulting from adding other forms of generation? 5 A. Yes. Dr. Sim describes the analysis process in his testimony. FPL calculated 6 7 the estimated cost, in cumulative net present value revenue requirements (CPVRR), associated with each of the resource plans under 9 different 8 scenarios or combinations of future natural gas and fuel oil price forecasts and 9 environmental compliance cost projections. For each of these scenarios FPL 10 11 then calculated the capital cost for Turkey Point 6 & 7 that would make the 12 resulting CPVRR for the Plan with Nuclear equal to the CPVRR for the Plan with Gas, and the Plan with Coal, respectively. In other words, this analysis 13 produced a breakeven capital cost for Turkey Point 6 & 7 versus each of the 14 alternate plans was calculated under each of the 9 scenarios. These breakeven 15 16 capital costs were then compared to FPL's estimated capital cost range for the Project presented by Mr. Scroggs. 17
- 18

1

2

To the extent that in any scenario the breakeven capital cost obtained from the analysis is higher than FPL's estimated capital cost range for the Project, the addition of Turkey Point 6 & 7 would result in a lower cost than adding gasfueled generation or coal-fueled generation.

- Q. What were the results of the economic analysis comparing Turkey Point 6
 & 7 with other baseload generating resources (IGCC or gas-fired
 combined cycle generation)?
- 4 A. In almost all the scenarios, the breakeven capital costs calculated in FPL's analysis, expressed in dollars per kW in 2007 dollars, are greater than the 5 entire estimated cost range for Turkey Point 6 & 7. Specifically, as shown on 6 my Exhibit RS-4, as well as on Exhibit SRS-8, attached to Dr. Sim's 7 8 testimony, when the Plan with Nuclear is compared to the Plan without 9 Nuclear-CC, in 8 of 9 scenarios the breakeven capital cost is higher than the entire estimated nuclear cost range; while in the other one scenario the 10 breakeven cost falls within the estimated nuclear cost range. When the Plan 11 12 with Nuclear is compared to the Plan without Nuclear-IGCC, the breakeven capital cost is higher than the entire estimated nuclear cost range in all 9 13 scenarios. 14
- 15

In other words, the results of FPL's economic analysis show, based on FPL's estimated capital cost range for the Project, that the addition of Turkey Point 6 & 7 in 2018 and 2020 can reasonably be expected to provide to FPL's customers the many benefits of nuclear generation at a cost that is lower than the cost of adding gas-fueled generation under almost all scenarios, and lower than the cost of adding IGCC under all 9 scenarios.

1 Moreover, the one scenario in which the cost of adding gas-fueled generation 2 is comparable to that of adding new nuclear generation consists of medium or 3 low gas prices and low CO_2 -related costs. If these conditions were to occur, because even with the addition of Turkey Point 6 & 7 natural gas would 4 5 contribute a significant portion of FPL's electricity, the cost of electricity would be the lowest of all scenarios, so FPL's customers would preserve the 6 benefit of the low gas price and low CO₂-related costs. However, this 7 scenario represents a very small part of the range of possible future market 8 outcomes and, primarily because of the heightened concern regarding GHG 9 emissions it is less likely to occur. On the other hand, under conditions in 10 which FPL's customers would be more vulnerable due to higher natural gas 11 prices and higher CO₂-related costs, the addition of Turkey Point 6 & 7 would 12 result in significant cost savings. Therefore, in order to reject Turkey Point 6 13 & 7 one would have to be certain that both natural gas prices and CO₂-related 14 costs will be low in the future, and that fuel diversity has very little value. 15

Q. Will this be the final economic analysis opportunity for the Commission to assess the cost-effectiveness of Turkey Point 6 & 7?

