AUSLEY & MCMULLEN

ATTORNEYS AND COUNSELORS AT LAW

227 SOUTH CALHOUN STREET P.O. BOX 391 (ZIP 32302) TALLAHASSEE, FLORIDA 32301 (850) 224-9115 FAX (850) 222-7560

September 1, 2009

HAND DELIVERED

Ms. Ann Cole, Director Office of Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

> Re: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor; FPSC Docket No. 090001-EI

Dear Ms. Cole:

Enclosed for filing in the above docket on behalf of Tampa Electric Company are the original and fifteen (15) copies of each of the following:

- 1. Petition of Tampa Electric Company.
- 2. Prepared Direct Testimony and Exhibit (CA-3) of Carlos Aldazabal.
- 3. Prepared Direct Testimony and Exhibit (BSB-1) of Brian S. Buckley.
- 4. Prepared Direct Testimony of Benjamin F. Smith.
- 5. Prepared Direct Testimony of Joann T. Wehle.

Please acknowledge receipt and filing of the above by stamping the duplicate copy of this letter and returning same to this writer.

Thank you for your assistance in connection with this matter.

Sincerely,

James D. Beasley

JDB/pp Enclosures

cc: All Parties of Record (w/encls.)

DOCUMENT NUMBER-DATE

39089 SEP-18

FPSC-COMMISSION CLERE

PALCEIVED - FPSC 09 SEP -1 PH 2: 42 COMMISSION

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

)

)

)

In re: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor.

DOCKET NO. 090001-EI FILED: September 1, 2009

PETITION OF TAMPA ELECTRIC COMPANY

Tampa Electric Company ("Tampa Electric" or "company"), hereby petitions the Commission for approval of the company's proposals concerning fuel and purchased power factors, capacity cost factors, generating performance incentive factors, and the projected wholesale sales incentive benchmark set forth herein, and in support thereof, says:

Fuel and Purchased Power Factors

1. Tampa Electric projects a fuel and purchased power net true-up amount for the period January 1, 2009 through December 31, 2009 will be an over-recovery of \$45,016,697 (See Exhibit No. (CA-3), Document No. 2, Schedule E1-C).

2. The company's projected expenditures for the period January 1, 2010 through December 31, 2010, when adjusted for the proposed GPIF reward and true-up over-recovery amount and spread over projected kilowatt-hour sales for the period January 1, 2010 through December 31, 2010, produce a fuel and purchased power factor for the new period of 4.517 cents per kWh before the application of time of use multipliers for on-peak or off-peak usage. (See Exhibit No. (CA-3), Document No. 2, Schedule E1-E).

3. The company's projected benchmark level for calendar year 2010 for gains on non-separated wholesale energy sales eligible for the shareholder incentive as set forth by Order

000LMENT NUMBER-DATE

No. PSC-00-1744-PAA-EI, in Docket No. 991779 is \$1,846,336, as provided in the direct testimony of Tampa Electric witness Carlos Aldazabal.

Capacity Cost Factor

4. Tampa Electric estimates that its net true-up amount applicable for the period January 1, 2009 through December 31, 2009 will be an under-recovery of \$28,618,100, as shown in Exhibit No. ____ (CA-3), Document No. 1, page 3 of 5.

5. As described in the direct testimony of Carlos Aldazabal, the company's proposed capacity factor for January through December 2010 reflects the rate modifications approved in Order No. PSC-09-0283-FOF-EI in Docket No. 080317-EI, issued April 30, 2009. The company's projected expenditures for the period January 1, 2010 through December 31, 2010, when adjusted for the true-up under-recovery amount and spread over projected kilowatt-hour sales for the period, produce a capacity cost recovery factor for the period of 0.472 cents per kWh. For demand-measured customers, the factor Tampa Electric proposes to recover is \$1.74 per billed kW as set forth in Exhibit No. _____ (CA-3), Document No. 1, page 4 of 5.

<u>GPIF</u>

6. Tampa Electric has calculated that it is subject to a GPIF reward of \$1,239,009 for performance experienced during the period January 1, 2008 through December 31, 2008.

7. The company is also proposing GPIF targets and ranges for the period January 1, 2010 through December 31, 2010 with such proposed targets and ranges being detailed in the testimony and exhibits of Tampa Electric witness Brian S. Buckley filed herewith.

WHEREFORE, Tampa Electric Company requests that its proposals relative to fuel and purchased power cost recovery, capacity cost recovery and GPIF be approved as they relate to prior period true-up calculations and projected cost recovery charges, and that the Commission approve the company's projected wholesale sales incentive benchmark.

DATED this $\underline{/\underline{sp}}$ day of September 2009.

Respectfully submitted,

- Ozen La

LEE L. WILLIS JAMES D. BEASLEY Ausley & McMullen Post Office Box 391 Tallahassee, Florida 32302 (850) 224-9115

ATTORNEYS FOR TAMPA ELECTRIC COMPANY

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true copy of the foregoing Petition, filed on behalf of Tampa Electric Company, has been furnished by U. S. Mail or hand delivery (*) on this $\cancel{122}$ day of

September, 2009 to the following:

Ms. Lisa C. Bennett* Senior Attorney Office of the General Counsel Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

Mr. John T. Burnett Associate General Counsel Progress Energy Service Co., LLC Post Office Box 14042 St. Petersburg, FL 33733-4042

Mr. Paul Lewis, Jr. 106 East College Avenue Suite 800 Tallahassee, FL 32301-7740

Mr. John W. McWhirter, Jr. McWhirter, Reeves & Davidson, P.A. Post Office Box 3350 Tampa, FL 33601-3350

Ms. Vicki Kaufman Mr. Jon C Moyle Keefe Anchors Gordon & Moyle, PA 118 N. Gadsden Street Tallahassee, FL 32301

Ms. Patricia A. Christensen Associate Public Counsel Office of Public Counsel 111 West Madison Street – Room 812 Tallahassee, FL 32399-1400 Mr. Norman Horton Messer Caparello & Self Post Office Box 15579 Tallahassee, FL 32317

Mr. Mehrdad Khojasteh Florida Public Utilities Company P. O. Box 3395 West Palm Beach, FL 33402-3395

Mr. John T. Butler Managing Attorney - Regulatory Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420

Mr. R. Wade Litchfield Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, FL 32301-1859

Ms. Susan Ritenour Secretary and Treasurer Gulf Power Company One Energy Place Pensacola, FL 32520-0780

Mr. Jeffrey A. Stone Mr. Russell A. Badders Mr. Steven R. Griffin Beggs & Lane Post Office Box 12950 Pensacola, FL 32591-2950 Mr. Michael B. Twomey Post Office Box 5256 Tallahassee, FL 32314-5256

Mr. Robert Scheffel Wright Mr. John T. LaVia, III Young van Assenderp, P.A. 225 South Adams Street, Suite 200 Tallahassee, FL 32301

Karen S. White, Lt Col, USAF Shayla L. McNeill, Capt, USAF AFCESA/ULT 139 Barnes Drive, Suite 1 Tyndall Air Force Base, FL 32403-5319 Ms. Cecilia Bradley Senior Assistant Attorney General Office of the Attorney General The Capitol – PL01 Tallahassee, FL 32399-1050

Mr. James W. Brew Brickfield, Burchette, Ritts & Stone, P.C. 1025 Thomas Jefferson Street, NW Eighth Floor, West Tower Washington, D.C. 20007-5201

In Costering

ATTORNEY

FPSC-COMMISSION CLERK

09089 SEP-18

CODUMENT NUMBER-DATE

CARLOS ALDAZABAL

OF

TESTIMONY AND EXHIBIT

JANUARY 2010 THROUGH DECEMBER 2010

PROJECTIONS

CAPACITY COST RECOVERY

AND

IN RE: FUEL & PURCHASED POWER COST RECOVERY

DOCKET NO. 090001-EI

FLORIDA PUBLIC SERVICE COMMISSION

BEFORE THE

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		CARLOS ALDAZABAL
5		
6	Q.	Please state your name, address, occupation and employer.
7		
8	A.	My name is Carlos Aldazabal. My business address is 702
9		North Franklin Street, Tampa, Florida 33602. I am
10		employed by Tampa Electric Company ("Tampa Electric" or
11		"company") in the position of Manager, Regulatory
12		Affairs in the Regulatory Affairs Department.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	A.	I received a Bachelor of Science Degree in Accounting in
18		1991, and received a Masters of Accountancy in 1995 from
19		the University of South Florida in Tampa. I am a CPA in
20		the State of Florida and have accumulated 14 years of
21		electric utility experience working in the areas of fuel
22		and interchange accounting, surveillance reporting,
23		budgeting and analysis, and cost recovery clause
24		management. In April 1999, I joined Tampa Electric as
25		Supervisor, Regulatory Accounting UMELIN January 2004, I
Ì		0 9 0 8 9 SFP -1 8

FPSC-COMMISSION OLERA

1 was promoted to Manager, Regulatory Affairs. My present responsibilities include managing cost recovery for fuel 2 3 and purchased power, interchange sales, and capacity payments. 4 5 Have you previously testified before this Commission? 6 Q. 7 Yes. I have submitted written testimony in the annual 8 Α. fuel docket since 2004, and I testified before this 9 Florida Public Service Commission ("FPSC" 10 or "Commission") in Docket Nos. 060001-EI and 080001-EI 11 12 regarding the appropriateness and prudence of Tampa Electric's recoverable fuel and purchased power costs as 13 well as capacity costs. 14 15 What is the purpose of your testimony? 16 Q. 17 The purpose of my testimony is to present, for Commission 18 Α. review and approval, the proposed annual capacity cost 19 recovery factors, the proposed annual levelized fuel and 20 21 purchased power cost recovery factors including an inverted two-tiered residential fuel charge 22 or to 23 encourage energy efficiency and conservation and the projected wholesale incentive benchmark for January 2010 24 through December 2010. I will also describe significant 25

events that affect the factors and provide an overview of the composite effect from the various cost recovery factors for 2010.

Q. Have you prepared an exhibit to support your testimony?

7 Exhibit No. (CA-3), consisting of three A. Yes. direction documents, was prepared under my and 8 supervision. Document No. 1, consisting of four pages, 9 is furnished as support for the projected capacity cost 10 factors utilizing the Commission approved recovery 11 allocation methodology from Order No. PSC-09-0283-FOF-EI 12 issued April 30, 2009, in Docket No. 080317-EI based on 13 12 Coincident Peak ("CP") and 25 percent Average Demand 14 Document No. 2, which is furnished as support (``AD''). 15 for the proposed levelized fuel and purchased power cost 16 recovery factors, is comprised of Schedules El through 17 E10 for January 2010 through December 2010 as well as 18 Schedule H1 for January through December, 2007 through 19 Document No. 3 provides a comparison of retail 2010. 20 residential fuel revenues under the inverted or tiered 21 fuel rate and a levelized fuel rate, which demonstrates 22 that the tiered rate is revenue neutral. 23

24

25

1

2

3

4

5

6

Capacity Cost Recovery

Are you requesting Commission approval of the projected Q. 1 capacity cost recovery factors for the company's various 2 3 rate schedules? 4 A. Yes. The capacity cost recovery factors, prepared under 5 my direction and supervision, are provided in Exhibit No. 6 (CA-3), Document No. 1, page 3 of 4. 7 The capacity factors reflect the company's approved rate design 8 modifications approved as part of Order No. PSC-09-0283-9 FOF-EI in Docket No. 080317-EI, issued April 30, 2009. 1011 Please describe the changes to the 2010 capacity cost Q. 12 recovery factors related to Tampa Electric's approved 13 rate design approved in Order No. PSC-09-0283-FOF-EI. 14 15 As a result of Tampa Electric's base rate case, the 16 Α. Commission approved the consolidation of the company's 17 General Service - Demand ("GSD") and General Service -18 Large Demand ("GSLD") rate customers into one new GSD 19 Additionally, the allocation of production rate class. 20 demand costs was modified to the 12 CP and 25 percent AD 21 to better reflect cost causation. The Commission also 22 approved the recovery of capacity costs through a factor 23 applied to billed kW demand for demand-measured customers 24 because that recovery method would be consistent with the 25

recovery of production plant that otherwise would have 1 2 been built. 3 4 Q. What payments are included in Tampa Electric's capacity cost recovery factors? 5 6 7 Α. Tampa Electric is requesting recovery of capacity 8 payments for power purchased for retail customers excluding optional provision purchases for interruptible 9 10 customers through the capacity cost recovery factors. 11 through Is Tampa Electric requesting recovery the 12 Q. clause for "post-9/11" 13 capacity incremental security costs? 14 15 the company is not requesting recovery of 2010 16 A. No, incremental security expenses as a result of the events 17 18 of September 11, 2001 through the capacity cost recovery Pursuant to Commission Order No. PSC-02-1761clause. 19 FOF-EI issued December 13, 2002, in Docket No. 020001-EI, 20 Tampa Electric agreed to move incremental O&M expenses 21 22 associated with security costs into base rates at the company's next traditional rate case. Accordingly, Tampa 23 Electric included incremental security O&M costs in the 24 company's approved base rates implemented May 7, 2009 and 25

1	-	did not include those	costs for re	ecovery through the
2		capacity clause.		
3				
4	Q.	Please summarize the	proposed capa	city cost recovery
5		factors by metering	voltage level	for January 2010
6		through December 2010.		
7				
8	A.	Rate Class and	Capacity Cost	Recovery Factor
9		Metering Voltage	Cents per kWh	Cents per kW
10		RS Secondary	0.539	
11		GS and TS Secondary	0.526	
12		GSD, SBF Standard		
13		Secondary		1.74
14		Primary		1.72
15		Transmission		1.71
16		IS, IST, SBI		
17		Primary		1.55
18		Transmission		1.54
19		GSD Optional		
20		Secondary	0.419	
21	i	Primary	0.414	
22		LS1 Secondary	0.158	
23				
24		These factors are sho	own in Exhibit	No. (CA-3),
25		Document No. 1, page 3	of 4.	

1	Q.	How does Tampa Electric's proposed average capacity cost
2		recovery factor of 0.539 cents per kWh compare to the
3		factor for May 2009 through December 2009?
4		
5	A.	The proposed capacity cost recovery factor is 0.005 cents
6		per kWh (or \$0.05 per 1,000 kWh) higher than the average
7		capacity cost recovery factor of 0.467 cents per kWh for
8		the May 2009 through December 2009 period.
9		
10	Fuel	and Purchased Power Cost Recovery Factor
11	Q.	What is the appropriate amount of the levelized fuel and
12		purchased power cost recovery factor for the year 2010?
13		
14	A.	The appropriate amount for the 2010 period is 4.517 cents
15		per kWh before any application of time of use multipliers
16		for on-peak or off-peak usage. Schedule E1-E of Exhibit
17		No (CA-3), Document No. 2, shows the appropriate
18		value for the total fuel and purchased power cost
19		recovery factor for each metering voltage level as
20		projected for the period January 2010 through December
21		2010.
22		
23	Q.	Please describe the information provided on Schedule E1-
24		C.
25		

1	A.	The Generating Performance Incentive Factor ("GPIF") and
2		true-up factors are provided on Schedule E1-C. Tampa
3		Electric has calculated a GPIF reward of \$1,239,009,
4		which is included in the calculation of the total fuel
5		and purchased power cost recovery factors. Additionally,
6		El-C indicates the net true-up amount for the January
7		2009 through December 2009 period. The net true-up
8		amount for this period is an over-recovery of
9		\$45,016,697.
10		
11	Q.	Please describe the information provided on Schedule E1-
12		D.
13		
14	A.	Schedule E1-D presents Tampa Electric's on-peak and off-
15		peak fuel adjustment factors for January 2010 through
16		December 2010. The schedule also presents Tampa
17		Electric's levelized fuel cost factors at each metering
18		voltage level.
19		
20	Q.	Please describe the information provided on Schedule E1-
21		Ε.
22		
23	A.	Schedule E1-E presents the standard, tiered, on-peak and
24		off-peak fuel adjustment factors at each metering voltage
25		to be applied to customer bills.

1	Q.	Please describe the information	on provided in Document No.	
2		3.		
3				
4	A.	Exhibit No (CA-3), Docum	ment No. 3 demonstrates that	
5		the tiered rate structure i	is designed to be revenue	
6		neutral so that the company	will recover the same fuel	
7		costs as it would under the	traditional levelized fuel	
8		approach.		
9				
10	Q.	Please summarize the proposed	d fuel and purchased power	
11		cost recovery factors by m	etering voltage level for	
12		January 2010 through December	2010.	
13				
13 14	A.		Fuel Charge	
13 14 15	A .	Metering Voltage Level F	Fuel Charge actor (cents per kWh)	
13 14 15 16	A .	Metering Voltage Level F	Fuel Charge Actor (cents per kWh) 4.517	
13 14 15 16 17	Α.	Metering Voltage Level F Secondary Tier I (Up to 1,000 kWh)	Fuel Charge Factor (cents per kWh) 4.517 4.167	
13 14 15 16 17 18	A .	Metering Voltage Level F Secondary Tier I (Up to 1,000 kWh) Tier II (Over 1,000 kWh)	Fuel Charge (cents per kWh) 4.517 4.167 5.167	
13 14 15 16 17 18 19	A .	Metering Voltage LevelFSecondaryTier I (Up to 1,000 kWh)Tier II (Over 1,000 kWh)Distribution Primary	Fuel Charge Actor (cents per kWh) 4.517 4.167 5.167 4.472	
13 14 15 16 17 18 19 20	A .	Metering Voltage LevelFSecondaryTier I (Up to 1,000 kWh)Tier II (Over 1,000 kWh)Distribution PrimaryTransmission	Fuel Charge <u>actor (cents per kWh)</u> 4.517 4.167 5.167 4.472 4.427	
13 14 15 16 17 18 19 20 21	A .	Metering Voltage LevelFSecondaryTier I (Up to 1,000 kWh)Tier II (Over 1,000 kWh)Distribution PrimaryTransmissionLighting Service	Fuel Charge <u>actor (cents per kWh)</u> 4.517 4.167 5.167 4.472 4.427 4.383	
13 14 15 16 17 18 19 20 21 22	A .	Metering Voltage Level F Secondary Tier I (Up to 1,000 kWh) Tier II (Over 1,000 kWh) Distribution Primary Transmission Lighting Service Distribution Secondary	Fuel Charge Actor (cents per kWh) 4.517 4.167 5.167 4.472 4.427 4.383 5.407 (on-peak)	
 13 14 15 16 17 18 19 20 21 22 23 	A .	Metering Voltage Level F Secondary Tier I (Up to 1,000 kWh) Tier II (Over 1,000 kWh) Distribution Primary Transmission Lighting Service Distribution Secondary	Fuel Charge Actor (cents per kWh) 4.517 4.167 5.167 4.472 4.427 4.383 5.407 (on-peak) 4.173 (off-peak)	
 13 14 15 16 17 18 19 20 21 21 22 23 24 	A .	Metering Voltage LevelFSecondaryTier I (Up to 1,000 kWh)Tier II (Over 1,000 kWh)Tier II (Over 1,000 kWh)Distribution PrimaryTransmissionLighting ServiceDistribution SecondaryDistribution PrimaryDistribution Primary	Fuel Charge <u>actor (cents per kWh)</u> 4.517 4.167 5.167 4.472 4.427 4.383 5.407 (on-peak) 4.173 (off-peak) 5.353 (on-peak)	

Transmission 1 5.299 (on-peak) 2 4.090 (off-peak) 3 4 Q. How does Tampa Electric's proposed levelized fuel adjustment factor of 4.167 cents per kWh compare to the 5 levelized fuel adjustment factor for the May 2009 through 6 December 2009 period? 7 8 The proposed fuel charge factor is 0.632 cents per kWh 9 Α. 10 (or \$6.32 per 1,000 kWh) lower than the average fuel charge factor of 4.799 cents per kWh for the May 2009 11 through December 2009 period. 12 13 Events Affecting the Projection Filing 14 Are there any significant events reflected 15 Q. in the calculation of the 2010 fuel and purchased power 16 and capacity cost recovery projections? 17 18 There are three significant events. These are 1) 19 Α. Yes. the significant changes in natural gas prices and hedge 20 21 results; 2) the company's wholesale purchases; and 3) the 22 commencement of coal deliveries by rail at Big Bend 23 Station. 24 describe Please the first affects 25 Q. event that the

company's projection filing.

With the addition of Bayside Station in 2004 and more 3 A. recently the combustion turbines 4 ("CT's") at Polk, 5 Bayside and Biq Bend Station, Tampa Electric has increased its reliance on natural gas as a fuel source. 6 7 In the fall of 2008 the prolonged economic downturn 8 resulted in a dramatic decline in fuel commodity prices, 9 particularly natural resulted gas, which has in а significant decrease in fuel and purchased power costs. 10 11 In order to minimize fuel price volatility and comply 12 with the company's Commission approved Risk Management 13 Plan, financial hedges were entered into for natural gas in 2009 and 2010 which have partially mitigated some of 14 15 that benefit. Witness J. T. Wehle's direct testimony 16 describes the decrease in natural gas costs and 17 associated hedge results in more detail.

18

1

2

19 **Q.** Please describe the second event.

20

Tampa Electric continued several cost-effective purchase 21 Α. 22 agreements with Hardee Power Partners, RRI Energy Services, Pasco Cogen, Calpine Energy Services, L.P., 23 and qualifying facilities. The purchases improve supply 24 25 reliability for retail ratepayers in 2009 and 2010 at

reasonable and prudent costs. The direct testimony of Tampa Electric witness Benjamin F. Smith, II describes the purchases and demonstrates that the costs associated with the purchased power agreements are prudent and appropriate for recovery through the fuel and purchased power and capacity cost recovery clauses.

8 Q. Please describe the third event.

1

2

3

4

5

6

7

9

10 A. During June through August of 2008, Tampa Electric signed transportation agreements that took 11 new fuel effect 12 beginning January 1, 2009. Under the new contracts, the 13 company will have the ability to ship solid fuels by rail in addition to existing waterborne capabilities beginning 14 15 January 1, 2010. As described in greater detail in the 16 direct testimony of witness J. T. Wehle in January of 17 2009 the company issued a request for rail car proposal to determine the most cost-effective option 18 for the movement of coal from Illinois 19 Basin and Northern Appalachian coal supply regions to Big Bend Station. 20 21 After an evaluation of all proposals a five year lease agreement has been agreed upon and is expected to be 22 signed in the third quarter of 2009. 23 Tampa Electric has 24 separately identified and included those transportation 25 related costs for recovery in accordance with Commission

Order 14546. The Commission has subsequently allowed the 1 inclusion of investments in rail cars in Order 18136, in 2 docket 870001-EI and also in Order PSC-95-1089-FOF-EI, in 3 Docket No. 950001. 4 5 6 Q. Are the anticipated CSX refunds or credits included in 7 the fuel filing? 8 Yes. In accordance with Tampa Electric's rate case order 9 A. PSC-09-0283-FOF-EI issued April 30, 2009, the projected 10 refunds from CSX to mitigate the costs associated with 11 building the rail facility are to be entirely credited 12 back to customers through а reduction in coal 13 transportation costs. 14 15 Wholesale Incentive Benchmark Mechanism 16 What is Tampa Electric's projected wholesale incentive 17 0. benchmark for 2010? 18 19 The company's projected 2010 benchmark is \$1,846,336, 20 A. which is the three-year average of \$799,040, \$1,676,141 21 and \$3,063,829 in gains on the company's non-separated 22 wholesale sales, excluding emergency sales, for 2007, 23 2008 and 2009 (estimated/actual), respectively. 24 25

Does Tampa Electric expect gains in 2010 from non-1 Q. 2 separated wholesale sales to exceed its 2010 wholesale incentive benchmark? 3 4 5 Ä. Yes. Tampa Electric anticipates that sales will exceed the projected benchmark by \$254,803 of which 80 percent 6 or \$203,842 will flow back to customers. 7 8 Cost Recovery Factors 9 10 Q. What is the composite effect of Tampa Electric's proposed changes in its capacity, fuel and purchased power, 11 environmental and energy conservation cost recovery 12 13 factors on a 1,000 kWh residential customer's bill? 14 The composite effect on a residential bill for 1,000 kWh 15A. is a decrease of \$1.46 beginning January 2010. These 16 charges are shown in Exhibit No. ____ (CA-3), Document 17 No. 2, on Schedule E10. 18 19 When should the new rates go into effect? 20 0. 21 The new rates should go into effect concurrent with meter 22 Α. 23 reads for the first billing cycle for January 2010. 24 Does this conclude your testimony? 25 Q.

1	A .	Yes,	, it	does.				
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								

Docket No. 090001-EI CCR 2010 Projection Filing Exhibit No.____(CA-3) Document No. 1 Page 1 of 5

EXHIBIT TO THE TESTIMONY OF

CARLOS ALDAZABAL

DOCUMENT NO. 1

PROJECTED CAPACITY COST RECOVERY

JANUARY 2010 - DECEMBER 2010

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2010 THROUGH DECEMBER 2010 PROJECTED

	RATE CLASS	(1) AVG 12 CP LOAD FACTOR AT METER (%)	(2) PROJECTED SALES AT METER (MWH)	(3) PROJECTED AVG 12 CP AT METER (MW)	(4) DEMAND LOSS EXPANSION FACTOR	(5) ENERGY LOSS EXPANSION FACTOR	(6) PROJECTED SALES AT GENERATION (MWH)	(7) PROJECTED AVG 12 CP AT GENERATION (MW)	(8) PERCENTAGE OF SALES AT GENERATION (%)	(9) PERCENTAGE OF DEMAND AT GENERATION (%)
	RS,RSVP	52.81%	8,824,328	1,908	1.08536	1.05482	9,308,101	2,070	46.17%	54.80%
	GS, TS	54.51%	1,030,757	216	1.08536	1.05482	1,087,266	234	5.39%	6.20%
	GSD Optional		202,904	31	1.08085	1.05106	213,263	34	1.06%	0.90%
	GSD, SBF	74.30%	7,836,327	1,173	1.08085	1.05106	8,236,413	1,268	40.86%	33.57%
	IS,SBI	75.80%	1,061,694	160	1.03968	1.02124	1,084,239	166	5.38%	4.40%
<u>н</u>	LS1	498.93%	218,062	5	1.08536	1.05482	230,017	5	1.14%	0.13%
00	TOTAL		19,174,072	3,493			20,159,299	3,777	100.00%	100.00%

(1) AVG 12 CP load factor based on 2009 projected calendar data.

(2) Projected MWH sales for the period January 2010 thru December 2010.

(3) Based on 12 months average CP at meter.(4) Based on 2009 projected demand losses.

(5) Based on 2009 projected energy losses.

(6) Col (2) * Col (5).

(7) Col (3) * Col (4).

(8) Based on 12 months average percentage of sales at generation.

(9) Based on 12 months average percentage of demand at generation.

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS OF CONCENTRY 2010 PROJECTED PROJECTED

Total	December	TedmevoN	October	September	tsuguA.	հյոր	anut	Kew	lingA	March	February	ารมากสะวั		
48'040'800	4'003'400	4'003'400	4,003,400	4'003'400	4'003'400	4,003,400	4,003,400	4'003'400	4'003'400	4'003'400	4'003'400	4'003'400	UNIT POWER CAPACITY CHARGES	ŀ
006'665'91	1'528 '5 00	006,871,1	1'528'500	00£'871'1	1'528'500	1'528'500	006,871,1	1,258,200	006,871,1	1,258,200	008,849,1	2,388,700	CAPACITY PAYMENTS TO COGENERATORS	2
(005,407)	(006,13)	(002.74)	(54,200)	(007,78)	(009,57)	(007,67)	(006,78)	(002'19)	(009,9č)	(002,42)	(009,64)	(000'89)	(DUIT POWER CAPACITY REVENUES)	ε
001/926/295	007,002,88	009' # \$1'9 \$	004'202'9\$	000, ¤1 1,28	000'681'9\$	006'291'9\$	008,611,8\$	006'661'9\$	001'921'9\$	6 64,702,8 8	009'806'5\$	001'622'9 \$	SRALLOG YTIOA9AO JATOT	4
	9279290.0	SE79639.D	SE796.0	SET 96.0	86796890.0	9879899.0	9579599.0	SET9E39.0	96796390.0	SET 96.0	96796.0	9879890.0	ROTDAR KOTDAR	g
966'729'19\$	\$£,022,013	27'949'255	961,010,22	091,929,4 6	82'005'028	866'000'5\$	899'676' 1%	999'710'9\$	194'076' 75	962'610'9\$	¥£2'969'9 \$	7 22'011'9 \$	SRAJJOG YTIJARAD JANOITOIQRIAUL	9
28,618,100	-												ACTUAL/ESTIMATED TRUE-UP FOR THE PERIOD JAN. 2009 - DEC. 2009	L
960'192'06\$													JATOT	8
27000.1													REVENUE XAT FUNEVER	6
770,315,00\$	2												SALING YTIDAPALE CAPACITY DOLLARS	01

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2010 THROUGH DECEMBER 2010 PROJECTED

	RATE CLASS	(1) PERCENTAGE OF SALES AT GENERATION (%)	(2) PERCENTAGE OF DEMAND AT GENERATION (%)	(3) ENERGY RELATED COSTS (\$)	(4) DEMAND RELATED COSTS (\$)	(5) TOTAL CAPACITY COSTS (\$)	(6) PROJECTED SALES AT METER (MWH)	(7) EFFECTIVE AT SECONDARY LEVEL (MWH)	(8) BILLING KW LOAD FACTOR (%)	(9) PROJECTED BILLED KW AT METER (kw)	(10) CAPACITY RECOVERY FACTOR (\$/kw)	(11) CAPACITY RECOVERY FACTOR (\$/kwh)
	RS	46.17%	54.80%	10,424,733	37,119,907	47,544,640	8,824,328	8,824,328				0.00539
	GS, TS	5.39%	6.20%	1,217,009	4,199,698	5,416,707	1,030,757	1,030,757				0.00526
	GSD, SBF Secondary Primary Transmission						6,541,937 1,293,593 798	6,541,937 1,280,657 782			1,74 1,72 1,71	2
5	GSD, SBF - Standard	40.86%	33.57%	9,225,787	22,739,330	31,965,117	7,836,327	7,823,376	58.43%	18,340,125		
õ	GSD - Optional Secondary Primary	1.06%	0.90%	239,338	609,634	848,972	200,004 2,900	200,004 2,871				0.00419 0.00414
	IS, SBI Primary Transmission						322,109 739,585	318,887 724,794			1.55 1.54	i L
	Total IS, SBI	5.38%	4.40%	1,214,751	2,980,431	4,195,182	1,061,694	1,043,681	53.41%	2,676,936		
	LS1	1.14%	0.13%	257,401	88,058	345,459	218,062	218,062				0.00158
	ΤΟΤΑΙ	100.00%	100.00%	22.579.019	67,737,058	90,316,077	19,174,072	19,143,079				0.00472

(1) Obtained from page 1.

(2) Obtained from page 1.

(2) Obtained from page 1.
 (3) Total capacity costs * .25 * Col (1).
 (4) Total capacity costs * .75 * Col (2).

(5) Col (3) + Col (4).

(6) Projected kWh sales for the period January through December 2010.
(7) Projected kWh sales at secondary for the period January through December 2010.
(8) Col 7 / (Col 9 * 730)*1000

(9) Projected kw demand for the period January 2010 through December 2010.
 (10) Total Col (5) / Total Col (9).

(11) {Col (5) / Total Col (7)} / 1000.

