### BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

## DOCKET NO. 080677-EI & NO. 090130-EI FLORIDA POWER & LIGHT COMPANY

## IN RE: PETITION FOR RATE INCREASE BY FLORIDA POWER & LIGHT COMPANY

## **REBUTTAL TESTIMONY & EXHIBITS OF:**

## C. RICHARD CLARKE

DOCUMENT NUMBER-DATE

08125 AUG-68

FPSC-COMMISSION CLERY

| 1  |    | BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION                                  |
|----|----|-------------------------------------------------------------------------------|
| 2  |    | FLORIDA POWER & LIGHT COMPANY                                                 |
| 3  |    | <b>REBUTTAL TESTIMONY OF C. RICHARD CLARKE</b>                                |
| 4  |    | DOCKET NO. 080677-EI & NO. 090130-EI                                          |
| 5  |    | AUGUST 6, 2009                                                                |
| 6  |    |                                                                               |
| 7  | Q. | Please state your name and business address.                                  |
| 8  | A. | My name is C. Richard Clarke. My business address is 5062 Alfingo Street, Las |
| 9  |    | Vegas, Nevada, 89135.                                                         |
| 10 | Q. | Did you previously submit direct testimony in this proceeding?                |
| 11 | A. | Yes.                                                                          |
| 12 | Q. | Are you sponsoring any rebuttal exhibits in this case?                        |
| 13 | А. | Yes. I am sponsoring the following rebuttal exhibits:                         |
| 14 |    | • CRC-3, Life Spans of Retired US Coal Generating Units, 10 MW or Greater     |
| 15 |    | • CRC-4, Life Spans of Retired US Oil and Gas Steam Generating Units, 10      |
| 16 |    | MW or Greater                                                                 |
| 17 |    | • CRC-5, Commission Orders From State of Nevada                               |
| 18 |    | • CRC-6, Statistical Analysis, Bulletin 125                                   |
| 19 |    | • CRC-7, California Standard Practice U-4                                     |
| 20 |    | • CRC-8, NARUC, Developing an Observed Life Table                             |
| 21 |    | • CRC-9, Response to OPC First Set of Interrogatories No. 55                  |
| 22 | Q. | What is the purpose of your rebuttal testimony?                               |
| 23 | A. | My testimony responds to the direct testimony of Office of Public Counsel's   |
|    |    | DOCUMENT NUMBER-DATE                                                          |
|    |    |                                                                               |

FPSC-COMMISSION CLERK

1 (OPC's) witness Jacob Pous relating to depreciation issues in the area of 2 remaining life calculations, production plant service lives, interim retirements, 3 interim net salvage, mass property life analysis, and mass property. Also, I am 4 responding to the testimony of Florida Industrial Power Users Group (FIPUG) 5 witness Jeffry Pollock concerning extending the lives for certain production 6 plants.

7

#### Q. Please summarize your testimony.

8 Α. As discussed in greater detail in my testimony, the processes suggested by Mr. 9 Pous and Mr. Pollock lack the robustness that results from insightful incorporation of company knowledge about the assets in question as well as the 10 11 highly respected, industry-approved methodologies that I used to arrive at the 12 recommendations within the depreciation study. All the changes suggested by Mr. Pous and Mr. Pollock were biased toward increasing service lives and 13 14 decreasing net salvage percentages, with the readily apparent goal of decreasing 15 depreciation. My analysis of their methods indicates that, in focusing improperly 16 on this end result, they have disregarded key considerations that are considered to 17 be important industry practices. As a result, the suggested changes proposed by 18 Mr. Pous and Mr. Pollock would result in significantly understating FPL's true 19 depreciation requirements, and thus improperly skew recovery of asset value 20 toward the future, saddling future customers with a burden that is disproportionate 21 to their use of the assets in question. This has significant adverse consequences 22 for intergenerational equity and will create unnecessary risks of recovery. 23 Moreover, I will point out cases where the methodology used by Gannet Fleming

| 1 | has found wider acceptance among the jurisdictions where it was presented than         |
|---|----------------------------------------------------------------------------------------|
| 2 | the alternative recommendations of Mr. Pous and Mr. Pollock.                           |
| 3 |                                                                                        |
| 4 | I would also like to add that, in addition to all of the problems with the asset lives |
|   |                                                                                        |

| 5  | and net salvage values just discussed, Mr. Pous has calculated his proposed          |
|----|--------------------------------------------------------------------------------------|
| 6  | annual depreciation expense incorrectly by failing to take into account the impact   |
| 7  | resulting from his proposal to accelerate the amortization of the \$1.25 billion     |
| 8  | theoretical depreciation reserve. His calculated rates do not reflect the fact that, |
| 9  | based on his proposed accelerated amortization, FPL will have to collect an          |
| 10 | additional \$1.25 billion through depreciation rates in the future. Additionally, he |
| 11 | has calculated the theoretical reserve for production plant accounts incorrectly.    |
|    |                                                                                      |

12

13

### SERVICE LIVES FOR PRODUCTION PLANT

| 15 | Q. | Do you agree with OPC witness Mr. Pous that the Commission should adopt          |
|----|----|----------------------------------------------------------------------------------|
| 16 |    | a 60-year service life for FPL's coal plants, 50-year service life for its large |
| 17 |    | gas-fired plants, and 30-35 service life for its combined cycle plants?.         |

- 18 Α. No. For the reasons discussed below, Mr. Pous' recommended service lives are unrepresentatively long, in view of FPL and industry experience. 19
- Do you agree with FIPUG witness Pollock that the Commission should adopt Q. 20 his recommended 55-year service life for coal plants and 35-year service life 21 22 for combined cycle plants?
- No. Again, for the reasons I discussed below, Mr. Pollock's recommended 23 Α.

1 service lives are too long and should be rejected.

Q. Please explain your participation in the development of the production lives
for the Company's generating facilities.

A. For my depreciation study, the Company provided me with economic recovery
dates (or probable retirement dates) for all their generating stations by unit. These
same retirement dates were used in their 2007 Integrated Resource Plan (IRP).
These dates were also used in the Company's Ten Year Power Plant Site Plan
presented to the FPSC in early 2008.

9 Q. Mr. Pous claims that the Company's proposed retirement dates are not
10 supported by the Company's Ten Year Power Plant Site Plan. Is this
11 correct?

A. Mr. Pous is wrong. FPL's Ten Year Power Plant Site Plan fully supports the
 retirement dates provided to me for the depreciation study. The only difference is
 the repowering of the Cape Canaveral and Riviera Steam Plants, which the
 Company decided to pursue after the Site Plan was developed.

Q. When Gannett Fleming prepares depreciation studies for various clients, is it
 common to use a company's generation Resource Plan as the starting point
 to establish production plant depreciation lives?

19 A. Yes. Gannett prepares a number of depreciation studies for many utilities in the 20 United States and Canada. In most cases, the company for which we are 21 preparing the study will have a generation plan identifying when they plan to 22 remove each unit from service. The Company will have a group of engineers and 23 managers familiar with each unit in regards to operation and maintenance of that

unit, and they will consider many issues before assigning a remaining life 1 including demand, load duration curves, design, energy requirements, fuel 2 supplies, temperature variations, peaks, existing lives, and age. These factors will 3 vary by company and are subject to location, operational practices, fuel resources, 4 and other conditions. Once all this information is coordinated and a resource plan 5 is developed, it is shared and approved by top company management and (if 6 applicable) presented to the relevant utilities commission. Because of these 7 reasons, it is important to depend on the knowledge of the individual Company 8 when developing retirement dates of its production plant facilities. 9

# 10 Q. Does Gannett Fleming review the life spans resulting from these company 11 resource plans?

- A. Yes. Gannett Fleming evaluates all the retirement dates and life spans used in
   their depreciation study. If there were significant variances from what is the norm
   in the industry, then Gannett would question the Company and seek reasons for
   differences. However, Gannett would rely on the information obtained from
   management and operating personnel in reaching its conclusion.
- Q. During your conduct of the depreciation study for FPL, did you have
   conversations with Company personnel concerning the probable lives for the
   production facilities?
- A. Yes I did. During my FPL interviews, personnel from generation explained to me
   some of their reasoning for the establishment of the suggested retirement dates
   used in the study. FPL witness Hardy also describes these reasons in his rebuttal
   testimony and discusses how engineers and planners developed probable lives

| 1          |    | based on information I described in a previous response above. He also mentioned  |
|------------|----|-----------------------------------------------------------------------------------|
| 2          |    | other factors considered such as:                                                 |
| 3          |    |                                                                                   |
| 4          |    | a. The coal units' economic recovery periods are based on a 40-year boiler life.  |
| 5          |    | In the late 1990's a 30-year life was assigned to these plants on the basis of    |
| 6          |    | damage done to boilers by burning western coal due to slag build-up. Since        |
| 7          |    | then FPL has found ways to manage the slag problem, resulting in an               |
| 8          |    | extension of the economic recovery period to 40 years.                            |
| 9          |    | b. The large gas-fired units at Martin and Manatee use a 35-year recovery period  |
| 10         |    | as these units are heavily cycled; a longer recovery period under this level of   |
| 11         |    | cycling would be unrealistic.                                                     |
| 12         |    | c. The 25-year economic recovery period for the combined cycle units is based     |
| 13         |    | on manufacturer's stated projections of the physical life of the combustion       |
| 14         |    | turbine, which is the most costly component at the combined cycle plant with      |
| 15         |    | the shortest life. The physical life of the combustion turbine is estimated to be |
| 16         |    | 25 years by the manufacturer based on cycling operation only, or 30 years at      |
| 17         |    | base operations. Based on the anticipated usage the economic recovery period      |
| 18         |    | was established at 25 years.                                                      |
| 1 <b>9</b> | Q. | Did you review the probable retirement dates and life spans provided to you       |
| 20         |    | by FPL in this depreciation study?                                                |
| 21         | A. | Yes. I compared them to life spans used by Gannett Fleming and the industry for   |
| 22         |    | reasonableness. The life spans the Company is recommending are within the         |
| 23         |    | range of lives Gannett is seeing in the industry and are reasonable. The range of |
|            |    |                                                                                   |

lives within the industry for Steam Production/Coal is 40-65 years and the range for Steam Production/Gas is 40-50 years. The life spans for combustion turbines are in the 25-35 year range. The Company is within these ranges. As previously discussed, the Company explained to me specific information used in the development of their resource plan which would reasonably cause the lives to be toward the low end of the ranges.

# Q. Did either Mr. Pous or Mr. Pollock perform any analysis of his own on each of the Company's coal and gas fired Steam plants in question?

9 A. No, Mr. Pous and Mr. Pollock simply relied on statistics from other industry
10 electric companies when making his recommendations. They did not consider
11 any of the unique circumstances related to the operations, design life, cycling,
12 maintenance practices, etc, of FPL's production plants.

# Q. Did either Mr. Pous or Mr. Pollock meet with any Company personnel to discuss the operation and maintenance of FPL's production facilities?

- A. No, it is my understanding that neither Mr. Pous nor Mr. Pollock met with any
  Company personnel before making his recommendations.
- 17 Q. Did Mr. Pous or Mr. Pollock visit any of the production plants for which he
   18 is recommending increasing the service life?
- A. To my knowledge, neither Mr. Pous nor Mr. Pollock visited any of FPL'sproduction plants.

| 1  | Q. | Mr. Pous provides examples of companies that use a 60-year service life for          |
|----|----|--------------------------------------------------------------------------------------|
| 2  |    | coal fired steam generating plants. Do those examples provide a reasonable           |
| 3  |    | basis for increasing the service lives for FPL's coal fired steam generating         |
| 4  |    | plants?                                                                              |
| 5  | A. | No. Mr. Pous provided examples of companies that use a 60-year service life but      |
| 6  |    | did not reveal if any of these companies had significant investments made on their   |
| 7  |    | units that were considered in increasing the life of their units.                    |
| 8  |    |                                                                                      |
| 9  |    | While Mr. Pous states that he is aware of companies in the industry using lives for  |
| 10 |    | coal plants in the 60-year range, I am also aware of a number of retired coal plants |
| 11 |    | that had lives in the 30 and 40-year range. For example: Oak Creek Units 1, 2 & 4    |
| 12 |    | retired at 35 years; Tait Units 4 & 5 retired at 29 years; Richmond Unit 1 retired   |
| 13 |    | at 40 years; Stateline Unit 1 & 2 retired at 48 and 39 years respectively; and       |
| 14 |    | Riverside Unit 1 retired at 38 years.                                                |
| 15 | Q. | Did Mr. Pous make any recommendations as to the service life for combined            |
| 16 |    | cycle plants?                                                                        |
| 17 | A. | No. Mr. Pous made no recommendation, however he suggested the Commission             |
| 18 |    | order the FPL to perform a detailed analysis substantiating the 25-year life span    |
| 19 |    | recommended by the Company.                                                          |
| 20 | Q. | Do you think this is necessary?                                                      |
| 21 | A. | No I do not. The Company has demonstrated the reasoning for their estimate of        |
| 22 |    | 25-years, and it is supported in the rebuttal testimony of FPL witness Hardy.        |
|    |    |                                                                                      |

# Q. Should Mr. Pollock's recommendation of 35-years for combined cycle plants be ignored also?

- 3 A. Yes it should be ignored also, based on information presented here and in the
  4 rebuttal testimony of Mr. Hardy.
- 5 Q. Are you familiar with the Platts World Electric Power Plants Database?
- A. Yes. It is a comprehensive listing of power plants in the United States and
  abroad, both in service and retired. The database contains information on
  hundreds of power plants that have been retired in the United States.
- 9 Q. Can you summarize the contents of the Platts database in regards to retired
  10 coal, oil and gas power plants?
- 11 A. Yes. I have analyzed the Platts database for retired coal units and retired oil and 12 gas units. As shown in exhibit CRC-3, the average age of retirements for coal 13 generating units is 42.65 years. As shown in exhibit CRC-4, the average age of 14 retirements for oil and gas generating units is 44.47 years. Given these historical 15 average ages of retirements, as well as the company specific information provided 16 by engineering, the life span estimates for FPL's generating facilities are clearly 17 reasonable.
- 18

19

### CALCULATION OF REMAINING LIVES

- 20
- Q. Please describe your method for calculating remaining life depreciation
  accruals.
- A. For the purpose of calculating remaining life depreciation accruals, I first allocate
  - 9

the book depreciation reserve to each vintage within an account (or in the case of generating units, within each account for each unit). This allocation is done in proportion to the theoretical reserve for each vintage, with the limitation that the reserve for each vintage cannot exceed the original cost less proposed net salvage.

5

6 Once the reserve is allocated, I can then determine the future accruals for each 7 vintage by deducting the allocated reserve from the sum of the original cost and 8 future net salvage. I then divide the resulting future accruals by the remaining life 9 for the vintage to determine the annual accrual for the vintage. The sum of the 10 annual accruals for each vintage is the annual accrual amount for the account. 11 The composite depreciation rate for the account can then be determined by 12 dividing this amount to the total original cost.

13 Q. How do you calculate the remaining life for each vintage?

A. The remaining life for each vintage is derived from the age of the vintage and the
specific Iowa survivor curve selected for the account.

### 16 Q. Did you determine a composite remaining life for each account?

A. Yes. A composite remaining life for an account can be calculated by dividing the
sum of the future accruals for each vintage by the sum of the annual accruals for
each vintage. However, unlike with Mr. Pous' proposed methodology, this
composite remaining life is not used for the purpose of calculating annual
accruals. Annual accruals are calculated for each vintage using my method.

Q. On pages 42 through 47 of his testimony, Mr. Pous discusses concerns
 regarding your calculation of remaining lives for plant accounts. Are those
 concerns valid?

4 A. No, they are not.

5 Q. Please explain why the concerns are not valid.

Mr. Pous claims that the method I used to calculate the remaining life is incorrect. 6 Α. His main concern is that for purposes of calculating remaining life depreciation 7 accruals for an account, I prorate the book reserve for the account to each vintage. 8 9 In performing this proration, the total reserve allocated to each vintage is limited 10 so that it does not exceed the total vintage original cost less proposed net salvage. 11 Mr. Pous takes issue with the fact that this limitation and with the fact that the use 12 of net salvage in this calculation can have an impact on the calculation of a 13 composite remaining life for an account.

# 14 Q. Has the Gannett Fleming, Inc. methodology been used in other depreciation 15 studies?

A. Yes, Gannett Fleming has used this methodology in numerous depreciation
studies, and it has been accepted by many jurisdictions in both the United States
and Canada.

# 19 Q. Has Mr. Pous challenged this method for calculating remaining lives 20 elsewhere?

A. Yes, Mr. Pous made a similar challenge to this methodology in his testimony to
the Nevada Commission during the 2005 rate case for Sierra Pacific Power
Company (Docket No. 05-10004).

1

### Q. Did the Nevada Commission agree with Mr. Pous?

A. No. The Nevada Commissioners were convinced that Gannett Fleming's
 methodology was adequate and widely accepted in the industry as stated in the
 Order for Dockets No. 05-10003 & 05-10004. See Exhibit CRC-5.

- 5 Q. Does Mr. Pous' proposed method use the composite remaining life for an 6 account in determining annual depreciation accruals?
- 7 A. Yes, it does. Mr. Pous recommends the use of what is referred to as the direct
  8 weighting method of calculating a composite remaining life for an account. The
  9 point of calculating this composite using this method is to use it to calculate
  10 annual accruals for the account. As I have discussed, this is not necessary for my
  11 method because accruals are calculated for each vintage.
- 12

13The direct weighting method Mr. Pous proposes is described in Determination of14Straight-Line Remaining Life Depreciation Accruals, Standard Practice U-4,15published by the California Public Utilities Commission in 1961 (see Exhibit16CRC-7). This text also describes several other weighting methods. In discussing17the selection of an appropriate method, the authors state:

18 "In selecting a method of weighting, several considerations apply.
19 First, it is desired that the method of weighting used shall produce
20 the same results as though the book reserve had been prorated to
21 the various age groups or classes of property on the basis of the
22 applicable reserve requirement."

1 Rather than select a method that produces the same results as proration, I have 2 performed the proration. Based on the considerations presented in Standard 3 Practice U-4, my method is clearly preferable to that of Mr. Pous. Q. 4 Mr. Pous claims that your approach is not consistent with standard group or 5 mass property depreciation concepts. Is this true? 6 A. No, it is not. The remaining life for each vintage is determined using a survivor 7 curve consistent with standard group property depreciation concepts. A portion of 8 each vintage will be retired before the average service life and a portion will be 9 retired after the average service life. The remaining life calculated for each 10 vintage takes this into account. 11 Q. Mr. Pous claims that your method does not calculate accruals for vintages 12 that are fully accrued is improper because it is inconsistent with FPL's actual 13 practice. Is this concern valid? 14 Α. No, it is not. By limiting the accruals only to vintages that are not fully accrued, 15 annual accruals are calculated only for those vintages that have future costs left to 16 recover. As a result, the composite annual depreciation rate developed is 17 appropriate for the plant balances going forward and results in the necessary 18 amount of accruals. 19 Q. Mr. Pous' Exhibit JP-3 provides an example of what he calls "Gannett 20 Fleming's remaining life calculation error." He proposes an alternate 21 method of allocating the book reserve to each vintage. Is his method more 22 reasonable than your method?

A. No. The difference in allocation that Mr. Pous shows in Exhibit JP-3 is that Mr.

Pous allocates amounts to vintages that exceed the original cost less future net salvage. His example is not more compelling than my method, as his method results in negative accruals for some vintages.

- Q. Mr. Pous claims that your methodology of allocating the book reserve to each
  vintage impacts the calculation of the theoretical reserve. Is Mr. Pous
  correct in making this claim?
- A. No, he is not. In my methodology, the theoretical reserve is used to allocate the
  book reserve to each vintage. In other words, calculating the theoretical reserve is
  a first step in calculating annual accruals. Thus, it is clear that the theoretical
  reserve is calculated independent of my method of calculating annual depreciation
  accruals and calculating a composite remaining life. Changing the method used
  to calculate accruals would not impact my calculation of the theoretical reserve.
- 13

### INTERIM SURVIVOR CURVES FOR PRODUCTION PLANT

15

14

# Q. Please explain the method you proposed for depreciation of production plant accounts.

A. In the Depreciation Study submitted as Exhibit CRC-1, I have proposed to use the
 life span technique for each of the company's generating units. The life span
 technique is appropriate for accounts in which large groups of property will be
 retired at once. Power plants are a perfect example of this type of property, as all
 of the assets associated with a generating unit - such as structures, turbines,

generators and other electrical equipment - will be retired when the unit is taken out of service.

- Life span property experiences two types of retirements final retirements and interim retirements. Final retirements are those that occur when the entire unit is taken out of service. Interim retirements, on the other hand, are retirements of components that occur before the final retirement date for the entire unit.
- 8

1

2

3

9 To properly calculate the depreciation for each generating unit, one must estimate 10 both the date of final retirement and the level of interim retirements that will 11 occur before that date.

12 Q. Does Mr. Pous agree with using the life span method for production plants?

A. Yes, he does. But while he agrees that depreciation for generating units should
account for interim retirements, he proposes a different method for doing so.

Q. Please explain the difference between your proposed method for accounting
 for interim retirements and the method proposed by Mr. Pous.

17 A. In my depreciation study, I have utilized the proposed retirement date for each 18 generating unit proposed by the Company. In addition, I have estimated an Iowa 19 type survivor curve for each production plant account that takes in to account the 20 fact that some of the property at these plants will be retired before the final date of 21 retirement. Mr. Pous also proposes using the life span technique and adjusting for 22 interim retirements. However, instead of using an Iowa curve with a distinct 23 retirement dispersion pattern that matches the type of property in each plant

account, he instead estimates an "interim retirement rate" and adjusts the
 remaining life for each generating unit within each plant account based on this
 interim retirement rate. By selecting an interim retirement rate for each account,
 he assumes that there will be a constant level of interim retirements for each year
 the plant is in service.

### 6 Q. How is this method different from using an interim survivor curve?

Actually, although he claims there to be a difference, Mr. Pous employs the same 7 A. 8 basic method as I do except that he selects the same type of curve for every account. Using a constant interim retirement rate to adjust for interim retirements 9 10 for each production plant account, as Mr. Pous proposes, is identical to selecting 11 an O1 type survivor curve as an interim survivor curve for each and every 12 account. An O1 curve is a straight line with a constant level of retirements at each age, and as a result, the calculation can be simplified to be dependent only 13 14 on the remaining life of a generating unit. If a survivor curve with a variable 15 retirement dispersion is used, such as the Iowa R, L and S type curves that the 16 company has proposed, the calculation is more appropriately differentiated 17 because each vintage needs to be calculated separately.

Q. On pages 59 through 65 of his testimony, Mr. Pous discusses concerns with
 your method of accounting for interim retirements for FPL's generating
 units. Are these concerns valid?

21 A. No, they are not.

On page 60 of his testimony, Mr. Pous claims that your method of accounting 1 **Q**. for interim retirements is "inappropriate and cumbersome for application in 2 3 this proceeding." Is this an accurate assessment? No, it is not. As I will discuss, my proposal to use Iowa survivor curves is 4 Α. appropriate and widely accepted for life span property such as generating units. 5 Additionally, while my calculation requires more detail than that of Mr. Pous, the 6 increased accuracy in predicting future interim retirements far outweighs any 7 8 additional effort required in its calculation. Has your methodology been used in other depreciation studies? 9 Q. 10 Yes. My company uses this method for life span property in all of our studies for Α. 11 this type of asset class. We have used it in many jurisdictions across the United 12 States and Canada. 13 14 Our method is also recognized by NARUC in its publication "Public Utility Depreciation Practices" (see Exhibit CRC-8). According to NARUC, developing 15 16 an observed life table from historical data, which "can be fitted to generalized life 17 curves, e.g., Iowa curves or curves based on the Gompertz-Makeham formula," and using the fitted curve to account for interim retirements is appropriate for life 18 19 span property. This is precisely the method I have employed. 20 **Q**. Do any other Florida utilities use the Company's method for accounting for 21 interim retirements? 22 Yes. Progress Energy Florida used Iowa survivor curves for interim retirements Α. 23 in its 2005 Depreciation Study (filed in Docket 050078-EI). The Commission

approved this method in their depreciation study. For their 2009 Depreciation 1 Study, they have again used the same methodology (Docket 090079-EI). 2 Mr. Pous filed testimony in Docket 050078-EI. Did he challenge Gannett's 3 Q. method for accounting for interim retirements in the Progress Energy 4 **Florida Depreciation Study?** 5 6 Α. No, he did not. Has this method for accounting for interim retirements been challenged in 7 **Q**. 8 any previous rate cases? 9 Yes, Mr. Pous made a similar challenge to this methodology in Nevada, in Α. 10 testimony for the aforementioned rate proceeding of Sierra Pacific Power 11 Company (Docket No. 05-10004). 12 **Q**. What was the decision reached by the Commission in the Sierra Pacific case? As previously stated, the Commission agreed with Gannett Fleming in this case 13 Α. 14 and specifically agreed with Gannett's industry-established method of calculating interim retirements in its Order for Dockets No. 05-10003 & 05-10004. 15 16 Q. On page 60 of his testimony, Mr. Pous states that the method you used is 17 "cumbersome for application in this proceeding." Do you agree with his 18 characterization? 19 Α. No, I do not. While the method I proposed in the depreciation study requires 20 calculations that are more complicated than those required with Mr. Pous' 21 proposal, they are not difficult calculations to make with modern computer 22 technology. As I will discuss, my proposals are a more accurate estimate of

future interim retirements. It would be inappropriate to sacrifice this accuracy for
 the sake of simplifying the calculation of depreciation.

3

It is also important to point out that my methodology is simpler than that employed and approved in FPL's last rate case Docket No. 050045-EI, in which depreciation was calculated for every distinct type of property unit within each plant account and generating unit.

8 Q. Mr. Pous claims that because the property in production plant accounts is 9 not homogeneous, using an interim survivor curve to estimate interim 10 retirements is inappropriate. Is this concern valid?

A. No, Mr. Pous is incorrect. Property in these accounts is grouped according to the
Uniform System of Accounts, just as property for transmission, distribution and
general plant is. Mr. Pous has proposed Iowa survivor curves for plant accounts
in these functions, despite the fact that some Transmission and Distribution plant
accounts, such as Account 362, Station Equipment, also do not include
homogenous-type investments.

17

18 The retirement dispersion pattern for each of the Iowa survivor curves takes into 19 account the fact that property in a given plant account will be retired at different 20 ages. As a result, it is perfectly reasonable to use an Iowa survivor curve to 21 estimate interim retirements for the property in production plant accounts. Given 22 that the estimated retirement patterns are based in part on the company's actual 23 retirement experience, the estimates based on Iowa survivor curves are superior to

the estimates proposed by Mr. Pous, which assume a constant level of retirements
 each year.

# Q. Could you provide an example to illustrate the difference between Mr. Pous' proposal and the company's proposal?

5 Yes. The difference is perhaps best illustrated by elaborating on the example of a Α. 6 life span group of property given by Mr. Pous in his testimony. In his testimony, 7 Mr. Pous draws an analogy to using the life span technique for power plants to 8 that of thinking of a car as life span property. As Mr. Pous explains, while a 9 typical car might have a service life of 10 years, during the life of the car various 10 components will have to be replaced. Thus, although the car itself will have a life 11 span of 10 years, the actual average service life of the car will be shorter once you 12 take into account the additional retirements due to the replacing each of the 13 components.