A. No. As discussed by Mr. Scroggs and Ms. Ousdahl, additional analyses will be performed in connection with the annual review process established pursuant to Commission Rule 25-6.0423, the Nuclear Power Plant Cost Recovery Rule. This approach will enable FPL, the Commission and other interested parties additional opportunities to periodically evaluate, at regular intervals throughout the licensing, design and construction process, the

Project's costs and the continuing feasibility of completing the Project based on updated information. If a future analysis demonstrates that continuing the Project would no longer be in the best interests of FPL's customers, the Project could be terminated, postponed or modified with only the costs incurred or irreversibly committed up to that time subject to recovery. Thus, a determination of need in this case will not be the Commission's final word regarding the Project.

8 Q. Do these analysis results reflect all the benefits of adding new nuclear 9 generation to FPL's portfolio?

No. The results of the scenario analysis reflect the economic benefit of adding A. 10 new nuclear generation under varying natural gas and fuel oil prices and 11 environmental compliance costs, but the analysis does not explicitly factor in 12 any benefit for the nuclear alternative relative to two of the statutory criteria 13 for granting a determination of need: improving fuel diversity and reducing 14 Florida's dependence on natural gas and fuel oil. Accordingly, even in the 15 one scenario where the results of FPL's economic analysis shows rough 16 equality between adding new nuclear generation and adding new gas-fueled 17 generation, it is evident that application of the requirements of sections 18 366.92(1) and 403.519(4), Florida Statutes, compels selection of Turkey Point 19 6 & 7 as the preferred alternative. 20

Q. How would the addition of Turkey Point 6 & 7 in 2018 and 2020, respectively, affect FPL's customers' bills, compared to the effect of adding natural-gas fueled combined cycle units in those years in place of the new nuclear units?

A. In the years preceding the in-service dates of Turkey Point 6 & 7, monthly 5 bills are projected to be higher than with the addition of combined cycle units 6 because, as explained by Mr. Scroggs and Ms. Ousdahl, costs related to the 7 nuclear additions would be recovered during the period of nuclear plant 8 licensing, development and construction, while the fuel and environmental 9 compliance cost benefits would not occur until after the nuclear units are 10 placed in service. However, it should be noted that the ongoing cost recovery 11 process is very effective in mitigating a sudden rate increase when Turkey 12 Point 6 & 7 are placed in service. Moreover, within a relatively short time 13 14 after the nuclear units have been placed in service it is anticipated that these fuel and environmental compliance benefits will, under almost all future 15 conditions, result in lower monthly bills than with the addition of combined 16 cycle units. 17

18

As explained in Dr. Sim's testimony the approximate bill difference has been estimated for the scenario with the Medium Gas Cost and the Environmental Compliance Cost Forecast "ENV II" by dividing the difference in that year's revenue requirement between the Plan with Nuclear and the Plan Without Nuclear-CC by the projected total electricity sales for that year, and

multiplying the result by 1,000 kWh. For the purpose of this calculation it
was assumed that the capital cost of Turkey Point 6 & 7 would be \$3,800 per
kW, about the middle of the estimated overnight capital cost range presented
by Mr. Scroggs. The results of this calculation are presented in Dr. Sim's
Exhibit SRS-09.

6

As can be seen from the result presented by Dr. Sim, in 2021, the first full year in which both Turkey Point 6 & 7 are in operation, the effect of adding Turkey Point 6 & 7 is an average cost of electricity that is lower by \$0.36/1,000 kWh, compared to adding gas-fueled generation. This benefit will increase in later years.

12

13 SECTION 6 - BENEFITS PROVIDED BY TURKEY POINT 6 & 7

14

Q. Will the addition of Turkey Point 6 & 7 help FPL achieve the benefits of fuel diversity described in Section 3?

A. Yes. The addition of these new baseload nuclear units will contribute 17 significantly to fuel diversity in FPL's system compared to adding combined 18 cycle units, and will therefore have a very beneficial effect on system 19 reliability. In addition, the nuclear additions will rely on a different, more 20 stable fuel supply than that of natural gas, and on a different and separate fuel 21 transportation and delivery process that is less susceptible to interruptions than 22 either a gas-fueled addition or an IGCC addition. 23

2

1

Q.