TAMPA ELECTRIC COMPANY CAPACITY COSTS ESTIMATED FOR THE PERIOD; JANUARY 2010 THROUGH DECEMBER 2010

SCHEDULE E12

REDACTED

END 7/31/2011	CTYPE QF
7/31/2011	QF
7/31/2011	QF
12/31/2015	QF
3/1/2010	QF
12/31/2012	LT
**	LT
4/30/2011	LT
5/31/2012	LT
12/31/2018	LT
	3/1/2010 12/31/2012 ** 4/30/2011 5/31/2012 12/31/2018

QF = QUALIFYING FACILITY

LT = LONG TERM

ST = SHORT TERM

** THREE YEAR NOTICE REQUIRED FOR TERMINATION.

· · · · · · · · · · · · · · · · · · ·	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER
CONTRACT	MW	MW	MW	MW		MW	MW	MW	MW	MW	MW	MW
MCKAY BAY REFUSE	19.0	19.0	19.0	19.0	19,0	19.0	19.0	19.0	19.0	19.0	19,0	19.0
HILLSBOROUGH COUNTY	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
ORANGE COGEN LP	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0
HARDEE POWER PARTNERS	441.0	441.0	441.0	441.0	441.0	441.0	441.0	441.0	441.0	441.0	441.0	441.0
CALPINE	170.0	170.0	170.0	170,0	170.0	170.0	170,0	170.0	170.0	170.0	170.0	170.0
RELIANT	158.0	158.0	158,0	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0	158.0
PASCO COGEN	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0
SEMINOLE ELECTRIC	6.1	6.1	6.1	6,1	6.1	6.1	6.1	6.1	6,1	6.1	6.1	6.1

CAPACITY YEAR 2010	JANUARY (\$)	FEBRUARY (\$)	MARCH (\$)	APRIL (\$)	MAY (\$)	JUNE (\$)	JULY (\$)	AUGUST {\$}	SEPTEMBER (\$)	OCTOBER (\$)	NOVEMBER (\$)	DECEMBER (\$)	TOTAL (\$)
				_									
MCKAY BAY REFUSE	368,100	300,300	368,100	344,700	368,100	344,700	368,100	368,100	344,700	368,100	344,700	366,100	4,255,800
HILLSBOROUGH COUNTY	1,130,500	922,300	0	0	0	0	0	0	0	0	0	0	2,052,800
ORANGE COGEN LP	890,100	726,200	890,100	833,600	890,100	833,600	890,100	890,100	833,600	890,100	833,600	890,100	10,291,300
TOTAL COGENERATION	2,388,700	1,948,800	1,258,200	1,178,300	1,258,200	1,178,300	1,258,200	1,258,200	1,178,300	1,258,200	1,178,300	1,258,200	16,599,900

HARDEE POWER PARTNERS													
CALPINE - D RELIANT ENERGY SERVICES - D PASCO COGEN - D SUBTOTAL CAPACITY PURCHASES													
SEMINOLE ELECTRIC - D VARIOUS MARKET BASED SUBTOTAL CAPACITY SALES													
TOTAL PURCHASES AND (SALES)	3,950,400	3,959,800	3,949,200	3,946,800	3,941,700	3,935,500	3,929,700	3,930,800	3,935,700	3,949,200	3,956,200	3,951,500	47,336,500
TOTAL CAPACITY	\$6,339,100	\$5,908,600	\$5,207,400	\$5,125,100	\$5,199,900	\$5,113,800	\$5,187,900	\$5,189,000	\$5,114,000	\$5,207,400	\$5,134,500	\$5,209,700	\$63,936,400

Docket No. 090001-El FAC 2010 Projection Filing Exhibit No. ____ (CA-3) Document No. 2

EXHIBIT TO THE TESTIMONY OF

CARLOS ALDAZABAL

DOCUMENT NO. 2

PROJECTED FUEL AND PURCHASED POWER COST RECOVERY JANUARY 2010 - DECEMBER 2010

SCHEDULES E1 THROUGH E10 SCHEDULE H1

Docket No. 090001-El FAC 2010 Projection Filing Exhibit No. ____ (CA-3) Document No. 2 Page 1 of 31

TAMPA ELECTRIC COMPANY

•

TABLE OF CONTENTS

PAGE NO.	DESCRIPTION	PERIOD
NO. 2 3 4 5 6 7 8-9 10-21 22-23 24-25 26-27 28	Schedule E1 Cost Recovery Clause Calculation Schedule E1-A Calculation of Total True-Up Schedule E1-C GPIF & True-Up Adj. Factors Schedule E1-D Fuel Adjustment Factor for TOD Schedule E1-E Fuel Recovery Factor-with Line Losses Schedule E2 Cost Recovery Clause Calculation (By Month) Schedule E3 Generating System Comparative Data Schedule E4 System Net Generation & Fuel Cost Schedule E5 Inventory Analysis Schedule E6 Power Sold Schedule E7 Purchased Power Schedule E8 Energy Payment to Qualifying Facilities	PERIOD (JAN. 2010 - DEC. 2010) (")
29 30 31	Schedule E9 Economy Energy Purchases Schedule E10 Residential Bill Comparison Schedule H1 Generating System Comparative Data	(") (") (JAN DEC. 2007-2010)

TAMPA ELECTRIC COMPANY FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010

SCHEDULE E1

		DOLLARS	MWH	CENTS/KWH
1.	Fuel Cost of System Net Generation (E3)	866,477,635	19,449,775	4.45495
2.	Nuclear Fuel Disposal Cost	0	0	0.00000
3.	Coal Car Investment	0	0	0.00000
4a.	Adjustments to Fuel Cost (Wauchula Wheeling)	(72,000)	19,449,775 ⁽¹⁾	(0.00037)
4b.	Adjustments to Fuel Cost	0	<u>19,449,775</u> ⁽¹⁾	0.00000
5.	TOTAL COST OF GENERATED POWER (LINES 1 THROUGH 4b)	866,405,635	19,449,775	4.45458
6.	Fuel Cost of Purchased Power - System (Exclusive of Economy)(E7)	37,824,900	487,651	7,75655
7.	Energy Cost of Economy Purchases (E9)	17,087,900	465,462	3.67117
8.	Demand and Non-Fuel Cost of Purchased Power	0	0	0.00000
9,	Energy Payments to Qualifying Facilities (E8)	24,111,400	540,215	4.46330
10.	TOTAL COST OF PURCHASED POWER (LINES 6 THROUGH 9)	79,024,200	1,493,328	5.29182
11.	TOTAL AVAILABLE KWH (LINE 5 + LINE 10)		20,943,103	
12.	Fuel Cost of Schedule D Sales - Jurisd. (E6)	715,100	14,725	4.85637
13.	Fuel Cost of Market Based Sales - Jurisd. (E6)	7,737,300	149,460	5.17684
14.	Gains on Sales	2,101,140	NA	NA
15.	TOTAL FUEL COST AND GAINS OF POWER SALES	10,553,540	164,185	6.42783
16.	Net Inadvertant Interchange		0	
17.	Wheeling Received Less Wheeling Delivered		0	
1 8 .	Interchange and Wheeling Losses		2,500	
19.	TOTAL FUEL AND NET POWER TRANSACTIONS (LINE 5+10-15+16+17-18)	934,876,295	20,776,418	4.49970
20 .	Net Unbilled	NA ^{(1)(a)}	NA ^(a)	NA
21.	Company Use	1,619,892 ⁽¹⁾	36,000	0.00819
22.	T & D Losses	43,682,752 (1)	970,793	0.22096
23.	System MWH Sales	934,876,295	19,769,625	4,72885
24.	Wholesale MWH Sales	(28,307,444)	(595,553)	4,75314
25.	Jurisdictional MWH Sales	906,568,851	19,174,072	4.72810
26.	Jurisdictional Loss Multiplier			1.00136
27.	Jurisdictional MWH Sales Adjusted for Line Loss	907,801,607	19,174,072	4,73453
28.	True-up ⁽²⁾	(45,016,697)	19,174,072	(0.23478)
29.	Total Jurisdictional Fuel Cost (Excl. GPIF and Incl. WCT)	862,784,910	19,174,072	4.49975
30.	Revenue Tax Factor			1.00072
31.	Fuel Factor (Excl. GPIF) Adjusted for Taxes	863,406,115	19,174,072	4,50299
32.	GPIF Adjusted for Taxes (2)	1,239,009	19,174,072	0.00646
33.	Fuel Factor Adjusted for Taxes Including GPIF	864,645,124	19,174,072	4.50945
34.	Fuel Factor Rounded to Nearest .001 cents per KWH			4.509

(a) Data not available at this time.

(1) Included For Informational Purposes Only

(2) Calculation Based on Jurisdictional KWH Sales

	TAMPA ELECTRIC COMPANY CALCULATION OF PROJECTED PERIOD TOTAL TRUE-UP FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010	SCHEDULE E1-A
1.	ESTIMATED OVER/(UNDER) RECOVERY (SCH. E1-B) January 2009 - December 2009 (6 months actual, 6 months estimated)	\$45,016,697
2.	FINAL TRUE-UP (January 2008 - December 2008) (Per True-Up filed March 9, 2009) (Refunded as part of Mid-Course Adjustment May 7, 2009 through December 31, 2009)	0
3.	TOTAL OVER/(UNDER) RECOVERY (Line 1 + Line 2) To be included in the 12-month projected period January 2010 through December 2010 (Schedule E1, line 28)	\$45,016,697
4.	JURISDICTIONAL MWH SALES (Projected January 2010 through December 2010)	19,174,072
5.	TRUE-UP FACTOR - cents/kWh (Line 3 / Line 4 * 100 cents / 1,000 kWh)	-0.2348

		TAMPA ELECTRIC COMPANY INCENTIVE FACTOR AND TRUE-UP FACTOR FOR THE PERIOD: JANUARY 2010 THROUGH DECEN	R Aber 2010	HEDULE E1-C
1.	то	TAL AMOUNT OF ADJUSTMENTS		
	Α.	GENERATING PERFORMANCE INCENTIVE REWARD / (PENALTY) (January 2010 through December 2010)	\$1,239,009	
	B.	TRUE-UP OVER / (UNDER) RECOVERED (January 2009 through December 2009)	\$45,016,697	
2.	то	TAL SALES (January 2010 through December 2010)	19,174,072	MWh
3.	AD,	JUSTMENT FACTORS		
	A.	GENERATING PERFORMANCE INCENTIVE FACTOR	0.0065	Cents/kWh
	В.	TRUE-UP FACTOR	(0.2348)	Cents/kWh

TAMPA ELECTRIC COMPANY FUEL ADJUSTMENT FACTOR FOR OPTIONAL TIME-OF-DAY RATES

SCHEDULE E1-D

ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010

5.737

4.427

1. COST RATIO

ON-PEAK COST / OFF-PEAK COST =

____ =

1.2959

2. SALES/GENERATION

27.87 % ON-PEAK

72.13 % OFF-PEAK

3. FORMULA

FUEL ADJUSTMENT FACTOR ADJUSTED FOR TAX AND GPIF = (% ON-PEAK GENERATION * COST RATIO * OFF-PEAK FACTOR) + (% OFF-PEAK GENERATION * OFF-PEAK FACTOR)

	4.5170) =	0.2787	*	1.2959	Y +	0.7213	Y
	4.5170) =	1.0825	•	Y			
	4.1727	/ =	Y					
	where Y = OFF-PEAK FACTOR	and						
	,	(=	1.295	9 Y				
	,	(=	1,295	9 *	4 1727			
	,	(=	5 407	4				
	where X = ON-PEAK FACTOR			-				
4	FUEL COST (CENTS/KWH)							
			5.407	4	4 1727			
			0.407	-	4.1727			
5.	FUEL FACTOR (CENTS/KWH,	NEAREST 0	.001) 5.40	7	4.173			
6.	Total Jurisdictional fuel cost adju	sted for taxe	s including GPIF	_			864 645 124	
	(Schedule E1 line 33)						004,040,124	
7	Jurisdictional MMH Sales						10 174 070	
•••	(Schedule E1 line 33)						19,174,072	
	(
8.	Jurisdictional Cost per Kwh Sold	(Line 6 / Lin	e 7 / 10)				4.509	
9.	Effective Jurisdictional Sales (Se	e Below)					19 ,143,079	
	LEVELIZED FUEL FACTORS							
10.	Fuel Factor at Secondary Meteri	ng (Line 6 / L	.ine 9 / 10)		Cents/kwh		4.517	
11.	Evel Eactor at Primary Metering	(Line 10 * 99	%)		Cents/out		A 472	
	·	(2.00 10 00	,		ounaxin		7.7(4	
12.	Fuel Factor at Transmission Met	ering (Line 1	0 * 98%)		Cents/kwh		4.427	
	TIERED FUEL FACTORS							
13.	Fuel Factor - First Tier (Up to 10	00 kWh)			Cents/kwh		4.167	
14.	Fuel Factor - Second Tier (Over	1000 kWh)			Cents/kwh		5 167	
	``	,					•	
		,			Jurisdictional	Sales (M	IWH)	
		Metering	g Voltage:	_	Meter	_	Secondary	
		Distribution	Secondary		16,815,088		16.815.088	
		Distribution	Primary		1,618,601		1,602,415	
		Transmissio	'n		740,383		725,576	
		Total			19,174,072		19,143,079	

SCHEDULE E1-E

TAMPA ELECTRIC COMPANY FUEL COST RECOVERY FACTORS ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010

METERING VOLTAGE LEVEL	LEVELIZED FUEL RECOVERY FACTOR cents/kWh	FIRST TIER (Up to 1000 kWh) cents/kWh	SECOND TIER (OVER 1000 kWh) cents/kWh
STANDARD			
Distribution Secondary (RS only)		4.167	5.167
Distribution Secondary	4.517		
Distribution Primary	4.472		
Transmission	4.427		
Lighting Service ⁽¹⁾	4.383		
TIME-OF-USE			
Distribution Secondary - On-Peak	5,407		
Distribution Secondary - Off-Peak	4.173		
Distribution Primary - On-Peak	5.353		
Distribution Primary - Off-Peak	4.131		
Transmission - On-Peak	5.299		
Transmission - Off-Peak	4.090		

(1) Lighting service is based on distribution secondary, 17% on-peak and 83% off-peak

TAMPA ELECTRIC COMPANY FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010

		(ā)	(b)	(c)	(8)	(#)	(f) 55704AT	(g) ED	(h)	(1)	0)	{k)	(1)	(m)
_		Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	PERIOD
1.	Fuel Cost of System Net Generation	62,430,276	\$7,580,202	61,786,375	62,276,846	75,913,313	80,890,068	89,353,435	90,685,594	83,203,756	75,674,142	60,503,315	66,180,312	866,477,635
2.	Nuclear Fuel Disposal	0	o	0	0	C	0	٥	0	0	0	0	D	
3.	Fuel Cost of Power Sold (1)	683,900	572,900	631,000	432,500	538,900	931,700	1,164,900	1,192,900	1,208,900	1,030,500	984,500	1,180,940	10,553,540
4.	Fuel Cost of Purchased Power	2,313,800	1,889,000	1,159,400	2,424,100	3,994,400	5,077,000	6,169,500	6,637,700	3,923,300	3,089,700	850,200	296,800	37.824.900
5.	Demand and Non-Fuel Cost of Purchased Power	0	0	0	0	٥	0	o	O	o	D	0	0	0
6.	Payments to Qualifying Facilities	1,550,500	1,835,700	1,765,100	2,004,300	2,095,100	2,041,800	2,142,900	2,314,500	2,451,000	2,103,900	1,858,600	1,948,000	24,111,400
7.	Energy Cost of Economy Purchases	1,393,000	1,146,300	1,498,400	1,698,800	1,677,500	1,410,400	1,188,700	1,131,600	1,405,100	1,670,000	1,470,200	1,397,900	17,087,900
8a. 8b.	Adj. to Fuel Cost (Wauchula Wheeling) Adj. To Fuel Cost	(6,000) C	(6,000) 0	(6,0 00) 0	(6,000) O	(6,000) 0	(6,000) 0	(6,000) D	(6,000) 0	(6,000) 0	(6,000) 0	(6,000)	(6,000) 0	(72,000) 0
9.	TOTAL FUEL & NET POWER TRANSACTIONS	66,997,676	61,872,302	65,572,275	67,965,546	83,135,413	88,481,568	97,683,635	99,570,494	89,768,256	81,501,242	63,691,815	68,636,072	934,876,295
10.	Jurisdictional MWH Sold	1,476,022	1,351,890	1,336,001	1,422,228	1,549,039	1,793,078	1,859,052	1,865,095	1,895,514	1,713,647	1,460,525	1,451,982	19.174.072
11.	Jurisdictional % of Total Sales	0,9778879	0.9727724	0.9747108	0.9707213	0.9628980	0.9707152	0.9684555	0.9645523	0.9670659	0.9656009	0.9707400	0.9769374	, .
12.	Jurisdictional Total Fuel & Net Power Transactions (Line 9 * Line 11)	65,516,216	60,187,668	63,914,005	65,975,603	80,050,923	85,890,403	94,602,254	96,040,949	86,811,819	78,697,673	61,828,192	67,053,146	906,568,851
13.	Jurisdictional Loss Multiplier	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	1.00136	
14.	JURISD. TOTAL FUEL & NET PWR. TRANS.	65,605,305	50,269,511	64,000,916	66,065,317	80,159,777	86,007,197	94,730,895	96,171,546	86,929,866	78,804,686	61,912,266	67,144,325	907,801,607
	Adjusted for Line Losses (Line 12 * Line 13)													
15.	Cost Per kWh Sold (Cents/kWh)	4.4447	4.4582	4.7905	4.6452	5.1748	4.7966	5.0957	5.1564	4.5861	4.5987	4.2390	4.5243	4.7345
16.	True-up (Cents/kWh) ⁽²⁾	-0,2348	-0.2348	-0.2348	-0.2348	-0,2348	-0.2348	-0.2348	-0.2348	-0.2348	-0,2348	-0.2348	-0.2348	-0.2348
17.	Total (Cents/kWh) (Line 15+16)	4.2099	4.2234	4,5557	4.4104	4,9400	4,5618	4.8609	4.9216	4.3513	4.3639	4.0042	4.3895	4.4997
18.	Revenue Tax Factor	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072
19.	Recovery Factor Adjusted for Taxes (Cents/kWh) (Excluding GPIF)	4.2129	4.2264	4.5590	4.4136	4.9436	4,5651	4.8644	4,9251	4.3544	4,3670	4.007 1	4.3927	4.5029
20.	GPIF Adjusted for Taxes (Cents/kWh) (2)	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065	0.0065
21.	TOTAL RECOVERY FACTOR (LINE 19+20)	4.2194	4.2329	4.5655	4.4201	4,9501	4.5716	4.8709	4.9316	4.3609	4.3735	4.0136	4.3992	4.5094
22,	RECOVERY FACTOR ROUNDED TO NEAREST 0.001 CENTS/KWH	4.219	4,233	4.566	4.420	4.950	4.572	4.871	4,932	4,361	4,374	4.014	4.399	4,509

(1) Includes Gains

29

(2) Based on Jurisdictional Sales Only

SCHEDULE E2

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH JUNE 2010

SCHEDULE E3

	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10
FUEL COST OF SYSTEM NET (GENERATION (\$) 283	0	440			
2. LIGHT OIL	645.520	287.061	142 646 729	496	2,791	50,030
3. COAL	25,615,599	17,428,307	22.299.869	043,327 22,482 112	680,798 28.441.195	672,698
4. NATURAL GAS	36,168,874	39,864,834	38,840,635	39,150,911	46 788 530	33,887,043
5. NUCLEAR	0	0	0	0	40,700,039	40,260,297
	0	0	0	0	ŏ	0
7. IOTAL (#)	62,430,276	57,580,202	61,786,375	62,276,846	75,913,313	80,890,068
SYSTEM NET GENERATION (M	WH)					
8. HEAVY OIL	. 2	0	1	*	04	
9. LIGHT OIL	4,150	1,852	4,149	4 119	Z I A 339	439
10. COAL	787,064	524,146	690,752	702,435	867.946	4,200 002 377
11. NATURAL GAS	629,442	754,565	714,864	741,325	854,594	825.118
	0	0	0	0	0	00
14. TOTAL (MWH)	1,420,658	1,280,563	0 1,409,766	1.447.883	0	1 822 104
UNITS OF FUEL BURNED				• • • • •		1,011,104
15. HEAVY OIL (BBL)	4	•	•	_		
16. LIGHT OIL (BBL)	15 536	9.570	14 616	7	32	685
17. COAL (TON)	358.071	242 175	312 930	14,567	15,859	17,528
18. NATURAL GAS (MCF)	4,560,100	5,396,700	5,134,100	5 362 500	307,035 6 223 800	451,068
19. NUCLEAR (MMBTU)	0	0	0	0,002,000	0,223,000	0,047,500
20. Other	0	0	0	õ	õ	0
BTUS BURNED (MMBTU)						
21. HEAVY OIL	23	0	9	44	201	1 700
	43,703	19,424	43,523	43,239	45.572	44 875
23. COAL 24. NATURAL CAR	8,340,966	5,566,172	7,320,336	7,426,756	9,198,082	10,569,016
25. NUCLEAR	4,007,753	5,547,844	5,277,926	5,512,579	6,397,901	6,216,671
26. OTHER	0	0	0	0	0	0
27. TOTAL (MMBTU)	13,072,445	11,133,440	12,641,794	12,982,618	0 15.641.756	16 834 858
GENERATION MIX (% MWH)						10,004,000
28. HEAVY OIL	0.00	0.00	0.00			
29. LIGHT OIL	0.29	0.00	0.00	0.00	0.00	0.02
30. COAL	55,40	40.94	49.00	48.52	0.25	0.23
31. NATURAL GAS	44.31	58.92	50.71	51.20	49 49	45.28
32. NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	0.00
- 101AE(//)	100.00	100.00	100.00	100.00	100.00	100.00
FUEL COST PER UNIT						
35. HEAVY OIL (\$/BBL)	70.75	0.00	71.00	70.86	87.22	79.04
36. LIGHT OIL (\$/BBL)	41.55	30.00	44.18	44.16	42.93	73.04
37. COAL (\$/TON)	71.54	71.97	71.26	72.43	73.33	75.13
38. NATURAL GAS (\$/MCF)	7.93	7.39	7.57	7.30	7.52	7.65
	0.00	0.00	0.00	0.00	0.00	0.00
OTHER	0.00	0,00	0.00	0.00	0.00	0.00
UEL COST PER MMBTU (\$/MME	BTU)					
1. HEAVY OIL	12.30	0.00	15.78	11.27	13.89	11.65
	14.77	14.78	14.84	14.88	14.94	14.99
N. COAL	3.07	3.13	3.05	3.03	3.09	3.21
5. NUCLEAR	7.72	7.19	7.36	7.10	7.31	7.44
6. OTHER	0.00	0.00	0.00	0.00	0.00	0.00
7. TOTAL (\$/MMBTU)	4.78	5.17	4.89	4.80	0.00	0.00
TU BURNED PER KWH (BTU/KV	MH)				4.00	4.00
8. HEAVY OIL	11,500	0	9.000	11.000	9.571	0.700
9. LIGHT OIL	10,531	10,488	10,490	10,497	10 505	9,780
0. COAL	10,598	10,620	10,598	10,573	10,598	10,554
1. NATURAL GAS	7,447	7,352	7,383	7,436	7,486	7,534
3 OTHER	0	0	0	0	0	0
4. TOTAL (BTU/KWH)	9,202	8,694	8,967	8.967	9.058	0 220
		,	-,	0,007	9,030	9,239
5. HEAVY OIL	14.15	0.00	14 20	12.40	13 30	
6. LIGHT OIL	15.55	15.50	15.56	15.62	15.29	11.40
7. COAL	3.25	3.33	3.23	3.20	3 28	3.41
	5.75	5.28	5.43	5.28	5.47	5.61
0. OTHER	0.00	0.00	0.00	0.00	0.00	0.00
1. TOTAL (CENTS/KWH)	4.30	0.00	0.00	0.00	0.00	0.00
	4.00	4.00	4.30	4.30	4.40	4.44
TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE ESTIMATED FOR THE PERIOD: JULY 2010 THROUGH DECEMBER 2010

	· · · · · · · · · · · · · · · · · · ·	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	TOTAL
FUE	L COST OF SYSTEM NET GEN	ERATION (S)						
1.	HEAVY OIL	50 570	59.014	0.144	4 074	_	_	
2.	LIGHT OIL	718,442	714,772	705 942	698 256	0 507 500	0	173,741
3.	COAL	35,842,888	36,368,507	35,120,936	31.278.642	34 144 315	36 548 547	7,601,966
4.	NATURAL GAS	52,741,535	53,543,301	47,367,734	43,695,973	25.831.472	28 969 873	339,437,930 499 243 078
5.	NUCLEAR	0	0	0	0	.0	20,000,010	499,240,870
6. 7	OTHER	0	0	0	0	0	Ō	ő
1.		89,353,435	90,685,594	83,203,756	75,674,142	60,503,315	66,180,312	866,477,635
SYS	TEM NET GENERATION (MWH	1						
8.	HEAVY OIL	, 445	518	72	11	0	0	4 5 4 6
9.	LIGHT OIL	4,510	4,469	4.382	4 322	3 255	4 052	1,513
10.	COAL	1,025,775	1,026,091	993,092	893,919	958,945	1.022.046	47,030
11.	NATURAL GAS	915,364	950,326	836,894	781,912	439,377	472,035	8,915,816
12.		0	0	0	0	0	0	0
14.	TOTAL (MWH)	1 946 094	1 981 404	1 934 440	0	0	0	0
			1,001,104	1,004,440	1,000,104	7,401,677	1,498,133	19,449,775
UNIT	IS OF FUEL BURNED							
15.	HEAVY OIL (BBL)	692	807	113	17	0	0	2 359
16.	LIGHT OIL (BBL)	18,008	17,923	17,756	14,940	15,658	17,100	189,061
17.	COAL (TON)	469,003	469,155	451,394	403,011	434,797	462,021	4,751,876
18.	NATURAL GAS (MCF)	6,785,200	7,030,300	6,132,100	5,701,900	3,162,400	3,388,000	64,924,600
20	OTHER	0	0	0	0	0	0	0
20.	OTHER	U	Ŭ	U	U	Ŭ	0	0
BTU	S BURNED (MMBTU)							
21.	HEAVY OIL	4,347	5,070	705	111	0	1	14 807
22.	LIGHT OIL	47,658	47,136	46,214	45,397	34,111	42.474	503.326
23.	COAL	10,988,136	10,991,536	10,576,476	9,456,347	10,155,636	10,816,806	111,406,265
24.	NATURAL GAS	6,974,943	7,226,867	6,303,726	5,861,360	3,250,897	3,482,808	66,741,275
25.		0	0	0	0	0	0	0
27.		18.015.084	18 270 609	16 927 121	15 363 215	13 440 644	14 242 080	479 665 672
	(,,		10,027,121	10,000,210	10,440,044	14,342,005	170,000,073
GEN	ERATION MIX (% MWH)							
28.	HEAVY OIL	0.02	0.03	0.00	0.00	0.00	0.00	0.01
29.		0.23	0.23	0.24	0.26	0.23	0.27	0.25
30.	COAL	52.71	51.78	54.14	53.20	68.42	68.22	53.90
31.	NUCLEAR	47.04	47.96	45.62	46.54	31.35	31.51	45.84
33	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
34.	TOTAL (%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00
								100.00
FUE	COST PER UNIT							
35.	HEAVY OIL (\$/BBL)	73.08	73.13	80.92	74.76	0.00	0.00	73.65
36.	LIGHT OIL (\$/BBL)	39.90	39.88	39.76	46.74	33.69	38.71	40.21
37. 19	NATURAL (\$/TON)	777	7.52	773	//.61	/8.53	79.11	75.65
39	NUCLEAR (\$/MMBTU)	0.00	0.00	0.00	0.00	0.17	0.00	7.09
40.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
							0.00	0.00
FUEL	. COST PER MMBTU (\$/MMBTU	(۱ ا						
41.	HEAVY OIL	11.63	11.64	12.97	11.45	0.00	0.00	11.73
42.		15.07	15.16	15.28	15.38	15.47	15.58	15.10
43.	NATURAL CAS	3.20	3.31	3.32	3.31	3.36	3.38	3.23
45	NUCLEAR	0.00	0.00	0.00	7.45	0.00	8.32	7.48
46.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.	TOTAL (\$/MMBTU)	4.96	4.96	4.92	4.93	4,50	4.61	4.85
BTU	BURNED PER KWH (BTU/KWH))						
40. 40		9,769	9,788	9,792	10,091	0	0	9,787
50	COAL	10,337	10,347	10,546	10,304	10,480	10,482	10,517
51.	NATURAL GAS	7.620	7.605	7.532	7 496	7 399	7 378	7.486
52.	NUCLEAR	0	0	0	0	0	, 3, 8	7,400
53.	OTHER	0	0	0	0	Ő	ŏ	ŏ
54.	TOTAL (BTU/KWH)	9,257	9,221	9,227	9,144	9,590	9,573	9,186
ĊEN"								
GENI 55	HEAVY ON	11 26	11 20	10.70	44 EE	- -		
56	LIGHT OIL	15.93	15.99	16.11	11.00	0.00	0.00	11.48
57.	COAL	3.49	3.54	3.54	3.50	3.56	10.33	15.68
58.	NATURAL GAS	5.76	5.63	5.66	5.59	5.88	6 14	3.43 5.60
59.	NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61.	TUTAL (CENTS/KWH)	4.59	4.58	4.54	4.50	4.32	4.42	4.45

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JANUARY 2010

=														
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	{L)	(M)	(N)
		NET	NEŤ	NET	EQUIV.	NET	AVG. NET	FUEL	FUEL	FVEL	FUEL	AS BURNED	FUEL COST	COST OF
	PLANT/UNIT	CAPA-	GENERATION	CAPACITY	AVAIL.	OUTPUT	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH	FUEL
		BILITY (MW)	(MWH)	FACTOR (%)	FACTOR (%)	FACTOR (%)	(STU/KWH)		(UNITS)	(BTU/UNIT)	(MM STU)	(\$)	(cents/KWH)	(\$/UNIT)
1	R R #1	305	0	0.0	0.0	0.0		COAI	٥	0	0.0		0.00	0.00
2	B B #2	305	238.460	81.1	83.6	0.0	10 594	COAL	107 865	23 420 201	2 526 220 0	7 571 602	0.00	70.00
2	B B #3	385	186 457	65.1	71.1	0.1	10,004	COAL	86.051	23 010 053	1 020,220.0	6.040.364	3.10	70.20
4	B B #4	427	231 727	72 9	76.4	0,1	10,024	COAL	111 008	21 000 046	2 463 950 0	7 010 / 304	3.24	70.20
-	B B IGNITION		201,721	, 2.0	- 10.4	-	-	LGT OIL	7 996	21,000,040	2,400,000.0	671 674		70.03
5.	B.B. STATION	1,602	656,644	55.1	58.1	0.1	10,616				6,971,060.0	22,194,076	3.38	
				• •					-					
6	SEB-PHILLIPS #1 (HVY OIL)	18	1	0,0	82,9	0,1	11,500	HVY OIL	2	5,750,000	11.5	142	14.20	71.00
1	SEB-PHILLIPS #2 (HVY UIL)	18	1	0.0	81.3	0.1	23,000	HVY OIL	2	11,500,000	23.0	141	14.10	70.50
	SEB-PHILLIPS IGNITION		· · ·				-	LGTOIL	<u> </u>	<u> </u>		0		0.00
8.	SEB-PHILLIPS TOTAL	36	2	U.U	82.1	Ų.1	17,250		-	-	34.5	283	14,15	•
9.	POLK #1 GASIFIER	235	130,420	74.6	-	-	10,504	COAL	52,157	26,265,046	1,369,906.0	3,421,523	2.62	65,60
1). POLK#1 CT OIL	235	4,034	2,3	-	-	10,477	LGT OIL	7,292	5,795,941	42,264.0	624,049	15,47	85.58
1	I. POLK #1 TOTAL	235	134,454	76.9	77.7	0.1	10,503		-	-	1,412,170.0	4,045,572	3.01	•
13	2. POLK#2 CT GAS	183	3.328	2.4	-	-	13.506	GAS	43.800	1.026.187	44,947.0	347.404	10.44	7 93
1	3. POLK#2 CT OIL	186	103	0.1	-	_	12,592	LGT OIL	224	5,790,179	1.297.0	19.170	18.61	85.58
1	. POLK #2 TOTAL	186	3,431	2.5	98,9	0.1	13,478		-	-	46,244.0	366,574	10,68	-
1		183	158	0.1		_	14 399	GAS	2 200	1 034 091	2 275 0	17 450	11.04	7 03
1		186		0.1	-	-	11,000	LGT OIL	2,200	6 111 111	55.0	776	15.40	85.56
1	7. POLK #3 TOTAL	186	163	0.1	98.9	0.1	14,294		· <u> </u>	-	2,330.0	18,220	11.18	
12	8. PULK#4 CIGAS	183	5,665	4.2	99.4	4. 1	12,977	GAS	/1,500	1,028,350	73,527.0	567,110	10.01	7.93
1	9. POLK #5 CT GAS	183	4,464	3.3	99.4	0.1	13,013	GAS	56,500	1,028,106	58,088,0	448,136	10.04	7.93
2). CITY OF TAMPA GAS	6	76	1.7	100.0	0.0	10,474	GAS	800	995,000	796.0	6,294	8.28	7.87
2	1. BAYSIDE #1	792	356,639	60.5	95.6	0.1	7,265	GAS	2,520,400	1,028,027	2,591,040.0	19,990,825	5.61	7.93
2	2. BAYSIDE #2	1,047	257,911	33.1	96.7	0,1	7,382	GAS	1,852,000	1,028,040	1,903,930.0	14,689,338	5.70	7,93
2	3. BAYSIDE #3	61	394	0.9	99.5	0.1	10,901	GAS	4,200	1,022,619	4,295.0	33,313	8.46	7,93
24	4. BAYSIDE #4	61	308	0.7	99.5	0.1	10,945	GAS	3,300	1,021,515	3,371.0	26,174	8.50	7.93
2	5. BAYSIDE #5	61	242	0.5	99.5	0.1	11,000	GAS	2,600	1,023,846	2,662.0	20,622	8,52	7,93
20	5. BAYSIDE #6	61	183	0.4	99.5	0.1	11,142	GAS	2,000	1,019,500	2,039.0	15,863	8.67	7.93
2	7. BAYSIDE TOTAL	2,083	615,677	39.7	96,6	0,1	7,321	GAS	4,384,500	1,028,016	4,507,337.0	34,776,135	5.65	7,93
2	3. B.B.C.T.#4 OIL	61	8	0.0	0.0	-	10,875	LGT OIL	15	5,800,000	87.0	1,531	19.14	102.07
2	9. B.B.C.T.#4 GAS	61	73	0.2	0.0	-	10,726	GAS	800	978,750	783,0	6,345	8.69	7.93
30). B.B.C.T.#4 TOTAL	61	81	0.2	99.5	0.1	10,741		•	•	870.0	7,876	9.72	-
3	I. TOT COAL (BB,POLK)	1,837	787,064	57,6	50,6	0.1	10,598	COAL	358,071	23,294,168	8,340,966.0	25,615,599	3.25	71.54
3	2. SYSTEM	4,761	1,420,658	40.1	81.7	0.1	9,202			<u> </u>	13,072,456.5	62,430,276	4.39	-

LEGEND:

32

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

SCHEDULE E4

.

