### BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition of Progress Energy Florida for limited proceeding to include the Bartow Repowering project in base rates.

Docket No. <u>090/44-ET</u>

Submitted for filing: March 20, 2009

## DIRECT TESTIMONY OF KEVIN MURRAY

On behalf of PROGRESS ENERGY FLORIDA

| GCL | 2     |      |          |
|-----|-------|------|----------|
| OPC |       |      |          |
| RCP |       |      |          |
| SSC |       |      |          |
| SGA |       |      |          |
| ADM |       | _    |          |
| CLK | LCour | + 12 | epotter  |
|     |       |      | <b>J</b> |

14720287.1

DOCUMENT NUMBER-DATE
02409 MAR 20 8

FPSC-COMMISSION CLERK

# In re: Petition of Progress Energy Florida for limited proceeding To include the Bartow Repowering project in base rates Docket No \_\_\_\_\_\_

#### **DIRECT TESTIMONY OF**

#### **KEVIN MURRAY**

| I. | Introduction | and Summary    |
|----|--------------|----------------|
|    | IIICIQUUUUII | will calling y |

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

- Q. Please state your name and business address.
- A. My name is Kevin Murray. My business address is 299 First Avenue North, St. Petersburg, Florida 33701.

#### Q. By whom are you employed and in what capacity?

A. I am employed by Progress Energy Florida ("PEF" or "Company") as General Manager of Plant Construction Projects.

## Q. What are the duties and responsibilities of your position with Progress Energy Florida?

A. As General Manager of Plant Construction Projects, I am responsible for the oversight of PEF's major fossil generation projects, including the Bartow Repowering Project.

# Q. Please describe your educational background and professional experience.

A. I received my Bachelor of Science Degree in Mechanical Engineering from the University of Arizona. I have 15 years of professional experience in engineering and project management within the electric power industry. I started my career in the power industry with Westinghouse Power Generation (now Siemens)

-1-

DOCUMENT NUMBER-DATE

based in Orlando, where I was employed as an engineer working on power plant proposals. During this time, I received an award for my work on a project in Thailand. I then went to work for El Paso Corporation as an engineer and then as a project manager. I was involved in the development and construction of power projects in both North and South America, including a 1-year residency in Brazil. I joined Progress Energy in 2004 and served as the director of engineering for the Company's new fossil power projects. In 2008, I was promoted to General Manager of Projects for Progress Energy Florida, which includes responsibility for implementing the Bartow Repowering Project.

#### Q. What is the purpose of your direct testimony?

A. The purpose of my testimony is to describe the Company's Bartow Repowering Project, including the key benefits that the project will provide to the Company and its customers.

#### Q. Please summarize your testimony

A. Progress Energy Florida is in the process of repowering the Bartow Power Plant in Pinellas County to upgrade the existing conventional heavy oil-fired steam units to state of the art natural gas-fired combined cycle technology with distillate oil backup. All four combustion turbines were first test fired in November and December 2008 and we expect the plant to commence operation by its scheduled June 1, 2009 in-service date.

The Bartow Repowering Project is part of the Company's "Balanced Solution," which includes upgrading existing plants to provide safe, cost-

II. The Bartow Repowering Project.

Q. Please describe the Bartow repowering project.

effective and environmentally responsible sources of large-scale power generation.

The project is designed to nearly triple the plant's generating capacity while at the same time reducing air emissions and eliminating the use of heavy fuel oil. The project will increase electric system reliability by increasing dispatch flexibility and by providing additional generating capacity near the Pinellas County load center. It will also satisfy the Company's need for additional capacity beginning in the summer of 2009 in a cost-effective manner. The repowered Bartow Plant will reduce future fuel costs and result in cleaner air. By utilizing an existing plant site, the project will avoid the need to develop a new site in the area.

We have managed the project to minimize construction impacts on the surrounding community. It has had a positive economic impact on the Pinellas County region by bringing approximately 500 high-quality construction jobs to the area and increasing tax payments to Pinellas County and the local school system.