Will the addition of Turkey Point 6 & 7 also provide benefits regarding lower fuel cost and greater fuel cost stability?

Yes. Turkey Point 6 & 7 will result in lower system fuel costs and greater A. 3 fuel cost stability for FPL and its customers, because it will use nuclear fuel 4 which has historically had, and is projected to have in the future, a very low 5 cost, as well as far less volatility than any fossil fuel. As Mssrs. Villard and 6 Yupp state, it is projected that the price of nuclear fuel will continue to be low 7 and stable relative to other fuels. In addition, because Turkey Point 6 & 7 is 8 projected to operate at capacity factors above 90% and will therefore reduce 9 10 generation from more costly generating units, the addition of these nuclear units will help reduce the volatility in the overall system cost of fuel. 11

Q. Will the addition of Turkey Point 6 & 7 significantly reduce FPL's use of natural gas?

Yes. The electricity that will be produced from nuclear fuel at Turkey Point 6 A. 14 & 7 will primarily displace natural gas that otherwise would be burned if 15 FPL's generation capacity need beginning in 2018 were to be satisfied by 16 adding natural gas-fired generation. For example, as explained by Mr. Yupp, 17 over the first 19 full years of operation of both new Turkey Point nuclear 18 units, assuming that the size of each nuclear unit is 1,100 MW, FPL will 19 reduce the use of natural gas by almost 2.2 billion MMBtu compared to the 20 amount of natural gas it would use without these nuclear additions. This 21 decrease in natural gas use, which is a measure of the reduction in FPL's 22 23 reliance on natural gas achieved by the new Turkey Point nuclear units is

equivalent to the total quantity of natural gas FPL used during the last 7 years (2000 through 2006).

3 Q. How will new nuclear generation at Turkey Point 6 & 7 help reduce GHG 4 emissions?

A. Unlike IGCC and natural gas-fueled generation, nuclear generation does not
produce any GHG emissions, including CO₂ emissions. This fact, combined
with the large size of the proposed Turkey Point nuclear units and the
anticipated high capacity factor of nuclear generation makes Turkey Point 6 &
7 the most effective method of reducing future GHG emissions.

10

1

2

For example, FPL projects that between 2017 (prior to the first nuclear 11 addition) and 2021 (after both nuclear units have been added) annual system 12 GHG emissions will decrease by 1.1 million tons, or almost 2%, despite the 13 fact that total electricity consumption will increase by 16,276 Gigawatt hours 14 (GWh) or 10.3%. If gas-fueled combined cycle generation were to be added 15 in place of Turkey Point 6 & 7, GHG emissions would instead increase by 5.8 16 million tons, or almost 9%. As Dr. Sim explains, with Turkey Point 6 & 7 17 GHG emissions will be almost 7 million tons lower in 2021 alone than they 18 would be with gas-fueled additions. These results demonstrate that the 19 addition of Turkey Point 6 & 7 is an integral and necessary part of FPL's plan 20 to achieve GHG emission reductions in the future. 21

This is a critical consideration, particularly in light of growing concerns with 1 global warming and the expectation that GHG emissions are likely to be 2 regulated in the near future. Reducing future GHG emissions, while 3 continuing to provide reliable electric service to a growing customer base at a 4 reasonable cost, will prove to be an extremely difficult challenge. If all of 5 these important and urgent public policy objectives are to be achieved, it is 6 essential that the construction of new nuclear generation be pursued 7 immediately and diligently. The most significant way for FPL to ensure lower 8 GHG emissions in the current regulatory environment is for the Commission 9 to grant an affirmative determination of need for Turkey Point 6 & 7. 10