Page 10 of 31

٠

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: FEBRUARY 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
	NET	NET	NET	EQUIV.	NET	AVG. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST	COST OF
PLANT/UNIT	CAPA-	GENERATION	CAPACITY	AVAIL.	OUTPUT	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH	FUEL
	BILITY		FACTOR	FACTOR	FACTOR								
· · · · · ·	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	395	0	0.0	0.0	0.0	0	COAL	0	0	0.0	0	0.00	0.00
2. B.B.#2	395	91,886	34.6	35.8	0.1	10,602	COAL	41,594	23,420,253	974,142.0	2,903,703	3.16	69.81
3. B.B.#3	385	167,536	64.8	71.1	0.1	10,627	COAL	77,339	23,019,951	1,780,340.0	5,399,084	3.22	69,81
4. B.B.#4	427	206,022	71.8	76.4	0.1	10,652	COAL	99,749	22,000,120	2,194,490.0	7,012,259	3.40	70.30
B.B. IGNITION	-	-	-			-	LGT OIL	6,219	-	•	528,186		84,93
5. B.B. STATION	1,602	465,444	43.2	46.3	0.1	10,633		-	-	4,948,972.0	15,843,232	3,40	-
6. SEB-PHILLIPS #1 (HVY OIL)	18	0	0,0	82,9	0,0	0	HVY OIL	0	0	0.0	0	0.00	0.00
7. SEB-PHILLIPS #2 (HVY OIL)	18	0	0.0	81.3	0.0	0	HVY OIL	0	0	0.0	0	0.00	0.00
SEB-PHILLIPS IGNITION	-	-	-	-	-	-	LGT OIL	0	-	-	0	-	0.00
8. SEB-PHILLIPS TOTAL	36	0	0,0	82.1	0.0	0		-	•	0.0	0	0.00	
9. POLK #1 GASIFIER	235	58,702	37.2	-	-	10.514	COAL	23.493	26.271.655	617.200.0	1,585,075	2.70	67.47
10. POLK #1 CT OIL	235	1,816	1.1	-	-	10,483	LGT OIL	3,284	5,796,894	19,037.0	281,366	15,49	85,68
11. POLK #1 TOTAL	235	60,518	38.3	38.8	0.1	10,513		•	-	636,237.0	1,866,441	3.08	•
12 POLK #2 CT GAS	183	88	0.1	-	-	11.557	GAS	1.000	1.017.000	1.017.0	7.387	8.39	7.39
13. POLK #2 CT OIL	186	3	0.0	-	-	10,333	LGT OIL	5	6,200,000	31.0	428	14.28	85.66
14. POLK #2 TOTAL	186	91	0,1	98.9	0.1	11,516		-	-	1,048.0	7,815	8.59	-
15 POLK #3 CT GAS	183	30	0.0	_		11.667	GAS	300	1,166,667	350,0	2,216	7,39	7.39
16. POLK #3 CT OIL	186	1	0.0	-	-	11,000	LGT OIL	2	5,500,000	11.0	171	17.10	85.50
17. POLK #3 TOTAL	186	31	0.0	98.9	0.1	11,645		-	-	361.0	2,387	7.70	•
18. POLK #4 CT GAS	183	4,042	3.3	99.4	0.1	12,233	GAS	48,100	1,027,942	49,444.0	355,305	8.79	7.39
19. POLK #5 CT GAS	183	257	0,2	99,4	0.1	13,459	GAS	3,400	1,017,353	3,459.0	25,115	9.77	7,39
20, CITY OF TAMPA GAS	6	100	2.5	100.0	0.0	10,470	GAS	1,000	1,047,000	1,047.0	7,920	7.92	7.92
21. BAYSIDE #1	792	382.674	71.9	95.6	0,1	7.265	GAS	2,704,500	1.027.987	2.780.190.0	19.977.579	5.22	7.39
22. BAYSIDE #2	1.047	363,345	51.6	93.2	0,1	7,345	GAS	2,596,000	1,028,008	2,668,710.0	19,176,112	5.28	7,39
23. BAYSIDE #3	61	1,343	3.3	99.5	0.1	10,790	GAS	14,100	1,027,730	14,491.0	104,154	7,76	7.39
24. BAYSIDE #4	61	1,026	2.5	99.5	0.1	10,811	GAS	10,800	1,027,037	11,092.0	79,777	7.78	7.39
25. BAYSIDE #5	61	782	1.9	99.5	0.1	10,825	GAS	8,200	1,032,317	8,465.0	60,572	7.75	7.39
26. BAYSIDE #6	61	590	1.4	99.5	0.1	10,863	GAS	6,200	1,033,710	6,409.0	45,798	7.76	7.39
27. BAYSIDE TOTAL	2,083	749,760	53.6	94.8	0.1	7,321	GAS	5,339,800	1,028,008	5,489,357.0	39,443,992	5.26	7.39
28. B.B.C.T.#4 OIL	61	32	0.1	0.0	-	10,781	LGT OIL	60	5,750,000	345.0	5,096	15.93	84.93
29. B.B.C.T.#4 GAS	61	288	0.7	0.0	-	11,007	GAS	3,100	1,022,581	3,170.0	22,899	7.95	7.39
30. B.B.C.T.#4 TOTAL	61	320	0.8	99,5	0.1	10,984		-	-	3,515.0	27,995	8.75	•
31. TOT COAL (BB,POLK)	1,837	524,146	42.5	40.4	0.1	10,620	COAL	242,175	22,984,090	5,566,172.0	17,428,307	3.33	71.97
32. SYSTEM	4,761	1,280,563	40.0	75.1	0.1	8,694	-	<u> </u>	<u> </u>	11,133,440.0	57,580,202	4.50	

LEGEND:

33

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: MARCH 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	đì	(ل)	06)		(M)	(N)
(-)	,,	107	(-)	(=)	.,	(0)	1.17	~	(*)	0.4	(=)	()	<i>i</i>)
	NET	NET	NET	EQUIV.	NET	AVG. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST	COST OF
PLAN I/UNIT	CAPA-	GENERATION	EACTOR	AVAIL.	EACTOR	MEATRATE	TYPE	BOKNED	HEATVALUE	BURNED	FUEL COST	PER KWH	FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(8TU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1, B.B.#1	395	0	0.0	0.0	0.0	0	COAL	٥	0	0.0	0	0.00	0.00
2. B.B.#2	395	239,633	81.5	83.6	0.1	10,570	COAL	108,147	23,420,252	2,532,830.0	7,521,068	3.14	69.54
3. B.B.#3	385	127,635	44.6	48,1	0.1	10,644	COAL	59,019	23,019,706	1,358,600,0	4,104,468	3.22	69.54
4. B.B.#4	427	193,305	60.8	64.0	0.1	10,663	COAL	93,689	22,000,128	2,061,170.0	6,564,307	3.40	70.06
B.B. IGNITION	-	-	-		-	-	LGT OIL	7,107	-	•	610,175		85.86
5. B.B. STATION	1,602	560,573	47.0	49,3	0,1	10,619		-	-	5,952,600.0	18,800,018	3.35	•
6. SEB-PHILLIPS #1 (HVY OIL)	18	1	0.0	64.1	0.1	9,000	HVY OIL	1	9,000,000	9,0	71	7.10	71.00
SEB-PHILLIPS #2 (HVY OIL)	18	0	0.0	34.1	0.0	0	HVY OIL	1	9,000,000	9.0	71	0.00	71.00
SEB-PHILLIPS IGNITION		•	-		-		LGT OIL	0			0		0.00
8. SEB-PHILLIPS TOTAL	36	1	0.0	49.1	0.1	18,000		•	-	18.0	142	14.20	•
9. POLK #1 GASIFIER	235	130,179	74.5	•	-	10,507	COAL	52,075	26,264,734	1,367,736.0	3,499,851	2.69	67.21
10. POLK#1 CT OIL	235	4,026	2.3		<u> </u>	10,481	LGT OIL	7,280	5,796,291	42,197.0	625,795	15.54	85,96
11. POLK #1 TOTAL	235	134,205	76.8	77.7	0.1	10,506		•	•	1,409,933.0	4,125,646	3.07	-
12. POLK #2 CT GAS	183	216	0.2	-	-	13,856	GAS	2,900	1,032,069	2,993.0	21,939	10,16	7.57
13. POLK #2 CT OIL	186	7	0.0	-	-	11,000	LGT OIL	13	5,923,077	77.0	1,117	15.96	85.96
14. POLK #2 TOTAL	186	223	0.2	98.9	0.1	13,767		•	-	3,070,0	23,056	10.34	-
15. POLK #3 CT GAS	183	75	0.1	-	-	11,520	GAS	800	1,080,000	864.0	6,052	8,07	7.57
16. POLK #3 CT OIL	186	2	0.0	-	-	13,500	LGT OIL	5	5,400,000	27.0	430	21.50	86.00
17. POLK #3 TOTAL	186	77	0.1	98.9	0.1	11,571		-	-	891.0	6,482	8.42	-
18. POLK #4 CT GAS	183	1,244	0.9	83.4	0.1	12,145	GAS	14,700	1,027,823	15,109.0	111,207	8.94	7.57
19, POLK #5 CT GAS	183	580	0.4	99.4	0.1	12,302	GAS	6,900	1,034,058	7,135.0	52,199	9.00	7.57
20. CITY OF TAMPA GAS	6	238	5.3	100.0	0.1	10,437	GAS	2,500	993,600	2,484.0	19,685	8.27	7.87
21. BAYSIDE #1	792	415,444	70.5	95.6	0.1	7,264	GAS	2,935,700	1,027,990	3,017,870.0	22,208,796	5.35	7.57
22. BAYSIDE #2	1,047	287,350	36,9	78,0	0,1	7,402	GAS	2,069,100	1,028,003	2,127,040.0	15,652,901	5.45	7.57
23. BAYSIDE #3	61	2,818	6.2	99.5	0.1	10,742	GAS	29,400	1,029,660	30,272.0	222,413	7.89	7.57
24. BAYSIDE #4	61	2,335	5.1	99.5	0.1	10,761	GAS	24,400	1,029,795	25,127.0	184,588	7.91	7.57
25. BAYSIDE #5	61	1,936	4.3	99,5	0.1	10.733	GAS	20,200	1,028,713	20,780.0	152,815	7,89	7.57
26. BAYSIDE #6	61	1,599	3.5	99.5	0.1	10,748	GAS	16,700	1,029,102	17,186.0	126,337	7.90	7.57
27. BAYSIDE TOTAL	2,083	711,482	45.9	87.2	0,1	7,362	GAS	5,095,500	1,028,020	5,238,275.0	38,547,850	5.42	7.57
28. B.B.C.T.#4 OIL	61	114	0.3	0.0	-	10,719	LGT OIL	211	5,791,469	1,222.0	18.387	16.13	87.14
29. B.B.C.T.#4 GAS	61	1,029	2.3	0.0	-	10,754	GAS	10,800	1,024,630	11,066.0	81,703	7.94	7.57
30. B.B.C.T.#4 TOTAL	61	1,143	2.5	99.5	0.1	10,751		-	-	12,288.0	100,090	8.76	•
31. TOT COAL (BB,POLK)	1,837	690,752	50,5	43.0	0.1	10,598	COAL	312,930	23,392,887	7,320,336.0	22,299,869	3.23	71.26
32. SYSTEM	4,761	1,409,766	39.8	73.8	0.1	8,967			•	12,641,803.0	61,786,375	4.38	

LEGEND:

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

Page 12 of 31

SCHEDULE E4

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: APRIL 2010

-														
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
		NET	NET	NET	FOUN	NET	AVG NET	티토	EUEI	FLIFI	ELIEI		FUEL COST	CORTOR
	PLANT/UNIT	CAPA-	GENERATION	CAPACITY	AVAIL.	OUTPUT	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH	EIIEI
		BILITY		FACTOR	FACTOR	FACTOR								, OLL
		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1.	B.B.#1	385	162 944	58.8	59.9	0.1	10 568	COAL	72 963	23 600 044	1 721 930 0	5 134 800	2 15	70.29
2.	B.B.#2	385	229,283	82.7	83.6	0.1	10,563	COAL	102 628	23 599 895	2 422 010 0	7 222 486	3.15	70.38
3.	8.8.#3	375	183,921	68.1	71.1	0.1	10 637	COAL	84 325	23 199 881	1 956 330 0	5 934 406	3 23	70.30
4.	B.B.#4	432	0	0.0	0.0	0.0	.0,007	COAL	0,020	20,100,001	1,000,000.0	104 718	0.00	0.00
	B.B. IGNITION	-		-		-		I GT OII	7 107			614 905	0.00	86.52
5.	B.B. STATION	1,577	576,148	50.7	51.9	0,1	10,588			<u> </u>	6.100.270.0	19.011.315	3.30	
			-				,				, , ,			
6.	SEB-PHILLIPS #1 (HVY OIL)	18	3	0.0	82.9	0,1	11,000	HVY OIL	5	6,600,000	33.0	354	11.80	70.80
7.	SEB-PHILLIPS #2 (HVY OIL)	18	1	0.0	35.2	0.1	44,000	HVY OIL	2	22,000,000	44.0	142	14.20	71.00
-	SEB-PHILLIPS IGNITION		<u> </u>		<u>_</u>		-	LGT OIL	0			0		0.00
ð.	SEB-PHILLIPS TOTAL	35	4	0.0	59,0	0.1	19,250		-	-	77.0	496	12.40	-
9.	POLK #1 GASIFIER	235	126,287	74.6	-	-	10,504	COAL	50.500	26,267,050	1.326.486.0	3.470.797	2.75	68 73
10	. POLK #1 CT OIL	215	3,906	2.5	-	-	10,475	LGT OIL	7,060	5,796,176	40.921.0	608.731	15.58	86.22
11	. POLK #1 TOTAL	235	130,193	76.9	77.7	0.1	10,503		•	-	1,367,407.0	4,079,528	3.13	-
12	POLK #2 CT GAS	151	507	05	_	_	12 450	GAS	6 100	1 834 754	6 312 0	AA 532	9 70	7 20
13	POLK#2 CT OIL	158	16	0.0	-	-	11 250		31	5 806 452	180.0	2 673	16 70	96.21
14	. POLK #2 TOTAL	158	523	0.5	98.9	0,1	12,413		•	•	6,492.0	47,205	9.03	•
15		454	306				12 056	C46	2 900	4 000 700	0.075.0		0.00	
10		101	206	0.2	-	-	13,930		2,000	1,020,700	2,8/3.0	20,441	9.92	7,30
47		100	212	0.0			12,107			2,012,302	73.0	24.552	18.68	86.23
		155	212	V.2	24.4	V .1	13,000		-	•	2,840.0	21,302	10.17	-
18	. POLK #4 CT GAS	151	2,380	2.2	99.4	0.1	11,567	GAS	26,800	1,027,239	27,530.0	195,650	8.22	7.30
19	. POLK #5 CT GAS	151	1,166	1.1	99,4	0.1	11,832	GAS	13,400	1,029,552	13,796.0	97,825	8.39	7,30
20	. CITY OF TAMPA GAS	6	470	10.9	100.0	0.1	10,449	GAS	4,900	1,002,245	4,911.0	38,381	8.17	7.83
21	. BAYSIDE #1	701	322,715	63.9	73.3	0.1	7.271	GAS	2,282,600	1.027.994	2 346 500 0	16 663 854	5 16	7 30
22	BAYSIDE #2	929	398.798	59.6	96.7	0.1	7.389	GAS	2,866,400	1.028.025	2,946,730.0	20 925 817	5.25	7 30
23	BAYSIDE #3	56	4.098	10.2	99.5	0.1	10.874	GAS	43,400	1.026.751	44.561.0	316 837	7 73	7 30
24	. BAYSIDE #4	56	3,565	8.8	99.5	0.1	10.873	GAS	37.800	1.025.503	38,764.0	275.954	7.74	7.30
25	. BAYSIDE #5	56	3,069	7.6	99.5	0.1	10,864	GAS	32,400	1.029.105	33.343.0	236 532	7.71	7 30
26	. BAYSIDE #6	56	2,631	6.5	99.5	0.1	10,874	GAS	27,800	1.029.137	28,610.0	202,951	7.71	7.30
27	. BAYSIDE TOTAL	1,854	734,876	55,1	88,2	0.1	7,401	GAS	5,290,400	1,027,996	5,438,508.0	38,621,945	5.26	7.30
28	. B.B.C.T.#4 OIL	56	191	0.5	0.0	-	10.812	LGT OII	356	5,800,562	2.065.0	30 802	16 13	86 52
29	. B.B.C.T.#4 GAS	56	1,720	4.3	0.0		10.841	GAS	18,100	1,030,221	18.647.0	132,137	7 69	7 30
30	. B.B.C.T.#4 TOTAL	56	1,911	4.7	99.5	0.1	10,838		-	•	20,712.0	162,939	8.53	
31	. TOT COAL (BB,POLK)	1,812	702,435	53.8	45.2	0.1	10,573	COAL	310,416	23,925,171	7,426,756.0	22,482,112	3.20	72,43
32	. SYSTEM	4,381	1,447,883	45.9	74.8	0.1	8,967	-	-	-	12,982,651.0	62,276,846	4,30	-

LEGEND:

35

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: MAY 2010

		*****								-				
	(A)	(B)	(C)	{D}	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
	PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR		AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
_		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1	B B #1	385	230 826	9 7 .6	91 7	0.1	10 628	004	103 054	23 500 058	2 452 210 0	7 449 070	3.02	74.05
,	B B #2	385	237 142	82.8	83.6	0.1	10,525	COAL	106 366	23,000,000	2,433,310.0	7,440,013	3.23	71.00
2	D.D.#2	275	104 125	60.6	71 1	0.1	10,000	COAL	00,000	23,000,023	2,010,240.0	6 264 400	3.21	71.00
	D D #4	422	75 222	09.0	71.1	0.1	10,010	COAL	26 401	23,199,900	2,000,030.0	0,304,400	3.28	/1.65
		402	15,522	23.4	24.0	v.1	10,000	LOT OIL	7 000	22,000,110	002,000.0	2,003,210	3.04	72.98
	B.B. STATION	- 1 577	727.445						7,990	·	7 807 488 6	090,037		87.13
э.	D.D. STATION	1,911	131,413	02.3	04.V	0.1	10,014		-	-	1,027,100,0	24,793,254	3,36	-
6.	SEB-PHILLIPS #1 (HVY OIL)	18	11	0.1	82.9	0.1	9,571	HVY OIL	17	6,193,277	105.3	1,482	13.48	87.20
7.	SEB-PHILLIPS #2 (HVY OIL)	18	10	0.1	81.3	0.1	20,100	HVY OIL	15	13,400,000	201.0	1,309	13.09	87.24
	SEB-PHILLIPS IGNITION	-	-	-	-		-	LGT OIL	0	<u> </u>	-	0	-	0.00
8.	SEB-PHILLIPS TOTAL	35	21	0.1	82.1	0.1	14,585		-	-	306.3	2,791	13.29	-
9	POLK #1 GASIFIER	235	130 531	74 7			10 502	COAL	52 195	26 264 891	1 370 896 0	3 647 931	2 79	60 90
10	POLK#1 CT OII	215	4 037	2.5	-	_	10 477	LGT OIL	7 297	5 796 218	42 295 0	631 262	15 64	86.51
11	POLK#1 TOTAL	235	134.568	77.0	77.7	0.1	10,502		·		1 413 191 0	4 279 193	3.18	
•			,			••••	,					-,,	0.10	
12	2. POLK #2 CT GAS	151	895	0.8	-	-	12,055	GAS	10,500	1,027,524	10,789.0	78,931	8.82	7.52
- 13	3. POLK #2 CT OIL	158	28	0.0	-	-	11,357	LGT OIL	55	5,781,818	318.0	4,758	16.99	86.51
14	I. POLK #2 TOTAL	158	923	0.8	98.9	0.1	12,034		-	-	11,107.0	83,689	9.07	•
15	5. POLK #3 CT GAS	151	369	0.3	-	-	12.913	GAS	4.600	1.035.870	4 765 0	34 579	9.37	7 52
16	5. POLK #3 CT OIL	158		0.0	-	-	12,000	LGT OIL	23	5,739,130	132.0	1 990	18.09	86.52
17	POLK #3 TOTAL	158	380	0.3	98.9	0.1	12.887		· <u> </u>		4.897.0	36,569	9.62	
											.,			
18	3. POLK #4 CT GAS	151	6,708	6.0	99.4	0.1	11,831	GAS	77,200	1,028,018	79,363.0	580,333	8.65	7.52
19	. POLK #5 CT GAS	151	2,023	1.8	99,4	0,1	11,682	GAS	23,000	1,027,522	23,633.0	172,897	8.55	7.52
20	. CITY OF TAMPA GAS	6	672	15,1	100.0	0.1	10,452	GAS	7,000	1,003,429	7,024.0	55,225	8,22	7.89
21		701	401 917	77.0	05.6	0.1	7 205	C 4 9	2 954 000	1 027 095	2 021 710 0	94 499 470	F 94	
22	BAYSIDE #1	920	401,017	61.2	93.0	0.1	7,290	GAS	2,001,000	1,027,000	2,831,710.0	21,430,479	5.34	7.52
22		525	5 270	127	30.7	0.1	10,900	GAS	3,047,000	1,027,007	3,133,100.0	22,911,111	5.42	7.52
2/		56	J,215 A 271	10.3	99.J	0.1	10,950	CAS	45 100	1,023,202	30,047.0	423,974	8.03	7.52
25		56	3 702	0.0	99.J 00.5	0.1	10,040	GAS	40,100	1,027,273	40,330.0	339,029	7.94	7.52
20		50	3,132	9.1 9.1	99.5	0.1	10,039	GAS	40,000	1,027,575	41,103,0	300,690	7,93	7.52
27	. BAYSIDE TOTAL	1,854	841.571	61.0	99.5	0.1	7.423	GAS	6.076.700	1.025,930	6.246.817.0	45,680 146	<u> </u>	7.52
							.,			.,,	0,240,011,0		0.43	7.52
28	B.B.C.T.#4 OIL	56	262	0.6	0.0	-	10,790	LGT OIL	488	5,793,033	2,827.0	42,788	16.33	87.68
29	. B.B.C.T.#4 GAS	56	2,356	5.7	0.0		10,828	GAS	24,800	1,028,629	25,510.0	186,428	7,91	7.52
30	. B.B.C.T.#4 TOTAL	56	2,618	6.3	99,5	0.1	10,824			•	28,337.0	229,216	8.76	-
31	. TOT COAL (BB,POLK)	1,812	867,946	64.4	55.7	0.1	10,598	COAL	387,835	23,716,483	9,198,082.0	28,441,185	3.28	73.33
32	. SYSTEM	4,381	1,726,899	53.0	82.9	0.1	9,058	.	<u> </u>		15,641,861.3	75,913,313	4.40	-

LEGEND:

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

Page 14 of 31

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JUNE 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. 8.8.#1	385	223 247	80.5	81 7	0.1	10 652	COAL	100 759	23 600 075	2 377 920 0	7 381 496	3 31	73.2
2. B.B.#2	385	229 492	82.8	83.6	0.1	10,618	COAL	103 256	23 600 081	2 436 850 0	7 564 423	3 30	73.2
3 88#3	375	187 691	69.5	71 1	0.1	10,616	COAL	86 289	23 199 828	2 001 890 0	6 321 439	3 37	73.2
I RR#4	432	225 627	72.5	76.4	0.1	10 750	COAL	110 253	22 000 036	2 425 570 0	8 125 735	3.57	73.2
B B IGNITION	-	-				10,700		9 773	22,000,000	2,420,010,0	858.090	5.00	97.9
B.B. STATION	1,577	866,057	76.3	78.2	0.1	10,672				9,242,230.0	30,251,183	3,49	
	10	222	1.0	92.0	0.1	0 796		246	6 279 900	2 172 5	24 700	44.45	74 5
	10	222	1.0	02.9	0.1	9,700		340	0,278,600	2,172,3	24,/60	11,15	/1.5
SED-PHILLIPS #2 (RVT OIL)	10	217	1.7	01.3	0.1	19,797		339	12,072,300	4,290.0	24,206	11.18	/1.5
SEB-PHILLIPS IGNITION	- 15	- 420	- 17			- 14 735	LGI OIL	13	<u> </u>		1,012		77.8
SED-PHILLIPS TOTAL	35	433		92.1	0.1	(4,735		•	•	0,400.3	50,030	11.40	•
. POLK #1 GASIFIER	235	126,320	74,7	-	-	10,503	COAL	50,511	26,267,269	1,326,786.0	3,635,860	2.88	71.9
0, POLK#1 CT OIL	215	3,907	2,5	-	-	10,476	LGT OIL	7,062	5,795,809	40,930,0	613,353	15.70	86.8
1. POLK #1 TOTAL	235	130,227	77.0	77.7	0.1	10,503		-	-	1,367,716.0	4,249,213	3,26	•
2. POLK #2 CT GAS	151	5.284	4.9	-	-	11.527	GAS	59,200	1.028.834	60.907.0	453.005	8.57	7.6
3. POLK #2 CT OIL	158	163	0.1	-	-	11,460	LGT OIL	322	5,801,242	1,868.0	27,967	17.16	86.8
4. POLK #2 TOTAL	158	5,447	4,8	98,9	0.1	11,525		•	-	62,775,0	480,972	8,83	•
5. POLK #3 CT GAS	151	929	0.9	_	-	12,222	GAS	11.000	1.032.182	11.354.0	84,173	9.06	76
6 POLK#3 CT OIL	158	29	0.0	-	-	11.586	LGT OIL	58	5,793,103	336.0	5.037	17.37	86.8
7. POLK #3 TOTAL	158	958	0.8	98.9	0.1	12,203		•	-	11,690.0	89,210	9.31	
8. POLK #4 CT GAS	151	4,449	4.1	99.4	0.1	12,266	GAS	53,100	1,027,684	54,570.0	406,327	9.13	7.6
9. POLK #5 CT GAS	151	6,256	5.8	99.4	0.1	12,480	GAS	75,900	1,028,656	78,075.0	580,795	9.28	7.6
0. CITY OF TAMPA GAS	6	1,117	25.9	100.0	0.1	10,456	GAS	11,700	998,205	11,679.0	93,710	8,39	8.0
1. BAYSIDE #1	701	379,082	75.1	95.6	0.1	7,298	GAS	2,691,100	1,028,018	2,766,500.0	20,592,585	5.43	7.6
2. BAYSIDE #2	929	409,584	61.2	96.7	0.1	7,405	GAS	2,950,400	1,027,983	3,032,960,0	22,576,776	5.51	7.6
3. BAYSIDE #3	56	6,519	16.2	99.5	0.1	10,943	GAS	69,400	1,027,954	71,340.0	531,056	8.15	7.6
4. BAYSIDE #4	56	3,934	9.8	99.5	0.1	10,873	GAS	41,600	1,028,197	42,773.0	318,328	8,09	7.6
5, BAYSIDE #5	56	3,478	8.6	99.5	0,1	10,866	GAS	36,700	1,029,782	37,793.0	280,832	8.07	7,6
6. BAYSIDE #6	56	3,038	7.5	99.5	0.1	10,858	GAS	32,100	1,027,664	32,988.0	245,633	8.09	7.6
7. BAYSIDE TOTAL	1,854	805,635	60.4	96.6	0.1	7,428	GAS	5,821,300	1,028,010	5,984,354.0	44,545,210	5.53	7,6
8. B.B.C.T.#4 OIL	56	161	0.4	0.0	-	10,814	LGT OIL	300	5,803,333	1,741.0	26,341	16.36	87 80
9. B.B.C.T.#4 GAS	56	1,448	3,6	0.0	-	10,865	GAS	15,300	1,028,235	15,732.0	117.077	8.09	7.6
0. B.B.C.T.#4 TOTAL	56	1,609	4.0	99.5	0.1	10,860		•	•	17,473.0	143,418	8.91	-
1. TOT COAL (BB,POLK)	1,812	992,377	76.1	68,0	0,1	10,650	COAL	451,068	23,431,092	10,569,016.0	33,887,043	3.41	75.13
2. SYSTEM	4,381	1.822.194	57.8	88.0	0.1	9,240	-	-	-	16.837.030.5	80,890,068	4.44	

LEGEND:

37

B.B. = BIG BEND C.T. = COMBUSTION TURBINE SEB-PHIL = SEBRING-PHILLIPS

Page 15 of 31

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JULY 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA-	NET GENERATION		EQUIV. AVAIL.		AVG. NET HEAT RATE	FVEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIŤ)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1 BB#1	385	230.747	80.6	61.7	0.1	10,739	COAL	104,998	23,600,069	2,477,960.0	7,842,820	3.40	74.69
2 BB#2	385	237.142	82.8	83.6	0.1	10.669	COAL	107,211	23,600,004	2,530,180.0	8,008,120	3.38	74.69
3 BB#3	375	194.079	69.6	71.1	0.1	10.750	COAL	89,927	23,200,040	2,086,310.0	6,717,093	3.46	74.69
4 RR#4	432	233 276	72.6	76.4	0.1	10.815	COAL	114.672	22,000,052	2,522,790.0	8,614,137	3.69	75.12
B B IGNITION	-	-		-	-	-	LGT OIL	9,773	-	-	865,506	-	88,56
5. B.B. STATION	1,577	895,244	76.3	78.2	0.1	10,743		•	-	9,617,240.0	32,047,676	3,58	-
6 SEB-PHILLIPS #1 (HVY OIL)	18	225	1.7	82.9	0.1	9,769	HVY OIL	350	6,279,775	2,197.9	25,064	11,14	71,61
7 SEB-PHILLIPS #2 (HVY OIL)	18	220	1.7	81.3	0.1	19,759	HVY OIL	342	12,710,526	4,347.0	24,490	11.13	71.61
SEB-PHILLIPS IGNITION			•	-	-		LGT OIL	13	•	-	1,016	-	78.15
8. SEB-PHILLIPS TOTAL	35	445	1.7	82,1	0.1	14,708		-	•	6,544.9	50,570	11.36	•
	235	130 531	74.7	-	-	10,502	COAL	52,195	26,264,891	1,370,896.0	3,795,212	2.91	72.71
	215	4 037	25	-	-	10.477	LGT OIL	7.297	5,796,218	42,295.0	637,032	15.78	87.30
11. POLK#1 TOTAL	235	134,568	77.0	77.7	0.1	10,502		-	•	1,413,191.0	4,432,244	3.29	+
12 POLK #2 CT GAS	151	5 648	5.0	-	-	11.557	GAS	63,500	1,027,921	65,273.0	493,538	8.74	7.77
13 POLK#2 CT OI	158	175	0.1	-	-	11,446	LGT OIL	346	5,789,017	2,003.0	30,206	17.26	87.30
14. POLK #2 TOTAL	158	5,823	5,0	98,9	0.1	11,553		•	-	67,276.0	523,744	8.99	-
15 POLK#3 CT GAS	151	4.345	3.9	-	-	12.593	GAS	53,200	1,028,534	54,718,0	413,484	9.52	7.77
16. POLK#3 CT OI	158	134	0.1	-	-	11.821	LGT OIL	273	5,802,198	1,584.0	23,833	17.79	87,30
17. POLK#3 TOTAL	158	4,479	3.8	98.9	0.1	12,570		•	-	56,302.0	437,317	9.76	•
18. POLK #4 CT GAS	151	5,857	5.2	99.4	0.1	12,663	GAS	72,100	1,028,682	74,168.0	560,380	9,57	7.77
19, POLK #5 CT GAS	151	13,820	12.3	99.4	0.1	12,126	GAS	163,000	1,028,135	167,586,0	1,266,877	9,17	7,77
20. CITY OF TAMPA GAS	6	1,336	29.9	100.0	0,1	10,454	GAS	14,000	997,643	13,967.0	1 14,049	8,54	8,15
21. BAYSIDE #1	701	407,606	78.2	95.6	0.1	7,293	GAS	2,891,700	1,027,977	2,972,600.0	22,475,027	5.51	7.77
22. BAYSIDE #2	929	448,746	64.9	96.7	0.1	7,402	GAS	3,231,300	1,027,992	3,321,750.0	25,114,484	5.60	7,77
23. BAYSIDE #3	56	9,595	23.0	99.5	0,1	10,898	GAS	101,700	1,028,142	104,562.0	790,438	8.24	7.77
24. BAYSIDE #4	56	8,758	21.0	99.5	0.1	10,909	GAS	92,900	1,028,471	95,545.0	722,042	8.24	7.77
25. BAYSIDE #5	56	4.327	10,4	99.5	0,1	10,846	GAS	45,600	1,029,145	46,929.0	354,415	8,19	7.77
26. BAYSIDE #6	56	3,850	9.2	99.5	0.1	10,857	GAS	40,600	1,029,557	41,800.0	315,554	8.20	7.77
27. BAYSIDE TOTAL	1,854	882,882	64.0	96.6	0.1	7,456	GAS	6,403,800	1,028,012	6,583,186.0	49,771,960	5.64	7.77
28. B.B.C.T.#4 OIL	56	164	0.4	0.0		10,829	LGT OIL	306	5,803,922	1,776.0	27,371	16.69	89.45
29. B.B.C.T.#4 GAS	56	1,476	3.5	0.0		10,871	GAS	15,600	1,028,526	16,045.0	121,247	8.21	7.77
30. B.B.C.T.#4 TOTAL	56	1,640	3.9	99.5	0.1	10,866		•	-	17,821.0	148,618	9.06	-
31. TOT COAL (BB,POLK)	1,812	1,025,775	76.1	68,0	0.1	10,712	COAL	469,003	23,428,712	10,988,136.0	35,842,888	3,49	76.42
32. SYSTEM	4,381	1,946,094	59.7	88.0	0.1	9,258	-	•		18,017,281.9	89,353,435	4.59	

