LAW OFFICES

Rose, Sundstrom & Bentley, LLP

2548 Blairstone Pines Drive Tallahassee, Florida 32301

FREDERICK L. ASCHAUER, JR. CHRIS H BENTLEY, P.A. ROBERT C. BRANNAN F. MARSHALL DETERDING JOHN R. JENKINS, P.A. KYLE L. KEMPER STEVEN T. MINDLIN, P.A. CHASITY H. O'STEEN WILLIAM E. SUNDSTROM, P.A. DIANE D. TREMOR, P.A. JOHN L. WHARTON

ROBERT M. C. ROSE (1924-2006)

(850) 877-6555 Fax (850) 656-4029 www.rsbattorneys.com

REPLY TO CENTRAL FLORIDA OFFICE

October 22, 2009

CENTRAL FLORIDA OFFICE SANLANDO CENTER 2180 W. STATE ROAD 434, SUITE 2118 LONGWOOD, FLORIDA 32779 (407) 830-6331 FAX (407) 830-8522

Martin S. Friedman, P.A. Christian W. Marcelli Brian J. Street

VIA HAND DELIVERY

Ann Cole, Commission Clerk Office of Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399

Re: Docket No. 090349-WS; Cypress Lake Utilities, Inc.'s Application for a Limited Proceeding Water and Wastewater Rate Increase in Polk County, Florida <u>Our File No. 30057.182</u>

Dear Ms. Cole:

Enclosed for filing in the above-referenced docket are the Utility's Notice of Filing and Cypress Lakes WWTP Improvements Preliminary Engineering Report.

Should you or the Staff have any questions regarding this filing, please do not hesitate to give me a call.

Very truly yours,

CHRISTIAN W. MARCELLI For the Firm

 cc: Jennifer Brubaker, Esquire, Office of General Counsel (w/o enclosure) (via e-mail) Bart Fletcher, Division of Economic Regulation (w/o enclosure) (via e-mail) Curt Mouring, Division of Economic Regulation (w/o enclosure) (via e-mail) John P. Hoy, Chief Regulatory Officer (w/o enclosure) (via e-mail) Ms. Kirsten Weeks (w/o enclosure) (via e-mail)
 Patrick C. Flynn, Regional Director (w/o enclosure) (via e-mail)

DOCUMENT NO. DATE

10798-09 10 23,09 FPSC - COMMISSION CLERK

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Application of CYPRESS LAKES UTILITIES, INC. for a limited proceeding in Polk County, Florida

DOCKET NO. 080249-WS

NOTICE OF FILING

Applicant, CYPRESS LAKES UTILITIES, INC., by and through its undersigned attorneys, hereby gives notice of filing in the above-referenced docket CYPRESS LAKES WWTP IMPROVEMENTS PRELIMINARY ENGINEERING REPORT.

Respectfully submitted this 22nd day of October, 2009, by:

ROSE, SUNDSTROM & BENTLEY, LLP 2180 W. State Road 434 Suite 2118 Longwood, FL 32799 Telephone: (407) 830-6331 Facsimile: (407) 830-8522 cmarcelli@rsbattorneys.com

CHRISTIAN W. MARCELLI

For the Firm

DOCUMENT NO. DATE

CYPRESS LAKES WWTP IMPROVEMENTS PRELIMINARY ENGINEERING REPORT

Prepared by:

HDR Engineering, Inc. 315 E. Robinson Street, Suite 400 Orlando, Florida 32801

July, 2007

DOCUMENT NUMBER-DATE 10798 OCT 23 8 FPSC-COMMISSION CLERK

CYPRESS LAKES WWTP IMPROVEMENTS PRELIMINARY ENGINEERING REPORT

Prepared by:

HDR Engineering, Inc. 315 E. Robinson Street, Suite 400 Orlando, Florida 32801

Richard Vo SIGNATURE)

JOHN RICHARD VOORHEES, PE., BCEE FL. P.E. LICENSE NO.: 25385

6/21/07 (DATE)

The signature and seal cover the entire document and the engineering drawings included herein

July, 2007

TABLE OF CONTENTS

4

SECTION	NO. AND TITLE	<u>Page No.</u>
1. INT	RODUCTION	1
1.1	PURPOSE	1
1.2	BACKGROUND	1
1.3	SCOPE OF SERVICES	2
2. HIS	TORICAL AND FUTURE WASTEWATER FLOWS	5
2.1	GENERAL	2 5 5
2.2	AVERAGE FLOW REQUIREMENTS	5
2.2.1		5
2.2.2	PROJECTED AVERAGE FLOWS	6
2.3	Peak Wastewater Flows	7
2.4	PROJECTED BUILDOUT WASTEWATER FLOWS	8
2.5	WASTEWATER CHARACTERISTICS	11
3. EX	ISTING TREATMENT PLANT	13
3.1	Purpose	13
3.2	PERMITTED CAPACITIES AND EFFLUENT CONCENTRATION LIMITS	13
3.3	PROCESS DESCRIPTION	14
3.4	RAW WASTEWATER SCREENING	15
3.5	FLOW EQUALIZATION BASIN	15
3.5.1	EQUALIZATION BASIN TRANSFER PUMPS AND AERATION	15
3.6	Aeration Basins	16
3.7	BLOWERS FOR AERATION TRAINS	17
3.8	CLARIFIERS	17
3.9	GRAVITY SAND FILTERS	18
3.10	CHLORINE CONTACT CHAMBERS	19
3.11	Reject Pond	20
3.12	SUMMARY	21
4. PR	OPOSED IMPROVEMENTS	22
4.1	Purpose	22
4.2	RAW WASTEWATER SCREEN	26
4.3	PROPOSED EQUALIZATION BASIN	26
4.3.1	EQUALIZATION BASIN CAPACITY ANALYSIS AND BASIS OF DESIGN	28
4.3.2	MODIFICATIONS FOR AERATION TRAIN 3	32
4.3.3	PROPOSED EQUALIZATION BASIN TRANSFER PUMPS (EQ. PUMPS)	36
4.3.4	PROPOSED BLOWERS FOR THE EQUALIZATION BASIN	37
4.4	PROPOSED SPLITTER BOX	39
4.5	PROPOSED BLOWERS FOR AERATION TRAINS	39
4.6	PROPOSED IN-PLANT DRAINAGE PUMPING STATION	41
4.7	Power System	43

4.7.1	EXISTING POWER SYSTEM	43
4.7.2	DESIGN OPTIONS FOR THE PROPOSED POWER SYSTEM	43
4.7.3	Emergency Generator	46
5. SUI	MMARY	47
5.1	Report Summary	47
5.2	DESIGN SUMMARY	47

APPENDICES

- APPENDIX A HISTORICAL FLOWS
- APPENDIX B PROCESS UNITS CAPACITIES AT BUILDOUT FLOWS
- APPENDIX C STATIC SCREEN AND SCREENINGS WASHING AND DEWATERING PRESS
- APPENDIX D EQUALIZATION BASIN TRANSFER PUMPS
- APPENDIX D-1 JIB CRANE AND CHAIN HOIST
- APPENDIX E IN-PLANT DRAINAGE PUMPING STATION PUMPS
- APPENDIX F BLOWERS

.

TABLE OF CONTENTS (CONTINUED)

FIGURES

-

_

FIGURE 1.1	CYPRESS LAKES WWTP LOCATION	3
FIGURE 1.2	Site Plan	4
FIGURE 2.1	CYPRESS LAKES WWTP AVERAGE DAILY FLOWS BETWEEN OCTOBER 2003	
	and December 2006	9
FIGURE 2.2	CYPRESS LAKES WWTP AVERAGE DAILY FLOWS AND PEAK HOUR FLOWS	
	during year 2006	10
FIGURE 4.1	PROCESS FLOW DIAGRAM	23
FIGURE 4.2	DEMOLITION PLAN	24
FIGURE 4.3	OVERALL SITE IMPROVEMENTS	25
FIGURE 4.4	PROPOSED SCREEN AND SCREENINGS WASHING AND DEWATERING SYSTEM	27
FIGURE 4.5	Adjusted Diurnal Cumulative Flow at 0.190 MGD	31
FIGURE 4.6	PROPOSED EQUALIZATION BASIN PLAN VIEW.	34
FIGURE 4.7	PROPOSED EQUALIZATION BASIN SECTIONAL ELEVATIONS AND CROSS SECTION	√s 35
FIGURE 4.8	PROPOSED POSITIVE DISPLACEMENT BLOWERS	38
FIGURE 4.9	RAW WASTEWATER SPLITTER BOX.	40
FIGURE 4.10	IN-PLANT DRAINAGE PUMPING STATION	42

TABLES

TABLE 2.1	HISTORICAL MONTHLY AVERAGE DAILY FLOWS FROM 2002 TO 2006	6
TABLE 2.2	HISTORICAL MDFs BETWEEN OCTOBER 2003 AND DECEMBER 2006	7
TABLE 2.3	Historical PHFs during the year 2006	8
TABLE 2.4	PROJECTED BUILDOUT WASTEWATER FLOWS	8
TABLE 2.5	WASTEWATER CHARACTERISTICS	11
TABLE 3.1	LAND APPLICATION/REUSE SYSTEM EFFLUENT CONCENTRATION LIMITS	13
TABLE 3.2	CAPACITIES OF THE EXTENDED AERATION TRAINS AT 0.121 MGD 3MADF	16
TABLE 3.3	CLARIFIERS CAPACITY AT 0.121 MGD 3MADF	18
TABLE 3.4	GRAVITY SAND FILTERS CAPACITIES AT 0.121 MGD 3MADF	19
TABLE 3.5	CHLORINE CONTACT CHAMBERS CAPACITY AT 0.121 MGD 3MADF	20
TABLE 4.1	DAYS SELECTED FOR THE PEAK FLOWS ANALYSIS	29
TABLE 4.2	EQUALIZATION BASIN CAPACITY ANALYSIS	30
TABLE 4.3	FLOW EQUALIZATION TRANSFER PUMPING STATION	36
TABLE 4.4	IN-PLANT DRAINAGE PUMPING STATION GRINDER PUMPS	41
TABLE 4.5	OPTION NO.1 SERVICE CALCULATIONS FOR PROPOSED AND EXISTING EQUIPM	aent44
TABLE 4.6	OPTION NO.2 SERVICE CALCULATIONS FOR PROPOSED AND EXISTING EQUIPM	aent45
TABLE 4.7	ELECTRICAL CONNECTED LOADS FOR EMERGENCY GENERATOR	46
TABLE 5.1	PROCESS DESIGN SUMMARY	48

•

CYPRESS LAKES WWTP PROPOSED MODIFICATIONS PRELIMINAR ENGINEERING REPORT

1. INTRODUCTION

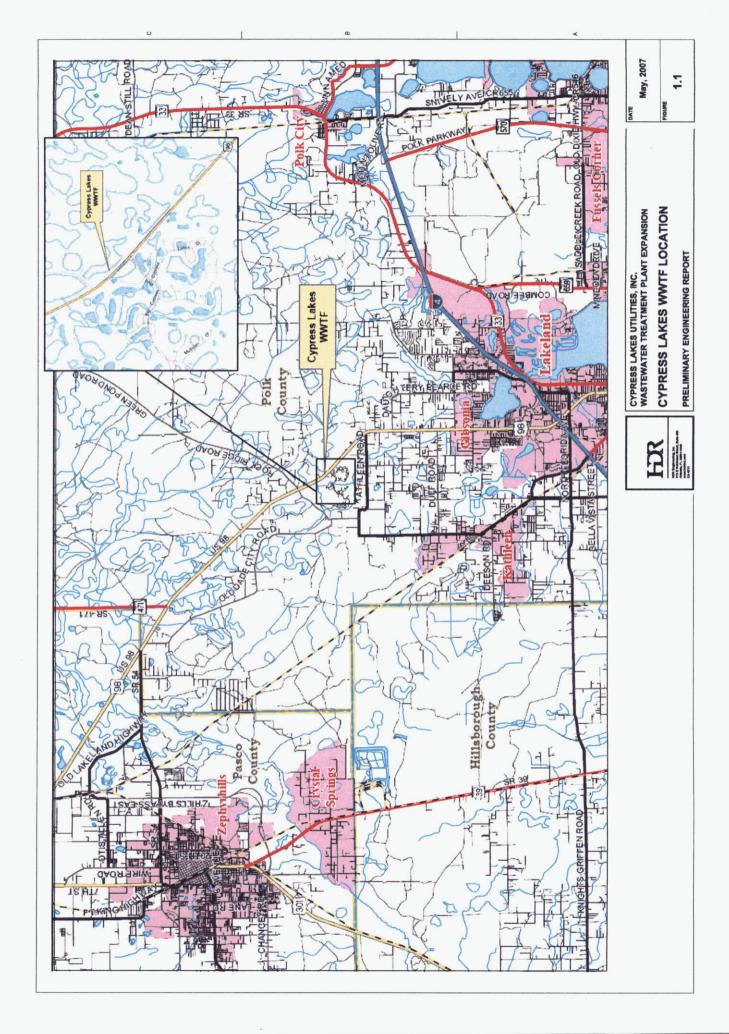
1.1 PURPOSE

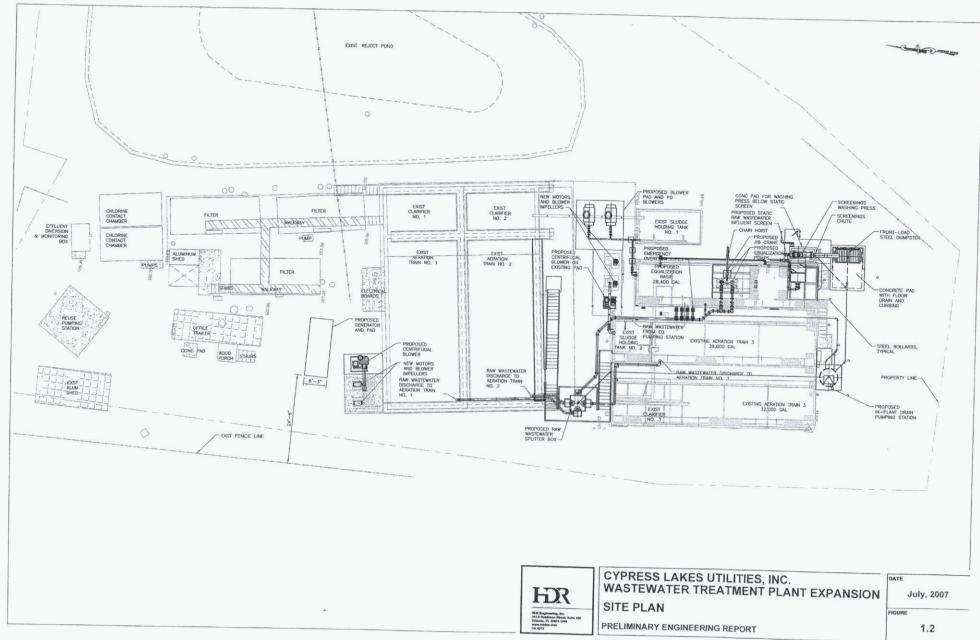
The purpose of this preliminary engineering report is to provide the Florida Department of Environmental Protection (FDEP) with a description of the design methodologies used for the proposed modifications to the Cypress Lakes Wastewater Treatment Plant (WWTP) in accordance with Chapters 62-600 and 62-610 of the Florida Administrative Code (F.A.C).

The modifications presented in this report are for the up-rating of the Cypress Lakes WWTP from 0.175 MGD 3-month average daily flow (3MDAF) to 0.190 MGD Three Month Rolling Average Daily Flow (3MADF). The modifications include replacement of the existing manual bar screen with a new static screen and screenings washing and dewatering system, adaptation of the existing surge tank to a grit compartment, upgrading of the existing Equalization Basin, replacement of the Equalization Basin Transfer Pumps with new submersible pumps of higher capacity and with variable frequency drives, construction of a new flow splitting structure, addition of centrifugal blowers to increase the aeration capacity of the existing Aeration Trains, and the addition of positive displacement blowers to provide aeration to the Equalization Basin and to the newer Sludge Holding Tank.

Information provided in this report is based on documentation provided by Blair Communities Cypress Lakes Utilities, Inc., the Capacity Analysis Report by Gierok Engineering, Inc (January 2006), the Process Evaluation Technical Memorandum by HDR Engineering, Inc (June, 2006), official monthly discharge monitoring reports (DMRs) and plans provided by FDEP (Tampa); and actual flow records provided by the Cypress Lakes WWTP.

1.2 BACKGROUND


The Cypress Lakes WWTP is located in Polk County, north of the City of Lakeland, FL serving the Blair Communities - Cypress Lakes Retirement Community which has a projected buildout of 1,608 units. This WWTP provides advanced secondary treatment of wastewater by extended aeration, effluent filtration, and high level disinfection. The treated wastewater effluent from the facility is discharged to three (3), off-site storage ponds with capacity of 2.0 MGD each for a total storage


capacity of 6 MGD. The reuse water is pumped from the off-site ponds into a public access reuse irrigation system that serves the community golf course and residential lots of the Cypress Lakes Communities. The WWTP is currently permitted for a capacity of 0.175 MGD on a three-month average flow (3MADF) basis and is classified as a Type II, Category III Facility in accordance with Chapters 62-600 and 62-699 FAC. Currently, the Cypress Lakes WWTP operates under the jurisdiction of the FDEP under operating permit FLA013123 issued on January 13, 2004 and with expiration date of January 12, 2009. Figure 1.1 illustrates the location of the Cypress Lakes residential area and the WWTP and Figure 1.2 depicts the Site Plan of the WWTP.

1.3 Scope of Services

The Preliminary Engineering Report for the Cypress Lakes WWTP Improvements was prepared to meet the regulatory requirements for up-rating the WWTP to meet the flows required for buildout of the community wastewater service area. The WWTP Preliminary Engineering Report includes the following:

- Includes projections of influent wastewater flow at buildout and establish design parameters for the proposed improvements.
- Provides the basis of design of the modifications and improvements of the selected treatment units. It also includes design criteria, design standards, and equipment selection necessary to support permitting for construction of the wastewater treatment facility improvements as required by Rule 62-600.700 and Rule 62-620 FAC.
- Summarize WWTP operation and control strategies for process upsets, and reliability.

6/29/2007 2:03:33 PM

1.2, .ig. 0

2. HISTORICAL AND FUTURE WASTEWATER FLOWS

2.1 GENERAL

The Cypress Lakes WWTP is a permanent facility providing advanced secondary treatment with effluent filtration and high-level disinfection for the raw domestic wastewater received from the Blair Communities - Cypress Lakes Retirement Community. The WWTP is owned and operated by Cypress Lakes Utilities, Inc. There are no plans for commercial or industrial development within this community and currently the Cypress Lakes WWTP does not receive commercial or industrial discharges. The population of the retirement community is seasonal with November through April as the period with higher occupancy; however, it is expected that in the future the population will become more permanent year round. The current operating permit for the Cypress Lakes WWTP issued by the FDEP on January 13, 2004 allows for an operating capacity of 0.175 MGD on a 3MADF basis. The projected 3MADF for the buildout capacity with 1,608 units in service has been estimated to be 0.190 MGD to provide sufficient treatment capacity at buildout flows. Maximum daily flows of 0.285 MGD and peak hour events of 0.665 MGD were estimated based on the peaking factors determined for this facility as discussed later in this report.

This section presents the current and projected flows at buildout and the criteria used to determine the peaking factors; the wastewater characteristics, and the effluent concentration limits.

2.2 AVERAGE FLOW REQUIREMENTS

2.2.1 CURRENT AND HISTORICAL AVERAGE FLOWS

Historical monthly average daily flows (MADF) from a period of five years (January 2002 through December 2006), daily average flows (ADF) from a 3-year period between October 2003 and December 2006, and hourly flows for the year 2006 were obtained from the Cypress Lakes WWTP DMRs and from the plant's influent flow meter charts, to estimate the future flows at buildout. A summary of the monthly average, maximum, and annual average flows during the analyzed 5-year period is presented in Table 2.1.

Variation of 3MADFs during the last three years (2004-2006) was minimal ranging from 0.118 to 0.124 MGD 3MADF. Similarly, maximum monthly average flows (MMADFs) did not show significant variation during the same period of time ranging from 0.145 to 0.152 MGD.

	Year							
Month	2002	2003	2004	2005	2006			
January	0.118	0.124	0.131	0.131	0.136			
February	0.124	0.132	0.147	0.146	0.145			
March	0.126	0.138	0.135	0.150	0.143			
April	0.109	0.117	0.126	0.152	0.136			
May	0.088	0.097	0.099	0.108	0.109			
June	0.105	0.098	0.099	0.118	0.103			
July	0.112	0.092	0.101	0.113	0.107			
August	0.104	0.094	0.104	0.099	0.100			
September	0.104	0.094	0.117	0.103	0.106			
October	0.104	0.100	0.114	0.117	0.110			
November	0.104	0.119	0.122	0.126	0.134			
December	0.102	0.116	0.121	0.121	0.131			
Three Month Rolling Average Daily Flow	0.108	0.110	0.118	0.124	0.122			
Max. Monthly Average Flow	0.126	0.138	0.147	0.150	0.145			
Max. Month	Mar.	Mar.	Feb.	Mar.	Feb			

 TABLE 2.1
 HISTORICAL MONTHLY AVERAGE DAILY FLOWS FROM 2002 TO 2006

These patterns suggest that flow increments are affected by new service connections to the sewer system rather than by changes in water consumption habits from residents. Additionally, the average number of residents per unit is not expected to increase significantly since it is mostly a retirement community. Consequently, the individual wastewater production rate per connected unit was assumed to be constant for the historical and projected flows. To calculate this rate for the connected units, the 3MADF of 0.124 MGD recorded for year 2005 was selected and divided by the number of units connected to the sewer system during this year (1,265). The resulting wastewater production rate per unit was 98 gallons per day (gpd) on a 3MADF basis. Thus, the rate used to project the buildout flows for design was set at 100 gpd per connected unit.

2.2.2 PROJECTED AVERAGE FLOWS

The projected average flow was calculated based on the wastewater unit production rate of 100 gpd/unit. It has been projected by the developer of the community that at buildout 1,608 residential units, including the common areas, will be connected to the sewer system serviced by the Cypress Lakes WWTP. At a rate of 100 gallons per day per unit, it was estimated that a three month average daily flow of 0.161 MGD will be entering the plant at buildout. However, because the community serviced is seasonal and maximum month average flows occur for a period of approximately six months November to April) and to provide sufficient treatment capacity at buildout, it is recommended that the modifications to the Cypress Lakes WWTP are designed based on a 3MADF of 0.190 MGD.

2.3 PEAK WASTEWATER FLOWS

The maximum day flow (MDF) peaking factor was calculated from the three month average daily flows between October 2003 and December 2006. Table 2.2 presents a summary of the maximum day flow that occurred each month during the analyzed period.

Year	2	2003	2004		2	.005	2006			
	3MADF	= 0.110	3MADF	= 0.118	3MADF	= 0.124	3MADF = 0.122			
	MGD		MGD		MGD		MGD			
		MDF to		MDF to		MDF to		MDF to		
	MDF	3MADF	MDF	3MADF	MDF	3MADF	MDF	3MADF		
Month	(MGD)	Ratio (PF)	(MGD)	Ratio (PF)	(MGD)	Ratio (PF)	(MGD)	Ratio (PF)		
January	-	-	0.166	1.4	0.170	1.4	0.165	1.4		
February	-	-	0.177	1.5	0.161	1.3	0.181	1.5		
March	÷.	-	0.172	1.4	0.223	1.8	0.156	1.3		
April	-	-	- 12	-	0.156	1.3	0.165	1.3		
May	-	-	0.132	1.1	0.159	1.3	0.140	1.1		
June	-	-	0.118	1.0	0.140	1.2	0.142	1.2		
July	-	-	0.127	1.1	0.144	1.2	0.147	1.2		
August	-	-	-	-	0.131	1.1	0.116	1.0		
September	-	-	0.146	1.2	0.119	1.0	0.147	1.2		
October	0.113	1.0	0.135	1.1	0.167	1.4	0.132	1.1		
November	0.156	1.4	0.140	1.2	0.141	1.2	0.149	1.2		
December	0.148	1.4	0.137	1.2	0.150	1.2	0.166	1.4		

 TABLE 2.2
 HISTORICAL MDFs Between October 2003 and December 2006

The MDF peaking factors (PF) occurring between the months of October and April during the analyzed years range between 1.3 and 1.5. The PF of 1.8 calculated for the maximum day flow of March 2004 is atypical. The maximum day flow of 0.223 MGD occurring that month is an isolated event and is well above the maximum flows entering the plant during the past 4 years.

Despite the increment in the 3MADF during the last years, the ratio between the recorded maximum day flows and the 3MADF has presented the same trends ranging between 1.2 and 1.5. Therefore, a peaking factor of 1.5 was selected to calculate the current and buildout MDFs.

The peak hour flow (PHF) peaking factor was determined from hourly flow records from the year 2006. Hourly flows data for previous years was not available. Table 2.3 presents a summary of the highest peak hour flow recorded each month during 2006 and the associated peaking factor.

Year	2006				
	3MADF = 0.122				
Month	PHF (MGD)	PHF's PF			
January	0.362	3.0			
February	0.449	3.7			
March	0.321	2.6			
April	0.295	2.4			
May	0.267	2.2			
June	0.427	3.5			
July	0.319	2.6			
August	0.276	2.3			
September	0.255	2.1			
October	0.239	2.0			
November	0.330	2.7			
December	0.341	2.8			

TABLE 2.3HISTORICAL PHFS DURING THE YEAR 2006

Most of the PHF peaking factors shown in Table 2.3 are below 3.0. However, to offer a conservative design and to provide enough capacity for peak hour events occurring during filter backwashing periods and other maintenance activities that require re-circulating flow, a PF of 3.5 will be used to estimate the current and buildout PHFs. The analyzed data including daily and hourly flows from the period studied are shown on Figure 2.1 and Figure 2.2.

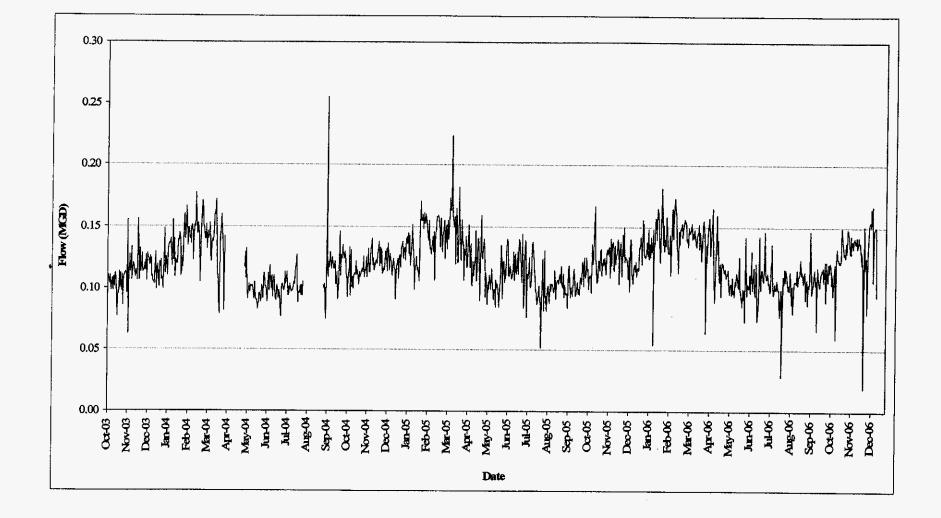

2.4 PROJECTED BUILDOUT WASTEWATER FLOWS

Table 2.4 presents a summary of the projected buildout flows used as a basis of design for the proposed modifications for the Cypress Lakes WWTP improvements. The peaking factor that will be handled by the process units will be discussed later in the report in the section including the equalization basis analysis. The values shown in Table 2.4 have been estimated as discussed previously in this section.

Description	Value	Units
Wastewater connected unit production rate	100	gallons per connected unit
Three Month Rolling Average Daily Flow		
(3MADF)	0.190	MGD
Maximum Daily Flow (MDF)	0.285	MGD
Peak Hour Flow (PHF)	0.665	MGD

TABLE 2.4PROJECTED BUILDOUT WASTEWATER FLOWS

FIGURE 2.1 CYPRESS LAKES WWTP AVERAGE DAILY FLOWS BETWEEN OCTOBER 2003 AND DECEMBER 2006

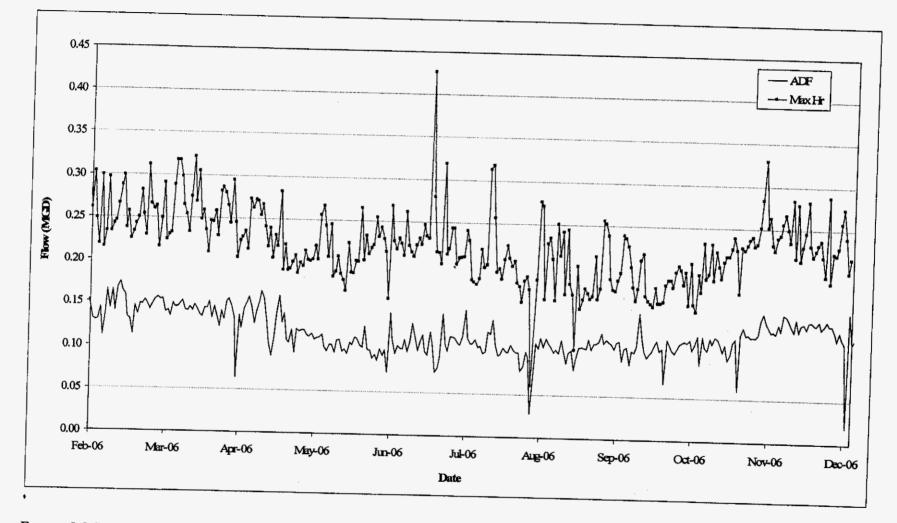


FIGURE 2.2 CYPRESS LAKES WWTP AVERAGE DAILY FLOWS AND PEAK HOUR FLOWS DURING YEAR 2006

2.5 WASTEWATER CHARACTERISTICS

Table 2.5 summarizes historical influent and effluent wastewater characteristics from data reported in the 2005 treatment plant's Discharge Monitoring Report (DMR). Monthly average, minimum, and maximum influent five-day carbonaceous biological oxygen demand (CBOD₅) and total suspended solids (TSS) are shown as well as effluent CBOD₅, TSS, Turbidity, Total Residual Chlorine (TRC), and Fecal Coliforms.

Location	Influ	ent					E	Effluer	nt			
Parameter	CBOD ₅	TSS		CBOD ₅		TSS	p	H	Fecal C	Fecal Coliform Turbidity		
Basis	-	-	An Avg	Mo Avg	Max	Max	Min	Max	Min	Max	Max	Min
Units	-	-	mg/L	mg/L	mg/L	mg/L	SU	SU	#/100 mL	#/100 mL	NTU	mg/L
Limit	-	-	20.0	30.0	60.0	5.0	6.0	8.5	N.D.	25	3.0	1.0
January	470	480	2.0	2.0	2.0	2.6	7.1	7.5	100%	<1.0	0.79	1.6
February	270	110	2.0	2.0	2.0	2.4	7.0	7.5	100%	<1.0	1.24	4.8
March			2.0	2.1	2.1	4.4	7.0	7.4	100%	<1.0	3.20	0.8
April			2.0	2.0	2.0	4.8	7.2	7.5	100%	4.0	4.90	1.5
May	530	110	2.0	2.2	2.2	8.0	7.1	7.4	100%	<1.0	2.90	1.1
June	140	520	2.0	2.0	2.0	2.0	7.1	7.4	100%	1.0	2.10	0.8
July	240	84	2.0	2.0	2.0	3.4	7.1	7.4	100%	<1.0	2.40	0.5
August	860	230	2.0	2.0	2.0	10.0	6.9	7.3	100%	<1.0	1.90	0.7
September	235	135	<2.0	<2.0	<2.0	4.0	7.1	7.4	100%	<1.0	1.40	0.2
October	530	140	2.0	3.4	4.8	<2.0	7.1	7.6	100%	<1.0	1.50	0.2
November	100	140	<2.0	<2.0	<2.0	<2.0	7.0	7.4	100%	<1.0	1.30	0.2
Average	375	217	2.0	2.0	2.3	4.6	7.1	7.4	100%	1	2.15	1.1
Minimum	100	84	2.0	2.0	2.0	2.0	6.9		100%		0.79	0.2
Maximum	860	520	2.1	2.1	3.4	10.0		7.6	100%	4	4.90	

TABLE 2.5 WASTEWATER CHARACTERISTICS

* Percentage of the fecal coliform values below detection limits over a 30-day period.

According to the wastewater effluent concentrations presented in Table 2.5, the Cypress Lakes WWTP is performing within the permitted limits with exception of TSS during the month of August. Turbidity exceeded the set point limits during the months of March and April. The turbidity values exceeding the operating set point could be related to limited capacity of the filters which will be later discussed in this report. The maximum TSS sample for May occurred because of a sample error.

Diversion of effluent to the reject storage pond for low chlorine occurred only for the dates of 08/10/05 and 08/23/05. All other low residual data occurred due to either a faulty battery back-up system or the residual returned to within acceptable levels prior to the five (5) minute alarm period, according to the DMRs for year 2005.

According to the historical data obtained from the plant's DMRs, the characteristics of the raw wastewater discharges to the Cypress Lakes WWTP correspond to a medium to high strength domestic wastewater based on the classification by Metcalf and Eddy, Inc. in "Wastewater Engineering: Treatment and Reuse", Fourth Edition (M&E, 2004). The average influent concentration of CBOD₅ and TSS (245 mg/L and 229 mg/L respectively) were calculated from the monthly average for each parameter reported in the DMRs during a three-year period (November 2003 to November 2006)...Parameters such as the influent Total Kjeldahl Nitrogen (TKN) and Total Phosphorus (TP) were assumed to be 40 mg/L as N and 12 mg/L as P respectively, based on the typical values for medium strength domestic wastewater included in the reference above. These concentrations were used to verify the capacity of the existing process units and as a base for design.

3. EXISTING TREATMENT PLANT

3.1 PURPOSE

The purpose of this section is to provide a detailed summary of the existing processes and equipment at the Cypress Lakes WWTP.

3.2 PERMITTED CAPACITIES AND EFFLUENT CONCENTRATION LIMITS

The current operating permit for the Cypress Lakes WWTP issued by the FDEP on January 13, 2004 allows for an operating capacity of 0.175 MGD on a 3MADF basis. This permit will expire on January 12, 2009. This permit includes land application of the treated effluent for a 0.175 MGD twelve-month average daily flow (12MADF) slow-rate public access reuse system (R-001). This system consists of 3 off-site unlined effluent storage ponds located on the Cypress Lakes Golf Course. It should be noted that unlined ponds may allow rapid infiltration to the ground water, which may be a concern in the future due to the high concentrations of nitrate in the effluent.

The reuse/land application of the effluent requires that it meets the concentration limits established by the FDEP and the United States Environmental Protection Agency (EPA). Such concentration limits vary according to the level of treatment of the wastewater facility. The Cypress Lakes WWTP is classified as a Type II, Category III facility for the secondary treatment of domestic wastewater including secondary organic wastewater treatment, advanced effluent filtration, and high level disinfection. Table 3.1 summarizes the effluent concentration limits for this type of facility.

Parameter	Li	D .	
	Minimum	Maximum	Basis
Flow (MGD)	-	0.175	12 MADF
	-	20.0	Annual Average
CBOD ₅ (mg/L)	-	30.0	Monthly Average
	4	60.0	Single Sample
TSS (mg/L)	-	5	Single Sample
Turbidity (NTU)	-	3.0	Continuous
pH	6.5	8.5	Single Sample
Chlorine Residual (mg/L)	1.0	-	Single Sample
Fecal Coliforms (Non detectable)	75%*	-	30-day period

 TABLE 3.1
 LAND Application/Reuse System Effluent Concentration Limits

* 75% of the fecal coliform values below detection limits over a 30-day period.

3.3 PROCESS DESCRIPTION

5

The Cypress Lakes WWTP is permitted as a 0.175 MGD 3MADF Type II, Category III, extended air domestic wastewater treatment facility. The plant receives the domestic wastewater flows from the Blair Communities Development – Cypress Lakes Retirement Community. The projected buildout flows discussed in Subsection 2.4 estimate that the plant will receive a 0.190 MGD Three Month Rolling Average Daily Flow (3MADF), a maximum daily flow (MDF) of 0.285 MGD, and a peak hour flow (PHF) of 0.665 MGD with an ultimate buildout of 1,608 residences connected to the sewer system. As indicated previously, the Cypress Lakes WWTP does not receive any commercial or industrial flow and there are no plans for commercial or industrial development. The existing facility consists of the processes listed below and illustrated in the Flow Diagram in:

- One (1) manually cleaned bar rack with 1-inch openings.
- One (1) 15,000 gallon aerated surge tank with two (2), 2-inch 1-HP submersible grinder pumps, each with a capacity of 100 gpm at 12 ft. TDH.
- Three (3) activated sludge aeration basins with a total combined capacity of 256,000 gallons, with diffused aeration. Two (2) aeration basins (Trains 1 and 2) each consists of a single tank with a volume of 79,100 gallons and one (1) aeration basin (Train 3) consists of three tanks in series, with individual volumes of 28,400 gallons (Tank No. 1), 39,600 gallons (Tank 2) and 32,000 gallons (Tank 3).
- Two (2) 20-HP centrifugal blowers each with an estimated capacity of 300 cfm at a discharge pressure of 4 psig, based on manufacturer's information and equipment curves. These blowers provide air to Aeration Train 3, the sludge digesters, and the surge tank through coarse bubble diffusers.
- Two (2) 30-HP centrifugal blowers each with an estimated capacity of 450 scfm at a discharge pressure of 6 psig, based on manufacturer's information and equipment curves. These blowers provide air to the Aeration Trains 1 and 2 through coarse bubble diffusers.
- Three (3) rectangular clarifiers with a total surface area of 708 square feet. Clarifiers 1 and 2 each with a side water depth of 11 ft. and clarifier 3 with a side water depth of 10.5 ft.
- Three (3) gravity sand filters. Two (2) of the filters have a surface area of 50 square feet each, and one (1) filter has a surface area of 40 square feet, for a total combined surface area of 140 square feet.
- Two (2) chlorine contact chambers, each with a volume capacity of 2,500 gallons.
- Two (2) 50-HP effluent reuse pumps, each with a capacity of 900 (gpm) at 175 psi.
- Two (2) aerobic sludge holding tanks with a total combined capacity of 17,200 gallons.
- One (1) substandard effluent reject pond with a total volume of 0.231 MGD.

The effluent reject pond receives the effluent of the filtration units and the chlorine contact chambers not meeting the turbidity and chlorine residual concentrations stipulated in the plant operating protocol. The reject water is pumped from the effluent reject pond back to the head of the plant during low flow periods.

High-level disinfection is achieved by adding sodium hypochlorite solution to the filtered effluent and providing sufficient contact time and chlorine to meet the minimum residual requirements for public access reuse.

The sludge in the holding tanks is disposed of by hauling the liquid sludge to an off-site sludge processing facility, operated by a third party.

The following sections of this report will provide descriptions of the existing facilities along with the proposed modifications at the Cypress Lakes WWTP.

3.4 RAW WASTEWATER SCREENING

The raw wastewater screening facility is a manual bar screen with openings of maximum size 1-inch housed in a 2-ft x 2-1/2-ft fabricated, galvanized steel box, located on top of the existing surge tank.

3.5 FLOW EQUALIZATION BASIN

The Cypress Lakes WWTP currently operates with a steel surge tank with a volume of 15,000 gallons. This unit does not operate as an equalization basin as proper dampening of the peak flows is not achieved by the unit due to its small volume available. According to the operations staff of the Cypress Lakes WWTP the capacity of the surge tank is limited during the winter months when high flows are received at the plant due to a seasonal increase on the population served. During these high-flow periods, the flow may have to be directed to the effluent reject pond in order to avoid overflow of the surge tank.

3.5.1 EQUALIZATION BASIN TRANSFER PUMPS AND AERATION

The surge tank is equipped with two (2) submersible sewage grinder pumps, each sized for 100 gpm at 12 ft TDH. Each pump is furnished with a 1 horsepower (HP) single-phase, 230 VAC motor. The size of the discharge piping is 2-inch. These pumps will not provide sufficient pumping capacity at the projected buildout flows.

Aeration of the surge tank is currently provided by centrifugal blowers. These blowers are primarily used to provide air to the Aeration Train 3 and to the two (2) existing sludge holding tanks. At the projected buildout flows the air requirements of the process units will increase and additional blowers for the equalization basin will be required. In addition, centrifugal blowers are not recommended for equalization tank applications due to their inability to properly operate at a wide range of liquid levels. In this case, positive displacement blowers are more suitable to provide air without compromising performance.

3.6 AERATION BASINS

4

The secondary treatment at the Cypress Lakes WWTP consists of three (3) extended Aeration Trains operated in parallel. Aeration Trains 1 and 2, constructed as part of the latest WWTP modification, have a capacity of 79,100 gallons each. Each train has its own clarification unit from which return activated sludge (RAS) is returned to the head of each aeration tank. Aeration Train 3 consists of three tanks in series with a combined capacity of 100,000 gallons distributed as follows: the first tank with capacity of 28,400 gallons, the second tank with capacity of 39,600 gallons, and the third tank with a capacity of 32,000 gallon. The clarifier receiving the effluent of the Aeration Train 3 has a surface area of 228 ft². A RAS pump is located in the clarifier to return the RAS to the first tank (Tank No. 1) of Aeration Train 3. The total aeration volume of the three Aeration Trains is 258,200 gallons.

The existing capacity of each Aeration Train is sufficient to handle the current and projected buildout flows, based on the predictions of the biological model for the Single Stage Activated Sludge process developed by The ECES Group, LLC. Table 3.2 presents a summary of the model results.

TABLE 3.2	CAPACITIES OF THE EXTENDED AERATION TRAINS AT 0.121 MGD 3MADF

Description	Units	Train 1	Train 2	Train 3					
Flow: 0.121 MGD (Average 3MADF 2004-2006)									
Percentage of 3MADF	%	31%	31%	39%					
Volume	gallons	79,100	79,100	100,000					
3MADF	MGD	0.037	0.037	0.047					
HRT ¹	Hours	51.2	51.2	51.2					
SRT ²	Days	54.8	54.8	54.8					
Effluent sol. CBOD ₅	mg/L	1.6	1.6	1.6					

1. Hydraulic retention time (HRT).

2. Solids retention time (SRT)

3.7 3.8

The high HRT's and SRT's at the current flows will provide flexibility to the operation during peak flow events at the projected buildout flows without compromising the organic matter removal efficiencies.

3.7 BLOWERS FOR AERATION TRAINS

Aeration to the existing Aeration Trains 1 and 2 is provided by two (2), 30-HP centrifugal blowers, each with a capacity of 450 scfm at an estimated discharge pressure of 6.0 psig according to the manufacturer's catalog curve. Aeration Train 3 is aerated with two (2), 20 HP centrifugal blowers, each with a capacity of 300 scfm at an estimated discharge pressure of 4.0 psig according to the manufacturer's catalog curve. The two (2), 20 HP blowers are also used to supply air to the existing surge tank and the two (2) existing sludge holding tanks.

The capacity of the existing blowers is sufficient to handle average and peak flows/loads at the current ADF of 0.121 MGD and at ADF's of up to 0.160 MGD. However, Class I Reliability operation is not achieved at any of these flows. Class I reliability is required by FDEP Chapter 62-610 for non-restricted public access to areas where treated effluent is applied. The current aeration system capacity will meet the air demands at the projected buildout flows only if redundant units are added and the discharge pressure of the existing blowers is increased.

3.8 CLARIFIERS

The existing plant has three (3) rectangular clarifiers with a total surface area of 708 square feet. One (1) clarifier with a surface area of 228 square feet treats the effluent from the Aeration Train 3. One (1) clarifier with a surface area of 240 square feet treats the effluent from Aeration Train 1 and one (1) clarifier also with a surface area of 240 square feet treats the effluent from Aeration Train 2.

Each of the three clarifiers has sufficient capacity to treat the current flows without flow equalization of peak flows. Table 3.3 presents a summary of the loading rate of the clarifiers at the current flows. The PHF was used as the design flow due to the existing limitations of the surge tank and to verify the capacity of the clarifiers at the worst case scenario.