11 Q. Can generation from renewable resources also help reduce GHG 12 emissions?

Only some forms of renewables are non-GHG emitting. Furthermore, as Mr. A. 13 Reed indicates, despite FPL's continued commitment to renewable generation 14 discussed in my testimony and that of Ms. McBee, there is no credible 15 evidence that would lead a reasonable person to conclude that there will be 16 sufficient new generation from non-emitting renewable resources to reliably 17 meet more than a fraction of the projected growth in electricity demand in 18 Florida, let alone replace any existing generation that emits GHG, especially 19 20 because other non-emitting renewable resources like wind and solar are intermittent and cannot be counted upon to provide firm generation capacity. 21 Therefore, while FPL agrees that it is important that the role of cost-effective 22 renewable resources be increased, and has sought additional renewable 23

resources in the market, it is equally important to emphasize that load growth in Florida is such that there will be more than enough "room" for the most optimistic of estimates regarding the future contribution of renewable resources, even with the addition of new nuclear generation. In short, FPL's effort to obtain or develop additional renewable resources does not reduce the importance of adding Turkey Point 6 & 7 to FPL's system. There is an important role for both in meeting the future electricity needs of Floridians.

8 Q. How does nuclear generation compare with solar generation and wind 9 generation regarding their effectiveness in reducing GHG emissions?

10 A. If we compare the effect on system GHG emissions of adding the same 11 number of megawatts, nuclear generation would be much more effective in 12 reducing system GHG emissions than either solar or wind generation. This is 13 because the nuclear facility would operate at a very high capacity factor, while 14 the solar plant and the wind turbine would operate at relatively modest 15 capacity factors.

16

Consider if FPL added 2,200 MW of new nuclear baseload generation and that facility operates at 90% capacity factor, it will generate about 17,345 GWh of electricity per year. Comparably sized solar or wind facilities operating at a maximum capacity factor 20% in Florida would generate only about 3,854 GWh, about 13,490 GWh less than the new nuclear units. Based on these capacity factors, new nuclear baseload generation would reduce about 4.5 times the amount of GHG reduced by addition of the same

1 megawatts of solar or wind generation. Stated another way, one would have 2 to add solar or wind generation that is 4.5 times the size of nuclear generation, 3 at a much greater total cost, in order to achieve the same reduction in GHG 4 emissions. Thus, of the types of non-emitting generation, new nuclear 5 generation is by far the most important option in helping to achieve a 6 meaningful reduction in GHG emissions on a capacity (MW) basis.

7

8

9

10

Alternately, if compared on an energy (MWh) basis, nuclear generation provides the same GHG reduction benefit as solar and wind generation, but much more economically and more reliably.

Q. Is the addition of Turkey Point 6 & 7 needed, and is it the best alternative to be added in 2018 and 2020, to maintain system reliability?

Yes. Turkey Point 6 & 7 is needed to provide system reliability by helping A. 13 FPL preserve fuel diversity, as well as maintain an adequate level of 14 generation capacity reserve margin in 2018 and 2020. The addition of Turkey 15 Point 6 & 7 was selected to meet FPL's needs in 2018 and 2020 because it 16 was determined to be the best available resource option. Adding Turkey Point 17 6 & 7 provides the best means of maintaining fuel diversity in FPL's system. 18 In addition, Turkey Point 6 & 7 is much more effective in reducing all system 19 20 air emissions, including GHG emissions, than all other generation alternatives, including renewable resources. Moreover, FPL found that the addition of 21 22 Turkey Point 6 & 7 can provide to FPL's customers all these benefits at a competitive cost, that its reliability would be as good as that of a combined 23