LEGEND:

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: AUGUST 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	{H}	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	230,849	80.6	81.7	0.1	10,739	COAL	105.045	23,599,981	2,479.060.0	7.928.845	3.43	75.48
2. B.B.#2	385	237,142	82.8	83.6	0.1	10,669	COAL	107,211	23,600,004	2,530,180.0	8,092,336	3.41	75.48
3. B.B.#3	375	194,116	69.6	71.1	0.1	10,750	COAL	89,944	23,199,880	2,086,690,0	6,789,015	3.50	75.48
4. B.B.#4	432	233,453	72.6	76.4	0.1	10,815	COAL	114,760	21,999,913	2,524,710.0	8,766,856	3.76	76.3
B.B. IGNITION	-	-		-	-	-	LGT OIL	9,773		-	873,598	-	89.3
5. B.B. STATION	1,577	895,560	76,3	78,2	0,1	10,743			•	9,620,640.0	32,450,650	3,62	•,
6. SEB-PHILLIPS #1 (HVY OIL)	18	262	2.0	82,9	0.1	9,788	HVY OIL	408	6,285,203	2,564.4	29,162	11.13	71.4
7. SEB-PHILLIPS #2 (HVY OIL)	18	256	2.0	81.3	0.1	19,805	HVY OIL	399	12,706,767	5,070.0	28,518	11.14	71.4
SEB-PHILLIPS IGNITION	-	-	-	-	-	-	LGT OIL	17	•	-	1,334	-	78.4
8. SEB-PHILLIPS TOTAL	35	518	2.0	82.1	0.1	14,738		-	-	7,634.4	59,014	11.39	•
9. POLK #1 GASIFIER	235	130.531	74.7	-	-	10.502	COAL	52,195	26,264,891	1.370.896.0	3.917.857	3.00	75.0
	215	4.037	2.5	-	-	10,477	LGT OIL	7.297	5,796,218	42.295.0	640,815	15.87	87.8
11. POLK #1 TOTAL	235	134,568	77.0	77.7	0.1	10,502		•	•	1,413,191.0	4,558,672	3.39	-
12 POLK #2 CT GAS	151	6 238	5.6	_	-	11.529	GAS	69.900	1.028.827	71.915.0	532,269	8.53	7.6
13. POLK#2 CT OIL	158	193	0.2	-	-	11.446	LGT OIL	381	5,797,900	2.209.0	33,459	17.34	87.8
14. POLK #2 TOTAL	158	6,431	5,5	98,9	0.1	11,526		•		74,124.0	565,728	8,80	-
15 POLK #3 CT GAS	151	1.780	1.6	-	_	12.211	GAS	21,200	1.025,283	21,736.0	161,432	9.07	7.6
16. POLK #3 CT OIL	158	55	0.0	-	-	11,655	LGT OIL	111	5,774,775	641.0	9,748	17.72	87.8
17. POLK #3 TOTAL	158	1,835	1.6	98,9	0.1	12,195		•	•	22,377.0	171,180	9.33	-
18. POLK #4 CT GAS	151	5,059	4.5	99.4	0.1	12,228	GAS	60,100	1,029,268	61,859.0	457,645	9.05	7.6
19. POLK #5 CT GAS	151	1 3,024	11.6	99.4	0.1	11,965	GAS	151,600	1,027,876	155,826.0	1,154,392	8.86	7.6
20. CITY OF TAMPA GAS	6	1,433	32.1	100.0	0.1	10,455	GAS	15,000	998,800	14,982.0	123,725	8.63	8.2
21. BAYSIDE #1	701	420,191	80.6	95.6	0.1	7,285	GAS	2,977,500	1,028,027	3,060,950.0	22,672,842	5.40	7.6
22. BAYSIDE #2	929	468,780	67.8	96,7	0,1	7,400	GAS	3,374,600	1,028,006	3,469,110.0	25,696,649	5.48	7.6
23. BAYSIDE #3	56	10,089	24.2	99,5	0.1	10,898	GAS	106,900	1,028,522	109,949.0	814,014	8.07	7.6
24. BAYSIDE #4	56	9,106	21.9	99.5	0.1	10,910	GAS	96,700	1,027,404	99,350.0	736,344	8.09	7.6
25. BAYSIDE #5	56	7,264	17.4	99,5	0.1	10,928	GAS	77,200	1,028,238	79,380.0	587,857	8,09	7.61
26. BAYSIDE #6	56	5,706	13.7	99.5	0.1	11,185	GAS	62,100	1,027,729	63,822.0	472,874	8.29	7.61
7. BAYSIDE TOTAL	1,854	921,136	66.8	96.6	0,1	7,472	GAS	6,695,000	1,028,015	6,882,561.0	50,980,580	5,53	7.61
28. B.B.C.T.#4 OIL	56	184	0.4	0.0	-	10,821	LGT OIL	344	5,787,791	1,991.0	30,750	16.71	89.39
9. B.B.C.T.#4 GAS	56	1,656	4.0	0.0	-	10,862	GAS	17,500	1,027,886	17,988.0	133,258	8.05	7.61
30. B.B.C.T.#4 TOTAL	56	1,840	4.4	99.5	0.1	10,858		•	-	19,979.0	164,008	8.91	-
31. TOT COAL (BB,POLK)	1,812	1,026,091	76.1	68.0	0.1	10,712	COAL	469,155	23,428,368	10,991,536.0	36,368,507	3,54	77.52
32. SYSTEM	4,381	1.981.404	60.8	88.0	0.1	9,222	-		-	18.273.173.4	90.685.594	4.58	

39

LEGEND: B.B. = BIG BEND C.T. = COMBUSTION TURBINE SEB-PHIL = SEBRING-PHILLIPS

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: SEPTEMBER 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(8)	{J}	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1 RR#1	385	223 417	80.6	817	0.1	10 651	COAL	100 836	23,599,905	2 379.720.0	7.643 551	3.42	75 80
2. B.B.#2	385	229.492	82.8	83.6	0.1	10.618	COAL	103,256	23,600,081	2.436.850.0	7.826.992	3.41	75.80
3. B.B.#3	375	188.004	69.6	71.1	0.1	10.665	COAL	86,425	23,200,000	2.005.060.0	6.551.171	3.48	75.80
4. B.B.#4	432	225,859	72.6	76.4	0.1	10,750	COAL	110.366	22.000.072	2.428.060.0	8.414.661	3.73	76.24
B.B. IGNITION	-	-	-	-	-	-	LGT OIL	9,773	-	-	882,301	-	90.28
5, B.B. STATION	1,577	866,772	76.3	78.2	0.1	10,671		•	-	9,249,690.0	31,318,676	3,61	-
6. SEB-PHILLIPS #1 (HVY OIL)	18	37	0.3	82.9	0.1	9,792	HVY OIL	58	6.246.408	362.3	4,330	11.70	74.65
7. SEB-PHILLIPS #2 (HVY OIL)	18	35	0.3	81.3	0.1	20,143	HVY OIL	55	12,818,182	705.0	4,106	11.73	74.65
SEB-PHILLIPS IGNITION	•	•	-	-	-	-	LGT OIL	9	-	-	708	-	78.67
8. SEB-PHILLIPS TOTAL	35	72	0.3	82,1	0,1	14,823		•	•	1,067,3	9,144	12.70	-
9. POLK #1 GASIFIER	235	126.320	74.7	-	-	10,503	COAL	50,511	26,267,269	1,326,786.0	3,802,260	3.01	75.28
10. POLK #1 CT OIL	215	3,907	2.5	-	-	10,476	LGT OIL	7,062	5,795,809	40,930,0	624,243	15.98	88,39
11. POLK #1 TOTAL	235	130,227	77.0	77.7	0,1	10,503		•	+	1,367,716.0	4,426,503	3.40	
12. POLK #2 CT GAS	151	7,287	6.7	-	-	11,428	GAS	81,000	1,028,136	83,279.0	625,628	8.59	7.72
13. POLK #2 CT OIL	158	225	0.2	-	-	11,378	LGT OIL	442	5,791,855	2,560.0	39,071	17.36	88.40
14. POLK #2 TOTAL	158	7,512	6.6	98.9	0,1	11,427		•	-	85,839.0	664,699	8,85	•
15. POLK #3 CT GAS	151	629	0.6	-	-	12,515	GAS	7,600	1,035,789	7,872.0	58,701	9.33	7.72
16, POLK #3 CT OIL	158	19	0.0	-	-	12,000	LGT OIL	39	5,846,154	228.0	3,447	18.14	88,38
17. POLK #3 TOTAL	158	648	0.6	98.9	0.1	12,500		-	-	8,100.0	62,148	9.59	-
18. POLK #4 CT GAS	151	1,357	1.3	99.4	0.1	12,037	GAS	15,900	1,027,296	16,334.0	122,808	9.05	7.72
19. POLK #5 CT GAS	151	5,584	5.1	99.4	0.1	12,116	GAS	65,800	1,028,207	67,656.0	508,226	9.10	7.72
20. CITY OF TAMPA GAS	6	767	17.8	100.0	0.1	10,458	GAS	8,000	1,002,625	8,021.0	66,413	8.66	8.30
21. BAYSIDE #1	701	386,020	76.5	95.6	0.1	7,295	GAS	2,739,300	1,028,004	2,816,010.0	21,157,804	5.48	7.72
22. BAYSIDE #2	929	411,334	61.5	96.7	0,1	7,401	GAS	2,961,300	1,028,008	3,044,240.0	22,872,488	5.56	7.72
23. BAYSIDE #3	56	6,943	17.2	99.5	0.1	10,916	GAS	73,800	1,026,938	75,788.0	570,016	8.21	7.72
24. BAYSIDE #4	56	6,189	15.3	99.5	0.1	10,907	GAS	65,600	1,029,055	67,506.0	506,681	8.19	7.72
25. BAYSIDE #5	56	4,605	11.4	99.5	0.1	10,858	GAS	48,600	1.028.786	49,999,0	375.377	8.15	7.72
26. BAYSIDE #6	56	4,100	10.2	99.5	0.1	10,852	GAS	43,300	1,027,552	44,493.0	334,441	8.16	7.72
27. BAYSIDE TOTAL	1,854	819,191	61.4	96.6	0.1	7,444	GAS	5,931,900	1,028,007	6,098,036.0	45,816,807	5,59	7.72
28. B.B.C.T.#4 OIL	56	231	0.6	0.0	-	10,805	LGT OIL	431	5,791,183	2,496.0	39,181	16.96	90.91
29, B.B.C.T.#4 GAS	56	2,079	5.2	0.0		10,836	GAS	21,900	1,028,676	22,528.0	169,151	8.14	7.72
30. B.B.C.T.#4 TOTAL	56	2,310	5.7	99.5	0.1	10,833		-	-	25,024.0	208,332	9.02	-
31. TOT COAL (BB,POLK)	1,812	993,092	76,1	68.0	0.1	10,650	COAL	451,394	23,430,697	10,576,476.0	35,120,936	3.54	77.81
32. SYSTEM	4,381	1,834,440	58.2	88.0	0.1	9,228		•		16,927,483.3	83,203,756	4.54	

LEGEND:

8

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: OCTOBER 2010

_							· – · · ·							
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(6)	(J)	(K)	(L)	(M)	(N)
		NET	NET	NET	EQUIV.	NET	AVG. NET	FUEL	FUEL	FUEL	FUEL	AS BURNED	FUEL COST	COSTOF
	PLANT/UNIT	CAPA-	GENERATION	CAPACITY	AVAIL.	OUTPUT	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH	FUEL
		BILITY		FACTOR	FACTOR	FACTOR								
_		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1	. B.B.#1	385	230.710	80.5	81.7	0.1	10.568	COAL	102.353	23.820.015	2.438.050.0	7 738 393	3 35	75.60
2	B.B.#2	385	237,068	82.8	83.6	0.1	10.563	COAL	106,924	23,420,093	2.504.170.0	8.083.984	3.41	75.60
3	. B.B.#3	375	62,388	22.4	22.9	0,1	10,629	COAL	28,806	23.020.239	663,121,0	2.177.876	3.49	75.60
4	. B.B.#4	432	233,227	72.6	76.4	0.1	10,634	COAL	112,735	21,999,911	2,480,160,0	8.572.042	3.68	76.04
	B.B. IGNITION	-	-	-	-	-	-	LGT OIL	7,107	-	-	647.159	-	91.06
5	. B.B. STATION	1,577	763,393	65.1	66.7	0.1	10,592		-	-	8,085,501.0	27,219,454	3.57	•
6	SEB-PHILLIPS #1 (HVY OIL)	18	6	0.0	82.9	01	10.091	HVY OIL	9	6 727 273	60.5	673	11 22	74 78
7	SEB-PHILLIPS #2 (HVY OIL)	18	5	0.0	81.3	01	22 200	HVY OIL	8	13 875 000	111.0	598	11.96	74.75
,	SEB-PHILLIPS IGNITION		-	-	-	-	-	LGT OIL	ů	-	-	0		0.00
8	SEB-PHILLIPS TOTAL	35	11	0.0	82.1	0.1	15,595		•		171.5	1,271	11.55	-
4		225	120 526	74 7			10 602	004	52 102	26 264 040	1 370 846 0	4 050 199	2.11	77 77
1		215	4 037	25			10,302	LGT OIL	7 207	5 705 044	42 203 0	640 607	16.00	90.02
4		215	134 563	77.0	777		10,572				1 413 139 0	4 708 705	10.03	05.02
•	I. FOLK #1 TOTAL	200	104,000	77.0		0.1	10,002		•	-	1,410,100.0	4,700,730	5.50	•
1	2. POLK #2 CT GAS	151	891	0.8	-	-	12,062	GAS	10,500	1,023,524	10,747.0	80,458	9.03	7.66
1	3. POLK #2 CT OIL	158	28	0.0	-		11,321	LGT OIL	55_	5,763,636	317.0	4,896	17.49	89.02
1	4. POLK #2 TOTAL	158	919	0,8	98,9	0.1	12,039		•	•	11,064.0	85,354	9,29	•
1	5. POLK #3 CT GAS	151	367	0,3	-	-	12,937	GAS	4,600	1,032,174	4,748.0	35,248	9.60	7.66
1	6. POLK #3 CT OIL	158	11	0,0	-	-	11,909	LGT OIL	23	5,695,652	131.0	2,048	18.62	89.04
1	7. POLK #3 TOTAL	158	378	0.3	98.9	0.1	12,907		· <u> </u>		4,879.0	37,296	9.87	-
1	B. POLK #4 CT GAS	151	6,964	6.2	99.4	0.1	11,761	GAS	79,600	1,028,920	81,902.0	609,946	8.76	7.66
1	9. POLK #5 CT GAS	151	2,023	1.8	99.4	0.1	11,687	GAS	23,000	1,027,913	23,642.0	176,241	8.71	7.66
2	0. CITY OF TAMPA GAS	6	612	13,7	100.0	0,1	10,459	GAS	6,400	1,000,156	6,401.0	53,421	8,73	8,35
		704	004.055				7.007	010		4 207 000	0 004 070 0			
2		101	304,200	09.0	09.4	0.1	7,307	GAS	2,389,200	1,027,969	2,001,070.0	19,840,101	5.45	7.66
2		929	300,944	30.3	90.7	0.1	1,401	GAS	2,800,200	1,027,980	2,8/8,550.0	21,456,918	5.52	7.66
2		56	4,010	11.1	99.0	0.1	10,000	GAS	40,700	1,028,973	50,111.0 44 936 0	3/3,1/0	8.08	7.66
2	5 BAVGIDE #5	56	3.665	3.3	99.0 00.5	0.1	10,040	GAS	40,000	1,020,113	20 746 0	334,091	0.09	/.00
2	RAVSIDE #6	56	3,000		99.0 00.5	0.1	10,045	GAS	34,100	1.027,020	35,740,0	290,044	0,09	7.00
2	7. BAYSIDE TOTAL	1,854	768,842	55.7	94.3	0.1	7,427	GAS	5,554,600	1,027,986	5,709,951.0	42,562,120	5.54	7.66
										5 700 457				
21	5. B.B.C. 1.#4 OIL	56	246	0.6	0.0	-	10,797	LGT OIL	458	5,799,127	2,656.0	41,705	16,95	91.06
2	5. D.D.U.I.#4 GAS		2,213	5.3			10,831	GAS	23,300	1,028,/12	23,969.0	178,539	8.07	7.66
31	. 6.6	56	2,459	5.9	39.5	0.1	10,828		-	-	26,625.0	220,244	8.96	-
3	1. TOT COAL (BB,POLK)	1,812	893,919	66.3	58.1	0.1	10,579	COAL	403,011	23,464,240	9,456,347.0	31,278,642	3,50	77.61
3	2. SYSTEM	4,381	1,680,164	51.6	82.9	0.1	9,144		.	-	15,363,275.5	75,674,142	4.50	-

41

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: NOVEMBER 2010

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(L)	(K)	(L)	(M)	(N)
				EQUIV.	NET	AVG. NET	FUEL	FUEL	FUEL	FUEL		FUEL COST	COST OF
PLANIJONIT	DI ITV	GENERATION	EACTOR	EACTOR	EACTOR	HEAT NATE	TIFE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER NWH	FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1. B.B.#1	385	221 726	80.0	81.7	0.1	10.551	COAL	98 208	23 820 157	2 339 330 0	7 485 533	3 38	76 22
2. B.B.#2	385	227.978	82.2	83.6	0.1	10,580	COAL	102,993	23,420,232	2.412.120.0	7.850.251	3.44	76.22
3. B.B.#3	375	181.614	67.3	71.1	0.1	10.611	COAL	83,718	23.019.781	1.927.170.0	6 381 087	3.51	76.22
4. B.B.#4	432	222,645	71.6	76.4	0.1	10.661	COAL	107.894	21,999,926	2.373.660.0	8.272.530	3.72	76.67
B.B. IGNITION	-	-	-	•	-	-	LGT OIL	9,773	-	-	899,685	-	92.06
5. B.B. STATION	1,577	853,963	75,2	78,2	0,1	10,600		•	•	9,052,280.0	30,889,086	3.62	
6. SEB-PHILLIPS #1 (HVY OIL)	18	0	0.0	82.9	0.0	0	HVY OIL	0	0	0.0	0	0.00	0.00
7. SEB-PHILLIPS #2 (HVY OIL)	18	0	0.0	81.3	0.0	0	HVY OIL	0	0	0.0	Ó	0.00	0.00
SEB-PHILLIPS IGNITION	-		-		-		LGT OIL	0	-	-	a	•	0.00
8. SEB-PHILLIPS TOTAL	35	0	0.0	82.1	0.0	0		•	•	0.0	0	0.00	-
9. POLK #1 GASIFIER	235	104,982	62.0	-	-	10,510	COAL	41,984	26,280,393	1,103,356.0	3,255,229	3.10	77,53
10. POLK #1 CT OIL	215	3,247	2.1		-	10,477	LGT OIL	5,870	5,795,571	34,020.0	525,878	16.20	89,59
11. POLK #1 TOTAL	235	108,229	64.0	64.7	0.1	10,509		•	-	1,137,376.0	3,781,107	3.49	
12. POLK #2 CT GAS	151	22	0.0	-		11,955	GAS	300	876,667	263.0	2,450	11.14	8.17
13. POLK #2 CT OIL	158	1	0.0		-	8,000	LGT OIL	1	8,000,000	8.0	90	8,99	89.89
14. POLK #2 TOTAL	158	23	0.0	92,3	0,1	11,783		-	-	271.0	2,540	11.04	-
15. POLK #3 CT GAS	151	6	0,0	-	-	11,000	GAS	100	660,000	66.0	817	13.62	8.17
16. POLK #3 CT OIL	158	0	0.0	-	•	0	LGT OIL	0	0	2.0	0	0.00	0.00
17. POLK #3 TOTAL	158	6	0.0	98.9	0.1	11,333		•	•	68.0	817	13.62	•
18. POLK #4 CT GAS	151	288	0.3	99.4	0.1	13,340	GAS	3,700	1,038,378	3,842.0	30,222	10.49	8.17
19. POLK #5 CT GAS	151	91	0.1	99.4	0.1	11,714	GAS	1,000	1,066,000	1,066.0	8,168	8,98	8.17
20. CITY OF TAMPA GAS	6	137	3.2	100.0	0.1	10,474	GAS	1,400	1,025,000	1,435.0	12,127	8.85	8.66
21. BAYSIDE #1	701	237,115	47.0	79.7	0.1	7,334	GAS	1,691,700	1,027,996	1,739,060.0	13,817,964	5.83	8.17
22. BAYSIDE #2	929	198,945	29.7	74.1	0.1	7,413	GAS	1,434,700	1,027,964	1,474,820.0	11,718,764	5.89	8,17
23. BAYSIDE #3	56	994	2.5	99.5	0.1	10,940	GAS	10,600	1,025,849	10,874.0	86,582	8.71	8.17
24. BAYSIDE #4	56	744	1.8	99.5	0.1	10,930	GAS	7,900	1,029,367	8,132.0	64,528	8.67	8.17
25. BAYSIDE #5	56	555	1.4	99.5	0.1	10,984	GAS	5,900	1,033,220	6,096.0	48,192	8.68	8,17
26. BAYSIDE #6	56	413	1.0	99.5	0.1	10,932	GAS	4,400	1,026,136	4,515.0	35,940	8.70	8.17
27. BAYSIDE TOTAL	1,854	438,766	32.9	79.3	0.1	7,392	GAS	3,155,200	1,027,985	3,243,497.0	25,771,970	5,87	8.17
28. B.B.C.T.#4 OIL	56	7	0.0	0.0	-	11,571	LGT OIL	14	5,785,714	81.0	1,560	22.29	111.43
29. B.B.C.T.#4 GAS	56	67	0,2	0.0	-	10,866	GAS	700	1,040,000	728.0	5,718	8.53	8,17
30. B.B.C.T.#4 TOTAL	56	74	0.2	99.5	0.1	10,932		-	-	809.0	7,278	9.84	-
31. TOT COAL (BB,POLK)	1,812	958,945	73.5	68.0	0.1	10,590	COAL	434,797	23,357,190	10,155,636.0	34,144,315	3,56	78.53
32. SYSTEM	4,381	1,401,577	44.4	79.7	0.1	9,590	-		-	13,440,644.0	60,503,315	4.32	-

LEGEND:

42

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

SCHEDULE E4

Page 20 of 31

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: DECEMBER 2010

-				<u> </u>										
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(0)	(J)	(K)	(L)	{M}	(N)
		NET	NET	NET	FOUR	NET	AVG NET	FUE	FUE	FILE	ELIEI		EUEL CORT	COSTOS
	PLANT/UNIT	CAPA-	GENERATION	CAPACITY	AVAIL.	OUTPUT	HEAT RATE	TYPE	BURNED	HEAT VALUE	BURNED	FUEL COST	PER KWH	FUE
		BILITY		FACTOR	FACTOR	FACTOR					DOUTED	1022 0001		
_		(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU)	(\$)	(cents/KWH)	(\$/UNIT)
1	88¥1	395	233 133	79.3	R1 7	0.1	10 525	COAL	103 014	23 819 966	2 453 790 0	7 885 415	3 79	76 55
2	B.B.#2	395	239,814	81.6	83.6	0.1	10,593	COAL	108,471	23,420,085	2,540,400.0	8 303 132	3.46	76.55
3	B.B.#3	385	188,449	65.8	71.1	0.1	10.619	COAL	86.932	23.019.947	2.001.170.0	6.654.386	3 53	76.55
4.	B.B.#4	442	230,434	70.1	76.4	0.1	10.647	COAL	111.517	21,999,964	2.453.370.0	8.641.016	3.75	77 49
	B.B. IGNITION	-	-	-	-	-	-	LGT OIL	9.773		-	909.102	-	93.02
5.	B.B. STATION	1,617	891,830	74.1	78.2	0.1	10,595		•	-	9,448,730.0	32,393,051	3,63	-
6	SEB-PHILLIPS #1 (HVY OIL)	18	0	0.0	82.9	0.0	٥		0	n	0.0	n	0.00	0.00
7	SEB-PHILLIPS #2 (HVY OIL)	18	0	0.0	81.3	0.0	ň	HVY OIL	ň	n	10	ñ	0.00	0.00
• •	SEB-PHILLIPS IGNITION	-		-	-	-		LGT OIL	ő	- *		ň		0.00
8.	SEB-PHILLIPS TOTAL	36	0	0.0	82,1	0,0	0	20,1012	•	-	1.0	0	0.00	
9	POLK #1 GASIFIER	235	130 216	74 5		-	10.506	COAL	52 087	26 265 210	1 368 076 0	4 155 496	3 10	70.79
11		235	4 027	23	-		10,481	LGT OIL	7 282	5 796 210	42 208 0	657 709	16 33	90.32
11	I. POLK #1 TOTAL	235	134.243	76.8	77.7	0.1	10.505		-		1.410.284.0	4.813.205	3.59	
•			,				,						0.00	_
12	2. POLK #2 CT GAS	183	18	0.0	-	-	11,833	GAS	200	1,065,000	213.0	1,710	9.50	8.55
13	3. POLK #2 CT OIL	186	1	0.0	<u> </u>	<u> </u>	7,000	LGT OIL	1	7,000,000	7.0	90	8.99	89.89
14	I. POLK #2 TOTAL	186	19	0.0	95,7	0,1	11,579		-	-	220,0	1,800	9,47	-
15	5. POLK #3 CT GAS	183	6	0.0	-	-	11,667	GAS	100	700,000	70.0	855	14.25	8,55
1€	5. POLK #3 CT OIL	186	0	0.0	<u> </u>	<u> </u>	0	LGT OIL	0	0	2.0	0	0.00	0.00
17	7. POLK #3 TOTAL	186	6	0.0	89.3	0.1	12,000		•	-	72.0	855	14.25	•
18	3. POLK #4 CT GAS	183	86	0.1	89.8	0.1	11,244	GAS	900	1,074,444	967.0	7,696	8.95	8.55
19	. POLK #5 CT GAS	183	44	0.0	89.8	0.1	11,273	GAS	500	992,000	496.0	4,275	9.72	8.55
20). CITY OF TAMPA GAS	6	9	0.2	100.0	0.1	10,667	GAS	100	960,000	96.0	910	10.11	9,10
21	I. BAYSIDE #1	792	254,149	43.1	95.6	0.1	7,340	GAS	1,814,600	1,027,973	1,865,360.0	15,516,125	6.11	8.55
22	2. BAYSIDE #2	1,047	215,749	27.7	96.7	0.1	7,389	GAS	1,550,700	1,028,007	1,594,130.0	13,259,592	6.15	8,55
23	3. BAYSIDE #3	61	592	1.3	99.5	0.1	10,816	GAS	6,200	1,032,742	6,403.0	53,014	8.96	8.55
24	I. BAYSIDE #4	61	479	1.1	99.5	0.1	10,854	GAS	5,100	1,019,412	5,199.0	43,609	9.10	8.55
25	5. BAYSIDE #5	61	383	0,8	99,5	0.1	10,883	GAS	4,100	1.016,585	4,168.0	35.058	9.15	8.55
26	5. BAYSIDE #6	61	305	0.7	99.5	0.1	10,921	GAS	3,200	1,040,938	3,331.0	27,362	8.97	8.55
27	. BAYSIDE TOTAL	2,083	471,657	30.4	96.6	0.1	7,375	GAS	3,383,900	1,027,983	3,478,591.0	28,934,760	6,13	8.55
28	8. B.B.C.T.#4 OIL	61	24	0.1	0.0	-	10,708	LGT OIL	44	5,840,909	257.0	4,093	17.05	93.02
29	B.B.C.T.#4 GAS	61	215	0.5	0.0		11,047	GAS	2,300	1,032,609	2,375,0	19,667	9,15	8.55
30	. B.B.C.T.#4 TOTAL	61	239	0.5	99.5	0.1	11,013		•	-	2,632.0	23,760	9.94	•
31	. TOT COAL (BB,POLK)	1,852	1,022,046	74.2	68,3	0.1	10,583	COAL	462,021	23,411,936	10,816,806.0	36,548,547	3.58	79,11
32	2. SYSTEM	4,776	1,498,133	42.2	87.2	0.1	9,573	-	-		14,342,089.0	66,180,312	4.42	

LEGEND:

4ω

B.B. = BIG BEND SEB-PHIL = SEBRING-PHILLIPS

C.T. = COMBUSTION TURBINE

TAMPA ELECTRIC COMPANY SYSTEM GENERATED FUEL COST INVENTORY ANALYSIS ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH JUNE 2010

	······································						······
•		Jan-10	Feb-10	<u>Mar-10</u>	Apr-10	May-10	Jun-10
	HEAVY OIL						
1.	PURCHASES:			_	_		
2.	UNITS (BBL)	4	0	2	7	32	684
з. ≰	AMOUNT (S)	295	0,0	70.50	/0.14	70.09	68.91
5	BURNED	255	0	141	491	2,243	47,132
6	UNITS (BBL)	4	0	2	7	32	695
7.	UNIT COST (\$/BBL)	70.75	0.00	71.00	70.86	87 22	73.04
8.	AMOUNT (\$)	283	0	142	496	2.791	50.030
9.	ENDING INVENTORY:						
10.	UNITS (BBL)	8,168	8,168	8,168	8,168	8,168	8,168
11.	UNIT COST (\$/BBL)	70.79	70.79	70.79	70.79	70.79	70.64
12.	AMOUNT (\$)	578,220	578,220	578,220	578,215	578,193	577,007
13.	DAYS SUPPLY:	1,264	1,264	1,265	1,263	1,267	1,134
	LIGHT OU						
14.	PURCHASES:						
15.	UNITS (BBL)	15,536	9,570	14.616	14.567	15.859	17.528
16.	UNIT COST (\$/BBL)	85.75	86.85	87.50	87.68	88.05	88.67
17.	AMOUNT (\$)	1,332,235	831,180	1,278,828	1,277,215	1,396,394	1,554,272
18.	BURNED:						
19.	UNITS (BBL)	15,536	9,570	14,616	14,567	15,859	17,528
20.	UNIT COST (\$/BBL)	41.55	30.00	44.18	44.16	42.93	38.38
21.	AMOUNT (\$)	645,520	287,061	645,729	643,327	680,798	672,698
22.	ENDING INVENTORY:						
23.	UNITS (BBL)	53,134	53,134	53,134	53,134	53,134	53,134
24.		85.1U 4 604 076	85.40	85.84	86.20	86.56	86.98
29.	AMOUNT (3)	4,021,670	4,537,609	4,001,004	4,579,988	4,599,197	4,621,670
26.	DAYS SUPPLY: NORMAL	102	102	102	103	102	103
27.	DAYS SUPPLY: EMERGENCY	8	8	8	8	8	8
	COAL						
28.	PURCHASES:						
29.	UNITS (TONS)	436,097	331,233	341,040	254,927	396,123	574,949
30.	UNIT COST (\$/TON)	68.77	69.34	68.68	71.89	72.62	74.51
31.	AMOUNT (\$)	29,991,043	22,966,853	23,421,802	18,327,705	28,765,102	42,838,312
32.	BURNED:						
33.	UNITS (TONS)	358,071	242,175	312,930	310,416	387,835	451,068
34.	UNIT COST (\$/TON)	71.54	71.97	71.26	72.43	73.33	75.13
35.	AMOUNT (\$)	25,615,599	17,428,307	22,299,869	22,482,112	28,441,185	33,887,043
30.	UNITE (TONE)	414 606	503 863	531 773	476 303	494 572	600 450
30.	UNIT COST (\$/TON)	414,000	503,002	551,772	470,203	909,372	72.01
39	AMOUNT (\$)	28 586 520	34 767 216	36 628 765	33 274 524	34 424 229	44 362 849
		20,000,020	0,,,01,,210	00,020,100	00,214,024	04,424,225	44,002,040
40.	DAYS SUPPLY:	43	46	42	34	32	40
	NATURAL GAS						
41.	PURCHASES:						
42.	UNITS (MCF)	4,560,100	5,396,700	5,134,100	5,362,500	6,223,800	6,217,733
43.	UNIT COST (\$/MCF)	7.94	7.38	7.56	7.30	7.53	7.62
44.	AMOUNT (\$)	36,189,359	39,847,069	38,805,401	39,172,672	46,834,949	47,396,380
45.	BURNED:	4 560 400	E 208 700	5 424 400	E 202 E00	é 323 800	E 047 500
40.		4,000,100	5,390,700	5,134,100	5,362,500	0,223,800	0,047,500
497.		36 168 874	30 864 834	38 840 635	39 150 911	46 788 530	46 280 207
49	ENDING INVENTORY	00,100,014	00,004,004	00,010,000	00,100,011	40,100,000	40,200,201
50.	UNITS (MCF)	413.424	413.424	413.424	413.424	413.424	583 657
51.	UNIT COST (\$/MCF)	6.08	6.04	5.95	6.01	6.12	6.25
52.	AMOUNT (\$)	2,514,045	2,496,280	2,461,047	2,482,608	2,529,217	3.645.300
5 2	DAVE EUDDI V				· .		.,
55.	DATS SUFFLI.	2	2	2	2	3	4
	NUCLEAR						
54.	BURNED:	_	_	_			
55.	UNITS (MMBTU)	0	0	0	0	0	0
56.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00
57.	AMOUNT (\$)	U	U	U	U	U	Ų
	OTHER						
58.	PURCHASES:	-	_	_	_		_
59. 60		0	0	0	0	0	0
0U. 64		0.00	0.00	0.00	0.00	0.00	0.00
62		v	U	U	v	Ų	U
63	UNITS (MMBTID	0	0	n	0	0	0
64	UNIT COST (S/MMBTLI)	0.00	0.00	0.00	0.00	0.00	0.00
65.	AMOUNT (\$)	0.00	0	0.00	0.00	0.00	0.00
66.	ENDING INVENTORY:	-	-	Ť	·	-	v
67.	UNITS (MMBTU)	0	0	0	0	0	0
68.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00
69.	AMOUNT (\$)	0	0	0	0	0	0
70.	DAYS SUPPLY:	0	0	0	0	0	0

NOTE: BEGINNING & ENDING INVENTORIES MAY NOT BALANCE BECAUSE OF THE FOLLOWING
(1) LIGHT OIL-OTHER USAGE NOT INCLUDED.
(2) COAL-ADDITIVES, IGNITOR AND/OR INVENTORY ADJUSTMENT ARE INCLUDED.