 TABLE 3.3
 CLARIFIERS CAPACITY AT 0.121 MGD 3MADF

Parameter	Design Criteria	Units
No. of Existing Clarifiers:	3	
Surface Area of Existing Clarifiers 1 and 2 (each):	240	sqft.
Surface Area of Existing Clarifier 3:	228	sqft.
Weir Length of Existing Clarifiers 1 and 2 (2x19-ft each -per survey):	38	ft.
Weir Length of Existing Clarifier 3: (2x13.6-ft -per survey)	27.2	ft.
MLSS	3,500	mg/L
Return Activated Sludge Flow	0.182	MGD
Design Peak Flow (PHF)	0.424	MGD
Clarifier Loadings at Design Flow		
Maximum Allowable Surface Overflow Rate (SOR)	1,000	gpd/sqft,
Design Flow SOR Clarifiers 1 and 2 (each):	541	gpd/sqft.
Design Flow SOR Clarifier 3:	719	gpd/sqft.
Class 1 Reliability Design Flow SOR	905	gpd/sqft.
Maximum Allowable Solids Loading Rate (SLR)	35	ppd/sqft
MDF SLR Clarifiers 1 and 2 (each):	14	ppd/sqft
MDF SLR Clarifier 3:	19	ppd/sqft
Class 1 Reliability MDF Solids Loading Rate	23	ppd/sqft
Maximum Allowable Weir Loading Rate at Design Flow	20,000	gpd/ft.
Design Flow Weir Loading Rate for Clarifiers 1 and 2 (ea)	3,414	gpd/ft.
Design Flow Weir Loading Rate for Existing Clarifier 3:	4,805	gpd/ft.
Class 1 Reliability Design Weir Loading Rate	6,515	gpd/ft.

3.9 GRAVITY SAND FILTERS

35

Effluent filtration at the Cypress Lakes WWTP comprises three (3) gravity sand filters with a total surface area of 140 ft². One (1) filter has a surface area of 40 square feet and the other two (2) filters, each have a surface area of 50 square feet.

Each filter has granular filter media composed of an upper layer of anthracite with effective size of 1.4 mm to 1.8 mm and uniformity coefficient of less than 1.7, and a bottom layer of sand with effective size of 0.8 mm to 1.0 mm and uniformity coefficient of less than 1.7. The depth of each layer is 24 inches, for a total media depth of 48 inches. A gravel bed with depth of 6 inches supports the sand layer, with stone sizes ranging from 1/12-inch to ³/₄-inch. The backwash system includes two (2) backwash pumps with capacity 305 gpm each and two (2) backwash-return pumps with a capacity of 90 gpm each. According to the operations staff, filter backwash is required twice a day during the winter months and 3 times a week during the summer months. Each backwash period is approximately 15 minutes per filter.

HDR Engineering, Inc.

The filter units have capacity to handle the current flows based on a maximum loading rate of 4.0 gpm/sqft. However, if one filter is out of service and at the same time a second filter is being backwashed, the loading rate of the filter in operation is almost two times the maximum loading rate. Therefore, no backwashing operations should be performed during peak hourly flows when one unit is out of service. At the projected flows, the filters will no require any expansion provided that proper flow equalization is taking place. The filtration capacity will be verified for the projected buildout flows later in this report. Table 3.4 presents a summary of the current filtration capacity.

Description	Value	Unit
A. Design Criteria		
3MADF	0.121	MGD
Design Peak Flow (PHF without EQ):	0.424	MGD
Maximum Allowable Loading Rate	4.0	gpm/sqft
B. Existing Gravity Sand Filters -One Unit out of Service		
No. of Filters:	3	Units.
Total Surface Area:	140	sqft.
Design Surface Area (Largest unit out of service)	90	sqft.
Design Peak Flow Loading Rate for Existing Filters	3.3	gpm.
C. Existing Gravity Sand Filters - One Single Unit Operating		<u> </u>
Design Surface Area (Largest unit out of service and second largest unit on backwash)	7.4	gpm/sqft

 TABLE 3.4
 GRAVITY SAND FILTERS CAPACITIES AT 0.121 MGD 3MADF

3.10 CHLORINE CONTACT CHAMBERS

The current disinfection system consists of two (2) chlorine contact basins with a capacity of 2,500 gallons each, for a total capacity of 5,000 gallons. The Cypress Lakes WWTP provides high level disinfection for the effluent which requires at least a total chlorine residual (TCR) of 1.0 mg/L at all times, a minimum acceptable contact time of 15 minutes at peak hourly flow, and fecal coliform values below detectable limits, following disinfection.

The capacity of the CCCs was determined based on the current peak hour flow given that proper flow equalization is not currently provided. For a PHF equal to 3.5 times the 3MADF (0.424 MGD), and with both contact basins in operation, the estimated detention time is 17 minutes and the resulting TCR is 7.1 mg/L at a CT of 120. However, if one unit is out of service the contact time will drop to 9 minutes and the TCR will be 14 mg/L. Hence, the existing chlorine contact chambers do not have the capacity to handle the current flows providing class I reliability if proper flow equalization is not provided and will not be able to provide the minimum detention times at the buildout flows.

Table 3.5 presents a summary of the current capacity of the disinfection system.

Description	Value	Units		
A. Design Criteria				
Monthly Average Day Demand (MADD):	0.121	MGD		
Design Peak Flow (PHF without EQ and MDF with EQ):	0.424	MGD		
Max. MADF	0.182	MGD		
Class I Reliability (100% Design Peak Flow):	0.424	MGD		
Minimum Detention Time:	15	minutes		
B. Existing CCC 1 & 2				
No. of Trains:	2			
Volume Per Train:	2,500	gallons		
Total Volume:	5,000	gallons		
C. Capacities with 1.5 3MADF as Design Flow				
Maximum Detention Time at Design Peak Flow with all				
Units in Service:	17	minutes		
Chlorine Residual at CT=120	7.1	mg/L		
Detention Time at Class 1 Reliability with Largest Unit				
Out of Service:	9	minutes		
Chlorine Residual at CT=120	14.1	mg/L		

 TABLE 3.5
 CHLORINE CONTACT CHAMBERS CAPACITY AT 0.121 MGD 3MADF

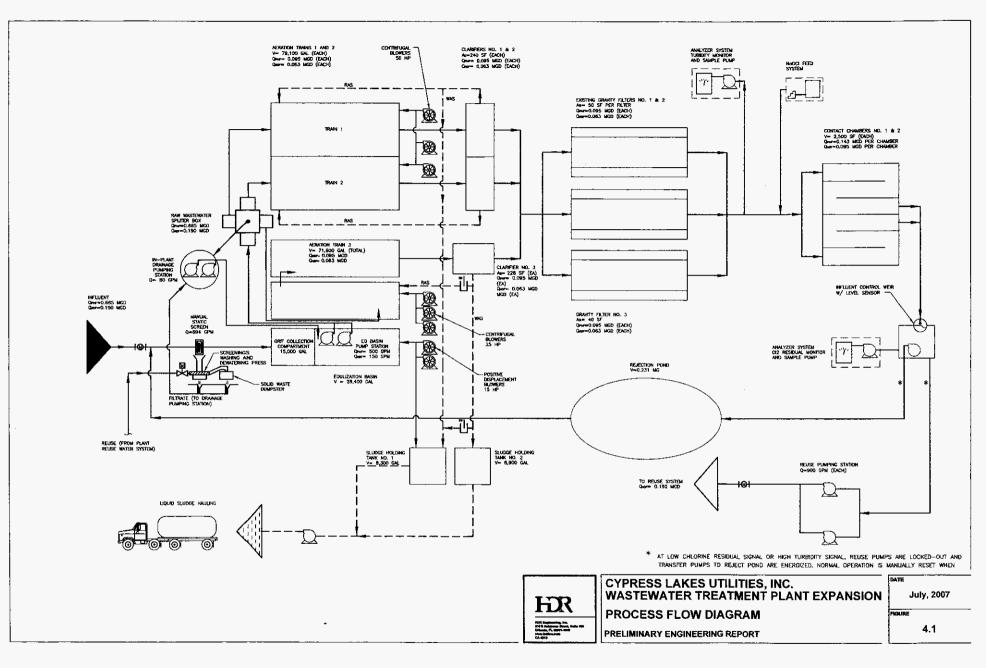
The calculated high residual concentrations may adversely affect golf course turf grass growth. If sufficient flow equalization is provided, the contact time of the basins will increase dropping the chlorine residual concentration to values less than 6.0 mg/L. Therefore, there is not need to increase the capacity of the chlorine contact basin if proper flow equalization is provided at the head of the plant and both basins are functional. It is not recommended that one basin is taken out of service during peak flow conditions at the current and buildout flows.

3.11 REJECT POND

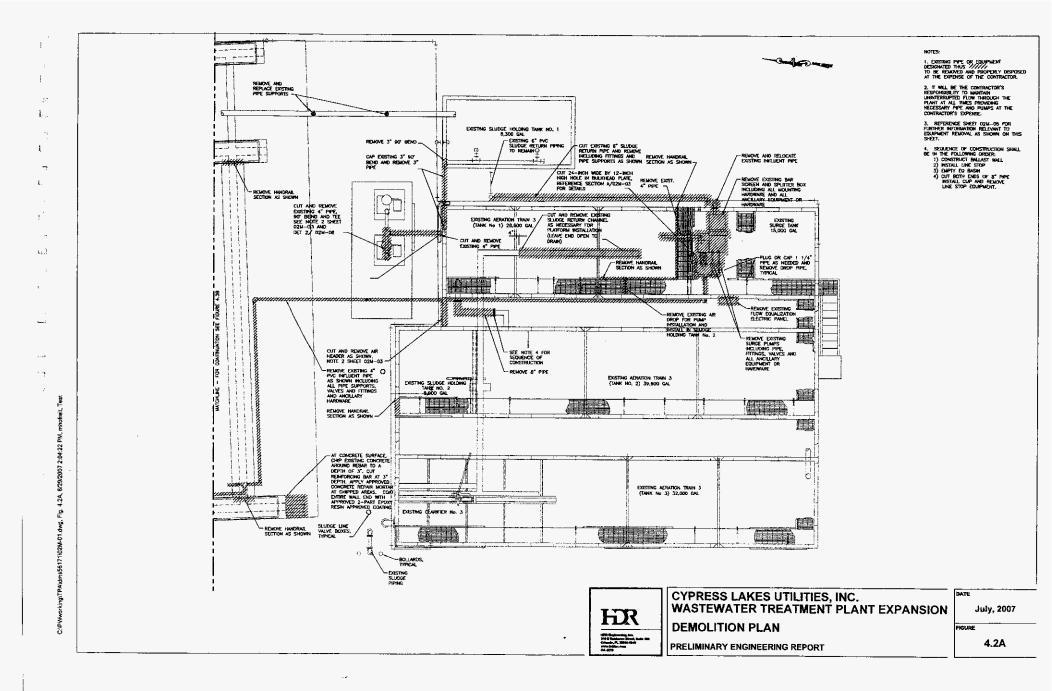
The existing reject pond was surveyed to calculate its actual storage capacity. Based on the survey and the profile created with AutoCad/LandDesktop applications, and based on the location of the existing overflow pipes, the current storage capacity of the existing reject pond is 0.231 MG. This capacity exceeds the projected 3MADF of 0.190 MGD; therefore; no expansion of the reject pond will be required at the proposed buildout flows.

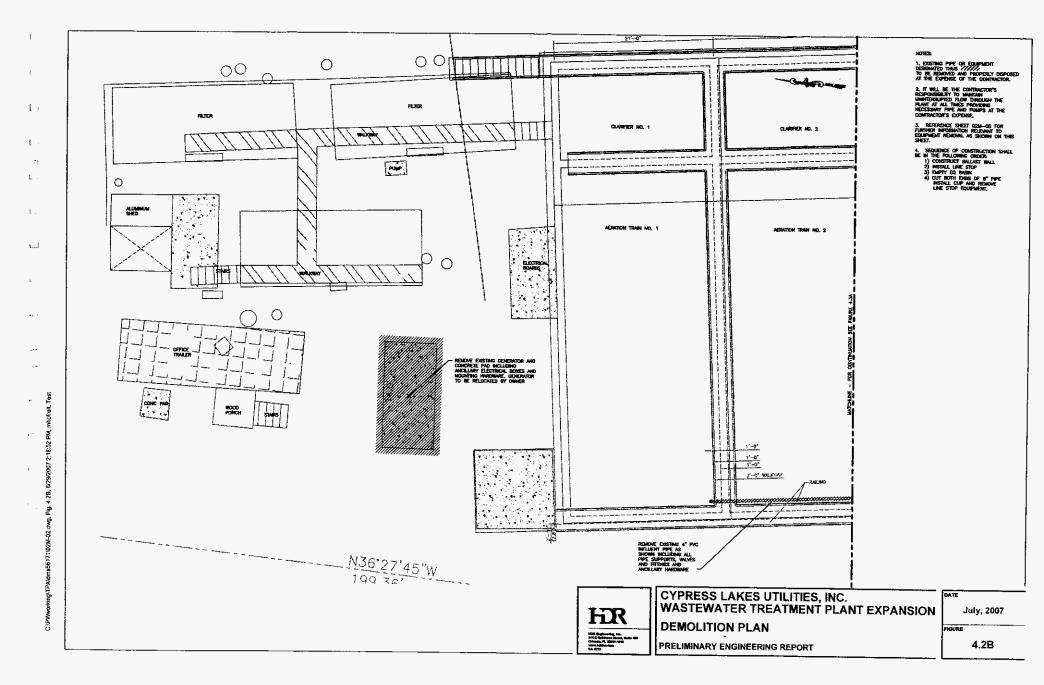
3.12 SUMMARY

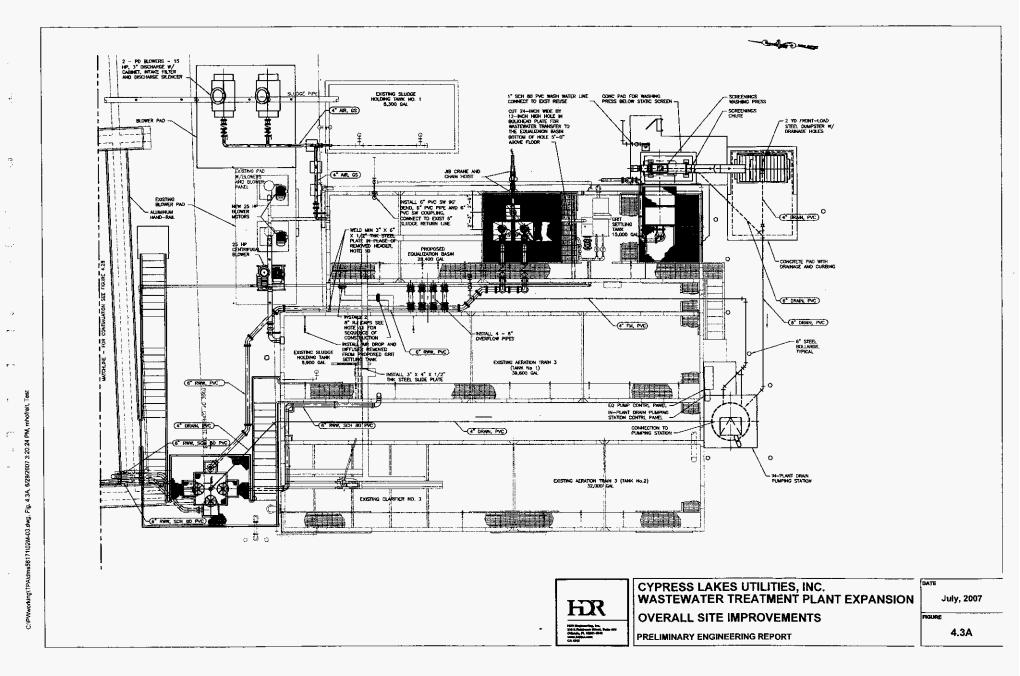
The Cypress Lakes WWTP does not have capacity to handle the buildout flows with Class I Reliability if flow equalization is not provided. At the current 3MADF of 0.121 MGD the surge tank does not have the capacity to handle peak events. The secondary treatment and filtration units have sufficient capacity at the current peak flows but this capacity may be limited at the projected buildout flows without proper flow equalization. The chlorine contact chambers capacity is affected by the limited capacity of the existing surge tank. Moreover, the filtration and disinfection units will not have enough capacity at buildout if the peak flows are not equalized. It should be noted that equal distribution of the flow is just as important as providing flow equalization.

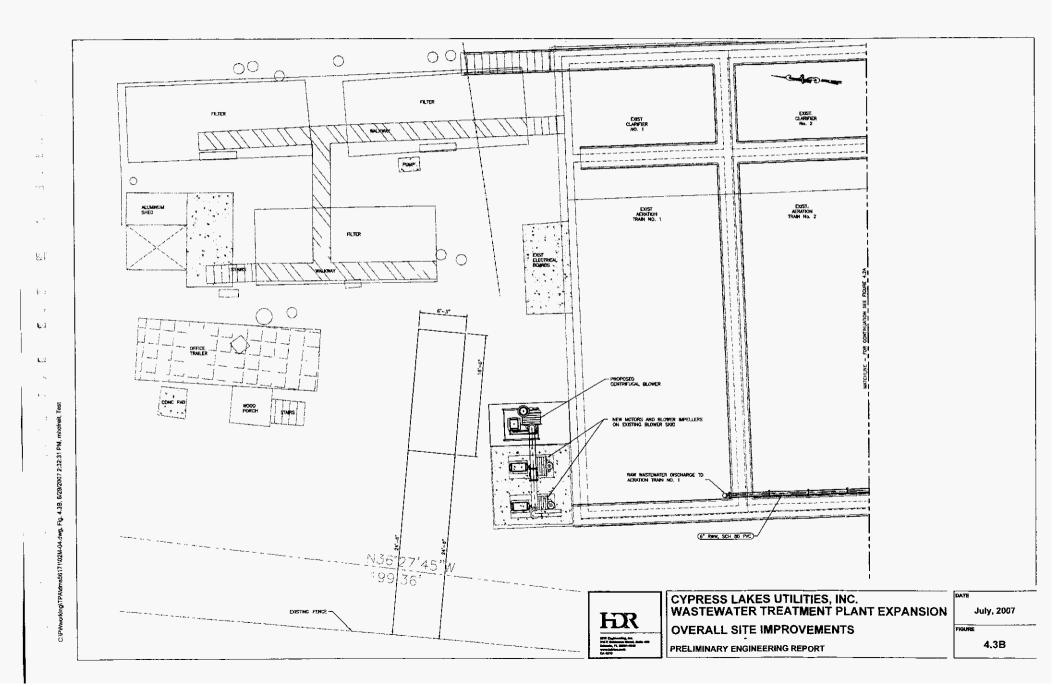

٠

4. PROPOSED IMPROVEMENTS


4.1 **PURPOSE**

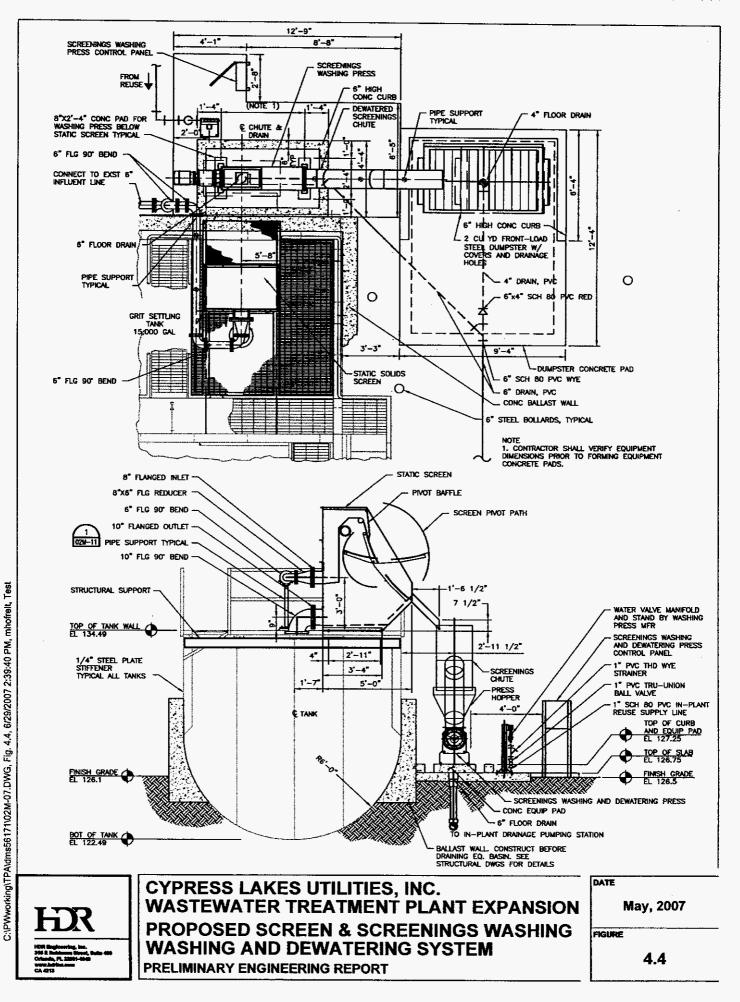

The purpose of this section is to provide a detailed summary of the proposed improvements to the Cypress Lakes WWTP. Figure 4.1 depict the process flow diagram and Figure 4.2 and Figure 4.3 present the demolition plan and overall site improvements respectively. The improvements to the Cypress Lakes WWTP are discussed in further detail below:


- 1. Modification of the existing surge tank for service as a grit compartment.
- 2. Removal of the existing manual bar screen and splitter box and installation of new static screen and screenings washing and dewatering system in the proposed grit compartment (existing surge tank).
- 3. Modification of Tank No. 1 (part of aeration Train 3) for conversion to an equalization basin.
- 4. Installation of new flow equalization pumps with variable frequency drives designed with capacity for the estimated buildout flows, as well as worst case peak hour flow conditions without equalization.
- 5. Construction of a new splitter box for equal distribution of the flows to the three Aeration Trains. The splitter box will have walkways and stairs to connect Aeration Trains 1 and 2 to Aeration Train 3 to optimize operation efficiency.
- 6. Modifications to the existing aeration system which include:
 - a. Installation of two (2) new positive displacement blowers to provide aeration to the proposed equalization basin and the sludge holding tank No. 1.
 - b. Modifications to the existing air piping configuration to isolate Aeration Train 3 from the proposed equalization basin and grit compartment.
 - c. Refitting of the existing centrifugal blowers providing air to the Aeration Trains 1 and 2, and to the centrifugal blowers providing air to the Aeration Train 3. The refurbishment includes replacement of the motors to higher horsepower units and addition of blower impellers to increase the discharge pressure of the existing blowers.
 - d. Installation of one (1) centrifugal blower to provide air to Aeration Train 3 and to provide redundancy.
 - e. Installation of one (1) centrifugal blower to provide air to the Aeration Trains 1 and 2 and one to provide redundancy to the system.
- Installation of a new in-plant drainage pumping station with fiberglass wetwell basin and two
 submersible wastewater grinder pumps each with capacity of 80 gpm at 43.7 ft. TDH.


÷ 1 Ļ. 1.1 τ÷ (-1). ŝ s. 1 mhofreit, Test 4.1, 6/29/2007 2:03:08 PM, $\widetilde{\mathcal{C}}_{\mathcal{A}}$ ġ Gwb. 100G-04 C:\PWworkIng\TPA\c

ļ

4.2 RAW WASTEWATER SCREEN


The existing manual bar screen will be removed and replaced with a new static screen with 2 mm openings (0.08 inch) and a capacity of 694 gpm. The static screen will be constructed of Type 316 stainless steel materials and will be installed on the southeast corner of the proposed grit chamber (existing surge tank). The existing raw wastewater influent pipe will be relocated and will be connected to the flanged 8-inch screen inlet.

A screenings washing and dewatering system will be installed at the screening discharge. The screenings material from the static screen will be discharged into a Type 316 stainless steel hopper and transported to a washing and a dewatering zone by means of a rotating screw. The dewatered material will be discharged to a 2-cubic yard dumpster with easy access for hauling. The wash water and excess water from the dewatering process will be discharged to a drain to the proposed in-plant drainage pumping station and sent to the equalization basin.

The type of screen selected will greatly increase removal of screenings from the raw wastewater and reduce problems in subsequent processes with floatable debris and screenings accumulation in process tankage and the waste sludge. The proposed screenings washing, dewatering and compaction system will benefit the process by reducing the organic material in the screenings, producing dryer screenings and consequently reducing the odors in the screenings collection dumpster. As a consequence vector attraction will be reduced, cleaner production will be achieved, and the hauling cost will be reduced if compared to the volume generated without the system. Figure 4.4 depicts the proposed screen and screenings washing and dewatering system, and Appendix C presents the manufacturer's information on the proposed screen.

4.3 PROPOSED EQUALIZATION BASIN

It is recommended that the existing surge tank be modified to accommodate the projected buildout flows in order to provide the subsequent process units with an equalized flow. This requires a tank with a greater volume, larger pumps, and greater aeration capacity. The proposed modifications are discussed in the following paragraphs.

. . .

<u>, 6</u>

4.3.1 EQUALIZATION BASIN CAPACITY ANALYSIS AND BASIS OF DESIGN

Due to footprint limitations in the current location of the Cypress Lakes WWTP, it is recommended that the first of a series of three tanks (Tank No.1) conforming Aeration Train 3 be converted to an Equalization Basin. Tank No. 1 is located adjacent to the existing surge tank as shown in Figure 4.3Figure 4.2 and has a capacity of 28,400 gallons.

During the worst case flow conditions the equalization basin should have sufficient capacity to equalize the peak flows entering to the plant to the 3MADF of 0.190 MGD (equivalent to a peaking factor of 1.0); otherwise, flow rates higher than 0.190 MGD will be pumped to the subsequent treatment units. The ratio of such flow rate to the 3MADF of 0.190 MGD corresponds to the actual peaking factor that the treatment units would receive during the worst case conditions. An inflow cumulative volume analysis was developed to determine the actual Equalization Basin volume required to attenuate the buildout peaking flows entering the plant and the peaking factors that the treatment units will see based on the actual equalization basin capacity.

The analysis was developed using the average daily flow data a three-year period from October 2003 and December 2006 and the hourly flows from the year 2006. The average daily flows from the three-year period were tabulated and compared. Several values were selected for individual analysis in order to evaluate the different flow scenarios under which the Cypress Lakes WWTP operates. These flow scenarios included:

- <u>Scenario No. 1:</u> Maximum daily flows occurring between November and April when the operation of the plant is considered critical due to the high flows received.
- <u>Scenario No. 2:</u> Three month average daily flows occurring between the months of May and October which are similar in value to the historical 3MADFs.
- Scenario No. 3: Days in which significant peak hour events occurred.

Hourly-flow data was only available for the year 2006; therefore, the hourly flows occurring before this year were obtained by extrapolating from comparable days occurring in 2006.

To analyze Scenarios No. 1 and 3 (MDFs and PHFs), hourly flows from March 25, 2006 were used. The ADF during March 25, 2006 (0.148 MGD) is very close to the maximum monthly average daily flow for 2006 (0.145 MGD) (see Table 2.1). The flows occurring hourly between 12:00 am and 11:00 pm on March 25, 2006, were divided by that day's ADF, which yielded hourly percentages of the ADF that occurred that day. The obtained flow percentages were used to extrapolate the hourly

flows of the selected days (before year 2006) by multiplying the percentage hourly flows by the selected day's ADF. Calculations and flow data for the selected days are presented in Appendix A. The hourly flows of the selected days occurring in 2006 were taken directly from the plant's flow charts.

Table 4.1 presents a summary of the calendar days selected including the peak flow condition evaluated, average daily flows, peak hour flows, and peaking factors for each day. Appendix A presents the hourly flows and calculations for each of the selected days.

		Year's				
	Peak	3MADF	ADF		PHF	
Date	Condition	(MGD)	(MGD)	MDF PF ¹	(MGD)	PHF PF
15-Feb-04	MDF	0.118	0.177	1.5	0.385	3.3
17-Mar-04	MDF	0.118	0.172	1.5	0.374	3.2
28-Mar-05	MDF	0.121	0.180	1.5	0.305	2.5
4-Feb-06	MDF	0.122	0.169	1.4	0.314	2.6
3-Feb-06	MDF	0.122	0.189	1.5	0.310	2.5
25-Mar-06	PHF	0.122	0.148	1.2	0.321	2.6
28-Jun-06	PHF	0.120	0.113	N/A	0.427	3.5
29-Jun-06	PHF	0.120	0.120	N/A	0.280	2.3
5-Sep-06	PHF	0.120	0.123	N/A	0.251	2.1
6-Nov-06	PHF	0.120	0.151	1.3	0.281	2.3

TABLE 4.1 DAYS SELECTED FOR THE PEAK FLOWS ANALYSIS

1. PF = Peaking Factor. MDF peaking factor calculated by dividing the analyzed day's ADF by the 3MADF.

The PHF peaking factors ranged between 2.1 and 3.7. Flow equalization at the head of the plant would drop these peaking factors if adequate storage capacity was available. Inflow cumulative flow analyses are commonly used to determine the required storage volume to drop the peaking factors to 1.0. However, in the case of the Cypress Lakes WWTP, the volume of the proposed equalization basin is limited by the volume of the existing structure. Therefore, the inflow cumulative flow analysis was used instead to determine the new peaking factors occurring after flow equalization.

The analysis was developed for the 24-hour diurnal flows occurred on the selected days shown in Table 4.1. The criteria outlined in M&E, 2004 was used to perform the cumulative flow analysis. The obtained capacity requirements for equalization of the buildout flows in some cases exceeded the existing capacity of the proposed tank (28,400 gallons). This occurred at MDF or high PHF events. These events were selected as the worst case scenario and as basis of design even though

HDR Engineering, Inc.

Page 29

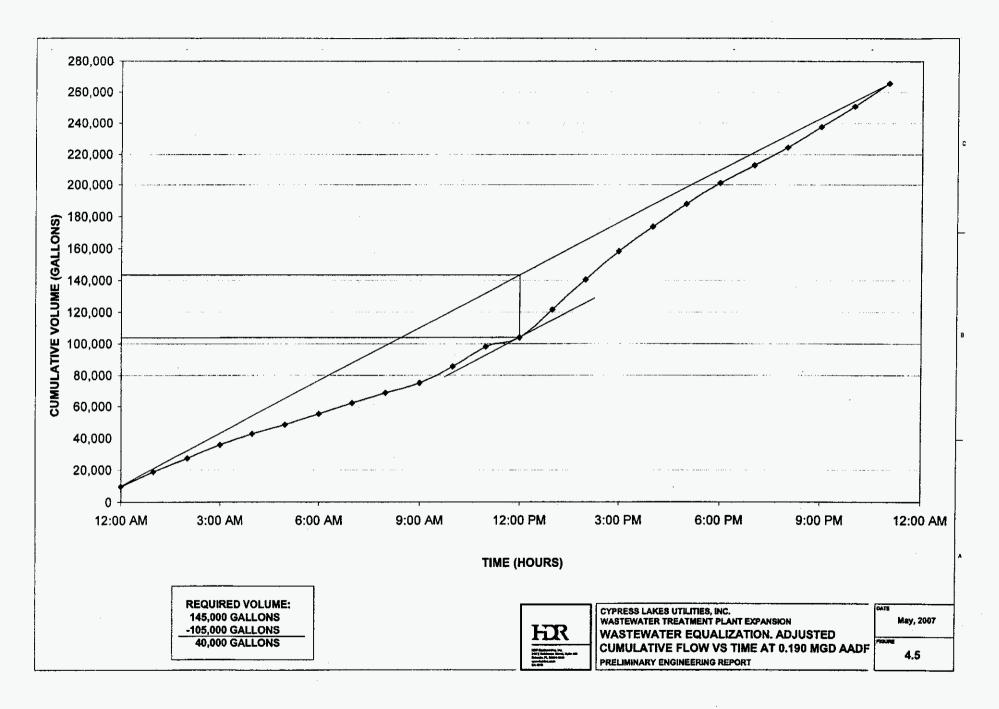
they only occur a few times during the year. Table 4.2 presents a summary of the estimated equalization basin required, the estimated pumping rates to the treatment units after flow equalization and the corresponding peaking factors. Appendix A presents the calculations for the cumulative flow analysis for each analyzed day.

	Dealr		Calculated data for buildout flows				Old PHF PF
	Peak	ADF	Required Capacity	ed Capacity Pumping rate		New PF w/ Flow	
Date	Condition	(MGD)	(gallons)	gpm	MGD	Equalization	Equalization
15-Feb-04	MDF	0.177	50,616	214	0.308	1.6	3.3
17-Mar-04	MDF	0.172	47,797	200	0.288	1.5	3.2
28-Mar-05	MDF	0.180	39,648	201	0.289	1.5	2.5
4-Feb-06	MDF	0.169	29,916	164	0.236	1.2	2.6
3-Feb-07	MDF	0.189	29,743	205	0.295	1.6	2.5
					Average	1.5	3.0
25-Mar-06	PHF	0.148	36,325	143	0.206	1.1	2.6
28-Jun-06	PHF	0.113	56,942	200	0.288	1.5	3.5
29-Jun-06	PHF	0.120	17,382	120	0.173	0.9	2.3
5-Sep-06	PHF	0.123	25,851	128	0.184	1.0	2.1
6-Nov-06	PHF	0.151	35,209	140	0.202	1.1	2.3
Average 1.0 2.6							

TABLE 4.2EQUALIZATION BASIN CAPACITY ANALYSIS

Based on this analysis, the maximum capacity required for the Equalization Basin is approximately 57,000 gallons (Based on June 28, 2006 flows) for a peak hour event corresponding to a peaking factor of 3.5 during a day with flow similar or equal to the 3MADF (0.190 MGD). However, the higher pumping rate that will be entering the process units during a 24-hour period (peaking factor of 1.5) occurs during a maximum day flow (Based on March 28, 2005 flows).

Therefore, data from March 28, 2005 was selected as basis of design. Thus, with the proposed modifications to the Equalization Basin, the treatment units will receive flows with a peaking factor of 1.5 under the worst case scenario and of 1.0 or less under normal flow conditions. All the treatment units were verified to have capacity to handle a 1.5 peaking factor. Performance of each unit at this peaking factor at the buildout flows is presented in Appendix B of this report. Figure 4.5 illustrates the diurnal cumulative volume curve for this day.

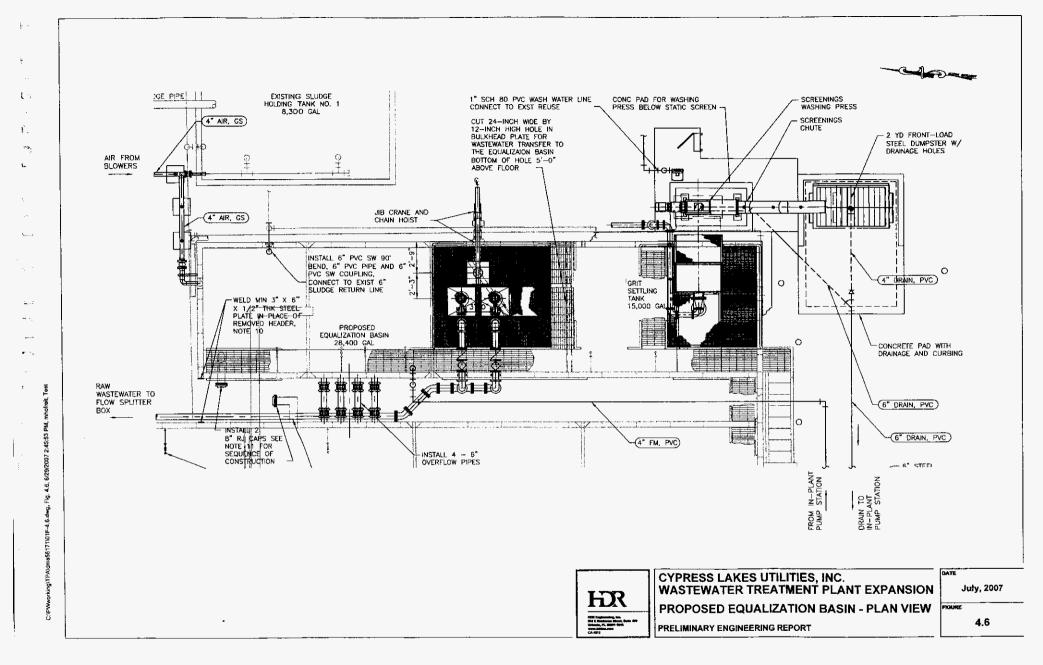

10.00

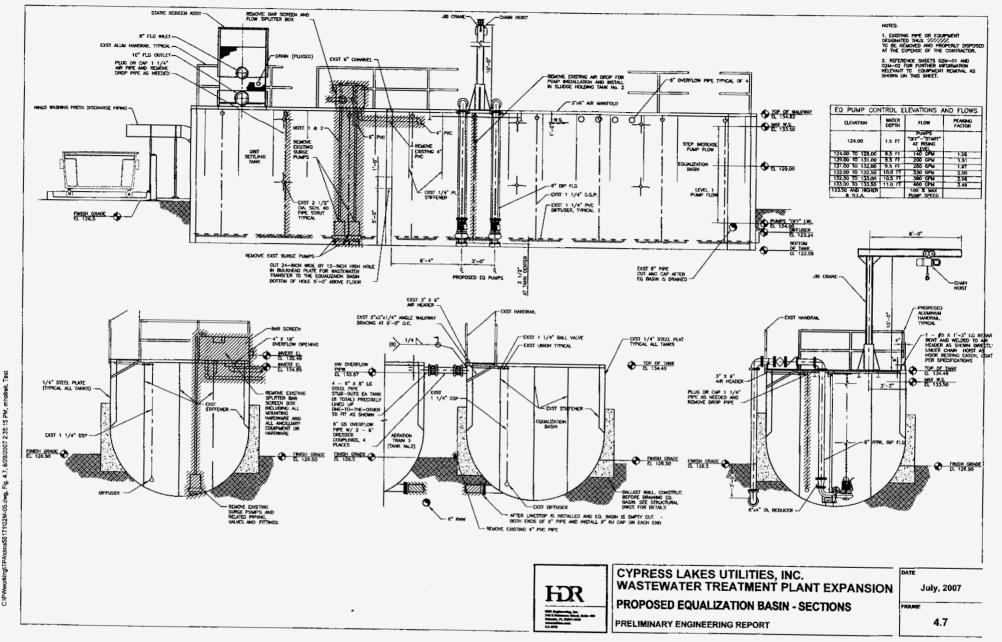
ł٧

1

1....

4.3.2 MODIFICATIONS FOR AERATION TRAIN 3


It is the Design Team recommendation that the existing surge tank be used as a grit compartment and as the location for the new plant headworks, and that modifications be made to Tank No. 1 to convert it to an Equalization Basin. Tank No.1 is the first of a series of three tanks that comprise the Aeration Train 3.


Conversion of Tank No. 1 of Aeration Train 3 to an Equalization Basin will provide the plant with a new equalization basin capacity of 28,400 gallons. This new basin capacity will reduce the PHF to 3MADF ratio from 3.5 to 1.5 during maximum day flows, and to 1.0 or less at all other times. The existing surge tank will be converted to provide grit settling and grit containment. The grit will be removed periodically by outside contractors using portable grit pumps. Proposed modifications to the existing Tank No. 1 are illustrated in Figure 4.6 and Figure 4.7 and listed below:

- 1. Isolation, partial removal and welding and/or capping of existing piping in Aeration Train 3 connecting Tanks No. 1 and No. 2. This includes raw wastewater piping, air piping, and return activated sludge (RAS) channel.
- 2. Isolation partial removal and welding and/or capping of existing air piping in Aeration Train 3 connecting Tank No. 1 and the existing surge tank.
- 3. Removal of existing manual bar screen and splitter box and removal and/or isolation of piping connecting the existing splitter box to the three Aeration Trains.
- 4. Removal of existing submersible pumps and installation of two (2), 5-HP submersible pumps with variable frequency drives. Each pump will be capable of flows ranging from 0 to 500 gpm for a TDH ranging from 9-ft to 26-ft.
- 5. Installation of a new static screen with 2mm (0.080 inch) openings and with a capacity of 780 gpm, and installation of a screenings washing and dewatering system. This equipment is to be located in the proposed grit compartment (existing surge tank).
- 6. Installation of 5-ft x 4-ft by 1/2-in steel plate, welded to the bottom of the tank. This plate will provide a flat surface to support the new pump discharge elbow and pumps.
- Construction of four (4) 6-inch PVC emergency overflow pipes from the equalization basin to Aeration Train 3 - Tank No.2. The invert elevation of the overflow pipes will be located eleven (11) inches below the top of the tank and the centerline of the pipes will be installed 18 inches apart.
- 8. Modifications to the existing bulkhead to allow flow from the proposed grit compartment to the proposed equalization basin. The modification consists of cutting a 24-inch wide by 12-

inch opening. The bottom of the opening will be located five (5) feet from the bottom of the tank.

- 9. Installation of structural support for pump guide rails and access platform, and modifications to the existing walkway. Lighting for the proposed support platform will be provided.
- 10. Modifications to existing walkway to provide support for pump discharge piping and valves. To avoid a tripping hazard, discharge piping that will be supported on a portion of the existing walkway will be covered by a new walkway installed 1-ft above the existing walkway.
- 11. Connection of two (2) new positive displacement blowers to the existing air piping in Tank No. 1, to provide air exclusively to the new Equalization Basin and the sludge holding tank.
- 12. Construction of a ballast wall around the proposed equalization basin and grit compartment to avoid buoyancy issues during construction.

Test N ÷ 2:35: 4.7.6/29/2007 Ē ŝ 12 71/02/

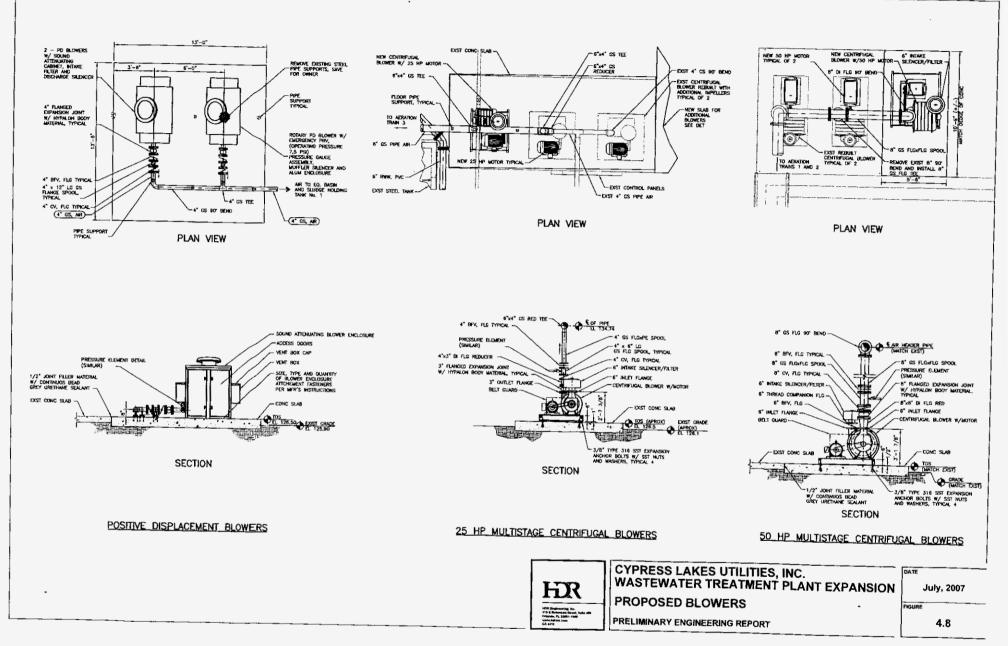
4.3.3 PROPOSED EQUALIZATION BASIN TRANSFER PUMPS (EQ. PUMPS)

The existing equalization basin transfer pumps will not have sufficient capacity to handle the projected buildout flows; therefore, it is recommended that two (2) larger pumps each with capacity to handle the estimated buildout PHF (0.665 MGD or approximately 462 gpm) are used in lieu of the existing pumps.

The equalization basin transfer pumps should be capable of a design flow equal to the design PHF. The reason for this requirement is that if the equalization basin is full or out of service at the beginning of a peak hour event, there would be no available storage to attenuate the flow; therefore the proposed flow equalization basin transfer pumps should be capable of pumping the design PHF. Additionally, in order to maintain Class 1 Reliability, the flow equalization basin transfer pumps should also be capable of pumping the PHF with the largest unit out of service. The Design Team recommends the use of two (2) new 5-HP submersible non-clog wastewater pumps, each capable of 500 gpm and each provided with a variable frequency drive. The design criteria for these pumps are presented in Table 4.3 and additional pump information is included in Appendix D.