1		cycle unit and far better than that of IGCC, and that it has by far the lowest					
2		and most stable fuel costs of any generation technology. Based on these					
3	findings, FPL has concluded that Turkey Point 6 & 7 is by far the best choice						
4		to meet the resource needs of its customers in 2018 and 2020.					
5							
6	SECTION 7 – SUMMARY OF BENEFITS PROVIDED BY FPL's EXISTING						
7	NUCLEAR UNITS						
8							
9	Q.	Please summarize FPL's experience operating nuclear units.					
10	A.	As Mr. Stall testifies, FPL has successfully and safely operated four nuclear					
11		units at two nuclear generating stations beginning with the in-service date of					
12		Turkey Point Unit 3 in 1972. During that time, FPL's four nuclear units have					
13		produced more than 593 million MWh of electricity, which is equivalent to					
14		the energy used by all of FPL's four million-plus customers for more than five					
15		years.					
16	Q.	What fossil fuel savings have FPL's four nuclear units achieved?					
17	A.	FPL's use of nuclear generation has economically displaced significant					
18		quantities of fuel oil and natural gas. As Mr. Yupp explains, because nuclear					
19		fuel costs so much less than fuel oil and natural gas, between January 2000					
20		and July 2007 alone, FPL's nuclear generation has saved FPL's customers					
21		approximately \$8.7 billion in fuel costs.					
22	Q.	What environmental benefits have been provided by FPL's nuclear					
23		units?					

I

1	А.	FPL's nuclear units produce zero emissions of SO ₂ , NO _x , particulate matter,						
2		mercury and CO ₂ during operation. Therefore, as Mr. Kosky explains,						
3		compared to the emissions that would have occurred if FPL's nuclear units						
4		had been replaced with generation produced by natural gas, the cleanest of the						
5		fossil fuels, in 2006 alone FPL's nuclear units have prevented the emission of						
6		20,100 tons of SO ₂ , 20,400 tons of NO _x , and 15,282,100 tons of CO ₂ . Thus,						
7		the enormous cost savings and reliability benefits of nuclear generation have						
8		been achieved with no adverse emissions impact. In fact, in 2006 FPL's						
9		nuclear units reduced overall emissions by 27%.						
10								
11		In summary, FPL's nuclear generating units have had the lowest fuel cost and						
12		best environmental performance of all of FPL's generating units, an excellent						
13		record which FPL will continue and expand with the addition of Turkey Point						
14		6 & 7.						
15								
16		SECTION 8 – ADVERSE CONSEQUENCES						
17								
18	Q.	Would there be any adverse consequences to FPL and its customers if the						
19		Commission were not to grant an affirmative determination of need for						
20		Turkey Point 6 & 7 in this proceeding?						
21	A.	Yes. If a determination of need for Turkey Point 6 & 7 were not granted in						
22		this proceeding, FPL would be effectively prevented from pursuing the						
23		development of new nuclear baseload generation for the next decade. Taken						

together with the Commission's recent decision to deny FPL's application to 1 construct new coal-fired baseload units in FPSC Docket No.070098, FPL's 2 customers would face significant adverse consequences related primarily to 3 the reduced system reliability due to significantly lower fuel diversity for the 4 foreseeable future. As indicated in Exhibit RS-2, without the addition of new 5 nuclear generation at Turkey Point 6 & 7, FPL's growing reliance on natural 6 gas would rise to 75% in 2021. This would make it much more difficult to 7 mitigate the effect of any significant interruption in natural gas supplies on 8 FPL's ability to meet the growing electricity needs of its customers. Also, if a 9 determination of need for Turkey Point 6 & 7 is not granted, other Florida 10 utilities may be less likely to pursue any new nuclear generation. As a 11 consequence, not only FPL but the entire state of Florida would become over 12 dependent on natural gas for the majority of its future generation of electricity. 13 In this situation, a gas supply interruption would severely affect electric 14 service reliability throughout Florida. 15

16

17 Such denial of FPL's petition would also eliminate the best, most cost-18 effective means of reducing GHG emissions in the future, while continuing to 19 meet the future electricity needs of FPL's customers. In fact, denial of FPL's 20 petition would not be in FPL's customers' best interests.