TAMPA ELECTRIC COMPANY SYSTEM GENERATED FUEL COST INVENTORY ANALYSIS ESTIMATED FOR THE PERIOD: JULY 2010 THROUGH DECEMBER 2010

		Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	TOTAL
	HEAVY OIL			-				
1.	PURCHASES:							
2.	UNIT COST (\$/BPL)	692 70.00	807 70.60	112	18	0	0	2,358
4.	AMOUNT (\$)	48.505	57.045	8.050	1 326	0.00	0.00	/0.07
5.	BURNED:	,		0,000	1,020	Ŭ	Ū	105,220
6.	UNITS (BBL)	692	807	113	17	D	0	2,359
7.	UNIT COST (\$/BBL)	73,08	73.13	80.92	74.76	0.00	0.00	73.65
8. G		50,570	59,014	9,144	1,271	0	0	173,741
10.	UNITS (BBL)	8,168	8,168	8,168	8 168	8 168	8 168	8 168
11.	UNIT COST (\$/BBL)	70.60	70.61	70.63	70.63	70.63	70.63	70.63
12.	AMOUNT (\$)	576,659	576,727	576,867	576,922	576,922	576,922	576,922
13.	DAYS SUPPLY:	1,283	1,647	1,485	1,461	1,461	1,459	-
	LIGHT OIL							
14.	PURCHASES:							
15.	UNITS (BBL)	18,008	17,923	17,756	14,940	15,658	17,100	189,061
16.	UNIT COST (\$/BBL)	89.54	90.45	91.41	92.40	93.38	94.30	89.82
17.	AMOUNT (\$)	1,612,404	1,621,154	1,623,115	1,380,419	1,462,189	1,612,457	16,981,862
10.	UNITS (BBL)	18 008	17 923	17 756	14 040	15 669	17 100	190.061
20.	UNIT COST (\$/BBL)	39.90	39.88	39.76	46.74	33.69	38.71	40 21
21.	AMOUNT (\$)	718,442	714,772	705,942	698,256	527,528	661,892	7,601,966
22.	ENDING INVENTORY:							
23.	UNITS (BBL)	53,134	53,134	53,134	53,134	53,134	53,134	53,134
24.	AMOUNT (\$)	07.00 4 640 381	4 690 931	88./4 4 715 266	89.40	90.07	90.85	90.85
20.		4,049,301	4,000,031	4,115,200	4,/50,270	4,785,517	4,826,980	4,826,980
26.	DAYS SUPPLY: NORMAL	104	105	106	106	107	108	-
21.	DATS SUPPLY: EMERGENCY		в	8	8	8	8	-
	COAL							
28.	PURCHASES:	596 199	466 100	440.059	252 404	444.055	400 0 40	1 000 705
29.	UNIT COST (\$/TON)	75.82	400,120	449,900	333,121	444,000	426,048	4,999,795
31.	AMOUNT (\$)	39,890,502	35,771,397	34,166,303	26.822.780	34.093.146	33.070.740	370.125.685
32,	BURNED:				,			
33.	UNITS (TONS)	469,003	469,155	451,394	403,011	434,797	462,021	4,751,876
34.	UNIT COST (\$/TON)	76.42	77.52	77.81	77.61	78.53	79.11	75.65
30.	ENDING INVENTORY	33,642,665	30,300,507	35,120,936	31,278,042	34,144,315	36,548,547	359,457,950
37.	UNITS (TONS)	665,571	662,537	661,101	611.211	620.470	584,497	584,497
38.	UNIT COST (\$/TON)	74.23	75.27	75.52	75.67	76.12	76.74	76.74
39.	AMOUNT (\$)	49,405,458	49,867,704	49,926,750	46,250,252	47,232,051	44,853,919	44,853,919
40.	DAYS SUPPLY:	46	47	47	41	43	47	-
	NATURAL GAS							
41.	PURCHASES:							
42.	UNITS (MCF)	7,018,663	7,263,763	6,132,100	5,468,437	2,928,937	3,388,000	65,094,833
43.	UNIT COST (\$/MCF)	7.73	7.58	7.74	7.76	8.36	8.59	7.70
44.	AMOUNT (\$)	54,277,439	55,075,917	47,465,151	42,424,704	24,489,224	29,106,073	501,084,338
40.	UNITS (MCE)	6 785 200	7 030 300	6 132 100	6 701 900	3 162 400	3 209 000	64 024 600
47.	UNIT COST (\$/MCF)	7.77	7.62	7.72	7.66	8.17	8.55	7 69
48.	AMOUNT (\$)	52,741,535	53,543,301	47,367,734	43,695,973	25,831,472	28,969,873	499,243,978
49.	ENDING INVENTORY:							
50.	UNITS (MCF)	817,121	1,050,584	1,050,584	817,121	583,657	583,657	583,657
51.	AMOUNT (\$)	0.34 5 181 204	6 713 820	0.48 6 811 236	6.78 5.530.069	7.19	/.43	0.00
52.		5,101,204	0,110,020	0,011,200	2,235,500	4,157,720	4,333,820	4,333,920
53.	DAYS SUPPLY:	5	6	6	5	4	4	-
	NUCLEAR							
54.	BURNED:		-		_	-		-
55. 56	UNITS (MMBTU)	0.00	0.00	0.00	0.00	0.00	0 00	0
57.	AMOUNT (\$)	0.05	0.00	0.00	0.00	0.00	0.00	0.00
	OTHER				-	-	-	-
58.	PURCHASES:							
59.	UNITS (MMBTU)	0	0	0	0	0	0	0
60.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
61.	AMOUNT (S)	0	0	0	0	0	0	0
02. 63	DURNED:	0	0	0	0	0	0	
64.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0 00	0.00
65.	AMOUNT (\$)	0	0	0	0	0	0	0.00
66.	ENDING INVENTORY:							
67.	UNITS (MMBTU)	0	0	0	0	0	0	0
00. 69	AMOUNT (\$)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
70	DAVS SUPPLY	0	0	Č.	0	0	0	U
10.	UNIO OUFFLIT	U	U	U	U	U	U	-

NOTE: BEGINNING & ENDING INVENTORIES MAY NOT BALANCE BECAUSE OF THE FOLLOWING (1) LIGHT OIL-OTHER USAGE NOT INCLUDED. (2) COAL-ADDITIVES, IGNITOR AND/OR INVENTORY ADJUSTMENT ARE INCLUDED.

45

TAMPA ELECTRIC COMPANY POWER SOLD ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH JUNE 2010

(1)	(2)		(3)	(4)	(5)	(6)	(7	7)	(8)	(9)	(10)
MONTH	SOLD TO	sc	TYPE & SCHEDULE		WHEELED FROM OTHER SYSTEMS	MWH FROM OWN GENERATION	CENTS/KWH (A) (B) FUEL TOTAL COST COST		TOTAL \$ FOR FUEL ADJUSTMENT	TOTAL COST	GAINS ON SALES
lan-10	SEMINOLE	ILIPISD	SCH -D	1 063 0	0.0	1.063.0	4 644	4 005	49 200 00	50 400 00	4 000 00
QUII-90	VARIOUS	JURISD	MKT BASE	9 556 0	0.0	9,556,0	4.044	4.995	48,300.00	53,100.00	4,800.00
				0,000.0	0.0	0,000.0	4.005	0.801	400,000.00	007,100.00	184,000.00
	TOTAL			10,619.0	0.0	10,619.0	4.851	6.782	515,100.00	720,200.00	168,800.00
Feb-10	SEMINOLE	JURISD.	SCHD	847.0	0.0	847.0	4.522	4.970	38,300.00	42,100.00	3,800.00
	VARIOUS	JURISD.	MKT. BASE	7,905.0	0.0	7,905.0	5.022	7.094	397,000.00	560,800.00	133,800.00
	TOTAL			8,752.0	0.0	8,752.0	4.974	6.889	435,300.00	602,900.00	137,600.00
Mar-10	SEMINOLE	JURISD.	SCHD	1,152.0	0.0	1,152.0	4.549	5 009	52 400 00	57 700 00	5 300 00
	VARIOUS	JURISD.	MKT. BASE	8.266.0	0.0	8,266.0	4.886	7.316	403.900.00	604,700.00	169,400.00
	TOTAL			9,418.0	0.0	9,418.0	4.845	7.033	456,300.00	662,400.00	174,700.00
Apr-10	SEMINOLE	JURISD.	SCHD	1,409.0	0.0	1,409.0	4.698	5.174	66,200.00	72,900.00	6,700.00
	VARIOUS	JURISD.	MKT. BASE	5,401.0	0.0	5,401.0	5.010	7.038	270,600.00	380,100.00	89,000.00
	TOTAL			6,810.0	0.0	6,810.0	4.946	6.652	336,800.00	453,000.00	95,700.00
May-10	SEMINOLE	JURISD.	SCHD	1,576.0	0.0	1,576.0	4.816	5.298	75,900.00	83.500.00	7.600.00
•	VARIOUS	JURISD.	MKT. BASE	6,791.0	0.0	6,791.0	4.939	7.086	335,400.00	481,200.00	120,000.00
	TOTAL			8,367.0	0.0	8,367.0	4.916	6.749	411,300.00	564,700.00	127,600.00
Jun-10	SEMINOLE	JURISD.	SCHD	1,468.0	0.0	1,468.0	4.877	5.368	71,600.00	78,800.00	7,200.00
	VARIOUS	JURISD.	MKT. BASE	13,931.0	0.0	13,931.0	4.998	6.502	696,300.00	905,800.00	156,600.00
	TOTAL			15,399.0	0.0	15,399.0	4.987	6.394	767,900.00	984,600.00	163,800.00

(1) (2) (3) (4) (7) (5) (6) (8) (9) (10) MWH WHEELED CENTS/KWH TYPE TOTAL FROM MWH (A) (B) TOTAL \$ OTHER **MWH** FROM OWN FUEL TOTAL FOR FUEL 8 TOTAL COST GAINS ON MONTH SOLD TO SCHEDULE SOLD SYSTEMS GENERATION COST COST ADJUSTMENT \$ SALES SCH. -D SEMINOLE JURISD. Jul-10 1,566.0 0.0 1,566.0 4.987 5.485 78,100.00 85,900.00 7,800.00 VARIOUS JURISD. MKT. BASE 17,163.0 0.0 17,163.0 5.158 6.667 885,200.00 1,144,200.00 193,800.00 TOTAL 18,729.0 0.0 18,729.0 5.143 6.568 963,300.00 1,230,100.00 201,600.00 Aug-10 SEMINOLE JURISD. SCH. -D 1,556.0 0.0 1,556.0 5.071 5.578 78,900.00 86,800.00 7.900.00 VARIOUS JURISD. MKT. BASE 17,300.0 0.0 17,300.0 906,600.00 5.240 6.773 1,171,800.00 199,500.00 TOTAL 18,856.0 0.0 18,856.0 5.226 6.675 985.500.00 1.258.600.00 207,400.00 SEMINOLE JURISD. Sep-10 SCH. -D 1,399.0 0.0 1,399.0 5.089 5.604 71,200.00 78,400.00 7,200.00 VARIOUS JURISD. MKT. BASE 17,636.0 0.0 17,636.0 918,600.00 5.209 6.790 1,197,500.00 211,900.00 TOTAL 19,035.0 0.0 19,035.0 5.200 6.703 989,800.00 1,275,900.00 219,100.00 SEMINOLE JURISD. 995.0 0.0 995.0 Oct-10 SCH. -D 5.085 5.598 50,600.00 55,700.00 5,100.00 VARIOUS JURISD. MKT. BASE 15,889.0 0.0 15,889.0 5.227 6.515 830,500.00 1,035,200.00 144,300.00 TOTAL 16,884.0 0.0 16,884.0 5.219 6.461 881,100.00 1,090,900.00 149,400.00 SEMINOLE JURISD. SCH -D 847.0 0.0 847.0 Nov-10 4.982 5.478 42,200.00 46,400.00 4,200.00 VARIOUS JURISD. MKT. BASE 13,484.0 0.0 13,484.0 5.404 7.337 728,700.00 989,300.00 209,400.00 TOTAL 14,331.0 0.0 14,331.0 5.379 7.227 770,900.00 1.035,700.00 213,600.00 Dec-10 SEMINOLE JURISD. SCH. -D 847.0 0.0 847.0 4.888 5.275 41,400.00 44,680.00 3,280.00 VARIOUS JURISD. MKT. BASE 16,138.0 0.0 16,138.0 5.563 7.554 897,700.00 1,219,000.00 238,560.00 TOTAL 16,985.0 0.0 16,985.0 5.529 7.440 939,100.00 241,840.00 1,263,680.00 SEMINOLE JURISD. SCH -D TOTAL 14,725.0 0.0 14.725.0 4.856 5.338 715,100.00 785,980.00 70,880.00 Jan-10 VARIOUS JURISD. MKT. BASE 149,460.0 0.0 149,460.0 5.177 6.929 7,737,300.00 10,356,700.00 2,030,260.00 THRU Dec-10 TOTAL 164,185.0 0.0 164,185.0 5.148 6.787 8,452,400.00 11,142,680.00 2,101,140.00

TAMPA ELECTRIC COMPANY POWER SOLD ESTIMATED FOR THE PERIOD: JULY 2010 THROUGH DECEMBER 2010

TAMPA ELECTRIC COMPANY PURCHASED POWER EXCLUSIVE OF ECONOMY AND QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH JUNE 2010

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
				MWH	MWH		CENT	S/KWH	
		TYPE	TOTAL	FOR	FOR	MWH -	(A)	(B)	TOTAL \$
HONTH	PURCHASED	& SCHEDHIE			INTERRUP-	FOR	FUEL	TOTAL	FOR FUEL
MONTH	FROM	SCHEDULE	PURCHASED	UTILITIES	TIBLE	FIRM	0051	COST	ADJUSTMENT
Jan-10									
	HPP	IPP	11,398.0	0.0	0.0	11,398.0	8.915	8.915	1,016,100.00
	CALPINE	SCH. D	50.0	0.0	0.0	50.0	10.200	10.200	5,100.00
	RELIANT	SCH. D	6,734.0	0.0	0.0	6,734.0	10.560	10.560	711,100.00
	PASCO COGEN	SCH. D	8,294.0	0.0	0.0	8,294.0	7.011	7.011	581,500.00
	TOTAL		26,476.0	0.0	0.0	26,476.0	8.739	8.739	2,313,800.00
Feb-10									
100-10	нрр	IPP	8,907.0	0.0	0.0	8,907.0	8.667	8.667	772,000.00
	CALPINE	SCH, D	4.0	0.0	0.0	4.0	10.000	10.000	400.00
	RELIANT	SCH. D	6,476.0	0.0	0.0	6,476.0	9.531	9.531	617,200.00
	PASCO COGEN	SCH. D	7,649.0	0.0	0.0	7,649.0	6.529	6.529	499,400.00
	TOTAL		23,036.0	0.0	0.0	23,036.0	8.200	8.200	1,889,000.00
Mar 10									
mar-10	HPP	IPP	1 819 0	0.0	0.0	1 819 0	13 606	13 606	247 500 00
		SCH D	22.0	0.0	0.0	22.0	9 091	9.091	2,000,00
	RELIANT	SCH D	2.127.0	0.0	0.0	2 127.0	B.547	8.547	181,800.00
	PASCO COGEN	SCH D	10,963.0	0.0	0.0	10.963.0	6.641	6.641	728,100.00
	TOTAL		14,931.0	0.0	0.0	14,931.0	7.765	7.765	1,159,400.00
Apr-10	uos	ססו	15 365 0	0.0	0.0	15 365 0	7 806	7 806	1 213 200 00
			72.0	0.0	0.0	72.0	8 990	8 990	6 400 00
			3 720 0	0.0	0.0	3 720 0	8 040	8 040	200 800 00
	RASCO COGEN	SCH D	14 107 0	0.0	0.0	14 107 0	6413	6 413	904 700 00
	TOTAL	001. U	33,273.0	0.0	0.0	33,273.0	7.285	7.285	2,424,100.00
May-10*			- <u>i</u>						
	HPP	IPP	22,396.0	0.0	0.0	22,396.0	7.802	7.802	1,747,400.00
	CALPINE	SCH. D	128.0	0.0	0.0	128.0	12.266	12.266	15,700.00
	RELIANT	SCH. D	10,928.0	0.0	0.0	10,928.0	9.230	9.230	1,008,600.00
	PASCO COGEN	SCH. D	18,574.0	0.0	0.0	18,574.0	6.583	6.583	1,222,700.00
	TOTAL		52,026.0	0.0	0.0	52,026.0	7.678	7.678	3,994,400.00
Jun-10									
	HPP	IPP	31,947.0	0.0	0.0	31,947.0	7.352	7.352	2,348,600.00
	CALPINE	SCH. D	3,293.0	0.0	0.0	3,293.0	9.441	9.44 1	310,900.00
	RELIANT	SCH. D	8,431.0	0.0	0.0	8,431.0	9.619	9.619	811,000.00
	PASCO COGEN	SCH. D	24,036.0	0.0	0.0	24,036.0	6.684	6.684	1,606,500.00
	TOTAL		67,707.0	0.0	0.0	67,707.0	7.498	7.498	5,077,000.00

TAMPA ELECTRIC COMPANY PURCHASED POWER EXCLUSIVE OF ECONOMY AND QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JULY 2010 THROUGH DECEMBER 2010

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8))	(9)
				MWH	MWH		CENTS		
		TYPE	TOTAL	FOR	FOR	MWH -	(A)	(8)	TOTAL \$
MONTH	PURCHASED	å SCHEDULE		OTHER	INTERRUP-	FOR	FUEL	TOTAL	FOR FUEL
MONTH	FROM	SCHEDULE	FURCHAGED	UTILITIES	TIBLE	FIRM	COST	COST	AUJUSTMENT
Jul-10									
	HPP	IPP	41,039.0	0.0	0.0	41,039.0	7.506	7.506	3,080,500.00
	CALPINE	SCH. D	3,277.0	0.0	0.0	3,277.0	9.582	9.582	314,000.00
	RELIANT	SCH. D	8,495.0	0.0	0.0	8,495.0	9.843	9.843	836,200.00
	PASCO COGEN	SCH. D	28,599.0	0.0	0.0	28,599.0	6.779	6.779	1,938,800.00
	TOTAL		81,410.0	0.0	0.0	81,410.0	7.578	7.578	6,169,500.00
Aug 40									
Aug-10	нрр	IPP	43 912 0	0.0	0.0	43 912 0	7 610	7 610	3 345 800 00
	CALPINE	SCH D	3 793 0	0.0	0.0	3 793 0	9 383	9 383	355 900.00
	RELIANT	SCH. D	9,207.0	0.0	0.0	9,207.0	9.562	9.562	880 400 00
	PASCO COGEN	SCH. D	30,925.0	0.0	0.0	30,925.0	6.647	6.647	2.055.600.00
	TOTAL		87,837.0	0.0	0.0	87,837.0	7.557	7.557	6,637,700.00
Sep-10									
	HPP	IPP	23,593.0	0.0	0.0	23,593.0	7.964	7.964	1,878,900.00
	CALPINE	SCH. D	5,256.0	0.0	0.0	5,256.0	9.477	9.477	498,100.00
	RELIANT	SCH. D	3,490.0	0.0	0.0	3,490.0	8.779	8.779	306,400.00
	PASCO COGEN	SCH. D	18,362.0	0.0	0.0	18,362.0	6.753	6.753	1,239,900.00
	IUTAL		50,701.0	0.0	0.0	50,701.0	1.138	7.738	3,923,300.00
Oct-10									
	HPP	IPP	15,879.0	0.0	0.0	15,879.0	8.237	8.237	1,307,900.00
	CALPINE	SCH. D	123.0	0.0	0.0	123.0	12.520	12.520	15,400.00
	RELIANT	SCH. D	10,049.0	0.0	0.0	10,049.0	9.394	9.394	944,000.00
	PASCO COGEN	SCH. D	12,252.0	0.0	0.0	12,252.0	6.712	6.712	822,400.00
	TOTAL		38,303.0	0.0	0.0	38,303.0	8.066	8.066	3,089,700.00
Nov-10		IDD	1 300 0	0.0	0.0	1 309 0	17 257	17 257	225 000 00
		SCH D	0.000	0.0	0.0	1,000.0	0.000	0.000	223,800.00
	RELIANT	SCH. D	633.0	0.0	0.0	633.0	10 095	10 095	63 900 00
	PASCO COGEN	SCH. D	7,812.0	0.0	0.0	7,812.0	7.174	7.174	560,400.00
	TOTAL		9,754.0	0.0	0.0	9,754.0	8.716	8.716	850,200.00
Dec-10					_				
	HPP	166	466.0	0.0	0.0	466.0	35.579	35.579	165,800.00
	CALPINE	SCH. D	2.0	0.0	0.0	2.0	10.000	10.000	200.00
	RELIANT	SCH. D	1/5.0	0.0	0.0	175.0	9.086	9.086	15,900.00
	TOTAL	SCH. D	2 197 0	0.0	0.0	2 197 0	13 509	13 509	296 800 00
			2,101.0	0.0	0.0	2,107.0	10.000		200,000.00
TOTAL	KPP	IPP	218,030.0	0.0	0.0	218,030.0	7.957	7.957	17,349,600.00
Jan-10	CALPINE	SCH. D	16,020.0	0.0	0.0	16,020.0	9.514	9,514	1,524,100.00
THRU	RELIANT	SCH. D	70,474.0	0.0	0.0	70,474.0	9.473	9.473	6,676,300.00
Dec-10	PASCO COGEN	SCH. D	183,127.0	0.0	0.0	183,127.0	6.703	6.703	12,274,900.00
	TOTAL		487,651.0	0.0	0.0	487,651.0	7.757	7.757	37,824,900.00

TAMPA ELECTRIC COMPANY ENERGY PAYMENT TO QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8))	(9)
				MWH	MWH		CENTS	KWH	TOTAL \$
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	FOR OTHER UTILITIES	FOR INTERRUP- TIBLE	MWH FOR FIRM	(A) FUEL COST	(B) TOTAL COST	FOR FUEL ADJUST- MENT
Jan-10	VARIOUS	CO-GEN.	44,728.0	0.0	0.0	44,728.0	3.467	3.467	1,550,500.00
Feb-10	VARIOUS	CO-GEN.	40,399.0	0.0	0.0	40,399.0	4.544	4.544	1,835,700.00
Mar-10	VARIOUS	CO-GEN.	44,728.0	0.0	0.0	44,728.0	3.946	3.946	1,765,100.00
Apr-10	VARIOUS	CO-GEN.	45,186.0	0.0	0.0	45,186.0	4.436	4.436	2,004,300.00
May-10	VARIOUS	CO-GEN.	46,699.0	0.0	0.0	46,699.0	4.486	4.486	2,095,100.00
Jun-10	VARIOUS	CO-GEN.	45,186.0	0.0	0.0	45,186.0	4.519	4.519	2,041,800.00
Jul-10	VARIOUS	CO-GEN.	46,699.0	0.0	0.0	46,699.0	4.589	4.589	2,142,900.00
Aug-10	VARIOUS	CO-GEN.	46,699.0	0.0	0.0	46,699.0	4.956	4.956	2,314,500.00
Sep-10	VARIOUS	CO-GEN.	45,186.0	0.0	0.0	45,186.0	5.424	5.424	2,451,000.00
Oct-10	VARIOUS	CO-GEN.	46,699.0	0.0	0.0	46,699.0	4.505	4.505	2,103,900.00
Nov-10	VARIOUS	CO-GEN.	43,278.0	0.0	0.0	43,278.0	4.295	4.295	1,858,600.00
Dec-10	VARIOUS	CO-GEN.	44,728.0	0.0	0.0	44,728.0	4.355	4.355	1,948,000.00
TOTAL			540,215.0	0.0	0.0	540,215.0	4.463	4.463	24,111,400.00

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	l i i i i i i i i i i i i i i i i i i i	(10)
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	MWH FOR INTERRUP- TIBLE	MWH FOR FIRM	TRANSACT. COST cents/KWH	TOTAL \$ FOR FUEL ADJUSTMENT	COST IF GE (A) CENTS PER KWH	NERATED (B) (\$000)	FUEL SAVINGS (9B)-(8)
Jan-10	VARIOUS	SCH J	39,908.0	6.0	39,902.0	3.491	1,393,000.00	3.491	1,393,000.00	0.00
Feb-10	VARIOUS	SCH J	33,397.0	0.0	33,397.0	3.432	1,146,300.00	3.432	1,146,300.00	0.00
Mar-10	VARIOUS	SCH J	43,427.0	3.0	43,424.0	3.450	1,498,400.00	3.450	1,498,400.00	0.00
Apr-10	VARIOUS	SCH J	49,223.0	14.0	49,209.0	3.451	1,698,800.00	3.451	1,698,800.00	0.00
May-10	VARIOUS	SCH J	43,582.0	22.0	43,560.0	3.849	1,677,500.00	3.849	1,677,500.00	0.00
Jun-10	VARIOUS	SCH J	35,607.0	81.0	35,526.0	3.961	1,410,400.00	3.961	1,410,400.00	0.00
Jul-10	VARIOUS	SCH J	27,424.0	150.0	27,274.0	4.335	1,188,700.00	4.335	1,188,700.00	0.00
Aug-10	VARIOUS	SCH J	25,932.0	189.0	25,743.0	4.364	1,131,600.00	4.364	1,131,600.00	0.00
Sep-10	VARIOUS	SCH J	34,663.0	105.0	34,558.0	4.054	1,405,100.00	4.054	1,405,100.00	0.00
Oct-10	VARIOUS	SCH J	47,073.0	19.0	47,054.0	3.548	1,670,000.00	3.548	1,670,000.00	0.00
Nov-10	VARIOUS	SCH J	44,729.0	0.0	44,729.0	3.287	1,470,200.00	3.287	1,470,200.00	0.00
Dec-10	VARIOUS	SCH J	41,086.0	0.0	41,086.0	3.402	1,397,900.00	3.402	1,397,900.00	0.00
TOTAL			466,051.0	589.0	465,462.0	3.667	17.087.900.00	3.667	17.087.900.00	0.00

TAMPA ELECTRIC COMPANY ECONOMY ENERGY PURCHASES ESTIMATED FOR THE PERIOD: JANUARY 2010 THROUGH DECEMBER 2010

TAMPA ELECTRIC COMPANY RESIDENTIAL BILL COMPARISON FOR MONTHLY USAGE OF 1,000 KWH

	Current	Projected	Differen	Ce
	Aug 09 - Dec 09	Jan 10 - Dec 10	\$	%.
Base Rate Revenue	53.96	55.92 *	1.96	4%
Fuel Recovery Revenue	47.99	41.67	(6.32)	-13%
Conservation Revenue	2.21	2.54	0.33	15%
Capacity Revenue	5.41	5.39	(0.02)	0%
Environmental Revenue	2.23	4.86	2.63	118%
Florida Gross Receipts Tax Revenue	2.87	2.83	(0.04)	-1%
TOTAL REVENUE	\$114.67	\$113.21	(\$1.46)	-1%

* Reflects Commission approved Base Rate step increase effective January 2010 regarding the five combustion turbines and the Big Bend rail facilities investment as reflected in Order No. PSC-09-0283-FOF-EI, issued April 30, 2009.