Item	Description		
Pump Station Name	Equalization Basin Pumping Station		
No. of Pumps Required	Two (2)		
Flygt Model and Impeller (Basis of Design)	Flygt Model NP 3102, Impeller 463 MT		
Pump Discharge Elbow Size, Inches	4-inch		
Primary Condition	500 GPM @ 26 FT.		
Primary Min. Hydraulic Efficiency	74 %		
Secondary Condition	150 GPM @ 41.5 FT.		
Secondary Min. Hydraulic Efficiency	47 %		
Min. Motor, HP	5		
Maximum Speed, RPM	1800		
Motor Drive Type	Variable Frequency Drive		
Voltage, Volts	230/460		
Phase	3		
Frequency, Hertz	60		
Service	Raw, Screened Wastewater		
Control Panel Construction Material	NEMA 4X, 316 SST		
Alarm Level Sensor System	Float		
Approved Manufacturers	1) Flygt (Basis of Design) 2) EMU 3) KSB		

 TABLE 4.3
 FLOW EQUALIZATION TRANSFER PUMPING STATION


4.3.4 PROPOSED BLOWERS FOR THE EQUALIZATION BASIN

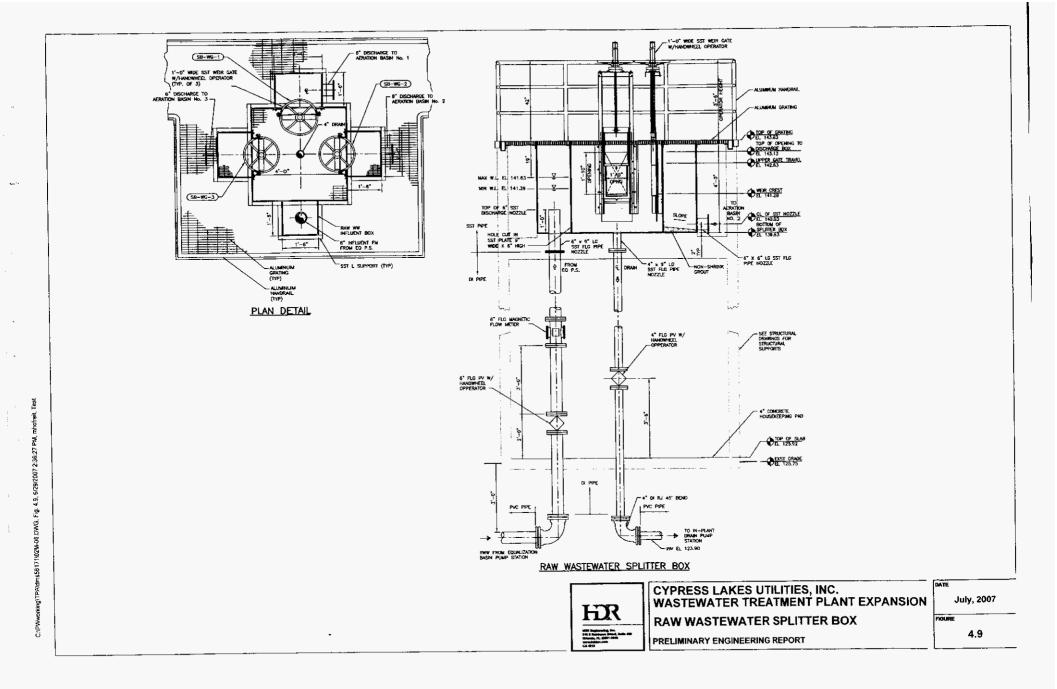
Due to the limited capacity of the existing blowers to supply air to a larger Equalization Basin at the projected buildout flows, it is recommended that the aeration system for the proposed Equalization Basin be independent from Aeration Train 3 and that positive-displacement blowers (PD-Blowers) be used instead of centrifugal blowers since PD blowers are better suited for use with fluctuating water levels.

Therefore, it is the Design Team's recommendation that a new set of two (2), 200 scfm positive displacement blowers at a discharge pressure of 7.0 psig be installed to supply air to the proposed Equalization Basin and the sludge holding tank No. 1. The following mechanical modifications will be required for the installation of these blowers:

- 1. Construction of 13.5-ft x 12-ft concrete pad. This pad will be located adjacent to the existing concrete pad and blowers currently providing air to Aeration Train 3.
- 2. Modifications to existing air piping connecting the existing centrifugal blowers to the proposed equalization basin.
 - a. The centrifugal blowers discharge piping connection to the air in Tank No. 1 (proposed equalization basin) will be removed. The proposed PD-blowers discharge piping will be connected instead.
 - b. The connection from the Tank No.1 air piping to the sludge holding tank No. 1 air piping will be removed. Instead, the sludge holding tank No.1 air piping will be connected directly to the proposed PD-blowers discharge piping.
 - c. The existing rectangular air pipe distributing air around Tank No. 1 will be cut and welded to isolate the equalization basin aeration system from the Aeration Train No. 3, the sludge digester tank No. 2 and the proposed grit compartment (existing surge tank).
- 3. The existing air piping connecting the sludge holding tank No. 1 to the air discharge box on existing Tank No. 1 will be removed. A new connection to the sludge holding tank No. 1 air piping will be installed directly from the pd-blowers discharge piping.

Figure 4.8 illustrates the proposed equalization blowers' connections to the proposed equalization basin tank and the sludge holding tank No. 1.

4.4 PROPOSED SPLITTER BOX

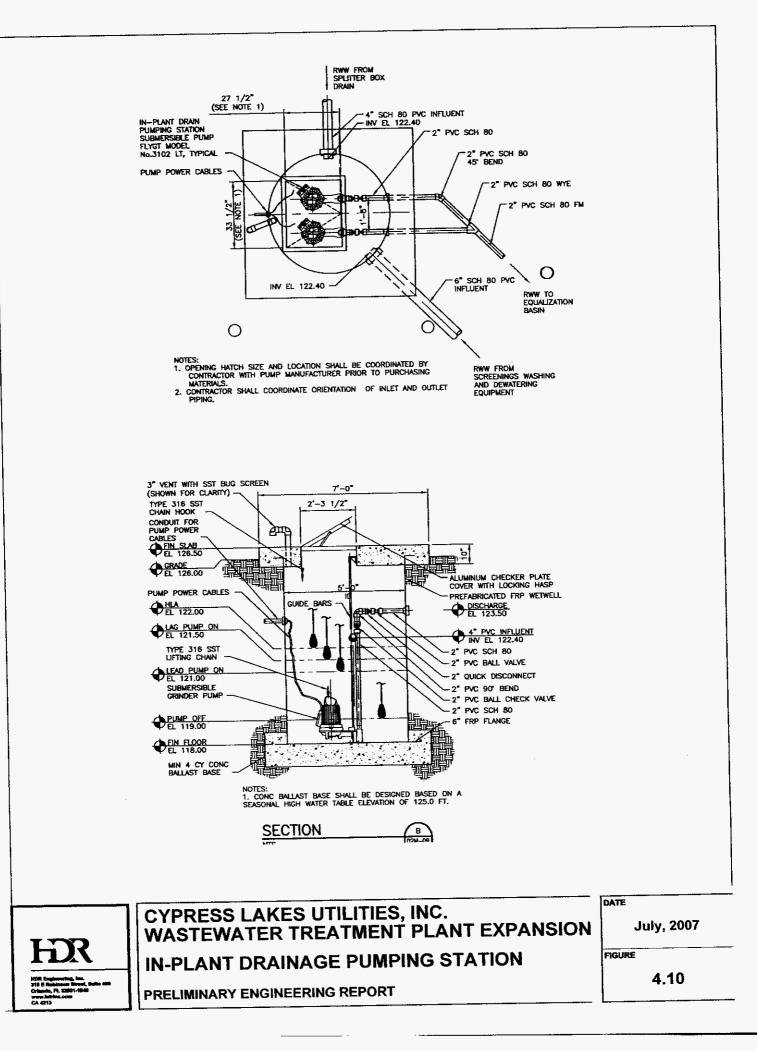

Construction of a new splitter box is proposed to provide equal flow distribution to the three existing aeration trains. The proposed splitter box will be constructed of Type 316 stainless steel materials and located between Aeration Trains 2 and 3 as shown in Figure 4.3Figure 4.2. The following features have been included in the design of the proposed structure:

- The proposed splitter box will have a main chamber of dimensions 4-ft x 4-ft by 4-ft deep located as the center of the structure, three (3) identical effluent boxes of dimensions 2.0-ft wide x 1.5 ft by approximately 3.8-ft deep and one (1) influent box of dimensions of 1.5-ft x 1.5-ft x 4.0-ft deep. The influent box will receive the flow from the 6-in Equalization Basin Transfer Pump discharge pipe and will pass it onto the main chamber from where it will be distributed to each of the three effluent boxes. The main chamber will have a 4-inch drain for cleaning purposes that will be connected to the proposed in-plant drainage pumping station. The flow pumped from the in-plant drainage pumping station will be pumped back to the equalization basin.
- 2. The effluent boxes to Aeration Trains 1, 2, and 3 will each have 12-in weir gate with a handwheel operator for flow control. Each of the three effluent boxes will have a 6-inch discharge pipe located at the bottom of the box, each discharging to a different Aeration Train.
- 3. An aluminum grating walkway with aluminum handrails will be provided on top of the splitter box. Lighting will be provided for this new structure.
- 4. The proposed splitter box will be constructed at an elevation high enough so that equal flow distribution and complete drainage of the effluent boxes is achieved. The top of walkway of the splitter box will 5-ft higher than the top of walkway of Aeration Train 2 and at least 9-ft higher than the top of walkway of Aeration Train 3.
- 5. Stairways will be installed to provide access for operation of the weir gates and to connect Aeration Trains 2 and 3.

Figure 4.9 presents the plan view and section of the proposed splitter box.

4.5 **PROPOSED BLOWERS FOR AERATION TRAINS**

It is the Design Team's recommendation that in order to meet the air requirements at the buildout wastewater flows and to operate as a Class I Reliability facility as required by the FDEP the following modifications to the aeration supply systems to the Aeration Trains should be made:


- 1. The aeration supply system for Aeration Trains 1 and 2 requires:
 - a. One (1) additional 50 HP blower with a capacity of 450 scfm at discharge pressure of 8.0 psig to provide backup to the existing blowers.
 - b. Replacement of existing 30 HP motors for each of the two (2) existing blowers with 50 HP motors and refurbishment of the blowers to increase the discharge pressure to 8.0 psi.
- 2. The aeration supply system for Aeration Train 3 and the sludge holding tank No. 2 requires:
 - a. One (1) additional 25 HP blower with a capacity of 300 scfm at a discharge pressure of 7.0 psig. This new blower will provide backup to the existing blowers to meet Class I reliability requirements.
 - b. Replacement of existing 20 HP motors for each of the two (2) existing blowers with 25 HP motors and refurbishment of the blowers to increase the discharge pressure to 7.0 psi.

4.6 PROPOSED IN-PLANT DRAINAGE PUMPING STATION

The proposed in-plant drainage pumping station will pump raw domestic wastewater drainage from the screenings washing and dewatering equipment and the splitter box drain to the equalization basin. The drainage pumping station will be located at the south end of the plant, next to the Aeration Train 3. It will be comprised of a 5-ft. diameter fiberglass wetwell basin with aluminum hatch cover and two (2) submersible wastewater grinder pumps. The pumps will have a 6.0 HP motor and a capacity of 80 gpm at 43.7 ft. TDH53 ft. Table 4.4 presents the design criteria of these pumps and Figure 4.10 presents the plant and section of the in-plant drainage pumping station.

Item	Description
Number of Pumps Required	Two (2) Grinder-type
Basis of Design	Flygt Pump Model MP 3102, Impeller 216 LT
Pump Discharge Size, Inches	2-inch
Shut-off Head, Feet	52.9 Ft.
Primary Condition	80 GPM @ 43.7 Ft.
Secondary Condition	100 GPM @ 38.1 Ft.
Minimum Motor Size	6.0 HP
Maximum Speed	3,455 RPM
Motor Drive Type	Constant Speed
Voltage	230/460 Volts
Phase	3
Frequency	60 Hertz
Service	Raw Wastewater
Control Panel Construction Material	NEMA 4X, 316 SST
Level Control Sensor System	Float

 TABLE 4.4
 IN-PLANT DRAINAGE PUMPING STATION GRINDER PUMPS

C:\PWworking\TPA\dms56171\02M-09.dwg, Fig. 4.10, 6/29/2007 2:43:31 PM, mhofreit, Test

ι.

4.7 **POWER SYSTEM**

4.7.1 EXISTING POWER SYSTEM

The electrical power system at the Cypress Lakes WWTP consists of one electrical service rated at 400 ampere, 277/480-volt, 3-phase service from one set of pole mounted transformers located near US-98. The service transformer is owned and maintained by the local power utility. The existing service conductors originated from the service transformers then to a meter and a single 400 ampere main breaker. From the main breaker the power is distributed to one 400 ampere automatic transfer switch. From the automatic transfer switch, both normal and emergency power is distributed to plant loads. The transfer switch will automatically detect a utility power failure and transfer to an existing 150kW/187kVA/225A emergency generator after appropriate time delays.

4.7.2 DESIGN OPTIONS FOR THE PROPOSED POWER SYSTEM

There are two options for sizing the incoming power service which are approved by the National Electrical Code. Option No. 1 is simply to add all of the existing and proposed loads to size the incoming power service plus 25% of the largest motor. Option No. 2 allows for the sizing of the service to an existing power system by summing the existing demand loads plus 25 percent and all of the proposed electrical loads.

Table 4.5 and Table 4.6 summarize the existing and proposed demand loads and the total capacity required from the service.

Proposed & Existing Equipment	Status	HP	Amperes
Blower #1 Trains 1 & 2	Existing/Rebuilt	50	65
Blower #2 Trains 1 & 2	Existing/Rebuilt	50	65
Blower #3 Train 3	Existing/Rebuilt	25	34
Blower #4 Train 3	Existing/Rebuilt	25	34
Blower #5 Trains #1 & 2	Proposed	50	65
Blower #6 Train #3	Proposed	25	34
Equalization Pump #1	Proposed	5	7.6
Equalization Pump #2	Proposed	5	7.6
Equalization Blower #1	Proposed	15	21
Equalization Blower #2	Proposed	15	21
In-plant Drainage Pump #1	Proposed	6	11
In-plant Drainage Pump #2	Proposed	6	11
Screenings Washing Press	Proposed	5	7.6
Reuse Pump #1	Existing	50	65
Reuse Pump #2	Existing	50	65
Backwash Pumps	Existing	10	14
Pond Pump	Existing	2	3.4
Backwash Blowers	Existing	3	4.8
Air-Conditioning/Lighting/Instruments			6
25% of largest motor load			16
Total		397	558

TABLE 4.5 Option No.1 Service Calculations for Proposed and Existing Equipment

The total load of 558 ampere for Option No.1 exceeds the existing 400 ampere service. This option will require a new 600 ampere electrical service be constructed.

TABLE 4.6 OPTION NO.2 SERVICE CALCULATIONS FOR PROPOSED AND EXISTING EQUIPM

Proposed & Existing Equipment	Status	HP	Amperes
Blower #1	Existing/Rebuilt	50	65
Blower #3	Existing/Rebuilt	25	34
Reuse Pump #1	Existing	50	65
Backwash Pumps	Existing	10	14
Pond Pump	Existing	2	3.4
Backwash Blowers	Existing	3	4.8
Air-Conditioning/Lighting/Instruments			6
Sub-Total Existing Equipme	140	192.2	
Blower #5 Trains #1 & 2	Proposed	50	65
Blower #6 Train #3	Proposed	25	34
Equalization Pump #1	Proposed	5	7.6
Equalization Pump #2	Proposed	5	7.6
Equalization Blower #1	Proposed	15	21
Equalization Blower #2	Proposed	15	21
In-plant Drainage Pump #1	Proposed	6	11
In-plant Drainage Pump #2	Proposed	6	11
Screenings Washing Press	Proposed	5	7.6
Sub-Total Proposed Equipme	ent	132	186

 192.2 x 1.25 =
 240.25 Amperes

 +
 186.00 Amperes

 Total 426.25 Amperes

The total load for Option No. 2 exceeds the existing 400 ampere service. Therefore, this option will also require a new 600 ampere electrical service be constructed.

4.7.3 EMERGENCY GENERATOR

The bases for sizing the generator for the existing and proposed loads are tabulated in Table 4.7 below.

Equipment	Status	HP	Amperes
Blower #1	Existing	50	65
Blower #3	Existing	25	34
Blower #5 Trains #1 & 2	Proposed	50	65
Blower #6 Train #3	Proposed	25	34
Equalization Pump #1	Proposed	5	7.6
Equalization Blower #1	Proposed	15	21
In-plant Drainage Pump #1	Proposed	6	11
Screenings Washing Press	Proposed	5	7.6
Reuse Pump #1	Existing	50	65
Backwash Pump #1	Existing	10	14
Pond Pump	Existing	2	3.4
Backwash Blower #1	Existing	3	4.8
Air-Conditioning/Lighting/Instruments			6
Total		246	338.4

 TABLE 4.7
 Electrical Connected Loads for Emergency Generator

The existing 150 kW emergency generator is too small. The required emergency generator will be rated at 300 kW with a base mounted fuel tank sized for 24 hours operating at full load.

5. SUMMARY

5.1 REPORT SUMMARY

The purpose of this preliminary engineering report was to provide the preliminary engineering basis of design documentation for the proposed improvements and up-rating of the Cypress Lakes Wastewater Treatment Plant (WWTP). This report, upon the Owner's approval, will be attached to the construction permit application that will be submitted to the Florida Department of Environmental Protection (FDEP) in accordance with Chapters 62-600 and 62-610 of the Florida Administrative Code (F.A.C).

5.2 DESIGN SUMMARY

No.

ر. برینا The performance of the WWTP was evaluated to ensure that the facility will have the ability to meet current FDEP and USEPA regulations, following the proposed modifications described in Section 4. It is HDR's belief that the proposed modifications to the facility will provide the level of treatment necessary to consistently meet or exceed the current permit conditions at the uprated flow of 0.190 MGD on an 3MADF basis.

However, based on the estimated performance of the filtration and disinfection process, it is recommended that during MDF events, the following conditions are met to operate within the required limits:

- During MDF events, backwashing should not be performed to any of the filters remaining in service if at least one (1) filter is out of service. With the largest unit out of service and other being backwashed, the remaining operating unit will have a loading rate of 4.9 gpm/sqft which is lower than the maximum allowable loading rate recommended by the Ten State Standards, but higher than the rate of 4.0 gpm/sqft. recommended by the Design Team.
- 2. During MDF events, two (2) chlorine contact chambers must be in service in order to provide more than 15 minutes of contact time as required by the FDEP Chapter 62-600.440(5)(c). By taking one (1) unit out of service during MDF events, the contact time will be reduced to 13 minutes which is lower than the minimum permitted contact time.

Table 5.1 provides a design summary of the treatment process for the Cypress Lakes WWTP.

TABLE 5.1 PROCESS DESIGN SUMMARY

Process/Parameter	Design Criteria	Units
A. Flow Data		
Average Annual daily Flow (3MADF)	0.190	
Maximum Average Daily Flow (MDF)	0.285	MGD
Peak Hour Flow (PHF)	0.665	MGD
Design Peaking Factor (PF to design for MADF or PHF events)	1.5	_
CBOD5 - Raw Wastewater ¹	375	mg/L
TSS - Raw Wastewater ¹	217	mg/L
B. Pretreatment		
Proposed Static Screen (Max. opening) C. Equalization Basin	2	mm
Minimum Tank Capacity	28,400	gallons
		-
EQ. Pump Capacity	500	gpm
EQ. Blowers Capacity EQ Blowers Discharge Pressure	200	cfm
D. Aeration Basins	7.5	psig
Aeration Trains 1 and 2 (Each) Tank Volume	79,100	anllong
Side Water Depth	12	gallons ft
Hydraulic Detention Time @ 3MADF	30	hr
Hydraulic Detention Time @ 3MADF Hydraulic Detention Time @ 3MADF (for Class I Reliability)	20	hr
Hydraulic Detention Time @ MDF	20	hr
Hydraulic Detention Time @ MDF Hydraulic Detention Time @ MDF (for Class I Reliability)	13.3	hr
MLSS	3,500	mg/L
Volatile Fraction of MLSS	70%	mg 2
Maximum Return Activated Sludge Flow to each Aeration Train	7070	
(RAS=1.5*3MADF)	0.095	MGD
Minimum Operating Dissolved Oxygen at 3MADF	2.0	mg/L
Minimum Operating Dissolved Oxygen at MDF	1.0	mg/L
Aeration Train 3 (2 Tanks in series)	1.0	ing/D
Tank Volume	71,600	gallons
Tank Water Depth	10.5	-
*		ft
Hydraulic Detention Time @ 3MADF	27.1	hr
Hydraulic Detention Time @ 3MADF (for Class I Reliability)	18.1	hr
Hydraulic Detention Time @ MDF	18.1	hr
Hydraulic Detention Time @ MDF (for Class I Reliability)	12.1	hr
MLSS	3,500	mg/L
Volatile Fraction of MLSS	70%	
Maximum Return Activated Sludge Flow to Aeration Train 3		
(RAS=1.5*3MADF)	0.095	MGD
Minimum Operating Dissolved Oxygen at 3MADF	2.0	mg/L
Minimum Operating Dissolved Oxygen at MDF Notes: 1. Based on high-strength domestic wastewater (M&E, 2004)	1.0	mg/L

Notes: 1. Based on high-strength domestic wastewater (M&E, 2004) 2. Class I reliability considers 100% of the design flow w/ the largest unit out of service

HDR Engineering, Inc.

rocess/Parameter	Design Criteria	Unit
Secondary Clarifiers		
No. of Existing Clarifiers:	3	
Surface Area of Existing Clarifiers 1 and 2 (each):	240	sqft.
Surface Area of Existing Clarifier 3:	228	sqft.
Weir Length of Existing Clarifiers 1 and 2 (2x19-ft each -per		
survey):	38	ft.
Weir Length of Existing Clarifier 3: (2x13.6-ft -per survey)	27.2	ft.
MLSS	3,500	mg/L
Return Activated Sludge Flow	0.285	MGD
Design Flow (if $PF = 1.0$)	0.190	MGD
Design Flow (if $PF = 1.5$)	0.285	MGD
Clarifier Loadings at Design Flow 0.190 MGD (PF = 1.0)		
Class I Reliability ¹ Flow ($PF = 1.0$)	0.190	MGD
Maximum Allowable Surface Overflow Rate (SOR)	1,000	gpd/sq1
Design Flow SOR Clarifiers 1 and 2 (each):	264	gpd/sqf
Design Flow SOR Clarifier 3:	278	gpd/sq1
Class 1 Reliability ¹ Design Flow SOR	406	gpd/sqf
Maximum Allowable Solids Loading Rate (SLR)	35	ppd/sqt
MDF SLR Clarifiers 1 and 2 (each):	19	ppd/sqt
MDF SLR Clarifier 3:	20	ppd/sqf
Class 1 Reliability MDF Solids Loading Rate	30	ppd/sq
Maximum Allowable Weir Loading Rate at Design Flow	20,000	gpd/ft.
Design Flow Weir Loading Rate for Clarifiers 1 and 2 (ea)	1,667	gpd/ft.
Design Flow Weir Loading Rate for Existing Clarifier 3:	2,346	gpd/ft.
Class 1 Reliability Design Weir Loading Rate	2,923	gpd/ft.
Clarifier Loadings at Design Flow 0.285 MGD (PF = 1.5)	_,	Br
Class I Reliability Flow ($PF = 1.5$)	0.285	MGD
Maximum Allowable Surface Overflow Rate (SOR)	1,000	gpd/sq1
Design Flow SOR Clarifiers 1 and 2 (each):	396	gpd/sq
Design Flow SOR Clarifier 3:	417	gpd/sq
Class 1 Reliability ¹ Design Flow SOR	609	gpd/sq:
Maximum Allowable Solids Loading Rate (SLR)	35	ppd/sq
MDF SLR Clarifiers 1 and 2 (each):	23	ppd/sq
MDF SLR Clarifier 3:	24	ppd/sq
Class 1 Reliability MDF Solids Loading Rate	35	ppd/sq
Maximum Allowable Weir Loading Rate at Design Flow	20,000	gpd/ft.
Design Flow Weir Loading Rate for Clarifiers 1 and 2 (ea)	2,500	gpd/ft.
Design Flow Weir Loading Rate for Existing Clarifier 3:	3,519	gpd/ft.
Class 1 Reliability Design Weir Loading Rate	4,385	gpd/ft.

TABLE 5.1 PROCESS DESIGN SUMMARY (CONTINUATION)

Class I reliability for clarifiers considers 100% of the design flow w/ the largest unit out of service

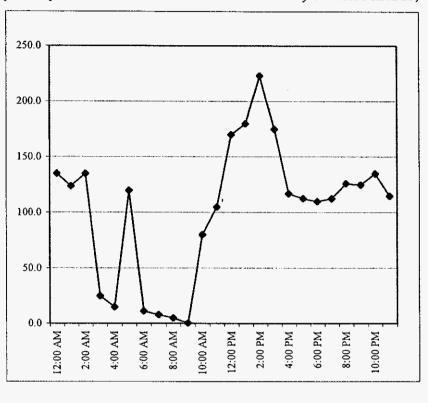
Process/Parameter	Design Criteria	
	Criteria	Units
F. Aerobic Sludge Holding Tanks (2 Units)	6.017	
Sludge Production per Day @ 3MADF	5,217	gpd
Sludge Production per Day @ MDF	8,821	gpd
Tank Volume (Combined Capacity)	17,200	Gal.
Sludge Holding Capacity @ 3MADF	3	days
Sludge Holding Capacity @ MDF	2	day
G. Filtration	·····	
No. of Filters:	3	
Total Surface Area:	140	sqft.
Total Design Area: (Largest filter out of service)	90	sqft.
Maximum Allowable Loading Rate	4	gpm/sqft
Design Flow (if $PF = 1.0$)	0.190	MGD
Design Flow (if $PF = 1.5$)	0.285	MGD
Filter Loadings at Design Flow 0.190 MGD (PF = 1.0)		
Design Loading Rate (Class I Reliability)	1.5	gpm/sqft
Design Peak Flow Loading Rate with a Single Unit Operating	3.3	gpm/sqft
(Largest unit out of service and second unit on backwash)		
Filter Loadings at Design Flow 0.285 MGD (PF = 1.5)		
Design Loading Rate (Class I Reliability)	2.2	gpm/sqft
Design Peak Flow Loading Rate with a Single Unit Operating	4.9	gpm/sqft
(Largest unit out of service and second unit on backwash)		
H. Chlorine Contact Chambers (2 Units)		
No. of Trains:	2	
Volume Per Train:	2,500	gallons
Minimum Detention Time:	15	minutes
Design Flow (if $PF = 1.0$)	0.190	MGD
Design Flow (if $PF = 1.5$)	0.285	MGD
CCC Capacity at Design Flow 0.190 MGD ($PF = 1.0$)		
Detention Time at Design Flow with all Units in Service:	38	minutes.
Chlorine Residual at CT=120	3.2	mg/L
Detention Time at Class 1 Reliability	19	minutes.
Chlorine Residual at CT=120	6.3	mg/L
CCC Capacity at Design Flow 0.285 MGD ($PF = 1.5$)		0
Detention Time at Design Flow with all Units in Service:	25	minutes.
Chlorine Residual at CT=120	4.8	mg/L
Detention Time at Class 1 Reliability w/ Largest Unit Out of		
Service:	13	minutes.
Chlorine Residual at CT=120 Class I reliability for chlorine contact chamber considers 100% of the design flow w	9.5	mg/L

TABLE 5.1 PROCESS DESIGN SUMMARY (CONTINUATION)

Class I reliability for chlorine contact chamber considers 100% of the design flow w/ the largest unit out of service

HDR Engineering, Inc.

APPENDIX A HISTORICAL FLOWS


SUMMARY

March 25, 2006

Average daily flows from a 3-year period were analyzed and compared. The highest ADF found during this period were selected and analyzed individually. Due to the lack of hourly flow records from the Cypress Lakes WWTF for the year 2004, available hourly flows from 2006 were used to extrapolate the hourly behavior of the wastewater flow on the selected days. March 25 was selected to extrapolate the hourly % of ADF entering the plant, since the ADF for this particular day is similar to the ADF of the selected days, occurs in the same period of the year, and the corresponding AADF for the year 2006 is similar to the AADF of the other years evaluated.

Hourly flows are from 12:00 am to 11:00 pm which represents the worst condition, therefore ADFs may differ slightly from ADFs reported in the plant's DMRs which report daily flows from 8:00 am to 8:00 am of the next day. Data for March 25,

TIME	GPM	MGD	% of ADF
 12:00 AM	135.0	0.194	131%
1:00 AM	123.8	0.178	121%
2:00 AM	135.0	0.194	131%
3:00 AM	25.0	0.036	24%
4:00 AM	15.0	0.022	15%
5:00 AM	120.0	0.173	117%
6:00 AM	11.3	0.016	11%
7:00 AM	8.0	0.012	8%
8:00 AM	5.0	0.007	5%
9:00 AM	0.3	0.000	0%
10:00 AM	80.0	0.115	78%
11:00 AM	105.0	0.151	102%
12:00 PM	170.0	0.245	166%
1:00 PM	180.0	0.259	175%
2:00 PM	223.1	0.321	217%
3:00 PM	175.0	0.252	170%
4:00 PM	117.0	0.168	114%
5:00 PM	112.5	0.162	110%
6:00 PM	110.0	0.158	107%
7:00 PM	112.5	0.162	110%
8:00 PM	126.0	0.181	123%
9:00 PM	125.0	0.180	122%
10:00 PM	135.0	0.194	131%
11:00 PM	114.8	0.165	112%
ADF	102.7	0.148	

A summary of the days selected for analysis and their corresponding input and output values are shown in the following table:

			Historica	l Flow D		Calculat	ed data for bui	ldout flows		
							year's	Req'd Capac.	Pumping rate	New PF to
	Peak	Rain/	ADF	MDF	PHF	PHF	AADF	at buildout	rate req'd	units at existing
Date	Condition	Dry	(MGD)	PF	(MGD)	PF	(MGD)	(gallons)	(gpm)	capacity
15-Feb-04	MADF	?	0.177	1.5	0.385	3.3	0.118	50,616	214	1.6
17-Mar-04	MADF	?	0.172	1.5	0.374	3.2	0.118	47,797	200	1.5
28-Mar-05	MADF	?	0.180	1.5	0.305	2.5	0.121	39,648	201	1.5
4-Feb-06	MADF	?	0.169	1.4	0.314	2.6	0.122	29,916	164	1.2
3-Feb-07	MADF	?	0.189	1.5	0.310	2.5	0.122	29,743	205	1.6
Average						2.9				1.5
25-Mar-06	PHF	Dry	0.148	1.2	0.321	2.6	0.122	36,325	143	1.1
28-Jun-06	PHF	Rain	0.113	N/A	0.427	3.5	0.122	56,942	200	1.5
29-Jun-06	PHF	Dry	0.120	N/A	0.280	2.3	0.122	17,382	120	0.9
5-Sep-06	PHF	?	0.123	N/A	0.251	2.1	0.122	25,8 5 1	128	1.0
6-Nov-06	PHF	?	0.151	1.2	0.281	2.3	0.122	35,209	140	1.1
Average						2.6		· · · · · · · · · · · · · · · · · · ·		1.0

Hourly Flow for:
2004 AADF:
ADF:
PHF:
MADF Peaking Factor
PHF Peaking Factor.

15-Feb-04 - Maximum Average Day Flow -0.118 MGD 0.177 MGD 0.385 MGD 1.5 3.3 (PHF/2004 AADF=0.118)

GPM 161.6 148.1 161.6 29.9 18.0 143.7 13.5 9.6 6.0 0.4 95.8 125.7	MG/Hr 0.0097 0.0089 0.0097 0.0018 0.0011 0.0086 0.0008 0.0008 0.0006 0.0006 0.0004 0.0000 0.00057 0.0075	gallons 9,697 8,889 9,697 1,796 1,077 8,620 808 575 359 22 5,746 7,660	gallons 9,697 18,586 28,283 30,079 31,156 39,776 40,584 41,159 41,518 41,518 41,539 47,286	Volume (gallons) 7,375 14,750 22,125 29,500 36,875 44,250 51,625 59,000 66,375 73,750 81,125	(gallons) 2,322 3,836 6,158 579 0 1,245 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
148.1 161.6 29.9 18.0 143.7 13.5 9.6 6.0 0.4 95.8	0.0089 0.0097 0.0018 0.0011 0.0086 0.0008 0.0008 0.0006 0.0004 0.0000 0.0004	8,889 9,697 1,796 1,077 8,620 808 575 359 22 5,746	18,586 28,283 30,079 31,156 39,776 40,584 41,159 41,518 41,539	14,750 22,125 29,500 36,875 44,250 51,625 59,000 66,375 73,750	3,836 6,158 579 0 1,245 0 0 0 0 0 0
161.6 29.9 18.0 143.7 13.5 9.6 6.0 0.4 95.8	0.0097 0.0018 0.0011 0.0086 0.0008 0.0006 0.0006 0.0004 0.0004 0.0000	9,697 1,796 1,077 8,620 808 575 359 22 5,746	28,283 30,079 31,156 39,776 40,584 41,159 41,518 41,539	22,125 29,500 36,875 44,250 51,625 59,000 66,375 73,750	6,158 579 0 1,245 0 0 0 0 0 0
29.9 18.0 143.7 13.5 9.6 6.0 0.4 95.8	0.0018 0.0011 0.0086 0.0008 0.0006 0.0006 0.0004 0.0000 0.00057	1,796 1,077 8,620 808 575 359 22 5,746	30,079 31,156 39,776 40,584 41,159 41,518 41,539	29,500 36,875 44,250 51,625 59,000 66,375 73,750	579 0 1,245 0 0 0 0 0
18.0 143.7 13.5 9.6 6.0 0.4 95.8	0.0011 0.0086 0.0008 0.0006 0.0004 0.0004 0.0000 0.0057	1,077 8,620 808 575 359 22 5,746	31,156 39,776 40,584 41,159 41,518 41,539	36,875 44,250 51,625 59,000 66,375 73,750	0 1,245 0 0 0 0
143.7 13.5 9.6 6.0 0.4 95.8	0.0086 0.0008 0.0006 0.0004 0.0000 0.0000 0.0057	8,620 808 575 359 22 5,746	39,776 40,584 41,159 41,518 41,539	44,250 51,625 59,000 66,375 73,750	0 0 0
13.5 9.6 6.0 0.4 95.8	0.0008 0.0006 0.0004 0.0000 0.0057	808 575 359 22 5,746	40,584 41,159 41,518 41,539	51,625 59,000 66,375 73,750	0 0 0
9.6 6.0 0.4 95.8	0.0006 0.0004 0.0000 0.0057	575 359 22 5,746	41,159 41,518 41,539	59,000 66,375 73,750	0 0 0
6.0 0.4 95.8	0.0004 0.0000 0.0057	359 22 5,746	41,518 41,539	66,375 73,750	0 0
0.4 95.8	0.0000 0.0057	22 5,746	41,539	73,750	0
95.8	0.0057	5,746			0
			47,286	81 125	
125.7	0.0075	7.640			0
		7,542	54,828	88,500	167
203.5	0.0122	12,211	67,039	95,875	5,003
215.5	0.0129	12,929	79,968	103,250	10,558
267.1	0.0160	16,025	95,994	110,625	19,208
209.5	0.0126	12,570	108,564	118,000	24,403
140.1	0,0084	8,404	116,968	125,375	25,432
134.7	0.0081	8,081	125,049	132,750	26,138
131.7	0.0079	7,901	132,950	140,125	26,665
134.7	0.0081	8,081	141,031	147,500	27,370
150.8	0.0091	9,051	150,082	154,875	29,046
149.6	0,0090	8,979	159,060	162,250	30,650
161.6	0,0097	9,697	168,758	169,625	32,972
137.4	0.0082	8,242	177,000	177,000	
	7 375	on1/h-r			
	134.7 150.8 149.6 161.6 137.4	134.7 0.0081 150.8 0.0091 149.6 0.0090 161.6 0.0097 137.4 0.0082	134.7 0.0081 8,081 150.8 0.0091 9,051 149.6 0.0090 8,979 161.6 0.0097 9,697 137.4 0.0082 8,242	134.7 0.0081 8.081 141,031 150.8 0.0091 9,051 150,082 149.6 0.0090 8,979 159,060 161.6 0.0097 9,697 168,758 137.4 0.0082 8,242 177,000	134.7 0.0081 8.081 141,031 147,500 150.8 0.0091 9,051 150,082 154,875 149.6 0.0090 8,979 159,060 162,250 161.6 0.0097 9,697 168,758 169,625

177,000 gpd 0.177 MGD

Eq.ADF

*% of MADF extrapolated from actual hearty flows from March 25,2006. Hearly flows for the MDF selected not available

Projected hourly flow at build	out for a Peak Hour Event
Buildout 3MADF:	0.190 MGD
Buildout MADF:	0.284 MGD

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative	Volume In Storage	Volume In Storage	
					Volume		for actual avail. Vol	4
Time Period	Time	(MG/hr)	(gallons)	(galions)	(gallons)	(gallons)	(gallons)	1
MIDNIGHT-1:00 A.M.	12:00 A.M	0.0145	14,505	14,505	11,031	3,473	1,643	
1:00 AM - 2:00 A.M.	1:00 AM	0.0133	13,296	27,801	22,063	5,738	2,077	1
2:00 AM - 3:00 A.M.	2:00 AM	0.0145	14,505	42,305	33,094	9,211	3,720	4
3:00 AM - 4:00 A.M.	3:00 AM	0.0027	2,686	44,991	44,125	866	0	4
4:00 AM - 5:00 A.M.	4:00 AM	0.0016	1,612	46,603	55,157	0	0	4
5:00 AM - 6:00 A.M.	5:00 AM	0.0129	12,893	59,496	66,188	1,862	31	
6:00 AM - 7:00 A.M.	6:00 AM	0.0012	1,209	60,704	77,219	0	0	1
7:00 AM - 8:00 A.M.	7:00 AM	0.0009	860	61,564	88,251	0	0	ŀ.
8:00 AM - 9:00 A.M.	8:00 AM	0.0005	537	62,101	99,282	0	0	,
9:00 AM - 10:00 A.M.	9:00 AM	0.0000	32	62,133	110,313	0	0	1
10:00 AM - 11:00 A.M.	10:00 AM	0.0086	8,595	70,729	121,345	1 0	0	1
11:00 AM - 12:00 P.M.	11:00 AM	0.0113	11,281	82,010	132,376	250	0	
12:00 P.M 1:00 P.M.	12:00 PM	0.0183	18,265	100,275	143,407	7,484	5,403	
1:00 PM - 2:00 P.M.	1:00 PM	0.0193	19,339	119,615	154,439	15,792	11,881	£.
2:00 PM - 3:00 P.M.	2:00 PM	0.0240	23,970	143,585	165,470	28,731	22,989	
3:00 PM - 4:00 P.M.	3:00 PM	0.0188	18,802	162,387	176,501	36,502	28,930)
4:00 PM - 5:00 P.M.	4:00 PM	0.0126	12,571	174,958	187,533	38,041	28,639	
5:00 PM - 6:00 P.M.	5:00 PM	0.0121	12,087	187,045	198,564	39,097	27,864	ŧ
6:00 PM - 7:00 P.M.	6:00 PM	0.0118	11,819	198,864	209,595	39,884	26,821	ıt.
7:00 PM - 8:00 P.M.	7:00 PM	0.0121	12,087	210,951	220,627	40,940	26,046	5
8:00 PM - 9:00 P.M.	8:00 PM	0.0135	13,538	224,488	231,658	43,446	26,722	2
9:00 PM - 10:00 P.M.	9:00 PM	0.0134	13,430	237,919	242,689	45,845	27,290)
10:00PM - 11:00 P.M.	10:00 PM	0.0145	14,505	252,423	253,721	49,318	28,933	3
11:00 PM - 12:00 A.M.	11:00 PM	0.0123	12,329	264,752	264,752	S0,616	28,400	λ
Equalized A	Average Flowrate:	11,031	gal/hr					
		264,752	gpd	Actual flow rate num	ed during the day if using	the actual tank canacits	12,862	g
		0.265	MGD	Actual now rate pump	co oming nic day it using	of 43,600 gallons*	214.4	
						or 45,000 ganous	0.309	
				A	ctual peaking factor the pro-	ocess units will handle:	16	ál –

Hourly Flow for: 2004 AADF: ADF: PHF: **MADF** Peaking Factor PHF Peaking Factor:

17-Mar-04 - Maximum Average Day Flow -0.118 MGD 0.172 MGD 0.374 MGD 1.5 3.2 (PHF/2004 AADF=0.118)

	% of			Estimated Volume	Cumulative Volume	Equalized Cumulative	Volume in Storage
TIME	ADF	GPM	MG/Hr	gallons	gallons	Volume (gallons)	(gallons)
12:00 AM	131%	157.1	0.0094	9,423	9,423	7,167	2,256
1:00 AM	121%	144,0	0,0086	8,638	18,061	14,333	3,728
2:00 AM	131%	157.1	0.0094	9,423	27,484	21,500	5,984
3:00 AM	24%	29.1	0.0017	1,745	29,229	28,667	562
4:00 AM	15%	17.5	0.0010	1,047	30,276	35,833	0
5:00 AM	117%	139.6	0.0084	8,376	38,652	43,000	1,209
6:00 AM	11%	13.1	0.0008	785	39,438	50,167	0
7:00 AM	8%	9.3	0.0006	558	39,996	57,333	0
8:00 AM	5%	5.8	0.0003	349	40,345	64,500	0
9:00 AM	0%	0,3	0.0000	21	40,366	71,667	0
10:00 AM	78%	93.1	0.0056	5,584	45,950	78,833	0
11:00 AM	102%	122.2	0.0073	7,329	53,279	86,000	162
12:00 PM	166%	197.8	0.0119	11,866	65,145	93,167	4,862
1:00 PM	175%	209.4	0.0126	12,564	77,709	100,333	10,259
2:00 PM	217%	259.5	0.0156	15,573	93,282	107,500	18,665
3:00 PM	170%	203.6	0.0122	12,215	105,497	114,667	23,714
4:00 PM	114%	136.1	0.0082	8,167	113,664	121,833	24,714
5:00 PM	110%	130.9	0.0079	7,853	121,516	129,000	25,400
6:00 PM	107%	128.0	0.0077	7,678	129,195	136,167	25,911
7:00 PM	110%	130,9	0,0079	7,853	137,047	143,333	26,597
8:00 PM	123%	146.6	0.0088	8,795	145,842	150,500	28,225
9:00 PM	122%	145.4	0.0087	8,725	154,567	157,667	29,784
10:00 PM	131%	157.1	0.0094	9,423	163,990	164,833	32,040
11.00 PM	112%	133.5	0.0080	8,010	172,000	172,000	Sec. 53 Ac. 383

Equalized Average Flowrate Eq.ADF 7,167 gal/hr 172,000 gpd 0.172 MGD

*% of MADF extrapolated from actual hourly flows from March 25,2006. Hourly flows for the MDF selected not available

Projected hourly flow at buildout for a Peak Hour Event Buildout 3MADF: 0.190 MGD Buildout MADF: 0,276 MGD