The project is the most cost-effective alternative for meeting the Company's capacity needs while at the same time ensuring compliance with environmental requirements. Finally, we have managed the Bartow repowering in a manner that ensures a high quality result at a reasonable cost.

1 2 3

Α.

The current Bartow Power Plant operates on 1950s-era technology. It generates power from three units fired on heavy (No. 6) fuel oil and is capable of generating approximately 450 MW of power.

In 2005, the Company studied ways to meet its need for additional capacity by summer 2009 in a cost-effective, environmentally sensitive manner. The analysis showed that repowering the Bartow facility to operate as a natural gas-fired, combined cycle plant was the most cost-effective way to meet the Company's reliability needs, while at the same time substantially reducing SO<sub>2</sub> and NOx emissions from the site.

Additional analysis during the study phase showed that the best configuration would be to replace the three existing steam units with four gas-fired combustion turbines (CTs), four heat recovery steam generators (HRSGs), and one steam turbine – or what is referred to as a 4x4x1 combined cycle configuration.

The repowering project will increase the generating capacity of the Bartow Power Plant to about 1,279 MW, or an increase of approximately 827 MW. The project will take advantage of existing site assets, such as the water intake structures, discharge canals, the fuel oil barge unloader, existing 115kV lines, existing 230kV lines, and the 230/115 kV switchyards. The project includes additional transmission and substation improvements required to integrate the project into the electric grid and to handle the increased electric output from the site.

Q. Has the repowered Bartow plant been designed to increase the Company's dispatch flexibility?

Yes. The plant design includes auxiliary duct firing for the HRSGs and steam power augmentation for the CTs to provide optimum peaking capacity. By-pass stack dampers installed on all four CTs will provide the option to operate the plant in simple cycle mode, as well as in combined cycle mode. This plant can also be operated in a 3x3x1, 2x2x1 or 1x1x1 combined cycle mode during periods of low system load. Because the steam turbine can be kept warm even during periods of low load, the design significantly reduces plant start-up time compared to the existing oil-fired units. Taken together, these design features provide maximum output, operational ease, and system dispatch flexibility.

10

11

12

13

14

15

16

17

18

19

20

#### What transmission and substation improvements are being made to Q. support integrating the project into the electric grid?

The transmission improvements associated with the project include: expansion Α. and upgrades to the Bartow and Northeast substations; the addition of three 230 kV underground circuits between those two substations; rebuilding an existing 230 kV line between the Northeast and 40<sup>th</sup> Street substations; installing a new 115 kV line between the Northeast and 32<sup>nd</sup> Street substations; installing a new transformer at the 51st Street substation and looping an existing 230 kV line into that substation; and replacing a 115 kV breaker at the Central Plaza substation.

21

22

23

24

25

#### Has PEF secured a reliable and adequate source of natural gas fuel Q. supply?

Yes, PEF has entered into an agreement with Gulfstream Natural Gas System Α. for Firm Pipeline Transportation (FT) capacity to access gas supply for the

Bartow plant. The total FT capacity contracted for is 155,000 Dths/day for a term of 23 years. This is roughly equivalent to the total daily gas demand of the re-powered plant at full load for 16 hours. To provide natural gas to the plant, Gulfstream has constructed approximately 17 miles of 20" pipeline from its existing pipeline in the Tampa Bay to the Bartow site. In addition, Gulfstream has added compression at its compressor station in Coden, Alabama, and constructed a new compression station in Manatee County, Florida, to support the project.

The gas transportation contract provides for an initial 80,000 Dths/day of natural gas to support testing and startup of the CTs in 2008. The contract provides for the full 155,000 Dths/day to be available by January 1, 2009. The terms of the contract with Gulfstream are reasonable and consistent with industry standards.