Q. Why would FPL have to increase natural gas use if nuclear generation is not added?

A. 1 As the Commission is well aware, FPL's recent plan to add new baseload coal 2 generation was not approved. Significant uncertainty exists as to whether any other projects that use coal as a fuel, even with IGCC technology, will be 3 approved for the foreseeable future. In any event, the likelihood that 4 significant reductions in GHG emissions will be required in the future raises 5 6 questions regarding the practical feasibility of coal-fueled additions in Florida 7 until carbon capture and sequestration becomes readily applicable in Florida. Although FPL will actively continue to pursue cost-effective DSM increases 8 9 and additional generation from renewable resources, currently available information indicates that these alternatives will make only a modest 10 11 contribution compared to the projected need for new resources to meet growth 12 in electricity demand based largely on population growth and to replace expiring power purchases from coal generation. Without nuclear generation, 13 the only alternative that can be counted on to provide sufficient new 14 15 generation capacity to ensure reliable electric service through 2020 is additional natural gas generation. 16

Q. What is the economic consequence of not approving new nuclear facilities
at Turkey Point 6 & 7?

A. From an economic perspective, greater reliance on natural gas is expected to
result in higher electricity costs and greater volatility in the cost of electricity.
FPL believes that the effort to avoid GHG emissions will result in greater
utilization of natural gas throughout the United States and that this general
increase in gas utilization will contribute to higher natural gas prices. Without

additional nuclear generation, because a greater portion of electricity would be generated using natural gas, the price of electricity would be more directly affected by the rising price of natural gas. Similarly, any volatility in natural gas prices will translate very directly in volatility in the price of electricity.

If, on the other hand, if Turkey Point 6 & 7 is added to FPL's system, the 6 effect of rising gas prices would be mitigated. If there are any periods of low 7 natural gas prices in the future, because FPL would continue to utilize very 8 9 large quantities of natural gas, FPL's customers would still benefit greatly 10 from such possible temporary gas price decreases. In other words, there will be more than sufficient natural gas generation in FPL's portfolio even after the 11 addition of Turkey Point 6 & 7 to capture most of the benefit of a possible 12 decrease in natural gas prices in the future; but without the addition of Turkey 13 Point 6 & 7 there would be little protection for FPL's customers when, as is 14 15 expected, the price of natural gas increases. It is clear from the perspective of both reliability and price volatility that the risks of not adding Turkey Point 6 16 17 & 7 to FPL's generation portfolio are enormous.

18

1

2

3

4

5

19

SUMMARY

20

21 Q. Please summarize your testimony.

A. FPL believes that the addition of Turkey Point 6 & 7 is needed to provide
reliable service at reasonable cost in the future. This new nuclear generation

1 project is the only available cost-effective alternative that can contribute to 2 fuel diversity while enabling FPL to maintain an adequate resource reserve 3 margin to meet FPL's customers' projected electricity demand in 2018 and later years, and is in fact the only alternative that can help reduce GHG 4 emissions in FPL's system while continuing to serve a growing customer 5 demand for electricity that will require FPL add 8,350 MW of new resources 6 7 between 2011 and 2020. In short, this new nuclear generation addition is the most viable and effective resource option that can contribute to achieving 8 9 recent legislative objectives codified in sections 366.92(1) and 403.519(4). 10 Florida Statutes.

11

Fuel diversity contributes to greater system reliability because it helps offset 12 reduced availability of one fuel, be it due to supply constraints or 13 14 transportation interruptions, and helps mitigate the effect of equipment problems that affect one type of generation technology. With the addition of 15 Turkey Point 6 & 7, nuclear generation would be used to produce 26% of the 16 17 electricity delivered to FPL's customers in 2021. Conversely, without new nuclear generation, by 2021 nuclear fuel would contribute only 16% while 18 19 natural gas would contribute 75%. The addition of Turkey Point 6 & 7 also contributes to system reliability by maintaining an on-site fuel inventory of 60 20 21 days, as a minimum.