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative Volume	Volume In Storage	Volume In Storage for actual avail. Vol
Time Period	Time	(MG/hr)	(gallons)	(gallons)	(galions)	(gallons)	(gallons)
MIDNIGHT-1:00 A.M.	12:00 AM	0.0137	13,697	13,697	10,417	3,280	
1:00 AM - 2:00 A.M.	1:00 AM	0.0126	12,555	26,252	20,834	5,418	
2:00 AM - 3:00 A.M.	2:00 AM	0.0137	13,697	39,949	31,251	8,698	3,908
3:00 AM - 4:00 A.M.	3:00 AM	0.0025	2,536	42,485	41,668	818	[0
4:00 AM - 5:00 A.M.	4:00 AM	0.0015	1,522	44,007	52,085	0	0
5:00 AM - 6:00 A.M.	5:00 AM	0.0122	12,175	56,182	62,501	1,758	161
6:00 AM ~ 7:00 A.M.	6:00 AM	0.0011	1,141	57,323	72,918	0	0
7:00 AM - 8:00 A.M.	7:00 AM	0.0008	812	58,135	83,335	0	0
8:00 AM - 9:00 A.M.	8:00 AM	0.0005	507	58,642	93,752	0	0
9:00 AM - 10:00 A.M.	9:00 AM	0.0000	30	58,673	104,169	0	0
10:00 AM - 11:00 A.M.	10:00 AM	0.0081	8,117	66,789	114,586	0	0
11:00 AM - 12:00 P.M.	11:00 AM	0.0107	10,653	77,442	125,003	236	0
12:00 P.M 1:00 P.M.	12:00 PM	0.0172	17,248	94,690	135,420	7,067	5,234
1:00 PM - 2:00 P.M.	1:00 PM	0.0183	18,262	112,952	145,837	14,912	11,483
2:00 PM - 3:00 P.M.	2:00 PM	0.0226	22,635	135,587	156,254	27,130	22,104
3:00 PM - 4:00 P.M.	3:00 PM	0.0178	17,755	153,342	166,670	34,469	27,846
4:00 PM - 5:00 P.M.	4:00 PM	0.0119	11,870	165,213	177,087	35,922	27,703
5:00 PM + 6:00 P.M.	5:00 PM	0.0114	11,414	176,627	187,504	36,919	27,103
6:00 PM - 7:00 P.M.	6:00 PM	0.0112	11,160	187,787	197,921	37,663	26,250
7:00 PM - 8:00 P.M.	7:00 PM	0.0114	11,414	199,201	208,338	38,660	25,650
8:00 PM - 9:00 P.M.	8:00 PM	0.0128	12,784	211,985	218,755	41,026	26,420
9:00 PM - 10:00 P.M.	9:00 PM	0.0127	12,682	224,667	229,172	43,292	
10:00PM - 11:00 P.M.	10:00 PM	0.0137	13,697	238,363	239,589	46,571	
11:00 PM - 12:00 A.M.	11:00 PM	0.0116	11,642	250,006	250,006	August 17,797	28,400 Actu
Equalized A	verage Flowrate:	10,417	gal/hr				
		250,006	gpd	A chual flow rate more	ed during the day if using	the actual tank canacity	12,014 gal/
		0.250	MGD	Actual now rate pump	ee om mig me oay it using	of 43,600 gallons*	1 200.2.1000
						or 45,000 ganons*	0.288 MG

*Value found by iteration to obtain max volume in storage equal to actual tank capacity

15

Actual peaking factor the process units will handle:

Hourly Flow for: 2005 AADF: ADF: PHF: MADF Peaking Factor PHF Peaking Factor: 28-Mar-05 - Maximum Average Day Flow -0.121 MGD 0.180 MGD 0.305 MGD 1.5 2.5 (PHF/2005 AADF=0.121)

	% of			Estimated Volume	Cumulative Volume	Equalized Cumulative	Volume in Storage
TIME	ADF	GPM	MG/Hr	gallons	gallons	Volume (gallons)	(gallons)
12:00 AM	87%	108.2	0.0065	6,492	6,492	7,480	
1:00 AM	83%	103.5	0.0062	6,210	12,702	14,960	c c
2:00 AM	79%	98.8	0.0059	5,928	18,630	22,440	C
3:00 AM	77%	96.4	0.0058	5,786	24,416	29,920	
4:00 AM	64%	80.0	0.0048	4,799	29,215	37,400	c
5:00 AM	53%	65,9	0.0040	3,952	33,166	44,880	Ċ
6:00 AM	60%	75.3	0,0045	4,516	37,683	52,360	C
7:00 AM	60%	75.3	0.0045	4,516	42,199	59,841	Ċ
8:00 AM	57%	70.6	0.0042	4,234	46,433	67,321	C
9:00 AM	60%	75.3	0.0045	4,516	50,949	74,801	, i i i i i i i i i i i i i i i i i i i
10:00 AM	94%	117.6	0.0071	7,057	58,006	82,281	(
11:00 AM	109%	136,4	0.0082	8,186	66,192	89,761	706
12:00 PM	57%	70.6	0.0042	4,234	70,426	97,241	(
1:00 PM	158%	197.6	0.0119	11,855	82,281	104,721	4,375
2:00 PM	170%	211.7	0.0127	12,702	94,983	112,201	9,597
3:00 PM	164%	204.6	0.0123	12,279	107,261	119,681	14,396
4:00 PM	140%	174.1	0.0104	10,444	117,705	127,161	17,359
5:00 PM	110%	160.0	0.0096	9,597	127,302	134,641	19,476
6:00 PM	107%	150.5	0.0090	9,033	136,335	142,121	21,025
7:00 PM	110%	127.0	0.0076	7,621	143,956	149,601	21,170
8:00 PM	123%	131.7	0.0079	7,903	151,859	157,081	21,593
9:00 PM	122%	145.8	0.0088	8,750	160,610	164,561	22,864
10:00 PM	131%	150.5	0.0090	9,033	169,642	172,042	24,416
11:00 PM	112%	164.7	0.0099	9,879	179,522	179,522	CONTRA CONT-26-81

/,400

Eq.ADF

1.1

179,522 gpd 0.180 MGD

*% of MADF extrapolated from actual bourly flows from March 25,2006. Hourly flows for the MDF selected not available

Projected hourly flow at buildout	it for a Peak Hour Event
Buildout 3MADF:	0.190 MGD
Buildout MADF:	0.281 MGD
Normalization Factor (new AAD)	F/Eq.ADF)

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative	Volume In Storage	Volume In Storage
					Volume		for actual avail. Vol
Time Period	Time	(MG/hr)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
MIDNIGHT-1:00 A.M.	12:00 AM	0.0096	9,599	9,599	11,060	0	0
1:00 AM - 2:00 A.M.	1:00 AM	0.0092	9,182	18,781	22,119	0	0
2:00 AM - 3:00 A.M.	2:00 AM	0.0088	8,764	27,545	33,179	0	0
3:00 AM - 4:00 A.M.	3:00 AM	0.0086	8,556	36,101	44,239	0	0
4:00 AM - 5:00 A.M.	4:00 AM	0.0071	7,095	43,195	55,299	0	0
5:00 AM - 6:00 A.M.	5:00 AM	0.0058	5,843	49,038	66,358	0	0
6:00 AM - 7:00 A.M.	6:00 AM	0.0067	6,678	55,716	77,418	0	0
7:00 AM - 8:00 A.M.	7:00 AM	0.0067	6,678	62,393	88,478	0	0
8:00 AM - 9:00 A.M.	8:00 AM	0.0063	6,260	68,654	99,537	0	0
9:00 AM - 10:00 A.M.	9:00 AM	0.0067	6,678	75,331	110,597	0	0
10:00 AM - 11:00 A.M.	10:00 AM	0.0104	10,434	85,765	121,657	0	0
11:00 AM - 12:00 P.M.	11:00 AM	0.0121	12,103	97,868	132,717	1,043	21
12:00 P.M 1:00 P.M.	12:00 PM	0.0063	6,260	104,128	143,776	0	0
1:00 PM - 2:00 P.M.	1:00 PM	0.0175	17,529	121,657	154,836	6,469	5,446
2:00 PM - 3:00 P.M.	2:00 PM	0.0188	18,781	140,437	165,896	14,190	
3:00 PM - 4:00 P.M.	3:00 PM	0.0182	18,155	158,592	176,955	21,285	
4:00 PM - 5:00 P.M.	4:00 PM	0.0154	15,442	174,034	188,015	25,667	
5:00 PM - 6:00 P.M.	5:00 PM	0.0142	14,190	188,224	199,075	28,797	
6:00 PM - 7:00 P.M.	6:00 PM	0.0134	13,355	201,579	210,135	31,092	24,957
7:00 PM - 8:00 P.M.	7:00 PM	0.0113	11,268	212,847	221,194	31,301	24,143
8:00 PM - 9:00 P.M.	8:00 PM	0.0117	11,686	224,533	232,254	31,927	23,746
9:00 PM + 10:00 P.M.	9:00 PM	0.0129	12,938	237,471	243,314	33,805	24,602
10:00PM - 11:00 P.M.	10:00 PM	0.0134	13,355	250,826	254,373	36,101	
11:00 PM - 12:00 A.M.	11:00 PM	0.0146	14,607	265,433	265,433	39,648	28,400 Ach
Equalized A	verage Flowrate:	11,060	gal/hr				

265,433 gpd 0.265 MGD

 Actual flow rate pumped during the day if using the actual tank capacity of 201.4 gpm
 12.082 gal/hour*

 43,600 gallons*
 201.4 gpm

 Actual peaking factor the process units will handle:
 0.290 MGD

Houriy Flow for: 2006 AADF: ADF: PHF: **MADF Peaking Factor** PHF Peaking Factor:

4-Feb-06 - Maximum Average Day Flow -0.122 MGD 0.169 MGD 0.314 MGD 1.4 2.6 (PHF/2004 AADF=0.122)

ADF 63% 118% 67% 61% 63% 59% 61% 71% 82%	GPM 73.4 137.7 78.0 71.1 73.4 68.8 71.1 82.6	MG/Hr 0.0044 0.0083 0.0047 0.0043 0.0044 0.0041 0.0043	gallons 4,406 8,261 4,682 4,268 4,406 4,131	gallons 4,406 12,668 17,349 21,618 26,024	Volume (gallons) 7,028 14,056 21,084 28,112 35,140	(gallons) 0 1,233 0 0
118% 67% 61% 63% 59% 61% 71%	137,7 78,0 71.1 73.4 68.8 71.1	0.0083 0.0047 0.0043 0.0044 0.0041	8,261 4,682 4,268 4,406	12,668 17,349 21,618 26,024	14,056 21,084 28,112	0 1,233 0 0
67% 61% 63% 59% 61% 71%	78.0 71.1 73.4 68.8 71.1	0.0047 0.0043 0.0044 0.0041	4,682 4,268 4,406	17,349 21,618 26,024	21,084 28,112	1,233 0 0
61% 63% 59% 61% 71%	71.1 73.4 68.8 71.1	0,0043 0,0044 0,0041	4,268 4,406	21,618 26,024	28,112	0
63% 59% 61% 71%	73.4 68.8 71.1	0.0044 0.0041	4,406	26,024		0
59% 61% 71%	68.8 71.1	0.0041			35,140	0
61% 71%	71.1		4,131	~~		۷I
71%		0.0043		30,154	42,168	0
	876	0,0010	4,268	34,423	49,196	0
82%	02.0	0.0050	4,957	39,380	56,224	0
	96.4	0.0058	5,783	45,163	63,252	0
69%	80.3	0.0048	4,819	49,982	70,280	0
82%	96.4	0.0058	5,783	55,765	77,308	0
98%	114.7	0.0069	6,885	62,649	84,336	0
102%	119.3	0.0072	7,160	69,809	91,364	132
165%	192.8	0.0116	11,566	81,375	98,392	4,670
186%	218.0	0.0131	13,081	94,456	105,420	10,723
82%	96.4	0.0058	5,783	100,239	112,448	9,478
147%	172.1	0.0103	10,327	110,566	119,476	12,777
131%	153.8	0.0092	9,225	119,791	126,504	14,974
121%	142.3	0.0085	8,537	128,328	133,532	16,483
114%	133.1	0.0080	7,986	136,314	140,560	17,441
94%	110.2	0.0066	6,609	142,923	147,588	17,022
129%	151.5	0.0091	9,088	152,011	154,616	19,082
133%	156.1	0.0094	9,363	161,374	161,644	21,417
104%	121.6	0.0073	7,298	168,672	168,672	4 21 686
Fonali	zed Average Flowrate	7,028	gal/hr			
	121% 114% 94% 129% 133% 104%	121% 142.3 114% 133.1 94% 110.2 129% 151.5 133% 156.1	121% 142.3 0.0085 114% 133.1 0.0080 94% 110.2 0.0066 129% 151.5 0.0091 133% 156.1 0.0094 104% 121.6 0.0073	121% 142.3 0.0085 8,537 114% 133.1 0.0080 7,986 94% 110.2 0.0066 6,609 129% 151.5 0.0091 9,088 133% 156.1 0.0094 9,363 104% 121.6 0.0073 7,298	121% 142.3 0.0085 8,537 128,328 114% 133.1 0.0080 7,986 136,314 94% 110.2 0.0066 6,609 142,923 129% 151.5 0.0091 9,088 152,011 133% 156.1 0.0094 9,363 161,374 104% 121.6 0.0073 7,298 168,672	121% 142.3 0.0085 8,537 128,328 133,532 114% 133.1 0.0080 7,986 136,314 140,560 94% 110.2 0.0066 6,609 142,923 147,588 129% 151.5 0.0091 9,088 152,011 154,616 133% 156.1 0.0094 9,363 161,374 161,644 104% 121.6 0.0073 7,298 168,672 168,672

Equalized Average Flowrate Eq.ADF

1.I

168,672 gpd 0.169 MGD

*% of MADF extrapolated from actual hourly flows from March 25,2006. Hourly flows for the MDF selected not available

Projected hourly flow at buildout	for a Peak Hour Event
Buildout 3MADF:	0.190 MGD
Buildout MADF:	0.262 MGD
Normalization Factor (new AADF/	Eq.ADF)

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative	Volume in Storage	Volume In Storage
					Volume		for actual avail. Vol
Time Period	Time	(MG/hr)	(gallons)	(gallons)	(gallons)	(gallons)	(galions)
MIDNIGHT-1:00 A.M.	12:00 AM	0.0061	6,078	6,078	9,695	0	0
1:00 AM - 2:00 A.M.	1:00 AM	0.0114	11,397	17,475	19,390	1,702	1,575
2:00 AM - 3:00 A.M.	2:00 AM	0,0065	6,458	23,933	29,085	0	0
3:00 AM - 4:00 A.M.	3:00 AM	0.0059	5,888	29,821	38,780	0	0
4:00 AM - 5:00 A.M.	4:00 AM	0.0061	6,078	35,899	48,475	0	0
5:00 AM - 6:00 A.M.	5:00 AM	0.0057	5,698	41,598	58,170	0	0
6:00 AM - 7:00 A.M.	6:00 AM	0.0059	5,888	47,486	67,865	0	0
7:00 AM - 8:00 A.M.	7:00 AM	0.0068	6,838	54,324	77,560	0	0
8:00 AM - 9:00 A.M.	8:00 AM	0.0080	7,978	62,302	87,256	0	0
9:00 AM - 10:00 A.M.	9:00 AM	0.0066	6,648	68,950	96,951	0	0
10:00 AM - 11:00 A.M.	10:00 AM	0.0080	7,978	76,927	106,646] 0	0
11:00 AM - 12:00 P.M.	11:00 AM	0.0095	9,497	86,425	116,341	0	0
12:00 P.M 1:00 P.M.	12:00 PM	0.0099	9,877	96,302	126,036	182	56
1:00 PM - 2:00 P.M.	1:00 PM	0.0160	15,955	112,257	135,731	6,442	6,190
2:00 PM - 3:00 P.M.	2:00 PM	0.0180	18,045	130,302	145,426	14,792	
3:00 PM - 4:00 P.M.	3:00 PM	0.0080	7,978	138,279	155,121	13,074	12,569
4:00 PM - 5:00 P.M.	4:00 PM	0.0142	14,246	152,525	164,816	17,625	16,994
5:00 PM - 6:00 P.M.	5:00 PM	0.0127	12,726	165,251	174,511	20,656	
6:00 PM - 7:00 P.M.	6:00 PM	0.0118	11,777	177,028	184,206	22,738	
7:00 PM - 8:00 P.M.	7:00 PM	0.0110	11,017	188,045	193,901	24,060	
8:00 PM - 9:00 P.M.	8:00 PM	0.0091	9,117	197,162	203,596	23,482	
9:00 PM - 10:00 P.M.	9:00 PM	0.0125	12,536	209,698	213,291	26,323	
10:00PM - 11:00 P.M.	10:00 PM	0.0129	12,916	222,614	222,986	29,544	
11:00 PM - 12:00 A.M.	H1:00 PM	0.0101	10,067	232,681	232,681	29,916 A	28,400

232,681 gpd 0.233 MGD

9,821 gal/hour* 163.7 gpm 0.236 MGD Actual flow rate pumped during the day if using the actual tank capacity of 43,600 gallons*: Actual peaking factor the process units will handle:

2006 AADF:	0.122	MGD				
MADF	0.148	MGD				
PHF:	0.321	MGD	(equiv to 223.1 gpm; o	ccurred at 2:00pm)		
MADF Peaking Factor	1.2			• /		
PHF Peaking Factor:	2.6	(PHF/2006 AADF=	0.122)			
TIME	GPM	MG/Hr	Estimated Volume gallons	Cumulative Volume gallons	Equalized Cumulative Volume (gallons)	Volume in Storage
12:00 AM	135.0	0.0081	8,100	8,100	6,160	(gallons) 1,940
1:00 AM	123.8	0.0074	7,425	15,525	12,321	3,204
2:00 AM	135.0	0.0081	8,100	23,625	18,481	5,144
3:00 AM	25,0	0.0015	1,500	25,125	24,642	484
4:00 AM	15.0	0.0009	900	26,025	30,802	-0-
5:00 AM	120,0	0.0072	7,200	33,225	36,962	1,040
6:00 AM	11.3	0.0007	675	33,900	43,123	0
7:00 AM	8.0	0.0005	480	34,380	49,283	0
8:00 AM	5.0	0.0003	300	34,680	55,443	Ō
9:00 AM	0.3	0.0000	18	34,698	61,604	0
10:00 AM	80.0	0.0048	4,800	39,498	67,764	0
11:00 AM	105,0	0.0063	6,300	45,798	73,925	140
12:00 PM	170.0	0.0102	10,200	55,998	80,085	4,179
1:00 PM	180.0	0.0108	10,800	66,798	86,245	8,819
2:00 PM	223.1	0.0134	13,386	80,184	92,406	16,045
2:00 PM	175.0	0.0105	10 700			

Equalize	d Average Flowrate	6,160	gal/hr			
11:00 PM	114,8	0.0069	6,885	147,849	147,849	STOLL N. 1228,266
10:00 PM	135.0	0.0081	8,100	140,964	141,689	27,542
9:00 PM	125.0	0.0075	7,500	132,864	135,528	25,602
8:00 PM	126.0	0.0076	7,560	125,364	129,368	24,262
7:00 PM	112.5	0.0068	6,750	117,804	123,208	22,863
6:00 PM	110.0	0.0066	6,600	111,054	117,047	22,273
5:00 PM	112.5	0.0068	6,750	104,454	110,887	21,833
4:00 PM	117.0	0.0070	7,020	97,704	104,726	21 244
3:00 PM	175.0	0.0105	10,500	90,684	98,566	20,384
2:00 PM	223.1	0.0134	13,386	80,184	92,406	16,045
1:00 PM	180.0	0.0108	10,800	66,798	86,245	8,819
12:00 PM	170.0	0.0102	10,200	55,998	80,085	4,179
11:00 AM	105,0	0.0063	6,300	45,798	73,925	140
10:00 AM	80.0	0.0048	4,800	39,498	67 764	0
9:00 AM	0.3	0.0000	18	34,698	61,604	0
8:00 AM	5.0	0.0003	300	34,680	55,443	0
7:00 AM	8.0	0.0005	480	34,380	49,283	C C
6:00 AM	11.3	0.0007	675	33,900	43,123	0
5:00 AM	120,0	0.0072	7,200	33,225	36,962	1,040
4:00 AM	15.0	0.0009	900	26,025	30,802	0
3:00 AM	25.0	0.0015	1,500	25,125	24,642	484
2:00 AM	135.0	0.0081	8,100	23,625	18,481	5,144
1:00 AM	123.8	0.0074	7,425	15,525	12,321	3,204
12.007501	150.0	0.0001	6,100	6,100	0,100	1,940

Eq.ADF

0,100 ga/hr 147,849 gpd 0.148 MGD

1.3

Projected bourly flow at buildout for a Peak Hour Event Buildout 3MADF: 0.190 MGD Buildout MADF: 0.230 MGD Normalization Factor (new AADF/Eq.ADF)

-

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative Volume	Volume In Storage	Volume In Storage for actual avail, Vol
Time Period	Time	(MG/hr)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
MIDNIGHT-1:00 A.M.	12:00 AM	0.0104	10,409	10,409	7,917	2,493	1,847
1:00 AM - 2:00 A.M.	1:00 AM	0.0095	9,542	19,951	15,833	4,118	2,827
2:00 AM - 3:00 A.M.	2:00 AM	0.0104	10,409	30,360	23,750	6,610	4,674
3:00 AM - 4:00 A.M.	3:00 AM	0.0019	1,928	32,288	31,667	621	0
4:00 AM - 5:00 A.M.	4:00 AM	0.0012	1,157	33,445	39,583	0	0
5:00 AM - 6:00 A.M.	5:00 AM	0.0093	9,253	42,697	47,500	1,336	691
6:00 AM - 7:00 A.M.	6:00 AM	0.0009	867	43,565	55,417	0	0
7:00 AM - 8:00 A.M.	7:00 AM	0.0006	617	44,182	63,333	0	0
8:00 AM - 9:00 A.M.	8:00 AM	0.0004	386	44,567	71,250	0	0
9:00 AM - 10:00 A.M.	9:00 AM	0.0000	23	44,590	79,167	0	0
10:00 AM - 11:00 A.M.	10:00 AM	0.0062	6,168	50,759	87,083	0	0
11:00 AM - 12:00 P.M.	11:00 AM	0.0081	8,096	58,855	95,000	179	0
12:00 P.M 1:00 P.M.	12:00 PM	0.0131	13,108	71,963	102,917	5,371	4,546
1:00 PM - 2:00 P.M.	1:00 PM	0.0139	13,879	85,842	110,833	11,333	9,863
2:00 PM - 3:00 P.M.	2:00 PM	0.0172	17,202	103,044	118,750	20,619	18,503
3:00 PM - 4:00 P.M.	3:00 PM	0.0135	13,493	116,538	126,667	26,196	23,434
4:00 PM - 5:00 P.M.	4:00 PM	0.0090	9,021	125,559	134,583	27,300	23,894
5:00 PM - 6:00 P.M.	5:00 PM	0.0087	8,674	134,233	142,500	28,058	24,006
6:00 PM - 7:00 P.M.	6:00 PM	0.0085	8,482	142,715	150,417	28,623	23,925
7:00 PM - 8:00 P.M.	7:00 PM	0.0087	8,674	151,389	158,333	29,381	24,038
8:00 PM - 9:00 P.M.	8:00 PM	0.0097	9,715	161,105	166,250	31,179	25,191
9:00 PM - 10:00 P.M.	9:00 PM	0.0096	9,638	170,743	174,167	32,901	26,267
10:00PM - 11:00 P.M.	10:00 PM	0.0104	10,409	181,152	182,083	35,393	28,114
11:00 PM - 12:00 A.M.	11:00 PM	0.0088	8,848	190,000	190,000	1 Part 1 2 1 1 36 325	28,400 A
Equalized A	verage Flowrate:	7,917	gal/hr				

190,000 gpd 0.190 MGD

Actual flow rate pumped during the day if using the	8,562	gal/hour*
actual tank capacity of 43,600 gallons*:	143	gpm
actual talk capacity of 45,000 garons.	0.205	MGD
Actual peaking factor the process units will handle:	1.1	

Hourly Flow for June 29, 2006	- Peak Hour Event - No	Rain
2006 AADF:	0.122 MGD	
ADF:	0.120 MGD	
PHF:	0.280 MGD	
PHF Peaking Factor:	2.3 (PHF/2006	AADF=0.122)

	1		Estimated Volume	Camulative Volume	Equalized Cumulative	Volume in Storage
TIME	GPM	MG/Hr	gallons	gallons	Volume (gallons)	(gallons)
12:00 AM	41.1	0.0025	2,463	2,463	4,990	0
1:00 AM	141.4	0.0085	8,484	10,948	9,981	3,494
2:00 AM	31.9	0.0019	1,916	12,864	14,971	420
3:00 AM	18.2	0.0011	1,095	13,958	19,961	0
4:00 AM	22.8	0.0014	1,368	15,327	24,952	0
5:00 AM	146.0	0.0088	8,758	24,085	29,942	3,768
6:00 AM	73.0	0.0044	4,379	28,464	34,932	3,157
7:00 AM	18.2	0.0011	1,095	29,559	39,923	0
8:00 AM	159.7	0.0096	9,579	39,138	44,913	4,589
9:00 AM	41.1	0.0025	2,463	41,601	49,903	2,062
10:00 AM	50.2	0.0030	3,011	44,612	54,894	82
11:00 AM	95.8	0.0057	5,748	50,359	59,884	839
12:00 PM	59.3	0.0036	3,558	53,917	64,874	0
1:00 PM	118.6	0.0071	7,116	61,033	69,865	2,126
2:00 PM	114.0	0.0068	6,842	67,876	74,855	3,978
3.00 PM	31.9	0.0019	1,916	69,792	79,845	903
4.00 PM	. 194.3	0.0117	11,659	81,451	84,835	7,572
5:00 PM	114.0	0.0068	6,842	88,293	89,826	9,424
6:00 PM	54,7	0.0033	3,284	91,577	94,816	7,718
7:00 PM	95.8	0.0057	5,748	97,325	99,806	8,475
8:00 PM	132.3	0,0079	7,937	105,262	104,797	11,422
9:00 PM	54.7	0.0033	3,284	108,546	109,787	9,716
10:00 PM	164.2	0.0099	9,853	118,399	114,777	14,579
11:00 PM	22.8	0.0014	1,368	119,768	119,768	10.957
Equalized	Average Flowrate	4,990	gal/hr			Contraction of the second s

Eq.ADF

119,768 gpd 0.120 MGD

 Projected hourly flow at buildout for a Peak Hour Event

 Buildout 3MADF:
 0.190 MGD

 Buildout PHF:
 0.435 MGD
 (equiv to 296.5 gpm; occurred at 5:00pm)

 Normalization Factor (new AADF/Eq.ADF)
 1.6

Adjusted Est. Q Adjusted Volume **Cumulative Volume** Equalized Cumulative Volume In Storage Volume In Storage Volume for actual avail. Vol Time Period Time (MG/hr) (gallons) (gallons) (gallons) (gallons) (gallons) MIDNIGHT-1:00 A.M 12:00 AM 0.0039 3,908 3,908 7,917 0 0 1:00 AM - 2:00 A.M 1:00 AM 0.0135 13,460 17,367 15,833 5,543 6,234 2:00 AM - 3:00 A.M. 2:00 AM 0.0030 3,039 20,407 23,750 666 2,048 3:00 AM - 4:00 A.M 3:00 AM 0.0017 1,737 22,144 31,667 0 0 4:00 AM - 5:00 A.M. 4:00 AM 0.0022 2,171 24,314 39,583 0 0 5:00 AM - 6:00 A.M 5:00 AM 0.0139 13.894 38,208 47,500 5,977 6,668 6:00 AM - 7:00 A.M. 6:00 AM 0.0069 6,947 45.155 55.417 5,008 6,390 7:00 AM - 8:00 A.M. 7:00 AM 0.0017 1,737 46.892 63,333 0 901 8:00 AM - 9:00 A.M. 8:00 AM 0.0152 15,197 62,089 71 250 7,280 8,872 9:00 AM - 10:00 A.M. 9:00 AM 0.0039 3,908 65,996 79.167 3,271 5,554 10:00 AM - 11:00 A.M 10:00 AM 0.0048 4,776 70,772 87,083 130 3,105 11:00 AM - 12:00 P.M. 11:00 AM 0.0091 9,118 79,890 95,000 1,332 4,997 12:00 P.M. - 1:00 P M 12:00 PM 0.0056 5,644 85,535 102,917 0 3,416 1:00 PM - 2:00 P.M 1:00 PM 0.0113 11,289 96,824 110,833 3,372 7.479 2:00 PM - 3:00 P.M. 2:00 PM 0.0109 10,855 107,678 118,750 6,310 11,108 3:00 PM - 4:00 P.M. 3:00 PM 0.0030 3,039 110,718 126,667 1,433 6,922 4:00 PM - 5:00 P.M 4:00 PM 0.0185 18 4 96 129,214 134,583 12,012 18,193 5:00 PM - 6:00 P.M. 5:00 PM 0.0109 10.855 140.069 142,500 14,950 21,822 6:00 PM - 7:00 P.M. 6:00 PM 0.0052 5,210 145.279 150.417 12,244 19,807 7:00 PM - 8:00 P.M. 7:00 PM 0.0091 9.118 154,397 158,333 13,445 21,699 8:00 PM - 9:00 P.M. 8:00 PM 0.0126 12,591 166,988 166.250 18,120 27,065 9:00 PM - 10:00 P.M 9:00 PM 0.0052 5,210 172,198 174 167 15,414 25,050 10:00PM - 11:00 P M 10:00 PM 0.0156 15,631 187,829 182,083 23,128 33.455 11:00 PM - 12:00 A.M. 11:00 PM 0.0022 2,171 190,000 190,000 17.382 28,400 Actual Capacity Equalized Average Flowrate: 7,917 gal/hr

190,000 gpd 0.190 MGD

Actual flow rate pumped during the day if using the	7,225.6	gal/hour*
actual tank capacity of 43,600 gallons*:	120	gpm
Botom turk capacity of 45,000 gallons .	0.173	MGD
Actual peaking factor the process units will handle:	091	

Hourly Flow for September	25, 2006	
2006 AADF:	0.122	MGD
ADF:	0.123	MGD
PHF:	0.251	MGD
PHF Peaking Factor:	2.1	(PHF/2006 AADF=0.122)

			Estimated Volume	Cumpiative Volume	Equalized Cumulative	Volume in Storage
TIME	GPM	MG/Hr	gallons	gallons	Volume (gallons)	(gallons)
12:00 AM	114.7	0.0069	6,884	6,884	5,123	1,761
1:00 AM	105,6	0.0063	6,333	13,218	10.246	2,972
2:00 AM	59.7	0.0036	3,580	16,797	15,369	1,428
3:00 AM	22.9	0.0014	1,377	18,174	20,492	0
4:00 AM	11.5	0.0007	688	18,863	25,615	Ö
5:00 AM	64.3	0.0039	3,855	22,718	30,738	0
6:00 AM	18.4	0.0011	1,101	23,819	35,861	0
7:00 AM	64.3	0.0039	3,855	27,675	40,984	0
WARTAN CONTRACTOR STOCK OF AN ADDRESS OF A DECEMBER OF A	174.4%	0.0105	10,464	38,139	46,107	5,341
9:00 AM	18.4	0.0011	1,101	39,240	51,230	1,319
10:00 AM	64.3	0.0039	3,855	43,095	56,353	52
11:00 AM	27.5	0.0017	1,652	44,747	61,476	0
12:00 PM	119.3	0.0072	7,160	51,907	66,599	2,037
1:00 PM	160.6	0.0096	9,638	61,545	71,722	6,551
2:00 PM	114.7	0.0069	6,884	68,429	76,845	8,313
3:00 PM	110.1	0.0066	6,609	75,038	81,968	9,799
4:00 PM	96.4	0.0058	5,783	80,821	87,091	10,458
5:00 PM	96.4	0.0058	5,783	86,603	92,214	11,118
6:00 PM	96.4	0.0058	5,783	92,386	97,337	11,778
7:00 PM	101.0	0.0061	6,058	98,444	102,460	12,713
8:00 PM	101.0	0.0061	6,058	104,502	107,583	13,648
9:00 PM	105.6	0.0063	6,333	110,836	112,706	14,858
10:00 PM	101.0	0.0061	6,058	116,894	117,829	15,794
11:00 PM	101.0	0,0061	6,058	122,952	122,952	451 (1996) - 16 7 20
Equatized A	verage Flowrate	5,123	gal/hr		·····	

Eq.ADF

122,952 gpd 0.123 MGD

 Projected hourly flow at buildout for a Peak Hour Event

 Buildout 3MADF:
 0.190
 MGD

 Buildout PHF:
 0.390
 MGD

Normalization Factor (new AADF/Eq.ADF)

(equiv to 296.5 gpm; occurred at 5:00pm) 1.5

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative Volume	Volume In Storage	Volume In Storage for actual avail. Vol
Time Period	Time	(MG/hr)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
MIDNIGHT-1:00 A.M.	12:00 AM	0.0106	10,638	10,638	7,917	2,722	2,934
1:00 AM - 2:00 A.M.	1:00 AM	0.0098	9,787	20,426	15,833	4,592	5,017
2:00 AM - 3:00 A.M.	2:00 AM	0.0055	5,532	25,957	23,750	2,207	2,845
3:00 AM - 4:00 A.M.	3:00 AM	0.0021	2,128	28,085	31,667	0	
4:00 AM - 5:00 A.M.	4:00 AM	0.0011	1,064	29,149	39,583	0	0
5:00 AM - 6:00 A.M.	5:00 AM	0.0060	5,957	35,106	47,500	0	0
6:00 AM - 7:00 A.M.	6:00 AM	0.0017	1,702	36,809	55,417	o	0
7:00 AM - 8:00 A.M.	7:00 AM	0.0060	5,957	42,766	63,333	0	0
8:00 AM - 9:00 A.M.	8:00 AM	0.0162	16,170	58,936	71 250	8,254	8,466
9:00 AM - 10:00 A.M.	9:00 AM	0.0017	1,702	60,638	79,167	2,039	2,464
10:00 AM ~ 11:00 A.M.	10:00 AM	0.0060	5,957	66,596	87,083	80	717
11:00 AM - 12:00 P.M.	11:00 AM	0.0026	2,553	69,149	95,000	0	0
12:00 P.M 1:00 P.M.	12:00 PM	0.0111	11,064	80,213	102,917	3,147	3,360
1:00 PM - 2:00 P.M.	1:00 PM	0.0149	14,894	95,106	110,833	10,124	10,549
2:00 PM - 3:00 P.M.	2:00 PM	0.0106	10,638	105,745	118,750	12,846	13,483
3:00 PM ~ 4:00 P.M.	3:00 PM	0.0102	10,213	115,957	126,667	15,142	15,992
4:00 PM - 5:00 P.M.	4:00 PM	0.0089	8,936	124,894	134,583	16,161	17,223
5:00 PM - 6:00 P.M.	5:00 PM	0.0089	8,936	133,830	142,500	17,181	18,455
6:00 PM - 7:00 P.M.	6:00 PM	0.0089	8,936	142,766	150,417	18,200	19,687
7:00 PM ~ 8:00 P.M.	7:00 PM	0.0094	9,362	152,128	158,333	19,645	21,345
8:00 PM - 9:00 P.M.	8:00 PM	0.0094	9,362	161,489	166,250	21,090	23,002
9:00 PM - 10:00 P.M.	9:00 PM	0.0098	9,787	171,277	174,167	22,961	25,085
10:00PM - 11:00 P.M.	10:00 PM	0.0094	9,362	180,638	182,083	24,406	26,743
11:00 PM - 12:00 A.M.	11:00 PM erage Flowrate:	0.0094	9,362 gal/hr	190,000	190,000	-5 · · · · · · · · · · · · · · · · · · ·	28,400 Actua

190,000 gpd 0.190 MGD

7,704.3 gal/hour* 128 gpm 0.185 MGD Actual flow rate pumped during the day if using the actual tank capacity of 43,600 gallons*:

Actual peaking factor the process units will handle

- 2.	Hourly Flow for November 06, 20	006	
	2006 AADF:	0.122	MGD
	ADF:	0.151	MGD
	PHF:	0.281	MGD
	PHF Peaking Factor:	2.3	(PHF/2006 AADF=0.122)

			Estimated Volume	Cumulative Volume	Equalized Cumulative	Volume in Storage
TIME	GPM	MG/Hr	gallons	gallons	Volume (gallons)	(gallons)
12:00 AM	106.8	0.0064	6,406	6,406	6,302	104
1:00 AM	51.1	0.0031	3,064	9,470	12,604	0
2:00 AM	41.8	0.0025	2,507	11,977	18,906	0
3:00 AM	46.4	0.0028	2,785	14,763	25,208	0
4:00 AM	37.1	0.0022	2,228	16,991	31,510	0
5:00 AM	13.9	0.0008	836	17,827	37,812	0
6:00 AM	65.0	0.0039	3,900	21,726	44,114	0
7:00 AM	37.1	0.0022	2,228	23,955	50,416	0
8:00 AM	78.9	0.0047	4,735	28,690	56,718	0
9:00 AM	190.3	0.0114	11,420	40,110	63,020	5,118
10:00 AM	55.7	0.0033	3,342	43,452	69,322	2,159
11:00 AM	139.3	0.0084	8,356	51,809	75,624	4,213
12:00 PM	102.1	0.0061	6,128	57,937	81,926	4,039
1:00 PM	111.4	0.0067	6,685	64,622	88,228	4,422
2:00 PM	185.7	0.0111	11,142	75,763	94,530	9,261
3:00 PM	176.4	0.0106	10,585	86,348	100,832	13,544
4:00 PM	167.1	0.0100	10,027	96,375	107,134	17,270
5:00 PM	83.6	0.0050	5,014	101,389	113,436	15,981
6:00 PM	106.8	0.0064	6,406	107,795	119,738	16,086
7:00 PM	130.0	0.0078	7,799	115,595	126,040	17,583
8:00 PM	130.0	0.0078	7,799	123,394	132,342	19,080
9-00 PM	195.0	0.0117	11,699	135,092	138,644	24,477
10:00 PM	143.9	0.0086	8,635	143,727	144,946	26,810
11:00 PM	125,3	0.0075	7,521	151,248	151,248	7
Equalize	ed Average Flowrate	6,302	gal/hr			
	E- ADE	161 040				

Eq.ADF

0.151 MGD

 Projected hourly flow at buildout for a Peak Hour Event

 Buildout 3MADF:
 0.190
 MGD

 Buildout PHF:
 0.436
 MGD

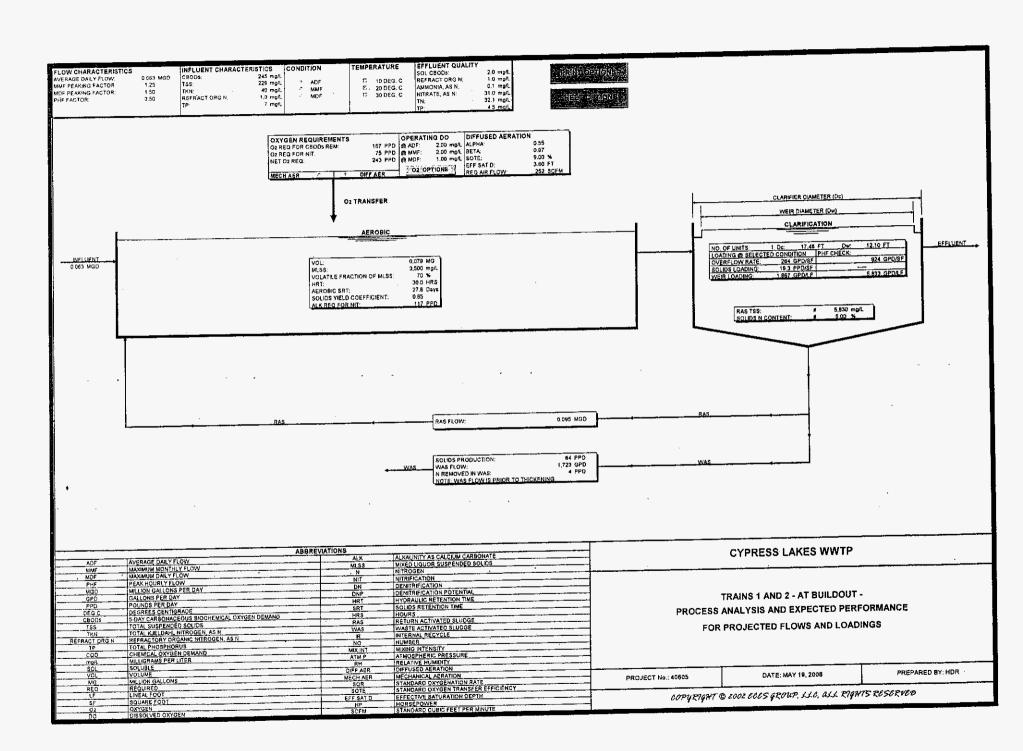
Normalization Factor (new AADF/Eq.ADF)

(equiv to 296.5 gpm; occurred at 5:00pm) 1.3

		Adjusted Est. Q	Adjusted Volume	Cumulative Volume	Equalized Cumulative	Volume In Storage	Volume In Storage
					Volume		for actual avail. Vol
Time Period	Time	(MG/hr)	(gallons)	(gallons)	(gallons)	(gallons)	(gallons)
MIDNIGHT-1:00 A.M.	12:00 AM	0.0080	8,048	8,048	7,917	131	0
1:00 AM - 2:00 A.M.	1:00 AM	0.0038	3,849	11,897	15,833	0	0
2:00 AM - 3:00 A.M.	2:00 AM	0.0031	3,149	15,046	23,750	0	0
3:00 AM - 4:00 A.M.	3:00 AM	0.0035	3,499	18,545	31,667	0	0
4:00 AM - 5:00 A.M.	4:00 AM	0.0028	2,799	21,344	39,583	0	0
5:00 AM ~ 6:00 A.M.	5:00 AM	0.0010	1,050	22,394	47,500	o	0
6:00 AM - 7:00 A.M.	6:00 AM	0.0049	4,899	27,293	55,417	0	0
7:00 AM - 8:00 A.M.	7:00 AM	0.0028	2,799	30,092	63,333	0	0
8:00 AM - 9:00 A.M.	8:00 AM	0.0059	5,948	36,041	71,250	0	0
9:00 AM - 10:00 A.M.	9:00 AM	0.0143	14,346	50,387	79,167	6,430	5,976
10:00 AM - 11:00 A.M.	10:00 AM	0.0042	4,199	54,586	87,083	2,712	1,804
11:00 AM - 12:00 P.M.	11:00 AM	0,0105	10,497	65,083	95,000	5,292	3,931
12:00 P.M 1:00 P.M.	12:00 PM	0.0077	7,698	72,781	102,917	5,074	3,258
1:00 PM - 2:00 P.M.	1:00 PM	0.0084	8,398	81,179	110,833	5,555	3,285
2:00 PM ~ 3:00 P.M.	2:00 PM	0.0140	13,996	95,175	118,750	11,634	8,911
3:00 PM - 4:00 P.M.	3:00 PM	0.0133	13,297	108,471	126,667	17,014	13,837
4:00 PM - 5:00 P.M.	4:00 PM	0.0126	12,597	121,068	134,583	21,694	18,063
5:00 PM - 6:00 P.M.	5:00 PM	0.0063	6,298	127,366	142,500	20,076	15,991
6:00 PM - 7:00 P.M.	6:00 PM	0.0080	8,048	135,414	150,417	20,207	15,668
7:00 PM - 8:00 P.M.	7:00 PM	0.0098	9,797	145,212	158,333	22,088	17,095
8:00 PM - 9:00 P.M.	8:00 PM	0.0098	9,797	155,009	166,250	23,969	18,521
9:00 PM + 10:00 P.M.	9:00 PM	0.0147	14,696	169,705	174,167	30,748	24,847
10:00PM - 11:00 P.M.	10:00 PM	0.0108	10,847	180,552	182,083	33,679	27,324
11:00 PM - 12:00 A.M.	11:00 PM	0.0094	9,448	190,000	190,000	35 209	28,400

190,000 gpd 0.190 MGD

Actual flow rate pumped during the day if using the	8,370.6	gal/hour*
actual tank capacity of 43,600 gallons*:	140	gpm
actual tank capacity of 45,000 gallons	0.201	MGD
Actual peaking factor the process units will handle	S	


CYPRESS LAKES WASTEWATER TREATMENT PLANT PRELIMINARY ENGINEERING REPORT WASTEWATER CHARACTERISTICS (NOV 2003 TO NOV 2006)

1	Flow	BOD ₅	TSS	BOD Load		
	(MGD)	(mg/L)	(mg/L)	(lb/d)	Date	Day
Nov-03	0.113	150	190	141.4	11/05/03	W
Dec-03	0.125	220	270	229.4	12/03/03	W
Jan-04	0.109	330	330	300.0	01/14/04	W
Feb-04	0.123	260	260	266.7	02/11/04	W
Mar-04	0.122	300	240	305.2	03/10/04	W
Apr-04						
May-04	0.098	290	390	237.0	05/05/04	W
Jun-04	0.101	230	270	193.7	06/02/04	W
Jul-04	0.098	200	170	163.5	07/14/04	W
Aug-04						
Sep-04	0.126	270	460	283.7	09/08/04	W
Oct-04	0.112	290	140	270.9	10/06/04	W
Nov-04	0.109	260	310	236.4	11/03/04	W
Dec-04	0.112	180	110	168.1	12/01/04	W
Jan-05	0.119	470	480	466.5	01/13/05	Th
Feb-05	0.161	70	110	94.0	02/03/05	Th
Mar-05	0.130	180	260	195.2	03/03/05	Th
Apr-05	0.132	160	50	176.1	04/14/05	Th
May-05	0.081	530	110	358.0	05/12/05	Th
Jun-05	0.108	140	520	126.1	06/09/05	Th
Jul-05	0.084	240	84	168.1	07/07/05	Th
Aug-05	0.096	860	230	688.6	08/04/05	Th
Sep-05	0.103	235	135	201.9	mo. Avg	Th
Oct-05	0.115	530	140	508.3	10/27/05	Th
Nov-05	0.137	100	140	114.3	11/30/05	W
Dec-05	0.127	330	300	349.5	12/08/05	Th
Jan-06	0.142	220	380	260.5	01/19/06	Th
Feb-06	0.129	200	350	215.2	02/16/06	Th
Mar-06	0.113	950	200	895.3	03/02/06	Th
Apr-06	0.122	290	270	295.1	04/06/06	Th
May-06	0.105	240	40	210.2	05/04/06	Th
Jun-06	0.086	220	260	157.8	06/08/06	Th
Jul-06	0.106	180	200	159.1	07/05/06	W
Aug-06	0.098	210	230	171.6	08/02/06	W
Sep-06	0.111	170	230	157.4	09/06/06	W
Oct-06	0.101	300	310	252.7	10/04/06	W
Nov-06	0.124	87	150			W
Average	0.114	245	229	228		
Max	0.161	530	480	508		
Min	0.081	70	40	90		

APPENDIX B PROCESS UNITS CAPACITIES AT BUILDOUT FLOWS

HDR Engineering, Inc.