# 14 Q. In this example, how would Mr. Pous' estimate the interim retirements a car 15 would experience?

- A. Using Mr. Pous' method of adjusting for interim retirements, one would estimate
  the percentage of the car's cost that would be retired each year and adjust the
  average service life based on this estimate.
- 19 Q. Does this method accurately estimate interim activity?
- A. No, not on a consistent basis. Continuing with the same example we can see that based on any one car owner's actual experience, this method does not accurately estimate actual interim retirements. The problem is that Mr. Pous assumes that retirements will occur at a constant level throughout the life of the car. This is not

a true reflection of how car repairs are spread out over the life of a car. Instead, there will likely be few retirements in the early years of the car's life, but as its components age, the level of retirements will increase. So, while in the first few years only minor items will need to be replaced, as the car gets older the owner will have to replace the tires, the brakes and possibly even major items such as the transmission. These items are all more expensive, so it is clear that retirements will increase in the later stages of the life of the car.

# 8 Q. Does Mr. Pous' proposal account for the fact that interim retirements tend to 9 increase as property gets older?

10 A. No.

# 11 Q. Does the company's proposed method take into account this sort of 12 retirement dispersion?

A. Yes, it does. Instead of assuming a constant level of interim retirements, one
should instead use the Company's method and estimate these interim retirements
with a survivor curve that better mirrors actual interim retirement experience.

## Q. Continuing with the example of a car, could you elaborate on the difference between the two methods?

A. Figure 1 graphically shows the results of using these two methods. The dashed line illustrates Mr. Pous' method assuming an interim retirement rate of 0.02, which means that 2% of the original cost of the car will be retired each year. The dotted line illustrates the company's method using a 10-R2 survivor curve. As the graphs illustrate, Mr. Pous' method results in a constant level of retirements for each year until the final retirement at age 10. As discussed earlier, this is not an accurate estimate of actual replacement expenditures throughout the life of the
 car. Instead, the 10-R2 curve is a better reflection of actual interim retirements.
 There are very few retirements in the early years but retirements increase as more
 expensive parts need to be replaced.

- 5
- 6 Figure 1



1

### Q. How does Mr. Pous select the interim retirement rate to use?

Although his presentation in Exhibit JP-4 makes it appear as if Mr. Pous has 2 A. considered a number of historical data points, in reality his calculation of an 3 interim retirement rate is really only based on a single observed data point. For 4 each type of plant he selects a single data point near the end of the observed life 5 table, and calculates what percentage of investment would need to be retired each 6 7 year to result in the percent surviving indicated by this data point. This is 8 equivalent to fitting a straight line on a graph through two points - one at age 0 with 100% surviving, and one at a later age with a lesser percent surviving. 9

# 10 Q. Are there any problems that arise with Mr. Pous' method of determining an 11 interim retirement ratio?

12 Yes, there are. For example, in Figure 1 both the 10-R2 survivor curve and the Α. curve derived from using an interim retirement rate of 0.02 are close 13 14 approximations of each other through about age 5. However, they deviate 15 significantly after this age. Yet if one tries to determine an interim retirement rate using only this data point, the results will significantly underestimate future 16 17 retirements. This is akin to making assumption that just because you have not 18 needed to spend a lot of money on car repairs in the first five years you have 19 owned it, that you will never have to make significant repairs to keep the car 20 running in the future.

# Q. Does Mr. Pous make a similar assumption in his determination of interim retirement rates in his testimony?

23 A. Yes, he makes this precise assumption in many of his estimates of interim

retirement ratios. As an example, Figure 2 shows the actual experienced survivor
 curve from FPL's history (or "original curve"), my proposed interim survivor
 curve estimate of 45-R2.5, and the curve implied by Mr. Pous' proposed interim
 retirement rate of .0044 for Account 322, Reactor Plant Equipment.

### 5 Figure 2

6



Mr. Pous' Exhibit JP-4 shows his calculation of interim retirement rates. He
claims to have used 50 data points for all steam generating accounts, 30 data
points for all nuclear generating accounts and 15 data points for all other
production generating accounts.

For this nuclear account example, he also provides a percent surviving of 86.79%. This percent surviving corresponds to the percent surviving at age 28.5, as shown in the Original Life Table for Account 322 in Exhibit CRC-1, page 407. He then calculates his interim retirement rate of .0075 to be (1-.8679)/30.

5

I should first point out that Mr. Pous' calculation is incorrect. If 86.79% is surviving at age 28.5, then (1-.8679) should be divided by 28.5 instead of by 30. If Mr. Pous had calculated a constant retirement rate correctly, he would have ended up with a rate of .0046 instead of .0044. More importantly, as was the case with the car example, this method has the potential to significantly underestimate future retirements. Mr. Pous' method assumes that the rate of retirements will be the same in the future as it was in the past.

13

Additionally, Mr. Pous ignores later data points that have experienced higher levels of retirements. As you can see, while both my estimate and Mr. Pous' estimate are similar through age 28.5, after this point they begin to deviate. My estimate is a much better fit for these later data points.

Q. Based on the original life table for this account, the exposures for these data
points are smaller than for earlier data points. According to Mr. Pous'
testimony, this means that they are not as important to consider when fitting
a survivor curve. Is he correct in this assertion?

A. No, he is not. As I will address later in my testimony, when determining which
data points are significant for the purpose of curve fitting, the fact that one data

point has larger exposures than another does not necessarily imply that it should have more weight in determining a proper survivor curve estimate. What is more important is that the total exposures are statistically significant. In this case there are still exposures in excess of \$190 million for the data points at ages 29.5 and 30.5. For the data points through age 34.5, exposures still exceed \$26 million. Thus, the data points that Mr. Pous has chosen to ignore still have a significant amount of investment.

### 8 Q. Does your estimate take all of the significant data points into account?

9 A. Yes. As you can see in Figure 2, my estimate is a good fit though the data point
10 that Mr. Pous has chosen to emphasize, and is an excellent fit after that.

### 11 Q. Does your estimate take any other factors into account?

A. Yes, it does. In determining the interim survivor curve estimates used in the
depreciation study, I have relied on a number of factors. These included all of the
company's historical data, discussions with company management, field visits to
FPL generating sites, a comparison with industry data and trends, and previous
Commission decisions.

# 17 Q. Are there any additional problems with Mr. Pous' method for determining 18 an interim retirement rate?

A. Yes, there are. Another problem with Mr. Pous' analysis is that he assumes that
future interim retirement activity will be the same as past retirement history. In
the case of nuclear plants, it is unlikely that a plant designed for 40 years of
commercial operation, as is the case with both of FPL's nuclear sites, will not
experience an increase in interim retirements as the life is extended to 60 years.

1 Yet Mr. Pous' interim retirement rate estimate assumes that retirements in the 2 final 31.5 years of operation will be the same as in the first 28.5 years of 3 operation.

- Q. For Steam Plant accounts Mr. Pous has selected a data point at age 48.5
  years to calculate his interim retirement rate. Because there is a longer
  history for Steam Plant accounts, is Mr. Pous' proposal for Steam
  Production Plant a better estimate of future interim retirements?
- No, this is not the case. Even for accounts for which there is longer retirement 8 A. history, it is incorrect to simply assume that the past will be indicative of the 9 future. For example, cap and trade legislation could have a significant impact on 10 steam generating plants. In order to keep such plants operating in the future, the 11 company will likely require large investments in new technologies and associated 12 retirements to meet future regulatory requirements. In this case, past interim 13 14 retirement history would not necessarily be indicative of future interim 15 retirements.
- 16
- 17

### INTERIM NET SALVAGE

18

### 19 Q. What does Mr. Pous assert concerning your analysis of interim net salvage?

A. Mr. Pous has proposed two types of adjustments to my estimates for interim net
 salvage. First, he has changed the adjustment for interim retirements based on his
 proposed interim retirement ratios. This has affected every account, and is
 dependent entirely on the estimate of interim retirements as described in the

previous section. I will address this issue in general; an account-by-account
 discussion is not necessary.

3

Second, he has specifically challenged my estimates for two Steam Production
accounts, two Nuclear Production accounts and five Other Production accounts. I
will address some of his criticisms for these accounts in general. I will also
address the specifics of each of these accounts in detail.

8 Q. Is this criticism valid?

9 A. No, as I will explain below.

10 Q. What is interim net salvage?

11 A. As I have discussed in previously, for life span property such as power plants 12 there are two types of retirements. Final retirements are those that occur when a 13 generating unit is taken out of service; at this point all the property of that unit 14 will be retired. Interim retirements are those that occur due to the normal 15 operation of the generating unit, and are made prior to the final retirement date.

16

Both types of retirements can have gross salvage and cost of removal associated with them. In the state of Florida, net salvage related to final retirements is accrued through a separate dismantlement and decommissioning reserve. As a result, there is no need to make an estimate for it in the Depreciation Study.

21

For interim retirements, however, the estimated net salvage must be recovered from ratepayers over the lives of the assets, just as is the case with mass property

accounts such as those in Transmission and Distribution Plant. The future amount 1 of interim net salvage can be estimated in a similar manner to mass property net 2 salvage, and a net salvage percent can be developed for each plant account using a 3 combination of historical data and informed judgment. The only difference is that 4 interim net salvage does not pertain to all of the property for the generating unit. 5 Instead, it is related to only those that will be retired as interim retirements. As a 6 result, this "unadjusted" net salvage percent needs to be adjusted so that it 7 recovers an amount that pertains only to interim retirements. 8

9

#### Q. How is this adjustment made?

In the depreciation study, the unadjusted net salvage percent developed in my 10 Α. analysis is reduced based on the percentage of plant that will be retired as interim 11 retirements. This percentage can be determined from the survivor curve for each 12 13 production plant account. So, for example, if we have estimated that a generating unit will last 50 years and the interim survivor curve for our plant account is the 14 40-R2, this means that roughly 73% of the original investment will have been 15 16 retired at age 50. Thus, we can adjust our net salvage estimate so that it only 17 pertains to 73% of the plant. With rounding, a (10)% net salvage estimate becomes (7)%, or a (20)% net salvage estimate becomes (15)%. Please note that I 18 19 will be using parentheses to describe negative numbers throughout my testimony.

20

### Q. Has Mr. Pous made an adjustment?

A. Yes, he has. He has adjusted the net salvage estimates based on his interim
retirement rates in a similar manner. However, even for accounts where he agrees

- with my net salvage analysis, the proposed net salvage percents are different from
   mine because there is a different adjustment for net salvage.
- 3 Q. Could you discuss Mr. Pous' specific proposals for changes to your net
  4 salvage estimates?
- A. Yes. I will only discuss in detail those accounts that Mr. Pous has criticized directly. For those accounts that he proposes a change based solely on a change in the interim survivor curve estimates, Mr. Pous' changes are inappropriate because his methodology and estimates for accounting for interim retirements are inadequate, as I have discussed previously.
- Q. Are there any general criticisms of your unadjusted estimates that Mr. Pous
   makes that you would like to address?
- 12 A. Yes, for a number of accounts Mr. Pous notes that the mix of investment for plant 13 currently in service is different from the mix of investment reflected as 14 retirements in the historical database we relied on for our net salvage analysis. He 15 argues that as a result the historical database is not reflective of future interim net 16 salvage.
- 17

He is incorrect in this assertion. Our net salvage estimates for production plant accounts are estimates of net salvage for *interim* retirements. Not all of the plant in service will be retired as interim retirements; instead, a large amount will be final retirements when an entire generating unit is taken out of service. As such, the mix of investment for interim retirements will necessarily be different than that of the entire plant in service for each account. Thus, what is important is that

the plant retired as reflected in FPL's historical database is representative of the type of property that will be retired in the future as interim retirements. In the wast majority of cases where Mr. Pous attempts to make this argument, past interim retirements are indicative of future interim retirements. Where this is not the case, I have placed less weight on these retirements in my analysis.

6

Another argument Mr. Pous makes for a number of accounts is that removal costs that occur as a result of the replacement of property for conversion to combined cycle facilities have been recorded incorrectly. He claims that these costs should have been applied to the new asset instead of to cost of removal. As I will discuss later in my testimony, in the section "Mass Property Net Salvage," this argument is based on a flawed interpretation of the Uniform System of Accounts and should be rejected.

#### 14 Q. Please discuss Account 311 Structures and Improvements.

A. For this account I selected a net salvage estimate of (15)%, which I have reduced
to (5)% to account only for interim retirements. To put these figures in context,
the historical average is (16)% and the current approved estimate is (9)%.

18 Q. Mr. Pous claims that it is appropriate to place more weight on recent history
 19 for this account. Do you agree?

A. No, I do not. There is a diverse collection of assets in this account, and different
 types of assets have different levels of net salvage. Focusing on a narrow band of
 experience has the potential to omit relevant data. For this reason, the overall
 band of experience is more important in terms of forecasting future net salvage.

| 1  | Q. | Mr. Pous claims that compared to the plant balance for this account, a               |
|----|----|--------------------------------------------------------------------------------------|
| 2  |    | disproportionate share of the historical retirements have been piping, and as        |
| 3  |    | a result this has skewed the historical data. Is this a valid claim?                 |
| 4  | A. | No, it is not. This is an example of Mr. Pous incorrect claim that the mix of        |
| 5  |    | investment in the retirement history should be the same as the mix of investment     |
| 6  |    | for plant in service. As I have discussed, what is actually important is whether the |
| 7  |    | mix of retirements reflects future interim retirements. In this case, these          |
| 8  |    | retirements are indicative of interim retirements that will occur in the future and  |
| 9  |    | Mr. Pous' assertion that they should be given less weight is incorrect.              |
| 10 | Q. | Mr. Pous claims that the retirement of a retaining wall and a cooling pond           |
| 11 |    | underdrain system in 2007 have skewed the data. Is he correct?                       |
| 12 | A. | No, these items do not skew the data. Despite what Mr. Pous claims, it is            |
| 13 |    | certainly possible that these types of retirements will be made in the future.       |
| 14 |    |                                                                                      |
| 15 |    | However, these retirements are more than offset by a large reuse salvage amount      |
| 16 |    | of \$1,443,521 in 1986. Because reuse salvage is \$0 for every other year, I have    |
| 17 |    | elected to give this entry less weight. As a result, the data still supports an      |
| 18 |    | estimate of (15)%                                                                    |
| 19 | Q. | Please discuss Account 314 Turbogenerator Units.                                     |
| 20 | Α. | For this account I have selected a zero net salvage percent. There have been years   |
| 21 |    | with high positive net salvage and high negative net salvage, however there is no    |
| 22 |    | clear pattern to the data.                                                           |

1 Mr. Pous proposes a net salvage estimate of 10%. He claims that when major 2 items of property are retired, such as rotors or stators, there is positive net salvage, 3 but when minor items are retired there is negative net salvage. He claims that this 4 is the cause of the volatility in levels on net salvage from year to year, and bases 5 his recommendation on the overall net salvage average of 8% and the five-year 6 average of 9%.

7

8 I agree with Mr. Pous that major items of property will be retired as interim 9 retirements in the future, and that in this particular account these retirements can 10 result in positive net salvage. However, a more detailed look at the underlying 11 data reveals large levels of gross salvage in the past are not likely to be indicative 12 of future levels of gross salvage. In particular, retirements in 1992 and 2003 13 account for gross salvage of \$6,739,654 and \$7,882,154 respectively. Combined, 14 this represents over 45% of the total gross salvage in the full twenty-two year 15 history. The 1992 gross salvage is related to warranty replacements at Martin 16 Unit 1 and Manatee Unit 1. The 2003 gross salvage was related to insurance 17 proceeds for a failed generator at Martin Unit 1. In both cases, the retirements 18 that resulted in these large gross salvage entries are not representative of 19 expectations for future interim retirements, and as a result should be given less 20 weight in the analysis.

21

22 23 If these retirements are excluded from the analysis, the resulting historical average indicates negative levels of net salvage for both the overall band of experience

and for the most recent five years. As a result, my estimate of zero is clearly
 justified by a detailed analysis of the historical data.

### 3 Q. Please discuss Account 322 Reactor Plant Equipment.

- A. For this account I have proposed a (5)% estimate, reduced to (4)% to be
  applicable to interim retirements. The overall average is (11)%, and the five-year
  average is (30)%. Cost of removal has also increased in the past four years.
- 7

Mr. Pous proposes to retain the (2)% net salvage estimate. He claims that the 8 9 2005 cost of removal distorts the data and as a result there is no reason to increase the estimate. The 2005 entry is somewhat atypical, and as a result I have given it 10 11 less weight in my analysis. However, even without this entry a (5)% rate is 12 justified. The overall average is (11)%, which is much higher than my estimate. 13 Other than 2005, recent years have experienced higher net salvage as well. For 14 example, 2004 had an overall average net salvage of (11)% and 2006 had (18)%. 15 Further, the overall average is also skewed by a very high reuse salvage entry in 16 1995. Without this entry the overall average would have been even higher. As a 17 result, my unadjusted estimate of (5)% is appropriate for this account.

### 18 Q. Please discuss Account 324 Accessory Electrical Equipment.

A. For this account, I have recommended an unadjusted (20)% net salvage estimate
which becomes (12)% estimate after adjusting for interim retirements. The
overall average for net salvage for this account is (19)% and the most recent fiveyear average is (41)%.

Mr. Pous proposes to keep the (2)% estimate, which he adjusts to (.06)% based on his interim retirement rate. Mr. Pous' argument is based on the fact that the total number of retirements is small compared to the total plant balance. As have discussed previously, the total plant balance is irrelevant; we are only concerned with interim retirements. As a result, the historical data is appropriate for determining an interim net salvage rate, and the unadjusted estimate of (20)% that I have recommended is justified for this account.

### 8 Q. Please discuss Account 341 Structures and Improvements.

9 A. For this account I have recommended an unadjusted net salvage estimate of
10 (25)%. The overall average is (20)%, and is skewed by large gross salvage
11 amount of \$1,512,327 in 2007. Without this amount, net salvage would be nearly
12 twice as negative.

13

14 Mr. Pous proposes a net salvage estimate of zero, which is inexplicable given that other than in 2007, there has been either zero or negative net salvage in every year 15 16 the Company has experienced retirements. His proposal rests on three main 17 arguments, none of which have any validity. First, he claims that I "chose to 18 ignore a significant positive level of net salvage that occurred in 2007 without any 19 investigation." This is simply untrue. I have not ignored this gross salvage 20 amount, although because it is an anomaly I have given it less weight than the rest 21 of the database. Again, if this entry were ignored completely, the overall average 22 net salvage would be close to (40)%. I have not selected a (40)% net salvage; 23 instead, I have chosen a (25)% rate in part because of the 2007 year.
| 1 | I have addressed Mr. Pous' other two arguments previously. First, he argues that   |
|---|------------------------------------------------------------------------------------|
| 2 | recent removal costs related to the conversion of a facility to a combined cycle   |
| 3 | plant should have instead been assigned to the cost of the new additions. As I     |
| 4 | have discussed, his reasoning is flawed and should be rejected. Second, he claims  |
| 5 | that recent retirements are not reflective of the overall mix of investment in the |
| 6 | account. As I have discussed, it is only important that past retirements reflect   |
| 7 | future interim retirements. In this case, they do.                                 |

8 Q. Please discuss Account 342 Fuel Holders, Producers and Accessories.

- 9 A. For this account I have proposed an unadjusted net salvage estimate of (5)%. The
  10 overall average is (4)% and the most recent five-year band is (19)%.
- 11
- Mr. Pous proposes a net salvage estimate of zero. His proposal is based on his argument that the mix of investment for retirements is not reflective of the mix of investment for the entire account. As I have discussed, this argument is flawed. Past retirements are indicative of the types of property that will be retired as interim retirements in the future, and as a result the estimate I have made based on the historical data is appropriate.
- 18 Q. Please discuss Account 343, Prime Movers General.
- A. For this account I have recommended a (10)% unadjusted net salvage estimate.
  The overall average for this account is (24)% and the most recent five-year average is (14)%.
- 22
- 23 Mr. Pous proposes an estimate of zero. He first argues that removal costs

| 1  |    | associated with conversion to combined cycle facilities should have been charged   |
|----|----|------------------------------------------------------------------------------------|
| 2  |    | to new additions. As I have discussed this argument is flawed.                     |
| 3  |    |                                                                                    |
| 4  |    | Additionally, Mr. Pous notes two large negative gross salvage amounts However,     |
| 5  |    | even ignoring these amounts there is a clear history of removal costs associated   |
| 6  |    | with retirements in this account. As a result, Mr. Pous' proposal of zero is not   |
| 7  |    | reflective of the company's historical data.                                       |
| 8  | Q. | Please discuss Account 344, Generators.                                            |
| 9  | A. | For this account I have recommended a net salvage estimate of (100)%. The          |
| 10 |    | overall average is (98)% and the most recent five-year average is (136)%           |
| 11 |    |                                                                                    |
| 12 |    | Mr. Pous recommends a net salvage estimate of zero. His estimate is based on       |
| 13 |    | three main arguments. First, he makes his unwarranted claim that the data cannot   |
| 14 |    | be relied on because it includes conversions to combined cycle facilities. Second, |
| 15 |    | he repeats his flawed argument that the mix of investment for retirements needs to |
| 16 |    | be similar to the mix of investment for the current plant balance. Finally, he     |
| 17 |    | makes the claim that "the scrap or resale value of investment in this account is   |
| 18 |    | likely to increase" yet offers absolutely no evidence to support this claim.       |
| 19 |    |                                                                                    |
| 20 |    | Given that Mr. Pous offers no legitimate reason to deviate from the Company's      |
| 21 |    | actual historical experience, my estimate is appropriate for this account.         |

| 1  | Q. | Please discuss Account 345, Accessory Electric Equipment.                             |
|----|----|---------------------------------------------------------------------------------------|
| 2  | A. | For this account I have proposed a net salvage estimate of (10)%. The overall         |
| 3  |    | experience is $(7)\%$ and the most recent five-year band is $(14)\%$ .                |
| 4  |    |                                                                                       |
| 5  |    | Mr. Pous recommends a net salvage estimate of zero. Mr. Pous' argument is             |
| 6  |    | based on his flawed argument that the mix of investment for retirements must be       |
| 7  |    | similar to the mix of investment for the current plant balance. In this case he is    |
| 8  |    | again incorrect, as retirements reflect the types of property that will likely be     |
| 9  |    | retired as interim retirements in the future.                                         |
| 10 |    |                                                                                       |
| 11 |    | As a result, Mr. Pous' estimate of zero is clearly inappropriate given the levels of  |
| 12 |    | negative net salvage the company has experienced. My estimate of (10)% is an          |
| 13 |    | appropriate reflection of the overall retirement history and the more recent trend    |
| 14 |    | towards more negative net salvage.                                                    |
| 15 |    |                                                                                       |
| 16 |    | MASS PROPERTY AVERAGE SERVICE LIVES                                                   |
| 17 |    |                                                                                       |
| 18 | Q. | What does Mr. Pous assert about your analysis of average service lives?               |
| 19 | А. | Mr. Pous reviewed the statistical analysis that I performed and made selections of    |
| 20 |    | average service lives that were biased towards longer lives. By relying on            |
| 21 |    | different sections of the data he was able to skew the results so that they appear to |
| 22 |    | support his selections.                                                               |

#### 1 Q. Is his criticism valid?

2 A. No, as I will explain below.

### **3 Q.** What were the results of his analysis?

- 4 A. Mr. Pous claims he reviewed all accounts in mass property for transmission,
  5 distribution and general plant and made adjustments to 18 of the 36 accounts. Of
  6 the 18 accounts he made adjustments to, all were biased towards longer lives.
- 7 Q. Do you agree with his methodology?
- 8 A. No I do not.

## 9 Q. Could you briefly explain how a statistical life analysis is performed?

10 Yes, my direct testimony explains in detail with examples of how a statistical A. 11 analysis of Company data is performed using the Retirement Rate Method. 12 Exposures and retirements are reviewed by account by age. From this 13 information, a survivor ratio is developed and ultimately a survivor curve. These 14 survivor curves are then compared to the Iowa Curves, which were developed in 15 the industry through an extensive process of observation and classification of the 16 ages at which industrial property retires. These Iowa Curves are used and 17 accepted throughout the industry. The Iowa curves, their development, and their 18 use are further explained in my direct testimony.

19

## Q. How is this curve fitting performed?

A. Curve fitting and selection of survivor curves is described in detail in "The
Estimation of Depreciation" by Fitch, Wolf and Bissinger. As described in that
publication curve fitting is done by a combination of two methods, graphically
matching and mathematical matching.

 Q. How does Gannett Fleming, use the above mentioned methodology?
 A. Gannett Fleming, Inc. uses a combination of visual curve fitting and mathematical matching to develop the "best" fitting curve.

4 Q. Does Mr. Pous use the same method?

- 5 A. No. he does not. It appears Mr. Pous simply uses a visual curve fitting with no 6 statistical analysis to determine if his curve is really the "best" fit overall. He 7 relies mainly on the earlier retirements of an account to make his final curve 8 selection.
- 9 Q. Please explain how you determined your proposed curves and lives for the
  10 mass property accounts.
- 11 A. The process included a number of steps:
- The process began with FPL data, which was reviewed with FPL personnel
   for any irregularities.
- I then performed statistical analysis known as the Annual Rate Method on all
   accounts, this methodology is described in my direct testimony including
   visual and mathematical curve fitting.
- 17 3. I incorporated information from FPL interviews with O&M personnel.
- 18 4. I incorporated any information gathered on our field visits.
- 19 5. I reviewed the current approved average service lives and curves.
- 20 6. I compared initial results with industry statistics.
- 21 7. I then made my final selections.
- 22 Q. What were the results of your analysis?
- 23 A. Out of the 36 mass property accounts I increased the lives in 22 accounts,

1 decreased the lives in 4 accounts and left 10 accounts as they were.

# Q. Please summarize how Mr. Pous developed his proposed lives and curve selections.

- A. Mr. Pous reviewed the same data I did but did his curve fitting based on visual
  examination, relying mainly on the earlier years of retirements. He then used
  industry averages to justify his selections.
- 7 Q. Is he correct in relying mainly on the earlier years of retirement?
- A. No, he is not. Robley Winfrey, considered the dean of depreciation and life
  analysis, states in Bulletin 125 on page 91 (see Exhibit CRC-6) that when doing
  curve fitting, the emphasis should be placed not on the first 20% of the curve or
  the last 20% but rather on the information in the middle years. Mr. Winfrey
  conducted detailed analysis of the probable error involved in fitting a smooth
  survivor curve to an observed life table with varying percentages surviving. He
  concludes:

"When survivor curves are to be classified according to the 18 15 16 types and the probable average life to be determined, it is 17 recommended that more weight be given to the middle portion of the survivor curve, say that between 80 and 20 percent surviving, 18 19 than to the forepart or extreme lower end of the curve. This inner 20 section is the result of greater numbers of retirements and also it 21 covers the period of most likely the normal operation of the 22 property."

23

1 Mr. Pous proposes exactly the opposite. For the most part, he agrees with my 2 analysis for the middle years of retirements. However, he places much more 3 weight on the earlier years, in contradiction to Mr. Winfrey's recommendations.

4

5 In my opinion, the curves I chose are a good fit both graphically and 6 mathematically and they are a better fit than Mr. Pous' suggestion. While I 7 placed the most emphasis on the intermediate years as recommended by Mr. 8 Winfrey, I also did take into account the same early years that Mr. Pous over-9 emphasizes.