Fuel diversity also helps mitigate the effects of price volatility in one or two fuels on the price of electricity. In FPL's system the addition of Turkey Point 6 & 7 provides an effective price hedge against anticipated increases in the price of natural gas.

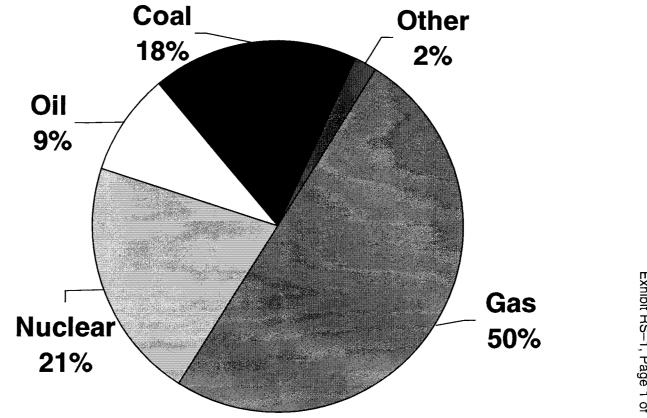
- 6 Although FPL has included renewable resources and DSM as a significant 7 part of its resource mix, and will continue to encourage future renewable 8 development and participation in cost-effective DSM programs, these 9 alternatives cannot by themselves help FPL maintain a balanced, fuel-diverse 10 system nor can they meet the future resource needs of FPL's customers.
- Furthermore, one would have to add more than 4.5 times the amount of solar or wind generation capacity, at a much greater cost, to achieve the same GHG reduction that will be achieved by the addition of Turkey Point 6 & 7.
- 14

5

Moreover, FPL's analyses show that the addition of Turkey Point 6 & 7 can provide to FPL's customers all these benefits at a cost that is most likely to be lower than that of adding additional gas-fueled generation under almost all conditions, and lower than adding IGCC, and that its reliability would be as good as that of combined cycle generation and far better than that of IGCC.

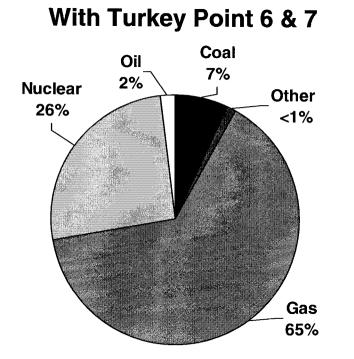
20

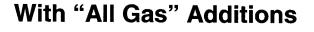
It is important to note that an affirmative determination of need for Turkey Point 6 & 7 is a first step, not an irreversible decision because FPL and the Commission will periodically review the Project's benefits on behalf of FPL's

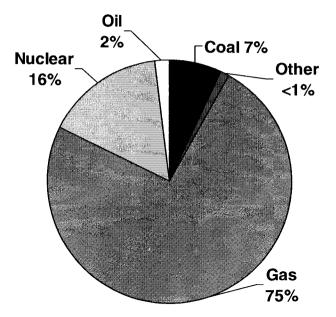

customers in light of new information that may be developed over time. However, granting this petition enables FPL to move forward and maintain the ability to bring the benefits of new nuclear generation to its customers in the 2018-2020 time frame – an extremely valuable option given the analysis results obtained for a wide range of future fuel and environmental scenarios – through a commitment of a comparatively modest level of resources. In contrast, denial of FPL's petition will preclude that option.