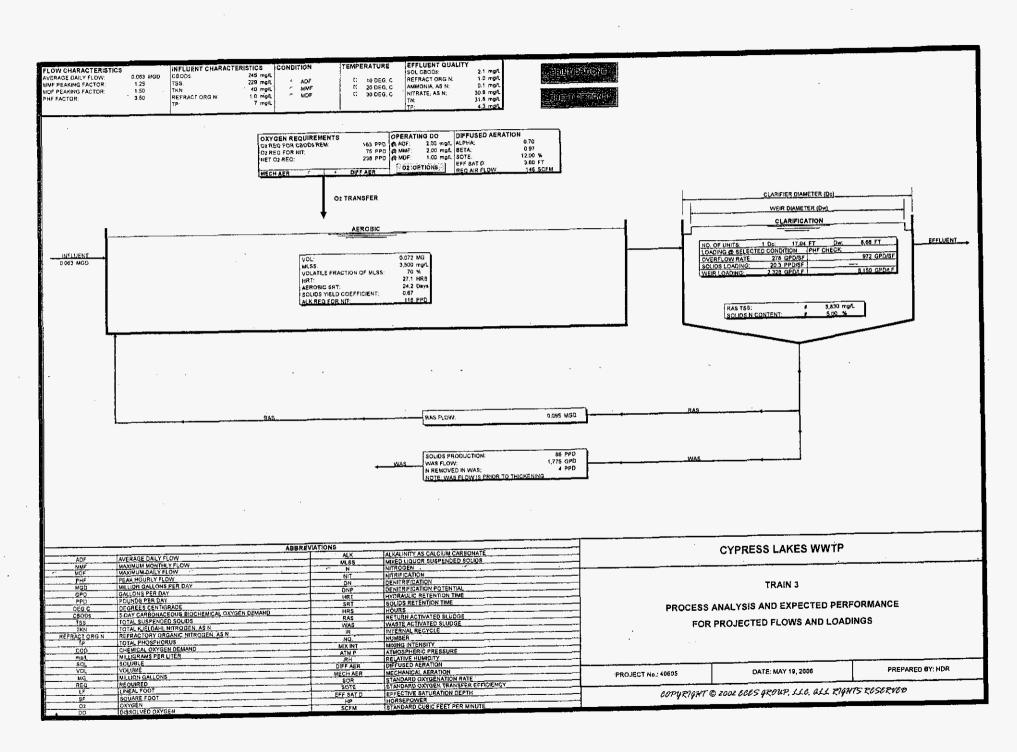
Appendix B

Т

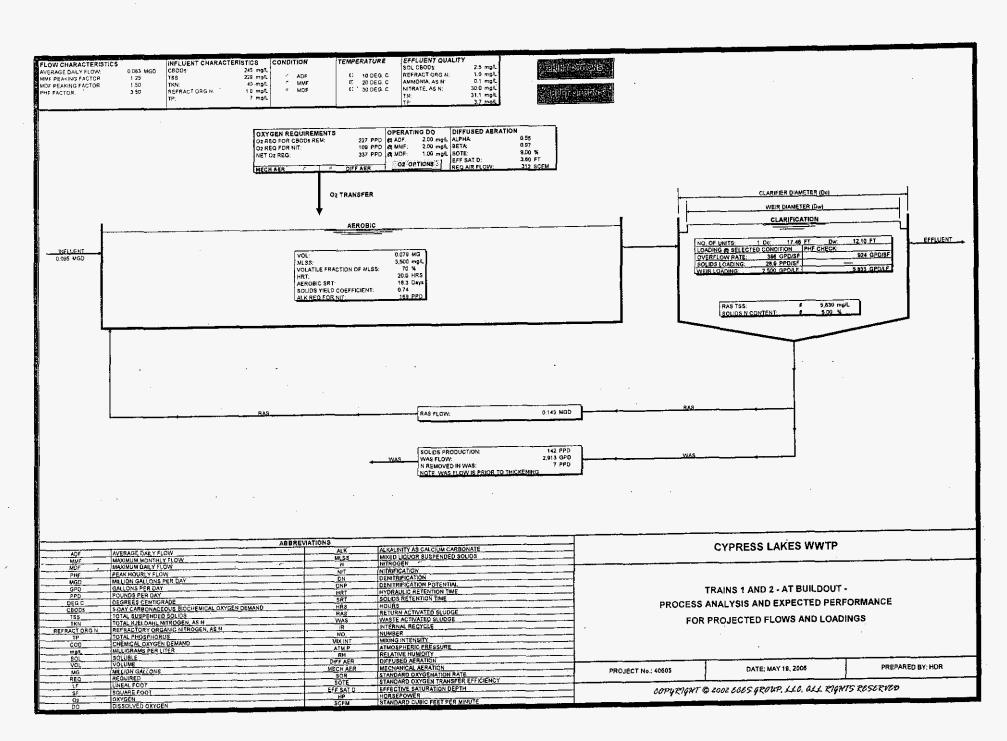
1

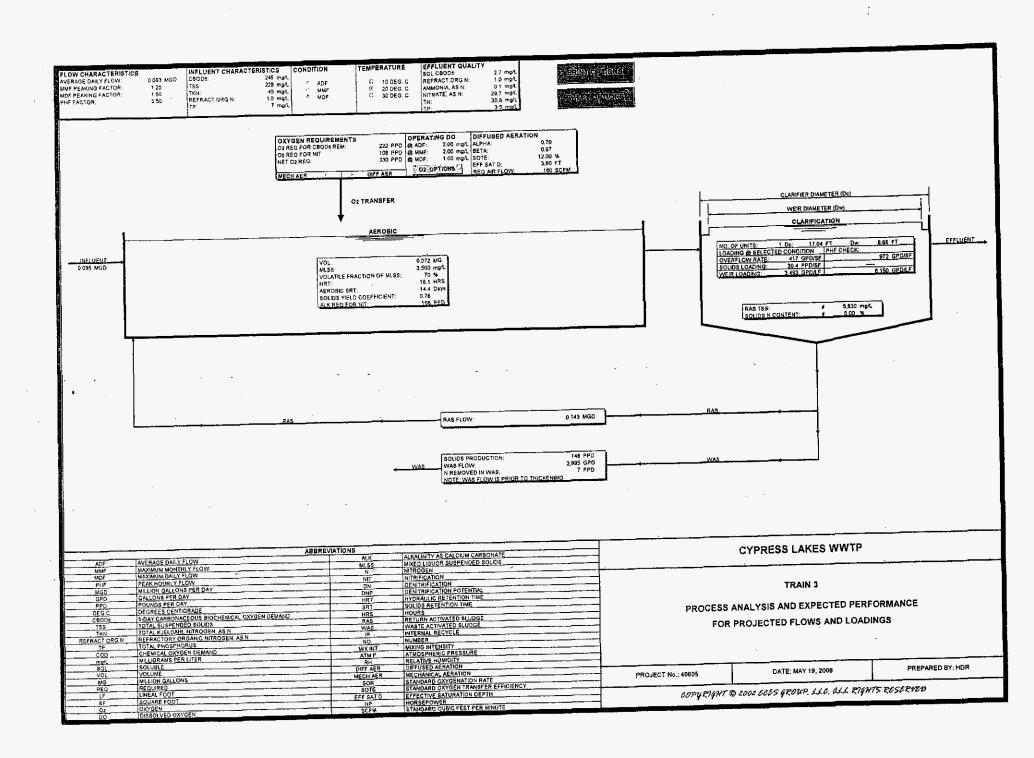
1

E


L

1


1


ł

T

T

L

1

I

I

1

L

1

CYPRESS LAKES WWTP PRELIMINARY ENGINEERING REPORT EXTENDED AERATION CAPACITY AT 0.190 MGD 3MADF

	A. Design Criteria	Train 1	Train 2	Train 3
	3MADF = 0.190 MGD		0.190	MGD
	Tank Volume	79,100	79,100	71,600 Gallons
	Percentage of Total Flow:	33%	33%	33% %
	3MADF to Each Aeration Train:	0.063	0.063	0.063 MGD
	MDF to Each Aeration Train:	0.095	0.095	0.095 MGD
	MLSS:	3,500	3,500	3,500 mg/L
	Volatile Fraction of MLSS:	70%	70%	70%
	A. All units in service at AADF			
-	Maximum Return Activated Sludge (RAS) to each Aeration Train:	0.095	0.095	0.095 MGD
:	Hydraulic Retention Time:	30.0	30.0	27.1 hr
	Solids Retention Time:	27.7	27.7	24.7 day
:	Effluent cBOD ₅ :	2.0	2.0	2.1 mg/L
	B. Class I Reliabity at AADF (100% of Flow w/ Largest unit out of service)*			
	AADF to Each Aeration Train w/ Largest Unit Out of Service:	0.095	Out of service	0.095 MGD
j.	Maximum Return Activated Sludge (RAS) to each Aeration Train:	0.143	-	0.143 MGD
	Hydraulic Retention Time - AADF Class I Reliability:	20.0	-	18.1 hr
1	Solids Retention Time - AADF Class I Reliability:	16.2	-	14.3 day
•	Effluent cBOD ₅ - AADF Class I Reliability:	2.5	-	2.7 mg/L
:	C. All units in service at MDF			
	Maximum Return Activated Sludge (RAS) to each Aeration Train:	0.143	0.143	0.143 MGD
	Hydraulic Retention Time:	20.0	20.0	18.1 hr
	Solids Retention Time:	16.2	16.2	14.3 day
:	Effluent cBOD ₅ :	2.5	2.5	2.7 mg/L
	D. Class I Reliabity at MDF (100% of Flow w/ Largest unit out of service)*			
	MDF to Each Aeration Train w/ Largest Unit Out of Service:	0.143	Out of service	0.143 MGD
	Hydraulic Retention Time - AADF Class I Reliability:	13.3	-	12.1 hr
	Solids Retention Time - AADF Class I Reliability:	9.8	-	8.7 day
2	Effluent cBOD ₅ - AADF Class I Reliability:	3.4	-	3.7 mg/L

* For Class I Reliability, Trains 1&2 operating and Train 3 out of service.

-[]

CYPRESS LAKES WWTP PRELIMINARY ENGINEERING REPORT CLARIFIERS LOADINGS AT 0.190 MGD 3MADF

	Valu	ies
A. Design Criteria	PF=1.5	PF=1.0 Units
3MADF:	0.190	0.190 MGD
MDF:	0.285	0.285 MGD
Peak Flow after Proposed Flow Equalization	1.5	1.0
Design Peak Flow w/ Flow Equalization Provided:	0.285	0.190 MGD
Class I Reliability - 100% of Total Design Flow with Largest Unit out of Service:	0.285	0.190 MGD
MLSS:	3,500	3,500 mg/L
Return Activated Sludge (RAS) Flow:	0.285	0.285 MGD
No. of Existing Clarifiers:	3	3
Surface Area of Existing Clarifiers 1 and 2 (each):	240	240 ft. ²
Surface Area of Existing Clarifier 3:	228	228 ft. ²
Weir Length of Existing Clarifiers 1 and 2 (2x19-ft each -per survey):	38	38 ft.
Weir Length of Existing Clarifier 3: (2x13.6-ft -per survey)	27	27 ft.
B. Surface Overflow Rate		
Maximum Allowable Surface Overflow Rate at PHF for Existing Clarifiers:	1,000	1,000 gpd/ft ²
Design Peak Flow Surface Overflow Rate for Existing Clarifiers 1 and 2 (each):	396	264 gpd/ft^2
Design Peak Flow Surface Overflow Rate for Existing Clarifier 3:	417	278 gpd/ft ²
Class 1 Reliability Design Peak Flow SOR of Existing Clarifiers	609	406 gpd/ft ²
C. Solids Loading Rate		
Maximum Allowable Solids Loading Rate at MDF for Existing Clarifiers:	35	35 lbs/day*ft ²
MDF Solids Loading Rate for Existing Clarifiers 1 and 2 (each):	23	19 lbs/day*ft ²
MDF Solids Loading Rate for Existing Clarifier 3:	24	20 lbs/day*ft ²
Class 1 Reliability MDF Solids Loading Rate	35.55	30 lbs/day*ft ²
D. Weir Loading Rate		
Maximum Allowable Weir Loading Rate at Design Peak Flow:	20,000	20,000 gal/day*ft.
Design Peak Flow Weir Loading Rate for Existing Clarifiers 1 and 2 (each):	2,500	1,667 gal/day*ft.
Design Peak Flow Weir Loading Rate for Existing Clarifiers 3:	3,519	2,346 gal/day*ft.
Class 1 Reliability Design Peak Flow Weir Loading Rate	4,385	2,923 gal/day*ft.

CYPRESS LAKES WWTP PRELIMINARY ENGINEERING REPORT FILTERS LOADINGS AT 0.190 MGD 3MADF

	Value	s	
A. Design Criteria	PF=1.5	PF=1.0	Units
3MADF:	0.190	0.190 N	MGD
Peak Flow after Proposed Flow Equalization	1.5	1.0	
Design Peak Flow w/ Flow Equalization Provided:	0.285	0.190 1	MGD
Maximum Allowable Loading Rate:	4.0	4.0 g	gpm/sqft.
B. Existing Gravity Sand Filters - One Unit Out of Service			
No. of Filters:	3	3 1	Units

140. 01 Thi015.	2	• • • • • • • • • • • • • • • • • • • •
Total Surface Area:	140	140 sqft.
Total Design Surface Area: (Largest filter out of service)	90	90 sqft.
Design Peak Flow Loading Rate for Existing Filters	2.2	1.5 gpm/sqft.
Design Peak Flow Loading Rate with a Single Unit Operating	4.9	3.3 gpm/sqft.
(Largest unit out of service and second unit on backwash)		

CYPRESS LAKES WWTP PRELIMINARY ENGINEERING REPORT CHLORINE CONTACT CHAMBER CAPACITIES AT 0.190 MGD 3MADF

-

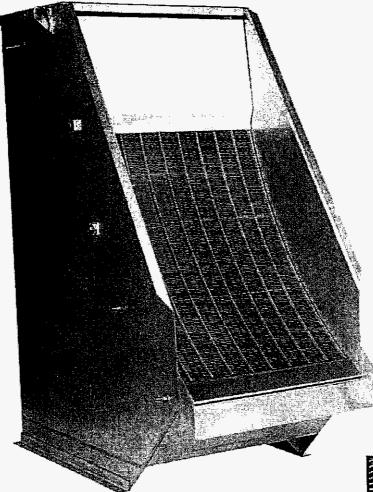
-

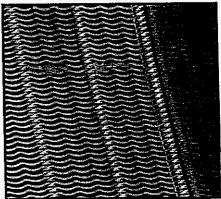
- .

-

-

	Valu	es
A. Design Criteria	PF≈1.5	PF=1.0 Units
3MADF:	0.190	0.190 MGD
MDF	0.285	0.285 MGD
Peak Flow after Proposed Flow Equalization	1.5	1.0
Design Peak Flow w/ Flow Equalization Provided:	0.285	0.190 MGD
Class I Reliability (100% Design Peak Flow):	0.285	0.190 MGD
Minimum Detention Time:	15	15 minutes
B. Existing Chlorine Contact Chambers		
No. of Trains:	2	2
Volume Per Train:	2,500	2,500 gallons
Total Volume:	5,000	5,000 gallons
C. Capacities at Peak Design Flow		
Maximum Detention Time at Peak Design Flow with all Units in Service:	25	38 Minutes
Chlorine Residual at CT=120	4.8	3.2 mg/L
Detention Time at Class 1 Reliability PHF with Largest Unit Out of Service:	13	19 Minutes
Chlorine Residual at CT=120	9.5	6.3 mg/L

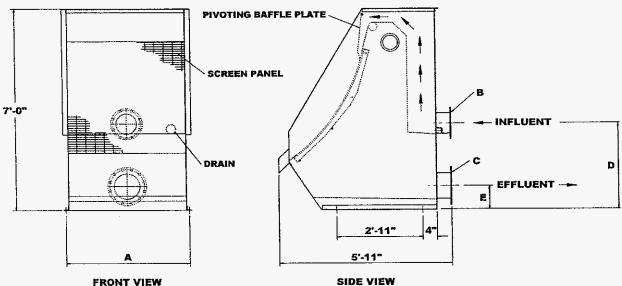

APPENDIX C STATIC SCREEN AND SCREENINGS WASHING AND DEWATERING PRESS


STATIC SCREEN AND SCREENINGS WASHING AND DEWATERING PRESS

-MANUFACTURER'S DATA-

Appendix C

Model SS STATO SCREEN


The Model SS Stato Screen is a non-mechanical screening device for separating solids from liquids. Because there are no mechanical parts and the unit requires no power, these screens can be installed with minimal capital investment. With a wide range of uses the Stato Screen is ideal for municipal waste water and industrial applications.

CONSTRUCTION

Available in 304 or 316 Stainless Steel with flanged inlet and outlet pipes. Hinged enclosures and spray systems are available.

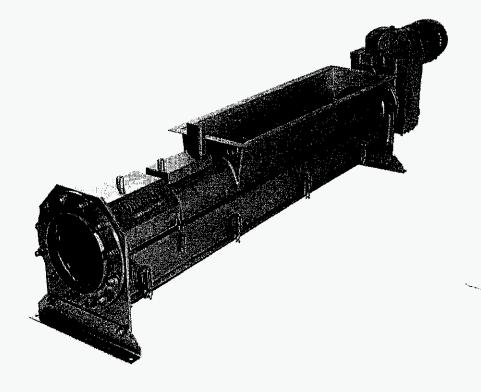
OPERATION / FEATURES

Wastewater is pumped through the pipe inlet into the influent chamber. As the influent level rises it flows over the weir and beneath the pivoting baffle plate. The liquids and solids flow over the triple-arc wave wire screen panel, and wastewater falls through the screen openings, while gravity and the addition of more screenings push captured solids toward the point of discharge. The water that falls though the screen enters the effluent distribution chamber and flows through the outlet pipe. A drip lip at the bottom of the screen directs any excess water to the effluent chamber. When the solids reach the bottom of the screen they slide off into a container, conveyor, or other suitable receiving device. Vulcan Industries offers a wide array of post-screening and dewatering devices. To assemble the most cost effective and efficient array of screening and post screening devices, please contact your Vulcan Industries representative.

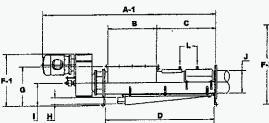
FRONT VIEW

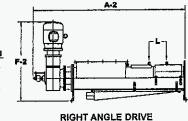
			S	creen C)pening	s								
INCH	0.010	0.020	0.030	0.040	0.060	0.080	0.100	0.200						
MM	0.25	0.50	.75	1.0	1.5	2.0	2.5	5.0						
Model			De	sign Fl	ow (GP	'M)*			Model	A	B	С	D	Έ
SS-18	30	60	90	140	180	200	220	260	SS-18	20 1/2"	4"	6"	3'	7"
SS-24	40	80	120	200	260	300	240	280	SS-24	26 1/2"	6"	8"	3'	8"
SS-36	60	200	27	320	340	360	430	500	SS-36	38 1/2"	6"	8"	3'	8"
SS-48	140	500	630	700	740	780	860	950	SS-48	50 1/2"	8"	10*	3'	9"
SS-60	170	640	780	870	920	960	1070	1200	SS-60	62 1/2"	10"	12"	3'	10"
SS-72	210	800	950	1050	1100	1150	1300	1550	SS-72	74 1/2"	10"	12"	3'	10"
SS-120	330	1200	1450	1600	1700	1800	2000	2400	SS-120	122 1/2"	12"	18"	3'	13"

* Flow rates are based upon clean water flow.



212 S. Kirlin St. Missouri Valley, Iowa 51555 USA 712-642-2755 Fax 712-642-4256 Email: info@vulcanindustries.com www.vulcanindustries.com


ł


٠

Model EWP WASHING PRESS

1

PARALLEL DRIVE

Input Capacity of Raw Screenings

Batch Mode

Up to 16.3 ft*/hr Up to 33 ft*/hr

Up to 82.3 ft³/hr

Continuous Mode

Up to 49 ft³/hr

Up to 99 ft³/hr

Up to 247 ft³/hr

Туре EWP 150

EWP 250

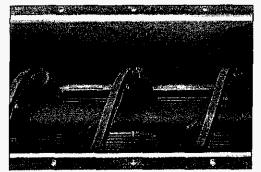
EWP 400

Туре	Wash Water Requirements
EWP 150	19 gpm at 35 psi minimum
EWP 250	19 gpm at 35 psl minimum
EWP 400	27 gpm at 35 psi minimum

Туре	A-1	A-2	В	С	D	ε	F-1	F-2	G	Н.	1	J	к	L	MOTOR
EWP 150/600	81"	70.25*	24"x7"	25"	50.75"	12.5"	22.25"	36.5*	15.5"	2*	10.5*	6'8	16"	1/2"	3 HP
EWP 150/800	89"	78.25*	32"x7"	25"	58.75*	12.5"	22.25	36.5*	15,5"	2"	10.5"	6*ø	16"	1/2"	3 HP
EWP 150/1000	96.75*	86.25*	40"x7"	25"	66.75*	12.5"	22.25	36.5"	15,5"	2"	10.5"	6 "ø	16"	1/2"	3 HP
EWP 150/1200	104.75"	94.25"	48"x7"	25*	74.75"	12.5"	22.25"	36,5"	15.5"	2"	10.5"	6" <i>e</i>	16"	1/2"	3 HP
EWP 250/600	85.5"	74.75	24"x10"	29"	57*	16*	24"	40*	19"	4"	12'	10"ø	20"	1/2"	5 HP
EWP 250/800	93.5"	82.75*	32"x10"	29"	65"	18*	24"	40°	19*	4"	12"	10"#	20"	1/2"	5 HP
EWP 250/1000	101.25	90,75*	40"x10"	28"	73"	18"	24"	40"	19"	4"	12*	10°ø	20"	1/2*	5 HP
EWP 250/1200	109.25*	96.5"	48"x10"	29"	81*	16"	24"	40"	19*	4"	12"	10 °s	20"	1/2"	5 HP
EWP 400/600	116.75"	97.75"	24*x16*	42"	70°	23,5*	39"	62*	25"	4"	14.5"	18*ø	20"	3/4"	10 HP
EWP 400/800	124.75*	105.75"	32"x16"	42*	7B"	23.5"	38"	62"	25"	4"	14.5"	16"ø	26*	3/4"	10 HP
EWP 400/1000	132.5"	113.5*	40°x16°	42*	86"	23.5"	39"	62"	25"	4"	14.5"	16°ø	26"	3/4"	10 HP
EWP 400/1200	140.5"	121.5"	48"x16"	42*	94"	23.5*	39"	62"	25"	4"	14.5"	1 6* ø	26"	3/4"	10 HP

212 S. Kirlin St. Missouri Valley, Iowa 51555 USA 712-642-2755 Fax 712-642-4256 Email: Info@vulcanindustrles.com www.vulcanindustries.com

Model EWP WASHING PRESS


The Model EWP Washing Press is a spiral press used to wash organic matter out of screenings material. The Washing Press washes, dewaters, compresses and transports screenings to a conveyor, container or other suitable receiving device.

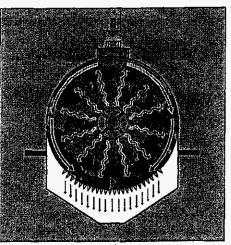
CONSTRUCTION

The Washing Press consists of a press body with separate washing and dewatering sections, hollow shaft spiral, axial thrust bearing (see photo on right), gear reducer and motor, drain pan, washwater headers and sequencing valves.

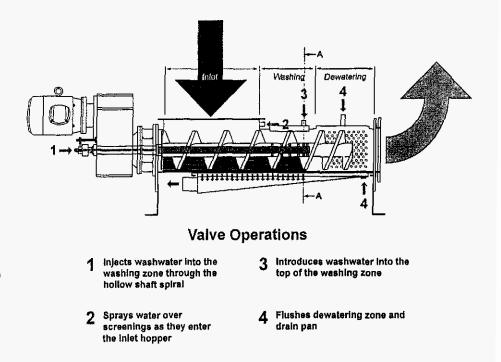
The press body is constructed of stainless steel. A wedge wire drain constructed of individual profile bars is mounted on the bottom of the press and extends from the inlet hopper to the washing section. The wedge wire, with 2 mm spacings, guarantees clog-free drainage of the washwater.

The spiral, of alloy steel construction, is welded to the hollow shaft. The hollow shaft contains perforations located in the washing zone to introduce washwater to the screenings from the inside out. A nylon brush is attached to the trailing edge of the spiral to ensure debris is thoroughly removed from the drainage area. The drain pan is constructed of stainless steel, and is located directly under the press body. A flushing nozzle periodically rinses the drain pan. Sealed with a gasket, and socured with a latching system, the drain pan is easily removed for service.

Above: A detail of the axial thrust bearing that connects the gear reducer to the press body and the shafted spiral. This bearing handles the load created during compaction and carries the overhung load of the spiral. This protects the gear reducer and extends the life of the unit.


Left Above: Note the substantial construction of the shafted spiral. A nyion brush is affixed to the trailing edge of the spiral to ensure the drain is clean, even when greasy material is present. Beneath the spiral you can see the wedgewire drain. The profiled bars used in the drain construction allow for greater flow and prevent blinding. The spiral is cantilevered off the thrust bearing and does not rest in the housing. This reduces wear on the nyion brush and the press body by eliminating metal-to-metal contact.

Left Below: Here you see a Model EWP 250/600 Washing Press with an inlet hopper and discharge pipe. The inlet hopper can be directly connected to a primary screening device such as a Mensch Crawler[™] Bar Screen or Stair Screen, or can be fed by a conveyor. The discharge pipe can be fitted with a bagging assembly, or feed directly into a receiving container.


OPERATION

The Washing Press receives the screenings from a primary screening device or conveyor through the inlet hopper. The spiral transports the screenings from the inlet to the washing zone where they are compacted and washed. In the washing zone, washwater is injected into the screenings from the openings in the hollow shaft of the spiral, and from a nozzle at the top of the unit.

To maximize washing, after the press compacts the screenings the spiral reverses, pulling apart the compacted screenings. The cycle is repeated a minimum of four times. recompacting the screenings and squeezing out excess washwater. The repetition helps the press achieve up to **90%** organic removal from the screenings. As the screenings move into the dewatering zone, the pitch of the spiral continues to decrease, further compacting the screenings for maximum water extraction prior to entering the discharge pipe. From inlet hopper to discharge, the screenings volume is reduced by up to 85%.

Section A-A through the washing zone.

APPENDIX D EQUALIZATION BASIN TRANSFER PUMPS

EQUALIZATION BASIN PUMPING STATION

-CALCULATIONS-

HDR Engineering, Inc.

Appendix D

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007

High Point Pump Discharge Elevatio High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

on =	142.05	Feet
	133.49	Feet
	123.49	Feet

	0	- average	Q - average	Q - average	Q - average	Q - average		
ipe Segment Identification	0	gpm	0 gpm	0 gpm Segment C	Pump Discharge 4x6 Increaser	Pump Discharge Elbow		
						4.00	aufore del de s	
iominal Pipe Diameter, Inches		6.00						
)iameter, D (in.)		6.22	6.065					
Pipe Material		DIP - Class 53	Sch 40 PVC			1		
lumber of Pipes		1	<u></u>				0	
ength, L (feet)		28	76					
1&W Friction Coeff "C"				130				
lowrate in Segment, (gpm)								
lowrate per Pipe, (gpm)					L Contraction of the second	0.0		
Nowrate per Pipe, Q (ft^3/s)		0.0						
Area per Pipe, A (ft^3)	~	0.21101	0.20063	0.2006	0.0872	0.09	0.05	
Velocity, V (ft/s)			0.0	0.0	0.0	0.0		
Minor Loss Contributions:				·				
90 elbow @	0.45		van eerste d	z	NUMBER OF ALL ROOM	1		
45 or smaller elbow @	0.30	a series and a	1	5		, 医安布特氏病	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
tee, straight through @	0.60	and the first	and the second states	1. 2020/04/25	 Berger (1997) 		a tan di sana perio	
tee, line to branch @	1.80	1.19 1.1 1.12	They make the s	: Arts Mahar	그 아무 한다는 것이 같이.			
tee, branch to line @	1.80		11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.	a tha a the alway	· 由于中国的 书记	e per com sales	i municipalità di	
iniet, sharp @	0.50				이 물 다니 가지?		2.5	
inlet, flared @	0.25	1717		n an talagadori	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
submerged exit @	1.00		1		1 1-44	ing dan se	1.1.104.501	
gate valve @	0.20			 A substant subst substant substant subst substant substant subst	a thatter states	Netter State State		
butterfly valve @	0.35	and a second		C service of C	e le sélégéne de	이 성실을 위해 실망하지?	a provident de la	
3-way plug valve thru branch	1.55	a da de la composition de la compositio			a an fhirig an	and the state		
protruding inlet or exit @	1.00	· · · · · · · · ·	ing of shore in	1 1 1 1 1 1 1	t i tena jula jela		이 바이라 가슴 가슴	
wve @	0,30				a Carlana.		- Efficient	
increasers and reducers @	0.25				v este la secto	1 1.5.5.5.5.5.5.5	ang bang bang ban	
swing check valve @	2,60		1			i a ng 111 at e	e negeri e kur	
plug valve	0.40	1000 A	1		a da su tra			
ping valve	0.40		· · · · · · · · · · · · · · · · · · ·					
Sum of Minor Loss Coefficients		19.19. <u>19.1</u> 9	0 3.0	00 18 Sec. 4. 1.	0.2	25 0.4	5 0,00	
Friction Loss, Hf (ft)		0.0	0.0	0	0.0	σ	0.00	
Minor Loss, Hm (ft)		0.0	0.0	<u>0</u> .0.0	0.0	0.0	0.00	
								Total Friction ar Minor Headloss
				alia astri antribativ	or of the second second	0.000	0 0 00	0.00 Feet
Total Headloss, HL (ft)		0.D	0.0	υ0.0	U.L	0.0	<u>, 1 </u>	

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

 $Hm = [sumK] * [(V^2) / (2*g)]$ where g=32.2 ft/sec*2

Maximum Static Headloss	18.56	Feet
Minimum Static Headloss	8.56	Feet
MAXIMUM TOTAL DYNAMIC HEAD	18.56	Feet

inor Loss Calculations							
90 elbow @	0.45	0.90	0 90	0.00	0.00	0.45	0.0
45 or smaller elbow @	0.30	0.00	1.50	이는 이 이번 위에 가지만 나라 가지 않았다.	0.00	0.00	0.0
tee, straight through @	0.60	0.00	0.60	1. Construction of the state	0.00		0.0
tee, line to branch @	1.80	0.00	0.00	a had a fine a see a fill of the	0.00	0.00	ୁ ୦.୦
tee, branch to line @	1.80	0.00	0.00		0.00	化化物学 化二硫酸盐 计输出系统 经工作	0.0
inlet, sharp @	0.50	0.00	0.00				0.0
inlet flared @	0.25	0.00	0.00			· · · · · · · · · · · · · · · · · · ·	0.0
submerged exit @	1.00	0.00	0.00		Charles and the state of the second		NAME OF A DESCRIPTION OF A
gate valve @	0.20	0.00	0.00		新した しんだたい したいたい	1.1.2 - 1.1.110.111.0.4	しょうし たいだいしょう
butterfly valve @	0.35	0.00	0.00			しょうせい かいてい しょうせい	0.0
3-way plug valve thru branch	1.55	00.00	0.00				1999 A. 2010 A. 2010
protruding inlet or exit @	1.00	0.00	D 00				
wye @	0.30	0.00	0.00		anna tha i	122 w 2 x x	1.1.1.1.1.1.1.1
reducer @	0,25	0.00	0,00		I have the set of t	4.1.3.34 (19.4.4.2.12.2	8
swing check valve @	2.60	2.60	0.00	0,00			
plug valve	0.40	0.40	0.00		<u></u>		· · · · · · · · · · · · · · · · · · ·
otal Minor Losses		3.90	3.00	1.00	0.25	0.45	0

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

Feet
Feet
Feet

	•••	Q - average		Q - average	Q - average	Q - average	Q - average		
Pipe Segment Identification		200 gpm Segment A		200 gpm Segment B	200 gpm Segment C	Pump Discharge 4x6 Increaser	Pump Discharge Elbow		
Iominal Pipe Diameter, Inches									
Diameter, D (in.)			5.00		6.00	4.00	4.00	CONSTRUCT	
Pipe Material			5.22	6.065	6.065				
Number of Pipes	··	DIP - Class	53	Sch 40 PVC			CI	55.55 B.	
Length, L (feet)						1997 (Maria da 1		1	
		<u>a sa artanes</u>	28			1978 - 1979 - 1979 - 1 0	0		
H&W Friction Coeff "C"			120			120	100		
Flowrate in Segment, (gpm)			200		200	200		0	
Flowrate per Pipe, (gpm)			200	- 200		200		0	
Flowrate per Pipe, Q (ft^3/s)					04	04			
Area per Pipe, A (ft^3)		0.21		0.20063	0,20063	0 D 08727	0.09		
Velocity, V (ft/s)		加速用是分子的	2.1	15126-1512.2	22	12 4 16 15 5 1	5.1	0.0	
Minor Loss Contributions:									
90 elbow @	0.45		2		ak a a set e				
45 or smaller elbow @		- 41 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				1 ann a 1 a <u>1 a</u> 1	<u></u>		
tee, straight through @	0.60			<u>್ ್ಟರ್</u> 			an an an Arabara	ente Million I	
tee, line to branch @	1.80					A State of States	1997 20 600		
tee, branch to line @	1.80			n na servera. A servera de la servera de	China (K. 1947) - Press		er of participation	the factor of the second se	
inlet, sharp @	0,50		<u></u>					the states of	
inlet, flared @	0.25						<u>a an 14 de</u> Jua	el pellon dag	
submerged exit @	1.00								
gate valve @	0.20			10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		and the state of the second	ni na ser de la composición de la comp	
butterfly valve @			4	en van gese	ant serva et	an an Arta	(14)の名称の 40	and the second second	
3-way plug valve thru branch	0.35			1.		<u>de secong</u> i	1	奥· 法卸售合	
protruding inlet or exit @	1.55	ta di pe		8	and the second second	$= m_{1} \left\{ p_{1} \left\{ p_{1} \right\}, p_{2} \right\}$	14.1.5.1.5 Barrier	ra-1405-ber	
	1.00			and the second		이 물건 물건을 받는 것	and the state of the state of	n na se Africa	
wye @		ankizetti a		100 and 100 and 100	engela ar ta hita	i na stranačje	실험 사람의 가지의		
increasers and reducers @	0.25			<u> </u>	Second Second	61. E. S. 1	7.994 <u>(* 1</u> .977)	an Pilana ana an	
swing check valve @	2.60	<u>- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1</u>		19 - 18 - 18 - 18 - 18 - 18 - 18 - 18 -	100,000,000	in an ad heur	a light of the design of the	Read Alexand	
plug valve	0.40	<u></u>			t da de recer	alara di su si	Al And Albertage C	are de duse	
								[
Sum of Minor Loss Coefficients		3	.90	3.00	1.00	0.25	0.45	Sc	
Friction Loss, Hf (ft)		0.						× 0.00	
Minor Loss, Hm (ft)		0.	27	0.23	80.0	0.10		0.00	
									Fotal Fricti Winor Hea
Total Headloss, HL (ft)		0,	37	0.47	0.DR	0 10	0.18		
						and the second states	en plaint and Pyria .		1.20

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 ft/sec^2

Maximum Static Headloss	18.56	Feet
Minimum Static Headloss	8.56	Feet
HAVING TOTAL DVILLANIA USE	T	
MAXIMUM TOTAL DYNAMIC HEAD MINIMUM TOTAL DYNAMIC HEAD	19.76	Feet

Minor Loss Calculations								
90 elbow @	0.45	the fille and D a	90	0.90	0.00	0.00	0.45	
45 or smaller elbow @	0.30	ALC: THE REPORT OF A	00	1.50		0.00		0.0
tee, straight through @	0.60			0,60		0.00		
tee, line to branch @	1.80		ool	0.00		0.00	States and the second second	0.0
tee, branch to line @	1.80		ool	0.00		0.00		0.0
inlet, sharp @	0.50	Contraction to the factor of the second sec second second sec	ool	0.00		0.00	AL 1995 TO 1995 TO 1997 TO 1997	0.0
inlet, flared @	0.25	0.		0.00	0.00	0.00	Charles and the second second	0.0
submerged exit @	1.00		. 1	0.00	1.00	0.00		0.0
gate valve @	0.20	0.	- X 31	0.00	0.00	0.00	service of the servic	0.0
butterfly valve @	0.35	0.		0.00	0.00	0.00		0.0
3-way plug valve thru branch	1.55	0		0.00	0.00	and the second	0.00	
protruding inlet or exit @	1.00	0,0		0.00	0.00	0.00	0.00	0.0
wye @	0,30	0.	- 1	D.00		0.00		0.0
reducer @	0.25		bol	0.00			0.00	0.0
swing check valve @	2.60	and a second second second	50	0.00		0.25	0.00	0.0
plug valve	0.40			0.00	0.00	0.00	0.00	0.0
otal Minor Losses			50	3.00		0.00	0.00	0.0
			~	3.00	1.00	0.25	0.45	0.0

Page 3 of 9

0,45	0.90	0.90	· 遗志: - 0.00	0.00	0.45	0,00
0.30	0.00	1.50	0,00	0.00	0.00	0.00
0.60	0.00	0.60	0.00	0.00	0.00	0.00
1.80	0.00	0.00	0.00	0,00	0.00	0.00
1.80	0.00	0.00	0.00	0,00	0.00	0.00
0.50	0.00	0.00	0.00	0.00	0.00	0.00
0.25	0.00	0.00	0.00	0.00	D.00	0.00
1.00	0.00	0.00	1.00	0.00	0.00	0.00
0.20	0.00	0.00	0.00	0.00	0,00	0.00
0.35	0.00	0.00	0.00	0.00	0.00	0.00
1.55	0.00	0.00	0.00	0.00	0,00	0.00
1.00	0.00	0.00	0.00	0.00	0.00	0.00
0.30	0.00	0.00	0.00	0.00		
0.25	0.00	0,00	0.00	0.25	0.00	0.00
2.60	2.60	0.00	[10] J. D. K. M. M. M. K.	• · · ·	7	
0.40	0,40	0.00	0.00	La contra da contra d		
	3,90	3.00	1.00	0.25	0.45	0.00
	0.30 0.60 1.80 0.50 0.25 1.00 0.35 1.55 1.00 0.30 0.30 0.25 2.60	0.30 0.00 0.60 0.00 1.80 0.00 0.50 0.00 0.50 0.00 0.25 0.00 0.25 0.00 0.25 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.35 0.00 0.30 0.00 0.25 0.00 0.25 0.00 0.35 0.00 0.30 0.00 0.25 0.00 0.26 0.00 0.25 0.00 0.26 0.26 0.40 0.40	0 30 0 00 1 50 0 60 0.00 0.60 180 0.00 0.60 180 0.00 0.00 0.50 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.35 0.00 0.00 0.35 0.00 0.00 0.35 0.00 0.00 0.30 0.00 0.00 0.25 0.00 0.00 0.35 0.00 0.00 0.30 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.25 0.00 0.00 0.260 2.60 0.00 0.40 0.40 0.00	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

Maximum Static Headloss	10.00	1 001	
Minimum Static Headloss	8.56	Feet	
MAXIMUM TOTAL DYNAMIC HEAD	23.23	Feet	
MINIMUM TOTAL DYNAMIC HEAD	13 23	Feet	

Minor Loss Calculations

Maximum Static Headloss	18,56	Feet
Minimum Static Headloss	8.56	Feet

Maximum Static Headloss	18,56	Feet
Minimum Static Headloss	8.56	Feet

Total Headloss, HL (ft)	1.45	±.1€ −1.77	0.32	AL BAR
Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q	*1.85] / [D*4.8655]			
Hm = {sumK] * [(V^2) / (2*g)] where g=32.2 ft/sec^2				

				1 1		1 1		
Iominal Pipe Diameter, Inches		6.00	6.00	6.00	4.00	4.00	abili stila sett	
Diameter, D (in.)		5.22			4.00		3	
Pipe Material		DIP - Class 53	Sch 40 PVC	Sch 40 SST	the local line of CI	i talah kasalari Ci	- 1. 938 il 1966 -	
Number of Pipes		1997 - ²⁰ 1997 - 19	u 1990 - 19 1		14 - A 24 24 34 1		$\mathbb{W}^{1,2}(\mathbb{W}^{1})$	
ength, L (feet)		28	76 76	. Patro 1,5	the formed o	0	17 - 18 0	
1&W Friction Coeff "C"	ļ	120	140	130	120 million (120	100	a 100	
lowrate in Segment, (gpm)		400						
lowrate per Pipe, (gpm)		400		400		400	. 0	
Flowrate per Pipe, Q (ft^3/s)		0.9		. 0.9			0.0	
Area per Pipe, A (ft^3)		0.21101				0.09		
/elocity, V (fl/s)		4.2	1000 100 10 A.A.	44	10.2	10.2	0.0	
Minor Loss Contributions:								
90 elbow @	0.45	2			ige forges i sole	ersel i Perfect i		
45 or smaller elbow @	0.30	i da ka dista A	her toadet 5		la <u>n</u> a (magaala)	Property and	si te sta sasi	
tee, straight through @	0.60	No se como o	n na 1999 1		in estas éne	التعاقبينية والتحقيد	- Arrena halona	
tee, line to branch @	1.80		nie byvale	1977 B. 1982 B. A.	14 - An 27 112	i da na Nekkera		
tee, branch to line @	1.80	an dia 1970 an		建设的公司运行的	i da hyan ya ƙwa	n an san sa	alah sa sa	
inlet, sharp @	0.50	and the second second	e de la compete	189 - Chief (1992)	and and Dec	el musique d'altre de	135 S 44	
inlet, flared @	0.25	and the second second	a tana katalog	The same sparse	「読み」に対応。	이 영국 문화가 있는	· 이승가의 가슴이	
submerged exit @	1.00	and the second second	and the second	1	All and All All		Sector Sec.	
gate valve @	0.20		n de Nee de l		l stan strage			
butterfly valve @	0.35		Contract Section	ja se sa des de	ang bir ta Marina	ni si kabupaté	1 ang sa dug	
3-way plug valve thru branch	1.55	and the second second		ng kapané Nahé	Alter en		na Liettaija	
protruding inlet or exit @	t.00	a ta shi a gera		and desired and the		$ A_{i} \leq A_{i} \leq A_{i} $	an a	
wye @	0.30	regel debase.	1997 - 1999 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	An Elizabeth Telefore		A Region of Spectra	1977 - 1977 - 1960 -	
increasers and reducers @	0.25	e gant fran	n in the stars gas	lan daelas et	1. and 4. 1. 1.		on de la barre de	
swing check valve @	2.60	1	ang sa sa sa B		$\frac{1}{2} = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right) \left(\frac{1}{2}$	and the first of		
plug valve	0.40	1			internet se state state. Traditione	1979 g 1. 1		
Sum of Minor Loss Coefficients		3.90	3.00	1.00	0.25	0.45	0.00	
Friction Loss, Hf (ft)		0.37	D.86	0.02	0.00	0.00	- ka 0 00 .	
Minor Loss, Hm (ft)		1.08	0.91	0.30	0.40	0.73	0.00	
							1	Total Friction ar Minor Headloss
Total Headloss, HL (ft)		1.45	1.77	0.32	0.40	0.73	0.00	