10 Q. Mr. Pous claims that more weight should be placed on data points that
11 reflect larger dollar levels of exposures. Is he correct in this assertion?

A. No, he is not. While it is important that exposures contain a statistically
significant sample size, the absolute dollar amount is unimportant. The data
points Mr. Pous chooses to ignore contain significant levels of exposures. By
focusing on the absolute dollar amount, Mr. Pous ignores the more meaningful
portion of the survivor curve – that is, the middle portion of the curve between
80% and 20% surviving.

18 Q. Mr. Pous accuses you of relying on the "tail" of the curve is this true?

A. This is not true. As mentioned above, I considered early years and intermediate
years with very little or no emphasis on the tail of the curve.

Q. Throughout his testimony, Mr. Pous uses industry statistics to justify his
 increase in average service lives, do you agree with his use of industry
 statistics?

A. Definitely not. Mr. Pous use of industry averages to justify his increases is
completely wrong. Average service lives can vary tremendously from company
to company. Some of the reasons for different service lives are geographical
location, maintenance practices, past accounting practices, continuing property
records systems, commission, weather, etc. This is similar in saying the life of a
Chevrolet, a Mercedes and a Ford pickup are all the same without even
considering their different uses, the way they are made, their drivers, etc.

8

### Q. Did you use industry statistics?

9 A. Yes, I used industry statistics to compare the range of curves and lives to the 10 curves and lives I was proposing. If the lives were quite different from lives 11 being used for similar property in the industry then I investigated why. If data is 12 available in the detail it is at FPL then there is no need to rely on industry 13 averages other than for preliminary comparison purposes. If there is no data 14 available for a specific account, reliance on industry statistics may be all that is 15 available.

Q. Mr. Pous, in his account-by-account analysis, often references that you used
 different lives in depreciation studies for other companies than the lives you
 are proposing here for the same accounts. Is this true?

A. Yes, that is true. As I mentioned previously there are a number of reasons why
 one company uses a certain average service life and another company uses a
 longer or shorter life. These reasons include geographical location, maintenance
 practices, accounting practices, past commission decisions, outside contractor
 work, continuing property records, etc. Each company is independent. I also

want to point out that Mr. Pous also has used different lives in various
 depreciation studies. For example, he agreed with a 60-year life for easements in
 Nevada and is now recommending 95 years.

4 Q. Would you please provide an account-by-account analysis of your proposed
 5 curves and average service lives versus Mr. Pous recommendations?

A. Yes. I will start with Account 350.2, which is Transmission Easements. For this
account, I proposed retaining the current 50-year average service life. The results
of the statistical analysis were poor as there are not many retirements in this
account. The 50 years is within the industry range of 40-60 years. There is no
reason to warrant a change from the current approved.

11

Mr. Pous increased the life to 95 years as a "conservative estimate." This is 12 absurd; the maximum life of the transmission poles, towers, conductor, etc. would 13 only be half the maximum life used for the easements. He attempts to justify his 14 recommendation by saying other companies have used lives up to 70 years. 15 Perhaps this is true, but none even approach 95 years. He also attempts to taint 16 17 my selection by saying that I used 60 years in a recent case in Nevada, Docket 18 No. 06-11023. This statement is correct as far as it goes, but as I mentioned 19 previously there are different circumstances between companies. It is interesting to note that in that same case in Nevada, Docket No. 06-11023 Mr. Pous also 20 21 accepted 60 years, which is much farther from his proposed life in this docket 22 than it is from mine.

It should also be noted that in a Florida Public Service Commission Staff Report
 on depreciation in Docket No. 950359-EI, the Staff proposed that FPL use a 50 year life for Transmission Easements.

4

# Q. What is the difference in Account 353, Transmission Substation Equipment?

A. In this account I proposed increasing the curve and life from 36 R1.5 to a 38 R1.5.
The statistical analysis was good for this account and the data provided a good fit
to the 38 R1.5 curve and life. This curve was also the best fitting curve
mathematically. This curve was within the industry range of 30-60 years.

9

10 Mr. Pous wishes to increase the life even more to 43 years. His justification is 11 that his curve fits better in the early years of retirements and that 38 years is in the 12 low range of the industry statistics. If Mr. Pous had used the early retirements 13 and the middle retirements his curve would have looked different. He is also 14 wrong that I relied only on the "tail" of the curve when making my selection. Mr. 15 Pous says because this account is largely transformers which have a longer life 16 than the remainder of the account is justification for extending life. Mr. Pous 17 incorrectly characterizes the retirement rate method as being dependent on the 18 total retirements for an account. Instead, this method takes into consideration the 19 relationship of retirements to exposures for each age within an account. Unlike 20 Mr. Pous, I am not looking at overall retirements in our statistical analysis but 21 rather at retirements compared to exposures for each age.

# 22 Q. Please discuss account 353.1 Step Up Transformers.

23 A. I lowered the life for this account based on the results of the statistical analysis

| 1  |    | from a 35 S3 to a 33 R2. The statistical analysis was good and showed a good fit    |
|----|----|-------------------------------------------------------------------------------------|
| 2  |    | for the 33 R2 both graphically and mathematically.                                  |
| 3  |    |                                                                                     |
| 4  |    | Mr. Pous increased the life to 44 years based on his curve fitting. He attempts to  |
| 5  |    | discount an early retirement saying if one were to remove it then the life would be |
| 6  |    | longer. Removing the retirement does not impact my analysis.                        |
| 7  | Q. | Please discuss Account 354 Towers and Fixtures.                                     |
| 8  | A. | For this account I elected to retain the current approved 45 R5 life and curve.     |
| 9  |    | There are very few retirements for this account and the results of the statistical  |
| 10 |    | analysis were poor. The 45 years is low for this property compared to the           |
| 11 |    | industry but I felt that there was not enough information to recommend a change     |
| 12 |    | at this time.                                                                       |
| 13 |    |                                                                                     |
| 14 |    | Mr. Pous increases the life for this account to 60 years based solely on the        |
| 15 |    | statistics of other companies. He provides no evidence that these companies are     |
| 16 |    | an appropriate comparison with FPL. He is also wrong when he states that FPL        |
| 17 |    | has surviving plant reaching the maximum life of this account. The maximum life     |
| 18 |    | for the 45 R5 life and curve is over 60 years and the oldest FPL surviving plant at |
| 19 |    | December 31, 2009, is 49 years.                                                     |
| 20 | Q. | Please discuss Account 356 Overhead Conductors.                                     |
| 21 | A. | I increased the current life from a 44 R1.5 to a 47 R1.5. The statistical analysis  |
| 22 |    | was very good and provided a good fit for the 47 R1.5 both graphically and          |
| 23 |    | mathematically. The 47-year life is within the industry range of 38-65 years. The   |
|    |    |                                                                                     |

1 Company also mentioned that wind loading is a problem and could cause shorter 2 than normal lives.

3

Mr. Pous increases the life even greater to 51 years. He states that past reconductoring has shown artificially shorter lives than will occur in the future, and concludes that this has skewed the data. This assumption on his part is not justified. He then goes on to use statistics and industry averages to justify his life increase. Industry statistics should not be used when the data for this account is excellent and fits the Iowa curve selection very nicely.

10 Q. Please discuss Account 359 Roads and Trails.

A. For this account the statistical analysis was limited because there were only few
retirements, which is typical for this property. I retained the currently approved
50-year life as there was no justification for extending it at this time. The industry
range was 40-74 and the 50 years falls within that range.

15

In a Florida Public Service Commission Report on depreciation in Docket No. 950359-EI, the Staff proposed that FPL use a 50-year life for this account, Roads and Trails. Mr. Pous increases the life for this account to 65 years but really gives no valid justification. He tries to justify his increase because I used longer lives in other cases, but as previously discussed conditions were different and unique to those cases and should not be relied upon in this case.

## 22 Q. Please discuss Account 362 Distribution Substation Equipment

23 A. I increased the life for this account from 38 R1.5 to 41 R1.5. The statistical

analysis was good for this account and the 41 R1.5 was the best fit both graphical
 and mathematically. The range of the industry was 21-55 years.

3

Mr. Pous increased the life even more, to 48 years based on his curve fit. He says that, when he removed outliers from the data, it showed increasing life to 48 years, yet he makes no indication as to what outliers he is talking about. He also attempts to justify his increase by stating that in another case I used a longer life. Again this should be discounted as the circumstances are completely different from company to company.

#### 10 Q. Please comment on Account 364 Poles, Towers and Fixtures

11 A. I increased the life for this account from a 34 R1.5 to a 37 R2 life and curve. The 12 statistical analysis produced excellent results and the 37 R2 curve produced the 13 best fitting curve and life both graphically and mathematically. The industry 14 range is 23-57 years. The Company told me they are replacing wood poles with 15 concrete poles where possible and the poles not being replaced will have a 16 program to help extend the life.

17

Mr. Pous increases the life for this account even further to 41 years. He justifies this by saying his curve is a better fit looking at earlier retirements and that because there is a plan to replace wood poles with concrete we need to extend even further. First, there are already concrete poles in the data base and the Company is not sure how many wood poles will be replaced with concrete. I am already extending the life; to extend it even further is not justified at this time. He also attempts to use industry average as a reason to extend, which is incorrect as I
 previously discussed.

- 3 Q. Please comment on Account 365 Overhead Conductors and Devices
- A. I increased the life for this account from 35 S0.5 to a 40 S0 life and curve. The
  statistical analysis was good and the 40 S0 life and curve was a good fit both
  graphically and mathematically. The industry range is 24-55 years. The main
  cause of retirements of this account is deterioration, road widening, and storms.
- 8

9 Mr. Pous increased the life even further to 43 years. To justify his increase he 10 looks at a 20-year band but provides no explanation why he would use that band. 11 Mr. Pous also uses industry averages to attempt to support his increase even 12 though the Company data for this account is excellent.

13 Q. Please comment on Account 367.6 Underground Conductor-Duct System

- A. I retained the current approved life of 38 years and a S0 curve. The statistical
  analysis was good and showed a good fit for the 38 S0 life and curve. The
  industry range was 28-53 years. There was no reason to change the current
  approved.
- 18

Mr. Pous increased the life to 40 years based on his curve fitting of the earlier retirements. He states that because 22% of the investment is tree retardant cable some recognition of additional life is appropriate. This is misleading as I am not aware that there has been an established life in the industry for tree retardant cable that indicates a life longer than 38 years.

| ٧٠ | Trease comment on Account 507.7 Onderground Conductors – Direct Burled                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A. | I increased the life slightly for this account from 34 R2.5 to 35 R2. The statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | for this account were good although the data showed that retirements had fallen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | off in the past 10 years, which would normally indicate an increasing life;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    | however, in the past couple of years, retirements started to increase again. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | increased the life slightly at this time and recommend waiting to see if the level of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|    | retirements will return to historical levels. FPL advised that they were having                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | corrosion problems and are now using conduit instead of direct buried cable. I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | would expect to see more retirements in the future.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | Mr. Pous increases the life even further at this time to 43 years. His justification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|    | for this increase is based on the slowing of retirements in the past few years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Q. | Please comment on Account 368 Line Transformers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A. | I increased the life slightly for this account from 31 L2 to a 32 L1.5. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit good both graphically and mathematically. The industry range is 26-45 years.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit good both graphically and mathematically. The industry range is 26-45 years.                                                                                                                                                                                                                                                                                                                                                                                                                        |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit good both graphically and mathematically. The industry range is 26-45 years.<br>Mr. Pous increased the life even further to 34 years. He feels his curve fitting of                                                                                                                                                                                                                                                                                                                                 |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit<br>good both graphically and mathematically. The industry range is 26-45 years.<br>Mr. Pous increased the life even further to 34 years. He feels his curve fitting of<br>the earlier retirements is a better fit than mine. He also brings up that there were                                                                                                                                                                                                                                      |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit<br>good both graphically and mathematically. The industry range is 26-45 years.<br>Mr. Pous increased the life even further to 34 years. He feels his curve fitting of<br>the earlier retirements is a better fit than mine. He also brings up that there were<br>some significant retirements in early years that may make the data suspect;                                                                                                                                                       |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit<br>good both graphically and mathematically. The industry range is 26-45 years.<br>Mr. Pous increased the life even further to 34 years. He feels his curve fitting of<br>the earlier retirements is a better fit than mine. He also brings up that there were<br>some significant retirements in early years that may make the data suspect;<br>however, FPL has not identified any unusual events that would make any impact                                                                      |
|    | statistical analysis for this account was good and the 32 L1.5 life and curve fit good both graphically and mathematically. The industry range is 26-45 years.<br>Mr. Pous increased the life even further to 34 years. He feels his curve fitting of the earlier retirements is a better fit than mine. He also brings up that there were some significant retirements in early years that may make the data suspect; however, FPL has not identified any unusual events that would make any impact on our analysis. Mr. Pous uses this as a cause for longer average service lives. |
|    | А.<br>Q.<br>А.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| 1  | Q. | <b>Comment on Account 369.7 Distribution Underground Services</b>                  |
|----|----|------------------------------------------------------------------------------------|
| 2  | А. | At this time, I retained the currently approved 34 R2 life and curve for this      |
| 3  |    | account. The life analysis showed that retirements are very small compared to the  |
| 4  |    | exposures. After 50 years there is still 90% of the plant surviving. Over 50% of   |
| 5  |    | this account is less than 20 years old. The industry range is 22-60 years, and FPL |
| 6  |    | is within that range.                                                              |
| 7  |    |                                                                                    |
| 8  |    | Mr. Pous increased the life to 41 years based on his analysis of the data and      |
| 9  |    | justified it by industry averages. I do not believe that industry averages is the  |
| 10 |    | proper method to use as I have previously discussed.                               |
| 1  | Q. | Please comment on Account 370 Distribution Meters                                  |
| 12 | A. | I increased the life for this account from a 34 S2 to a 36 R2.5. The statistical   |
| 13 |    | analysis for this account was good and the 36 R2.5 life and curve fit good both    |
| 14 |    | graphically and mathematically. The industry range is 18-43 years. This account    |
| 15 |    | consists of meters not being replaced as part of the AMI program.                  |
| 16 |    |                                                                                    |
| 17 |    | Mr. Pous increases the life even greater to 38 years. He bases his estimate on     |
| [8 |    | curve fitting using the earlier years of retirements. He does not use industry     |
| 19 |    | comparisons for this account.                                                      |
| 20 | Q. | Please comment on Account 373 Street Lighting & Signal Systems                     |
| 21 | A. | I increased this account from 20 S-0.5 to a 30 R0.5. The statistical analysis was  |
|    |    |                                                                                    |

The industry range is 22-45 years although over half the companies report lives
 30 years or less.

3

Mr. Pous increased the life even greater to 35 years. This is a significant increase of 15 years. Mr. Pous again based his estimate on the earlier retirements in this account. He also attempts to justify his estimate by stating that changes to street lighting in the past such as changing from mercury vapor to sodium vapor shortened lives, and that will not occur in the future, so therefore lives will be longer. Given that the Company did not identify any changes in the near future, I do not believe Mr. Pous has a valid basis for making this prediction.

#### 11 Q. Please discuss Account 390 Structures and Improvements

A. I increased this life from 38 S1 to a 50 R1.5. The statistical analysis was good
and showed the 50 R1.5 curve fit the data good both graphically and
mathematically. The industry range is 35 - 65 years.

15

Mr. Pous would suggest increasing the life for this account to 56 years, which is a 16 47% increase in the average service life from the currently approved life. This is 17 a significant increase. He bases his recommendation on his curve fitting of the 18 earlier retirements. Mr. Pous also states that because 64% of the account is 19 buildings, which would have a longer average service life than the ancillary 20 21 components, the life for this account should be longer.. This is misleading as the 10 buildings that make up 64% of this account also include ancillary components 22 such as roofs, air conditioning, lighting systems, etc. There is no reason to 23

| 1  |    | increase the average service life for this account 18 years based on this             |
|----|----|---------------------------------------------------------------------------------------|
| 2  |    | justification.                                                                        |
| 3  | Q. | Please comment on the Aircraft Accounts, both 390.01 fixed wing and 390.02            |
| 4  |    | rotary.                                                                               |
| 5  | A. | I recommend retaining the current 7-year life for these accounts. There was no        |
| 6  |    | statistical information available for this account. The Company has depreciated       |
| 7  |    | its aircraft over 7 years in the past and after having discussion with FPL personnel  |
| 8  |    | they plan on retiring these aircraft within the same period as the previous aircraft. |
| 9  |    |                                                                                       |
| 10 |    | Mr. Pous increases the life to 9 years. He says that, because there are still assets  |
| 11 |    | in this account from vintage 1999 then the life for aircraft should be extended to    |
| 12 |    | at least 9 years. Aircraft personnel have told me that they do have a large jet that  |
| 13 |    | will be retiring next year that is older than 7 years, but on the whole, their        |
| 14 |    | helicopters and airplanes last about 7 years.                                         |
| 15 |    |                                                                                       |
| 16 |    | MASS PROPERTY NET SALVAGE                                                             |
| 17 |    |                                                                                       |
| 18 | Q. | Did you make any adjustments to mass property net salvage percentages?                |
| 19 | A. | Yes. I reviewed the current net salvage estimates for mass property and increased     |
| 20 |    | net salvage in 14 accounts, decreased net salvage in 6 accounts and left 16           |
| 21 |    | accounts the same.                                                                    |
| 22 | Q. | Did Mr. Pous make any adjustments to your estimates?                                  |
| 23 | А. | Yes. Out of the 36 mass property accounts Mr. Pous decreased net salvage in 14        |

accounts. I will be addressing his adjustments in detail in this testimony.

# Q. Please discuss the issues that Mr. Pous took with your analysis of mass property net salvage estimates?

4 A. I would like to start with his incorrect statement on page 138 of his testimony that 5 "Limited or no cost of removal should occur with replacement activity" and his 6 reference to USOA Electric Plant Instructions 10B(2). He also claims that for the 7 retirement of property that is to be replaced, the cost of removal should be 8 charged to construction. This is also wrong. The following sections of the USOA 9 clearly state that cost of removal associated with a retirement should be charged to accumulated depreciation; the USOA does not distinguish between retirements 10 11 for replacement and retirement without replacement.

12

- Electric Plant Instruction 11(A) applies to the cost of removal that relates to
   the retirement, with or without replacement:
- 15 "...all items relating to the retirements shall be kept separate from
  16 those relating to construction...,"
- The description of Account 108, Accumulated Provision for Depreciation of
   Electric Plant, states in paragraph B states that this treatment is for retirements
   with or without replacement:
- 20"At the time of retirement of depreciable electric plant, this21account shall be charged with the book cost of property retired22and the cost of removal,"
- 23 3. Electric Plant Instruction 10(B)(2) specifies that there is no distinction

| 1  |    | between retirements with replacements and retirements without replacements:        |
|----|----|------------------------------------------------------------------------------------|
| 2  |    | " when a retirement unit is retired from electric plant with or                    |
| 3  |    | without replacement the book cost thereof shall be credited to the                 |
| 4  |    | electric plant account in which it is included, determined in the                  |
| 5  |    | manner set forth in Paragraph D below. If the retirement unit is of                |
| 6  |    | depreciable class, the book cost of the unit retired and credited to               |
| 7  |    | electric plant shall be charged to accumulated provision for                       |
| 8  |    | depreciation applicable to such property. The cost of removal and                  |
| 9  |    | salvage shall be charged or credited, as appropriate, to such                      |
| 10 |    | depreciation account."                                                             |
| 11 |    | 4. Electric Plant Instruction 10(F) states:                                        |
| 12 |    | "The book cost less net salvage of depreciable electric plant shall                |
| 13 |    | be charged in it's entirety to Account 108 Accumulated Provision                   |
| 14 |    | for Depreciation of Electric Plant in Service"                                     |
| 15 | Q. | Are Mr. Pous' assertions correct?                                                  |
| 16 | A. | No. Mr. Pous' interpretation of the accounting for the replacement of property is  |
| 17 |    | wrong. As these electric plant instructions point out, salvage and cost of removal |
| 18 |    | should be recorded with the retirement and not as part of new construction.        |
| 19 | Q. | Could you respond to the other allegations made by Mr. Pous concerning             |
| 20 |    | your overall analysis of mass property net salvage?                                |
| 21 | A. | Yes. Mr. Pous summarizes my analysis as "nothing more than acceptance of           |
| 22 |    | simple arithmetic averages of historical data." This is completely wrong. The      |
| 23 |    | estimates were not simple arithmetic averages but instead were based on informed   |

1 judgment that incorporated analysis of historical cost of removal and gross 2 salvage data, as well as expectations with respect to future levels of removal costs 3 and gross salvage. The historical data included in the statistical analysis were cost of removal and gross salvage compared to retirements for a 22-year period, 1986 4 5 through 2007. This data was separately analyzed as percents of the original cost 6 retired on annual, 3-year moving average and the most recent 5-year average 7 The average percent for the entire study period 1986-2007 also were bases. 8 determined. Cost of removal and gross salvage are calculated separately in order 9 to assist in detecting trends in these components of net salvage. Moving averages 10 are used to smooth the indications of net salvage that can fluctuate from year to 11 year. Data that appeared unreasonable was either removed from the analysis or 12 given less weight in the analysis. Input from FPL personnel was evaluated and 13 incorporated in the final results. Results were also compared to other industry 14 companies for reasonableness.

# 15 Q. Mr. Pous alleges that you of picking and choosing results to obtain more 16 negative net salvage levels than would otherwise be the case, is this true?

A. Absolutely not. I was looking for trends in the data. Sometimes the data was
consistent over the entire 22-year period and a trend could be developed but not
always, there were instances where the trend was recent and more weight was
placed on this data. In no way did I analyze data with a particular result in mind.

Q. Mr. Pous criticizes you for removing reimbursed retirements from the data,
 even though these events occur on an annual basis and are not outliers. Is
 this true?

4 A. Again this is a false accusation by Mr. Pous. All reimbursed retirements were not 5 removed from the analyses. Reimbursed retirements that were considered 6 reoccurring on a regular basis were included. However, government mandated 7 projects that were considered nonrecurring were removed. These included 8 relocations for the Department of Transportation and the installation of new 9 Metrorail line. Retirements related to hurricanes were also removed from the 10 data.

11

It should also be noted that while Mr. Pous recommends including reimbursed retirements in the analysis for net salvage, which would likely result in a reduction of depreciation expense, he does not recommend including them in the analysis for the service lives of FPL assets, which would result in an increase in depreciation expense. It is neither systemic, nor rational, to include these retirements for one type of analysis but not for another. I have excluded these retirements from both sets of analyses.

19

# Q. Could you discuss Mr. Pous' reference to "economies of scale."

A. Economies of scale in construction occur when projects increase in size. For instance, when removing poles, the cost per pole would decrease if a utility was to remove ten poles on a street versus one pole on the same street. Mr. Pous would

have us believe that, in the future, more frequent retirements will be occurring and
 therefore there will be savings in the unit cost of removal.

### 3 Q. Do you agree?

A. According to the data we used in our life analysis retirements have been occurring
very slowly over the past years, retirement activity may increase as plant gets
older, however, retirements are spread over a long period of time and there is not
enough information that points to any significant reduction in removal costs from
economies of scale. Retirements would need to occur in large quantities in areas
of close proximity to receive any benefits.

#### 10 Q. Does growth affect how Mr. Pous anticipates economies of scale?

A. Yes, load growth leads to addition and retirement activity that tends to keep the
age of retirements from increasing to an age equal to the average service life.
Therefore, retirement age is unlikely to increase enough for any further economies
of scale than have already occurred.

- 15 Q. Mr. Pous says your proposed net salvage percents are among the most
   16 negative in the industry, is that true?
- A. No. This is another of Mr. Pous false claims. I compared the results of my
  analysis to the industry and FPL's net salvage percentages are well within the
  industry range. Some accounts were in the high range and some were in the lower
  range, but there was no consistent trend in either direction.
- Q. Could you discuss net salvage for each account Mr. Pous makes adjustments
  to?
- 23 A. Yes. For all Mr. Pous' criticism of my methodologies he has only made

| 1 | adjustments to 14 of the 36 accounts analyzed. Of course, just as his service life |
|---|------------------------------------------------------------------------------------|
| 2 | adjustments all increased my life estimates, he is again biased toward decreasing  |
| 3 | all my net salvage estimates.                                                      |

## Q. Please discuss Account 353, Station Equipment.

A. For this account, I changed the currently approved rate of 5% to (10)%. The
historical data showed a definite trend towards negative net salvage. The industry
range is 5% to (20)%.

8

9 Mr. Pous instead recommends zero net salvage. He claims that unusual values in 10 the database have skewed the data and as a result my estimate is inappropriate. 11 He claims to have investigated these values, but the results of his "investigation" are in some ways bizarre. He claims that significant cost of removal experienced 12 in 2007 is driven by the retirement of a building with a high level of asbestos. Yet 13 substation buildings are not in this account; they are instead in Account 352. 14 15 Further, the work order he cites in discussing this retirement clearly indicates that the retirement is for Account 352 and is dated May 29, 1990. It is entirely unclear 16 how this retirement affects the analysis for Account 353, Station Equipment. 17

18 Q. Please discuss Account 354, Towers and Fixtures.

A. For this account I retained the currently authorized (15)% net salvage. The
industry range for this account is 0 to (50)%. The data for this account is
sporadic, but does show a general decline in gross salvage percents and a general
increase in cost of removal percents.

Despite this trend, Mr. Pous instead recommends a net salvage percent of zero. Mr. Pous' argument hinges on his claim that reimbursed retirements should be included in his analysis. As I have discussed, this is not a valid claim.

4

5 Mr. Pous specifically claims that the database used for analysis for this account conflicts with other provided data. In particular, the data used for the study 6 7 differs from the booked cost of removal provided for OPC's first set of interrogatories and production of documents. The discrepancy is for transaction 8 9 year 2006 and is related to large hurricane related retirements. Retirements 10 related to hurricanes have been removed from all the databases analyzed in 11 determining life and salvage parameters as they are unexpected events that are not 12 indicative of the future activity for an account.

#### 13 Q. Please discuss Account 355, Poles and Fixtures.

A. For this account I have elected to retain the currently authorized net salvage
percent of (50)%. The net salvage rates over the past five and fifteen years are
(55)% and (49)% respectively. Removal costs for wood poles are expected to
increase due to changes in regulations.

18

Mr. Pous makes a number of arguments for this account that I have addressed previously. He claims that that reimbursed retirements and hurricane retirements should be included in the net salvage analysis for this account and that "economies of scale" will reduce removal costs in the future. As previously discussed, these arguments are flawed and should be rejected.

1 Mr. Pous also argues that I have ignored recent trends in the data, which he states 2 is inconsistent with my analysis for Account 355. He claims that there is a trend towards lower levels of negative net salvage in recent years. However, a more 3 4 detailed look at the history of this account reveals that there is more of a cyclical 5 trend, as opposed to a trend of either strictly increasing or strictly decreasing 6 amounts of net salvage. Throughout the history of this account, both cost of 7 removal and salvage have varied from higher to lower levels as a percent of 8 retirements. Given that the historical trend is cyclical, it is appropriate to put 9 more weight on the full band of experienced net salvage than on recent bands.

#### 10 Q. Please address Account 356, Overhead Conductors and Devices.

A. For this account, I have proposed to change the currently authorized net salvage
percent of (45)% to (50)%. The overall average net salvage for this account is
(50)%, and rolling bands show consistent negative net salvage. The industry
range is 0 to (80)%.