8

For these reasons, FPL believes that it is in the interest of its customers that 9 the Commission grant an affirmative determination of need for the addition of 10 Turkey Point 6 & 7, including the associated electric transmission facilities, 11 with target in-service dates of June 2018 and June 2020, respectively, as well 12 as affirmatively determine that FPL would be prudent to make payments for 13 certain long-lead procurement items, and to characterize such payments made 14 prior to completion of the Project's site clearing work as "pre-construction 15 costs." 16

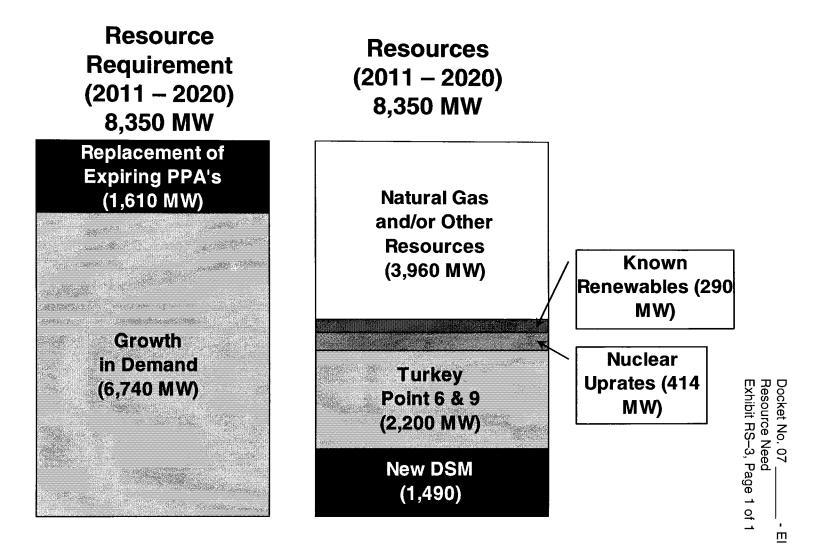

- 17 Q. Does this conclude your direct testimony?
- 18 A. Yes.


Actual Energy Mix 2006



Docket No. 07 _____ - El Actual Energy Mix 2006 Exhibit RS-1, Page 1 of 1

Projected Energy Mix 2021



Docket No. 07 _____- E Projected Energy Mix 2021 Exhibit RS-2, Page 1 of 1

FPL's Flexibility to Incorporate Increased DSM and Renewable Resources

Turkey Point 6 & 7

Economic Analysis Results: Breakeven Cost for Nuclear Capital Costs for All Fuel and Environmental Compliance Cost Scenarios

Plan with Nuclear vs. Plan without Nuclear-CC

Plan with Nuclear vs. Plan without Nuclear-IGCC

Breakeven Nuclear Capital Costs (\$/kW in 2007\$)

	Fuel Cost Forecasts				
		High Gas Cost	Medium Gas Cost	Low Gas Cost	
Environmental	ENV I	6,157	4,543	3,206	
Compliance	ENV II	6,701	5,065		
Cost	ENV III	6,949	5,327		
Forecasts	ENV IV	7,281	5,680		

Breakeven Nuclear Capital Costs (\$/kW in 2007\$)

	Fuel Cost Forecasts			
		High Gas Cost	Medium Gas Cost	Low Gas Cost
Environmental	ENV I	6,725	6,212	5,921
Compliance	ENV II	7,996	7,487	
Cost	ENV III	8,630	8,123]
Forecasts	ENV IV	9,450	8,956	

NUCLEAR COMPARED TO CC

In 8 of 9 outcomes (bold) the breakeven cost is above the entire nuclear cost range, so almost every outcome is favorable to nuclear generation

In the one remaining outcome the breakeven cost is within the nuclear cost range, so here nuclear is competitive with gas generation; but if this scenario were to occur, it would result in the lowest cost to customers, whether adding nuclear or gas generation

NUCLEAR COMPARED TO IGCC

All 9 outcomes (bold) have a breakeven cost that is significantly above the nuclear cost range, so all outcomes are favorable to nuclear generation

Docket No 07_____El Economic Analysis Results: Breakeven Cost for Nuclear Capital Costs Exhibit RS-4, Page 1 of 1

Note: The nuclear cost range is estimated between \$3,108/kW and \$4,540/kW