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off Elevation =

Q - average

400 gpm

Segment A

F

Q - average Q - average

400 gpm

Segment C

400 gpm

Segment B

142.05	Feet
133.49	Feet
 123.49	Feet

Q - average

Pump

Discharge

Q - average

Pump

Discharge

4x6 Increaser Elbow

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007

Pipe Segment Identification

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007 High Point Pump Discha

High Point Pump Discharge Elevation =	142.05	Feet
High Level Pumps 'On' Elevation =	133.49	Feet
Low Level Pumps 'Off' Elevation =	123.49	Feet

		Q - average	Q - average	Q - average	Q - average	Q - average		
pipe Segment Identification		500 gpm Segment A	500 gpm Segment B	500 gpm Segment C	Pump Discharge 4x6 Increaser	Pump Discharge Elbow		
						1.00		
Nominal Pipe Diameter, Inches		6.00				4.00	an egizti sé ren galei a 3	
Diameter, D (in.)		6.22					777 (2000 - 3 -2 -6 20 (2016	
Pipe Material		DIP - Class 53	Sch 40 PVC				1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Number of Pipes		ana a na Maria 1					0	
ength, L (feet)	<u> </u>	<u>28</u> 120			0 120		100	
H&W Friction Coeff "C"								
Flowrate in Segment, (gpm)		500		500			U.S. State D	
Flowrate per Pipe, (gpm)		500 11		1.1		1.1		
Flowrate per Pipe, Q (ft^3/s)		0,21101		<u> </u>		0.09		
Area per Pipe, A (ft^3)		5.3				12.7		
Velocity, V (ft/s)		5.0		Collection of the Or Or	1999 (1999) (1999) (1 2.) (19		all constrained and a second	
Minor Loss Contributions:								
90 elbow @	0.45	2	eres 5, 9 s 1 2	r For Ria (Ali, pull		. Net tue rett	an a	
45 or smaller elbow @	0.30	an in in				i de sine de facili	avera di inte	
tee, straight through @	0.60				in the second second	i dag te séptisée	fra graven en	
tee, line to branch @	1,80	· · · · · · · · · · · · · · · · · · ·	a a tantantan	Contribute San	na di gi parta Spri	Constant Sector	196410107	
tee, branch to line @	1.80		Station and	Casha data	No. 12 percent in the	Selection of the	11540-041	
inlet, sharp @	0,50		an an an Star	tur foga kogu e	in the state of the	the States	CE Relative An	
inlet, flared @	0.25	17. August		Sector due des	the state and	the first station	de la éntres	
submerged exit @	1.00				C. Andrea	1791 - 2092	raman sat	
gate valve @	0.20		a data a se	11.1114-11-14-1	Las Persient	naate gegeene	ngrafar si Mg	J
butterfly valve @	0,35		ing ang sebar na	. Statuses Transfer		egil ef e prive r		
3-way plug valve thru branch	1.55		the state of the	and the second second	The street 1	at the second second	and propherical	ļ
protruding inlet or exit @	1.00		Les dubliqu	a da si a si	n Magdan din A	en agente de la Alexandre	19 July - 6. 1]
wye @	0.30		e se state state e		an a		na her sol	1
increasers and reducers @	0.25	ann a' A	1 1 1 1 1 L		e <mark>na para konte</mark> nt	1 Zehn wordt		1
swing check valve @	2.60	station all said	1	n en	a seleter tom	a gran a san	in en en de la com	-
plug valve	0.40	t≣ e ger tet	s Barres de Ale	and the second				4
Sum of Minor Loss Coefficients		3.9	<u>.</u>	0 1.0	0.2	5 0.45	0.00	į
Friction Loss, Hf (ft)		0.56	1.30	0.03	0.00	0.90	0.00	
						نظير أنش والمراجع والمراجع		-
Minor Loss, Hm (ft)		1.68	<u>er 148</u>	0.48	0.63	P 113	0.00	1
							ĺ	Total Friction an Minor Headloss:
Total Headloss, HL (ft)		2.24	2.73	0.51	0.63	B	0.00	7.24 Feet
		1						

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 ft/sec^2

Maximum Static Headloss	18.56	Feet
Minimum Static Headloss	8.56	Feet
MAXIMUM TOTAL DYNAMIC HEAD	25.80	Feet

Minor Loss Calculations								
90 elbow @	0.45	gadan p	0.90	0.90	0,00	0.00	0.45	0.00
45 or smaller elbow @	0.30		0.00	1.50	0.00	D 00		0.00
tee, straight through @	0.60	al laber	0.00	0.60	0.00	0.00	Address of pression in the second	0.00
tee, line to branch @	1,80		0.00	0.00	0.00	0.00		0.00
tee, branch to line @	1.80		0.00	0.00	0.00	0.00		0.00
inlet, sharp @	0.50		0.00	0.00	0.00	0.00		0.00
inlet, flared @	0.25		0.00	0.00	0.00	0.00	List in the consistence of a second s Second second se	0.00
submerged exit @	1.00		0.00	0.00	1.00	0.00		
gate valve @	0.20	erse tes	0.00	0.00	0.00	E 12 di la talence de la compa	AN 11111111111111	(A) 1 (1) (2) (3) (4)
butterfly valve @	0.35		0.00	0.00	0.00	a sea an indiana ang ang ang ang ang ang ang ang ang	and the second second second	a a sur a com
3-way plug valve thru branch	1,55		0.00	0.00	0.00	0.00	0.00	0.00
protruding inlet or exit @	1.00		0.00	0.00	0.00	0.00	0,00	0.00
wye @	0.30	a de l'Alte	0,00	0.00	0.00	0.00	0.00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
reducer @	0.25		0,00	0.00	0.00	0.25		
swing check valve @	2.60		2,60	0.00	0.00	0.00	The state in the second	the second s
plug valve	0,40		0.40	0.00	0.00	1		
Total Minor Losses			3.90	3.00	1.00	0.25	0.45	0.00

Cilent: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

142.05	Feet
133.49	Feet
123.49	Feet

		Q - average	Q - average	Q - average	Q - average	Q - average		
Pipe Segment Identification		600 gpm Segment A	600 gpm Segment B	600 gpm	Pump Discharge 4x6 Increaser	Pump Discharge Elbow		
Nominal Pipe Diameter, Inches		6.00	6.00	 () 음() 6.00	4,00		<u> Hannya</u>	
Diameter, D (in.)		6.22	6.065	5 6,065	4.00	anati et 4.00		
Pipe Material		DIP - Class 53	Sch 40 PVC	Sch 40 SST	CI	199 (Kali Mali Ci	la desta este	
Number of Pipes		in the stranger of	New 2011	9-1	일을 좀 다 온다.		pagabili, in 🕇	
ength, L (feet)		28 (No. 197	76		i per su e rél o	in the second second	O	
H&W Friction Coeff "C"		1.4 L COM 120	140	130	120	100	100	
Volume Regiment, (gpm)		600	600	600	600			
Nowrate per Pipe, (gpm)		600			600		÷ 0	
Flowrate per Pipe, Q (ft^3/s)		1.3	13	3. 13	1.3			
Area per Pipe, A (ft^3)		0,21101			0.08727		V.05	
Velocity, V (ft/s)		6.3	6,6	6.6	15.3	CRIME 115.3	0.0	
Minor Loss Contributions:								
90 elbow @	0.45	2	2	n in setti and	en de la com	1		
45 or smaller elbow @	0,30	and the second second	a na pellatera 🗄	i Alcaritte	All and the particular	 [additional] Max 	hayagi da b	
tee, straight through @	0.60	19 - Angel II. 192		n y oznaka terysta sta	, e statisticae	The global of a	्याचे व देखविते	
tee, line to branch @	1.80	A DARA STRATE STRAT	and a second	in the second second		a de Consein de	A CONTRACT	
tee, branch to line @	1.80	n several contactore	and the state	N. Apalata a		State Presidents	1000	
inlet, sharp @	0.50	지나라 영화 가지	e providence) e	Les Ball - Mar	$= A_{ij} + b_{ij} + \cdots + b_{ij} + c_{ij}$	a dates de la Al		
inlet, flared @	0.25		Constant State	- 1997 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 1993 - 199	n gabi urin Tag		There is an existence	
submerged exit @	1.00	a yan yi ƙwaran	Li Antonio Her	a de georde capac	1	Tegraph Skort	and the state	
gate valve @	0.20	a la seconda de la seconda		ng hugu ti tha An		Sec. Ash w	an ta tan ta	
butterfly valve @	0.35		a na se	1 de Baren Billio	i iz il ante da a	 	and to do to	
3-way plug valve thru branch	1.55	an de Cartena d	and the second	1 SX CLARGER	o o utan in tengt	a Vine designe (Mil	New York	
protruding inlet or exit @	1.00	gi y Areaust (els	and the fire office	ine e General	a sha at tara	a the second	12.00	
wye @	0.30	م بالمحية المحية	1. 2.63, 1.2	n an a' chuir dhe	and the first	a ng thing th	e entre constant]
increasers and reducers @	0.25	en altre fals	e to see set	i en ture de tra		i <mark>l</mark> e esta di second	122.8 X N]
swing check valve @	2.60	a data tang	1 80 1 80 80 80 80	, una lu para	이 나는 물건을 가지?	Hans of Horse	a na antai	
plug valve	0.40		1 lagting of the				Franker (A.	
Sum of Minor Loss Coefficients	··	3.9	D 3.0	0	0.2	5		
Friction Loss, Hf (ft)		0.79	1.82	0.04	0.00	0.00	0.00	
Minor Loss, Hm (ft)		2.42	2.06	0.65	0.91	1.63	0.00	
								Total Friction a Minor Headlos
Total Headloss, HL (ft)		3.21	3,88	0.7	0.91	1.63	0.00	10,35 Fee
								1

Per Hazen & Williams: Hf = [.002083] * {L} * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 fl/sec^2

Maximum Static Headloss	18.56	Feet
Minimum Static Headloss	8.56	Feet
MAXIMUM TOTAL DYNAMIC HEAD	28.91	Feet

linor Loss Calculations	i		1				
90 elbow @	0.45	0.90	0,90	0,00	0,00	0.45	0.00
45 or smaller elbow @	0.30	0.00	t.50	0.00	0.00	0.00	0.00
tee, straight through @	0.60	0.00	0.60	0.00	0.00	0 OD	0.00
tee, line to branch @	1.80	0.00	0.00	0.00	0.00	0.00	
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0 00	0.00
inlet, sharp @	0.50	0.0	0.00	0.00	0.00	0.00	0.00
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.00
submerged exit @	1.00	0.0	0.00	1.00	0.00	0.00	0.00
gate valve @	0.20	0.0	0.00	0.00	0.00	0.00	X0.0
butterfly valve @	0.35	0.0	0.00	0.00	0.00	0.00	
3-way plug valve thru branch	1.55	0.0	0.00	0.00	0.00	0.00	0.0
protruding inlet or exit @	1.00	0 Di	0.00	0.00			1
wye @	0.30	0.0	0.00	0.00	0.00	0.00	∎avel 2 h hači i i
reducer @	0.25	0.0	0.00	0.00	0.25	0.00	0.0
swing check valve @	2.60	2.6	0.00	0.00	0.00	N 1 1 1 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
plug valve	0.40	0.4	0.00	0.00	0.00		
otal Minor Losses		3.9	3.00	1.00	0.25	0.45	0.0

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

142.05	Feet
133.49	Feet
123.49	Feet

		Q - average	Q - average	Q - average		Q - average		
Pipe Segment Identification		800 gpm Segment A	800 gpm Segment B	800 gpm Segment C	Pump Discharge 4x6 Increaser	Pump Discharge Elbow		
Nominal Pipe Diameter, Inches		6.00	6.00	6.00	· · · · · · · · · · · · · · · · · · ·	4.00	ANDER: A	
Diameter, D (in.)		6.22			4.00		1	
Pipe Material		DIP - Class 53			Charles and CI		1.000	
Number of Pipes		in e dagrede 🕇	- 244 MER 4 1	- Final A. (1976) 1	sawijang an e 1	18 11 1-04 1 04	ogoldana.e 1	
Length, L (feet)		- 28	76	Q 10200-1.5	eto foto primatere O	ALLER AND AND ADD O	48949.0	
H&W Friction Coeff "C"		120	140		120 and a 120	100	100	
Flowrate in Segment, (gpm)		800	800	800	800	800	0.54 Sec 0	
Flowrate per Pipe, (gpm)		800	800	800	800	800	t service o	
Flowrate per Pipe, Q (ft^3/s)		1.8	1.8	1.8	1.8			
Area per Pipe, A (ft^3)		0.21101	0.20063	0.20063	0.08727	0.D9	0.05	
Velocity, V (ft/s)		8.4	8.9	8.9	20,4	20.4	9.0 × 0.0	
Minor Loss Contributions:								
90 elbow @	0.45	2	2 1	Researchean		ezh desteri	h	
45 or smaller elbow @	0.30				N. ANA MA	lingen start	1	
tee, straight through @	0.60	i yantu wa		The second s		and the second		
tee, line to branch @	1,80		in a history	and stands of	Construction (Press)	negative states and	1.5.5.5.4.5.5	
tee, branch to line @	1.80	 Figuration and the 	in the state of the	COMB PLOCE NO.	stear and the	Activity in AP		
intet, sharp @	0.50	e, 141 - Standa	1.	1 여 개 및 영식,	an states	etogradura una	n a Cheller Che	
inlet, flared @	0.25	A set of the set		14910000000	5-35-8-75 AC			1
submerged exit @	1.00		the states	1				1
gate valve @	0.20		14-41 (H 1464		n Abrahata			1
butterfly valve @	0.35	al part der	Provide TS.	They have been a	1	haddurgeng a	Stop Adjo	1
3-way plug valve thru branch	1.55	and the product	- 1 stransdaa	Para BA Jaba	Jan - Artaria	ast notice of grader	s da la la com	1
protruding inlet or exit @	1.00	di altri dormi	10.000.000	i ersginneraje bi	rhais a' Carlais	den staats de	awa Tukhtur	1
wye @	0.30	tite gaara	· · · · · · · · · · · · ·	- ret there		line en de stationer	1 Sagaran I	1
increasers and reducers @	0.25		a tatilite	Contraction of the second	1	The second		1
swing check valve @	2.60	1		an an the second		184 (2812)-5 T		1
plug valve	0.40	<u>.</u> 1. 1. 1		a ang ang ang ang ang ang ang ang ang an	<u>- Stead versitian</u>	The Aldebrah, Li		1
Sum of Minor Loss Coefficients			3.00	1.00	0.25	0.45	0.00	
Friction Loss, Hf (ft)		1.34	3.10	0.07	0.00	0.00	0.00	
Minor Loss, Hm (ft)		4.30	3.66	1.22	1.61	2.90	0.00	
								Total Friction a Minor Headloss
Total Headloss, HL (ft)		5.64	6,76	1.29	1.61	2.90	0.00	18.20 Fee

Per Hazen & Williams: Hf = {.002083} * {L} * {(100/C)^1.85} * {Q^1.85} / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 fl/sec*2

Maximum Static Headloss	18.56	Feet
Minimum Static Headloss	8.56	Feet
MAXIMUM TOTAL DYNAMIC HEAD MINIMUM TOTAL DYNAMIC HEAD	36.76	Feet

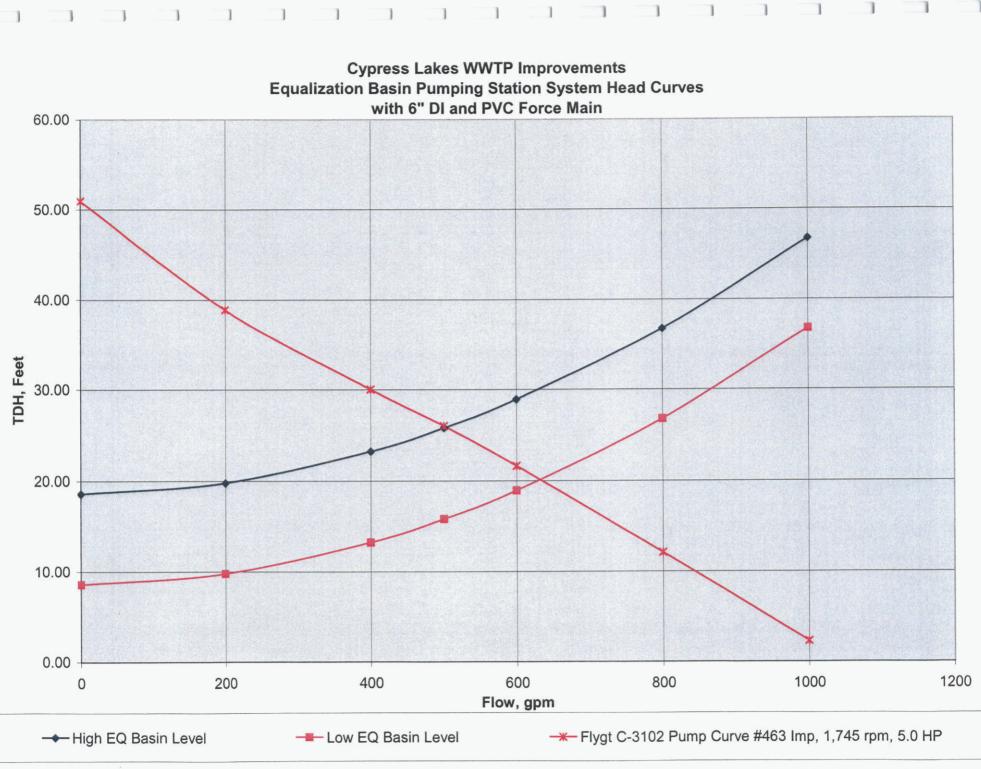
Minor Loss Calculations								
90 elbow @	0.45		0.90	0.90	0.00	0.00	0.45	0.00
45 or smaller elbow @	0.30		0.00	1,50	0.00	0.00	0.00	ं्ं ० ०
tee, straight through @	0.60	alan taaliha	0.00	0.60	0.00	0.00	0.00	0.0 O.0
tee, line to branch @	1.80	raita bit	0.00	0.00	-0.00	0.00	0.00	0.0
tee, branch to line @	1.80		0,00	0.00	0.00	0.00	0.00	0.0
inlet, sharp @	0.50		0.00	0.00	0.00	0.00	0.00	0.0
iniet, flared @	0.25		0.00	0.00	0.00	0.00	0.00	D D
submerged exit @	1.00	1993년 1941	0.00	0.00	1.00	0.00	0,00	0.0
gate valve @	0.20	an a	0.00	0.00	0.00	0.00	0.00	0.0
butterfly valve @	0.35		0.00	0.00	0.00	0.00	0.00	0.0
3-way plug valve thru branch	1.55		0.00	0.00	0.00	0.00	0.00	0,0
protruding inlet or exit @	1.00		0.00	0.00	0.00	0.00	0.00	0.0
wye @	0.30		0.00	0.00	0.00	0.00	0.00	0.0
reducer @	0.25	la te Mar	0.00	0.00	0.00	0.25	0.00	0.0
swing check valve @	2,60		2.60	0.00	0.00	0.00	0.00	0.0
plug valve	0.40		0.40	0.00	0.00	0.00	0.00	0.0
otal Minor Losses			3,90	3.00	1.00	0.25	0.45	0.0

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - Equalization Basin Pumping Station Project No: 00000000025889 Calculations: System Head Curve with 6" DI and PVC Force Main Performed by: J R Voorhees Date: February 12, 2007

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

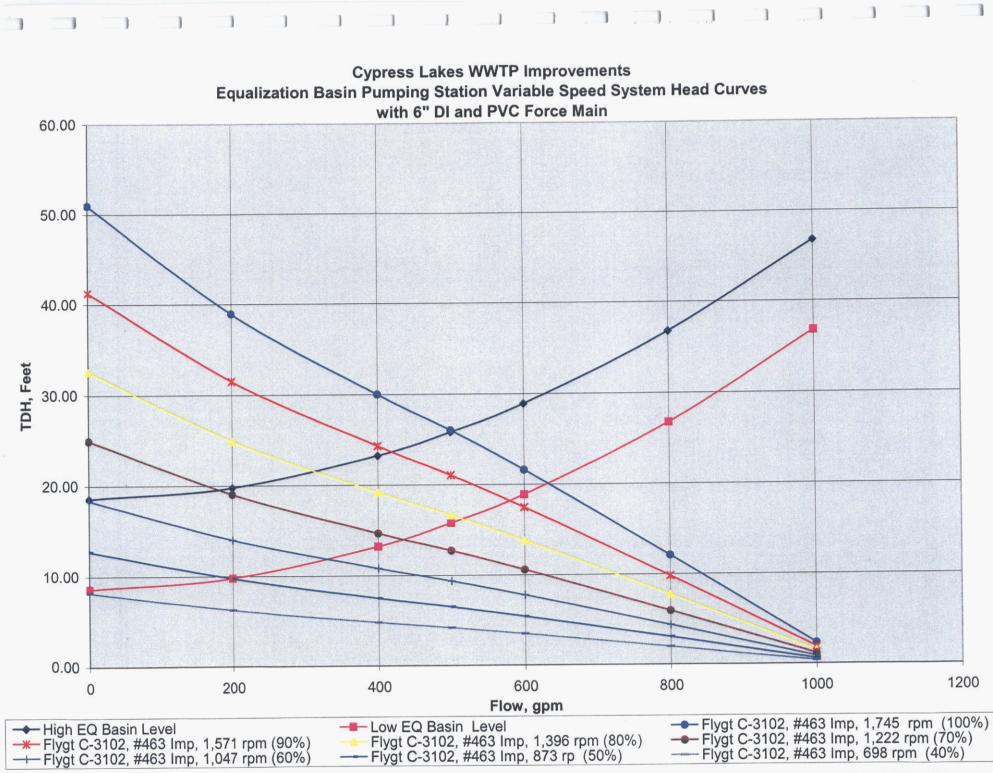
142.05	Feel
133.49	Feet
123.49	Feel

		Q - average	Q - average	Q - average		Q - average		
Pipe Segment Identification		1000 gpm Segment A	1000 gpm Segment B	1000 gpm Segment C	Pump Discharge 4x6 Increaser	Pump Discharge Elbow		
Nominal Pipe Diameter, Inches		6.00	6.00	6.00	4.00	4,00	S hat state	
Diameter, D (in.)		6.22		6.065			3	
Pipe Material		DIP - Class 53		Sch 40 SST		CI		
Number of Pipes		1						
Length, L (feet)	· · · · · ·	28	76				nation - E.p	
H&W Friction Coeff *C*		120	140	130	120		100	
Flowrate in Segment, (gpm)		1000		1000				i i i i i i i i i i i i i i i i i i i
Flowrate per Pipe, (gpm)		1000		1000		1000		
Flowrate per Pipe, Q (ft^3/s)		2.2		22 22	2.2			
Area per Pipe, A (ft^3)					u			
Velocity, V (fl/s)						25.5		
Minor Loss Contributions:		·						
90 elbow @	0.45	2	en 16.2 (a 2] [문화관등 사용품		- 1925 - 1923 - 11		
45 or smaller elbow @	0.30	line line that	a na sere e g	ALY CONSTR			1990 - 1992 1997 - 1992	
tee, straight through @	0.60	and the second second	1		. Algebra ber akter			
tee, line to branch @	1,80	nation for the bar		e sue faction à		Pares Bargar	Net of the	
tee, branch to line @	1.80	ente glorintia.	and the gala of these	a de la composition		وليتي والمتحد والأمر والأمر		
inlet, sharp @	0.50	a a sector de Antonio		ha an actual a	and a light suit	189 ALL ALL POID	Arte at	
inlet, flared @	0.25	a for the formation of the same	Thursday and	nissipati v 1.	e e en suita ser il		. State the	
submerged exit @	1.00	ang at sa karan	A CHARGE	149	end einer er er er		고 문화 문화 문화	1
gate valve @	0.20	endig filmense bl		a service contra	1.1.1 y 2.1.1 Y,	1450 (11, 44, 14, 14, 14, 14, 14, 14, 14, 14,	Berger Char	1
butterity valve @	0,35	and which is the	and the state of	n ya daga daga	i i na abierar	An el en la generation	an a	1
3-way plug valve thru branch	1,55	ang adarahan	Providence de la presidence de la composition de la composition de la composition de la composition de la compo	a shi kenshiri	nge strong it en	ale e prizegel :	n grand t	1
protruding inlet or exit @	1.00	ente de la regionale	al harries	142.04.1926	, digmana a s	Although a state of the second	a than a state of	1
wye @	0,30	Street, street		. Esta Hebra	5 Kadubera g	AN ABAN ON	12.0.0440	1
increasers and reducers @	0.25	1 uddae tu innai	and a straight			na Alemán.	e sa anis.	1
swing check valve @	2.60	8 1 1 1 1 4 4 4 1 1	angan (a. 1974) m		, etc. Para da suje		ana ang sag	1
plug valve	0,40	1 <u>1</u> 497 1 1	ela figna en la				Textpressor.	1
Sum of Minor Loss Coefficients		3.90	3.00		0:25	0.45	0,00	
Friction Loss, Hf (ft)		2.03	4.68	0.11	0.00	0.00	0.00	-
Minor Loss, Hm (ft)		6.72	5.72	1.91	2.52	4.53	0.00	
								Total Friction Minor Headlo
Total Headloss, HL (ft)		8.75	10.40	2 01	2.52	4 53	0.00	28.21 F


Per Hazen & Williams:

Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 ft/sec*2


Maximum Static Headloss	18,56	Feet
Minimum Static Headloss	8.56	Feet
	1 10 10 10	
MAXIMUM TOTAL DYNAMIC HEAD MINIMUM TOTAL DYNAMIC HEAD	46.77	Feet

Minor Loss Calculations							
90 elbow @	0.45	0.90	0.90	0.00	0.00	0.45	0.00
45 or smaller elbow @	0.30	0.00	1.50	0.00	0.00	0.00	0.00
tee, straight through @	0.60	0.00	0.60	0.00	0.00	0,00	0.00
tee, line to branch @	1.80	0.00	0.00	0.00	0.00	0.00	0.00
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	0.00
inlet, sharp @	0.50	0.00	0.00	0.00	0.00	0.00	0.00
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.00
submerged exit @	1.00	0.00	0.00	1.00	0.00	0.00	0.00
gate valve @	0.20	0.00	0.00	0.00	0.00	0.00	0.00
butterfly valve @	0.35	0.00	0.00	0.00	0.00	0.00	0.00
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	0.00
protruding inlet or exit @	1.00	0.00	0.00	0.00	0.00	0.00	0.00
wye @	0.30	0.00	0.00	0.00	0.00	0.00	0.00
reducer @	0.25	0.00	0.00	0.00	0.25	0.00	0.00
swing check valve @	2.60	2.60	0.00	0.00	0.00	0.00	0.00
plug valve	0.40	0.40	0.00	0.00	0.00	0.00	0.00
Total Minor Losses		3.90	3.00	1.00	0.25	0.45	0.00

Cypress Lakes WWTP Improvements Equalization Basin Pumping Station System Head Curves 6-Inch Transfer Force Main

X - Flow	Y - Max TDH	Y - Min TDH	Model C-3102 Flygt Pump Curve w/ #463 Impeller - Speed 1,745 rpm 5.0 HP		
				·	
0	18.56	8.56	50.90		
200	19.76	9.76	38.90		
400	23.23	13.23	30.00		
500	25.80	15.80	26.00		
600	28.91	18.91	21.60		
800	36.76	26.76	12.10		
1000	46.77	36.77	2.30		

Printed On 6/29/2007

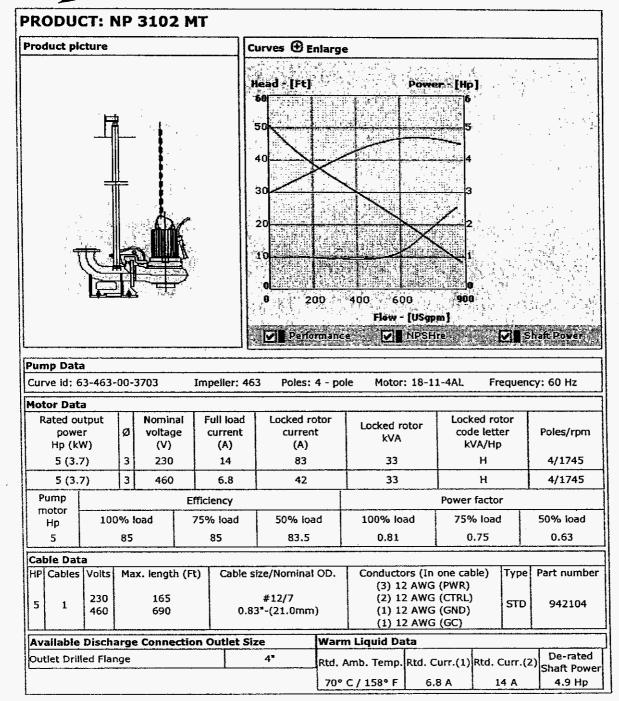
Page 1 of 2

Cypress Lakes WWTP Improvements Equalization Basin Pumping Station System Head Curves 6-Inch DI and PVC Force Main Variable Speed Pump Curves for Flygt Model C-3102, Impeller #463

.

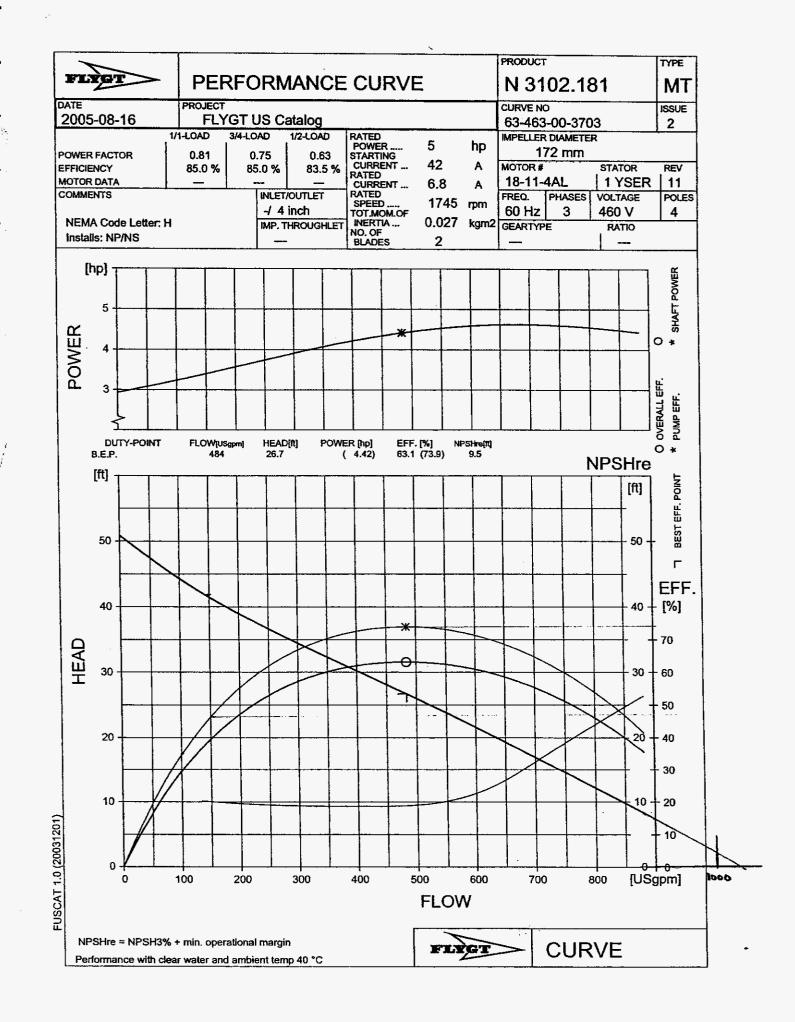
X - Flow	Y - Max TDH	Y - Min TDH	Model C-3102 Flygt Pump Curve w/ #463 Impelier - Speed 1,745 rpm 5.0 HP 100% Speed	Model C-3102 Flygt Pump Curve w/ #463 Impeller - Speed 1,571 rpm 5.0 HP 90% Speed	Model C-3102 Flygt Pump Curve w/ #463 Impeller - Speed 1,396 rpm 5.0 HP 80% Speed	Model C-3102 Flygt Pump Curve w/ #463 Impeller - Speed 1,222 rpm 5.0 HP 70% Speed	Model C-3102 Flygt Pump Curve w/ #463 Impeller - Speed 1,047 rpm 5.0 HP 60% Speed	Model C-3102 Flygt Pump Curve w/ #463 Impeller - Speed 873 rpm 5.0 HP 50% Speed	Model C-3102 Flygt Pump Curve w/ #463 Impelier - Speed 698 rpm 5.0 HP 40% Speed
0	18.56	8.56	50.90	41.23	32.58	24.94	18.32	12.73	8.14
200	19.76	9.76	38.90	31.51	24.90	19.06	14,00	9.73	6.22
400	23.23	13.23	30.00	24.30	19.20	14.70	10.80	7.50	4.80
500	25.80	15.80	26.00	21.06	16.64	12.74	9.36	6.50	4.16
600	28.91	18,91	21.60	17.50	13.82	10.58	7.78	5.40	3.46
800	36.76	26,76	12.10	9.80	7,74	5.93	4.36	3.03	1.94
1000	46.77	36,77	2.30	1.86	1.47	1.13	0.83	0.58	0.37
				0.00	0.00	0.00	0.00	0.00	0.00

i


EQUALIZATION BASIN TRANSFER PUMPS

-MANUFACTURER'S DATA-

HDR Engineering, Inc.


.

Flygt

🛷 ITT Industries

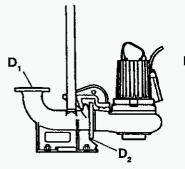
N-3102

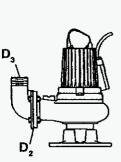
PLAGT

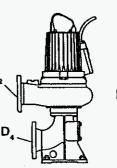
Impeller/Motor/Nominal Sizes

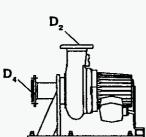
١

Issued: 5/02 \$

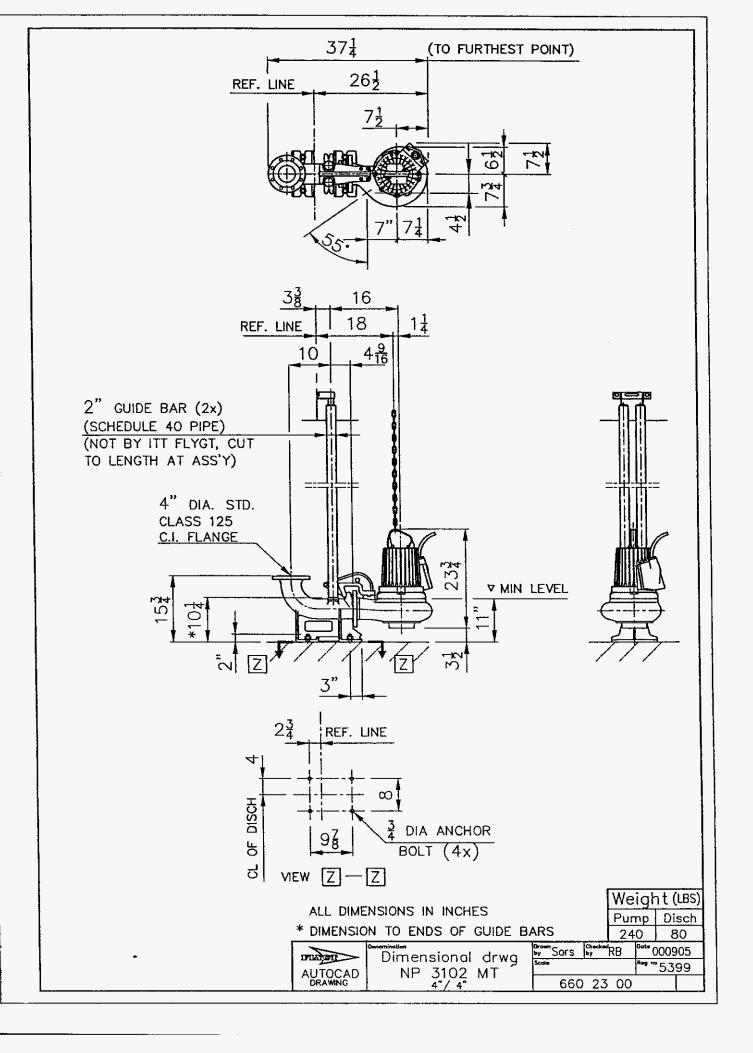

5/02 Supersedes: 8/00


PUMP	IMPELLER		HP R/	TING	VAC	D1		50		
MODEL	CODE	NP	NS	NT	NZ	VAC	וטן	02	D3	D4
	422 LT 423 LT	5.0	5.0		-		4* or 6*	4" or 6"	4" or 6"	
3102 3Ø	462 MT 463 MT	5.0	5.0			200 230/460 575	4"	4"	4"	-
	464 MT 465 MT	5.0	5.0	3.7	3.7		4"	4"	4"	4"


3102 1Ø	464 MT 465 MT	3.9	3.9			230	4"	4"	4ª	 .
------------	------------------	-----	-----	--	--	-----	----	----	----	-----------


D

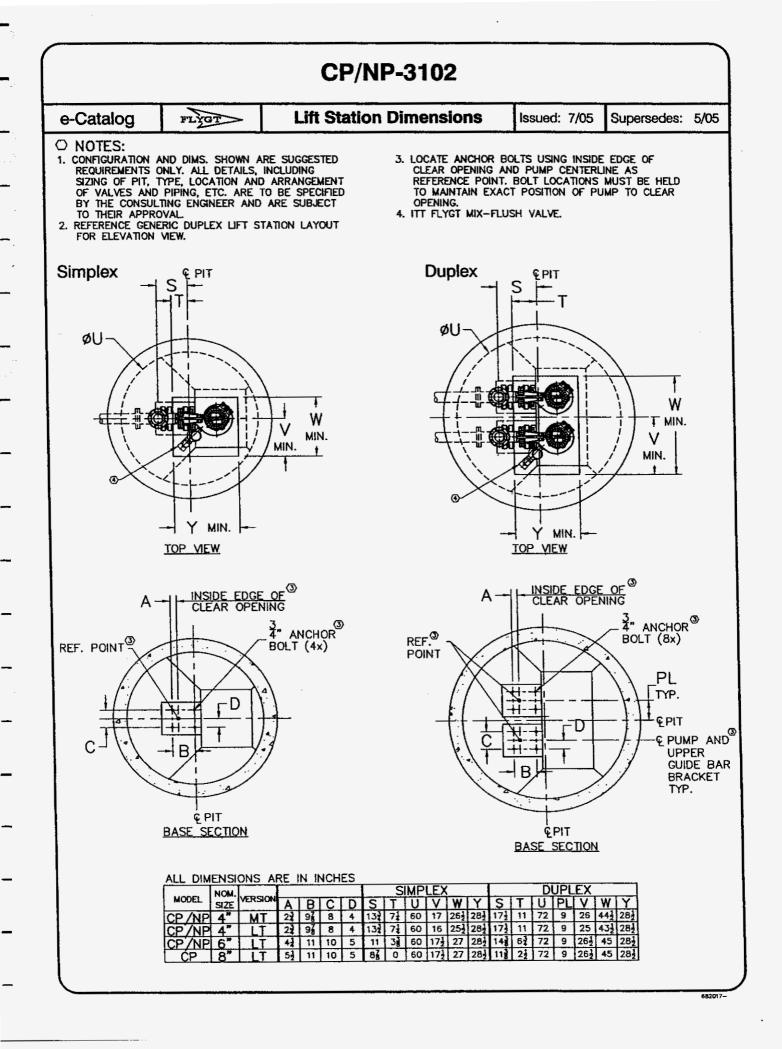
LT = High Volume MT = Standard


NP

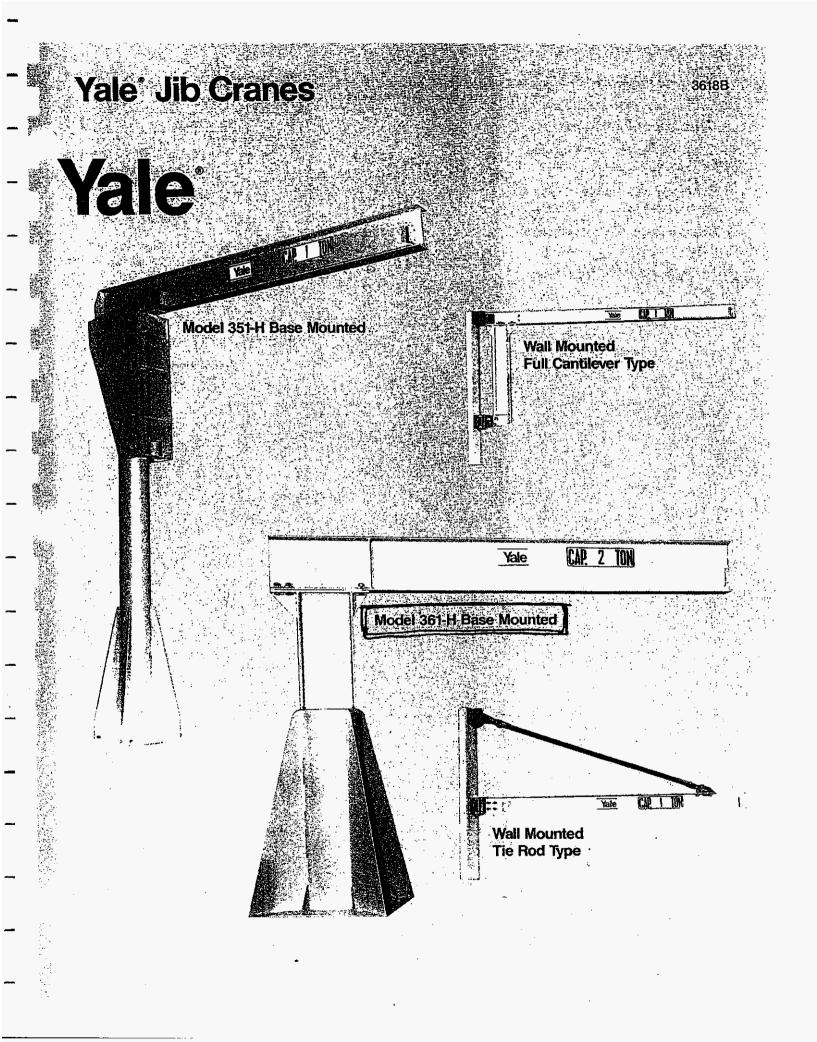
NS

+

NT


NZ

|


|

T

APPENDIX D-1 JIB CRANE AND CHAIN HOIST

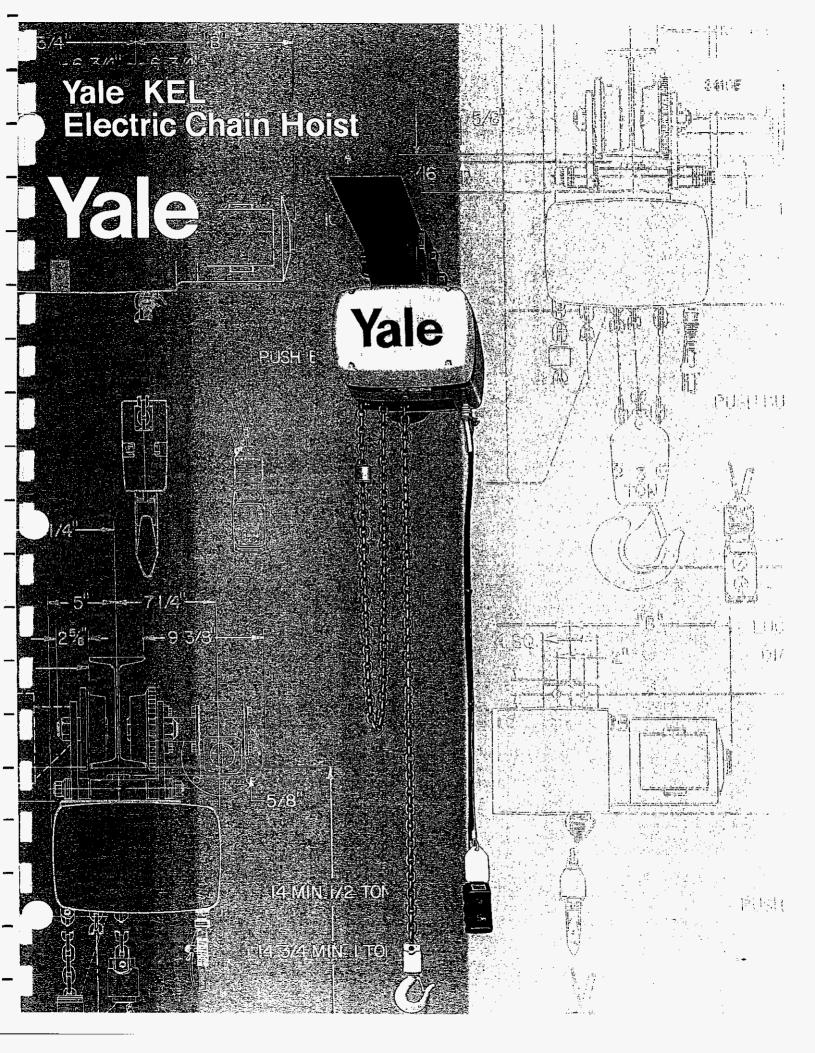
HDR Engineering, Inc.