15

Mr. Pous proposes a (40)% net salvage estimate. He bases his estimate on his stance on reimbursements, his stance on economies of scale, and on the scrap proceeds for copper wire. I have discussed his arguments on reimbursements and economies of scale earlier in my testimony. His arguments on these issues should be rejected.

21

22 Regarding future gross salvage from copper wire, Mr. Pous' argues that higher 23 scrap prices for copper will lead to future gross salvage for copper wire to be

higher than the levels the company has historically experienced. This argument is 1 2 quite thin. First, as he himself points out, only 3% of the account is copper wire. 3 Additionally, the composite remaining life for this account is over 36 years. Mr. Pous cannot possibly know copper price trends 36 years into the future. Yet he 4 claims on page 159 of his testimony that gross salvage will be "disproportionately 5 6 higher" in the future than has been experienced in the past. This claim is highly 7 speculative and should be rejected, especially because it pertains to such a small 8 portion of this account.

9

### Q. Please address Account 364, Distribution Poles, Towers and Fixtures.

10 A. For this account, I changed the currently authorized net salvage percent of (40)% 11 to (125)%. Recent activity suggests that net salvage is significantly negative – as 12 much as (193)% in 2006. The overall band of my analysis experienced an 13 average of (76)% net salvage, but the most recent five-year band was (157)%. 14 While my estimate of (125)% is at the upper (more negative) industry range of 15 (10)% to (135)%, industry-wide the trend is for increasingly negative net salvage 16 estimates. More recent studies I have performed indicated experienced net 17 salvage for this account beyond the upper range of my industry database.

18

Mr. Pous proposes a net salvage percent of (60)%. This estimate is far less negative than the overall average of (76)%, and less than 40% of the five-year average experienced net salvage of (157)%. FPL has experienced at least (111)% net salvage for each of the past five years, and has only experienced net salvage

1 below (84)% in two of the past ten years. Clearly Mr. Pous has proposed an 2 estimate that is far less negative than the Company's actual experience. 3 4 Mr. Pous' again argues that reimbursed retirements should be included in the 5 analysis. As I have discussed, this argument should be rejected. However, it is 6 important to note that Mr. Pous' proposal of (60)% is even lower than the 7 resulting average net salvage if these retirements are included in the database. 8 9 Mr. Pous also appears to claim that because 18% of the investment in this account 10 is concrete poles, concerns about the effect of regulations on the removal costs for 11 wood poles are irrelevant. This is a confusing claim given that in his discussion 12 of Account 356, he argued that copper wire - which comprised only 3% that 13 account - would have a significant impact on future gross salvage. If Mr. Pous 14 really believes that speculative future scrap values affecting 3% of one account 15 will have a major impact on future expectations of net salvage, then surely he 16 must concede that actual regulations that will increase removal costs for the 17 majority of property in this account will have an impact on future net salvage. 18 Mr. Pous attempts to bolster his argument by claiming that future additions will 19 lead to a higher proportion of the investment in this account to be concrete poles. This is an irrelevant point, as the scope of the Depreciation Study relates only to 20 21 plant in service, not to future additions. 22

On page 163 of his testimony, Mr. Pous' final argument is that removal costs have

63

been higher in the past five years because that time frame is "associated with a significant increase in hurricane-related events, which may partially explain what appears to be excessively high negative net salvage levels." This argument is flawed. FPL has removed hurricane related retirements from its analysis, and as a result, any increased removal costs due to hurricanes during this time period would have no impact on FPL's estimate.

- Q. Also on page 163 of his testimony, Mr. Pous claims that his estimate for this
  account is conservative because it "still provides the company with
  approximately seven times the average level of negative net salvage it has
  experienced over the past 22 years and 138% of the highest level the
  Company has ever experienced." Is this a valid comparison?
- A. No, Mr. Pous makes an inaccurate comparison. His claim is that with a (60)% net salvage estimate, the annual accruals related to net salvage for each year will still exceed the company's actual experienced net salvage in the past. This is a suspicious argument. Comparing the absolute levels of historical net salvage and the absolute levels of future net salvage accruals is not a relevant exercise, as past and future levels of retirements are not the same.
- 18

A net salvage estimate is not an effort to estimate the net salvage amounts experienced by FPL in its historical retirements, but instead is an estimate used to recover the future costs associated with retiring plant currently in service. Future costs will likely be substantially greater than historical costs on absolute terms because of growth and inflation. As a result, it is more appropriate to compare the

ratio of net salvage costs to retirements. Using this comparison, Mr. Pous'
 estimate is well below FPL's actual experience. Thus, Mr. Pous' proposal is not
 at all conservative. Instead, significantly under recovers future net salvage when
 compared to FPL's actual net salvage experience.

#### 5 Q. Please address Account 365 Overhead Conductors & Devices.

A. For this account I increased the net salvage from the current (50)% to (100)%
based on the trends of comparing cost of removal and salvage to retirements.
Although gross salvage has been recently increasing, the cost of removal is
increasing tremendously. In the past 5 years the net salvage is (91)% and the past
two years are over (100)%. Using rolling bands also shows net salvage at (99)%.

11

Mr. Pous attempts to taint the data by pointing out a negative gross salvage amount in 2006 and saying that I did not investigate this amount. I was aware that this amount was probably recorded incorrectly and deemed it an outlier; however, by assuming an average salvage amount for this year, the net salvage percent would still be over 90% negative.

17

Mr. Pous also attempts to say that I manipulated the data by excluding certain reimbursements. Neither the Company nor I manipulated the data and any reimbursements that should have been excluded were properly excluded. He also brings up an argument that 10% of the account made up of switches is skewing the data. This is not a valid point because we are looking at all retirements not just 10% of the investment.

1 Q. Please discuss Account 366.6, Underground Conduit – Duct System. 2 A. For this account, I recommend to reduce the currently authorized estimate of (10)% to (5)%. The twenty year and five year net salvage rates are (3)% and 0%3 respectively. The three-year rolling bands indicate decreasing (less negative) net 4 5 salvage. The industry range is 0 to (50)%. 6 7 Mr. Pous again bases the majority of his argument on the fact that reimbursed 8 retirements have been removed from the analysis. This argument should be 9 rejected for reasons I have discussed previously. 10 11 Mr. Pous also makes the claim that most utilities abandon underground conduit in 12 place, except where it is economical do remove it. In other words, he asserts that 13 the only instances where the company would remove conduit gross salvage would 14 exceed the removal cost. This is simply not true. There are many instances of the removal of underground conduit where removal cost exceeds gross salvage, such 15 16 as when a third party accidentally digs up an underground line and the conduit 17 needs to be replaced. The net salvage analysis disputes Mr. Pous' assertion as 18 well, as the average net salvage over FPL's history is negative. 19 Please discuss Account 367.6, Underground Conductors and Devices - Duct Q. 20System. 21 For this account, I recommend keeping the existing estimate of (5)%. Cost of Α. 22 removal is decreasing, but net salvage overall is still negative. The industry range 23 for this account is 25 to (40)%.

Mr. Pous argues that the data I have relied indicates that an estimate of zero net 1 salvage is more appropriate. I disagree. The company has experienced negative 2 net salvage in the vast majority of years in its historical database. The three-year 3 moving averages, which smooth out noise in the data, show negative net salvage 4 for almost every year as well. Additionally, Mr. Pous' analysis is heavily 5 weighted towards more recent three-year moving averages. However, these 6 averages have been heavily impacted by large final gross salvage amounts in 2006 7 and 2007 – amounts that total over 30% of the final salvage in the entire historical 8 database. Mr. Pous emphasizes these years without any indication as to whether 9 10 these levels of gross salvage will continue into the future. A more balanced 11 analysis of FPL's history justifies maintaining the currently authorized estimate of 12 (5)%.

### 13 Q. Please discuss Account 368 Line Transformers.

A. I reduced the current (35)% net salvage to (25)%. This is based on a decline in
cost of removal over the recent years and practically no gross salvage. The
overall average of 22 years is (25)% and is similar for the rolling bands and the
more recent 5-year band.

18

Mr. Pous would like to reduce the net salvage even more to (20)% based on his assumption that "the Company manipulated the data" on page 168 of his testimony. This is not correct. He also uses some minor negative gross salvage amounts to question my results but has no facts for lowering my recommendation.

**O**.

#### Please discuss Account 369.1, Services – Overhead.

A. For this account I increased the net salvage from (60)% to (125)%. The data
clearly shows that net salvage is increasing, to over (200)% in some of the more
recent years. At the same time gross salvage has been decreasing. The 5-year
average is (189)% and the 3-year rolling bands show close to (200)%. Mr. Pous
sees the trend but limits his increase in net salvage to (85)%.

7

8 Mr. Pous refuses to accept the fact that the net salvage is showing percentages 9 well over (100)% and into the (200)%s range because the Company cannot 10 provide a reason why FPL has higher net salvage for Account 369.1 than the other 11 industry companies I used in my industry comparisons. This is a ridiculous 12 There are many factors that influence this amount such as the argument. 13 individual company's accounting policies, O&M practices, management policies, 14 etc. As such, a direct comparison of FPL to the companies in my industry group would not be an "apples to apples" comparison. Just because the Company 15 16 follows its own practices is not a reason for Mr. Pous to reject the results of this 17 analysis.

18

Mr. Pous also questions FPL accounting policies on replacement and replacing as
 a reason for high cost of removal for this account. He is incorrect; the Company
 follows the proper methodology for accounting as previously discussed.

22 Q. Please discuss Account 369.7, Services – Underground.

23 A. For this account I elected to not change the current authorized net salvage of

(10)%. The cost of removal shows an increasing trend over the past few years,
which on its own could suggest using a more negative net salvage value, but the
recorded gross salvage is suspect for 2005 and 2006. Therefore, I left the net
salvage unchanged at (10)%, which is conservative in view of the fact that it has
been more negative in some of the last few years.

6

Mr. Pous attempts to confuse the record by discussing that there was higher cost of removal in years 2004 to 2007 for underground services than there was for years 2000 to 2003 when there were more underground services retired. I am not sure what point he is trying to make. The net salvage percent is developed by the relationship of the cost of removal and gross salvage to the total retirements made in any given year, all based on dollars retired not quantities.

13

He then states that the Company policy is to abandon in place direct buried cable and this should account for zero net salvage. Again we are looking at retirements of the entire account not just a small piece.

17 Q. Please discuss Account 370, Meters.

A. Mr. Pous' objection to my net salvage estimate is based on the fact that the company will be retiring approximately 4.3 million meters over the next five years as a result of its AMI program. He states that this project will alter the experienced net salvage in the future. His claim might be correct, but it has absolutely no bearing on the contents of this account. All meters that will be retired due to the AMI program have been removed from this account into a

- capital recovery schedule. The (55)% estimate that I have made for this account
   relates only to those meters that will *not* be retired for the AMI program.
- 3

#### Q. Please discuss Account 370.1, Meters – AMI.

A. The recovery of the meters that are being retired and replaced with AMI meters is
being proposed to be recovered over a four-year amortization period as described
in Table 7 in Exhibit CRC-1, page 55. There is no reason at this time to estimate a
different net salvage percent for the new AMI meters than for the meters that are
not being replaced. Therefore, I propose to use (55)% net salvage for the new
AMI meters.

#### 10 Q. Please Discuss Account 390 Structures and Improvements.

A. For this account I reviewed the retirements over the 22-year period and observed
that net salvage was either zero or in most cases negative. As a matter of fact in
the past 10 years net salvage in negative in all but 2 years and rounding to (10)%
or more. The past five year average is (10)%. Therefore, I proposed to increase
net salvage from zero to (10)% for this account.

16

Mr. Pous changes his whole approach to net salvage for this account. He claims because FPL has not retired any major buildings, historical data in this account is for other assets such as roofs, HVAC, ceilings, and other ancillary parts of the structure. These are exactly the type of structures and equipment that are expected to retire in the future. These assets comprise the bulk of this account. He attempts to say that this account is made up of 10 buildings; however, he forgets to say that these buildings are made up of the previously mentioned

retirement units. These assets have had and are expected to have a net salvage of
 (10)%.

3

Mr. Pous states that the trend in commercial real estate has been toward 4 5 substantial appreciation. I am not sure what state he is talking about, but it is 6 certainly not the case in Florida since 2005. He says FPL's offices are worth much more than their original cost. This is misleading. If FPL were to retire any 7 8 of their buildings they would probably be worthless as-is, without improvements. 9 Only the land would be of value. However, the land is owned by shareholders, 10 who receive no return of their capital through rates. Mr. Pous is wrong in his 11 recommendations for this account.

- 12
- 13

#### THEORETICAL RESERVE ADJUSTMENT

14

# Q. Would you like to comment on Mr. Pous' theoretical reserve adjustment and theoretical reserve calculation in his testimony?

17 A. Yes, I would.

# 18 Q. Mr. Pous has proposed to decrease annual depreciation expense by \$552 19 million. Are there any problems with his calculation of this decrease?

A. Yes, there is. Mr. Pous is proposing an adjustment to the book reserve in an
attempt to align it more with the calculated or theoretical reserve. This
adjustment accounts for \$331 million, or approximately 60% of his total decrease
in annual depreciation expense. FPL witness Davis will address this particular
 issue and the adjustment in his testimony.

3

However, I would like to point out that Mr. Pous calculated his proposed annual
depreciation expense incorrectly in his method. Since Mr. Pous is proposing a
\$1.25 billion adjustment to the book reserve, he should have calculated
depreciation expense using the adjusted book reserve. He instead used the same
"unadjusted" book reserve I used in the depreciation study. As a result, his
calculation significantly understates annual depreciation accruals.

10 Q. Why should Mr. Pous have used the restated book reserve for his 11 calculations?

Mr. Pous' proposed \$1.25 billion adjustment to the book reserve would result in 12 A. an equivalent \$1.25 billion increase in future depreciation accruals to be collected 13 over the remaining life of FPL's current plant in service. To properly calculate 14 annual depreciation expense, Mr. Pous should have included this adjustment in 15 his calculation of annual depreciation expense. Instead, he did not, which results 16 in artificially low depreciation rates. His calculated rates do not reflect the fact 17 that, based on his adjustment to the reserve, FPL will have to collect an additional 18 19 \$1.25 billion through depreciation rates in the future.

20

In addition to the fact that he has proposed to reduce depreciation expense directly through a reserve adjustment, he also wants depreciation rates to be lower due to a higher, unadjusted book reserve. This proposal is entirely inappropriate, as it is

72

an attempt to reduce depreciation both through a direct adjustment to the reserve
 and through the benefit of lower rates that the higher, unadjusted book reserve
 would provide. Mr. Pous' proposed depreciation expense reduction therefore
 needs to be rejected.

5

Q.

## proposed depreciation parameters. Is his calculation correct?

Mr. Pous has calculated the theoretical reserve that would result using his

- A. No, it is not. Specifically, Mr. Pous has incorrectly calculated the theoretical
  reserve for production plant. He has not included the interim retirement rates he
  proposes in his calculation of the theoretical reserve.
- 10 Q. How has Mr. Pous calculated the theoretical reserve for production plant?
- 11 A. Using the prospective method for calculating theoretical reserve, as required in 12 Florida, the theoretical reserve is equal to the total calculated accruals less the 13 theoretical future accruals. The total future accruals are equal to the original cost 14 of plant less future net salvage. The total theoretical future accruals are equal to 15 the ratio of the remaining life divided by the average service life multiplied by the 16 total calculated accruals.
- 17

For production plant, Mr. Pous has not adjusted the remaining life or the average service life for each generating unit to account for interim retirements. He has instead simply used the remaining life for the unit and entire life for the unit. This is incorrect. Both the remaining life and the whole life for the generating unit need to be adjusted for interim retirements.

73

| 1  |    | CORRECTIONS                                                                        |
|----|----|------------------------------------------------------------------------------------|
| 2  |    |                                                                                    |
| 3  | Q. | Did you make any changes to your original filed testimony?                         |
| 4  | А  | Yes. In the course of responding to interrogatories, I discovered an error in the  |
| 5  |    | summary of Account 354 Towers and Fixtures in my recommendation for an             |
| 6  |    | average service life. As pointed out in Exhibit CRC-9 I originally stated that the |
| 7  |    | curve and life should be 40 R5 when it should have been a 45 R5.                   |
| 8  | Q. | Does this change affect the results of your study?                                 |
| 9  | A. | Yes it does. This increase in average service life should decrease annual          |
| 10 |    | depreciation expense by approximately \$1.5 million.                               |
| 11 | Q. | Does this conclude your rebuttal testimony?                                        |
| 12 | A. | Yes.                                                                               |

|                                | Installation | Retirement  | Life        |
|--------------------------------|--------------|-------------|-------------|
| Unit                           | Year         | <u>Year</u> | <u>Span</u> |
| (1)                            | (2)          | (3)         | (4)         |
| AES CORP                       |              |             |             |
| AES GREENIDGE 1                | 1938         | 1985        | 47          |
| AES GREENIDGE 2                | 1943         | 1985        | 42          |
| AES WESTOVER 5                 | 107/         | 1975        | 51          |
| ALS WESTOVER S                 | 1024         | 1975        | 45          |
| AES WESTOVER 0                 | 1527         | 1972        | -0          |
| ALABAMA POWER CO               | 1020         | 1977        | 48          |
| GORGAS TWO 05                  | 1944         | 1989        | 45          |
| ALLEGHENY ENERGY SUPPLY CO LLC |              |             |             |
| CELANESE (MD) 1                | 1937         | 1978        | 41          |
| CUMBERLAND (MD) HP1            | 1938         | 1970        | 32          |
| RP SMITH 1                     | 1923         | 1970        | 47          |
| RP SMITH 2                     | 1927         | 1970        | 43          |
| SPRINGDALE WPP 1               | 1920         | 1973        | 53          |
|                                | 1020         | 1073        | 53          |
|                                | 1920         | 1072        | 40          |
|                                | 1924         | 1973        | 45          |
| SPRINGDALE WPP 4               | 1924         | 1973        | 49          |
| SPRINGDALE WPP 5               | 1926         | 1973        | 47          |
| SPRINGDALE WPP 6               | 1935         | 1971        | 36          |
| AMERENCILCO                    | 1000         | 1074        | 54          |
| LIBERTY STREET 5               | 1920         | 19/1        | 51          |
| RS WALLACE 1                   | 1925         | 1976        | 51          |
| RS WALLACE 2                   | 1925         | 1976        | 51          |
| RS WALLACE 3                   | 1939         | 1985        | 46          |
| RS WALLACE 4                   | 1941         | 1985        | 44          |
| RS WALLACE 5                   | 1949         | 1985        | 36          |
| RS WALLACE 6                   | 1952         | 1985        | 33          |
| RS WALLACE 7                   | 1958         | 1985        | 27          |
| AMERENENERGY GENERATING CO     |              |             |             |
| GRAND TOWER 1                  | 1922         | 1972        | 50          |
| GRAND TOWER 2                  | 1923         | 1972        | 49          |
| AMERENUE                       |              |             |             |
| CAHOKIA 1                      | 1923         | 1975        | 52          |
| CAHOKIA 2                      | 1924         | 1975        | 51          |
| CAHOKIA 3                      | 1925         | 1975        | 50          |
| CAHOKIA 4                      | 1927         | 1975        | 48          |
| CAHOKIA 5                      | 1929         | 1976        | 47          |
| CAHOKIA 6                      | 1937         | 1976        | 39          |
| MEXICO 2                       | 1950         | 1980        | 30          |
| AMES MUNI ELEC SYSTEM (IA)     |              |             |             |
| AMES (IA) TWO 6                | 1958         | 1986        | 28          |
| APPALACHIAN POWER CO           |              |             |             |
| CABIN CREEK (WV) 3             | 1919         | 1974        | 55          |
| CABIN CREEK (WV) 4             | 1921         | 1974        | 53          |
| CABIN CREEK (WV) 5             | 1925         | 1974        | 49          |
| CABIN CREEK (WV) 6             | 1927         | 1974        | 47          |
| CABIN CREEK (WV) 8HP           | 1943         | 1981        | 38          |
| CABIN CREEK (WV) 8 P           | 1942         | 1981        | 39          |
| CABIN CREEK (MV) 9HP           | 19/3         | 1981        | 28          |
|                                | 1040         | 1001        | 00          |
|                                | 1940         | 4074        | 30<br>E 4   |
|                                | 1920         | 19/4        | 54          |
| GLEN LYN 3                     | 1924         | 19/4        | 50          |
| GLEN LYN 4                     | 1927         | 1974        | 47          |
| BALTIMORE GAS & ELEC CO        |              |             |             |
| PRATT STREET 11                | 1919         | 1972        | 53          |

| Unit                      | Installation<br>Year | Retirement | Life |  |
|---------------------------|----------------------|------------|------|--|
| (1)                       | (2)                  | (3)        |      |  |
| (1)                       | (-)                  | (0)        | (-)  |  |
| BEECHBOTTOM POWER CO      |                      |            |      |  |
| WINDSOR (WV) 1            | 1918                 | 1973       | 55   |  |
| WINDSOR (WV) 2            | 1918                 | 1975       | 57   |  |
| WINDSOR (WV) 3            | 1919                 | 1975       | 56   |  |
| WINDSOR (WV) 4            | 1919                 | 1973       | 54   |  |
| WINDSOR (WV) 5            | 1919                 | 1975       | 56   |  |
| WINDSOR (WV) 6            | 1919                 | 1973       | 50   |  |
| WINDSOR (WV) 7            | 1010                 | 1075       | 26   |  |
| WINDSOR (WV) 8            | 1941                 | 1973       | 32   |  |
| BLACK HILLS POWER INC     |                      |            |      |  |
| KIRK (SD) 4               | 1956                 | 1996       | 40   |  |
| BURLINGTON ELECTRIC DEPT  |                      |            |      |  |
| MORAN 2                   | 1954                 | 1986       | 32   |  |
| CELINA MUNI UTILITIES     |                      |            |      |  |
| CELINA 4                  | 1971                 | 1973       | 2    |  |
| CLEVELAND PUBLIC POWER    |                      | 1070       |      |  |
|                           | 1918                 | 1970       | 52   |  |
| LAKE ROAD (OH) 05         | 1922                 | 1970       | 48   |  |
| LAKE ROAD (OH) 06         | 1928                 | 1970       | 42   |  |
| LAKE ROAD (OH) 07         | 1942                 | 1970       | 28   |  |
| LAKE ROAD (OH) 08         | 1941                 | 2003       | 62   |  |
| LAKE ROAD (OH) 09         | 1953                 | 2003       | 50   |  |
| COLUMBUS DIV OF ELEC (OH) |                      | 1077       | 07   |  |
| COLUMBUS (OH) 6           | 1950                 | 1977       | 21   |  |
| CONESVILLE 1              | 1959                 | 2005       | 46   |  |
| CONESVILLE 2              | 1957                 | 2005       | 40   |  |
| PICWAY 1                  | 1026                 | 1072       | 46   |  |
| PICWAY 2                  | 1920                 | 1972       | 40   |  |
| PICWAY 3                  | 10/3                 | 1092       | 37   |  |
| PICWAY 4                  | 1949                 | 1080       | 31   |  |
| POSTON 1                  | 1040                 | 1087       | 38   |  |
| POSTON 2                  | 1050                 | 1007       | 30   |  |
| POSTON 3                  | 1052                 | 1907       | 37   |  |
| POSTON 3<br>POSTON 4      | 1952<br>1954         | 1987       | 33   |  |
| COMMONWEALTH EDISON CO    |                      |            |      |  |
| DIXON 4                   | 1945                 | 1978       | 33   |  |
| DIXON 5                   | 1953                 | 1978       | 25   |  |
| FORDAM 01                 | 1919                 | 1971       | 52   |  |
| FORDAM 04                 | 1924                 | 1971       | 47   |  |
| FORDAM 09                 | 1947                 | 1971       | 24   |  |
| FORDAM 10                 | 1947                 | 1971       | 24   |  |
| JOLIET CECO 1             | 1917                 | 1970       | 53   |  |
| JOLIET CECO 2             | 1018                 | 1070       | 50   |  |
| JOLIET CECO 3             | 1924                 | 1970       | 46   |  |
| IOLIET CECO 4             | 10/1                 | 1970       |      |  |
| JOUET CECO 5              | 1050                 | 1970       | 23   |  |
| NORTHWEST 1               | 1012                 | 1970       | 20   |  |
| NORTHWEST 2               | 1012                 | 1970       | 50   |  |
| NORTHWEST 3               | 1015                 | 1070       | 50   |  |
| NORTHWEST 4               | 1017                 | 1070       | 55   |  |
| NORTHWEST 5               | 1017                 | 1970       | 53   |  |
|                           | 1917                 | 1970       | 53   |  |
|                           | 1918                 | 1970       | 52   |  |
|                           | 1942                 | 1970       | 28   |  |
|                           | 1923                 | 19/2       | 49   |  |
|                           | 1925                 | 1972       | 47   |  |
| WAUKEGAN CECO 3           | 1927                 | 1972       | 45   |  |
|                           | 1930                 | 19/8       | 48   |  |
| WAUKEGAN CECU 5           | 1932                 | 1978       | 46   |  |

|                                | Installation | Retirement | Life     |
|--------------------------------|--------------|------------|----------|
| Unit                           | Year         | Year       | Span     |
| (1)                            | (2)          | (3)        | (4)      |
|                                |              |            |          |
| EAST RIVER 1                   | 1027         | 1075       | 48       |
| EAST RIVER 2                   | 1927         | 1973       | 40       |
|                                | 1927         | 1974       | 47       |
|                                | 1929         | 1975       | 46       |
|                                | 1946         | 19/4       | 28       |
| KENT AVENUE 10                 | 1938         | 1972       | 34       |
| KENT AVENUE 11                 | 1938         | 1972       | 34       |
| SHERMAN CREEK 01               | 1913         | 1972       | 59       |
| SHERMAN CREEK 02               | 1913         | 1972       | 59       |
| SHERMAN CREEK 03               | 1913         | 1972       | 59       |
| SHERMAN CREEK 04               | 1919         | 1972       | 53       |
| SHERMAN CREEK 05               | 1921         | 1972       | 51       |
| SHERMAN CREEK 07               | 1938         | 1972       | 34       |
| SHERMAN CREEK 08               | 1938         | 1972       | 34       |
| SHERMAN CREEK 09               | 1943         | 1972       | 29       |
| SHERMAN CREEK 10               | 1947         | 1972       | 25       |
| CONECTIV ENERGY                |              |            |          |
| DEEPWATER (NI) 5               | 19/2         | 100/       | 52       |
| DEEDWATER (NJ) 7               | 1057         | 1004       | 37       |
|                                | 1001         | 1075       | 37       |
|                                | 1941         | 1975       |          |
| MISSOURI AVENUE /              | 1946         | 1973       | 27       |
| CONSTELLATION ENERGY POWER GEN |              |            |          |
| GOULD STREET 1                 | 1927         | 1977       | 50       |
| GOULD STREET 2                 | 1928         | 1977       | 49       |
| CONSUMERS ENERGY CO (MI)       |              |            |          |
| ELM STREET 1                   | 1913         | 1973       | 60       |
| ELM STREET 4                   | 1937         | 1973       | 36       |
| KALAMAZOO 1                    | 1927         | 1972       | 45       |
| SAGINAW RIVER 3                | 1928         | 1972       | 44       |
| SAGINAW RIVER 4                | 1930         | 1972       | 42       |
| SAGINAW RIVER 5                | 1930         | 1972       | 42       |
| WEALTHY STREET 1               | 1929         | 1972       | 43       |
|                                |              |            |          |
| PRANTLY 2                      | 1052         | 1070       | 70       |
| BRANTLY 3                      | 1952         | 1979       | 26       |
|                                |              |            |          |
| EM TAIT 4                      | 1958         | 1987       | 29       |
| EM TAIT 5                      | 1050         | 1987       | 28       |
| TROY (OH) 6                    | 1964         | 1974       | 10       |
| DETROIT EDIRON CO              |              |            |          |
| CONNERS CREEK 02               | 4095         | 1072       | 20       |
|                                | 1955         | 1975       | 30<br>54 |
| CONNERS CREEK 04               | 1918         | 1972       | 54       |
| MARYSVILLE 2                   | 1922         | 1972       | 50       |
| MARYSVILLE 3                   | 1923         | 1972       | 49       |
| MARYSVILLE 4                   | 1928         | 1973       | 45       |
| MARYSVILLE 5                   | 1928         | 1972       | 44       |
| PENNSALT 16                    | 1948         | 1986       | 38       |
| PENNSALT 17                    | 1949         | 1986       | 37       |
| TRENTON CHANNEL 1              | 1926         | 1973       | 47       |
| TRENTON CHANNEL 2              | 1926         | 1974       | 48       |
| TRENTON CHANNEL 3              | 1927         | 1973       | 46       |
| TRENTON CHANNEL 5              | 1928         | 1973       | 45       |
| TRENTON CHANNEL 6              | 1929         | 1973       | 44       |
| DOMINION ENERGY INC            |              |            |          |
| STATE LINE 1                   | 1929         | 1977       | 48       |
| STATE LINE 2                   | 1938         | 1979       | 41       |
|                                |              |            |          |