SCHEDULE H1

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE PERIOD; JANUARY THROUGH DECEMBER

							DIFFERENCE (%)	
		ACTUAL 2007	ACTUAL 2008	ACT/EST 2009	EST 2010	2008-2007	2009-2008	2010-2009
FU	EL COST OF SYSTEM NE	T GENERATION	(\$)					
1	HEAVY OIL **	3,349,154	3,030,195	2,854,011	173,741	-9.5%	-5.8%	-93.9%
2		5,982,308	7,200,028	7,641,063	7,601,966	21.5%	5.2%	-0.5%
э 4	NATURAL GAS	564 372 794	593 652 315	509,002,120 539,808,873	309,407,900 499,243,978	13.3%	-2.1%	16.1%
5	NUCLEAR	00-1012,104	000,002,010	0,000,010	100,240,010	0.2%	-9.1%	-7.076 0.0%
6	OTHER	ō	ō	ō	Ō	0.0%	0.0%	0.0%
7	TOTAL (\$)	852,751,345	920,155,654	859,906,075	866,477,635	7.9%	-6.5%	0.8%
SY	STEM NET GENERATION	(MWH)						
8	HEAVY OIL (1)	31,654	18,437	23,454	1,513	-41.8%	27.2%	-93.5%
9	LIGHT OIL (1)	35,850	33,159	44,815	47,858	-7.5%	35.2%	6.8%
10	COAL	10,191,034	10, 193, 095	9,459,118	10,484,588	0.0%	-7.2%	10.8%
11	NATURAL GAS	7,698,666	7,535,297	9,174,991	8,915,816	-4.6%	21.8%	-2.8%
12	NUCLEAR	0	0	0	0	0.0%	0.0%	0.0%
13	OTHER	0	0	0	0	0.0%	0.0%	0.0%
14	(UTAL (MAAL)	10,197,204	17,779,990	18,702,376	19,449,775	-4.1%	0.2%	4.0%
UN	ITS OF FUEL BURNED							
15	HEAVY OIL (BBL)	51,196	31,690	37,498	2,359	-38.1%	18.3%	-93.7%
16	LIGHT OIL (BBL) "	68,219	60,655	125,559	189,061	-11.1%	107.0%	50.6%
17	COAL (TON)	4,656,469	4,621,065	4,323,070	4,751,876	-0.8%	-6.4%	9.9%
18	NATURAL GAS (MCF)	37,300,159	04,408,480 A	07,140,214	04,924,000	-5.5%	23.4%	-3.3%
19	OTHER	0	0	0	0	0.0%	0.0%	0.0%
2.4	Officia	0	v	Ŭ	Ū	0.075	0.075	0.070
BT	US BURNED (MMBTU)			005 705				
21	HEAVY OIL "	321,178	198,802	235,765	14,807	-38.1%	18.6%	-93.7%
22	LIGHT OIL ""	372,134	327,063	457,223	503,326	-12.1%	39.8%	10.1%
23	COAL	109,855,092	109,791,173	101,185,059	111,406,265	-0.1%	-7.8%	10.1%
24	NATURAL GAS	39,377,743	56,000,601	08,938,299	00,741,275	-5.7%	23,1%	-3.2%
20	OTHER	0	0	0	0	0.0%	0.0%	0.0%
27	TOTAL (MMBTU)	169,926,147	166,317,839	170,816,345	178,665,673	-2.1%	2.7%	4.6%
GE								
28	HEAVY OIL (1)	, 0,17	0.10	0.13	0.01	-41.2%	30.0%	-92.3%
29	LIGHT OIL (1)	0.20	0.19	0.24	0.25	-5.0%	26.3%	4.2%
30	COAL	56.13	57.33	50.57	53.90	2.1%	-11.8%	6.6%
31	NATURAL GAS	43.50	42.38	49.06	45.84	-2.6%	15.8%	-6.6%
32	NUCLEAR	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
33	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
34	TOTAL (%)	100.00	100.00	100.00	100.00	0.0%	0.0%	0.0%
FU	EL COST PER UNIT							
35	HEAVY OIL (\$/BBL) ⁽¹⁾	65.42	95.62	76.11	73.65	46.2%	-20.4%	-3.2%
36	LIGHT OIL (\$/BBL) ^{{1]}	87.69	119.79	60.86	40.21	36.6%	-49.2%	-33.9%
37	COAL (\$/TON)	59.93	68.43	71.62	75.65	14.2%	4.7%	5.6%
38	NATURAL GAS (\$/MCF)	9.81	10.91	8.04	7.69	11.2%	-26,3%	-4.4%
39	NUCLEAR (\$/MMBTU)	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
40	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
FU	EL COST PER MMBTU (\$	/MMBTU)						
41	HEAVY OIL "	10.43	15.24	12.11	11.73	46.1%	-20.5%	-3.1%
42	LIGHT OIL "	16.08	22.21	16.71	15.10	38.1%	-24.8%	-9.6%
43	COAL	2.54	2.88	3.06	3.23	13.4%	6.3%	5.6%
44	NATURAL GAS	9.50	10.60	7.03	7.48	11.0%	-20,1%	-4.5%
40	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
47	TOTAL (\$/MMBTU)	5.02	5.53	5.03	4.85	10.2%	-9.0%	-3.6%
ат		пикалы						
48	HEAVY OIL (1)	10.147	10.783	10.052	9.787	6.3%	-6.8%	-2.6%
49	LIGHT OIL ⁽¹⁾	10,141	9 863	10 202	10 517	-5.0%	3.4%	3.1%
50	COAL	10,780	10.771	10.697	10.626	-0.1%	-0.7%	-0.7%
51	NATURAL GAS	7,517	7,432	7,514	7,486	-1.1%	1,1%	-0.4%
52	NUCLEAR	Đ	0	0	0	0.0%	0.0%	0.0%
53	OTHER	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
54	TOTAL (BTU/KWH)	9,359	9,354	9,133	9,186	-0.1%	-2.4%	0.6%
GE	NERATED FUEL COST P	ER KWH (cents/)	(WH)					
55	HEAVY OIL (1)	10.58	16.44	12.17	11. 48	55.4%	-26.0%	-5.7%
56	LIGHT OIL (1)	16.69	21.91	17.05	15.88	31.3%	-22.2%	-6.9%
57	COAL	2.74	3.10	3.27	3.43	13.1%	5.5%	4.9%
58	NATURAL GAS	7.15	7.88	5.68	5.60	10.2%	-25.4%	-4.8%
59	NUCLEAR	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
61	TOTAL (cents/KWH)	4.70	5.18	4.60	4.45	10.0%	-11 2%	

(1) DISTILLATE (BBLS, MWH & \$) USED FOR FIRING, HOT STANDBY, ETC. IS INCLUDED IN FOSSIL STEAM PLANTS.

53

Docket No. 090001-El FAC 2010 Projection Filing Exhibit CA-3, Page 1 of 2 Document No. 3

EXHIBIT TO THE TESTIMONY OF

CARLOS ALDAZABAL

DOCUMENT NO. 3

LEVELIZED AND TIERED FUEL RATE

JANUARY 2010 - DECEMBER 2010

Tampa Electric Company Comparison of Levelized and Tiered Fuel Revenues For the Period Janury 2010 through December 2010

	Annual Units MWH	Levelized Fuel Rate Cents/kWh	Annual Fuel Revenues \$	Tiered Fuel Rates Cents/kWh	Annual Fuel Revenues \$
Residential Excluding TOU:					
TIER I (Up to 1,000) kWh	5,711,111	4.517	257,970,866	4.167	237,981,979
TIER II (Over 1,000) kWh	3,075,213	4.517	138,907,389	5.167	158,896,276
Total	8,786,324		396,878,255		396,878,255

DOCUMENT NUMBER-DATE

09089 SEP-1 8

FPSC-COMMISSION CLERE

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		BRIAN S. BUCKLEY
5		
6	Q.	Please state your name, business address, occupation and
7		employer.
8		
9	A.	My name is Brian S. Buckley. My business address is 702
10		North Franklin Street, Tampa, Florida 33602. I am
11		employed by Tampa Electric Company ("Tampa Electric" or
12		"company") in the position of Manager, Operations and
13		Performance Planning.
14		
15	Q.	Please provide a brief outline of your educational
16		background and business experience.
17		
18	A.	I received a Bachelor of Science degree in Mechanical
19		Engineering in 1997 from the Georgia Institute of
20		Technology and a Master of Business Administration from
21		the University of South Florida in 2003. I began my
22		career with Tampa Electric in 1999 as an Engineer in
23		Plant Technical Services. I have held a number of
24		different engineering positions at Tampa Electric's
25		power generating stations including Operations Engineer DOCUMENTAL MELLE DATE

.

09089 SEP-1 8

FPSC-COMMISSION CLERIC

at Gannon Station, Instrumentation and Controls Engineer 1 at Big Bend Station, Senior Engineer in Asset Management 2 and Supervisor of Performance Planning and Analysis. In 3 October 2008, I was promoted to Manager, Operations and 4 Performance Planning, where I am currently responsible 5 for unit commitment and reporting of generation 6 statistics. 7 8 What is the purpose of your testimony? 9 Q. 10 My testimony describes Tampa Electric's maintenance Α. 11 presents planning processes Tampa Electric's and 12 methodology for determining the various factors required 13 to compute the Generating Performance Incentive Factor 14 ("GPIF") as ordered by the Commission. 15 16 you prepared any exhibits Q. Have to support 17 your testimony? 18 19 (BSB-2), consisting Α. Yes, Exhibit No. of 20 two documents, prepared under direction was my and 21 supervision. Document No. 1 contains the GPIF 22 schedules. Document No. 2 is a summary of the GPIF 23 targets for the 2010 period. 24 25

1	Q.	Which generating units on Tampa Electric's system are
2	ļ	included in the determination of the GPIF?
3		
4	A .	Four of the company's coal-fired units, one integrated
5		gasification combined cycle unit and two natural gas
6		combined cycle units are included. These are Big Bend
7		Units 1 through 4, Polk Unit 1 and Bayside Units 1 and
8		2.
9		
10	Q.	Do the exhibits you prepared comply with Commission-
11		approved GPIF methodology?
12		
13	A .	Yes, the documents are consistent with the GPIF
14		Implementation Manual previously approved by the
15		Commission. To account for the concerns presented in
16		the testimony of Commission Staff witness Sidney W.
17		Matlock during the 2005 fuel hearing, Tampa Electric
18		removes outliers from the calculation of the GPIF
19		targets. Section 3.3 of the GPIF Implementation Manual
20		allows for removal of outliers, and the methodology was
21		approved by the Commission in Order No. PSC-06-1057-FOF-
22		EI issued in Docket No. 060001-EI on December 22, 2006.
23		
24	Q.	Did Tampa Electric identify any outages as outliers?
25		

One outage from Big Bend Unit 2, one outage from 1 Α. Yes. 2 Big Bend Unit 3 and one outage from Big Bend Unit 4 were identified 3 as outlying outages; therefore, the associated forced outage hours were removed from the 4 5 study. 6 Please describe how Tampa Electric developed the various 7 Q. 8 factors associated with the GPIF. 9 Targets were established for equivalent availability and 10 Α. 11 heat rate for each unit considered for the 2010 period. A range of potential improvements and degradations were 12 determined for each of these metrics. 13 14 Q. How were the target values 15 for unit availability determined? 16 17 Α. The Planned Outage Factor ("POF") and the Equivalent 18 Unplanned Outage Factor ("EUOF") were subtracted from 19 100 percent determine 20 to the target Equivalent 21 Availability Factor ("EAF"). The factors for each of 22 the seven units included within the GPIF are shown on page 5 of Document No. 1. 23 24 25 To give an example for the 2010 period, the projected

EUOF for Big Bend Unit 3 is 14.5 percent, and the POF is 1 8.5 percent. Therefore, the target EAF for Big Bend 2 3 Unit 3 equals 77.0 percent or: 4 (14.5% + 8.5%) =100% 77.0% 5 ----6 This is shown on page 4, column 3 of Document No. 1. 7 8 9 How was the potential for unit availability improvement Q. determined? 10 11 Maximum equivalent availability is derived by using the 12 Α. following formula: 13 14 $EAF_{MAX} = 1 - [0.8 (EUOF_T) + 0.95]$ (POF_T)] 15 16 The factors included in the above equations are the same 17 determine the factors that target equivalent 18 To determine the maximum incentive availability. 19 points, a 20 percent reduction in EUOF and Equivalent 20 Maintenance Outage Factor ("EMOF"), plus a five percent 21 reduction in the POF are necessary. Continuing with the 22 Big Bend Unit 3 example: 23 EAF $_{MAX} = 1 - [0.8 (14.5\%) + 0.95 (8.5\%)] = 80.3\%$ 24 25

1 This is shown on page 4, column 4 of Document No. 1. 2 3 Q. How was the potential for unit availability degradation determined? 4 5 Α. 6 The potential for unit availability degradation is significantly greater than the potential 7 for unit availability improvement. 8 This concept was discussed extensively during the development of the incentive. 9 То 10 incorporate this biased effect into the unit availability tables, Tampa Electric uses a potential 11 equal 12 degradation range to twice the potential 13 improvement. Consequently, minimum equivalent 14 availability is calculated using the following formula: 15 16 $EAF_{MIN} = 1 - [1.40 (EUOF_T) + 1.10 (POF_T)]$ 17 Again, continuing with the Big Bend Unit 3 example, 18 19 EAF $_{MIN} = 1 - [1.40 (14.5\%) + 1.10 (8.5\%)] = 70.3\%$ 20 21 22 The equivalent availability maximum and minimum for the 23 other six units are computed in a similar manner. How did Tampa Electric determine the Planned Outage, **Q**. 24 25 Maintenance Outage, and Forced Outage Factors?

The company's planned outages for A. 1 January through December 2010 are shown on page 21 of Document No. 1. 2 3 Two GPIF units have a major outage of 28 days or greater in 2010; therefore, two Critical Path Method diagrams 4 are provided. 5 Planned Outage Factors are calculated for 6 each unit. For example, Big Bend Unit 2 is scheduled for a planned outage from February 13, 2010 to February 7 28, 2010. There are 384 planned outage hours scheduled 8 9 for the 2010 period, and a total of 8,760 hours during this 12-month period. Consequently, the POF for Big 10 Bend Unit 2 is 4.4 percent or: 11 12 $384 \times 100\% = 4.4\%$ 13 8,760 14 15 The factor for each unit is shown on pages 5 and 14 16 through 20 of Document No. 1. Big Bend Unit 1 has a POF 17 of 26.8 percent. Big Bend Unit 2 has a POF of 4.4 18 percent. Big Bend Unit 3 has a POF of 8.5 percent. Big 19 20 Bend Unit 4 has a POF of 15.3 percent. Polk Unit 1 has 21 a POF of 3.8 percent. Bayside Unit 1 has a POF of 3.8 22 percent, and Bayside Unit 2 has a POF of 3.8 percent. 23 Ο. How did you determine the Forced Outage and Maintenance 24 25 Outage Factors for each unit?

For each unit the most current 12-month ending value, 1 Α. June 2009, was used as a basis for the projection. All 2 projected factors based upon historical unit are 3 performance unless adjusted for outlying forced outages. 4 These target factors are additive and result in a EUOF 5 of 14.5 percent for Big Bend Unit 3. The EUOF for Big 6 Bend Unit 3 is verified by the data shown on page 16, 7 lines 3, 5, 10 and 11 of Document No. 1 and calculated 8 using the following formula: 9 10 11 $EUOF = (EFOH + EMOH) \times 100\%$ ΡH 12 Or 13 14 $EUOF = (1,007 + 266) \times 100\% = 14.5\%$ 8,760 15 Relative to Big Bend Unit 3, the EUOF of 14.5 percent 16 17 forms the basis of the equivalent availability target development as shown on pages 4 and 5 of Document No. 1. 18 19 20 Big Bend Unit 1 The projected EUOF for this unit is 18.7 percent. The 21 unit will have a planned outage in 2010, and the POF is 22 26.8 Therefore, the 23 percent. tarqet equivalent 24 availability for this unit is 54.4 percent. 25

1	Big Bend Unit 2
2	The projected EUOF for this unit is 28.1 percent. The
3	unit will have a planned outage in 2010, and the POF is
4	4.4 percent. Therefore, the target equivalent
5	availability for this unit is 67.6 percent.
6	
7	Big Bend Unit 3
8	The projected EUOF for this unit is 14.5 percent. The
9	unit will have a planned outage in 2010, and the POF is
10	8.5 percent. Therefore, the target equivalent
11	availability for this unit is 77.0 percent.
12	
13	Big Bend Unit 4
14	The projected EUOF for this unit is 15.4 percent. The
15	unit will have a planned outage in 2010, and the POF is
16	15.3 percent. Therefore, the target equivalent
17	availability for this unit is 69.2 percent.
18	
19	Polk Unit 1
20	The projected EUOF for this unit is 11.3 percent. The
21	unit will have a planned outage in 2010, and the POF is
22	3.8 percent. Therefore, the target equivalent
23	availability for this unit is 84.9 percent.
24	Bayside Unit 1
25	The projected EUOF for this unit is 0.6 percent. The

unit will have a planned outage in 2010, and the POF is 1 3.8 percent. Therefore, the target equivalent 2 availability for this unit is 95.6 percent. 3 4 Bayside Unit 2 5 The projected EUOF for this unit is 0.5 percent. The 6 unit will have a planned outage in 2010, and the POF is 7 3.8 percent. Therefore, the target equivalent 8 availability for this unit is 95.6 percent. 9 10 11 Q. Please summarize your testimony regarding EAF. 12 The GPIF system weighted EAF of 67.5 percent is shown on 13 Α. 14 Page 5 of Document No. 1. This target is comparable to the 2007 and 2008 January through December actual 15 performance. 16 17 Why are Forced and Maintenance Outage Factors adjusted 18 Q. for planned outage hours? 19 20 Α. The adjustment makes the factors more accurate 21 and comparable. A unit in a planned outage stage or reserve 22 shutdown stage will not incur a forced or maintenance 23 24 outage. To demonstrate the effects of a planned outage, note the Equivalent Unplanned Outage Rate and Equivalent 25
Unplanned Outage Factor for Big Bend Unit 3 on page 16 1 2 of Document No. 1. Except for the months of March and October, the Equivalent Unplanned Outage Rate and the 3 EUOF are equal. This is because no planned outages are 4 5 scheduled during these months. During the months of March and October, the Equivalent Unplanned Outage Rate 6 exceeds the EUOF due to scheduled planned outages. 7 8 Therefore, the adjusted factors apply to the period hours after the planned outage 9 hours have been extracted. 10 11 Does this mean that both rate and factor data are used 12 Q. in calculated data? 13 14 15 Α. Yes. Rates provide a proper and accurate method of determining the unit metrics, which are subsequently 16 converted to factors. Therefore, 17 18 EFOF + EMOF + POF + EAF = .100%19 20 Since factors are additive, they are easier to work with 21 22 and to understand. 23 Q. Has Tampa Electric prepared the necessary heat rate data 24 25 required for the determination of the GPIF?

and ranges of potential Yes. Target heat rates 1 Α. 2 operation have been developed as required and have been adjusted to reflect the aforementioned agreed upon GPIF 3 methodology. 4 5 How were these targets determined? 6 Q. 7 Net heat rate data for the three most recent July 8 Α. through June annual periods formed the basis of the 9 target development. The historical data and the target 10 11 values are analyzed to assure applicability to current conditions of operation. This provides assurance that 12 periods of abnormal operations 13 any or equipment 14 modifications having material effect on heat rate can be taken into consideration. 15 16 17 Q. How were the ranges of heat rate improvement and heat rate degradation determined? 18 19 20 Α. The ranges determined through analysis were of historical net heat rate and net output factor data. 21 22 This is the same data from which the net heat rate 23 versus net output factor curves have been developed for 24 each unit. This information is shown on pages 31 25 through 37 of Document No. 1.

analysis used in the Q. Please elaborate on the 1 determination of the ranges. 2 3 The net heat rate versus net output factor curves are Α. 4 the result of a first order curve fit to historical 5 The standard error of the estimate of this data data. б was determined, and a factor was applied to produce a 7 band of potential improvement and degradation. Both the 8 curve fit and the standard error of the estimate were 9 performed by computer program for each unit. These 10 curves are also used in post-period adjustments to 11 actual heat rates to account for unanticipated changes 12 13 in unit dispatch. 14 Please summarize your heat rate projection (Btu/Net kWh) Q. 15and the range about each target to allow for potential 16 improvement or degradation for the 2010 period. 17 18 The heat rate target for Big Bend Unit 1 is 10,785 A. 19 20 Btu/Net kWh. The range about this value, to allow for 21 potential improvement or degradation, is ±360 Btu/Net kWh. The heat rate target for Big Bend Unit 2 is 10,481 22 23 Btu/Net kWh with a range of ±305 Btu/Net kWh. The heat rate target for Big Bend Unit 3 is 10,627 Btu/Net kWh, 24 with a range of ± 262 Btu/Net kWh. The heat rate target 25

for Big Bend Unit 4 is 10,661 Btu/Net kWh with a range 1 of ±431 Btu/Net kWh. The heat rate target for Polk Unit 2 1 is 10,375 Btu/Net kWh with a range of ±727 Btu/Net 3 kWh. The heat rate target for Bayside Unit 1 is 7,250 4 5 Btu/Net kWh with a range of ±125 Btu/Net kWh. The heat rate target for Bayside Unit 2 is 7,409 Btu/Net kWh with 6 a range of ± 83 Btu/Net kWh. A zone of tolerance of ± 75 7 Btu/Net kWh is included within the range for each 8 target. This is shown on page 4, and pages 7 through 13 9 of Document No. 1. 10 11 Do the heat rate targets and ranges in Tampa Electric's 12 **Q**. projection meet the criteria of the GPIF 13 and the philosophy of the Commission? 14 15 16 Α. Yes. 17 After determining the target values Q. and ranges for 18 averaqe net operating heat rate and equivalent 19 20 availability, what is the next step in the GPIF? 21 The next step is to calculate the savings and weighting Α. 22 factor to be used for both average net operating heat 23 rate and equivalent availability. This is shown on 24 pages 7 through 13. The baseline production costing 25

analysis was performed to calculate the total system fuel cost if all units operated at target heat rate and target availability for the period. This total system fuel cost of \$936,879,400 is shown on page 6, column 2. Multiple production cost simulations were performed to calculate total system fuel cost with each unit operating maximum improvement individually at in equivalent availability and each station operating at maximum improvement in average net operating heat rate. The respective savings are shown on page 6, column 4 of Document No. 1.

1

2

3

4

5

6

7

8

9

10

11

12

After all of the individual savings are calculated, 13 14 column 4 totals \$33,641,218 which reflects the savings if all of the units operated at maximum improvement. Α 15 weighting factor for each metric is then calculated by 16 17 dividing individual savings by the total. For Big Bend Unit 3, the weighting factor for equivalent availability 18 is 5.6 percent as shown in the right-hand column on page 19 Pages 7 through 13 of Document No. 1 show the point 20 6. the Fuel Savings/(Loss) and the equivalent 21 table, The individual availability or heat rate value. 22 weighting factor is also shown. For example, on Big 23 Bend Unit 3, page 9, if the unit operates at 80.3 24 equivalent availability, fuel savings would percent 25

equal \$1,872,300, and 10 equivalent availability points 1 would be awarded. 2 3 The GPIF Reward/Penalty table on page 2 is a summary of 4 the tables on pages 7 through 13. The left-hand column 5 of this document shows the incentive points for Tampa 6 Electric. The center column shows the total fuel 7 savings and is the same amount as shown on page 6, 8 column 4, or \$33,641,218. The right hand column of page 9 2 is the estimated reward or penalty based upon 10 11 performance. 12 How was the maximum allowed incentive determined? 13 Q. 14 Referring to page 3, line 14, the estimated average 15 Α. common equity for the period January through December 16 17 2010 is \$1,949,226,994. This produces the maximum allowed jurisdictional incentive of \$7,726,902 shown on 18 line 21. 19 20 Are there any other constraints set forth by the 21 Q. Commission regarding the magnitude of incentive dollars? 22 23 Yes. Incentive dollars are not to exceed 50 percent of 24 Α. fuel savings. Page 2 of Document No. 1 demonstrates 25

that this constraint is met. 1 2 3 Q. Please summarize your testimony. 4 complied with the Commission's 5 Α. Tampa Electric has 6 directions, philosophy, and methodology in its determination of the GPIF. The GPIF is determined by 7 following formula for calculating Generating 8 the Performance Incentive Points (GPIP): 9 10 GPIP: = $(0.1106 \text{ EAP}_{BB1} + 0.1496)$ 11 EAP_{BB2} + 0.0557 EAP_{BB3} + 0.0999 12 EAP_{BB4} $+ 0.0349 EAP_{PK1}$ + 0.0017 EAP_{BAY1} 13 + 0.0036 EAP_{BAY2} + 0.0558 HRP_{BB1} 14 15 + 0.0598 HRP_{BB2} + 0.0542 HRP_{BB3} + 0.0910 HRP_{BB4} + 0.107916 HRP_{PK1} $+ 0.1117 HRP_{BAY1} + 0.0636$ HRP_{BAY2}) 17 18 Where: 19 20 GPIP = Generating Performance Incentive Points. Equivalent Availability 21 EAP = Points awarded/ 22 deducted for Big Bend Units 1, 2, 3, and 4, Polk Unit 1 and Bayside Units 1 and 2. 23 Average Net Heat Rate Points awarded/deducted 24 HRP =25 for Big Bend Units 1, 2, 3, and 4, Polk Unit 1

1		and Bayside Units 1 and 2.
2		
3	Q.	Have you prepared a document summarizing the GPIF
4		targets for the January through December 2010 period?
5		, ,
6	Α.	Yes. Document No. 2 entitled "Summary of GPIF Targets"
7		provides the availability and heat rate targets for each
8		unit.
9		
10	Q.	Does this conclude your testimony?
11		
12	Α.	Yes.
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

DOCKET NO. 090001-EI GPIF 2010 PROJECTION FILING EXHIBIT NO. (BSB-2) DOCUMENT NO. 1

EXHIBIT TO THE TESTIMONY OF

BRIAN S. BUCKLEY

DOCUMENT NO. 1

GPIF SCHEDULES

JANUARY 2010 - DECEMBER 2010

. . ___

......

DOCKET NO. 090001-EI GPIF 2010 PROJECTION EXHIBIT NO. ____ (BSB-2) DOCUMENT NO. 1 PAGE 1 OF 40

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR JANUARY 2010 - DECEMBER 2010 TARGETS TABLE OF CONTENTS

.

SCHEDULE	PAGE
GPIF REWARD / PENALTY TABLE	2
GPIF CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS	3
GPIF TARGET AND RANGE SUMMARY	4
COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE	5
DERIVATION OF WEIGHTING FACTORS	6
GPIF TARGET AND RANGE SUMMARY	7 - 13
ESTIMATED UNIT PERFORMANCE DATA	14 - 20
ESTIMATED PLANNED OUTAGE SCHEDULE	21
CRITICAL PATH METHOD DIAGRAMS	22 - 23
FORCED & MAINTENANCE OUTAGE FACTOR GRAPHS	24 - 30
HEAT RATE VS NET OUTPUT FACTOR GRAPHS	31 - 37
GENERATING UNITS IN GPIF (TABLE 4.2 IN THE MANUAL)	38
UNIT RATINGS AS OF JULY 2009	39
PROJECTED PERCENT GENERATION BY UNIT	40

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR REWARD / PENALTY TABLE JANUARY 2010 - DECEMBER 2010

.

GENERATING PERFORMANCE INCENTIVE POINTS (GPIP)	FUEL SAVINGS / (LOSS) (\$000)	GENERATING PERFORMANCE INCENTIVE FACTOR (\$000)
+10	33,641.2	7,726.9
+9	30,277.1	6,954.2
+8	26,913.0	6,181.5
+7	23,548.9	5,408.8
+6	20,184.7	4,636.1
+5	16,820.6	3,863.5
+4	13,456.5	3,090.8
+3	10,092.4	2,318.1
+2	6,728.2	1,545.4
+1	3,364.1	772.7
0	0.0	0.0
-1	(5,054.0)	(772.7)
-2	(10,108.0)	(1,545.4)
-3	(15,161.9)	(2,318.1)
-4	(20,215.9)	(3,090.8)
-5	(25,269.9)	(3,863.5)
-6	(30,323.9)	(4,636.1)
-7	(35,377.9)	(5,408.8)
-8	(40,431.9)	(6,181.5)
-9	(45,485.8)	(6,954.2)
-10	(50,539.8)	(7,726.9)

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS JANUARY 2010 - DECEMBER 2010

Line 21	Maximum Allowed Jurisdi (line 17 times line 20)	ctional Incentive Dollars	\$ 7,726,902	
Line 20	Jurisdictional Separation Fa (line 18 divided by line 19)	ictor	96.99%	
Line 19	Total Sales		19,769,625	MWH
Line 18	Jurisdictional Sales		19,174,072	MWł
Line 17	Maximum Allowed Incentive (line 14 times line 15 divided	e Dollars d by line 16)	\$ 7,966,902	
Line 16	Revenue Expansion Factor		61.17%	
Line 15	25 Basis points		0.0025	
Line 14	(Summation of line 1 throug	h line 13 divided by 13)	\$ 1,949,226,994	
Line 13	Month of December	2010	\$ 2,026,808,634	
Line 12	Month of November	2010	\$ 2,007,983,786	
Line 11	Month of October	2010	\$ 1,989,333,782	
Line 10	Month of September	2010	\$ 1,968,994,991	
Line 9	Month of August	2010	\$ 1,950,707,111	
Line 8	Month of July	2010	\$ 1,932,589,089	
Line 7	Month of June	2010	\$ 1,970,874,454	
Line 6	Month of May	2010	\$ 1,952,569,118	
Line 5	Month of April	2010	\$ 1,934,433,801	
Line 4	Month of March	2010	\$ 1,914,112,141	
Line 3	Month of February	2010	\$ 1,896,334,009	
Line 2	Month of January	2010	\$ 1,878,721,000	
Line 1	Beginning of period balance End of month common equi	e of common equity: ty:	\$ 1,916,489,000	

TAMPA ELECTRIC COMPANY GPIF TARGET AND RANGE SUMMARY JANUARY 2010 - DECEMBER 2010

•

EQUIVALENT AVAILABILITY

PLANT / UNIT	WEIGHTING FACTOR (%)	EAF TARGET (%)	EAF RA MAX. (%)	NGE MIN. (%)	MAX. FUEL SAVINGS (\$000)	MAX. FUEL LOSS (\$000)
BIG BEND 1	11.06%	54.4	59.5	44.2	3,719.8	(7,408.0)
BIG BEND 2	14.96%	67.6	73.4	55.9	5,031.6	(10,517.0)
BIG BEND 3	5.57%	77.0	80.3	70.3	1,872.3	(5,522.4)
BIG BEND 4	9.99%	69.2	73.1	61.5	3,361.3	(6,152.1)
POLK 1	3.49%	84.9	87.4	80.0	1,173.9	(2,349.5)
BAYSIDE 1	0.17%	95.6	95.9	94.9	58.2	(54.0)
BAYSIDE 2	0.36%	95.6	95.9	95.0	122.6	(235.3)
GPIF SYSTEM	45.60%					

AVERAGE NET OPERATING HEAT RATE

	WEIGHTING FACTOR	ANOHR	TARGET	ANOHR	RANGE	MAX. FUEL SAVINGS	MAX. FUEL LOSS
PLANT / UNIT	(%)	Btu/kwh	NOF	MIN,	MAX.	(\$000)	(\$000)
BIG BEND 1	5.58%	10,785	89.9	10,426	11,145	1,877.3	(1,877.3)
BIG BEND 2	5.98%	10,481	92.5	10,176	10,787	2,011.5	(2,011.5)
BIG BEND 3	5.42%	10,627	88.2	10,365	10,889	1,824.5	(1,824.5)
BIG BEND 4	9.10%	10,661	88.5	10,230	11,092	3,060.1	(3,060.1)
POLK 1	10.79%	10,375	89.4	9,648	11,102	3,631.3	(3,631.3)
BAYSIDE 1	11.17%	7,250	79.9	7,125	7,376	3,758.6	(3,758.6)
BAYSIDE 2	6.36%	7,409	70.0	7,326	7,493	2,138.2	(2,138.2)
GPIF SYSTEM	54.40%						

TAMPA ELECTRIC COMPANY COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE

	WEIGHTING FACTOR	NORMALIZED WEIGHTING	IAT AL	RGET PERIC N 10 - DEC	DD 10	ACTUAI JAI	L PERFORM	IANCE 08	ACTUAI JAI	L PERFORM	IANCE 07	ACTUA Ja	L PERFOR	MANCE
PLANT / UNIT	(%)	FACTOR	POF	EUOF	EUOR	POF	EUOF	EUOR	POF	EUOF	EUOR	POF	EUOF	EUOR
BIG BEND 1	11.06%	24.2%	26.8	18.7	25.6	4.9	19.4	20.4	0.0	23.7	23.7	18.5	26.3	32.2
BIG BEND 2	14.96%	32.8%	4.4	28.1	29.3	10.2	18.8	20.8	2.5	18.0	18.4	0.0	17.2	17.2
BIG BEND 3	5.57%	12.2%	8.5	14.5	15.9	32.4	23.1	34.2	11.8	41.7	47.3	7.9	30.2	32.8
BIG BEND 4	9.99%	21.9%	15.3	15.4	18.2	5.8	21.4	22.7	27.0	19.8	27.0	8.3	17.0	18.6
POLK 1	3.49%	7.7%	3.8	11.3	11.7	3.0	13.8	16.9	4.1	11.0	12.8	12.0	0.0	0.0
BAYSIDE 1	0.17%	0.4%	3.8	0.6	0.6	2.4	2.8	3.1	11.5	3.3	3.9	2.5	10.3	ŧ1.1
BAYSIDE 2	0.36%	0.8%	3.8	0.5	0.6	14.5	1.9	2.4	2.0	1.7	1.7	10.0	1.4	1.6
GPIF SYSTEM	45.60%	100.0%	12.7	19.8	22.7	10.1	19.5	22.2	8.6	21.9	24.5	8.3	19.5	21.6
GPIF SYSTEM WEIGHTED EQUIVALENT AVAILABILITY (%) 67.5						<u>70.4</u>			<u>69.5</u>			<u>72.2</u>		

	3 P8	RIOD AVE	RAGE	3 PERIOD AVERAGE		
_	POF	EUOF	EUOR	EAF		
	9.0	20.3	22.8	70 7		

.