361-H Base Mounted Jib Crane

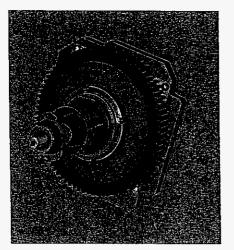
- Capacities ¼ to 3 tons
- Less deflection for reduced load swing and bounce
- Economical costs less than conventional models
- Greatly reduces installation time
- Easily adjustable from floor level

Capacity in tons	Boom radius (ft) S	Boom height (ft) B	Overali height C	i⊢beam size (in) K	Mast dia. (in) M	Found depth D (in)	Rotation clearance (in) R	Dim. P (in)	Anchor bolt dia. (in)	Bolt circle dia. (in) E	Bolt pattern no.	Foundation width (in) W	н	Base plate width (in) F	Approx net weight ibs
¥ 4	8	10	10'6"	6	10	36	12	4	34	30	4	48	24	24	875
1/4	10	10	10'6"	6	10	36	12	4	3/4	30	4	48	24	24	690
14.	12	10	1018"	8	10	36	12	4.	3/4	30	4	48	24	24	720
V4	14	10	10'8"	8	10	36	12	4	34	30	4	48	24	24	800
1/4	16	10	10' 10"	10	10	36	12	4	34	30	4	48	24	24	960
1/2	8	10	10'8"	8	10	36	12	4	74	30	4	48	24	24	785
1/2	10	10	10.8	8	10	36	12	4	- 74	30	.4	48	24	24	810
1/2	12	10	10' 10"	10	10	36	12	4	24	30	4	48	24	24	1030
1/2	14	10	10' 10"	10	12	42	15	4	3%	30	8	54	30	30	1080
1/2	16	10	11'0'	12	12	42	15	- 4	3/4	30	6	54	30	30	1250
1	8	10	10'8"	8	12	42	15	4	34	30	8	54	30	30	845
1	10	10	10' 10"	10	12	42	15	4	34	30	8	54	30	30	980
1 -	12	10	11'0"	12	12	42	15	4	14	.30	8	54	30	30	1200
1	14	10	11'0"	12	14	42	15	4	1	30	8	60	30	30	1260
1	16	10	11'0"	12	18	42	24	4	1	42	12	72	42	481/2	174
2.	8	10	11'0"	12	18	42	24	4.	11	42	12	72	42	481/2	141
2	10	10	11'0"	12	18	42	24	4	1 1	42	12	72	42	481/2	149
2	12	10	11'3"	15	18	42	24	4	1	42	12	72	42	481/2	177
2	14	10	11'3"	15	18	42	24	4	1	42	. 12	. 72	42	481/2	230
2	16	10	11'3"	15	20	42	24	4	1	42	12	84	42	481/2	238
3	8	10	11'3"	15	18	42	24	4	1	42	12	96	42	481/2	210
3	10	10	11'3	15	20	42	24	4	1	42	12	72	42	481/2	223
3	12	10	11'3"	15	20	42	24	• 4	1	42	12	84	42	481/2	232
3	14	10	11'6"	18	20	42	24	4	1	42	12	84	42	481/2	259
3	16	10	11'6"	18	20	42	24	4	1	42	12	84	42	481/2	395

Note: Dimensions shown are not certified for construction and are subject to change without notice. Many other models available, please consult the factory,

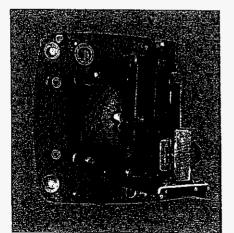

The unique (patent pending) design of the Yale 361-H base mounted jib crane helps eliminate dangerous deflection. Deflection can cause the load to run uncontrollably to the lowest point on the I-beam. This may result in dangerous load bounce and swing.

In conventional jibs, the head rotating around the pipe mast may

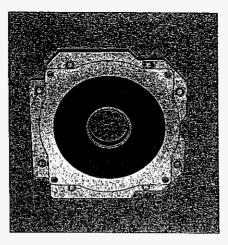

cause the pipe to flex, resulting in deflection of the I-beam.

This cannot occur in the 361-H jib because the entire mast rotates inside the pipe base assembly that is supported from top to bottom by heavy duty gusset plates. The self-aligning roller cage is connected to the mast which is constructed of rugged H-beam. The bottom bearing is a heavy duty thrust bearing designed to handle the axial load. Top entry collector rings are available as an option.

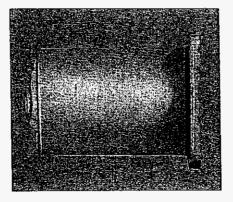
The unique design of the 361-H allows us to standardize on many components resulting in quick deliveries at a substantial cost savings to you! Contact your nearest Yale hoist distributor and compare.



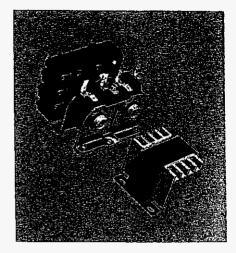
Yale[®] Features


Load Limiting Device— Standard

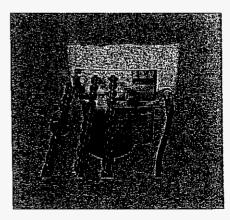
The Yale KEL electric Chain Hoist is furnished with a built-in load limiter as standard equipment. This slip-clutch type load limiter is designed to help prevent damaging overloads. The load limiter is pre-set at the factory to function within a given range above the hoist's rated capacity. This permits unimpeded operation of the hoist within its rated capacity. Additionally, the load limiting device protects the hoist should the chain become jammed.


Disc-Type Motor Brake

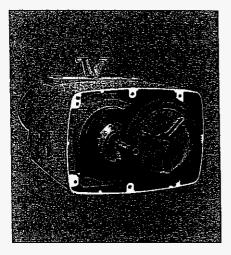
This positive-acting, non-asbestos brake is opened by a specially designed solenoid only when the hoist motor is on. It closes instantly when the power is cut off to hold the load in place. The brake will hold the full rated capacity of the hoist and is enclosed against dirt, water and oil.


Roller-Clutch Type Load Brake-Standard

Unique one-way design controls lowering action with an infinite number of stopping positions. Load brake minimizes downslip and operates with power on or off. Brake is located on output side of gear reduction and operates independently of the gear train.


Heavy Duty Dual Voltage Motors

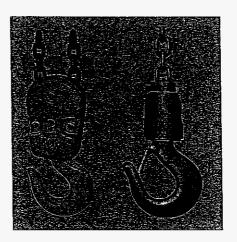
Dual-voltage motors are specifically designed for hoist duty and meet NEMA specifications. Standard voltages are 115/230-1-60 and 230/ 460-3-60. A simple reconnection changes voltage on these models. Other voltages are available. Motors have class B insulation and are 30 minute rated with a 75°C rise over a 40°C ambient temperature. All motors are tested to protect against internal short circuits and have thermostats inbedded in the motor windings for additional protection. The KEL can be CSA approved. The motors are TENV.


Controls

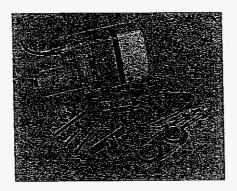
Magnetic contactor controls use double-break principle for longer life. Hand-grip pushbutton control station is suspended from hoist frame by a shielded cable. They are mechanically interlocked at the contactor and pushbutton station. Standard controls are 24 volt with 115 volt optional. All control enclosures are designed to the intent of NEMA 3R and 12.

Hook Travel Limiting Device Adjustable limit stop or load block activate load limiter upon contact with hoist housing to protect against damage from accidental over travel. An optional electrical limit switch is also available.

KEL Electric Chain Hoist



Gears, Pinions and Bearings Gears and driving pinion are made of forged and hardened alloy steel for long life. Gear teeth are precision cut, full depth and feature modified involute design to minimize friction and give smooth operation. Intermediate pinion is cut from hardened bar stock. Serrated spline connections assure positive drive. Precision ball bearings have ample provision for thrust load and the entire gear train operates in an oil bath.


Chain Guide and Load Sheave

Chain guide prevents twisting of chain on load sheave. Load sheave is mounted on precision ball bearings and has four pockets for proper support of load and reduction of chain wear.

Chain, Bottom Block and Hook

Each link of the load chain is dieformed, electrically welded and heattreated. Bottom block on two and three ton units is enclosed with ductile iron sheave mounted on bearings. Load hooks are drop-forged with hook latches standard.

Wide Variety of Suspensions

Available suspensions are: lug, rotating and non-rotating top hooks, rotating and non-rotating clevises, plain trolley, RT motorized trolley, TT tractor trolley and geared trolley.

Accessories

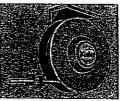
Current collectors (collector brackets and stems), tag lines, power cord trolleys, cable reels, coiled cord, and electric cord suspension kits are among the safe and effective power delivery systems that Yale can provide for your KEL Electric Chain Hoist. Optional power cord can be supplied to the correct length for your application when you order your KEL (specify on order).

Chain Containers

Chain containers are recommended for the KEL hoist to keep the slack chain out of the way when it may be a hazard to operations or personnel. If you

order a chain container with your KEL, one of two types will be supplied. Either a vinyl coated, synthetic fabric, bag type container or a metal bucket type container will be furnished, depending on the lift you require. Chain containers are offered for lifts to 75 feet on ½ and 1 ton units, 37½ feet on 2 ton units, and 25 feet on 3 ton units. Containers for longer lift units may be available by special order.

Power Cord Trolley


Supports ¼ inch to 1¼ inch outside diameter power cords. Adjusts to ASI beams from 3 inches to 10 inches high

and from 2% inches to $5 \frac{3}{32}$ inches in width. For best results space trolleys at 8 foot intervals. Recommended for use with trolley mounted hoists.

Cable Reel

Recommended to keep power cord taut on trolley suspended hoists. Weather and dust tight, reels work

well in many applications.

Yale Geared Upper & Lower Limit Switch

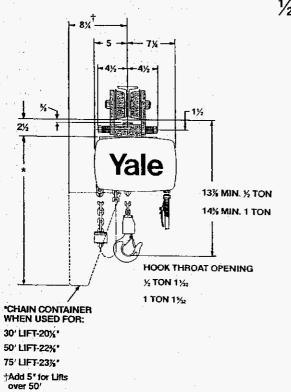
Recommended when travel of bottom hook must be limited periodically. Maximum lift when limit switch is furnished: ½ and 1 ton— 96 feet, 2 ton—48 feet, 3 ton— 32 feet.

KEL Plain Trolley Type

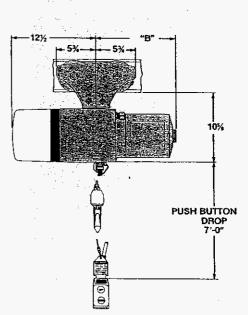
Yale

Specifications (All dimensions in inches)

2 A C					Motor /	Amperage*				Apr	prox.	Min.
d Inime of	Std.	Speed	Motor	Single	Phase	Three Pl		"B"		Net	Ship,	Head-
	Lift	FPM	HP	115	230	230/460	575	Dim.	the minore was	Wt.	Wt.	room
	10	15	1/2	9.0	4.5	2.0	1.7	12%		140	160	13%
	10	30	1	15.0	7.5	3.5	2.0	12%	No. Company	150	170	13/8
	10	60	2	NA	NA	5.5	4.0	15%		155	175	13%
	10	15	1	15.0	7.5	3.5	2.0	12%		165	185	14%
	10	30	2	NA	NA	5.5	4.0	15%		170	190	14%
	10	42	3	NA	NA	8.5	6.0	1914	exel High Asso	185	205	14%
	10	7½	1	15.0	7.5	3.5	2.0	12%	ALL RESIDENCES DE	180	200	18¾
	10	15	2	NA	NA	5.5	4.0	15%	就 <u>自己</u> 全部的基方面的公式	190	210	18%
	10	21	3	NA	NA	8.5	6.0	1914	3. BLZ2, 191847, 1928	210	230	18%
	10	10	2	NA	NA	5.5	4.0	15%	於自然的時期時候	260	295	22%
	10	14	3	NA	NA	8.5	6.0	19%	N GERERAR DE RESERVE	270	305	22%


1 Ton Plain Trolley

*Minimum circuit ampacity


Standard Lift: 10 Feet. Available Voltages 115/230-1-60 (½ and 1 hp only). 200-3-60, 230/460-3-60, 575-3-60. Two speed units available 3 phase only.

Headroom dimension shown is for standard or bronze hooks. For Bullard hooks add 1½ inches for ½ and 1 ton, and $\frac{3}{2}$ inches for 2 and 3 ton.

Air-powered KAL also available. See bulletin #3310. For KEW electric wire rope hoist, see bulletin #3420. Specifications subject to change without notice.

$\frac{1}{2}$ and 1 ton

NOTE: TROLLEY WILL ADJUST FROM 5"x 10# TO 12"x 31.8# AMERICAN STD. I-BEAMS DIM. SHOWN ARE FOR MIN. SIZE I-BEAM WHEEL TREAD DIA.-4 WHEEL BASE-5½ MIN. RADIUS CURVE-2'6'

APPENDIX E IN-PLANT LIFT STATION PUMPS

HDR Engineering, Inc.

IN-PLANT DRAINAGE PUMPING STATION PUMPS

-CALCULATIONS-

HDR Engineering, Inc.

Appendix E

-

High Point Pump Discharge Elevation =	135.20	Feet
High Level Pumps 'On' Elevation =	124.00	Feet
Low Level Pumps 'Off' Elevation =	121.00	Feet

ipe Segment Identification ipe Segment Identification iside Diameter, Inches iside Diameter, D (in.) ipe Material lumber of Pipes ength, L (feet) I&W Friction Coeff "C" iowrate in Segment, (gpm) iowrate per Pipe, Q (ft ^A 3/s) area per Pipe, A (ft ^A 3) felocity, V (ft/s) Alinor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, ine to branch @ tee, branch to line @ inlet, sharp @		80 140	1.939 			1.939	2.00	
nside Diameter, D (in.) ipe Material lumber of Pipes ength, L (feet) 1&W Friction Coeff "C" lowrate in Segment, (gpm) lowrate per Pipe, (gpm) lowrate per Pipe, Q (ft^3/s) rea per Pipe, A (ft^3) /elocity, V (ft/s) Minor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, branch to line @		1.939 Sch 80 PVC 1 80 80 140	1.939 	1.939 1.939	1,939	1.939		
ipe Material lumber of Pipes ength, L (feet) I&W Friction Coeff "C" lowrate in Segment, (gpm) lowrate per Pipe, Q (ft^3/s) reae per Pipe, A (ft^3) felocity, V (ft/s) Alinor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, branch to line @		Sch 80 PVC 1 80 140	und Grein (G) La cala face (La cala face (artist a tailai	·····		5 1 939	
umber of Pipes ength, L (feet) I&W Friction Coeff "C" iowrate in Segment, (gpm) iowrate per Pipe, (gpm) iowrate per Pipe, Q (ft^3/s) trea per Pipe, A (ft^3) felocity, V (ft/s) Ainor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, branch to line @		80 140	14 FAB FAB 7. 17 FAB 7 FAB 0					
ength, L (feet) I&W Friction Coeff "C" Iowrate in Segment, (gpm) Iowrate per Pipe, (gpm) Iowrate per Pipe, Q (ft^3/s) vrea per Pipe, A (ft^3) reaction (ft/s) Velocity, V (ft/s) Velocity, Velocity, V (ft/s) Velocity, V		80 140		Berlin 1		「「「「「「「」」」」	egis (data)	
8W Friction Coeff "C" lowrate in Segment, (gpm) lowrate per Pipe, (gpm) lowrate per Pipe, Q (ft*3/s) rea per Pipe, A (ft*3) rea per Pipe, A (ft*3) /elocity, V (ft/s) Jinor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, branch to line @		140			n in de la sector de	3 535 33231 1	18987 - P. 1	
iowrate in Segment, (gpm) iowrate per Pipe, (gpm) iowrate per Pipe, Q (ft^3/s) reae per Pipe, A (ft^3) felocity, V (ft/s) //inor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, inte to branch @ tee, branch to line @		2012:00 (Charles O			0	C - 12 - 14 - 10 - 0	(BACKÉ 0	
lowrate per Pipe, (gpm) lowrate per Pipe, Q (ft^3/s) rea per Pipe, A (ft^3) (elocity, V (ft/s) Alinor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, ine to branch @ tee, branch to line @			[1] 带门展示 140	Leister 140	140 CC 140		140	
Iowrate per Pipe, Q (ft^3/s) rea per Pipe, A (ft^3) felocity, V (ft/s) Ainor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, ine to branch @ tee, branch to line @						1996 - Marine O		
Iowrate per Pipe, Q (ft^3/s) rea per Pipe, A (ft^3) felocity, V (ft/s) Ainor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, ine to branch @ tee, branch to line @		Set Second		0	0	0		
rea per Pipe, A (ft^3) /elocity, V (ft/s) /linor Loss Contributions: 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, ine to branch @ tee, branch to line @		VI 1 0.0		0.0	0.0	0.0	0.0 9 9 9 9	
Velocity, V (fl/s) Velocity, V (fl/s) 90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, inte to branch @ tee, branch to line @					0.02051			
90 elbow @ 45 or smaller elbow @ tee, straight through @ tee, line to branch @ tee, branch to line @		0.0	0.0	0.0	0.0	0.0	0.0×2.01	
45 or smaller elbow @ tee, straight through @ tee, line to branch @ tee, branch to line @								
45 or smaller elbow @ tee, straight through @ tee, line to branch @ tee, branch to line @	0.60	grafis (s. 1745, s. 6	11 · · · · · · · · · · · · · · · · · ·	a v ng ki pija dje	and the second second	्राज्य सम्बद्ध <u>ी</u>	42. m 1. d. 1	
tee, straight through @ tee, line to branch @ tee, branch to line @	0.30	2000 (See 2	And Laborator	- 1. de - 20. Sego	$\{ (y_{0}^{k,0})_{0}^{k} >_{N} (y_{0}^{k})_{0}^{k} \} \in \mathbb{R}^{n} $	ng der Stellagen	i pegana nenga	
tee, line to branch @ tee, branch to line @	0.60	uji di kacalan (P	 Configuration 	아파 같은 영제 [P. S. Margares	2.4.24.648	学校 计计算机	
tee, branch to line @	1.80	1.000 (Sec. 1976)	1	wei pillingegerste	All and the second	entre trans	Mante de la companya	
	1.80	그는 이 이 아무 많이요.	. Se light an 1812		a a filland a l	ta esta tradica.	and the state of the	
	0.50	Anderson and			- Frank Bayer Bag		algebra i den e	
inlet, flared @	0.25	AND REPARED	이 고려 좋다 한 것 같아.	1	a shekara ta ba ƙ		1.74.614.514	
submerged exit @	1.00	en for el constant	nder state	a kati Mita at	- Marthal Web 19	en stad offici	93-971-96-1 I	
ball valve @	0.10	2020 - C. 1993	e agus a figh	an nga anga	- Alexandra A	and when the	·普通的1992.8-2	
butterfly valve @	0.35	an an an ân	en test forgality	1 19 de Marine († 194			Celebra de	
3-way plug valve thru branch	1.55	网络马拉拉的马克	a ber in jahr stage be	n an	y gal ta terajado -	ميام مخيف بياريه الجاد	distant o nant	
protruding inlet or exit @	1.00					2011년 11월 21일		
wye @							and the second	
increasers and reducers @						14.14.14.14.1	390 A. 27 -	
	12.00	영화 같은 물건 문제 가지		e di taalifik	 July + substitute (1), T 	이 이야 한 것이 집 같은	ngg dig vienna 👘	
plug valve	0.40	gang Press) elem	e transfer die i	a ya kata ƙwallon	g eller de la la	and the second second	(separate de la composition de la compo	
Sum of Minor Loss Coefficients		19,10	1 0.0	0.0	0.00	0.00	0.00	
Friction Loss, Hf (ft)		0.00	0.00	0.00	0.00	0.00	. 7. 0.00	
Minor Loss, Hm (ft)		0.00	0.00	0.00	0.00	0.00	0.00	
								Total Friction a Minor Headlos
Total Headloss, HL (ft)								

Per Hazen & Williams: Hf ≈ [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = {sumK} * [(V^2) / (2*g)] where g=32.2 fl/sec^2

٠

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet
MAXIMUM TOTAL DYNAMIC HEAD	14.20	Feel

linor Loss Calculations							
90 elbow @	0.60	3.60	0.00	0.00	1. S. C.	0.00	0.0
45 or smaller elbow @	0,30	0.60	0,00	0.00	O.DD	0.00	X
tee, straight through @	0.60	0.00	0.00	0.00	0.00	- 0.00	. 0.0
tee, line to branch @	1.80	1.80	0.00	0.00	0.00	0.00	0.0
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	<u>, со</u>
inlet, sharp @	0.50	0.00	0.00	0.00	ାର୍ଥ୍ୟ ପ୍ରସମ୍ଭ	0.00	0.0
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	់ ំ0.0
submerged exit @	1,00	0.00	0.00	0.00	0.00	0.00	0.0
ball valve @	0.10	0.10	0.00	0.00	0.00	0.00	0.0
butterfly valve @	0.35	0.00	0.00	0.00	0.00	0.00	. O.C
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	0.0
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	0.0
wye @	0.30	0.00	0.00	0.00	0.00	0,00	t • • • •
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
ball check valve @	12.00	12.00	0.00	0.00	0.00	D.00	0.0
plug valve	0.40	0.00	0.00	0.00	0.00	0.00	
otal Minor Losses		19.10	0.00	0.00	0.00	0.00	0.0

90 elbow @	0.60	3.60	0.00	0.00	0.00	0.00	0.00
45 or smaller elbow @	0.30	0.60	0.00	0.00	0.00	0,00	0.00
tee, straight through @	0.60	0.00	0.00	0.00	0.00	0.00	0.00
tee, line to branch @	1.80	1.80	0.00	0.00	0,00	0.00	0.00
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	0.00
inlet, sharp @	0.50	0.00	0.00	0.00	0.00	0.00	0.00
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.00
submerged exit @	1.00	0.00	0.00	0.00	0.00	0.00	0.00
ball valve @	0.10	0.10	0.00	0.00	0.00	0.00	0.00
butterfly valve @	0.35	0.00	0.00	0.00	0.00	0.00	0.00
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	0.00
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0 00	0.00
wye @	0.30	0.00	0.00	0.00	0.00	0.00	0.00
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	0.00
ball check valve @	12.00	12.00	0.00	0.00	D.DD	0.00	0.00
plug valve	0.40	0.00	0.00	0.00	0_00	0.00	0.00
otal Minor Losses		19.10	* 0.00	0.00	0.00	0.00	0.00

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet
MAXIMUM TOTAL DYNAMIC HEAD	16,50	Feet

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet

where g=32.2 ft/sec*2		
Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet

where g=32.2 ft/sec^2		
Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet

4m = [sumk] - [(V^2) / (2°g)] where g=32.2 fl/sec^2		
Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet

rei	naze	tior A.	Annen	315.	
Hf≃	[.002	2083]	•[L]	* [(10	10/C)^1

	= [.002083] * [L] * [(100/C)^1
н	m = isumK1 * i(\/^2) / (2*a)]

Per Hazen & Williams:
Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Total Headloss, HL. (ft)		1	0.00	Sec. 0.00	0.00	0.00	0.00	2.30 Feet
								Total Friction and Minor Headloss:
Minor Loss, Hm (ft)		1.39	0.00	0.00	0.00 P	0.00	0.00	
riction Loss, Hf (ft)		0.91	0.00	5 (M. 1970.00)	0.00	0.00	0.00	
Sum of Minor Loss Coefficients		19.10	0.00	0.00	0.00	0.00	0.00	
ping agrae	0.40		and the second second second					
ball check valve @ plug valve	12.00		14월 17년 18월 18일			litte in an Alia. An the Alia Alia the	la la sulta da	
increasers and reducers @	0.25		1 A 199 A 199	an ting the convers	1989 (Br. 1998) 1999 (Br. 1998)		internationalista Alexandre de la companya de la compa	l
wye @	0.30	u la seu casar	, par fina di A	145.57 Z2.1979.	$\{1,2,1,2,2,3,3,2,1,2,9,2,1,2,1,2,2,1,2,2,1,2,2,1,2,2,2,2$		1 en en s	
protruding inlet or exit @	1.00	iner de l'hai (1		말음을 가 많이 있는 .	· · · · · · · · · · · · · · · · · · ·	10~~~ 5 (14 (14 (14)	1173 128 2.1	
3-way plug valve thru branch	1.55	ang	and the second of the second		developmente	herende de la As	ويعربا وحليل	
butterfly valve @	0,35	아무 아이가 가지?	- 1991 - E (E (C	149-510-6146		Contraction (199	CE Walter	Į.
ball valve @	0.10	a fishi shiris 🕇	- new post-te	그 영국 감소 문화한	igni, stranski s		A CHARGE ST	ſ
submerged exit @	1.00	1911 - 1911 (* 191 3)	بفاحا فيدار بالعرب	교육 문양 영향을 주는	jela din patrima,	CHASSAR .	en de da	
inlet, flared @	0.25	and great the second	looseyn âl.	a de la compañía de l	a tha an tha	ngi kana sis r	$[a \in \mathcal{A}_{\mathbf{a}} \land \mathcal{A}_{\mathbf{a}}] = [a \in \mathcal{A}_{\mathbf{a}}]$	
inlet, sharp @	0.50	1997 (N. 47) (B. 47)	and the second second	- ((* 7 1.0 × 100%)	ye i galiyan iyu iy		 Provincia, m. 	
tee, branch to line @	1.80	Sector Contraction	in stand in the	Algerig . Di Da	$q^{i} \in \mathbb{P}[0,\mathbb{C}^{k}], q^{i}(q) \in \mathbb{C}^{k}$	$-\frac{1}{2} \left\{ \left\{ \frac{1}{2}, \frac{1}{2}, \frac{1}{2} \right\} \right\} = \left\{ \left\{ \left\{ \frac{1}{2}, \frac{1}{2} \right\} \right\} = \left\{ \left\{ \frac{1}{2}, \frac{1}{2} \right\} \right\} = \left\{ \left\{ \frac{1}{2}, \frac{1}{2} \right\} \right\}$	i chi Une i	
tee, line to branch @	1.80	198	Concernings.	المعتب والمتحجي	an air thairt a	na Barberi a ba pa	أبالتدر والمتروطان	
tee, straight through @	0.60	alatika itu sa		1999 - 1999 -				
45 or smaller elbow @	0.30	2	1946-1944				an Alfreda a deserv	
90 elbow @	0.60	ute ve uterers 6	N 1819, 18147, 51	49.55 (A.S. 1496), -1		nggan sai	15 - 4 - 54 - 54 - 57	
linor Loss Contributions:								

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

2.00

80

140

- 20

20

- O.O

1.939

Sch 80 PVC

0 gpm

2.00

1.939

11

÷ n

140

. n

× 0

Q - average 20 gpm

Segment A

Ì	135.20	Feet
	124.00	Feet
	121.00	Feet

2.00

1

0

140

· 0

1.939

d a fille

Q - average

uasha

2.00

1.939

-1

0

140

*e 0

ିତ

0.0

2,00

1.939

1

0

Ð

0

0.0

140

Q - average Q - average Q - average

🗇 0 gpm 👘

2.00

ା 1

0

.140

in: ∠†20 .

0.0 * 0.0 *** 0.0

0

0.02051 0.02051 0.02051 0.02051 0.02 2.2 0.0 0.0 0.0 0.0 0.0 0.0

1.939

Client: Cypress Lakes Utilities, Inc. Project: WWTP Improvements - In-Plant Drainage Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 2" PVC Force Main Performed by: J R Voorhees Date: April 2, 2007

Pipe Segment Identification

Inside Diameter, D (in.)

Length, L (feet) H&W Friction Coeff "C"

Flowrate in Segment, (gpm)

Flowrate per Pipe, (gpm) Flowrate per Pipe, Q (ft^3/s) Area per Pipe, A (ft^3) Velocity, V (ft/s)

Pipe Material

Number of Pipes

Nominal Pipe Diameter, Inches

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

135.20	Feet
124.00	Feet
121.00	Feet

	(Q - average	Q - average	
pe Segment Identification		40 gpm Segment A	0 gpm	0 gpm			$\begin{array}{c} \frac{1}{2} \frac{1}{2}$
······							
Iominal Pipe Diameter, Inches		2.00				2.00	
nside Diameter, D (in.)		Sisterati 1.939					
Pipe Material			-meri oraștită în p	antes de Ce	16344-53584		balgryttytt.
Number of Pipes		1600 R. (2008) 1	- 16:11-11-6000- 1			1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	
ength, L (feet)		-1 (a d) - 80	0 "20" (0			0	
AW Friction Coeff "C"		140					
Flowrate in Segment, (gpm)		40	0	12 HA 5860 UL O	1996-1996 - 19 0		0
Flowrate per Pipe, (gpm)		- 140 AD	合作在 建关口	0	0.000	1	All hashes 0
Flowrate per Pipe, Q (ft^3/s)		0.1					
Area per Pipe, A (ft^3)		0.02051	0.02051	0.02051	0.02051	0.02	0.02
Velocity, V (fl/s)		43	0.0	0.0	0.0	0.0	0.0
Minor Loss Contributions:							
90 elbow @	0.60		215 143 2 <u>8</u> 184	-13-57 - 161 - 17 - 1			<i>使</i> "名诗云"了
45 or smaller elbow @	0.30		nitin ngarapak≷,	Shined Children	 But the spectra design of the s	a de la serie de	esen sale
tee, straight through @	0.60	Age office	15.000048	and the state	الرواد الأحمد المتراجع	her ar baakt gedt	1965 C.A
tee, line to branch @	1.80		- Telanak et gateb	201 - NATASA		a state to the second	an Arsen
tee, branch to line @		des de la complete		Pulginge Takanage	- Angle and the part of the		网络拉拉
inlet, sharp @	0.50				tig de guiles contre	inner tel più tratta	$= \frac{1}{2} + \frac{1}{2} \frac{M}{2} \frac{W}{W} = \frac{1}{2} \frac{W}{W} = \frac{1}$
inlet, flared @	0.25		1 - and set		a Red Galacia and		t dag felanda dag
submerged exit @	1.00		a aya mgaqinda	t net en produkter.	a en la eletaño e	a seu n'ha tea (27).	e Bart d'Alexa
ball valve @	0,10				La por carlo.	ten and share	internet et e
butterfly valve @	0.35		Albert Martin	in the set of the set	September 1	n de stalinger stal	15 हरे की लेखा। स
3-way plug valve thru branch	1.55				Barris ea.	WARDER.	1994 - A. 4967
protruding inlet or exit @	1.00				n na standar († 1947) 1979 - Standar Standar		n an thaile a' t
wye @	0,30			- S.C. Sandor A. Bager, P			
increasers and reducers @	0.25	a presente de la composition de la comp	Chall Call Segme				1.443.03.247
ball check valve @	12.00					i titaz elemente	300 B. J.
plug valve	0.40					a di selangan di separah	<u>, Comercité</u>
Sum of Minor Loss Coefficients		19,10	0.04	0.0	0.0	D	0.00
Friction Loss, Hf (ft)		3.28	0.00	0.00	0.00	0.00	0.00
Minor Loss, Hm (ft)		5.58	0.00	0.00	P same and 0.00	0.00	0.00
Total Headloss, HL (ft)		8.86	0.00	0.00	0.00	0.00	0.00
	······	1		- [

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 fl/sec*2

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet
MAXIMUM TOTAL DYNAMIC HEAD	23.06	Feet

nor Loss Calculations 90 elbow @	0.60	3.60	0.00	0.00	0.00	0.00	0.00
45 or smaller elbow @	0.30	0.60	0.00	0.00	0.00	Q 0.00	0.00
tee, straight through @	0.60	0.00	0.00	0.00	0.00	0.00	0.00
tee, line to branch @	1.80	1.80	0.00	0.00	0.00	0.00	<u>,</u> 3 , 0,00
tee, branch to line @	1.BO	0.00	0.00	0.00	0.00	0.00	0.00
inlet, sharp @	0.50	0.00	0.00	0.00		0.00	
inlet, flared @	0.25	0.00	0.00	0.00		0.00	
submerged exit @	1.00	0.00	0.00		3-19 Ave	0.00	Sector States and States
ball valve @	0.10	0.10	0.00	00.00	0.00	0,00	
butterfly valve @	0.35	0.00	0.00	0.00	0.00	0.00	5 D.54 St /8 2.5 3.5 1
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	
wye @	0,30	0.00	0.00			0.00	12. #Cx000.960 million and a
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	Land the second
ball check valve @	12.00	12.00	0.00	00.00	0.00	0.00	A
plug valve	0.40	0.00	0.00	0.00	0.00	0.00	
atal Minor Losses		19.10	0.00	0_00	0.00	0.00	166836 D.D

High Point A	Pump Discharge Elevation =
High Level I	Pumps 'On' Elevation =
I ow Level F	Pumps 'Off' Elevation =

-	135.20	Feet
	124.00	Feet
	121.00	Feet

		2 - average	Q - average		Q - average	Q - average		
		60 gpm	0 gpm 🔗	0 gpm	4990 449 200			
ipe Segment Identification		Segment A		$[(a_{k,i}^{n})_{i\in \mathbb{Z}},a_{i}\in [0,N_{2}^{n},a_{i}]$				
					0.00	0.00	1	
Iominal Pipe Diameter, Inches		<u> 2.00</u>		2.00		2.00	2.00	
nside Diameter, D (in.)						1.939	<u></u>	
Pipe Material		Sch 80 PVC	수 단 수 집 수 한 동 [A Start Start		
lumber of Pipes						144980 Harpin 8 1	1	
ength, L (feet)			60 0			Nataria anist o		
&W Friction Coeff "C"		140 State					140	
lowrate in Segment, (gpm)			1996 (1997) - State (1997) 0				· · 赤 · 合之也(0	
Fiowrate per Pipe, (gpm)						0		
Nowrate per Pipe, Q (ft^3/s)	1					0.0		
Area per Pipe, A (ft^3)	200	0.02051	0.02051	0.02051	0.02051	0.02	0.02	
/elocity, V (ft/s)		ü 6.5	0.0	0.0	0.0	0.0	0.0	
Minor Loss Contributions:								
			o to ve a catale		Na stationa da traditiona d	ne de transferi	and the second second	
90 elbow @	0.60	6					And Anna and Anna	
45 or smaller elbow @	0.30	2		an an the second second	Second Color States Second	aanti Anas (Liik)	e en agale de gillingen.	
tee, straight through @	0,60		al 49479 10107		en lor afrañse	ist Cherry and	alega de la secon	
tee, line to branch @	1.80	internet for set				「「「「「「「」」」」「「「」」」」	in the second	
tee, branch to line @	1.80	<u>. 17 18 S. 18</u>	S tan in water:				u e la que contra	
inlet, sharp @	0.50	가지 지수가 있는 것이 같아.	1 - A H H H H Z		a sana an	Page 4 and 1 and	a a regime de la company	
inlet, flared @	0.25	an Ang Sagrad			i ta utakat pasik	la tha an an tag	in phaistoilean	
submerged exit @	1.00	NUMBER OF		a taki ku siya a j			$= \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1$	
ball valve @	0,10		an a délé CD ant.	e state at a	$(1, 2, 2) \stackrel{\text{\tiny def}}{=} (1, \frac{1}{2}, \frac{1}{2},$	terne beter pla	$m\in \mathbb{N} \xrightarrow{p_{n+1}} m^{2}(2n+1)$	
butterfly valve @	0.35		generalite in ge	t Antheritade in	, the head of the sec	tatat second		
3-way plug valve thru branch	1.55	and a second	 point issues weight 	- Antonio -	z – oppre egillets tof om i	化氯化乙酸 的复数形式	 Sec.85 [7] 	
protruding inlet or exit @	1.00	C. HOLL KIEST 24		Rest Avenue	12045. A. (a) 7.5	A strictly an	and the spin states	
wye @	0.30					n gin tu un nua vita	a sector strain	
increasers and reducers @	0.25			ana		- Systems and	10. Storad	
ball check valve @	12.00		-					
plug valve	0.40							
piug valve	0.40		and the second second second	· [1	
Sum of Minor Loss Coefficients		19.10	0.0	0.0	0.0	0.00	0.00	
Friction Loss, Hf (ft)		6.95	0.00	0.00	0.00	0.00	0.00	
Minor Loss, Hm (ft)		12:55	0.00	0.00		0.D0	0.00	
							То	tal Friction
Total Headloss, HL (ft)		COLUMN SECTION OF A COLUMN	a second	1	n n n		0.00	19 491 E

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V*2) / (2*g)] where g=32.2 ft/sec*2

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet
	-	
MAXIMUM TOTAL DYNAMIC HEAD	33.69	Feet

linor Loss Calculations							
90 elbow @	0.60	3.60	0.00	0.00	0.00	0.00	0.00
45 or smaller elbow @	0.30	0,60	0.00	0.00	0.00	0.00	
tee, straight through @	0.60	0.00	0.00	0.00	0.00	0.00	0.0
tee, line to branch @	1.80	1 80	0.00	0 00	0.00	0.00	0.0
tee, branch to line @	1.80	0.00	0.00	0.00	TR 0.00	0.00	0.0
inlet, sharp @	0.50	0.00	0.00	0.00	0.00	0.00	0.0
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
submerged exit @	1.00	0.00	0.00	0.00	0.00	0.00	0.0
ball valve @	0.10	0.10	0.00	0.00	0.00	0.00	0.D
butterfly valve @	0.35	0.00	0.00	0.00		🕈 nikto onus lightis huusu segi S	
3-way plug valve thru branch	1.55		0.00	0.00			Figher The Second
protructing inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	
wye @	0.30	0.00	0.00	0 00	0.00	0.00	
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
ball check valve @	12.00	12.00	0.00	0.00	0.00	0.00	0.0
plug valve	0.40	0.00	0.00	0.00	D.00	0.00	0,0
otal Minor Losses		19.10	0.00	0.00	0.00	0.00	0.0

		rign Level Putti			124.00			
		Low Level Pump	os 'Off' Elevatio	on =	121.00	Feet		
		Q - average	Q - average	Q - average	Q - average	Q - average		
	-	0.6 80 gpm 🔅	35-0 gpm 553	and 0 gpm and	gulaid ish area	The BOL Annual of Surger	dhais di isa	
Pipe Segment Identification		Segment A		2-6-22-4				
Iominal Pipe Diameter, Inches		A datak 156 2.00		∮ateat⊾ 2.00	1 1985 - 5 2.00	N A REAL 2.00	2.00	
nside Diameter, D (in.)		1.939			1.939		1.939	
Pipe Material		Sch 80 PVC	승규는 영영 같이.	and strates		a parte part	이 같은 것 같은 것 같은 것	
Number of Pipes		- 1. jac (B. 2. jac) 1	10.55559 1	North Roman	13 MARINE 1	########## 1	13 EC 4 (주 1	
ength, L (feet)			1		1	0.150-000	nin kangladi se O	
1&W Friction Coeff "C"		140				er 1e 140	140	
Flowrate in Segment, (gpm)		1997 - 1997 - 199 8 0	1949 ⁽ 1947 - 0	e in de Calendro () <u></u>	10 628 869 8 0	新成進計 計 0	
Flowrate per Pipe, (gpm)	=	80						
Flowrate per Pipe, Q (ft*3/s)		0.2						
Area per Pipe, A (ft^3)		. 0.02051						
/elocity, V (ft/s)		8.7	0.0	0.0	0,0	0,0	0.0	
Minor Loss Contributions:								
90 elbow @	0.60		garge och migde	u este gyaz	a Babba a span	anter a la seco	in el pella seguir	
45 or smaller elbow @	0.30	11. gáza (st. 19 2	NA STAN	$(\cdot,\cdot,\cdot)(x) \in \mathcal{P}(\mathcal{H}(x_{i,p}))$	1 - STAR (- L. 1997)	计算机分词 医肠外的	478 JB4 / 24 / 4	
tee, straight through @	0.60	Engle States (1997)	a chuideach	i i premi pa	n ja sidentegel Ba	1.800 (Marking all the	Angragin (F	
tee, line to branch @	1.80	1999 - P. 1	$\left(\frac{1}{2} + \frac{1}{2} \partial_{1} \partial$	$(\beta_1,\beta_2,\beta_3^2,\beta_3^2)$	- 2月2月2月2日	and the state	고 문 (관 등 전	
tee, branch to line @	1.80	a garan ar ar ar ar	and the second		1. 18 18 18 18 18 18 18 18 18 18 18 18 18	Sec. 27 august		
inlet, sharp @	0.50	t Constanting of	i sana na da	in the states	l dan serie de la	a de la compresent	n data selation in	
inlet, flared @	0.25	e produktion a fiziko	alla Storaet		a a the state of the second	notil el minaria	uljan ultik u	
submerged exit @	1.00	and a first soft	and the states			$\left[\left[\left$	ent provide a	
ball valve @	0.10	1. 1. and 1.	$(1+1)^{1+1} (1+1$	and the state of the			 A Constraints 	
butterfly valve @	0.35	이 성장철 아이들의		(1, 2, 2, 2, 3, 3, 3)		a ngangat settembal s		
3-way plug valve thru branch	1.55	$\sum_{i=1}^{n} a_i - a_i \leq \frac{1}{2} a_i - a_i < \frac{1}{2} a_i - a$	a para dia kaominina dia ka	$\left\{ \left \hat{u}_{1}^{(0)} \right \in \left\{ \widehat{g_{1}} \left \hat{g_{1}} \right \right\} \right\}$. (odgađa B. 1974)		u diê, Shettur	
protruding inlet or exit @	1,00			ya ngagan kawi		5.975.1957	电运行电波	
wye @	0.30		1.5		l icé districté		고려 가지 하는 것이	
increasers and reducers @	0.25			, 사람 유민은 영화	2.244.004.046			
ball check valve @	12.00			14월 21일 21월			All States and States	
plug valve	0.40	ngga sakadat t	Paragon, Proparti,	115.048.094		<u>- Norska</u> rije -		
Sum of Minor Loss Coefficients		1910	0.00	0.0	0	0.0C	0:00	
Friction Loss, Hf (ft)		11.83	0.00	0.00	0.00	0.00	0.00	
Minor Loss, Hm (ft)		22.30	0.00	0.00	r 🖓 🗧 🛶 D.00	0.00	1 1	
							1 1	Total Friction a Minor Headlos:
Total Headloss, HL (ft)		34,13	0.00	0.00)	0.00	0.00	34.13 Fee
			1					

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation =

135.20

124.00

Feet

Feet

Per Hazen & Williams:

Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 fl/sec^2

Minimum Static Headloss 11.20 Feet	Maximum Static Headloss	14.20	Feet
	linimum Static Headloss	11.20	Feet
		-	
MAXIMUM TOTAL DYNAMIC HEAD 48.33 Feet	AXIMUM TOTAL DYNAMIC HEAD	48.33	Feet

Ainor Loss Calculations							
90 elbow @	0,60	3.60	0.00	0.00	0.00	0.00	0.00
45 or smaller elbow @	0.30	0.60	0.00	0.00	0.00	0.00	0.00
tee, straight through @	0.60	0.00	0.00	0.00	0.00	. 0.00	0.00
tee, line to branch @	1.80	1.80	0.00	0.00	0.00	0.00	0.00
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	0.00
inlet, sharp @	0,50	0,00	0,D0	0,00	0.00	0.00	0.00
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.00
submerged exit @	1.00	0.00	0.00	0.00	0.00	0.00	0.00
ball valve @	0.10	0.10	0.00	0.00	0.00	0.00	0.00
butterfly valve @	0.35	0.00	0.00	0.00	0.00	0.00	0.00
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	0.00
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	0.00
wye @	0.30	0.00	0.00	0.00	0.00	0.00	0.00
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	0.00
ball check valve @	12.00	12.00	D.00	0.00	0.00	0.00	0.00
plug valve	0.40	0.00	0.00	0.00	0.00	0.00	0.00
otal Minor Losses		19.10	0.00	0.00	0.00	0.00	0.00

High Point Pump Discharge Elevation ⇒ High Level Pumps 'On' Elevation ≈ Low Level Pumps 'Off Elevation =

Feet
Feet
Feet

	(Q - average	Q - average	Q - average	Q - average	Q - average		
Pipe Segment Identification		100 gpm Segment A	D gpm	0 gpm				
Nominal Pipe Diameter, Inches		2.00	2.00	2.00	 2.00	2.00	2.00	
nside Diameter, D (in.)		1,939	ି - କୋମ୍ . 939	1.939	1.939	1.939	38a 1,939	
Pipe Material	t	Sch 80 PVC	energia de providen de la	Cast August Consider			YARAS	
Number of Pipes		Han Salary 1				ings frita graft i 1	1	
ength, L (feet)		80			18 8 E 1948 O T O			
1&W Friction Coeff "C"					(data 1.019) .140		140	
Flowrate in Segment, (gpm)		Sci 100	i na dinê karî na lê karî 🛛 🛈			1.000 A. (1000	out of lesso	
Flowrate per Pipe, (gpm)		100	Distance of the o	× * * 0	Descard D	0.000	0 35 0	
Flowrate per Pipe, Q (ft*3/s)	— ł	0.2	0.000	00	0.0	0.0	0.0	
Area per Pipe, A (ft*3)							*** 0.02	
Velocity, V (ft/\$)		10.8			.0.0		0.0	
Minor Loss Contributions:			 	_	l			
90 elbow @	0,60	- 	and the second of the second sec	(100-separate)	water de	assi tre Bestroffer (a)	te activite i	
45 or smaller elbow @	0.30		rthuð og Áttine				aspirate.	
tee, straight through @	0.60	ali da e de estar a	No. Andreas	nation, juicipitat	is in state 1 (w			
tee, line to branch @	1.80	100 40 1004					iyong kiyin	
tee, branch to line @	1.80			19-21-01-02	r halantar (Mila)		$\left\{ A_{i}^{n}\right\} _{i=1}^{n}\left\{ a_{i}^{n}\right\} _{i=$	
inlet, sharp @	0.50		12.221.22.20			and the state of the second	1.15 1.15 1.17	
inlet, flared @	0.25		1943, 1947	n a fa mar da a	wyset suits w	n sin og og gådet ser	1394-13451	
submerged exit @	1.00		45.5.5 45. 851			TRANSPORT	nderstatut.	
ball valve @	0.10				Sec. 24 Sec. Poiss	4 7 E State		
butterfly valve @	0.35	Net. A Aplan	NA CERTIFICAT			- A CORRECT		
3-way plug valve thru branch	1.55		ALL ANALAS			말랐다.		
protruding inlet or exit @	1.00				the second s	en sana viside.	A FILL AND A REAL	
wye @	0.30				and the second states of the	n an		
increasers and reducers @	0.30		UNDER PRODUCE			-98.58113.20	110.000	
ball check valve @	12,00			in the second		9. 19. F.C. Autor	The set of a l	
plug valve	0.40	· · · · · · · · · · · · · · · · · · ·				्मिल्ल केल्		
Sum of Minor Loss Coefficients		19.10))	0.06583	0.0	0.00	0.00	
Friction Loss, Hf (ft)		17.87	0.00	0.00	0.00	0.00	0.00	
Minor Loss, Hm (ft)		34,85	0.00	0.00	0.00	0.00	0.00	
			}					Tot Mir
Total Headloss, HL (ft)		52.72	0.00	0.00	0.00	0.00	0.00	5
]				1	1	1	1	1

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32,2 ft/sec*2

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet
	T	
MAXIMUM TOTAL DYNAMIC HEAD	66.92	Feet

plug valve	0.40	. A	0.0	0.00		0.00	
bali check valve @	12.00	- 12.		[1] T. T. Kasar, S. Sana, S. Saya, Man.		a fair air ann an Arraich a bhaige ann an	an fische vo
reducer @	0.25	0.	0.00		The second se	AND A DOT MANY AND A DOT AND	la thái tao se
wye @	0.30	0.	0.0	0.00	F1562 (1975) (1975) (1975) (1976)	0.00	A state of the
protruding inlet or exit @	1.00	S. 1.	0.00		Contraction and Managers and April	0.00	The second second
3-way plug valve thru branch	1.55	J. 0.	0.00	うちんし 白いりやりりてあていた	A State of the second sec	0.00	I Contraction and
butterfly valve @	0.35	Q .	0.00	0.00	0.00	0.00	
ball valve @	0.10	Ò,	10 0.00		the second s	0.00	* ***
submerged exit @	1.00	<u>8</u> 2 1. 0 .	0.00	0.00	0.00	0.00	a to be the second second
inlet, flared @	0.25	0.	0.00	0.00	0,00	THE SMITH THREE TANKS	1-y - 4-12 (1992) 22 .
inlet, sharp @	0.50	0.I	0.00	0.00	0.00	0.00	
tee, branch to line @	1.80	0.	0.00	0.00	0.00	- 0,00	2244 Q
tee, line to branch @	1.80		0.00	0.00	0.00	0.00	0.
tee, straight through @	0.60	Č. 10.	0.00	0.00	0.00	0.00	1949 - A.
45 or smaller elbow @	0.30	0.(0.00	0.00	0.00	0.00	
90 elbow @	0.60	3,1	50 0.00	0.00	0.00	0.00	0.