| Unit                      | Installation<br>Year | Retirement<br>Year | Life<br>Span |
|---------------------------|----------------------|--------------------|--------------|
| (1)                       | (2)                  | (3)                | (4)          |
|                           |                      |                    |              |
| DOMINION VIRGINIA POWER   |                      |                    |              |
| BREMO 1                   | 1931                 | 1972               | 41           |
| BREMO 2                   | 1931                 | 1972               | 41           |
| REEVES AVENUE 6           | 1941                 | 1975               | 34           |
| REEVES AVENUE 7           | 1951                 | 1975               | 24           |
| DUKE ENERGY CAROLINAS LLC |                      |                    |              |
| BUCK (NC) 1               | 1926                 | 1979               | 53           |
| BUCK (NC) 2               | 1926                 | 1979               | 53           |
| BUZZARD ROOST 5           | 1948                 | 1974               | 26           |
| RIVERBEND (NC) 1          | 1929                 | 1979               | 50           |
| RIVERBEND (NC) 2          | 1929                 | 1979               | 50           |
| RIVERBEND (NC) 3          | 1938                 | 1976               | 38           |
| TIGER 1                   | 1924                 | 1974               | 50           |
| TIGER 2                   | 1924                 | 1974               | 50           |
| DUKE ENERGY INDIANA INC   |                      |                    |              |
| DRESSER 1                 | 1924                 | 1971               | 47           |
| DRESSER 2                 | 1924                 | 1971               | 47           |
| DRESSER 3                 | 1925                 | 1971               | 46           |
| DRESSER 4                 | 1943                 | 1975               | 32           |
| DRESSER 5                 | 1944                 | 1975               | 31           |
| DRESSER 6                 | 1945                 | 1975               | 30           |
| DUKE ENERGY OHIO INC      |                      |                    |              |
| MIAMI FORT 3              | 1938                 | 1982               | 44           |
| MIAMI FORT 4              | 1942                 | 1982               | 40           |
| WEST END 1                | 1918                 | 1976               | 58           |
| WEST END 2                | 1918                 | 1976               | 58           |
| WEST END 3                | 1920                 | 1976               | 56           |
| WEST END 4                | 1921                 | 1976               | 55           |
| WEST END 5                | 1939                 | 1976               | 37           |
| WEST END 6                | 1948                 | 1976               | 28           |
| DUQUESNE LIGHT CO         |                      |                    |              |
| COLFAX (PA) 1             | 1922                 | 1973               | 51           |
| COLFAX (PA) 2             | 1922                 | 1973               | 51           |
| COLFAX (PA) 3             | 1925                 | 1973               | 48           |
| COLFAX (PA) 4             | 1927                 | 1973               | 46           |
| JH REED 1                 | 1930                 | 1975               | 45           |
| JH REED 2                 | 1938                 | 1975               | 37           |
| JH REED 3                 | 1941                 | 1973               | 32           |
| EMPIRE DISTRICT ELEC CO   |                      |                    |              |
| RIVERTON 1                | 1910                 | 1977               | 67           |
| RIVERTON 2                | 1910                 | 1974               | 64           |
| EXELON POWER              |                      |                    |              |
| BARBADOES 3               | 1949                 | 1978               | 29           |
| BARBADOES 4               | 1949                 | 1978               | 29           |
| CHESTER 1                 | 1918                 | 1973               | 55           |
| CHESTER 2                 | 1918                 | 1975               | 57           |
| CHESTER 3                 | 1924                 | 1975               | 51           |
| CHESTER 4                 | 1924                 | 1975               | 51           |
| L STREET 03               | 1908                 | 1970               | 62           |
| L STREET 06               | 1911                 | 1971               | 60           |
| L STREET 08               | 1914                 | 1970               | 56           |
| RICHMOND (PA) 12          | 1935                 | 1980               | 45           |
| RICHMOND (PA) A           | 1926                 | 1975               | 49           |

| linit                         | Installation | Retirement        | Life |  |
|-------------------------------|--------------|-------------------|------|--|
| Unit                          | Year         | Year              | Span |  |
| (1)                           | (2)          | (3)               | (4)  |  |
| FIRSTENERGY GENERATION CORP   |              |                   |      |  |
| ACME 2                        | 1951         | 2000              | 49   |  |
| ACME 3                        | 1923         | 1971              | 48   |  |
| ACME 5                        | 10/11        | 1992              | 51   |  |
| ACME 6                        | 10/0         | 1002              | 43   |  |
|                               | 1049         | 2002              | 43   |  |
|                               | 1949         | 2003              |      |  |
|                               | 1948         | 2003              | 33   |  |
|                               | 1948         | 2003              | 55   |  |
| EDGEWATER (OH) 3              | 1949         | 1993              | 44   |  |
| GORGE (OH) 6                  | 1943         | 1991              | 48   |  |
| GORGE (OH) 7                  | 1948         | 1991              | 43   |  |
| MAD RIVER 1                   | 1927         | 1980              | 53   |  |
| MAD RIVER 2                   | 1938         | 1985              | 47   |  |
| MAD RIVER 3                   | 1949         | 1 <del>9</del> 85 | 36   |  |
| NORWALK (OH) 5                | 1969         | 1981              | 12   |  |
| RE BURGER 1                   | 1944         | 1995              | 51   |  |
| RE BURGER 2                   | 1947         | 1995              | 48   |  |
| TORONTO (OH) 1                | 1925         | 1971              | 46   |  |
| TORONTO (OH) 2                | 1925         | 1971              | 46   |  |
| TORONTO (OH) 3                | 1927         | 1971              | 44   |  |
| TORONTO (OH) 4                | 1928         | 1971              | 43   |  |
| TOPONTO (OH) 5                | 10/0         | 1993              | 53   |  |
|                               | 1040         | 1002              | 44   |  |
|                               | 1949         | 1993              | 44   |  |
| TORONTO (OH) 7                | 1949         | 1993              | 44   |  |
| FORT WAYNE ELECTRIC           | 1001         | 4075              | 44   |  |
|                               | 1934         | 19/5              | 41   |  |
| LAWTON PARK 3                 | 1941         | 1975              | 34   |  |
| FRANKFORT CITY LIGHT & POWER  |              |                   |      |  |
| FRANKFORT 3                   | 1952         | 1978              | 26   |  |
| FRANKFORT 4                   | 1964         | 1978              | 14   |  |
| FREMONT DEPT OF UTILITIES     |              |                   |      |  |
| LD WRIGHT 5                   | <b>19</b> 50 | 1976              | 26   |  |
|                               |              |                   |      |  |
|                               | 1044         | 2002              | 61   |  |
|                               | 1941         | 2002              | 01   |  |
| ARKWRIGHTZ                    | 1942         | 2002              | 50   |  |
| ARKWRIGHT 3                   | 1943         | 2002              | 59   |  |
| ARKWRIGHT 4                   | 1948         | 2002              | 54   |  |
| MITCHELL (GA) 1               | 1948         | 2002              | 54   |  |
| MITCHELL (GA) 2               | 1949         | 2002              | 53   |  |
| GRAND HAVEN BD LT & PWR       |              |                   |      |  |
| JB SIMS 1                     | 1961         | 1986              | 25   |  |
| JB SIMS 2                     | 1961         | 1986              | 25   |  |
| HAGERSTOWN LIGHT DEPT (MD)    |              |                   |      |  |
| HAGERSTOWN 1                  | 1957         | 1992              | 35   |  |
| HAGERSTOWN 2                  | 1960         | 1992              | 32   |  |
| HAMILTON MUNICIPAL UTILITIES  |              |                   |      |  |
| HAMILTON (OH) 4               | 1938         | 1986              | 48   |  |
| HAMILTON (OH) 6               | 1960         | 1976              | 16   |  |
| INDIANA MICHIGAN POWER CO     |              |                   |      |  |
| BREED 1                       | 1960         | 1994              | 34   |  |
| TWIN BRANCH 1                 | 1925         | 1974              | 49   |  |
| TWIN BRANCH 2                 | 1925         | 1974              | 49   |  |
| TWIN BRANCH 3HP               | 10/1         | 1974              | 33   |  |
| TWIN BRANCH 3/ P              | 10/0         | 1074              | 24   |  |
|                               | 1940         | 13/4              |      |  |
| INDIANAPOLIS POWER & LIGHT CO |              |                   |      |  |
| PERRY (IN) 7                  | 1966         | 1997              | 31   |  |

| 11-34                                     | Installation | Retirement | Life     |  |
|-------------------------------------------|--------------|------------|----------|--|
| Unit                                      | Year         | Year       | Span     |  |
| (1)                                       | (2)          | (3)        | (4)      |  |
|                                           |              |            |          |  |
| INTERSTATE POWER AND LIGHT CO             | 1046         | 4000       |          |  |
| BOONE (IA) 2                              | 1940         | 1980       | 40       |  |
|                                           | 1953         | 1986       | 33       |  |
| BRIDGEPORT (IA) 1                         | 1953         | 1982       | 29       |  |
| BRIDGEPORT (IA) 2                         | 1953         | 1982       | 29       |  |
| BRIDGEPORT (IA) 3                         | 1957         | 1982       | 25       |  |
| DUBUQUE 1                                 | 1926         | 1974       | 48       |  |
| LANSING 1                                 | 1948         | 2004       | 56       |  |
| SIXTH STREET (IA) 6                       | 1925         | 2008       | 83       |  |
| SIXTH STREET (IA) 7                       | 1045         | 2000       | 03       |  |
| SIXTH STREET (IA) 8                       | 1945         | 2008       | 58       |  |
|                                           |              |            |          |  |
| CARLSON 4                                 | 1930         | 1978       | 48       |  |
| KANSAS OTV DD DUD UTU                     |              |            |          |  |
| QUINDARO TWO 6                            | 1932         | 1971       | 39       |  |
|                                           |              |            | - *      |  |
| GRAND AVENUE 5                            | 1929         | 1997       | 68       |  |
| GRAND AVENUE 8                            | 1026         | 1097       | 46       |  |
|                                           | 1930         | 1902       | 40       |  |
|                                           | 1951         | 1984       | 33       |  |
| HAWTHORN 2                                | 1951         | 1984       | 33       |  |
| HAWTHORN 3                                | 1953         | 1984       | 31       |  |
| NORTHEAST (MO) 3                          | 1929         | 1982       | 53       |  |
| NORTHEAST (MO) 6                          | 1940         | 1982       | 42       |  |
| KENTUCKY UTILITIES CO                     |              |            |          |  |
| GREEN RIVER (KY) 1                        | 1950         | 2004       | 54       |  |
| GREEN RIVER (KY) 2                        | 1950         | 2004       | 54       |  |
| KU PARK 3                                 | 1951         | 2004       | 51       |  |
| KEVEDAN CENERATION ( ) A                  |              |            |          |  |
| RETSPAN GENERATION LLC                    |              |            |          |  |
| GLENWOOD (NY) 2                           | 1930         | 1978       | 48       |  |
| GLENWOOD (NY) 3                           | 1938         | 1978       | 40       |  |
| KINSTON DEPT OF PUBLIC SVCS               |              |            |          |  |
| KINSTON 4                                 | 1956         | 1970       | 14       |  |
| LANSDALE BOROUGH UTILITIES                |              |            |          |  |
| LANSDALE 4                                | 1959         | 1972       | 13       |  |
|                                           |              |            |          |  |
| OTTAWA STREET 1                           | 1040         | 1097       | . 40     |  |
|                                           | 1940         | 1902       | 42       |  |
| OTTAWA STREET 3                           | 1949         | 1990       | 41<br>39 |  |
|                                           | 1007         | 1000       |          |  |
| LOUISVILLE GAS & ELEC CO (KY)             |              |            |          |  |
| CANAL (KY) 3                              | 1937         | 1974       | 37       |  |
| CANAL (KY) 4                              | 1941         | 1974       | 33       |  |
| CANE RUN 1                                | 1954         | 1985       | 31       |  |
| CANE RUN 2                                | 1956         | 1985       | 29       |  |
| PADDYS RUN 1                              | 1942         | 1979       | 37       |  |
| PADDYS RUN 2                              | 1042         | 1070       | 27       |  |
| PADDYS RUN 5                              | 1942         | 109/0      | 37       |  |
| PADDYS RUN 6                              | 1950         | 1984       | 34       |  |
| NAMITOWOO BUDU O UTU TICO                 |              |            |          |  |
| MANITOWOC PUBLIC UTILITIES<br>MANITOWOC 7 | 1964         | 1970       | 6        |  |
|                                           |              |            |          |  |
|                                           | 4000         | 400.4      |          |  |
| WILDWOOD 5                                | 1962         | 1994       | 32<br>26 |  |
|                                           |              |            | 20       |  |
| MASSACHUSETIS ELEC CO                     |              |            |          |  |
| WEBSIEK SIREE 8                           | 1950         | 1972       | 22       |  |

| 11.54                        | Installation | Retirement       | Life |  |
|------------------------------|--------------|------------------|------|--|
| Unit                         | Year         | Year             | Span |  |
| (1)                          | (2)          | (3)              | (4)  |  |
| METROPOLITAN EDISON CO       |              |                  |      |  |
| CRAWFORD (PA) 3              | 1947         | 1078             | 31   |  |
| EYLER 4                      | 1919         | 1971             | 52   |  |
| MIDAMERICAN ENERGY CO        |              |                  |      |  |
| DES MOINES 01                | 1925         | 1975             | 50   |  |
| DES MOINES 02                | 1926         | 1975             | 49   |  |
| DES MOINES 03                | 1938         | 1982             | 44   |  |
| DES MOINES 10                | 1954         | 1986             | 32   |  |
| DES MOINES 11                | 1964         | 198 <del>6</del> | 22   |  |
| HAWKEYE 2                    | 1954         | 1981             | 27   |  |
| MAYNARD 4                    | 1938         | 1976             | 38   |  |
| MAYNARD 5                    | 1947         | 1976             | 29   |  |
| MOLINE 3                     | 1913         | 1983             | 70   |  |
| MOLINE 4                     | 1913         | 1974             | 61   |  |
| RIVERSIDE (IA) 1             | 1925         | 1983             | 58   |  |
| RIVERSIDE (IA) 2             | 1929         | 1972             | 43   |  |
| RIVERSIDE (IA) 4             | 1949         | 1988             | 39   |  |
| MIDWEST GENERATION EME LLC   |              |                  |      |  |
|                              | 1947         | 1975             | 28   |  |
| FISK 18                      | 1949         | 1978             | 29   |  |
| POWERTON 1                   | 1927         | 1974             | 47   |  |
| POWERTON 2                   | 1929         | 1974             | 45   |  |
| POWERTON 3                   | 1930         | 1974             | 44   |  |
| POWERTON 4                   | 1940         | 1974             | 34   |  |
| SABROOKE 3                   | 1955         | 1976             | 21   |  |
| SABROOKE 4                   | 1961         | 1976             | 15   |  |
| MINNKOTA POWER COOP INC      |              |                  |      |  |
| FP WOOD 3                    | 1951         | 1985             | 34   |  |
| MIRANT CORP                  |              |                  |      |  |
| LOVETT 4                     | 1966         | 2007             | 41   |  |
| LOVETT 5                     | 1969         | 2008             | 39   |  |
| MONONGAHELA POWER CO         |              |                  |      |  |
| RIVESVILLE 1                 | 1919         | 1973             | 54   |  |
| RIVESVILLE 2                 | 1921         | 1973             | 52   |  |
| RIVESVILLE 3                 | 1921         | 1973             | 52   |  |
| RIVESVILLE 4                 | 1937         | 1973             | 36   |  |
| MOORHEAD PUB SER             |              |                  |      |  |
| MOORHEAD 7                   | 1970         | 1999             | 29   |  |
| MUSCATINE POWER & WATER      |              |                  |      |  |
| MUSCATINE 6                  | 1946         | 1985             | 39   |  |
| NATIONAL ENERGY & GAS TRANSM |              |                  |      |  |
| LYNNWAY 1                    | 1921         | 1972             | 51   |  |
| LYNNWAY 2                    | 1942         | 1972             | 30   |  |
| LYNNWAY 6                    | 1945         | 1972             | 27   |  |
| SOUTH STREET 07              | 1921         | 1970             | 49   |  |
| SOUTH STREET 08              | 1926         | 1974             | 48   |  |
| NEBRASKA PUBLIC POWER DIST   |              |                  |      |  |
| KRAMER 1                     | 1949         | 1987             | 38   |  |
| KRAMER 2                     | 1949         | 1987             | 38   |  |
| KRAMER 3                     | 1951         | 1987             | 36   |  |
| NO INDIANA PUBLIC SERVICE CO |              |                  |      |  |
| MICHIGAN CITY 01             | 1930         | 1978             | 48   |  |
|                              |              |                  |      |  |

| Unit                          | Installation      | Retirement | Life     |
|-------------------------------|-------------------|------------|----------|
| (1)                           |                   | <u> </u>   | <u> </u> |
|                               | (2)               | (3)        | (4)      |
| NORTHERN STATES POWER CO (MN) |                   |            |          |
| HIGH BRIDGE 1                 | 1924              | 1074       | 50       |
| HIGH BRIDGE 2                 | 1924              | 1974       | 50       |
| HIGH BRIDGE 3                 | 1920              | 1974       | 40       |
| LAWRENCE (SD) 1               | 1942              | 1909       | 4/       |
| LAWRENCE (SD) 2               | 1940              | 1977       | 29       |
|                               | 1949              | 1977       | 28       |
|                               | 1901              | 1977       | 26       |
|                               | 1930              | 1972       | 42       |
|                               | 1930              | 19/2       | 42       |
|                               | 1938              | 1987       | 49       |
|                               | 1931              | 1987       | 56       |
|                               | 1949              | 1987       | 38       |
| RIVERSIDE (MN) 7A             | 1950              | 1971       | 21       |
| WHILNEY (MN) 2                | 1948              | 1974       | 26       |
| WINONA 3                      | 1951              | 1974       | 23       |
| NRG ENERGY INC                |                   |            |          |
| DEVON 1                       | 1924              | 1977       | 53       |
| HUNTLEY 63                    | 1942              | 2006       | 64       |
| HUNTLEY 64                    | 1948              | 2006       | 58       |
| MONTVILLE 1                   | 1948              | 1978       | 30       |
| MONTVILLE 2                   | 1948              | 1978       | 30       |
| MONTVILLE 3                   | 1924              | 1971       | 47       |
| SOMERSET (MA) 3               | 1 <del>9</del> 42 | 1994       | 52       |
| OHIO POWER CO                 |                   |            |          |
| PHILO 1                       | 1925              | 1974       | 49       |
| PHILO 2                       | 1925              | 1974       | 49       |
| PHILO 3                       | 1928              | 1974       | 46       |
| PHILO 3-1                     | 1929              | 1974       | 45       |
| PHILO 3-2                     | 1929              | 1974       | 45       |
| PHILO 3-3                     | 1070              | 1074       | 45       |
|                               | 1042              | 1070       | 37       |
|                               | 1042              | 1070       | 37       |
|                               | 1942              | 19/9       | 37       |
|                               | 1941              | 1979       | 30       |
|                               | 1942              | 1979       | 37       |
|                               | 1942              | 1979       | 37       |
|                               | 1957              | 1979       | 22       |
|                               | 1945              | 1979       | 34       |
| TIDU 2                        | 1948              | 1979       | 31       |
| WOODCOCK 4                    | 1947              | 1979       | 32       |
| WOODCOCK 5                    | 1950              | 1979       | 29       |
| OTTER TAIL POWER CO           |                   |            |          |
| KIDDER 4                      | 1939              | 1975       | 36       |
| ORTONVILLE 1                  | 1950              | 1988       | 38       |
| OWENSBORO MUNICIPAL UTIL      |                   |            |          |
| OWENSBORO 4                   | 1954              | 1978       | 24       |
| PACIFICORP                    |                   |            |          |
| HALE (UT) 1                   | 1936              | 1979       | 43       |
| JORDAN 3                      | 1925              | 1985       | 60       |
| PAINESVILLE MUNI UTIL SYS     |                   |            |          |
| PAINESVILLE 6                 | 1976              | 1989       | 13       |
| PENNSYLVANIA ELEC CO          | 1050              | 4004       |          |
| FROM STREET                   | 1952              | 1991       | 39       |
| FRONT STREET 2                | 1952              | 1991       | 39       |
| FRONT STREET 3                | 1928              | 1991       | 63       |
| FRONT STREET 4                | 1942              | 1991       | 49       |
| FRONT STREET 5                | 1942              | 1991       | 49       |
| SAXTON 1                      | 1923              | 1974       | 51       |
| SAXTON 2                      | 1923              | 1974       | 51       |
| SAXTON 3                      | 1926              | 1974       | 48       |

| Unit                           | Installation<br>Year | Retirement<br>Year | Life<br>Span |
|--------------------------------|----------------------|--------------------|--------------|
| (1)                            | (2)                  | (3)                | (4)          |
|                                | • •                  | (-7                | 17           |
|                                |                      |                    |              |
| PEPCO ENERGY SERVICES INC      |                      |                    |              |
| BENNING 04                     | 1 <del>9</del> 22    | 1972               | 50           |
| BENNING 05                     | 1923                 | 1972               | 49           |
| BENNING 06                     | 1917                 | 1972               | 55           |
| BENNING 07                     | 1918                 | 1972               | 54           |
| BENNING 08                     | 1919                 | 1972               | 53           |
| BENNING 09                     | 1924                 | 1972               | 48           |
|                                |                      |                    |              |
| MOWERSOUTH ENERGY COOP         |                      |                    |              |
| MCWILLIAMS 3                   | 1959                 | 1996               | 37           |
| PPL ELECTRIC UTILITIES CORP    |                      |                    |              |
| STANTON (PA) 1                 | 1007                 | 4070               |              |
| STANTON (PA) 2                 | 1927                 | 1972               | 45           |
| STANTON (PA) 2                 | 1927                 | 1972               | 45           |
| on An on (FA) 5                | 1953                 | 1972               | 19           |
| PPL GENERATION LLC             |                      |                    |              |
| PPL HOLTWOOD 15                | 1925                 | 1072               | 47           |
| PPL HOLTWOOD 16                | 1025                 | 1072               | 47           |
| PPL HOLTWOOD 17                | 1920                 | 1972               | 4/           |
|                                | 1904                 | 1999               | 45           |
|                                | 1954                 | 2007               | 53           |
| FFC MARTING GREEK Z            | 1900                 | 2007               | 51           |
| PROGRESS ENERGY CAROLINAS      |                      |                    |              |
| CAPE FEAR 3                    | 1942                 | 1994               | 52           |
| CAPE FEAR 4                    | 1943                 | 1994               | 51           |
|                                |                      |                    |              |
| PSEG FOSSIL LLC                |                      |                    |              |
| BURLINGTON (NJ) 1              | 1915                 | 1974               | 59           |
| BURLINGTON (NJ) 2              | 1919                 | 1974               | 55           |
| BURLINGTON (NJ) 3              | 1922                 | 1974               | 52           |
| BURLINGTON (NJ) 4              | 1933                 | 1974               | 41           |
| ESSEX 7                        | 1938                 | 1974               | 36           |
| KEARNY (NJ) 1                  | 1924                 | 1974               | 50           |
| KEARNY (NJ) 2                  | 1926                 | 1974               | 48           |
| KEARNY (NJ) 3                  | 1925                 | 1974               | 49           |
| KEARNY (NJ) 4                  | 1926                 | 1974               | 48           |
| KEARNY (NJ) 5                  | 1926                 | 1974               | 48           |
| KEARNY (NJ) 6                  | 1932                 | 1974               | 42           |
| KEARNY (NJ) A                  | 1933                 | 1974               | 41           |
|                                |                      |                    |              |
| PUBLIC SERVICE CO OF OKLAHOMA  |                      |                    |              |
| TULSA 1                        | 1947                 | 1978               | 31           |
| PUBLIC SERVICE COLORADO        |                      |                    |              |
| ARAPAHOE 1                     | 1050                 | 2002               | 52           |
| ARAPAHOE 2                     | 1950                 | 2003               | 50           |
|                                | 1351                 | 2005               | 52           |
| PUBLIC SVC CO OF NEW HAMPSHIRE |                      |                    |              |
| SCHILLER 4                     | 1952                 | 2006               | 54           |
| SCHILLER 5                     | 1955                 | 2005               | 50           |
| PICHNOND DOWER & LIGHT         |                      |                    |              |
| IOHNSON STREET 2               | 1024                 | 1070               | 20           |
| JOHNOON STREET 3               | 1954                 | 1910               | 30           |
| ROCHESTER GAS & ELEC CORP (NY) |                      |                    |              |
| BEEBEE 04                      | 1916                 | 1971               | 55           |
| BEEBEE 12                      | 1959                 | 1999               | 40           |

| linit                         | Installation | Retirement        | Life |  |
|-------------------------------|--------------|-------------------|------|--|
| (4)                           | <u>rear</u>  | Year              | Span |  |
| (1)                           | (2)          | (3)               | (4)  |  |
| RRI ENERGY INC                |              |                   |      |  |
| AVON LAKE 8                   | 1050         | 1097              | 28   |  |
| NEW CASTLE 1                  | 1939         | 1002              | 20   |  |
| NEW CASTLE 2                  | 1909         | 1995              | 54   |  |
| SEWARD 2                      | 1947         | 1993              | 40   |  |
|                               | 1921         | 1980              | 59   |  |
| SEWARD 3                      | 1941         | 1979              | 38   |  |
| SEVVARD 4                     | 1950         | 2003              | 53   |  |
| SEWARD 5                      | 1957         | 2003              | 46   |  |
|                               | 1930         | 1982              | 52   |  |
| WERNER 2                      | 1930         | 1982              | 52   |  |
| WILLIAMSBURG 5                | 1944         | 1 <del>9</del> 91 | 47   |  |
| SE TECHNOLOGIES INC           |              |                   |      |  |
| MARION (NJ) 10                | 1942         | 1974              | 32   |  |
| MARION (NJ) 7                 | 1920         | 1974              | 54   |  |
| MARION (NJ) 8                 | 1924         | 1974              | 50   |  |
| MARION (NJ) 9                 | 1941         | 1974              | 33   |  |
| SMURFIT-STONE CONTAINER CORP  |              |                   |      |  |
| ALTON CONTAINERBOARD 5        | 1958         | 1998              | 40   |  |
| SOLID WASTE AUTH CENTRAL OHIO |              |                   |      |  |
| COLUMBUS WTE 1                | 1983         | 1995              | 12   |  |
| COLUMBUS WTE 2                | 1983         | 1995              | 12   |  |
| SOUTH CAROLINA ELEC & GAS CO  |              |                   |      |  |
| PARR 1                        | 1925         | 1973              | 48   |  |
| PARR 2                        | 1926         | 1973              | 40   |  |
| PARR 3                        | 1929         | 1973              | 44   |  |
| SOUTHERN CALIF EDISON CO      |              |                   |      |  |
| MOHAVE 1                      | 1070         | 2006              | 26   |  |
| MOHAVE 2                      | 1970         | 2006              | 35   |  |
|                               |              |                   |      |  |
| TAMPA ELECTRIC CO             |              |                   |      |  |
| BAYSIDE (FL) GANNON 1         | 1957         | 2003              | 46   |  |
| BAYSIDE (FL) GANNON 2         | 1958         | 2003              | 45   |  |
| BAYSIDE (FL) GANNON 3         | 1960         | 2003              | 43   |  |
| BAYSIDE (FL) GANNON 4         | 1963         | 2003              | 40   |  |
| BAYSIDE (FL) GANNON 5         | 1965         | 2003              | 38   |  |
| BAYSIDE (FL) GANNON 6         | 1967         | 2003              | 36   |  |
| TAUNTON MUNI LIGHT CO         |              |                   |      |  |
| WATER STREET 2                | 1917         | 1 <b>971</b>      | 54   |  |
| TRAVERSE CITY LT & POWER      |              |                   |      |  |
| BAYSIDE (MI) 4                | 1968         | 2002              | 34   |  |
| UGI DEVELOPMENT CO            |              |                   |      |  |
| HUNLOCK CREEK 1               | 1925         | 1975              | 50   |  |
| HUNLOCK CREEK 2               | 1947         | 1975              | 28   |  |
| US POWER GENERATING COLLC     |              |                   |      |  |
| MYSTIC 1                      | 1944         | 1975              | 31   |  |
| MYSTIC 2                      | 1945         | 1975              | 30   |  |
| MYSTIC 3                      | 1946         | 1975              | 29   |  |
| VECTREN ENERGY INDIANA SOUTH  |              |                   |      |  |
| FB CULLEY 1                   | 1955         | 2006              | 51   |  |