AVERAGE NET OPERATING HEAT RATE (Btu/kWh)

PLANT / UNIT	WEIGHTING FACTOR (%)	NORMALIZED WEIGHTING FACTOR	TARGET HEAT RATE JAN 10 - DEC 10	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 08 - DEC 08	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 07 - DEC 07	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 06 - DEC 06
BIG BEND 1	5.58%	10.3%	10,785	10,865	10,721	10,867
BIG BEND 2	5.98%	11.0%	10,481	10,614	10,374	10,365
BIG BEND 3	5.42%	10.0%	10,627	10,712	10,546	10,655
BIG BEND 4	9.10%	16.7%	10,661	10,730	10,693	10,663
POLK 1	10.79%	19.8%	10,375	10,140	10,404	10,156
BAYSIDE 1	11.17%	20.5%	7,250	7,250	7,310	7,329
BAYSIDE 2	6.36%	11.7%	7,409	7,373	7,378	7,428
GPIF SYSTEM	54.40%	100.0%				
GPIF SYSTEM WEIGHTED AVEF	RAGE HEAT RAT	'E (Btu/kWh)	9,514	9,505	9,507	9,487

• •

TAMPA ELECTRIC COMPANY DERIVATION OF WEIGHTING FACTORS JANUARY 2010 - DECEMBER 2010 PRODUCTION COSTING SIMULATION FUEL COST (\$000)

UNIT PERFORMANCE INDICATOR	AT TARGET (1)	AT MAXIMUM IMPROVEMENT (2)	SAVINGS (3)	WEIGHTING FACTOR (% OF SAVINGS)
EQUIVALENT AVAILABILITY			···· ····	
EA1 BIG BEND 1	936,879.4	933,159.6	3,719.8	11.06%
EA ₂ BIG BEND 2	936,879.4	931,847.8	5,031.6	14.96%
EA ₃ BIG BEND 3	936,879.4	935,007.1	1,872.3	5.57%
EA ₄ BIG BEND 4	936,879.4	933,518.1	3,361.3	9.99%
EA7 POLK 1	936,879.4	935,705.5	1,173.9	3.49%
EA8 BAYSIDE 1	936,879.4	936,821.2	58.2	0.17%
EA, BAYSIDE 2	936,879.4	936,756.8	122.6	0.36%
AVERAGE HEAT RATE				
AHR1 BIG BEND 1	936,879.4	935,002.1	1,877.3	5.58%
AHR ₂ BIG BEND 2	936,879.4	934,867.9	2,011.5	5.98%
AHR3 BIG BEND 3	936,879.4	935,054.9	1,824.5	5.42%
AHR ₄ BIG BEND 4	936,879.4	933,819.3	3,060.1	9.10%
AHR7 POLK 1	936,879.4	933,248.1	3,631.3	10.79%
AHR ₈ BAYSIDE 1	936,879.4	933,120.8	3,758.6	11.17%
AHR9 BAYSIDE 2	936,879.4	934,741.2	2,138.2	6.36%
TOTAL SAVINGS		-	33,641.218	100.00%

(1) Fuel Adjustment Base Case - All unit performance indicators at target.

(2) All other units performance indicators at target.

(3) Expressed in replacement energy cost.

GPIF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

BIG BEND 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	3,719.8	59.5	+10	1,877.3	10,426
+9	3,347.8	59.0	+9	1,689.6	10,454
+8	2,975.8	58.5	+8	1,501.8	10,483
+7	2,603.9	58.0	+7	1,314.1	10,511
+6	2,231.9	57.5	+6	1,126.4	10,540
+5	1,859.9	57.0	+5	938.7	10,568
+4	1,487.9	56.5	+4	750.9	10,596
+3	1,115.9	55.9	+3	563.2	10,625
+2	744.0	55.4	+2	375.5	10,653
+1	372.0	54.9	+1	187.7	10,682
					10,710
0	0.0	54.4	0	0.0	10,785
					10,860
-1	(740.8)	53.4	-1	(187.7)	10,889
-2	(1,481.6)	52.4	-2	(375.5)	10,917
-3	(2,222.4)	51.4	-3	(563.2)	10,946
-4	(2,963.2)	50.3	-4	(750.9)	10,974
-5	(3,704.0)	49.3	-5	(938.7)	11,003
-6	(4,444.8)	48.3	-6	(1,126.4)	11,031
-7	(5,185.6)	47.3	-7	(1,314.1)	11,060
-8	(5,926.4)	46.3	-8	(1,501.8)	11,088
-9	(6,667.2)	45.2	-9	(1,689.6)	11,117
-10	(7,408.0)	44.2	-10	(1,877.3)	11,145
	Weighting Factor =	11.06%		Weighting Factor =	5.58%

GPIF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

BIG BEND 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE		
+10	5,031.6	73.4	+10	2,011.5	10,176		
+9	4,528.4	72.8	+9	1,810.3	10,199		
+8	4,025.3	72.2	+8	1,609.2	10,222		
+7	3,522.1	71.6	+7	1,408.0	10,245		
+6	3,019.0	71.1	+6	1,206.9	10,268		
+5	2,515.8	70.5	+5	1,005.7	10,291		
+4	2,012.6	69.9	+4	804.6	10,314		
+3	1,509.5	69.3	+3	603.4	10,337		
+2	1,006.3	68.7	+2	402.3	10,360		
+1	503.2	68.1	+1	201.1	10,383		
					10,406		
0	0.0	67.6	0	0.0	10,481		
					10,556		
-1	(1,051.7)	66.4	-1	(201.1)	10,579		
-2	(2,103.4)	65.2	-2	(402.3)	10,602		
-3	(3,155.1)	64.1	-3	(603.4)	10,625		
-4	(4,206.8)	62.9	-4	(804.6)	10,648		
-5	(5,258.5)	61.7	-5	(1,005.7)	10,671		
-6	(6,310.2)	60.6	-6	(1,206.9)	10,694		
-7	(7,361.9)	59.4	-7	(1,408.0)	10,717		
-8	(8,413.6)	58.2	-8	(1,609.2)	10,740		
-9	(9,465.3)	57.1	-9	(1,810.3)	10,764		
-10	(10,517.0)	55.9	-10	(2,011.5)	10,787		
	Weighting Factor =	14.96%		Weighting Factor =	5.98%		

27

......

GPIF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

BIG BEND 3

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE		
+10	1,872.3	80.3	+10	1,824.5	10,365		
+9	1,685.1	80.0	+9	1,642.0	10,384		
+8	1,497.8	79.6	+8	1,459.6	10,402		
+7	1,310.6	79.3	+7	1,277.1	10,421		
+6	1,123.4	79.0	+6	1,094.7	10,440		
+5	936.2	78.6	+5	912.2	10,459		
+4	748.9	78.3	+4	729.8	10,477		
+3	561.7	78.0	+3	547.3	10,496		
+2	374.5	77.6	+2	364.9	10,515		
+1	187.2	77.3	+1	182.4	10,533		
					10,552		
0	0.0	77.0	0	0.0	10,627		
					10,702		
-1	(552.2)	76.3	-1	(182.4)	10,721		
-2	(1,104.5)	75.7	-2	(364.9)	10,740		
-3	(1,656.7)	75.0	-3	(547.3)	10,758		
-4	(2,209.0)	74.3	-4	(729.8)	10,777		
-5	(2,761.2)	73.7	-5	(912.2)	10,796		
-6	(3,313.4)	73.0	-6	(1,094.7)	10,814		
-7	(3,865.7)	72.3	-7	(1,277.1)	10,833		
-8	(4,417.9)	71.7	-8	(1,459.6)	10,852		
-9	(4,970.2)	71.0	-9	(1,642.0)	10,871		
-10	(5,522.4)	70.3	-10	(1,824.5)	10,889		
	Weighting Factor =	5,57%		Weighting Factor =	5.42%		

.

•

GPHF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

BIG BEND 4

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE <u>POINTS</u>	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE		
+10	3,361.3	73.1	+10	3,060.1	10,230		
+9	3,025.2	72.7	+9	2,754.1	10,266		
+8	2,689.0	72.3	+8	2,448.1	10,301		
+7	2,352.9	71.9	+7	2,142.1	10,337		
+6	2,016.8	71.5	+6	1,836.1	10,372		
+5	1,680.7	71.2	+5	1,530.1	10,408		
+4	1,344.5	70.8	+4	1,224.0	10,444		
+3	1,008.4	70.4	+3	918.0	10,479		
+2	672.3	70.0	+2	612.0	10,515		
+1	336.1	69.6	+1	306.0	10,551		
					10,586		
0	0.0	69.2	0	0.0	10,661		
					10,736		
-1	(615.2)	68.5	-1	(306.0)	10,772		
-2	(1,230.4)	67.7	-2	(612.0)	10,807		
-3	(1,845.6)	66.9	-3	(918.0)	10,843		
-4	(2,460.8)	66.1	-4	(1,224.0)	10,879		
-5	(3,076.0)	65.4	-5	(1,530.1)	10,914		
-6	(3,691.3)	64.6	-6	(1,836.1)	10,950		
-7	(4,306.5)	63.8	-7	(2,142.1)	10,986		
-8	(4,921.7)	63.1	-8	(2,448.1)	11,021		
-9	(5,536.9)	62.3	-9	(2,754.1)	11,057		
-10	(6,152.1)	61.5	-10	(3,060.1)	11,092		
	Weighting Factor =	9.99%		Weighting Factor =	9.10%		

GPIF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

POLK 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE		
+10	1,173.9	87.4	+10	3,631.3	9,648		
+9	1,056.5	87.1	+9	3,268.2	9,713		
+8	939.1	86.9	+8	2,905.1	9,779		
+7	821.7	86.6	+7	2,541.9	9,844		
+6	704.3	86.4	+6	2,178.8	9,909		
+5	587.0	86.1	+5	1,815.7	9,974		
+4	469.6	85.9	+4	1,452.5	10,039		
+3	352.2	85.6	+3	1,089.4	10,105		
+2	234.8	85.4	+2	726.3	10,170		
+1	117.4	85.2	+1	363.1	10,235		
					10,300		
0	0.0	84.9	0	0.0	10,375		
					10,450		
-1	(235.0)	84.4	-1	(363.1)	10,515		
-2	(469.9)	83.9	-2	(726.3)	10,580		
-3	(704.9)	83.4	-3	(1,089.4)	10,646		
-4	(939.8)	83.0	-4	(1,452.5)	10,711		
-5	(1,174.8)	82.5	-5	(1,815.7)	10,776		
-6	(1,409.7)	82.0	-6	(2,178.8)	10,841		
-7	(1,644.7)	81.5	-7	(2,541.9)	10,906		
-8	(1,879.6)	81.0	-8	(2,905.1)	10,972		
-9	(2,114.6)	80.5	-9	(3,268.2)	11,037		
-10	(2,349.5)	80.0	-10	(3,631.3)	11,102		
	Weighting Factor =	3.49%		Weighting Factor =	10.79%		

GPHF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

BAYSIDE 1

EQUIVALENT FUEL AVAILABILITY SAVINGS / (LOSS) POINTS (\$000)		ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE		
+10	58.2	95.9	+10	3,758.6	7,125		
+9	52.4	95.8	+9	3,382.7	7,130		
+8	46.6	95.8	+8	3,006.9	7,135		
+7	40.7	95.8	+7	2,631.0	7,140		
+6	34.9	95.8	+6	2,255.1	7,145		
+5	29.1	95.7	+5	1,879.3	7,150		
+4	23.3	95.7	+4	1,503.4	7,155		
+3	17.5	95.7	+3	1,127.6	7,160		
+2	11.6	95.6	+2	751.7	7,165		
+1	5.8	95.6	+1	375.9	7,170		
					7,175		
0	0.0	95.6	0	0.0	7,250		
					7,325		
-1	(5.4)	95.5	-1	(375.9)	7,330		
-2	(10.8)	95.4	-2	(751.7)	7,335		
-3	(16.2)	95.4	-3	(1,127.6)	7,340		
-4	(21.6)	95.3	4	(1,503.4)	7,346		
-5	(27.0)	95.3	-5	(1,879.3)	7,351		
-6	(32.4)	95.2	-6	(2,255.1)	7,356		
-7	(37.8)	95.1	-7	(2,631.0)	7,361		
-8	(43.2)	95.1	-8	(3,006.9)	7,366		
-9	(48.6)	95.0	-9	(3,382.7)	7,371		
-10	(54.0)	94.9	-10	(3,758.6)	7,376		
	Weighting Factor =	0.17%		Weighting Factor =	11.17%		

GPIF TARGET AND RANGE SUMMARY

JANUARY 2010 - DECEMBER 2010

BAYSIDE 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	122.6	95.9	+10	2,138.2	7,326
+9	110.3	95.9	+9	1,924.4	7,327
+8	98.1	95.9	+8	1,710.6	7,328
+7	85.8	95.8	+7	1,496.7	7,329
+6	73.6	95.8	+6	1,282.9	7,329
+5	61.3	95.8	+5	1,069.1	7,330
+4	49.0	95.7	+4	855.3	7,331
+3	36.8	95.7	+3	641.5	7,332
+2	24.5	95.7	+2	427.6	7,333
+1	12.3	95.6	+1	213.8	7,334
					7,334
0	0.0	95.6	0	0.0	7,409
					7,484
-1	(23.5)	95.6	-1	(213.8)	7,485
-2	(47.1)	95.5	-2	(427.6)	7,486
-3	(70.6)	95.4	-3	(641.5)	7,487
-4	(94.1)	95.4	-4	(855.3)	7,488
-5	(117.6)	95.3	-5	(1,069.1)	7,488
-6	(141.2)	95.3	-6	(1,282.9)	7,489
-7	(164.7)	95.2	-7	(1,496.7)	7,490
-8	(188.2)	95.1	-8	(1,710.6)	7,491
-9	(211.8)	95.1	-9	(1,924.4)	7,492
-10	(235.3)	95.0	-10	(2,138.2)	7,493
	Weighting Factor =	0.36%		Weighting Factor =	6.36%

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTH OF:	PERIOD												
BIG BEND I	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010	
1. EAF (%)	0.0	0.0	0.0	54.5	74.4	74.4	74.4	74.4	74.4	74.4	74,4	74.4	54.4	
2. POF	100.0	100.0	100.0	26.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.8	
3. EUOF	0.0	0.0	0.0	18.8	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	18.7	
4. EUOR	0.0	0.0	0.0	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	25.6	
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
6. SH	0	0	0	424	599	579	599	599	579	599	579	599	5,154	
7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
8. UH	744	672	743	296	145	141	145	145	141	145	142	145	3,606	
9. POH	744	672	743	192	0	0	0	0	0	0	0	0	2,351	
10. EFOH	0	Ð	0	77	108	105	108	108	105	108	105	108	933	
11. EMOH	0	0	0	58	82	80	82	82	80	82	80	82	709	
12. OPER BTU (GBTU)	0	0	0	1,597	2,244	2,169	2,244	2,248	2,173	2,245	2,175	2,292	19,400	
13. NET GEN (MWH)	0	0	0	148,238	208,146	201,245	208,218	208,619	201,629	208,266	201,864	212,521	1,798,746	
14. ANOHR (Btu/kwh)	0	0	0	10,772	10,779	10,780	10,779	10,776	10,778	10,778	10,776	10,785	10,785	
15. NOF (%)	0.0	0.0	0.0	90.8	90.3	90.2	90.4	90.5	90.4	90.4	90.5	89.9	89.9	
16. NPC (MW)	395	395	395	385	385	385	385	385	385	385	385	395	388	
17. ANOHR EQUATION	ANO	HR = NOF(-13.958) +	12,040									

ORIGINAL SHEET NO. 8.401.10E PAGE 14 OF 40 . .

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTH OF:	PERIOD												
BIG BEND 2	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010	
1. EAF (%)	70.7	30.3	70.7	70.7	70.7	70.7	70.7	70.7	70.7	70.7	70.7	70.7	67.6	
2. POF	0.0	57.1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4.4	
3. EUOF	29.3	12.6	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	28.1	
4. EUOR	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	29.3	
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
6. SH	554	216	554	536	554	536	554	554	536	554	536	. 554	6,240	
7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
8. UH	190	456	189	184	190	184	190	190	184	190	185	190	2,520	
9. POH	0	384	0	0	0	0	0	0	0	0	0	0	384	
10. EFOH	177	69	177	172	177	172	177	177	172	177	172	177	1,997	
11. EMOH	41	16	41	40	4i	40	41	41	40	4]	40	41	461	
12. OPER BTU (GBTU)	2,106	828	2,108	2,015	2,077	2,009	2,078	2,080	2,011	2,072	2,006	2,114	23,506	
13. NET GEN (MWH)	200,882	79,010	201,078	192,324	198,237	191,731	198,253	198,485	191,929	197,698	191,377	201,694	2,242,698	
14. ANOHR (Btu/kwh)	10,486	10,482	10,485	10,478	10,479	10,480	10,479	10,479	10,479	10,481	10,481	10,484	10,481	
15. NOF (%)	91.8	92.5	91.9	93.2	92.9	92.9	92.9	93.0	93.0	92.7	92.7	92.1	92.5	
16. NPC (MW)	395	395	395	385	385	385	385	385	385	385	385	395	388	
17. ANOHR EQUATION	ANO	HR - NOF(-5.508)+	10,991									

.

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTH OF:	PERIOD											
BIG BEND 3	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010
1. EAF (%)	84.1	84.1	57.0	84.1	84.1	84.1	84.1	84.1	84.1	27.1	84.1	84.1	77.0
2. POF	0.0	0.0	32.3	0.0	0.0	0.0	0.0	0.0	0.0	67.7	0.0	0.0	8.5
3. EUOF	15.9	15.9	10.7	15.9	15.9	15.9	15.9	15.9	15.9	5.1	15.9	15.9	14,5
4. EUOR	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9	15.9
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
6. SH	688	621	466	666	688	666	688	688	666	222	666	688	7,411
7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0
8. UH	56	51	277	54	56	54	56	56	54	522	55	56	1,349
9. POH	0	0	240	0	0	0	0	0	0	504	0	0	744
10. EFOH	93	84	63	90	93	90	93	93	90	30	91	93	1,007
11. EMOH	25	22	17	24	25	24	25	25	24	8	24	25	266
12. OPER BTU (GBTU)	2,460	2,274	1,658	2,381	2,413	2,318	2,407	2,428	2,336	777	2,361	2,468	26,281
13. NET GEN (MWH)	231,310	214,343	155,798	224,509	226,968	217,952	226,352	228,541	219,743	73,093	222,333	232,080	2,473,022
14. ANOHR (Btu/kwh)	10,637	10,611	10,643	10,607	10,630	10,637	10,632	10,623	10,629	10,631	10,617	10,634	10,627
15. NOF (%)	87.3	89.6	86.8	89.9	88.0	87.3	87.7	88.6	88.0	87.8	89.1	87.6	88.2
16. NPC (MW)	385	385	385	375	375	375	375	375	375	375	375	385	378
17. ANOHR EQUATION	ANO	HR = NOF(-11.562)+	11,647								

٠.

ω 5

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTH OF:	PERIOD												
BIG BEND 4	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010	
1. EAF (%)	81.8	81.8	68.6	0.0	26.4	81.8	81.8	81.8	81.8	81.8	81.8	81.8	69.2	
2. POF	0.0	0.0	16.2	100.0	67.7	0.0	0.0	0.0	0.0	0.0	0.0	0.0	15.3	
3. EUOF	18.2	18.2	15.3	0.0	5.9	18.2	18.2	18.2	18.2	18.2	18.2	18.2	15.4	
4. EUOR	18.2	18.2	18.2	0.0	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	18.2	
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
6. SH	654	591	550	0	211	633	654	654	633	654	633	654	6,525	
7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
8. UH	90	81	193	720	533	87	90	90	87	90	88	90	2,235	
9. POH	0	0	120	720	504	0	0	0	0	0	0	0	1,344	
10. EFOH	85	77	71	0	27	82	85	85	82	85	82	85	848	
11. EMOH	51	46	42	0	16	49	51	51	49	51	49	51	504	
12. OPER BTU (GBTU)	2,669	2,426	2,243	0	856	2,563	2,653	2,659	2,572	2,641	2,576	2,711	26,572	
13. NET GEN (MWH)	252,600	230,602	212,213	0	79,983	239,272	247,944	248,838	240,624	246,057	241,286	253,012	2,492,431	
14. ANOHR (Btu/kwh)	10,567	10,518	10,570	0	10,701	10,714	10,701	10,686	10,689	10,735	10,677	10,713	10,661	
15. NOF (%)	90.4	91.4	90.3	0.0	87.7	87.4	87.7	88.0	87.9	87.0	88.2	87.5	88.5	
16. NPC (MW)	427	427	427	432	432	432	432	432	432	432	432	442	432	
17. ANOHR EQUATION	ANO	HR = NOF(-49.970) +	15,084									

ORIGINAL SHEET NO. 8.401.10E PAGE 17 OF 40 ٠.

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTH OF:	PERIOD												
POLK 1	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010	
1. EAF (%)	88.3	44.1	88.3	88.3	88.3	88.3	88.3	88.3	88.3	88.3	88.3	88.3	84.9	
2. POF	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	3.8	
3. EUOF	11.7	5.9	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.3	
4. EUOR	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
6. SH	734	331	734	710	734	710	734	734	710	734	592	734	8,189	
7. RSH	0	0	0	0	0	0	0	0	0	0	119	0	119	
8. UH	10	341	9	10	10	10	10	10	10	10	10	10	452	
9. POH	0	336	0	0	0	0	0	0	0	0	0	0	336	
10. EFOH	67	30	67	65	67	65	67	67	65	67	65	67	755	
11. EMOH	20	9	20	20	20	20	20	20	20	20	20	20	231	
12. OPER BTU (GBTU)	1,599	722	1,599	1,547	1,599	1,547	1,599	1,599	1,547	1,599	1,289	1,599	17,844	
13. NET GEN (MWH)	154,124	69,618	154,074	149,180	154,078	149,096	154,084	154,112	149,155	153,995	124,297	154,089	1,719,902	
14. ANOHR (Btu/kwh)	10,373	10,371	10,377	10,371	10,376	10,377	10,376	10,374	10,373	10,382	10,372	10,376	10,375	
15. NOF (%)	89.4	89.4	89.4	89.4	89.4	89.4	89.4	89.4	89.4	89.3	89.4	89.4	89.4	
16. NPC (MW)	235	235	235	235	235	235	235	235	235	235	235	235	235	
17. ANOHR EQUATION	ANO	HR = NOF(-117.876)+	20,910									

• .

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	PERIOD
BAYSIDE 1	Jan-10	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010
1. EAF (%)	99.4	99.4	99.4	76.2	99.4	99.4	99,4	99.4	9 9 .4	93.0	82.8	99,4	95.6
2. POF	0.0	0.0	0.0	23.3	0.0	0.0	0.0	0.0	0.0	6.5	16.6	0.0	3.8
3. EUOF	0.6	0.6	0.6	0.5	0.6	0.6	i 0.6	0.6	0.6	0.6	0.5	0.6	0.6
4. EUOR	0.6	0.6	0.6	0.6	0.6	0.6	i 0.6	0.6	0.6	0.6	0.6	0.6	0.6
5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760
6. SH	732	666	738	547	738	714	738	738	714	690	520	606	8,138
7. RSH	7	2	1	1	2	2	2	2	2	2	78	134	233
8. UH	5	4	5	171	5	4	5	5	4	52	124	5	388
9. POH	0	0	0	168	0	0	0	0	0	48	120	0	336
10. EFOH	1	1	1	ì	t	1	1	ł	1	1	1	1	16
11. EMOH	3	3	3	2	3	3	3	3	3	3	3	3	36
12. OPER BTU (GBTU)	2,776	2,894	3,163	2,451	3,253	3,081	3,229	3,271	3,085	2,974	2,030	2,238	34,465
13. NET GEN (MWH)	379,143	397,871	434,591	340,071	450,921	426,511	447,339	453,660	427,055	411,703	279,340	305,311	4,753,516
14. ANOHR (Btu/kwh)	7,323	7,273	7,278	7,207	7,214	7,224	7,217	7,211	7,223	7,224	7,266	7,331	7,250
15. NOF (%)	65.4	75.4	74.4	88.7	87.2	85.2	86.5	87.7	85.4	85.1	76.7	63.7	79.9
16. NPC (MW)	792	792	792	701	701	701	701	701	701	701	701	792	731
17. ANOHR EQUATION	ANC)HR = NOF(-4.988)+	7,649								

ORIGINAL SHEET NO. 8.401.10E PAGE 19 OF 40

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2010 - DECEMBER 2010

PLANT/UNIT	MONTII OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	MONTH OF:	PERIOD
BAYSIDE 2	Jan-i0	Feb-10	Mar-10	Apr-10	May-10	Jun-10	Jul-10	Aug-10	Sep-10	Oct-10	Nov-10	Dec-10	2010
1. EAF (%)	99.4	95.9	80.2	99.4	99.4	99.4	99.4	99.4	99.4	99.4	76.3	99.4	95.6
2. POF	0.0	3.6	19.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.3	0.0	3.8
3. EUOF	0.6	0.5	0.5	0. 6	0.6	0.6	0.6	0.6	0.6	0.6	0.4	0.6	0.5
4. EUOR	0.6	0.6	0.6	0.6	0.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
5. PII	744	672	743	720	744	720	744	744	720	744	721	744	8,760
6. SH	402	523	426	610	568	529	568	596	543	561	284	292	5,902
7. RSII	338	122	170	106	171	187	172	143	173	179	266	448	2,474
8. UH	4	28	147	4	4	4	4	4	4	4	171	4	384
9. POH	0	24	144	0	0	0	0	0	0	0	168	0	336
10. EFOH	2	2	2	2	2	2	2	2	2	2	2	2	26
II. EMOH	2	2	2	2	2	2	2	2	2	2	:	2	22
12. OPER BTU (GBTU)	1,595	2,318	2,061	3,066	3,049	2,866	3,132	3,305	2,873	2,843	1,266	1,223	29,646
13. NET GEN (MWH)	211,787	309,386	276,305	414,840	414,368	389,818	426,445	450,249	390,094	384,971	170,055	162,853	4,001,171
14. ANOHR (Btu/kwh)	7,529	7,491	7,458	7,390	7,358	7,353	7,344	7,341	7,365	7,386	7,443	7,511	7,409
15 NOF (%)	\$0.3	56.5	62.0	73.2	78.5	79.3	80.8	81.3	77.3	73.8	64.5	53.3	70.0
16. NPC (MW)	1,047	1,047	1,047	929	929	929	929	929	929	929	929	1,047	968
17. ANOIIR EQUATION	ANO	IR = NOF(-6.070)+	7,834								

TAMPA ELECTRIC COMPANY ESTIMATED PLANNED OUTAGE SCHEDULE GPIF UNITS JANUARY 2010 - DECEMBER 2010

.

...

		PLANNED (DUTAGE						
PLANT / UNIT		DATE	<u>S</u>	OUTAGE DESCRIPTION					
+	BIG BEND 1	Jan 01 -	Apr 08	SCR Outage, Furnace floor replacement, Second radiant superheater replacement, Control room relocation and DCS system upgrade, 2nd,3rd,4th,5th point feedwater heater replacement, Economizer ash reinjection upgrade, HTSH outlet header replacement and Generator rewind					
	BIG BEND 2	Feb 13 -	Feb 28	Fuel System Cleanup					
	BIG BEND 3	Mar 14 - Oct 09 -	Mar 23 Oct 29	Fuel System Cleanup Fuel System Cleanup and Scrubber work					
Ŧ	BIG BEND 4	Mar 27 -	May 21	DA tank replacement, Boiler superheater platen section replacement, Condenser tube bundle replacement, 1st & 2nd point feedwater replacement, Condenser ball cleaning system install, Scrubber work and Stack liner install					
	POLK 1	Feb 07 - Nov 07 -	Feb 20 Nov 11	Gasifier / CT Outage Gasifier Outage					
	BAYSIDE 1	Apr 10 - Oct 30 -	Apr 16 Nov 05	Fuel System Cleanup Fuel System Cleanup					
	BAYSIDE 2	Feb 28 - Nov 13 -	Mar 06 Nov 19	Fuel System Cleanup Fuel System Cleanup					

+ CPM for units with planned outages greater than 4 weeks are included.

TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2010 - DECEMBER 2010

TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2010 - DECEMBER 2010

.

PROJECTED CPM

÷

Note: Big Bend Unit 2 was offline for SCR installation from 11/24/2008 to 4/7/2009; therefore, data is not available for this time period.

Note: Big Bend Unit 3 was offline for SCR installation from 11/18/2007 to 4/28/2008; therefore, data is not available for this time period.

•

.

ORIGINAL SHEET NO. 8.401.10E PAGE 29 OF 40

.

.

•

Tampa Electric Company Heat Rate vs Net Output Factor Big Bend Unit 1

50

ORIGINAL SHEET NO. 8.401.10E PAGE 31 OF 40

Tampa Electric Company Heat Rate vs Net Output Factor Big Bend Unit 3

ORIGINAL SHEET NO. 8.401.10E PAGE 33 OF 40

Tampa Electric Company

Tampa Electric Company Heat Rate vs Net Output Factor Bayside Unit 1

ORIGINAL SHEET NO. 8.401.10E PAGE 36 OF 40

TAMPA ELECTRIC COMPANY GENERATING UNITS IN GPIF TABLE 4.2 JANUARY 2010 - DECEMBER 2010

•

.

PLANT / UNIT		ANNUAL GROSS MDC (MW)	ANNUAL NET NDC (MW)
BIG BEND 1		413	388
BIG BEND 2		413	388
BIG BEND 3		403	378
BIG BEND 4		465	432
POLK 1		305	235
BAYSIDE 1		740	731
BAYSIDE 2		<u>979</u>	<u>968</u>
	GPIF TOTAL	<u>3,719</u>	<u>3,521</u>
	SYSTEM TOTAL	4,706	4,498
	% OF SYSTEM TOTAL	79.0%	78.3%

TAMPA ELECTRIC COMPANY UNIT RATINGS JANUARY 2010 - DECEMBER 2010

. -

.

PLANT / UNIT		ANNUAL GROSS MDC (MW)	ANNUAL NET NDC (MW)
BAYSIDE 1		740	731
BAYSIDE 2		979	968
BAYSIDE 3		59	58
BAYSIDE 4		59	58
BAYSIDE 5		59	58
BAYSIDE 6		59	58
	BAYSIDE TOTAL	<u>1,954</u>	<u>1,930</u>
BIG BEND 1		413	388
BIG BEND 2		413	388
BIG BEND 3		403	378
BIG BEND 4		465	432
	BIG BEND COAL TOTAL	<u>1,695</u>	1,587
BIG BEND CT4		59	58
	BIG BEND CT TOTAL	<u>59</u>	<u>58</u>
COT 1		3	3
COT 2		3	3
	COT TOTAL	<u>6</u>	<u>6</u>
PHILLIPS 1		18	18
PHILLIPS 2		18	18
	PHILLIPS TOTAL	<u>36</u>	<u>35</u>
POLK 1		305	235
POLK 2		163	162
POLK 3		163	162
POLK 4		163	161
POLK 5		163	162
	POLK TOTAL	956	882
	SYSTEM TOTAL	4,706	4,498

TAMPA ELECTRIC COMPANY PERCENT GENERATION BY UNIT JANUARY 2010 - DECEMBER 2010

-

PLANT	UNIT		NET OUTPUT MWH	PERCENT OF PROJECTED OUTPUT	PERCENT CUMULATIVE PROJECTED OUTPUT
BAYSIDE	1		4,753,516	24.05%	24.05%
BAYSIDE	2		4,001,171	20.24%	44.29%
BIG BEND	4		2,492,431	12.61%	56.89%
BIG BEND	3		2,473,022	12.51%	69.40%
BIG BEND	2		2,242,698	11.34%	80.75%
BIG BEND	1		1,798,746	9.10%	89.85%
POLK	1		1, 719 ,902	8.70%	98.55%
BAYSIDE	3		50,569	0.26%	98.80%
POLK	4		47,146	0.24%	99.04%
POLK	5		42,628	0.22%	99.26%
BAYSIDE	4		42,572	0.22%	99.47%
BAYSIDE	5		34,230	0.17%	99.65%
BAYSIDE	6		28,963	0.15%	99.79%
BIG BEND CT	4		19,248	0.10%	99.89%
POLK	2		13,310	0.07%	99.96%
POLK	3		7,515	0.04%	100.00%
PHILLIPS	1		388	0.00%	100.00%
PHILLIPS	2		378	<u>0.00</u> %	100.00%
TOTAL GENERA	ATION		<u>19,768,433</u>	<u>100.00</u> %	
GENERATION BY COAL UNITS: 10,726,799 MWH		GENERATION BY NA	TURAL GAS UNITS:	9,040,868_MWH	
% GENERATION	N BY COAL UNITS:	54.26%	% GENERATION BY	NATURAL GAS UNITS:	45.73%
GENERATION E	Y OIL UNITS:	<u>766_</u> MWH	GENERATION BY GP	PIF UNITS:	19,481,486_MWH
% GENERATION BY OIL UNITS: 0.00%		% GENERATION BY	GPIF UNITS:	98.55%	

59

DOCKET NO. 090001-EI GPIF 2010 PROJECTION FILING EXHIBIT NO. _____ (BSB-2) DOCUMENT NO. 2

EXHIBIT TO THE TESTIMONY OF

BRIAN S. BUCKLEY

DOCUMENT NO. 2

SUMMARY OF GPIF TARGETS JANUARY 2010 - DECEMBER 2010

DOCKET NO. 090001 - EI GPIF 2010 PROJECTION EXHIBIT NO. ____ (BSB-1) DOCUMENT NO. 2 PAGE 1 OF 1

TAMPA ELECTRIC COMPANY SUMMARY OF GPIF TARGETS JANUARY 2010 - DECEMBER 2010

	Availability		Net	
	EAF	POF	EUOF	Heat Rate
Big Bend 1 ¹	54.4	26.8	18.7	10,785
Big Bend 2 ²	67.6	4.4	28.1	10,481
Big Bend 3 ³	77.0	8.5	14.5	10,627
Big Bend 4 ⁴	69.2	15.3	15.4	10,661
Polk 1 ⁵	84.9	3.8	11.3	10,375
Bayside 1 ⁶	95.6	3.8	0.6	7,250
Bayside 2 ⁷	95.6	3.8	0.5	7,409

¹ Original Sheet 8.401.10E, Page 14

² Original Sheet 8.401.10E, Page 15

³ Original Sheet 8.401.10E, Page 16

⁴ Original Sheet 8.401.10E, Page 17

⁵ Original Sheet 8.401.10E, Page 18

⁶ Original Sheet 8.401.10E, Page 19

⁷ Original Sheet 8.401.10E, Page 20

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 090001-EI IN RE: FUEL & PURCHASED POWER COST RECOVERY

AND

CAPACITY COST RECOVERY

PROJECTIONS

JANUARY 2010 THROUGH DECEMBER 2010

TESTIMONY

OF

BENJAMIN F. SMITH, II

DOCUMENT NUTDER

09089 SEP-18

FPSC-COMMISSION CLEAN

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		BENJAMIN F. SMITH, II
5		
6	Q.	Please state your name, address, occupation and
7		employer.
8		
9	A.	My name is Benjamin F. Smith, II. My business address
10		is 702 North Franklin Street, Tampa, Florida 33602. I
11		am employed by Tampa Electric Company ("Tampa Electric"
12		or "company") in the Fuel Services and Systems group
13		within the Fuels Management Department.
14		
15	Q.	Please provide a brief outline of your educational
16		background and business experience.
17		
18	A.	I received a Bachelor of Science degree in Electric
19		Engineering in 1991 from the University of South Florida
20		in Tampa, Florida and am a registered Professional
21		Engineer within the State of Florida. I joined Tampa
22		Electric in 1990 as a cooperative education student.
23		During my years with the company, I have worked in the
24		areas of transmission engineering, distribution
25		engineering, resource planning, retail marketing, and

.