#### III. Benefits of the Project

Q. Please summarize the benefits of the repowering project.

A. Repowering the Bartow plant will add approximately 827 MW of capacity in June 2009. This increase avoids a capacity purchase in summer 2009, the Hines 5 combined cycle unit, and CTs originally planned for 2010 and 2012. Under current planning assumptions, PEF still requires additional capacity by summer 2009 to meet its 20% minimum reserve margin obligation and the Bartow repowering meets that need.

The design of the Bartow repowering reduces plant start-up time and increases dispatch flexibility. The addition of new capacity near the Pinellas

1 2

County load center, and the related transmission upgrades, will address low voltage conditions that can exist in the area during periods of peak demand.

The Bartow repowering will significantly reduce the site's emissions, including a 98 percent reduction in SO<sub>2</sub> emissions and reduced NOx emissions. This will enable the Company to meet the Clean Air Interstate Rule (CAIR) requirements without installing costly Selective Catalytic Reduction ("SCR") at the Anclote Plant.

The Bartow repowering project has become part of the Company's "Balanced Solution" for meeting its customers' needs, and the project is consistent with the goals set forth in Florida's Energy and Climate Change Action Plan, submitted to the Governor by his Action Team. Part of this plan emphasizes achieving efficiency improvements at existing plants by repowering existing plants to use natural gas in place of oil, which is what the Bartow repowering project will do.

During construction, PEF has added nearly 500 jobs to the area workforce which has provided an economic boost to the community. In addition, the local economy has received a financial boost from taxes and increased revenue during the construction project and will benefit from a higher tax base in the future.

#### IV. <u>Implementation of the Bartow Repowering Project.</u>

- Q. Please describe how the Bartow Repowering Project is managed.
- A. A key project team was organized to consider alternatives for projected generation needs. A portfolio of initiatives was developed to analyze generation and transmission alternatives. The project team, together with PEF's System

1.4

Planning & Regulatory Performance Unit, developed an Integrated Project Plan summarizing the key project decision points. The integrated resource planning process essentially matches PEF's projected needs with the most cost-effective power plant additions.

The project team is responsible for approving project milestone progression and funding for both generation and transmission upgrades. The team also developed a contracting and procurement strategy and assembled predominantly firm-price contracts with qualified suppliers that are responsible for the execution of various aspects of the project. The team mitigated cost and performance risk by capturing favorable contract terms and conditions such as retention provisions, performance guarantees, and reliability guarantees. The project team provides regular updates to Senior Management in the areas of cost, schedule, performance, risk, safety and environmental issues.

### Q. When will the project be complete?

A. Both the generation and transmission components of the project are onschedule for commercial operation by June 1, 2009.

### Q. What is the estimated cost for the Bartow Repowering Project?

- A. The estimated cost for the project is \$800.2 million. This includes new generation capital expenditures of \$560.3 million, transmission capital expenditures of \$143.0 million, and \$96.9 million in AFUDC.
- Q. In your opinion, is the project prudent and will it be completed at a reasonable cost?

| 1  |
|----|
| 2  |
| 3  |
| 4  |
| 5  |
| 6  |
| 7  |
| 8  |
| 9  |
| 10 |
| 11 |
| 12 |
| 13 |
| 14 |
| 15 |
| 16 |
| 17 |
| 18 |
| 19 |
| 20 |
| 21 |
| 22 |
| 23 |
| 24 |

| Yes. The initial study of the 4x4x1 configuration showed \$171 million NPV of    |
|----------------------------------------------------------------------------------|
| after-tax cash flow savings from the Bartow repowering project compared to the   |
| base case alternative. Although the projected savings has varied over time as    |
| the project has evolved, the project continues to provide significant savings to |
| our customers by meeting our generation and environmental needs in a cost-       |
| effective manner. As I have described in my testimony, the reasonableness of     |
| the project costs has been assured by our procurement practices, including       |
| competitive bidding and the use of predominantly firm price contracts where      |
| appropriate, the purchase of a secondary market steam turbine, and our cost      |
| control activities.                                                              |

## Q. Does this conclude your testimony?

A. Yes.

A.

25