### Florida Power & Light Company

Life Spans of Retired US Coal Generating Units, 10 MW or Greater

| Unit                           | Installation<br>Year | Retirement<br>Year | Life<br>Span |
|--------------------------------|----------------------|--------------------|--------------|
| (1)                            | (2)                  | (3)                | (4)          |
| WE ENERGIES                    |                      |                    |              |
| EAST WELLS B1                  | 1020                 | 1002               | 10           |
|                                | 1052                 | 1902               | 43           |
| OAK CREEK (WI) 2               | 1955                 | 1909               | 30           |
| OAK CREEK (WI) 3               | 1904                 | 1909               | 30           |
| OAK CREEK (WI) 4               | 1955                 | 1900               | 33           |
| PORT WASHINGTON 1              | 1907                 | 1900               | 31           |
| PORT WASHINGTON 2              | 1935                 | 2002               | 57           |
| PORT WASHINGTON 3              | 1040                 | 2002               | 59           |
| PORT WASHINGTON 5              | 1050                 | 2002               | 54           |
| PRESOUE ISLE 1                 | 1055                 | 2006               | 41           |
| PRESQUE ISLE 2                 | 1060                 | 2000               | 0  <br>45    |
|                                | 1902                 | 2007               | 40           |
| WESTAR ENERGY INC              |                      |                    |              |
| NEOSHO 1                       | 1924                 | 1985               | 61           |
| NEOSHO 2                       | 1928                 | 1985               | 57           |
|                                |                      |                    | 0.           |
| WESTERN MASSACHUSETTS ELECTRIC |                      |                    |              |
| STATE STREET 1                 | 1917                 | 1971               | 54           |
| STATE STREET 4                 | 1921                 | 1971               | 50           |
|                                |                      |                    |              |
| WISCONSIN POWER & LIGHT CO     |                      |                    |              |
| EDGEWATER (WI) 1               | 1931                 | 1985               | 54           |
| EDGEWATER (WI) 2               | 1942                 | 1985               | 43           |
| WISCONSIN PUBLIC SERVICE CORP  |                      |                    |              |
| JP PULLIAM 2                   | 1927                 | 1980               | 53           |
|                                |                      |                    | •••          |
| WOLVERINE POWER COOP INC       |                      |                    |              |
| ADVANCE 3                      | 1967                 | 2000               | 33           |
|                                |                      |                    |              |
|                                |                      | 4 <b></b>          |              |
|                                | 1948                 | 1977               | 29           |
| WTANDUTTE NORTH 9              | 1968                 | 1977               | 9            |
| TOTAL LIFE ODAN VEADO          |                      |                    |              |
| TOTAL LIFE SPAN TEAKS          |                      |                    | 19,789       |
| I UTAL NUMBER OF UNITS         |                      | +                  | 464          |
| AVERAGE LIFE SPAN, YEARS       |                      |                    | 42.65        |

Source: Platts World Electric Power Plants Database, Jun 2009

| Unit                           | Installation<br>Year | Retireme⊓t<br>Year | Life<br>Span |
|--------------------------------|----------------------|--------------------|--------------|
| (1)                            | (2)                  | (3)                | (4)          |
|                                |                      |                    |              |
| AEP TEXAS NORTH CO             |                      |                    |              |
| ABILENE (TX) 4                 | 1949                 | 2005               | 56           |
| CONCHO 3                       | 1930                 | 1990               | 60           |
| CONCHO 4                       | 1953                 | 1988               | 35           |
| PAINT CREEK 1                  | 1953                 | 2005               | 52           |
| PAINT CREEK 2                  | 1954                 | 2005               | 51           |
| PAINT CREEK 3                  | 1959                 | 2005               | 46           |
| PAINT CREEK 4                  | 1971                 | 2005               | 34           |
| AES CORP                       |                      |                    |              |
| RIVERSIDE CANAL 1              | 1952                 | 2002               | 50           |
| RIVERSIDE CANAL 2              | 1952                 | 2002               | 50           |
| RIVERSIDE CANAL 3              | 1953                 | 2002               | 49           |
| RIVERSIDE CANAL 4              | 1955                 | 2002               | 47           |
| ALABAMA POWER CO               |                      |                    |              |
| CHICKASAW 1                    | 1941                 | 1979               | 38           |
| CHICKASAW 2                    | 1943                 | 1979               | 36           |
| CHICKASAW 3                    | 1951                 | 1999               | 48           |
| ALEXANDRIA MUNI UTILS (LA)     |                      |                    |              |
| DG HUNTER 1                    | 1957                 | 2005               | 48           |
| DG HUNTER 2                    | 1957                 | 2005               | 48           |
| ALLEGHENY ENERGY SUPPLY CO LLC |                      |                    |              |
| MILESBURG 1                    | 1950                 | 1984               | 34           |
| MILESBURG 2                    | 1950                 | 1984               | 34           |
| MITCHELL (PA) 1                | 1948                 | 2002               | 54           |
| AMERENCILCO                    |                      |                    |              |
| KEYSTONE (IL) 4                | 1967                 | 1975               | 8            |
| KEYSTONE (IL) 5                | 1949                 | 1975               | 26           |
| KEYSTONE (IL) 6                | 1956                 | 1975               | 19           |
| AMERENENERGY GENERATING CO     |                      |                    |              |
| HUTSONVILLE 1                  | 1940                 | 1982               | 42           |
| HUTSONVILLE 2                  | 1941                 | 1982               | 41           |
| AMERENUE                       |                      |                    |              |
| MOUND STREET 6                 | 1940                 | 1971               | 31           |
| VENICE-1 NO 1                  | 1924                 | 1973               | 49           |
| VENICE-1 NO 2                  | 192 <del>9</del>     | 1973               | 44           |
| VENICE-2 NO 1                  | 1942                 | 2000               | 58           |
| VENICE-2 NO 2                  | 1942                 | 2000               | 58           |
| VENICE-2 NO 3                  | 1943                 | 2002               | 59           |
| VENICE-2 NO 4                  | 1948                 | 2002               | 54           |
| VENICE-2 NO 5                  | 1950                 | 2002               | 52           |
| VENICE-2 NO 6                  | 1950                 | 2002               | 52           |
| ARIZONA PUBLIC SERVICE CO      |                      |                    |              |
| WEST PHOENIX 4                 | 1948                 | 2002               | 54           |
| WEST PHOENIX 5                 | 1949                 | 2002               | 53           |
| WEST PHOENIX 6                 | 1950                 | 2002               | 52           |
| ATLANTIC CITY ELECTRIC CO (NJ) |                      |                    |              |
| GREENWICH ACE 1                | 1953                 | 1975               | 22           |

|                               | Installation | Retirement | Life |
|-------------------------------|--------------|------------|------|
| Unit                          | Year         | Year       | Span |
| (1)                           | (2)          | (3)        | (4)  |
|                               |              |            |      |
|                               | 1060         | 2004       |      |
|                               | 1900         | 2004       | 44   |
| HOLLY STREET 2                | 1964         | 2004       | 40   |
| HOLLY STREET 3                | 1966         | 2007       | 41   |
| HOLLY STREET 4                | 1974         | 2007       | 33   |
| SEAHOLM 5                     | 1951         | 1994       | 43   |
| SEAHOLM 6                     | 1951         | 1994       | 43   |
| SEAHOLM 7                     | 1955         | 1994       | 39   |
| SEAHOLM 8                     | 1955         | 1994       | 39   |
| SEAHOLM 9                     | 1958         | 1994       | 36   |
|                               |              |            |      |
| BANGOR HYDRO-ELEC CO          |              |            |      |
| EM GRAHAM 3                   | 1954         | 1992       | 38   |
| BHP MINERALS INTERNATIONAL    |              |            |      |
| SAN MANUEL SMELTER            | 1954         | 2005       | 51   |
| SAN MANDEE SMEETER            | 1004         | 2005       | 51   |
| BIOFUELS POWER CORP           |              |            |      |
| HIRAM O CLARKE 1              | 1943         | 1985       | 42   |
| HIRAM O CLARKE 2              | 1947         | 1985       | 38   |
| HIRAM O CLARKE 3              | 1950         | 1085       | 25   |
|                               | 1054         | 1985       | 30   |
| HIRANI O CLARKE 4             | 1951         | 1960       | - 54 |
| BOSTON EDISON CO              |              |            |      |
| EDGAR 1                       | 1927         | 1971       | 44   |
| EDGAR 2                       | 1925         | 1971       | 46   |
| EDGAR 3                       | 1927         | 1978       | 51   |
| EDGAR 4                       | 1040         | 1079       | 20   |
|                               | 1040         | 1970       | 25   |
| EDGAR 5                       | 1927         | 1978       | 20   |
| EDGAR 6                       | 1954         | 1978       | 24   |
| BRAINTREE ELEC LIGHT DEPT     |              |            |      |
| POTTER 1                      | 1959         | 2003       | 44   |
|                               |              |            |      |
| BRAZOS ELECTRIC COOP INC      |              |            |      |
| WR POAGE 1                    | 1950         | 1990       | 40   |
| WR POAGE 2                    | 1952         | 1990       | 38   |
| REACKTON EDISON CO            |              |            |      |
| EAST ODICEWATED 2             | 1017         | 1073       | 56   |
| CAST BRIDGEWATER 3            | 1917         | 19/5       | 50   |
| BURBANK WATER AND POWER       |              |            |      |
| MAGNOLIA 1                    | 1941         | 1983       | 42   |
| MAGNOLIA 3                    | 19/9         | 2002       | 53   |
| MAGNOLIA                      | 1052         | 2002       | 40   |
| MAGNOLIA 4                    | 1900         | 2002       |      |
| CLECO MIDSTREAM RESOURCES LLC |              |            |      |
| EVANGELINE 3                  | 1949         | 1984       | 35   |
| EVANGELINE 4                  | 1952         | 1984       | 32   |
| EVANGELINE 5                  | 1958         | 1998       | 40   |
|                               |              |            |      |
| COFFEYVILLE MUNILIGHT & POWER |              |            |      |
| COFFEYVILLE 5                 | 1949         | 1992       | 43   |
| COMMONWEAL TH EDISON CO       |              |            |      |
| PIDGELAND 1                   | 1051         | 1092       | 24   |
| RIDGELAND 2                   | 1050         | 1302       | 30   |
|                               | 1900         | 1962       | 32   |
| RIDGELAND 3                   | 1953         | 1982       | 29   |
| KIDGELAND 4                   | 1955         | 1982       | 27   |
| COMMONWEALTH ELECTRIC CO      |              |            |      |
| CANNON STREET 1               | 1947         | 1003       | 46   |
| CANNON STREET 2               | 1050         | 1000       | 40   |
|                               | 1900         | 1985       | 43   |
|                               | 1917         | 1973       | 56   |
| CANNON STREET 8               | 1923         | 1971       | 48   |

|                                | Installation | Retirement  | Life        |
|--------------------------------|--------------|-------------|-------------|
|                                | Year         | <u>Year</u> | <u>Span</u> |
| (1)                            | (2)          | (3)         | (4)         |
|                                |              |             |             |
| 59TH STREET 07                 | 1918         | 1077        | 59          |
| 50TH STREET 08                 | 1019         | 1077        | 55          |
| SOTH STREET 13                 | 1052         | 1000        | 09          |
| SOTH STREET 14                 | 1902         | 1004        |             |
|                                | 1015         | 1994        | 32<br>67    |
|                                | 1019         | 1072        | 5/          |
| 74TH STREET 40                 | 1910         | 1972        | 24          |
| EAST DIVED 5                   | 1950         | 1000        | 30          |
|                                | 1001         | 1990        | 40          |
| HELL GATE CECO 2               | 1021         | 19/4        | 55          |
|                                | 1921         | (3(4)       | 33          |
|                                | 1922         | 1972        | 50          |
| HELL GATE CECO S               | 1923         | 19/4        | 51          |
| HELL GATE CECO 5               | 1920         | 1971        | 40          |
|                                | 1920         | 1971        | 4.5         |
|                                | 1928         | 1972        | 44          |
|                                | 1929         | 1974        | 45          |
|                                | 1924         | 1972        | 48          |
| HUDSON AVENUE 02               | 1924         | 1979        | 55          |
| HUDSON AVENUE 03               | 1924         | 19/9        | 55          |
| HUDSON AVENUE 04               | 1926         | 1970        | 44          |
| HUDSON AVENUE 05               | 1928         | 1981        | 53          |
| HUDSON AVENUE 06               | 1928         | 1981        | 53          |
| HUDSON AVENUE 08               | 1932         | 1986        | 54          |
| WATERSIDE (NY) 01              | 1891         | 1972        | 81          |
| WATERSIDE (NY) 04              | 1937         | 1994        | 57          |
| WATERSIDE (NY) 05              | 1938         | 1995        | 57          |
| WATERSIDE (NY) 06              | 1941         | 2005        | 64          |
| WATERSIDE (NY) 07              | 1941         | 1992        | 51          |
| WATERSIDE (NY) 09              | 1949         | 2005        | 56          |
| WATERSIDE (NY) 10              | 1924         | 1976        | 52          |
| WATERSIDE (NY) 11              | 1919         | 1977        | 58          |
| WATERSIDE (NY) 12              | 1924         | 1976        | 52          |
| WATERSIDE (NY) 13              | 1919         | 1977        | 58          |
| WATERSIDE (NY) 14              | 1948         | 1992        | 44          |
| WATERSIDE (NY) 15              | 1949         | 1992        | 43          |
|                                |              |             |             |
| CONECTIV ENERGY                |              |             |             |
| DEEPWATER (NJ) 3               | 1930         | 1991        | 61          |
|                                |              |             |             |
| CONNECTICUT LIGHT AND POWER CO |              |             |             |
| STAMFORD /                     | 1928         | 1978        | 50          |
| STAMFORD 8                     | 1941         | 1978        | 37          |
| AQUETELLATION ENERGY DOMED OF  |              |             |             |
| CONSTELLATION ENERGY POWER GEN | 4042         | 1001        | 40          |
|                                | 1942         | 1991        | 49          |
| RIVERSIDE (MD) 2               | 1944         | 1994        | 30          |
| RIVERSIDE (MD) 5               | 1940         | 1994        | 40          |
| RIVERSIDE (MD) 5               | 1040         | 1094        | 41          |
| WESTPORT 03                    | 1940         | 1904        | 44<br>50    |
| WESTPORT 03                    | 1941         | 1994        | 55          |
| WESTPORT 12                    | 1950         | 1994        | 44          |
| WESTPORT 13                    | 1942         | 1904        | 44          |
| WESTPORT 14                    | 1942         | 1904        | 42          |
| CONSUMERS ENERGY CO (MI)       |              |             |             |
| BE MORROW 1                    | 1930         | 1982        | 43          |
| BE MORROW 2                    | 1939         | 1982        | 43          |
| BE MORROW 3                    | 1941         | 1982        | 40          |
| BE MORROW 4                    | 1949         | 1982        | 33          |
| JC WEADOCK 1                   | 1940         | 1983        | 43          |
| JC WEADOCK 2                   | 1941         | 1983        | 40          |
| JC WEADOCK 3                   | 1943         | 1983        | 40          |
| JC WEADOCK 4                   | 1948         | 1983        | 35          |
| JC WEADOCK 5                   | 1949         | 1983        | 34          |
| JC WEADOCK 6                   | 1949         | 1983        | 34          |

|                              | Installation Retirement<br>Unit Year Year | Retirement | Life |
|------------------------------|-------------------------------------------|------------|------|
| Unit                         |                                           | Year       | Span |
| (1)                          | (2)                                       | (3)        | (4)  |
| CPS ENERGY                   |                                           |            |      |
| LEON CREEK 1                 | 1949                                      | 1988       | 39   |
| LEON CREEK 2                 | 1951                                      | 1988       | 37   |
| MISSION ROAD 1               | 1945                                      | 1977       | 32   |
| MISSION ROAD 2               | 1948                                      | 1977       | 29   |
| MISSION ROAD 3               | 1958                                      | 2003       | 45   |
| DAIRYLAND POWER COOP         |                                           |            |      |
| GENOA-1 NO 1                 | <b>194</b> 1                              | 1987       | 46   |
| DAYTON POWER & LIGHT CO (OH) |                                           |            |      |
| FM TAIT 1                    | 1944                                      | 1987       | 43   |
| FM TAIT 2                    | 1942                                      | 1987       | 45   |
| FM TAIT 3                    | 1951                                      | 1987       | 36   |
| FM TAIT 7                    | 1937                                      | 1987       | 50   |
| FM TAIT 8                    | 1940                                      | 1987       | 47   |
| DETROIT EDISON CO            |                                           |            |      |
| CONNERS CREEK 10             | 1935                                      | 1983       | 48   |
| CONNERS CREEK 12             | 1939                                      | 1983       | 44   |
| CONNERS CREEK 13             | 1937                                      | 1983       | 46   |
| CONNERS CREEK 14             | 1936                                      | 1983       | 47   |
| DELRAY 11                    | 1929                                      | 1983       | 54   |
| DELRAY 12                    | 1929                                      | 1983       | 54   |
| DELRAY 13                    | 1933                                      | 1983       | 50   |
| DELRAY 14                    | 1938                                      | 1988       | 50   |
| DELRAY 15                    | 1940                                      | 1988       | 48   |
| DELRAY 16                    | 1942                                      | 1083       | . 41 |
| FERMI FOSSIL 1               | 1966                                      | 1983       | 17   |
| TRENTON CHANNEL 4            | 1928                                      | 1974       | 46   |
| DETROIT PUBLIC LIGHTING      |                                           |            |      |
| MISTERSKY 1                  | 1927                                      | 1977       | 50   |
| MISTERSKY 2                  | 1927                                      | 1977       | 50   |
| MISTERSKY 3                  | 1927                                      | 1977       | 50   |
| MISTERSKY 4                  | 1927                                      | 1977       | 50   |
| DOMINION VIRGINIA POWER      |                                           |            |      |
| CHESTERFIELD 1               | 1944                                      | 1981       | 37   |
| CHESTERFIELD 2               | 1949                                      | 1981       | 32   |
| POSSUM POINT 1               | 1948                                      | 2003       | 55   |
| POSSUM POINT 2               | 1951                                      | 2003       | 52   |
| TWELETH STREET 4             | 1923                                      | 1975       | 52   |
| TWELETH STREET 5             | 1919                                      | 1975       | 52   |
| TWELETH STREET 6             | 1936                                      | 1975       | 30   |
| TWELFTH STREET 7             | 1940                                      | 1975       | 35   |

| Unit                          | Installation<br>Year | Retirement<br>Year | Life<br>Span |
|-------------------------------|----------------------|--------------------|--------------|
| (1)                           | (2)                  | (3)                | (4)          |
|                               |                      |                    |              |
| DUKE ENERGY CAROLINAS LLC     |                      |                    |              |
| GREENWOOD (SC) 1              | 1956                 | 1974               | 18           |
| DYNEGY GENERATION             |                      |                    |              |
| MOSS LANDING 1                | 1950                 | 1994               | 44           |
| MOSS LANDING 2                | 1950                 | 1994               | 44           |
| MOSS LANDING 3                | 1951                 | 1994               | 43           |
| MOSS LANDING 4                | 1952                 | 1994               | 42           |
| MOSS LANDING 5                | 1952                 | 1994               | 42           |
| FAGLE CONSTR & ENV SVCS       |                      |                    |              |
| FORT PHANTOM 1                | 1974                 | 2007               | 33           |
| FORT PHANTOM 2                | 1077                 | 2007               | 30           |
|                               | 1028                 | 2005               | 30           |
|                               | 1051                 | 2005               | 54<br>54     |
|                               | 1901                 | 2005               | 04           |
| BIO PECOS ST 6                | 1902                 | 2005               | 43           |
|                               | 1909                 | 2005               | 40           |
| EL PASO ELECTRIC CO           |                      |                    |              |
| RIO GRANDE 1                  | 1929                 | 1980               | 51           |
| RIO GRANDE 2                  | 1929                 | 1980               | 51           |
| RIO GRANDE 3                  | 1946                 | 1985               | 39           |
| RIO GRANDE 4                  | 1951                 | 1985               | 34           |
| RIO GRANDE 5                  | 1954                 | 1985               | . 31         |
| EMPIRE DISTRICT ELEC CO       |                      |                    |              |
| RIVERTON 3                    | 1918                 | 1990               | 72           |
| RIVERTON 4                    | 1926                 | 1990               | 64           |
| RIVERTON 6                    | 1939                 | 1995               | 56           |
| ENTERGY ARKANSAS INC          |                      |                    |              |
| JIM HILL 1                    | 1950                 | 1984               | 34           |
|                               |                      |                    |              |
| ENTERGY GULF STATES LOUISIANA |                      |                    |              |
| LOUISIANA ONE 3               | 1930                 | 1986               | 56           |
| LOUISIANA ONE 4               | 1938                 | 1989               | 51           |
| NECHES 3                      | 1937                 | 1987               | 50           |
| NECHES /                      | 1956                 | 1983               | 27           |
| ENTERGY LOUISIANA LLC         |                      |                    |              |
| STERLINGTON 3                 | 1929                 | 1972               | 43           |
| STERLINGTON 4                 | 1929                 | 1972               | 43           |
| STERLINGTON 5                 | 1943                 | 1985               | 42           |
| ENTERGY MISSISSIPPI INC       |                      |                    |              |
| REX BROWN 2                   | 1949                 | 1984               | 35           |
|                               |                      |                    |              |
| MARKET STREET 11              | 4000                 | 4004               |              |
| MARKET OTREET 12              | 1938                 | 1984               | 46           |
|                               | 1943                 | 1984               | 41           |
| MARINE FOR THE FIG            | 1902                 | 1904               | 32           |

|                              | Installation | Retirement | Life      |
|------------------------------|--------------|------------|-----------|
| Unit                         | Year         | Year       | Span      |
| (1)                          | (2)          | (3)        | (4)       |
|                              |              |            |           |
| RAPPADOES 1                  | 4000         | 4070       | 50        |
| CHESTED 5                    | 1923         | 1973       | 50        |
| CHESTER 5                    | 1940         | 1981       | 41        |
|                              | 1941         | 1902       | 41        |
|                              | 1920         | 1975       | 00<br>54  |
| DELAWARE 5                   | 1924         | 1975       | 51        |
| DELAWARE 6                   | 1924         | 1071       | 47        |
| DELAWARE 7                   | 1053         | 2004       | -+/<br>51 |
| DELAWARE 8                   | 1953         | 2004       | 51        |
| L STREET 09                  | 1010         | 1972       | 53        |
| L STREET 10                  | 1920         | 1973       | 53        |
| L STREET 11                  | 1922         | 1973       | 51        |
| L STREET 12                  | 1939         | 1980       | 41        |
| L STREET TOP                 | 1939         | 1976       | 37        |
| MOUNTAIN CREEK 1             | 1938         | 1977       | 39        |
| MOUNTAIN CREEK 4             | 1949         | 1970       | 21        |
| MOUNTAIN CREEK 5             | 1950         | 1970       | 20        |
| NEW BOSTON 2                 | 1967         | 2003       | 36        |
| RICHMOND (PA) 10             | 1925         | 1975       | 50        |
| RICHMOND (PA) 11             | 1926         | 1975       | 49        |
| RICHMOND (PA) 9              | 1950         | 1985       | 35        |
| SCHUYLKILL 3                 | 1938         | 1987       | 49        |
| SCHUYLKILL 5                 | 1913         | 1975       | 62        |
| SCHUYLKILL 8                 | 1913         | 1975       | 62        |
| SCHUYLKILL 9                 | 1916         | 1981       | 65        |
| SOUTHWARK 1                  | 1947         | 1985       | 38        |
| SOUTHWARK 2                  | 1948         | 1985       | 37        |
|                              |              |            |           |
| FIRSTENERGY GENERATION CORP  |              |            |           |
| ACME 1                       | 1918         | 1989       | 71        |
| ACME 4                       | 1929         | 1989       | 60        |
| ASHTABULA 1                  | 1930         | 1983       | 53        |
| ASHTABULA 2                  | 1930         | 1983       | 53        |
| ASHTABULA 3                  | 1930         | 1983       | 53        |
| ASHTABULA 4                  | 1930         | 1983       | 53        |
| EDGEWATER (OH) 4             | 1957         | 2002       | 45        |
| LAKE SHORE 14                | 1941         | 1992       | 51        |
| LAKE SHORE 15                | 1942         | 1992       | 50        |
| LAKE SHORE 16                | 1951         | 1992       | 41        |
| LAKE SHORE 17                | 1951         | 1992       | 41        |
|                              |              |            |           |
| SOUTH MEADOW 1               | 1021         | 1076       | 55        |
| SOUTH MEADOW 2               | 1023         | 1976       | 53        |
| SOUTH MEADOW 3               | 1020         | 1976       | 47        |
| SOUTH MEADOW 4               | 1938         | 1976       | 38        |
| SOUTH MEADOW 5               | 1942         | 1976       | 34        |
| SOUTH MEADOW 6               | 1950         | 1976       | 26        |
|                              | 1000         |            |           |
| FITCHBURG GAS AND ELEC LT CO |              |            |           |
| SAWYER PASSWAY 6             | 1965         | 1978       | 13        |
|                              |              |            |           |
| FLORIDA POWER & LIGHT CO     |              |            |           |
| CUTLER (FL) 3                | 1949         | 1975       | 26        |
| CUTLER (FL) 4                | 1952         | 1980       | 28        |
| FORT MYERS 1                 | 1958         | 2002       | 44        |
| FORT MYERS 2                 | 1969         | 2002       | 33        |
|                              | 1948         | 1975       | 27        |
| PALATKA 1                    | 1951         | 1983       | 32        |
| PALATKA 2                    | 1958         | 1983       | 27        |
| RIVIERA BEACH 1              | 1946         | 1983       | 37        |
|                              |              |            |           |
| HD KING 6                    | 1058         | 2008       | 50        |
| HD KING 7                    | 1964         | 2000       | 44        |
| HD KING 8                    | 1976         | 2008       | 32        |