9089 SEP-18

FPSC-COMMISSION CLERK

1		wholesale power marketing. I am currently the Manager
2		of Strategic Fuels and Power Services in the Fuel
3		Services and Systems group. My responsibilities are to
4		evaluate short-term and long-term purchase and sale
5		opportunities within the wholesale power market, assist
6		in wholesale contract structure and help evaluate the
7		processes used to value wholesale power opportunities.
8		In this capacity, I interact with wholesale power market
9		participants such as utilities, municipalities, electric
10		cooperatives, power marketers and other wholesale
11		generators.
12		
13	Q.	Have you previously testified before the Florida Public
14		Service Commission ("Commission")?
15		
16	A.	Yes. I have submitted written testimony in the annual
17		fuel docket since 2003, and I testified before this
18		Commission in Docket Nos. 030001-EI, 040001-EI, and
19		080001-EI regarding the appropriateness and prudence of
20		Tampa Electric's wholesale purchases and sales.
21		
22	Q.	What is the purpose of your direct testimony in this
23		proceeding?
24		
25	A.	The purpose of my testimony is to provide a description

1 of Tampa Electric's purchased power agreements that the 2 company has entered into and for which it is seeking 3 cost recovery through the Fuel and Purchased Power Cost Recovery Clause ("fuel clause") and the Capacity Cost 4 Recovery Clause. Ι also describe Tampa Electric's 5 purchased power strategy for mitigating 6 price and 7 supply-side risk, while providing customers with a reliable supply of economically priced purchased power. 8 9 Please describe the efforts Tampa Electric makes to 10 Q. 11 ensure that its wholesale purchases and sales activities are conducted in a reasonable and prudent manner. 12 13 Tampa Electric evaluates potential purchased power needs 14 Α. opportunities by analyzing 15 and sale the expected 16 available amounts of generation and the power required 17 to meet the projected demand and energy of its Purchases are made to achieve reserve margin 18 customers. meet customers' 19 requirements, to demand and energy needs, to supplement generation during unit outages and 20 for economical purposes. When there is a purchased 21 22 power need, the company aggressively polls the 23 marketplace for wholesale capacity or energy, searching for reliable supplies at the best possible price from 24 creditworthy counterparties. 25

Conversely, when there is a sales opportunity, 1 the company offers profitable wholesale capacity or energy 2 products to creditworthy counterparties. The company 3 has wholesale power purchase and sale transaction 4 enabling agreements with numerous counterparties. 5 This process helps to ensure that the company's wholesale 6 sale activities 7 purchase and are conducted in а 8 reasonable and prudent manner. 9 Tampa Electric reasonably managed its wholesale Q. Has 10 power purchases and sales for the benefit of its retail 11 customers? 12 13 Yes, it has. Tampa Electric has fully complied with, 14 Α. and continues to fully comply with, the Commission's 15 March 11, 1997 Order, No. PSC-97-0262-FOF-EI, issued in 16 17 Docket No. 970001-EI, which governs the treatment of 18 separated and non-separated wholesale sales. The company's wholesale purchase and sale activities and 19 transactions are also reviewed and audited 20 on а recurring basis by the Commission. 21 22 addition, 23 Ιn Tampa Electric actively manages its purchases 24 wholesale and sales with the goal of 25 capitalizing on opportunities to reduce customer costs.

The company monitors its contractual rights with purchased power suppliers as well as with entities to which wholesale power is sold to detect and prevent any breach of the company's contractual rights. Also, Tampa Electric continually strives to improve its knowledge of wholesale power markets and the available opportunities within the marketplace. The company uses this knowledge to minimize the costs of purchased power and to maximize the savings the company provides retail customers by making wholesale sales when excess power is available on Tampa Electric's system and market conditions allow.

1

2

3

4

5

6

7

8

9

10

11

12

15

13 Q. Please describe Tampa Electric's 2009 wholesale energy
14 purchases.

Α. Tampa Electric assessed the wholesale power market and 16 entered into short-term and long-term purchases based on 17 price and availability of supply. Approximately 10 18 percent of the expected energy needs for 2009 will be 19 20 met using purchased power. This purchased power energy includes economy purchases and existing firm purchased 21 power agreements with Hardee Power Partners, qualifying 22 facilities, Calpine, RRI Energy Services (formally known 23 as Reliant), Pasco Cogen, and Progress Energy Florida. 24 the exception of the Progress Energy Florida 25 With

purchase, the testimony in previous years describe each existing firm purchase power agreement, which were subsequently approved by the Commission as being costeffective for Tampa Electric customers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

The Progress Energy Florida purchase is for 100 MW that began September 2008 and continues through September 2009. This purchase is not an extension or amendment of Progress Energy Florida agreements the previously approved by the Commission, but it does have the same structure. Like the previously approved agreements, it is a firm purchase with the energy priced at system Since this agreement had not been signed average fuel. the time Tampa Electric prepared its 2009 fuel at projection for submission, it was not described in that However, the Company included it in its 2009 filing. Ten Year Site Plan ("TYSP") and provided information concerning this purchase in its responses to the TYSP Commission Staff Supplemental Data Request filed April 1, 2009. This purchase provides an estimated \$786,000 savings to customers.

All of these purchases provide supply reliability and help reduce fuel price volatility.

б

1 Q. Has Tampa Electric entered into any other wholesale 2 energy purchases? 3 4 Α. Yes. Tampa Electric has two petitions for approval before the Commission for 5 consideration, and each 6 involves renewable energy. One is a 25 MW purchase from Energy 5.0, filed March 9, 2009, and the other is 7 the extension of an existing 19 MW purchase from the 8 9 City of Tampa, filed March 23, 2009. Both agreements, 10 although signed, contain а provision requiring 11 Commission approval as a condition precedent. Thus, Tampa Electric may terminate either agreement, without 12 penalty, if the Commission determines they are not cost-13 effective. 14 15For 2010, the company expects to meet approximately 16 seven percent of its customers' energy needs through 17 purchased power, which includes economy purchases and 18 19 the existing firm purchased power agreements with Hardee 20 Power Partners, qualifying facilities, Calpine, RRI 21 Energy Services, and Pasco Cogen. All of these 22 purchases provide supply reliability and help reduce price volatility. 23 24 25 Lastly, Tampa Electric will continue to evaluate

economic combinations of forward and spot market energy purchases during its spring and fall generation maintenance periods and peak periods. This purchasing strategy provides a reasonable and diversified approach to serving customers.

1

2

3

4

5

6

7

8

9

10

11

20

25

Q. Does Tampa Electric plan to enter into any other new purchased power agreements during its upcoming Big Bend Unit 1 Selective Catalytic Reduction ("SCR") installation outage?

Currently, the company has no plans to make a purchase 12 Α. for the upcoming SCR installation outage on Big Bend 13 14 Unit 1, which is scheduled to occur November 28, 2009 through April 8, 2010. However, the company continually 15 monitors and engages the marketplace for power purchase 16 will evaluate the economics 17 opportunities and of potential forward purchases during the Big Bend Unit 1 18 outage to reduce the overall cost to customers. 19

Q. Does Tampa Electric engage in physical or financial hedging of its wholesale energy transactions to mitigate wholesale energy price volatility?

A. Physical and financial hedges can provide measurable

market price volatility protection. 1 Tampa Electric purchases physical wholesale products. The company has 2 not engaged financial hedging 3 in for wholesale transactions because the availability of financial 4 5 instruments within the Florida market is limited. The Florida wholesale power market 6 currently operates bilateral 7 through contracts between various counterparties, and there is not a Florida trading hub 8 9 where standard financial transactions can occur with 10 enough volume to create a liquid market. Due to this lack of liquidity, the appropriate financial instruments 11 to meet the company's needs do not currently exist. 12 Tampa Electric has not purchased any wholesale energy 13 derivatives, but the company does employ a diversified 14 power supply strategy, which includes self-generation 15 short-term and long-term capacity 16 and and energy 17 purchases. This strategy provides the company the 18 opportunity to take advantage of favorable spot market pricing while maintaining reliable service 19 to its customers. 20

Q. Does Tampa Electric's risk management strategy for power
 transactions adequately mitigate price risk for
 purchased power for 2009?

21

25

1 Α. Yes, Tampa Electric expects its physical wholesale purchases to continue to reduce its customers' purchased 2 3 power price risk. For example, the 170 MW Calpine purchase and the 158 MW purchase from Reliant in 2009 4 are reliable, cost-based call options on peaking power. 5 These purchases serve as both a physical hedge 6 and 7 reliable source of economical power in 2009. The availability of these purchases is high, and their price 8 structures provide some protection from rising market 9 prices, which are largely influenced by supply and the 10 11 volatility of natural gas prices. 12 Mitigating price risk is a dynamic process, and Tampa 13 Electric continually evaluates its options in light of 14 changing circumstances and new opportunities. 15 Tampa 16 Electric also strives to maintain an optimum level and

long-term capacity 17 mix of shortand and energy purchases to augment the company's own generation for 18 the year 2009 and beyond. 19

Q. How does Tampa Electric mitigate the risk of disruptions 21 22 to its purchased power supplies during major weather related events such a hurricane? 23

20

24

25

During hurricane season, Tampa Electric continues Α. to

utilize a purchased power risk management strategy to 1 2 minimize potential power supply disruptions during major weather related events. The strategy includes 3 monitoring storm activity; evaluating the impact of the 4 5 storm on the wholesale power market; purchasing power on market for reliability and economics; 6 the forward evaluating transmission availability and the geographic 7 location of electric resources; reviewing the seller's 8 fuel sources and dual fuel capabilities; and focusing on 9 fuel-diversified purchases. Notably, both the RRI 10 11 Energy Services and Pasco Cogen purchases are dual fuel resources, having both natural gas and oil capability, 12 which enhances supply reliability during a potential 13 14 hurricane-related disruption in natural qas supply. Absent the threat of a hurricane, and for all other 15 months of the year, the company continues its strategy 16 of evaluating economic combinations of short- and long-17 term purchase opportunities identified in the 18 marketplace. 19 20

21 Q. Please describe Tampa Electric's wholesale energy sales
22 for 2009 and 2010.

23

A. Tampa Electric entered into various non-firm, non separated wholesale sales in 2009, and the company

anticipates making additional non-separated sales during 1 the balance of 2009 and in 2010. In accordance with 2 Order No. PSC-01-2371-FOF-EI, issued on December 7, 2001 3 in Docket No. 010283-EI, all gains from non-separated 4 5 sales are to be returned to customers through the fuel clause, up to the three-year rolling average threshold. 6 For all gains above the three-year rolling average 7 threshold, customers receive 80 percent and the company 8 retains the remaining 20 percent. In 2009, the three-9 10 year rolling average threshold is \$1,077,446, and the projected gains above this threshold are \$1,986,383. 11 In 2010, the projected three-year rolling average threshold 12 is \$1,846,336, and the projected gains above this 13 threshold are \$254,803. 14

17 **Q**. Please summarize your testimony.

15

16

18

Tampa Electric monitors and assesses the wholesale power 19 Α. 20 market to identify and take advantage of opportunities in the marketplace, and those efforts benefit the 21 Tampa Electric's energy supply company's customers. 22 23 strategy includes self-generation and short-term and long-term power purchases. The company purchases in 24 both the physical forward and spot wholesale power 25

1		markets to provide customers with a reliable supply at
2		the lowest possible cost. It also enters into wholesale
3		sales that benefit customers. Tampa Electric does not
4		purchase wholesale energy derivatives in the developing
5		Florida wholesale power market due to a lack of
6		financial instruments appropriate for the company's
7		operations. It does, however, employ a diversified
8		power supply strategy to mitigate price and supply
9		risks.
10		
11	Q.	Does this conclude your testimony?
12		
13	Α.	Yes.
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 090001-EI

IN RE: FUEL & PURCHASED POWER COST RECOVERY AND

CAPACITY COST RECOVERY

PROJECTIONS

JANUARY 2010 THROUGH DECEMBER 2010

TESTIMONY

OF

JOANN T. WEHLE

DOCUMENT NEMBER-DATE

09089 SEP-18

FPSC-COMMISSION CLERK

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		JOANN T. WEHLE
5		
6	Q.	Please state your name, address, occupation and
7		employer.
8		
9	A.	My name is Joann T. Wehle. My business address is 702
10		N. Franklin Street, Tampa, Florida 33602. I am employed
11		by Tampa Electric Company ("Tampa Electric" or
12		"company") as Director, Wholesale Marketing & Fuels.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	A.	I received a Bachelor of Business Administration Degree
18		in Accounting in 1985 from St. Mary's College in Notre
19		Dame, Indiana. I am a CPA in the State of Florida and
20		worked in several accounting positions prior to joining
21		Tampa Electric. I began my career with Tampa Electric
22		in 1990 as an auditor in the Audit Services Department.
23		I became Senior Contracts Administrator, Fuels in 1995.
24		In 1999, I was promoted to Director, Audit Services and
25		subsequently rejoined the Fuels Department as Director
I		09089 SEP-18

.

1

FPSC-COM SISSION CLERK

1 in April 2001. I became Director, Wholesale Marketing and Fuels in August 2002. I am responsible for managing 2 Tampa Electric's wholesale energy marketing and fuel-3 related activities. 4 5 Please state the purpose of your testimony. 6 **Q**. 7 my testimony is 8 A. The purpose of to discuss Tampa 9 Electric's fuel mix, fuel price forecasts, potential 10 impacts to fuel prices, and the company's fuel procurement strategies. I will 11 address steps Tampa Electric takes to manage fuel supply reliability and 12 13 volatility describe price and projected hedging activities. I also sponsor Tampa Electric's 2010 risk 14 management plan submitted on August 4, 2009 in this 15 docket. 16 17 Have you previously testified before this Commission? 18 ο. 19 20 A. Yes. I have testified or filed testimony before this 21 Commission in several dockets, including Docket No. 011605-EI, 031033-EI and 080317-EI as well as the annual 22 23 fuel and purchased power cost recovery dockets from 2001 24 through 2008. My testimony in these dockets described the appropriateness and prudence of Tampa Electric's 25

1 fuel procurement activities, fuel supply risk management, fuel price volatility hedging activities, 2 3 and fuel transportation costs. 4 5 2010 Fuel Mix and Procurement Strategies 6 Q. What fuels will Tampa Electric's generating stations use 7 in 2010? 8 9 Α. In 2010, Tampa Electric expects its fuel mix to be 10 comparable to 2009. In 2010, natural gas-fired and 11 coal-fired generation is expected to be 49 percent and 12 50 percent of total generation, respectively. Generation from No. 2 oil and No. 6 oil is less than one 13 percent of the total expected generation. 1415 16 Q. Have Tampa Electric's generation facilities, and subsequent fuel requirements, changed recently? 17 18 19 A. Yes. Tampa Electric recently retired three oil-fired 20 combustion turbines at Big Bend Station. In 2009, Tampa 21 Electric added five 60 MW aero derivative combustion turbines to its generation portfolio. Four are natural 22 gas fired units located at Bayside Power Station. The 23 fifth unit located at Big Bend Station has dual fuel 24 25 capability that can burn either natural gas or No. 2

1 oil. These units provide black start capability, 2 improve the reliability of the system and provide 3 economical dispatch alternatives. 4 5 ο. How does Tampa Electric's natural gas procurement and 6 transportation strategy achieve competitive natural gas 7 purchase prices for long and short term deliveries? 8 9 A. Tampa Electric uses a portfolio approach to natural gas 10 procurement. The company's portfolio consists of a 11 blend of pre-arranged base load, intermediate and swing 12 supply complemented with daily spot purchases. The 13 contracts have various time lengths to help secure 14 needed supply at competitive prices and maintain the 15 ability to take advantage of favorable natural gas price 16 movements. Tampa Electric purchases its physical 17 natural gas supply from many approved counterparties, 18 enhancing liquidity and diversification of its natural 19 gas supply portfolio. The natural gas prices are based on monthly and daily price indices, further increasing 20 portfolio pricing diversification. 21 22

Tampa Electric has improved the reliability of the physical delivery of natural gas to its power plants by diversifying its pipeline transportation assets,

23

24

25

1		including receipt points, and utilizing pipeline and
2		storage tools to enhance access to natural gas supply
3		during hurricanes or other events that constrain supply.
4		On a daily basis, Tampa Electric strives to obtain
5		reliable supplies of natural gas at favorable prices in
6		order to mitigate costs to its customers. Additionally,
7		Tampa Electric's risk management activities improve the
8		company's natural gas procurement activities by reducing
9		natural gas price volatility.
10		
11	Q.	Please describe Tampa Electric's diversified natural gas
12		transportation arrangements.
13		
14	A .	Tampa Electric receives natural gas via the Florida Gas
15		Transmission ("FGT") pipeline and Gulfstream Natural Gas
16		System, LLC ("Gulfstream"). The ability to deliver
17		natural gas directly from two pipelines enhances the
18		fuel delivery reliability of the Bayside Power Station,
19		the largest natural gas units on Tampa Electric's
20		system. Natural gas can also be delivered to Big Bend
21		Station directly from Gulfstream to support the new aero
22		derivative combustion turbine.
23		
24	Q.	What actions does Tampa Electric take to enhance the
25		reliability of its natural gas supply?

Α. Tampa Electric has maintained natural qas storage capacity with Bay Gas Storage near Mobile, Alabama since 2005. Currently the company reserves 850,000 mmBtu of storage capacity, which enhances access to natural gas in the case of severe weather or other events that disrupt supply. Tampa Electric's storage capacity at Bay Gas Storage will increase to 1,250,000 mmBtu when the fourth cavern is completed in fall 2010.

1

2

3

4

5

6

7

8

9

addition 10 In to storage, Tampa Electric maintains diversified natural gas supply receipt points in 11FGT 12 Zones 1, 2 and 3. Diverse receipt points reduce the company's vulnerability to hurricane impacts in FGT Zone 13 3 and provide access to lower priced gas supply. 14Tampa 15 Electric also participated in the Southeast Supply 16 Header ("SESH") project. SESH connects the receipt points of FGT and other Mobile Bay area pipelines with 17 natural gas supply in the mid-continent. 18 Mid-continent 19 natural qas production has grown and continues to 20 increase through non-conventional shale gas and the Thus, SESH gives Tampa Electric access 21 Rockies Express. to secure on-shore gas supply for a small portion of its 22 23 portfolio. This is beneficial because mid-continent gas 24 supply is typically priced lower than gas supply around 25 Mobile Bay. Commitment to larger quantities would
1		require firm pipeline capacity resulting in an
2		additional fixed cost component.
3		
4	Q.	What is Tampa Electric's coal procurement strategy?
5		
6	Α.	Tampa Electric's two coal-fired plants are Big Bend
7		Station and Polk Station. Big Bend Station is a fully
8		scrubbed plant whose design fuel is high-sulfur Illinois
9		Basin coal. Polk Station is an integrated gasification
10		combined cycle plant currently burning a mix of
11		petroleum coke and low sulfur coal. The plants have
12		varying operational and environmental restrictions and
13		require fuel with custom quality characteristics such as
14		ash, fusion temperature and sulfur, heat and chlorine
15		content. Since coal is not a homogenous product, fuel
16		selection is based on these unique characteristics,
17		along with price, availability, and creditworthiness of
18		the supplier.
19		
20		Tampa Electric maintains a portfolio of bilateral
21		contracts varying in term lengths of long, intermediate,

21 contracts varying in term lengths of long, intermediate, 22 and short for coal supply. Tampa Electric monitors the 23 market to obtain the most favorable prices from sources 24 that meet the needs of the generating stations. The use 25 of daily and weekly publications, independent research

1 analyses from industry experts, discussions with suppliers, and coal solicitations aid the company in 2 monitoring the coal market and shaping the company's 3 coal procurement strategy to reflect current 4 market 5 conditions. This allows for stable supply sources while providing flexibility to take advantage of favorable 6 7 spot market opportunities. The company's efforts to 8 obtain the most favorable coal prices directly benefit its customers. 9 10 11 Q. Has Tampa Electric entered into coal and natural qas 12 supply transactions for 2010 delivery? 13 14Α. Yes, Tampa Electric has contracted its 2010 expected coal needs through bilateral agreements 15with coal 16 suppliers to mitigate price volatility and ensure 17 reliability of supply. Additionally, the majority of the company's 2010 expected natural gas requirements are 18 already under contract. 19 20 Q. Electric reasonably 21 Has Tampa managed its fuel 22 procurement practices for the benefit of its retail customers? 23 24 25 Yes. Tampa Electric diligently manages Α. its mix of

1		long, intermediate, and short term purchases of fuel in
2		a manner designed to reduce overall fuel costs while
3		maintaining electric service reliability. The company's
4		fuel activities and transactions are reviewed and
5		audited on a recurring basis by the Commission. In
6		addition, the company monitors its rights under
7		contracts with fuel suppliers to detect and prevent any
8		breach of those rights. Tampa Electric continually
9		strives to improve its knowledge of fuel markets and to
10		take advantage of opportunities to minimize the costs of
11		fuel.
12		
13	Coal	l Transportation Costs
14	Q.	Are there any changes to Tampa Electric's coal
15		transportation portfolio in 2010?
16		
17	A.	Yes. Tampa Electric is nearing completion of a rail
18		delivery and unloading facility at Big Bend Station.
19		Delivery of coal through this facility is expected to
20		commence in December of 2009. In 2010, Tampa Electric
21		expects to receive nearly 2 million tons of high quality
22		coal for use at Big Bend Station through this rail
23		facility.
24		
25	Q.	What benefits exist from rail transportation of coal for

1 Tampa Electric and its customers? 2 Α. Bimodal solid fuel transportation to Big Bend Station 3 4 affords the company and its customers 1) access to more 5 potential coal suppliers providing a more competitive, overall delivered cost, 2) the flexibility to switch to 6 either water or rail in the event of a transportation 7 8 breakdown or interruption on the other mode, and 3) competition for solid fuel transportation contracts for 9 10 future periods. 11 Q. 12 Did the Commission agree that there are customer benefits 13 associated with bi-modal waterborne and rail deliveries? 14 15 A. Yes, it did. In the 080001 Docket, the Commission 16 determined that the company complied with all 17 requirements of Order No. PSC-04-0999-FOF-EI in procuring its fuel transportation contracts, which required a fair 18 19 and open competitive procurement process to ensure the 20 lowest possible delivered costs through the use of a 21 bimodal fuel delivery system. 22 23 Q. In order to begin taking rail delivery of solid fuels at 24 Big Bend Station, what infrastructure is required? 25

1	A.	The company has constructed extensive rail unloading
2		facilities. The facilities must be built and tested in
3	2	2009 to begin taking delivery by January 1, 2010. The
4		facilities include a double loop track, a large unloading
5		pit, and several thousand feet of conveyors. These
6		facilities will benefit customers over the five-year term
7		of the rail contract and will continue to benefit
8		customers in subsequent years through dual delivery
9		capability and access to additional coal supplies.
10		
11	Q.	Are there any additional rail related costs required for
12		the delivery of coal?
13		
14	A.	Yes. In conjunction with the construction of rail
15		unloading facilities at Big Bend Station, the company
16		conducted a bid solicitation for railcars in late
17		January 2009. The objective was to solicit competitive
18		bids and enter into either an agreement for
19		approximately 440 aluminum, rapid-discharge railcars for
20		the movement of solid fuel from the Illinois Basin and
21		Northern Appalachian coal supply regions to Big Bend
22		Station.
23		
24		Tampa Electric sent the solicitation to 18 different
25		railcar companies and received responses from seven and

five railcar leasing companies and railcar builders, 1 2 respectively. The evaluation was primarily based upon 3 the following components: railcar rate, delivery location, and capacity. It was determined that leasing 4 the railcars was the best option because of the high 5 6 cost to purchase railcars, lack of experience owning or maintaining railcars, and uncertainty surrounding carbon 7 legislation. 8 9 Projected 2010 Fuel Prices 10 11 Q. How does Tampa Electric project fuel prices? 12 Tampa Electric reviews fuel price forecasts from sources 13 Α. widely used in the industry, including Wood Mackenzie 14 (who acquired the former Hill & Associates), the Energy 15 Information Administration, the New 16 York Mercantile Exchange ("NYMEX") and other energy market information 17 18 sources. Futures prices for energy commodities as traded on the NYMEX, form the basis of the natural gas, 19 6 oil No. 2 oil 20 No. and market commodity price 21 The commodity price projections are then forecasts. adjusted to incorporate expected transportation costs 22 and location differences. 23 24

Coal prices and coal transportation prices are projected

12

1 using contracted pricing and information from industry-2 recognized consultants and published indexes and are 3 specific to the particular quality and mined location of 4 coal utilized by Tampa Electric's Big Bend Station and Final as-burned prices are derived using 5 Polk Unit 1. expected commodity prices and associated transportation 6 7 costs. 8 9 Q. How do the 2010 projected fuel prices compare to the 10 fuel prices projected for 2009? 11 Α. The entire industry, including Tampa 12 Electric, has 13 experienced lower than expected fuel prices in 2009. global recession, financial crises, and credit 14 The constraints coupled with plentiful natural gas and coal 15 16 supply caused 2009 prices to plummet from a high in the summer of 2008. Projected fuel prices for 2010 are 17 18 expected to increase slightly in 2010 as the economy and 19 financial crises is projected to improve. 20 Q. 21 What are the market drivers of the expected 2010 price 22 of natural gas? 23 24 Α. The major market drivers for the expected 2010 pricing 25 of natural gas are the protracted economic downturn,

which has resulted in a decline in demand for natural 1 gas from commercial and industrial consumers, and, the 2 additional supply of natural gas from new wells and 3 improved extraction methods. 4 The current market 5 forecasts are projecting a slight recovery of natural gas pricing in the first quarter of 2010. 6 7 What are the market drivers of the change in the price 8 Q. of coal? 9 10 Α. 11 Coal prices dropped dramatically as the global economy deteriorated. Additionally, low natural gas prices have 12 13 caused higher cost coal-fired generation to be displaced by lower cost natural gas combined cycle units. 14The reduced demand for coal has caused inventories 15 to 16 increase throughout the nation. While some mines have cut back on production to counterbalance the inventory 17 increases, prices are projected to stay down until the 18 stock piles decline. 19 20 21 Q. Did Tampa Electric consider the impact of higher than 22 expected or lower than expected fuel prices? 23 Tampa Electric prepared a scenario in which the 24 Α. Yes. forecasted fuel prices were 30 percent higher for both 25 14

1 natural gas and No. 2 oil. Similarly, Tampa Electric 2 prepared a scenario in which the forecasted fuel prices 3 were 30 percent lower for both natural gas and No. 2 oil. 4 5 Risk Management Activities 6 7 Ο. Please describe Tampa Electric's risk management 8 activities. 9 Tampa Electric complies with its risk management plan as 10 Α. 11 approved by the company's Risk Authorizing Committee. Tampa Electric's plan is described in detail in the Risk 12 Management plan filed August 4, 2009 in this docket. 13 14 15 Q. Has Tampa Electric used financial hedging in an effort to help mitigate the price volatility of its 2009 and 16 2010 natural gas requirements? 17 18 19 Α. Yes. Tampa Electric hedged a significant portion of its 20 2009 natural gas supply needs and a portion of its 21 expected 2010 natural gas supply needs. Tampa Electric 22 will continue to take advantage of available natural gas 23 hedging opportunities in an effort to benefit its customers, while complying with the company's approved 24 25 Risk Management Plan. The current market position for

1		natural gas hedges was provided in the Risk Management
2		Plan submitted on August 4, 2009.
3		
4	Q.	Are the company's strategies adequate for mitigating
5		price risk for Tampa Electric's 2009 and 2010 natural
6		gas purchases?
7		
8	A.	Yes, the company's strategies are adequate for
9		mitigating price risk for Tampa Electric's natural gas
10		purchases. Tampa Electric's strategies balance the
11		desire for reduced price volatility and reasonable cost
12		with the uncertainty of natural gas volumes. These
13		strategies are described in detail in Tampa Electric's
14		Risk Management Plan filed August 4, 2009.
15		
16	Q.	How does Tampa Electric determine the volume of natural
17		gas it plans to hedge?
18		
19	A.	Tampa Electric projects the quantity or volume of
20		natural gas expected to be consumed in its power plants.
21		The volume hedged is driven primarily by the projected
22		total gas levels by month and the time until that
23		natural gas is needed. Based on those two parameters,
24		the amount hedged is maintained within a range
25		authorized by the company's Risk Authorizing Committee.

The market price of natural gas does not affect the percentage of natural gas requirements that the company hedges since the objective is price volatility reduction, not price speculation.

1

2

3

4

5

9

Q. Were Tampa Electric's efforts through July 31, 2009 to
mitigate price volatility through its non-speculative
hedging program prudent?

10 Α. Yes. Tampa Electric has executed hedges according to 11 the risk management plan filed with this Commission, 12 which was approved by the company's Risk Authorizing 13 Committee. On April 3, 2009, the company filed its 2008 hedging results as part of the final true-up process. 1415 Additionally, Order No. PSC-08-0316-PAA-EI, issued May 14, 2008, requires the utilities to file a 16 Hedging Information Report showing the results 17 of hedging activities from January through July of 18 the current The Hedging Information Report 19 vear. facilitates prudence reviews through July 31 of the current year and 20 allows for the Commission's prudence determination at 21 22 the annual fuel hearing. Tampa Electric filed its Hedging Information Report showing the results of its 23 prudent hedging activities from January through July 24 2009 in this docket on August 14, 2009. 25

1	Q.	Does Tampa Electric expect its hedging program to
2		provide fuel savings?
3		
4	A.	No. The primary objective of the company's hedging
5		program is to reduce fuel price volatility as approved
6		by the Commission. Tampa Electric employs a well-
7		disciplined hedging program. This discipline requires
8		consistent hedging based on expected needs and avoidance
9		of speculative hedging strategies aimed at out-guessing
10		the market. This discipline insures hedges will be in
11		place should prices spike and also means hedges are in
12		place when prices decline. Using this disciplined
13		approach means that much of the volatility and
14		uncertainty in natural gas prices are removed from the
15		fuel cost used to generate electricity for our
16		customers.
17		
18	Q.	Does this conclude your testimony?
19		
20	A .	Yes, it does.
21		
22		
23		
24		
25		