|                 | linit                     | Installation | Retirement | Life |
|-----------------|---------------------------|--------------|------------|------|
|                 |                           |              |            | apan |
|                 | (*)                       | (2)          | (3)        | (4)  |
| GAIN            | ESVILLE REGIONAL UTIL     |              |            |      |
|                 | JR KELLY 5                | 1955         | 1976       | 21   |
| 0501            |                           |              |            |      |
| GEO             | ATKINSON 1                | 1020         | 1002       | 00   |
|                 | ATKINGON I                | 1930         | 1993       | 63   |
|                 | ATKINSON 2                | 1941         | 2002       | 61   |
|                 | ATKINSON 3                | 1945         | 2002       | 57   |
|                 | ATKINSON 4                | 1948         | 2002       | 54   |
|                 | RIVERSIDE (GA) 4          | 1926         | 2005       | 79   |
|                 | RIVERSIDE (GA) 6          | 1949         | 2005       | 56   |
|                 | RIVERSIDE (GA) 7          | 1954         | 2005       | 51   |
|                 | RIVERSIDE (GA) 8          | 1956         | 2005       | 49   |
| GRAM            |                           |              |            |      |
| <u> </u>        | CHOUTEAU STEAM 5          | 1950         | 1082       | 30   |
|                 | CHOUTEAU STEAM 6          | 1000         | 1002       | 32   |
|                 | CHOOTEAU STEAM O          | 1951         | 1902       | 31   |
| HAW/            | AIIAN ELECTRIC CO INC     |              |            |      |
|                 | HONOLULU 5                | 1930         | 1982       | 52   |
|                 | HONOLULU 7                | 1944         | 1983       | 39   |
|                 | WAIAU 2                   | 1940         | 1982       | 42   |
| HOLY            | OKE GAS & ELECTRIC (MA)   |              |            |      |
|                 | RIVERSIDE (MA) 02         | 1936         | 1977       | 41   |
|                 | RIVERSIDE (MA) 10         | 1948         | 1077       | 20   |
|                 |                           | 1040         | 1317       | 23   |
| <u>INDIA</u>    | NA MICHIGAN POWER CO      |              |            |      |
|                 | I WIN BRANCH 4            | 1944         | 1981       | 37   |
|                 | TWIN BRANCH 5             | 1949         | 1981       | 32   |
| INDIA           | NAPOLIS POWER & LIGHT CO  |              |            |      |
|                 | HARDING STREET 1          | 1931         | 1986       | 55   |
|                 | HARDING STREET 2          | 1931         | 1986       | 55   |
| INTER           | PETATE DOWED AND LIGHT OD |              |            |      |
| INTER           | MASON CITY 3              | 1020         | 1077       | 48   |
|                 | MAGON CIT 1 3             | 1323         | 13//       | 40   |
| <u>JEA</u>      |                           |              |            |      |
|                 | JD KENNEDY 05             | 1924         | 1972       | 48   |
|                 | JD KENNEDY 06             | 1929         | 1972       | 43   |
|                 | JD KENNEDY 07             | 1939         | 1972       | 33   |
|                 | JD KENNEDY 08             | 1955         | 1998       | 43   |
|                 | JD KENNEDY 09             | 1958         | 1998       | 40   |
|                 | SOUTHSIDE 3               | 1955         | 1998       | 43   |
|                 | SOUTHSIDE 4               | 1958         | 2001       | 43   |
|                 | SOUTHSIDE 5               | 1964         | 2001       | 37   |
|                 |                           |              |            |      |
| JUNE            |                           | 4050         | 4002       | 05   |
|                 | JONESBORO (AR) 6          | 1958         | 1983       | 25   |
| KANS            | AS CITY BD PUB UTIL       |              |            |      |
|                 | QUINDARO TWO 7            | 1938         | 1982       | 44   |
|                 | QUINDARO TWO 8            | 1947         | 1982       | 35   |
|                 | QUINDARO TWO 9            | 1952         | 1983       | 31   |
| KANG            | AS CITY POWER & LIGHT CO  |              |            |      |
| <u>/////110</u> | EDMOND STREET 4           | 1065         | 1086       | 21   |
|                 | EDMOND STREET 5           | 1062         | 1086       | 21   |
|                 |                           | 1000         | 1000       | 23   |
|                 |                           | 1950         | 1963       | 33   |
|                 |                           | 1949         | 1997       | 48   |
|                 | NORTHEAST (MO) 1          | 1920         | 1982       | 62   |
|                 | NORTHEAST (MO) 11         | 1950         | 1982       | 32   |
|                 | NORTHEAST (MU) 2          | 1920         | 1982       | 62   |

| Unit                          | Installation<br>Year | Retirement<br>Year | Life<br>Span |
|-------------------------------|----------------------|--------------------|--------------|
| (1)                           | (2)                  | (3)                | (4)          |
| KANSAS GAS & ELECTRIC CO      |                      |                    |              |
| RIPLEY 1                      | 1938                 | 1985               | 47           |
| RIPLEY 2                      | 1948                 | 1985               | 37           |
| RIPLEY 3                      | 1949                 | 1985               | 36           |
| WICHITA 2                     | 1919                 | 1986               | 67           |
| KCP&L GREATER MISSOURI OPER   |                      |                    |              |
| RALPH GREEN 1                 | 1954                 | 1982               | 28           |
| RALPH GREEN 2                 | 1958                 | 1982               | 24           |
| KEYS ENERGY SERVICES          |                      |                    |              |
| STOCK ISLAND 3                | 1957                 | 1990               | 33           |
| STOCK ISLAND 4                | 1962                 | 1990               | 28           |
| STOCK ISLAND 5                | 1966                 | 1987               | 21           |
| LAFAYETTE UTIL SYSTEM         |                      |                    |              |
| CA RODEMACHER 3               | 1956                 | 1994               | 38           |
| CA RODEMACHER 4               | 1960                 | 2001               | 41           |
| LAKE WORTH UTIL AUTH          |                      |                    |              |
| TG SMITH 4                    | 1971                 | 2003               | 32           |
| LAKELAND ELECTRIC (FL)        |                      |                    |              |
| LARSEN MEMORIAL 4             | 1950                 | 1994               | 44           |
| LARSEN MEMORIAL 5             | 1956                 | 1992               | 36           |
| LINCOLN ELECTRIC SYSTEM (NE)  |                      |                    |              |
| K STREET 3                    | 1950                 | 1983               | 33           |
| LOS ANGELES DEPT WTR & PWR    |                      |                    |              |
| HARBOR 1                      | 1943                 | 1988               | 45           |
| HARBOR 2                      | 1947                 | 1988               | 41           |
| LOUISVILLE GAS & ELEC CO (KY) |                      |                    |              |
| CANE RUN 3                    | 1958                 | 1995               | 37           |
| LOWER COLORADO RIVER AUTH     |                      |                    |              |
| COMAL 1                       | 1927                 | 1973               | 46           |
| COMAL 2                       | 1929                 | 1973               | 44           |

|                             | Installation | Retirement | Life     |
|-----------------------------|--------------|------------|----------|
| Unit                        | Year         | Year       | Span     |
| (1)                         | (2)          | (3)        | (4)      |
|                             |              |            |          |
| LUMINANT POWER COLLC        | 4020         | 1077       |          |
| DALLAS                      | 1930         | 1977       | 47       |
| DALLAS 1                    | 1924         | 1977       | 53       |
| DALLAS 2                    | 1927         | 1977       | 50       |
| DALLAS 3                    | 1954         | 1998       | 44       |
| DALLAS 9                    | 1951         | 1998       | 47       |
| MORGAN CREEK 1              | 1950         | 1976       | 26       |
| MORGAN CREEK 2              | 1950         | 2004       | 54       |
| MORGAN CREEK 3              | 1952         | 2004       | 52       |
| MORGAN CREEK A              | 1954         | 2004       | 50       |
| MODGAN CREEKS               | 1050         | 2004       | 50       |
| MORGAN OREEK &              | 1909         | 2009       | 50       |
|                             | 1966         | 2009       | 43       |
|                             | 1959         | 2009       | 50       |
| NORTH LAKE 2                | 1961         | 2009       | 48       |
| NORTH LAKE 3                | 1964         | 2009       | 45       |
| NORTH MAIN (TX) 1           | 1919         | 2004       | 85       |
| NORTH MAIN (TX) 2           | 1922         | 2004       | 82       |
| NORTH MAIN (TX) 4           | 1952         | 2004       | 52       |
| PARKDALE 1                  | 1953         | 2004       | 51       |
| PARKDALE 2                  | 1955         | 2004       | 49       |
| DADKDALE 2                  | 1057         | 2004       | 47       |
|                             | 1957         | 2004       | 4/       |
| PERMIAN DAGIN I             | 1946         | 1983       | 35       |
| PERMIAN BASIN 2             | 1948         | 1983       | 35       |
| PERMIAN BASIN 3             | 1949         | 1983       | 34       |
| PERMIAN BASIN 4             | 1949         | 1983       | 34       |
| PERMIAN BASIN 5             | 1958         | 2009       | 51       |
| RIVER CREST 1               | 1954         | 2004       | 50       |
| TRADINGHOUSE CREEK 1        | 1970         | 2009       | 39       |
| TRINIDAD (TY) 1             | 1026         | 1091       | 55       |
|                             | 1020         | 1001       | 55       |
|                             | 1920         | 1961       | 55       |
| TRINIDAD (TX) 3             | 1931         | 1981       | 50       |
| TRINIDAD (TX) 4             | 1943         | 1981       | 38       |
| TRINIDAD (TX) 5             | 1949         | 1994       | 45       |
| WACO 3                      | 1949         | 1972       | 23       |
| WICHITA FALLS 6             | 1949         | 1980       | 31       |
| WICHITA FALLS 7             | 1949         | 1980       | 31       |
| MADISON GAS AND ELECTRIC CO |              |            |          |
| BLOUNT STREET 1             | 1925         | 2006       | 81       |
|                             | 1020         | 2000       | <b>.</b> |
| MCPHERSON BD OF PUB UTIL    |              | _          |          |
| MCPHERSON ONE (KS) 3        | 1958         | 1995       | 37       |
| MCPHERSON TWO (KS) 1        | 1963         | 2006       | 43       |
|                             |              |            |          |
| CRAWEORD (DA) 4             | 4024         | 4070       | E 4      |
| CRAWFORD (PA) 1             | 1924         | 1978       | 04<br>50 |
| CRAWFORD (PA) 2             | 1926         | 1978       | 52       |
| EYLER 5                     | 1919         | 1976       | 57       |
| EYLER 6                     | 1923         | 1976       | 53       |
| EYLER 7                     | 1941         | 1976       | 35       |
|                             |              |            |          |
| BIG SIGLY 1                 | 1025         | 1076       | 50       |
|                             | 1920         | 1075       | 50       |
| BIG SIOUX 2                 | 1925         | 19/5       | 50       |
| BIG SIOUX 3                 | 1927         | 1975       | 48       |
| BIG SIQUX 4                 | 1949         | 1975       | 26       |
| DES MOINES 09               | 1950         | 1982       | 32       |
| MAYNARD 6                   | 1951         | 1983       | 32       |
| MAYNARD 7                   | 1958         | 1988       | 30       |
| MOLINE 5                    | 1952         | 1985       | 33       |
| MOLINE 6                    | 1953         | 1986       | 33       |
| MOLINE 7                    | 1954         | 1986       | 32       |

| llait                          | Installation      | Retirement | Life     |
|--------------------------------|-------------------|------------|----------|
| (4)                            | (2)               |            | <u> </u> |
| (1)                            | (2)               | (3)        | (4)      |
| MIDWEST ENERGY INC (KS)        |                   |            |          |
| ROSS BEACH 1                   | 1954              | 1994       | 40       |
| ROSS BEACH 2                   | 1960              | 1004       | -+0      |
|                                | 1000              | 1554       | 54       |
| MIDWEST GENERATION EME LLC     |                   |            |          |
| COLLINS 1                      | 1978              | 2004       | 26       |
| COLLINS 2                      | 1977              | 2004       | 27       |
| COLLINS 3                      | 1977              | 2004       | 27       |
| COLLINS 4                      | 1978              | 2004       | 26       |
| COLLINS 5                      | 1979              | 2004       | 25       |
| CRAWFORD 6                     | 1928              | 1976       | 48       |
|                                |                   |            |          |
| MIRANI CORP                    |                   |            |          |
| CONTRA COSTA 1                 | 1951              | 1994       | 43       |
| CONTRA COSTA 2                 | 1951              | 1994       | 43       |
| CONTRA COSTA 3                 | 1951              | 1994       | 43       |
| CONTRA COSTA 4                 | 1953              | 1994       | 41       |
| CONTRA COSTA 5                 | 1953              | 1994       | 41       |
| KENDALL SQUARE 1               | 1949              | 2002       | 53       |
| KENDALL SQUARE 2               | 1 <del>9</del> 51 | 2002       | 51       |
| KENDALL SQUARE 3               | 1958              | 2002       | 44       |
| LOVETT 1                       | 1949              | 1995       | 46       |
| LOVETT 2                       | 1951              | 1995       | 44       |
| PITTSBURG 1                    | 1954              | 2003       | 49       |
| PITTSBURG 2                    | 1954              | 2003       | . 49     |
| PITTSBURG 3                    | 1954              | 2003       | 49       |
| PITTSBURG 4                    | 1954              | 2003       | 49       |
| POTRERO 1                      | 1931              | 1981       | 50       |
| POTRERO 2                      | 1931              | 1981       | 50       |
|                                |                   |            |          |
| MOUNTAINVIEW DOWER 1           | 1057              | 2002       | 45       |
|                                | 1957              | 2002       | 45       |
| MOONTAINVIEW FOWER 2           | 1956              | 2002       | 44       |
| NARRAGANSETT ELECTRIC CO       |                   |            |          |
| PAWTUCKET ONE 5                | 1920              | 1975       | 55       |
|                                |                   |            |          |
| NATIONAL ENERGY & GAS TRANSM   |                   |            |          |
| SOUTH STREET 12                | 1955              | 1992       | 37       |
| NEBRASKA PUBLIC POWER DIST     |                   |            |          |
| BLUFFS 4                       | 1963              | 1989       | 26       |
|                                |                   |            |          |
| NEXTERA ENERGY RESOURCES LLC   |                   |            |          |
| MASON 1                        | 1942              | 1994       | 52       |
| MASON 2                        | 1947              | 1994       | 47       |
|                                |                   |            |          |
| NORTH AMERICAN ENERGY ALLIANCE | 40.40             | 4004       |          |
| WEST SPRINGFIELD 1             | 1949              | 1991       | 42       |
| WEST SPRINGFIELD 2             | 1952              | 1991       | 39       |
| NORTH AMERICAN POWER GRP       |                   |            |          |
| KERN 1                         | 1948              | 1994       | 46       |
| KERN 2                         | 1950              | 1994       | 44       |
|                                |                   |            |          |
| NORTHERN STATES POWER CO (MN)  | 1004              | 4074       | 50       |
|                                | 1924              | 1974       | 50       |
|                                | 1010              | 1970       | 59       |
| RIVERSIDE (MN) 5               | 1075              | 1075       | 50       |
| SOUTHEAST 4                    | 10/6              | 1074       | 29       |
| SOUTHEAST 5                    | 1940              | 1074       | 20       |
|                                | 10-10             | 10/7       | 20       |

| Lisit                      | Installation     | Retirement | Life     |
|----------------------------|------------------|------------|----------|
| (1)                        | (2)              | (3)        | <u> </u> |
| (1)                        | (*)              | (*)        | (~)      |
| NRG ENERGY INC             |                  |            |          |
| DEVON 3                    | 1951             | 1991       | 40       |
| DEVON 4                    | 1942             | 1991       | 49       |
| DEVON 5                    | 1947             | 1991       | 44       |
| DEVON 6                    | 1949             | 1991       | 42       |
| EL SEGUNDO 1               | 1955             | 2002       | 47       |
| EL SEGUNDO 2               | 1956             | 2002       | 46       |
| LONG BEACH 10              | 1928             | 2005       | //       |
| LONG BEACH TI              | 1930             | 2005       | /5       |
|                            | 1954             | 1998       | 44       |
|                            | 1957             | 1977       | 40       |
| OSWEGO 2                   | 1041             | 1005       | 50       |
| OSWEGO 3                   | 1048             | 1995       | 47       |
| OSWEGO 4                   | 1940             | 1995       | 47       |
| SOMERSET (MA) 1            | 1925             | 1994       | 69       |
| SOMERSET (MA) 1            | 1028             | 1954       | 66       |
| SOMERSET (MA) Z            | 1920             | 1994       | 47       |
| VIENNA 5                   | 1048             | 1980       | 30       |
|                            | 1040             | 1080       | 31       |
| VIENNA 7                   | 1061             | 1090       | 20       |
|                            | 1901             | 1900       | 25       |
| NRG TEXAS LLC              |                  |            |          |
| DEEPWATER (TX) 1           | 1924             | 1986       | 62       |
| DEEPWATER (TX) 2           | 1924             | 1986       | 62       |
| DEEPWATER (TX) 3           | 1927             | 1986       | 59       |
| DEEPWATER (TX) 4           | 1928             | 1986       | 58       |
| DEEPWATER (TX) 5           | 1932             | 1986       | 54       |
| DEEPWATER (TX) 6           | 1931             | 1986       | 55       |
| DEEPWATER (TX) 9           | 1955             | 2005       | 50       |
| GABLE STREET 3             | 1922             | 1971       | 49       |
| GABLE STREET 6             | 193 <del>9</del> | 1983       | 44       |
| GABLE STREET 7             | 1950             | 1983       | 33       |
| GREENS BAYOU 1             | 1949             | 1985       | 36       |
| GREENS BAYOU 2             | 1949             | 1985       | 36       |
| GREENS BAYOU 3             | 1953             | 1984       | 31       |
| GREENS BAYOU 4             | 1953             | 1984       | 31       |
| PH ROBINSON 1              | 1966             | 2005       | 39       |
| PH ROBINSON 3              | 1968             | 2005       | 37       |
| TH WHARTON 1               | 1958             | 1985       | 27       |
| TH WHARTON 2               | 1960             | 2005       | 45       |
| WEBSTER (TX) 1             | 1954             | 1985       | 31       |
| WEBSTER (TX) 2             | 1955             | 1985       | 30       |
| WEBSTER (TX) 3             | 1965             | 2005       | 40       |
| OG&F ELECTRIC SERVICES INC |                  |            |          |
| ARBUCKLE 1                 | 1953             | 2002       | 49       |
| BELLE ISLE 1               | 1930             | 1980       | 50       |
| BELLE ISLE 2               | 1943             | 1980       | 37       |
| HORSESHOE LAKE 1           | 1924             | 1981       | 57       |
| HORSESHOE LAKE 2           | 1927             | 1981       | 54       |
| HORSESHOE LAKE 3           | 1928             | 1981       | 53       |
| HORSESHOE LAKE 4           | 1947             | 1981       | 34       |
| HORSESHOE LAKE 5           | 1923             | 1981       | 58       |
| MUSKOGEE 2                 | 1924             | 1980       | 56       |
| OSAGE (OK) 1               | 1928             | 1981       | 53       |
| OSAGE (OK) 2               | 1948             | 1981       | 33       |
| OMAHA PURI IC DOWED DIST   |                  |            |          |
| JONES STREET 06            | 1917             | 1974       | 57       |
| JONES STREET 07            | 1921             | 1974       | 53       |
| JONES STREET 08            | 1925             | 1974       | 49       |
| JONES STREET 09            | 1929             | 1974       | 45       |
| JONES STREET 10            | 1937             | 1974       | 37       |
| JONES STREET 11            | 1949             | 1988       | 39       |
| JONES STREET 12            | 1951             | 1988       | 37       |
| SOUTH OMAHA 2              | 1948             | 1975       | 27       |

| linit                         | Installation | Retirement | Life     |
|-------------------------------|--------------|------------|----------|
|                               |              |            | <u> </u> |
| (1)                           | (4)          | (3)        | (4)      |
| ORLANDO LITILITIES COMM (EL)  |              |            |          |
| LAKE HIGHLAND 1               | 10/0         | 1084       | 25       |
|                               | 1054         | 1094       | 30       |
| LAKE HIGHLAND 3               | 1056         | 1004       |          |
|                               | 1950         | 1904       | 28       |
| PACIFIC GAS AND FLECTRIC CO   |              |            |          |
| AVON 1                        | 1040         | 1096       | 46       |
| HUNTERS POINT 1               | 1000         | 1000       | 40       |
| HUNTERS POINT 2               | 1323         | 1973       | 44       |
| HUNTERS POINT 2               | 1940         | 1994       | 40       |
|                               | 1949         | 1994       | 45       |
| MADTINEZ 1                    | 1900         | 2000       | 48       |
|                               | 1941         | 1985       | 44       |
|                               | 1942         | 1988       | 46       |
| OLEOM 2                       | 1943         | 1988       | 45       |
| PASADENA WATER AND DOWED DEDT |              |            |          |
| PROADMAX (CA) P1              | 4054         | 0000       |          |
|                               | (954         | 2002       | 48       |
| CLENADUAT (CA) 62             | 1957         | 2002       | 45       |
| GLENARMO                      | 1932         | 1979       | 4/       |
| GLENARM 9                     | 1949         | 1984       | 35       |
| DEDCO ENERCY SERVICES INC     |              |            |          |
| PERCO ENERGI SERVICES INC     | 4007         | 4070       |          |
| BENNING 10                    | 1927         | 1973       | 46       |
| BENNING 11                    | 1929         | 1981       | 52       |
| BENNING 12                    | 1931         | 1981       | 50       |
| BENNING 13                    | 1947         | 1981       | 34       |
| BENNING 14                    | 1952         | 1981       | 29       |
| BUZZARD POINT 1               | 1933         | 1981       | 48       |
| BUZZARD POINT 2               | 1948         | 1981       | 33       |
| BUZZARD POINT 3               | 1940         | 1981       | 41       |
| BUZZARD POINT 4               | 1942         | 1981       | 39       |
| BUZZARD POINT 5               | 1943         | 1981       | 38       |
| BUZZARD POINT 6               | 1945         | 1981       | 36       |
|                               |              |            |          |
| PNM PNM                       |              |            |          |
| PERSON 1                      | 1952         | 1987       | 35       |
| PERSON 2                      | 1953         | 1987       | 34       |
| PERSON 3                      | 1954         | 1987       | 33       |
| PERSON 4                      | 1957         | 1987       | 30       |
| PRAGER 9                      | 1948         | 1986       | 38       |
|                               |              |            |          |
| PORTLAND GENERAL ELECTRIC CO  |              |            |          |
| STATION L 1                   | 1921         | 1975       | 54       |
| STATION L 4                   | 1926         | 1975       | 49       |
| STATION L 6                   | 1930         | 1975       | 45       |
| DDI MONTANA LI O              |              |            |          |
| PPL MONTANA LLC               | 4054         | 4000       | 45       |
| FRANK BIRD 1                  | 1951         | 1996       | 45       |
|                               |              |            |          |
| AVON DARK 1                   | 1079         | 1075       | 47       |
| RAVON FARK I                  | 1920         | 1973       | 47       |
| BAIBORO Z<br>BAYDODO 4        | 1920         | 1974       | 40       |
| BATBORO J                     | 1944         | 1974       | 30       |
|                               | 1949         | 19/4       | 25       |
|                               | 1920         | (9/0       | 45       |
|                               | 1948         | 1977       | 29       |
|                               | 1955         | 1994       | 39       |
|                               | 1959         | 1994       | 35       |
|                               | 1951         | 1994       | 43       |
|                               | 1953         | 1994       | 41       |
| HIGGINS 3                     | 1953         | 1994       | 41       |
| INGLIS 1                      | 1926         | 1974       | 48       |
| INGLIS 2                      | 1926         | 1974       | 48       |
| INGUS 3                       | 1947         | 1974       | 27       |

|                                | Installation | Retirement        | Life |
|--------------------------------|--------------|-------------------|------|
| <u>Unit</u>                    | Year         | <u>Year</u>       | Span |
| (1)                            | (2)          | (3)               | (4)  |
| PSEG FOSSIL LLC                |              |                   |      |
| ALBANY (NY) 1                  | 1952         | 2005              | 53   |
| ALBANY (NY) 2                  | 1952         | 2005              | 53   |
| ALBANY (NY) 3                  | 1953         | 2005              | 52   |
| ALBANY (NY) 4                  | 1954         | 2005              | 51   |
| BERGEN 2                       | 1960         | 1995              | 35   |
| BURLINGTON (NJ) 5              | 1940         | 1978              | 38   |
| BURLINGTON (NJ) 6              | 1943         | 1984              | 41   |
| BURLINGTON (NJ) 7              | 1955         | 1997              | 42   |
| ESSEX 1                        | 1947         | 1984              | 37   |
| ESSEX 2                        | 1916         | 1974              | 58   |
| ESSEX 3                        | 1918         | 1974              | 56   |
| ESSEX 4                        | 1924         | 1974              | 50   |
| ESSEX 5                        | 1924         | 1074              | 50   |
| ESSEX 6                        | 1924         | 1072              | 48   |
| KEARNY (N.I) 7                 | 1053         | 2005              | 52   |
| KEADNY (NJ) B                  | 1053         | 2005              | 52   |
|                                | 1900         | 2005              | 24   |
|                                | 1062         | 1000              | 24   |
| SEWAREN 5                      | 1902         | 1992              | 30   |
| PUBLIC SERVICE CO OF OKLAHOMA  |              |                   |      |
| LAWTON 4                       | 1948         | 1971              | 23   |
| WELEETKA 1                     | 1928         | 1977              | 49   |
| WELEETKA 2                     | 1931         | 1977              | 46   |
| WELEETKA 3                     | 1950         | 1977              | 27   |
| PUBLIC SERVICE COLORADO        |              |                   |      |
| VALMONT (CO) 1                 | 1924         | 1987              | 63   |
| VALMONT (CO) 2                 | 1926         | 1987              | 61   |
| VALMONT (CO) 3                 | 1937         | 1987              | 50   |
| VALMONT (CO) 4                 | 1941         | 1 <del>9</del> 87 | 46   |
| PUBLIC SVC CO OF NEW HAMPSHIRE |              |                   |      |
| KELLYS FALLS 2                 | 1922         | 1972              | 50   |
| MANCHESTER 1                   | 1938         | 1981              | 43   |
| SCHILLER 3                     | 1949         | 1991              | 42   |
| PUGET SOUND ENERGY INC         |              |                   |      |
| SHUFFLETON 1                   | 1929         | 1994              | 65   |
| QUINNIPIAC ENERGY LLC          |              |                   |      |
| ENGLISH 1                      | 1929         | 1981              | 52   |
| ENGLISH 2                      | 1929         | 1981              | 52   |
| ENGLISH 3                      | 1930         | 1981              | 51   |
| ENGLISH 4                      | 1930         | 1981              | 51   |
| ENGLISH 5                      | 1930         | 1981              | 51   |
| ENGLISH 6                      | 1931         | 1981              | 50   |
|                                |              |                   |      |
| I A PAI MA 3                   | 1028         | 1073              | 45   |
| VICTORIA (TX) 3                | 1052         | 1096              | -+5  |
|                                | 1952         | 2008              | 54   |
|                                | 1000         | 2000              | 21   |
| VICTORIA (TX) 6                | 1968         | 2006              | 43   |
|                                |              |                   |      |
| ROCHELLE S1                    | 1962         | 2003              | 41   |

|                                | Installation | Retirement | Life                |
|--------------------------------|--------------|------------|---------------------|
| <u>Unit</u>                    | Year         | Year       | <u>    Span    </u> |
| (1)                            | (2)          | (3)        | (4)                 |
| POCHESTER GAS & ELEC CORP (NY) |              |            |                     |
| BEEBEE 01                      | 1927         | 1980       | 53                  |
| BEEBEE 02                      | 1927         | 1977       | 50                  |
| BEEBEE 06                      | 1941         | 1986       | 45                  |
| BEEBEE 10                      | 1938         | 1986       | 48                  |
| BEEBEE 11                      | 1943         | 1986       | 43                  |
|                                |              |            |                     |
| RRI ENERGY INC                 |              |            |                     |
| AVON LAKE 1                    | 1926         | 1983       | 57                  |
| AVON LAKE 2                    | 1926         | 1983       | 57                  |
|                                | 1928         | 1983       | 55                  |
|                                | 1929         | 1083       |                     |
|                                | 1053         | 2003       | -+0                 |
| FTIWANDA 2                     | 1953         | 2003       | 50                  |
| GILBERT 1                      | 1930         | 1995       | 65                  |
| GILBERT 2                      | 1930         | 1995       | 65                  |
| GILBERT 3                      | 1949         | 1996       | 47                  |
| SAYREVILLE 1                   | 1930         | 1994       | 64                  |
| SAYREVILLE 2                   | 1930         | 1995       | 65                  |
| SAYREVILLE 3                   | 1949         | 1995       | 46                  |
| SAYREVILLE 4                   | 1955         | 2005       | 50                  |
| SAYREVILLE 5                   | 1958         | 2005       | 47                  |
| WERNER 4                       | 1953         | 1996       | 43                  |
|                                |              |            |                     |
| SAN DIEGO GAS & ELECTRIC       | 1043         | 1084       | A1                  |
| SILVER GATE 2                  | 1943         | 1984       |                     |
| SILVER GATE 3                  | 1950         | 1984       | 34                  |
| SILVER GATE 4                  | 1952         | 1984       | 32                  |
| STATION B (CA) 21              | 1923         | 1983       | 60                  |
| STATION B (CA) 22              | 1927         | 1983       | 56                  |
| STATION B (CA) 24              | 1928         | 1983       | 55                  |
| STATION B (CA) 25              | 1938         | 1983       | 45                  |
|                                |              |            |                     |
| SE TECHNOLOGIES INC            | 4040         | 4074       | 61                  |
| MARION (NJ) 6                  | 1913         | 19/4       | 01                  |
| SEATTLE CITY LIGHT             |              |            |                     |
| LAKE UNION 12                  | 1918         | 1987       | 69                  |
| LAKE UNION 13                  | 1921         | 1987       | 66                  |
|                                |              |            |                     |
| SOUTH CAROLINA ELEC & GAS CO   |              |            |                     |
| HAGOOD 1                       | 1947         | 1993       | 46                  |
| HAGOOD 2                       | 1950         | 1993       | 43                  |
| HAGOOD 3                       | 1952         | 1993       | 41                  |
|                                |              |            |                     |
| SOUTHWESTERN ELEC POWER CO     | 4000         | 4070       | 40                  |
|                                | 1938         | 19/0       | 40                  |
| ARSENAL FILL 2                 | 1920         | 1976       | 52                  |
| ARSENAL HILL 3                 | 1927         | 1978       | 51                  |
| KNOX LEE 1                     | 1950         | 1987       | 37                  |
|                                |              |            |                     |
| SOUTHWESTERN PUB SERV CO (TX)  |              |            |                     |
| CARLSBAD (NM) 3                | 1949         | 1983       | 34                  |
| CARLSBAD (NM) 4                | 1952         | 1983       | 31                  |
| DENVER CITY 2                  | 1946         | 1981       | 35                  |
| DENVER CITY 3                  | 1948         | 1981       | 33                  |
|                                | 1955         | 1964       | 29                  |
| EAST PLANT (TA) 3              | 1950         | 1000       | 38                  |
| FAST PLANT (TX) 5              | 1942         | 1980       | 29                  |
| MOORE COUNTY 2                 | 1950         | 1984       | 34                  |
| RIVERVIEW (TX) 3               | 1927         | 1970       | 43                  |
| RIVERVIEW (TX) 4               | 1919         | 1970       | 51                  |
| RIVERVIEW (TX) 5               | 1948         | 1983       | 35                  |
| TUCO 3                         | 1949         | 1974       | 25                  |

|                              | Installation | Retirement        | Life            |
|------------------------------|--------------|-------------------|-----------------|
| Unit                         | Year         | Year              | <u>    Span</u> |
| (1)                          | (2)          | (3)               | (4)             |
| SUNFLOWER ELECTRIC COOP      |              |                   |                 |
| FORT DODGE 3                 | 1957         | 1983              | 26              |
| GREAT BEND 1                 | 1953         | 1983              | 30              |
| GREAT BEND 2                 | 1955         | 1083              | 28              |
| UNEAT BEND 2                 | 1900         | 1903              | 20              |
| SUPERIOR WTR LT & POWER      |              |                   |                 |
| WINSLOW 2                    | 1942         | 1993              | 51              |
| WINSLOW 3                    | 1952         | 1993              | 41              |
| TAMPA ELECTRIC CO            |              |                   |                 |
| HOOKERS POINT 1              | 1948         | 2003              | 55              |
| HOOKERS POINT 2              | 1950         | 2003              | 53              |
| HOOKERS POINT 3              | 1950         | 2003              | 53              |
| HOOKERS POINT 4              | 1953         | 2003              | 50              |
| HOOKERS POINT 5              | 1055         | 2003              | 49              |
| POKNICHTA                    | 1045         | 2003              | 40              |
| SERPING 1                    | 1040         | 2002              | 20              |
| SEDIMING                     | 1900         | 2003              | 37              |
| TOPAZ POWER GROUP LLC        |              |                   |                 |
| NUECES BAY 3                 | 1942         | 1 <del>9</del> 78 | 36              |
| NUECES BAY 4                 | 1943         | 1978              | 35              |
| TUCSON ELECTRIC POWER CO     |              |                   |                 |
| DE MOSS PETRIE 1             | 1949         | 1990              | 41              |
| DE MOSS PETRIE 2             | 1949         | 1990              | 41              |
| DE MOSS PETRIE 3             | 1953         | 1991              | 38              |
| DE MOSS PETRIE 4             | 1954         | 1991              | 37              |
|                              |              |                   |                 |
| STEEL DOINT 01               | 1000         | 4004              | 50              |
| STEEL DOINT 02               | 1920         | 1901              | 56              |
|                              | 1923         | 1981              | 56              |
|                              | 1924         | 1981              | 57              |
|                              | 1920         | 1981              | 55              |
|                              | 1927         | 1981              | 54              |
|                              | 1930         | 1981              | 51              |
| STEEL POINT 07               | 1931         | 1981              | 50              |
| STEEL POINT 09               | 1941         | 1992              | 51              |
| STEEL POINT 11               | 1950         | 1992              | 42              |
| US POWER GENERATING CO LLC   |              |                   |                 |
| ASTORIA (NY) 1               | 1953         | 1993              | 40              |
| VECTREN ENERGY INDIANA SOUTH |              |                   |                 |
| OHIO RIVER 2                 | 1936         | 1981              | 45              |
| OHIO RIVER 3                 | 1938         | 1981              | 43              |
| OHIO RIVER 4                 | 1938         | 1984              | 46              |
| OHIO RIVER 5                 | 1945         | 1984              | 30              |
| OHIO RIVER 6                 | 1949         | 1084              | 35              |
| OHIO RIVER 7                 | 1951         | 1984              | 33              |
|                              |              |                   |                 |
| WE ENERGIES                  |              |                   |                 |
| COMMERCE STREET 15           | 1941         | 1988              | 47              |
| LAKESIDE (WI) 1              | 1920         | 1983              | 63              |
| LAKESIDE (WI) 11             | 1930         | 1983              | 53              |
| LAKESIDE (WI) 2              | 1921         | 1983              | 62              |
| LAKESIDE (WI) 3              | 1922         | 1983              | 61              |
| LAKESIDE (WI) 4              | 1924         | 1983              | 59              |
| LAKESIDE (WI) 5              | 1924         | 1983              | 59              |
| LAKESIDE (WI) 6              | 1926         | 1983              | 57              |
| LAKESIDE (WI) 9              | 1928         | 1983              | 55              |

|                               | Installation | Retirement |   | Life   |
|-------------------------------|--------------|------------|---|--------|
| Unit                          | Year         | Year       |   | Span   |
| (1)                           | (2)          | (3)        |   | (4)    |
| WESTAR ENERGY INC             |              |            |   |        |
| ABILENE (KS) 1                | 1940         | 1986       |   | 46     |
| ABILENE (KS) 2                | 1947         | 1986       |   | 39     |
| HUTCHINSON (KS) 1             | 1950         | 2007       |   | 57     |
| HUTCHINSON (KS) 2             | 1950         | 2007       |   | 57     |
| HUTCHINSON (KS) 3             | 1951         | 2007       |   | 56     |
| LAWRENCE (KS) 1               | 1939         | 1994       |   | 55     |
| TECUMSEH (KS) 03              | 1927         | 1979       |   | 52     |
| TECUMSEH (KS) 04              | 1930         | 1979       |   | 49     |
| TECUMSEH (KS) 07              | 1948         | 1983       |   | 35     |
| TECUMSEH (KS) 08              | 1951         | 1983       |   | 32     |
| WISCONSIN PUBLIC SERVICE CORP |              |            |   |        |
| JP PULLIAM 1                  | 1927         | 1980       |   | 53     |
| WORTHINGTON PUB UTILS         |              |            |   |        |
| WORTHINGTON (MN) 3            | 1953         | 1980       |   | 27     |
| TOTAL LIFE SPAN YEARS         |              |            |   | 20 708 |
|                               |              |            |   | 670    |
| IVIAL NUMBER OF UNITS         |              |            | + | 670    |
| AVERAGE LIFE SPAN, YEARS      |              |            |   | 44.47  |
|                               |              |            |   |        |

Source: Platts World Electric Power Plants Database, Jun 2009

### BEFORE THE PUBLIC UTILITIES COMMISSION OF NEVADA

| Application of Sierra Pacific Power Company for authority )<br>to increase its annual revenue requirement for general rates )<br>charged to all classes of electric customers and for relief )<br>properly related thereto. | Docket No. 05-10003 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Application of Sierra Pacific Power Company for approval )<br>of new and revised depreciation rates for electric operations)<br>based on its 2005 depreciation study.                                                       | Docket No. 05-10004 |

At a general session of the Public Utilities Commission of Nevada, held at its offices on April 26, 2006.

PRESENT: Chairman Donald L. Soderberg Commissioner Carl B. Linvill Commissioner Jo Ann P. Kelly Commission Secretary Crystal Jackson

### <u>ORDER</u>

The Public Utilities Commission of Nevada ("Commission") makes the following findings of fact and conclusions of law:

### I. PROCEDURAL HISTORY

 On October 3, 2005, Sierra Pacific Power Company ("Sierra" or the "Company") filed an Application with the Public Utilities Commission of Nevada ("Commission") for authority to increase its annual revenue requirement for general rates charged to all classes of electric customers within its service territory in the amount of \$27,098,000 and for relief properly related thereto. This Application has been designated by the Commission as Docket No. 05-10003.

2. On October 3, 2005, Sierra filed an additional Application with the Commission seeking approval of the new and revised depreciation rates for electric operations. This Application is based on Sierra's 2005 depreciation study and has been designated Docket No. 05-10004 by the Commission.

### Docket No. 05-10003&05-10004

Sierra's estimates derived from its remaining life study. On rebuttal, Sierra stated that the Transportation Department has detailed records for each vehicle that include the remaining life based upon when the vehicle was purchased and when its sale is planned. Sierra believes that it is more precise to use this data to develop a remaining life for the entire account instead of performing a life analysis. While Sierra stated that it had all the detailed information to develop a better estimate, it did not make clear what it actually intends to do with its fleet. Sierra was not certain when or if it would switch to a capital lease program for its transportation equipment. The Commission believes that Sierra has not justified its position for departing from normal depreciation accounting for the transportation accounts. The Commission finds that Sierra shall continue to use depreciation accounting for its transportation accounts.

271. BCP objects to Sierra's approach to interim retirements because it is cumbersome and inappropriate for application in Sierra's depreciation application. Sierra stated that its outside expert, Gannett Fleming, has been using this approach for years to calculate interim retirements for all of its studies across the U.S. and Canada including NPC's last depreciation case. Sierra explained that there are two different methods used to calculate interim retirements. Both are based upon historical data and informed judgment and neither method is superior. The Commission is convinced that Sierra's proposed methodology for calculating interim retirements is adequate and widely accepted in the industry. The Commission accepts Sierra's approach to calculating interim retirements.

272. BCP does not agree with Sicrra's method for calculating remaining life. BCP stated that Sierra's proposed modification to the remaining life calculation is not only unnecessary, but produces incorrect results. Sierra explained its remaining life methodology, its application in studies it has completed, and addressed each of BCP's criticisms. Sierra noted that the remaining life approach used is the same approach that has been used by Gannett Fleming in 80-90 depreciation studies including NPC's last depreciation study. The Commission is convinced that Sierra's proposed methodology

### Docket No. 05-10003&05-10004

Page 86

for calculating remaining life is adequate and widely accepted in the industry. The Commission accepts Sierra's method for calculating remaining life.

273. BCP stated that Gannett Fleming's Summary Statement contains an error at A(1)(a) at page 2 for Account 366-Distribution, Underground Conduit. Sierra indicated that there was in fact an error in the recording of future accruals for this account. However, Sierra explained that the future accrual rate was derived separately. Therefore, it was not affected by the error and does not require an adjustment to Sierra's proposed depreciation rates. The Commission is convinced that the error noted by BCP does not result in any required adjustment to Sierra's accrual rate for Account 366 or its depreciation expense. The Commission rejects BCP's proposed Account 366 adjustment.

274. A summary of the Commission's positions on the proposed adjustments is listed below.

| Summary of Adjustments                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                                                                                                                     |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|
| Proposed Adjustments                                                                                                                                                                                                                                                                                                                                                                                                        | Position<br>Accepted                                                                             | Estimated Depreciation<br>Expense Impact<br>(Millions)                                                              |  |  |
| IRP Retirement Dates For Steam Production Plant<br>Net Salvage Values for Various Accounts (Staff)<br>Net Salvage Values For Steam Production Plant<br>Net Salvage Rate for Hydroelectric Prod. Plant<br>Average Service Lives (Staff, BCP)<br>Amortization Accounting (Staff, BCP)<br>Sierra's ASLs For Transportation Equipment<br>Interim Retirement (BCP)<br>Remaining Life Methodology (BCP)<br>Accounting Error (BCP) | Staff<br>Staff<br>Staff<br>Staff, BCP<br>Sierra<br>Staff<br>Sierra<br>Sierra<br>Sierra<br>Sierra | \$10.00<br>\$1.40<br>(\$6.00)<br>(\$0.05)<br>(\$4.40)<br>\$0.00<br>(\$0.12)<br>\$0.00<br>\$0.00<br>\$0.00<br>\$0.00 |  |  |
| Balance                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                  | \$0.83                                                                                                              |  |  |

The Company shall calculate the approved depreciation rates based on the narrative above and file them as a compliance item so that rates may go into effect May 1, 2006. The one item that has not been listed in the table above is the depreciation expense associated with the removal of the Farad hydroelectric plant from rate base. The Company is to calculate that adjustment and include it with its compliance item.

# Statistical Analyses of Industrial Property Retirements

by Robley Winfrey



Bulletin 125 revised

ENGINEERING RESEARCH INSTITUTE Iowa State University • Ames, Iowa

## Statistical Analyses of Industrial Property Retirements

by Robley Winfrey

(Revised April, 1967 by Harold A. Cowles, Professor, Department of Industrial Engineering)

> Originally printed as BULLETIN 125

of the IOWA ENGINEERING EXPERIMENT STATION

December, 1935

ENGINEERING RESEARCH INSTITUTE

Iowa State University, Ames, Iowa

Dockets No. 080677-EI, No. 090130-EI Statistical Analysis, Bulletin 125 Exhibit CRC-6, Page 1 of 2

\$4.00



Fig. 32—(Lower) Errors in estimating the probable average lives of the first 65 original curves by comparing stub curves of different lengths with the type survivor curves in the form shown in Fig. 29. (Upper) Same for curves for the form shown in Fig. 29.

and  $L_3$ , the  $S_1$  and  $S_2$ , the  $R_2$  and  $R_3$ , or other two adjacent curves in the same family. Another reason why the classifications are not the same is that the survivor curves for the high-modal curves are quite steep, and, therefore, these types when plotted as survivor curves appear to be about the same, except at the ends. The frequency curves emphasize the differences and are the better guides to classification.

The frequency curves are difficult to use in this method because of the scattering of the original data, which makes the location of the curve doubtful. In the case of original data well graduated, sets of the type frequency curves, plotted to definite average lives as is done in Fig. 29, were used successfully in a test similar to the two just described on a group selected from the first 65 curves. Ordinarily, this step is not warranted, for the probable average life estimated from the survivor curves is likely to be within the limits of error as controlled by the quantity and reliability of the original data.

The estimation of the probable average life of a group of units by comparing their survivor curve (completed curve or stub curve) with the type curves should not be done without the exercise of judgment in the interpretation of the original data. Any of the methods of constructing survivor curves frequently result in curves which do not exhibit regularity. An examination of the information from which the curves are calculated may show that the irregularity is produced by small groups, infrequent observations of the property, or the retirement of an unusually large number of units for a very special cause. Best practice in these instances is to smooth the data according to the path most likely to be established by regular observations on large numbers of the units and one in accordance with the most likely future rate of retirement.

When survivor curves are to be classified according to the 18 types and the probable average life determined, it is recommended that more weight be given to the middle portion of the survivor curve, say that between 80 and 20 percent surviving, than to the forepart or extreme lower end of the curve. This inner section is a result of greater numbers of retirements and also it covers the period of most likely normal operation of the property.

This method of estimating average life by comparing stub curves with the 18 type survivor curves is remarkably accurate when the many factors are taken into consideration which tend to change the curve from time to time. The simplicity of the method is also a strong recommendation for it.

An alternate method of determining the probable average life of a group of units from a stub survivor curve developed from the experience of the first units to be retired is to extend the curve by eye and judgment. Obviously, the method presented above is much to be preferred for it allows the use of judgment as well as offering the experience of the general law of distribution of retirement followed by all industrial properties.

Dockets No. 080677-EI, No. 090130-EI Statistical Analysis, Bulletin 125 Exhibit CRC-6, Page 2 of 2




# Accounting Records of Gross Additions and Plant Balances

- 9. Where mortality summary data and age distribution data are not developed, considerable information on which to base estimates may be developed from the plant accounting records maintained in conformance with the uniform systems of accounts. Some caution must be exercised, however, to eliminate the distortion caused by transfers and adjustments to accounts, by changes in accounting classification, and by abnormally large retirements or replacements of units. Use of these data yields more reliable results in accounts with stable plant or plant with uniform growth where no noticeable trend toward longer or shorter service lives is evident. With these precautions in mind the following may be developed:
  - a. A representative survivor curve is obtainable by simulated plant balance methods.
  - b. Indications of average service life may be obtained by turnover methods.
  - e. From a selected applicable average service life indications of the remaining life may be calculated.

Details of procedure to accomplish items a and b are beyond the scope of this practice. Where a utility has used these methods, the staff engineer in his review should check the period of years used in relation to anticipated future conditions. He should also check to insure reasonable adjustment of the accounting data for transfers, changes in classification and other abnormal experience when applicable. Details of procedure to accomplish Item c are presented in Paragraph 16 below.

#### C-METHODS OF WEIGHTING

## Types of Weighting

- 10. Before considering the methods for obtaining remaining life it is well to consider the means by which estimates for separate classes of property or separate age groups may be weighted to afford a composite value. Three types of weighting are used as follows:
  - a. Direct weighting or weighting by future dollar years. This calculation requires that the book dollars for each age group or class of property be multiplied by the remaining life applicable to those dollars. The composite remaining life is then obtained by dividing the total of the products by the total plant dollars. The products under this method of weighting are spoken of as future dollar years. The last three columns of standard form D3 may be used for this calculation as illustrated in Tables 5-A and 5-B.
  - b. Reciprocal weighting. This is accomplished by dividing the book dollars by the remaining life for each age group or class of property, totalling these quotients and dividing the total into the total book dollars.
  - c. Average service life weighting. In this method the book cost for each class of property is divided by the average service life and the result is multiplied by the remaining life. The composite remaining life for all classes then equals the sum of these products divided by the sum of these quotients.

### Selecting a Method of Weighting

117In selecting a method of weighting, several considerations apply. First, it is desired that the method of weighting used shall produce the same results as though the book reserve had been prorated to the various age groups or classes of property on the basis of the applicable reserve requirement. Secondly, it is desirable that the result obtained by weighting be in conformance with the provisions of certain of the uniform systems of accounts, that the accrual computed for an account as a whole shall be the same as if separate accruals had been computed for each class of property and the total obtained. Under these considerations, direct weighting produces proper results if the average service life of each age group or class of property weighted is approximately the same Reciprocal weighting produces proper results if the reserve for the various classes of property or groups weighted is distributed in proportion to the plant dollars, a condition which is more likely in stable plant with slow growth. Average service life weighting produces proper results if the book reserve and the reserve requirement are closely the same. From these considerations it is concluded that direct or future dollar weighting is the proper method to use between age groups, whereas either reciprocal weighting or average service life weighting will usually yield the better approximation between classes of property. In very large accounts where individual classes of property exceed \$100,000 of plant, occasionally a utility may prefer to prorate the book reserve within the account according to a reserve requirement between each class of property rather than to attempt any of the other weighting methods. Such a proration is used only infrequently, is made only at the time of a periodic review for weighting purposes within a very large account, and is normally not carried forward from the date of the calculation.

Dockets No. 080677-El, No. 090130-El NARUC, Developing an Observed Life Table Exhibit CRC-8, Page 1 of 3

# PUBLIC UTILITY DEPRECIATION PRACTICES



Dockets No. 080677-EI, No. 090130-EI NARUC, Developing an Observed Life Table Exhibit CRC-8, Page 2 of 3 **Public Utility** 

# **Depreciation Practices**

August 1996



Compiled and Edited by

Staff Subcommittee on Depreciation of

The NARUC Finance and Technology Committee

of the

National Association of Regulatory Utility Commissioners

Published by National Association of Regulatory Utility Commissioners 1201 Constitution Avenue, N.W., Suite 1102 Post Office Box 684 Washington, D.C. 20044 Telephone (202) 898-2200 Facsimile (202) 898-2213

"VALUATION DIVISION LIBRARY"

# Dockets No. 080677-EI, No. 090130-EI NARUC, Developing an Observed Life Table Exhibit CRC-8, Page 3 of 3

# LIFE SPAN METHOD

# Fitting with Type Curves

Curve fitting is the process of determining the trend or pattern developed from the known historical facts. Once data have been assembled, an observed interim retirement life table can be developed. This observed curve can be fitted to generalized life curves, e.g., Iowa curves or curves based on the Gompertz-Makeham formula. These curves and curve fitting processes are described in detail in Appendix A, parts 1-3.

The techniques used in curve fitting may be mathematical, graphical matching techniques with type curves, and/or visual inspection. Mathematical curve fitting is advantageous because the interim retirement curve may be based on broad experience bands.

The choice of the curve fitting technique could depend on the ease of handling the data and the ease of interpreting the results. The mathematical techniques may yield significantly better results, compared to graphical matching or the visual inspection process.

# The Generation Arrangement

The generation arrangement is applicable even in cases where obsolescence is being experienced and no new installations are made but substantial sums of money are still being invested just to keep the plant. For life span categories the generation arrangement provides a sound basis for determining the average service life and average remaining life.

Vintage remaining lines are developed using an interim retirement rate and the AYFR to compute vintage average life expectancies. These remaining lives are combined with historical experience in the age distribution of the surviving investment, which is derived from actual or computed mortality experience, to develop the average service life.

Tables 10-5 and 10-6 are examples of interim retirement life and generation arrangement tables. The AYFR and survivor curve are based on the estimated retirement schedule in Table 10-1 and the interim retirement rate developed in Table 10-2.

Dockets No. 080677-EI, No. 090130-EI Response to OPC First Set of Interrogatories No. 55 Exhibit CRC-9, Page 1 of 1

Florida Power & Light Company Docket No. 080677-EI DEPRECIATION - OPC's First Set of Interrogatories Interrogatory No. 55 Page 1 of 1

# Q.

Transmission Towers & Fixtures. Please explain why FPL decreased the average service life from 45 years to 40 years for Account 354 - Transmission Towers & Fixtures, as set forth on Exhibit CRC - 1, page 510. The response should specifically address references made to the industry data suggesting a 40 to 70-year average service life and why FPL thought that it was appropriate to move to the lowest level of the identified industry range. The response should include a step by step analysis identifying each factor and how each factor interacted with other factors that were employed to arrive at the proposed 40-year average service life.

# А.

Account 354 Towers and Fixtures should have a 45-R5 curve and life. There was not enough data to perform a complete life analysis and therefore the curve and life were left unchanged from the current approved. The information in the Depreciation Report (Exhibit CRC-1) that discusses the change to a 40-R5 life and curve is incorrect and should be changed. The Depreciation Report and associated work papers will be revised to reflect the 45-R5 life and curve. The impact of this revision would be approximately \$1.5 million decrease in annual depreciation expense.