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

Feet
Feet
Feet

	Q - averag	e '	Q - average	Q - average	Q - average	Q - average		
	120 gp	m 🔤 丨	0 gpm	🔿 0 gpm 🖽			22 C 25 4	
Pipe Segment Identification	Segmen	t A	4.9.9.9.9.9.9. 	de Frederik Pila	49.4、1、14.4、			
Marinel Dine Dispeter Inches	n ette ette start.	2.00		a	2.00	2.00		
Nominal Pipe Diameter, Inches					2.00	1.939	and the second se	
Inside Diameter, D (in.)			1.939	ર હાલ 1.939	3- 9- 1.939 3		1.939	
Pipe Material								
Number of Pipes				1.5.5 A. B.		3.5.2.3.2. 1	<u></u>	
Length, L (feet) H&W Friction Coeff "C"					0 140			
			140					
Flowrate in Segment, (gpm)					0			
Flowrate per Pipe, (gpm)					0.0			
Flowrate per Pipe, Q (ft^3/s)								
Area per Pipe, A (ft^3)			0.02051	0.02051	0.02051	0.02	4.0Z	
Velocity, V (ft/s)	23022323036	15.0	0.0	0.0	Sector Sector D. D.		0.U	
Minor Loss Contributions:								
90 elbow @	0.60 . 640 8.	- j. 6	1994 - 1997 - 1997 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	요. 전 소송 가 나는 것	ÉLESTERE V	e Ballana an an Anna An	. područka se tek	
	0.30	2	the first statements	14. similari		Statistics in t	edite ellerte	
	0.60 - 1 - 1 - 1		right, S.R. at .	ينيم. ميكن وكير الأركي ما لك	an ar an	Constant and shares	$\chi^{1}_{1,1}(z_{1}^{2})^{2}\beta_{1}(z_{2}^{2})z_{2}^{2})$	
	1.BO		en ser en ser ser	28 (1994) (11. JO	nimitati da kate	Turnay, a kuray	(約4)3274(200)	
	1.80		w ji walazi za zastari	n Maturities	A STREET STREET	一般的 医白色素	A. San Star	
	0.50	· · · · · · · · · · · · · · · · · · ·	the second of		dinakat (s. d.	jugo jeto polici i ch	and server in the	
	0.25		han an a	100100100			Same Design	
	1.00		1940 A. P.	Sarah Sarah		- an territaria da	a a alam ang ata a ang ata ang ata ang ata ata ata ata ata ata ata ata ata at	
	0.10	1		17.0000000			<u>n de la facto</u>	
	0.35			uging and the				
	1.55		1.5.99.094.00				an start and	
	1.00		menuluu ikeriye b	19 - 19 - 19 - 1- 1		State State		
	0.30		Name and Se	「日本日本語の		da provena	and shipping.	
· · ·	0.25		1.28.26.2.4		an a		the provide	
	2.00				Assessed of	The space wa	an dia akar	
	0.40		a quire à quielle	- AND APPEND	ation from the original	aut Hillinger	No	
			1	1	1	1		
Sum of Minor Loss Coefficients		19.10	0.00	0.00	0.0C	0.00	0.00	
Friction Loss, Hf (ft)		25.04	0.00	0.00	0.00	0.00	0.00	
Minor Loss, Hm (fi)	Kin Zulik	50.18	0.00		0.00	0.00	0.00	
								Total Friction Minor Headlo
Total Headloss, HL (ft)	521.5%pc.34	75.23	0.00	0.00	0.06	0.00	0.00	1 75 23 ↔ Fe
Total Headloss, HL (ft)	344498635	75.23	0.00		0.06	0.00	1988 1 P.O. OO	······································

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 ft/sec^2

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet
	T	
MAXIMUM TOTAL DYNAMIC HEAD MINIMUM TOTAL DYNAMIC HEAD	89.43	Feet

linor Loss Calculations				1			
90 elbow @	0.60	3.60	0.00	0.00	0.00	0.00	0.00
45 or smaller elbow @	0.30	0.60	0.00	0.00	0.00	0.00	0.00
tee, straight through @	0.60	0.00	0.00	0.00	0.00	0.00	0.0
tee, line to branch @	1.80	1.80	0.00	0.00	0.DO	0.00	0.0
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	0.0
inlet, sharp @	0,50	0.00	0.00	0.00	0.00	0.00	0.0
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
submerged exit @	1.00	0.00	0.00	0.00	0,00	9.00 V	0.0
ball valve @	0.10	0.10	0.00	0.00	0.00	0.00	0.0
butterfly valve @	0.35	0.0D	0.00	0.00	0.00	0.00	0.0
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	0.0
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	0.0
wye @	0.30	0.00	0.00	0.00	0.00	0.00	0.0
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
ball check valve @	12.00	12.00	0.00	0.00	0.00	0.00	0.0
plug valve	0.40	0.00	0.00	0.00	(m) ((, , , , , , , , , , , , , , , , ,	0.00	0.0
otal Minor Losses		19.10	0.00	0.00	0.00	0.00	0.0

High Point Pump Discharge Elevation = High Level Pumps 'On' Elevation = Low Level Pumps 'Off' Elevation =

135.20	Feet
124.00	Feet
121.00	Feet

Pipe Material Sch 80 PVC Aumber of Pipes Aumober of Pipes Aumober of Pipes Aumober of Pipes Aumober of Pipes Aumber of Pipes Aumober of Pipes Aumobe			Q - average	Q - average	Q - average	Q - average	Q - average		
nside Diameter, D (n.) 1.939 1.939 1.939 1.939 1.939 1.939 Pipe Material Sch 80 PVC 1	Pipe Segment Identification					$ \begin{array}{c} \frac{1}{2} \left\{ \begin{array}{c} \frac{1}{2} \left\{ \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \left\{ \frac{1}{2} + $			
Inside Diameter, D (m) 1.939 1.939 1.939 1.939 1.939 1.939 Pipe Material Sch 80 PVC 1	Nominal Pipe Diameter Inches		2.00		2 00	244.000 200	2.00	100 m 2.00	
Pipe Material Sch 80 PVC Image: 1 Image: 1 <thimage: 1<="" th=""> Image: 1 Image: 1</thimage:>									
Number of Pipes 1	· · · ·								
Length, L (feet) 80 0									
H&W Friction Coeff "C" 140 0									
Flowrate in Segment, (gpm) 140 0 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>and the second sec</td><td></td><td></td><td></td></td<>						and the second sec			
Flowrate per Pipe. (gm) 140 0<									
Flowrate per Pipe, Q (tt ⁴ 3/s) 0.3 0.0									
Area per Pipe, A. (ft*3) 0.02051 <									
Velocity, V (ft/s) 15.2 0.0 0.0 0.0 0.0 Minor Loss Contributions: 0 0.0 0.0 0.0 0.0 90 elbow @ 0.60 6 0 0.0 0.0 0.0 90 elbow @ 0.60 6 0 0.0 0.0 0.0 90 elbow @ 0.60 6 0 0.0 0.0 0.0 45 or smaller elbow @ 0.30 2 0.0 0.0 0.0 tee, brach to line @ 1.80 1 0.0 0.0 0.0 inlet, sharp @ 0.50 0.00 0.00 0.00 0.00 0.00 ball valve @ 0.10 1 0.0 0.00 0.00 0.00 0.00 ball valve @ 0.30 1 0.00 0.00 0.00 0.00 0.00 www @ 0.30 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Jug valve 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00									
90 elbow @ 0.60 6									
45 or smaller elbow @ 0.30 2 7 </td <td>Minor Loss Contributions:</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Minor Loss Contributions:								
45 or smaller elbow @ 0.30 2 7 </td <td>90 elbow @</td> <td>0.60</td> <td>ne, en 200. 6</td> <td>a de la compañía de l</td> <td>10.095 - 497 10.095 - 497</td> <td>ja atter per</td> <td>ing the state of the</td> <td>a) ha Cuberta</td> <td></td>	90 elbow @	0.60	ne, en 200 . 6	a de la compañía de l	10.095 - 497 10.095 - 497	ja atter per	ing the state of the	a) ha Cuberta	
tee, straight through @ 0.60 tee, line to branch @ 1.80 inlet, sharp @ 0.550 inlet, sharp @ 0.25 submerged exit @ 1.00 bulterfly valve @ 0.35 journament of minor Loss Coefficients 19:10 Sum of Minor Loss, Hf (ft) 33:31 Minor Loss, Hfm (ft) 68:30 Minor Loss, Hfm (ft) 68:30		0.30	2.000 and 4.000 2	and a state to a			بحدر النجية الجبر بتربق	김 국민 정기가 같은	
tee, line to branch @ 1.80 1 tee, branch to line @ 1.60 inlet, sharp @ 0.50 inlet, flared @ 0.25 submerged exit @ 1.00 ball valve @ 0.10 ball valve @ 0.35 3-way plug valve thru branch 1.55 protruding inlet or exit @ 1.00 ball check valve @ 1.200 pild check valve @ 12.00 plug valve 0.40 Sum of Minor Loss Coefficients 19:10 Minor Loss, Hf (ft) 18:30 Minor Loss, Hm (ft) 168:30 Minor Loss, Hm (ft) 168:30				<u></u>	A	Wight of the Wight	1997 - 17 Ale 1997 - 1997 -	C Judge Zah	
tee, branch to line @ 1.80 inlet, sharp @ 0.50 inlet, flared @ 0.25 submerged exit @ 1.00 ball valve @ 0.10 ball valve @ 0.10 ball valve @ 0.35 3-way plug valve thru branch 1.55 protruding inlet or exit @ 1.00 wye @ 0.30 increasers and reducers @ 0.25 ball check valve @ 12.00 friction Loss, Hf (ft) 33.31 Minor Loss, Hf (ft) 68.30 Minor Loss, Hm (ft) 68.30 Control 10.00 Total Frict Minor Loss, Hm (ft) 10.88.30		1,80					net free and the	station and provide	
inlet, sharp @ 0.50 inlet, flared @ 0.25 submerged exit @ 1.00 ball valve @ 0.35 butterfly valve @ 0.35 group of wire of the true branch 1.55 protruding inlet or exit @ 1.00 wye @ 0.30 increasers and reducers @ 0.25 ball check valve @ 12.00 plug valve 0.40 Sum of Minor Loss Coefficients 199.70 Sum of Minor Loss, Hf (ft) 68:30 Minor Loss, Hf (ft) 68:30 Total Frict Minor Loss, Hm (ft) 68:30		1.60	uija sija Pr	Association and the second	a sage A Churce	a fan Arrien fan Arresta.	$\frac{1}{2}\left(e^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a^{2}a$	-second figure	
inlet, flared @ 0.25 submerged exit @ 1.00 ball valve @ 0.10 butterfly valve @ 0.35 3-way plug valve thru branch 1.55 protruding inlet or exit @ 1.00 wye @ 0.30 increasers and reducers @ 0.25 ball check valve @ 12.00 plug valve 0.40 plug valve 0.40 Sum of Minor Loss Coefficients 19:10 Friction Loss, Hf (ft) 68:30 Minor Loss, Hm (ft) 68:30 Total Frict Minor Loss, Hm (ft) 70:00					Later Bassard	, and a first of the	Bernhall for	1 diam data	
submerged exit @ 1.00 1 ball valve @ 0.10 1 butterfly valve @ 0.35 3-way plug valve thru branch 1.55 protructing inlet or exit @ 0.00 wye @ 0.30 increasers and reducers @ 0.25 ball check valve @ 12.00 plug valve 0.40 plug valve 0.40 prictude 19.10 Sum of Minor Loss Coefficients 19.10 Friction Loss, Hf (ft) 68.30 Minor Loss, Hm (ft) 68.30		-			Divisione		a para para da la		
ball valve @ 0.10 1 butterfly valve @ 0.35 -		1.00		a di terregali a	10.2024AL	Neteration	Henge State	i ka españal	
butterfly valve @ 0.35 3-way plug valve thru branch 1.55 protruding inlet or exit @ 1.00 wye @ 0.30 increasers and reducers @ 0.25 bail check valve @ 12.00 plug valve 0.40 Sum of Minor Loss Coefficients 19.10 Friction Loss, Hf (ft) 33.34 Minor Loss, Hf (ft) 68.30 Minor Loss, Hm (ft) 68.30			284 1 3 2 4 4 4 1				Albert and the		
3-way plug valve thru branch 1.55 protruding inlet or exit @ 1.00 wye @ 0.30 increasers and reducers @ 0.25 ball check valve @ 12.00 plug valve 0.40 Sum of Minor Loss Coefficients 19.10 Friction Loss, Hf (ft) 33.31 Minor Loss, Hf (ft) 68:30 Total Frict Minor Loss, Hm (ft) 70.00									
protruding inlet or exit @ 1.00 1 wye @ 0.30 1								2.8.7.19.100	
wye @ 0.30 increasers and reducers @ 0.25 ball check valve @ 12.00 plug valve 0.40 Sum of Minor Loss Coefficients 19.10 Friction Loss, Hf (ft) 33.31 Minor Loss, Hf (ft) 68.30 Minor Loss, Hm (ft) 68.30									
increasers and reducers @ 0.25 ball check valve @ 12.00 1 plug valve 0.40 1 Sum of Minor Loss Coefficients 19.10 0.00 Friction Loss, Hf (ft) 33.31 0.00 0.00 0.00 Minor Loss, Hf (ft) 58.30 0.00 0.00 0.00 0.00 Minor Loss, Hm (ft) 58.30 0.00 0.00 0.00 0.00 0.00								a sector sector i	
ball check valve @ 12.00 1 plug valve 0.40 1 0			a a sub a		115.12.参照合	1 1 2 4 1 AV	region (april 1		
plug valve 0.40 Sum of Minor Loss Coefficients 19.10 Friction Loss, Hf (ft) 33.31 Minor Loss, Hf (ft) 68.30 Minor Loss, Hm (ft) 68.30				The shows by		a Sacondara tere.		The second second	
Friction Loss, Hf (ft) 33.3.1					. And the second second	i koost frantis	al an	n, a señai se bij	
Minor Loss, Hm (ft) 568:30 568:30 Total Frict Minor Loss, Hm (ft) 70:00 Total Frict Minor Hea	Sum of Minor Loss Coefficients		19.10	0:00	0.0	0.0	0 D.DC	0.00	
Total Frict Minor Hea	Friction Loss, Hf (ft)		33 31	0.00	0,00	0.00	0.00	0.00	
Minor Hea	Minor Loss, Hm (ft)		68:30		0.00	0.00	0.00	0.00 HP	
Total Headloss, HL (ft) 0.00 101.61								+ +	Total Friction Minor Headlo
	Total Headloss, HL (ft)		101.61	0.00	0.00	0.00	0.00	0.00	101.61 Fe

1.2

Per Hazen & Williams: Hf = [.002083] * [L] * [(100/C)^1.85] * [Q^1.85] / [D^4.8655]

Hm = [sumK] * [(V^2) / (2*g)] where g=32.2 ft/sec^2

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11,20	Feet
	1	
	1 445.94	East
MAXIMUM TOTAL DYNAMIC HEAD MINIMUM TOTAL DYNAMIC HEAD	115.81	Feel

Minor Loss Calculations							
90 elbow @	0.60	3.60	0.00	0.00	0.00	0.00	0.0
45 or smaller elbow @	0.30	0.60	0.00	0.00	0.00	0.00	0.0
tee, straight through @	0.60	0.00	0.00	0.00	0.00	0.00	D. D
tee, line to branch @	1.80	1.80	0.00	0.00	. 0.00	0.00	0.0
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	0.0
inlet, sharp @	0.50	0.00	0.00	0.00	0.00	0.00	0.0
inlet flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
submerged exit @	1.00	0.0 0	0.00	0.00	0.00	0,00	
ball valve @	0.10	0.10	0,00	0.00	0.DD	0.00	0,0
butterfly valve @	0,35	0.00	0.00	0.00	0.00	0.00	0.0
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.00	0.00	0.0
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	0.0
wye @	0.30	0.00	0.00	0.00	0.00	0.00	0.0
reducer @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
ball check valve @	12.00	12.00	0.00	0.00	0.00	0.00	0.0
plug valve	0.40	0.00	0.00	0.00	0.00	0.00	0.0
otal Minor Losses		19.10	0.00	0.00	0.00	0.00	0.0

Minor Loss Calculations							
90 elbow @	0,60		0.00		0.00	0.00	10 In 660 Harrison and
45 or smaller elbow @	0,30	0.60	0.00	0.00	0,00	and the second of the second	
tee, straight through @	0,60	0.00	0.00		0.00		
tee, line to branch @	1.80	1.80	0.00	0.00	0.00	0.00	0.0
tee, branch to line @	1.80	0.00	0.00	0.00	0.00	0.00	0.0
inlet, sharp @	0.50	0.00	0.00	0.00	0.00		0.0
inlet, flared @	0.25	0.00	0.00	0.00	0.00	0.00	0.0
submerged exit @	1.00	0.00	0.00			and the second	and a strange and the strange
ball valve @	0.10	0,10	0.00			(A) the second constraints	
butterfly valve @	0.35	0.00	0.00		N 258	and the same is a subscription	
3-way plug valve thru branch	1.55	0.00	0.00	0.00	0.0D	0.00	and the Associated and a
protruding inlet or exit @	1.00	1.00	0.00	0.00	0.00	0.00	0.0
wye @	0.30	0.00	0.00	0.00	0.00	0.00	0.0
reducer @	0.25	0.00	0.00	0.DD	0.00	0.00	0,0
ball check valve @	12.00	12.00	• 0.00	0.00	0.00	0.00	0.0
plug valve	0.40	0.00	0.00	0.00	0.00	0.00	0.0
Total Minor Losses		19.10	0.00	0.00	0.00	0.00	0.

Minimum Static Headloss	11.20	Feet	
			·
MAXIMUM TOTAL DYNAMIC HEAD	146.06	Feet	
MINIMUM TOTAL DYNAMIC HEAD	143.06	Feet	

Maximum Static Headloss	14.20	Feet
Minimum Static Headloss	11.20	Feet

Aaximum Static Headloss	14.20	Feet
inimum Static Headloss	11.20	Feet

Maximum Static Headloss	14.20	Feet	
Minimum Static Headloss	11.20	Feet	

where g=32.2 ft/sec^2

 $Hm = [sumK] * [(V^2) / (2*g)]$

3655]

Fer hazen a vyunams.
Hf = [.002083] * [L] * [(100/C)^1

Per Hazen & Williams:
HF = [002083] * []] * [(100/C)^1 85] * [O^1 85] / [D^4.8

					1	i		
90 elbow @	0,60		No este site:	Seattle States	at gravitera	en plante provi	n shqiri qir	
45 or smaller elbow @	0.30	· · · · · · · · · · · · · · · · · · ·		124. Fallence	l gales (* 240 ade	tetanone.com	1997-1997	
tee, straight through @	0.60		adal de la Color				aligner following	
tee, line to branch @	1.80	1. 1. 1. 1. 1. 1 . 1. 1 .	NA STRANG STRAT			$\{g_i\} \in \{g_i\} \in \mathbb{N} \}$	$\sum_{i=1}^{n} a_i \leq \sum_{i=1}^{n} a_i =$	
tee, branch to line @	1.80		EN NORTH	$= \left[\frac{1}{2} \left[\frac{1}$	$(a,b)^{\rm de} ([b_1, \underline{d}], \underline{d}) =$	のがなく、「読んでい	Carlo La Sy Maria	
inlet, sharp @	0.50	· "你的你的你的。"		$= \left(\left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right) \left(\frac{1}{2} \left(\frac{1}{2} \left(\frac{1}{2} \right) \right)^2 \right)$	1991 (1992) (1996)	4944 - 2742 - 375.	$\ p\ _{C_{1,1}^{\infty}(\mathbb{R}^{n})} \leq \ V_{1}^{0}\ _{C_{1,1}^{\infty}(\mathbb{R}^{n})}$	
inlet, flared @	0.25	and the spectrum of the			alla date date	Al-Contactor N	n a an an th	
submerged exit @	1.00	· 신상 · 영화 · 영화 · 영화	e sheriye.	$\{\beta_n,\beta_n\} \in \{0,1\}$	아이아 아이아 아이아	and an analysis of the	gori i secon	
ball valve @	0.10	1897 #1942 (A) 1		신사 문화 관람	: (····································	에 맞다 (14 등 4.) 주는	Alto Chev	
butterfly valve @	0.35					en e craste i ada	a da parte da	
3-way plug valve thru branch	1.55	here en	aanto oregi et de	Column Hillinger	고 있어? 영어가 아니다.	n by general		
protruding inlet or exit @	1.00	asta Concersit i 1	Real of the second s	uluita di sebelar	$\left\{ \left(\left(\left(\frac{1}{2} + i \right) \right) + \frac{1}{2} + i \right) \right) + \left(\left(\left(\left(\left(\left(\left(\frac{1}{2} + i \right) \right) \right) + \left($		승규는 전문학교 -	
wye @	0.30	où teknigte i	والساريكين بعريها والعد	나는 것 같은 것	a statege af state.		이상은 사람들이 있다.	
increasers and reducers @	0.25	그 같은 생각 방법	COST S. MATH		$(1) (1, \infty) = (1, \beta_1, \beta_2)$	NET REFERENCES -	8. S. S. S. S.	
ball check valve @	12.00	ane estiga et t		القراقي والتحسيرة ا	이 작품은 관계 가지?	10.00		
plug valve	0.40	anter et l'Atroduct		jandi Stantinan	· 승규는 가방 (전 1997)	sa (na sina sina sina sina sina sina sina si	shi na salara	
um of Minor Loss Coefficients		19.10	2000 0.00	0.00	0.00	0.00		
riction Loss, Hf (ft)		42 64	0.00	0.00	0.00	0.00	0.00	
linor Loss, Hm (ft)			0.00	0.00	0.00	0.00	59.00	
								Total Friction an Minor Headloss:
otal Headloss, HL (ft)		131.86	0.00	0.00	0.00	0.00	0.00	131.86 Feet

Q - average Q - average

2.00

1.939

ାର**ି** 1

0

140

- O

0.0 0.0

04 00 00

0.02051

0 gpm 🚁

0 gpm

2.00

1.939

44 1

് 0

140

0

0.02051

. 0

Client: Cypress Lakes Utilities, Inc. Project WWTP Improvements - In-Plant Drainage Pumping Station Project No: 00000000052589 Calculations: System Head Curve with 2" PVC Force Main Performed by: J R Voorhees Date: April 2, 2007

Pipe Segment Identification

Inside Diameter, D (in.) Pipe Material

H&W Friction Coeff "C"

Area per Pipe, A (ft^3)

Minor Loss Contributions:

Velocity, V (ft/s)

Flowrate in Segment, (gpm)

Flowrate per Pipe, (gpm) Flowrate per Pipe, Q (ft^3/s)

Number of Pipes

Length, L (feet)

Nominal Pipe Diameter, Inches

Q - average

160 gpm

Segment A

2.00

1.939

1

80

140

160

160

. . . 0.02051

Sch 80 PVC

High Point Pump Discharge Elevation = 135,20 Feet High Level Pumps 'On' Elevation = 124.00 Feet Low Level Pumps 'Off' Elevation = 121.00 Feet

Q - average

2.00

1

0

140

0

0

0.0

0.02051

1.939

Q - average

2.00

1.939

1

0

:140

10 O

. . .

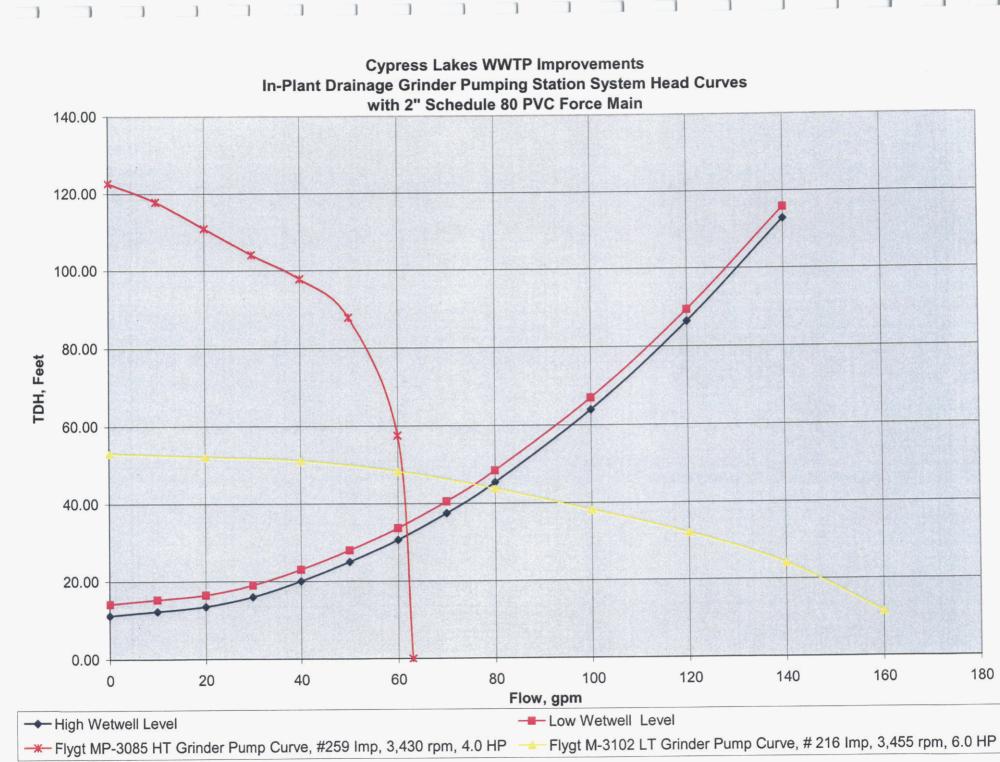
0.02

0.0

×. 0.0

2.00

1.939


÷C

0

140

0

X 🗧 0.0 sv# 0,02

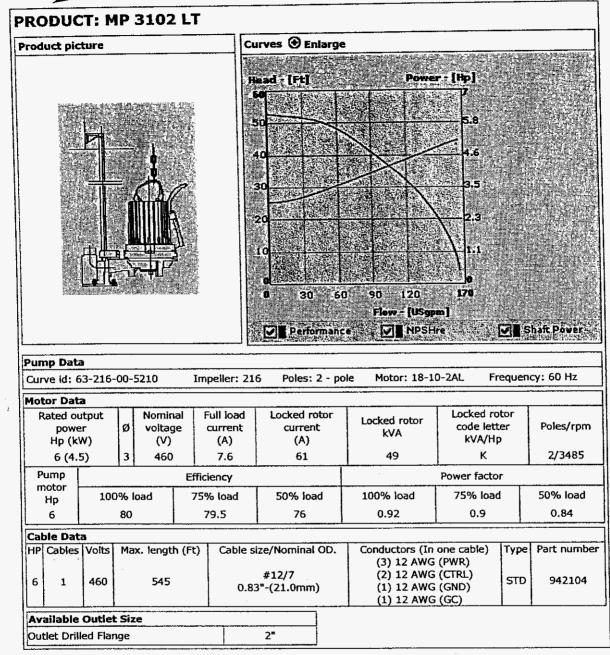
Page 10 of 11

Printed On 6/29/2007

Cypress Lakes WWTP Improvements In-Plant Drainage Pumping Station System Head Curves 2-Inch Sch 80 PVC Transfer Force Main

1

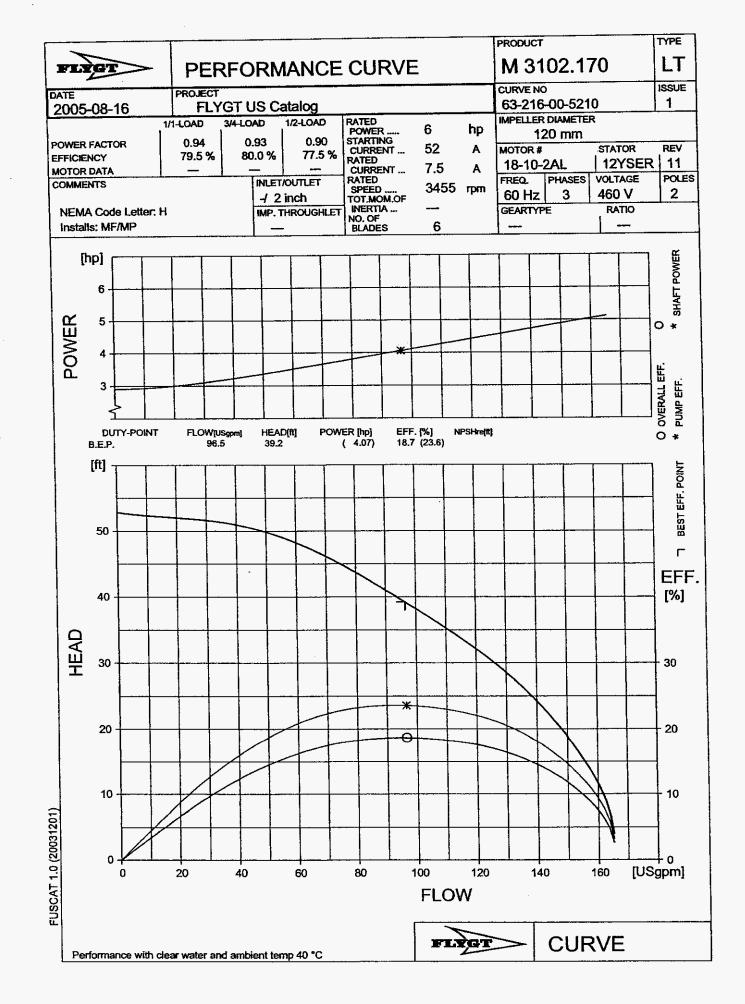
i.


X - Flow	Y - Max TDH (Min Wetwell Level)	Y - Min TDH (Max Wetwell Level)	Model MP-3102 LT Flygt Grinder Pump Curve w/ #216 Impeller - Speed 3,455 rpm 6.0 HP	Model MP-3085 HT Flygt Grinder Pump Curve w/ #259 Impeller - Speed 3,430 rpm 4.0 HP	
• 0	14.20	11.20	52.90	122.60	
10	15.30	12.30	0.00	117.80	
20	16.50	13.50	52.00	110.90	
30	19,00	16.00	0.00	104.10	
40	23.06	20.06	51.00	97.80	
50	28.00	25.00	0.00	87.80	
60	33.69	30.69	48.20	57.40	
63	}		0.00	0.00	
70	40.50	37.50	0.00		
80	48.33	45.33	43.70		
100	66.92	63.92	38.10		
120	89.43	86.43	32.10		
140	115.81	112.81	24.10		
160			11.40		

IN-PLANT DRAINAGE PUMPING STATION PUMPS

-MANUFACTURER DATA-

+



Flygt

🐡 ITT Industries

file://D:\catalog\39594.html

-

M-3102

THET

263 HT

267 HT

Impeller/Motor/Nominal Sizes

6.0

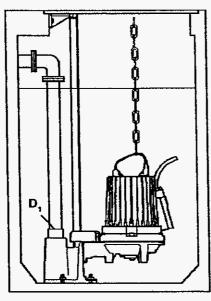
Supersedes: 11/04 Issued: 7/05

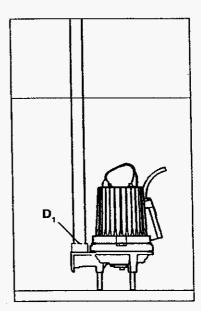
2"

1.5"

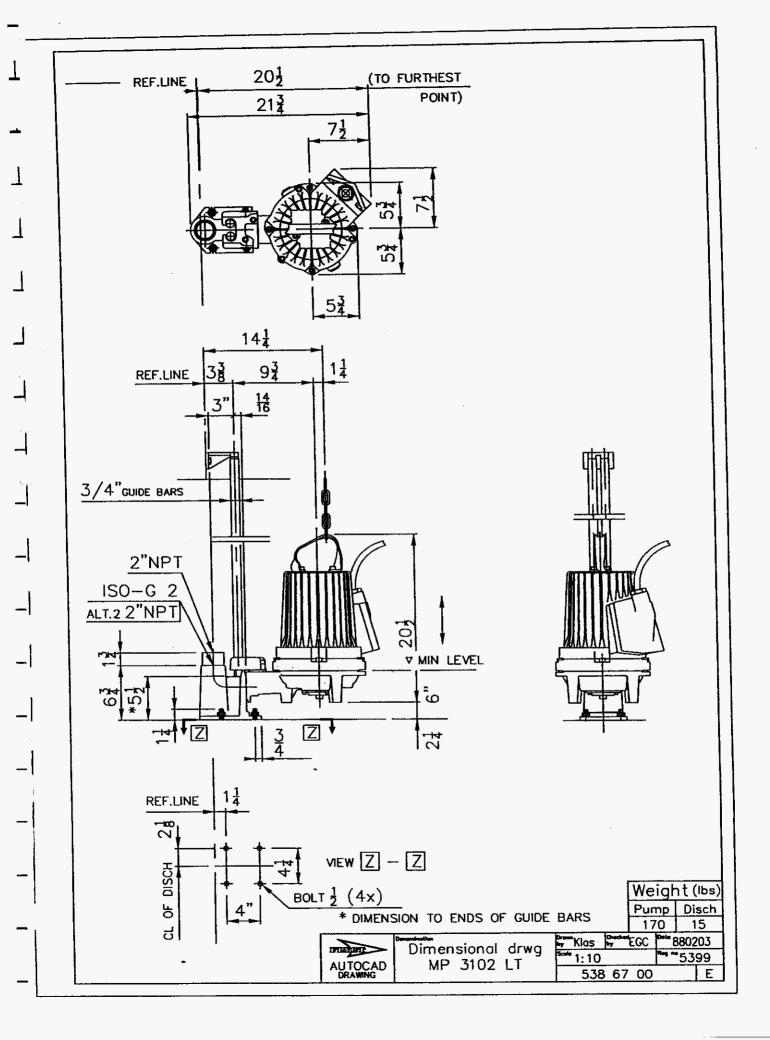
575

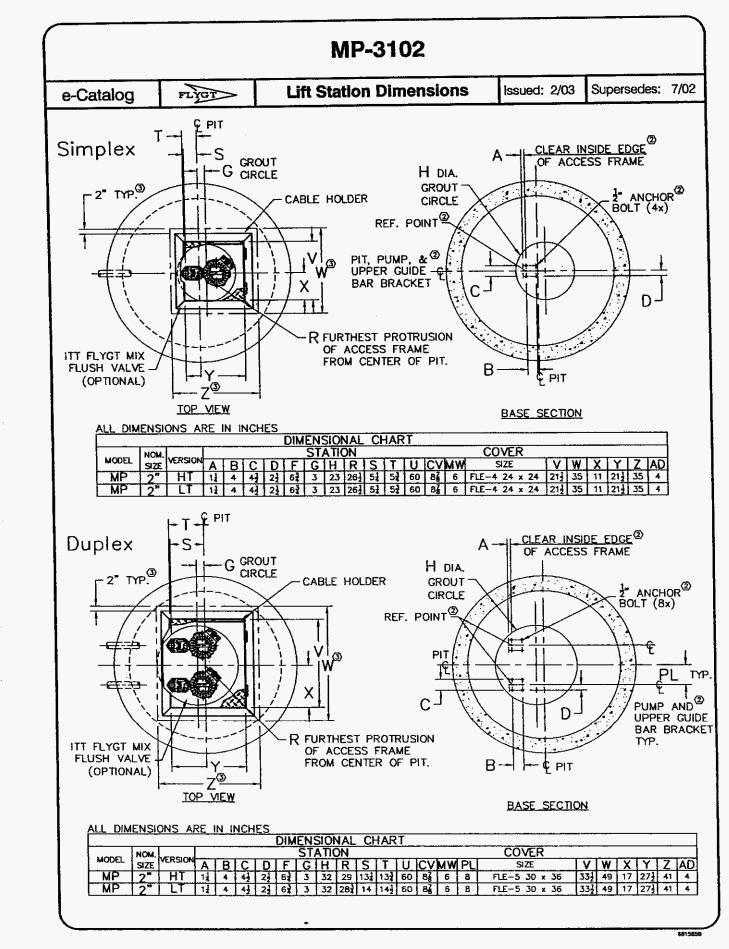
GRINDER	IMPELLER	HP R	ATING		
MODEL	CODE	MP MF		VAC	D1
	212 LT	6.0	6.0	200	2"
M-3102 3Ø	262 HT	60		230/460	2"


6.0


M-3102 1Ø	216 LT	5.4	5.4	000	2"
	267 HT	5.4		230	2*
		-	5.4		1.5"

Notice:


For other than domestic grinder pump usage, please consult Flygt Engineering for evaluation of product application.



MP

MF

_

.

APPENDIX F BLOWERS – MANUFACTURER DATA –

Appendix F

•

CENTRIFUGAL BLOWERS

-MANUFACTURER DATA-

Appendix F

TECHNICAL DATA

Number of stages: 1 through 10 (11 for 50 Hz). Inlet connection: 6" (152mm) flange, ANSI 125# drilling.

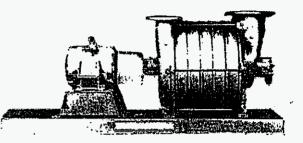
- Outlet connection: 3" (76mm) flange, ANSI 125# drilling. (5" available)
- Operating speed: 3450 RPM.

Ì

- Seals (air): One carbon ring each end.
- Seals (gas): Two carbon rings each end with inert gas taps on the inlet end.
- Bearings: Ball, 10 year minimum life per AFBMA L₁₀ standards.

Lubrication: Grease standard (oil system available). Impeller diameter: 16" (406mm). Impeller tip speed: 245 FPS (113m/sec). First critical speed: 4311 RPM (10 stage).

Direct drive: Yes, also available for V-belt drive. Vibration tolerance: 0.28"/sec (7.1mm/sec). Shaft end: 1-1/16" (27mm) diameter, outlet end


- drive standard. Rotor balance: Impellers are statically balanced
- individually. Complete rotating assemblies are dynamically balanced.

Maximum casing pressure: 25 PSIG.

DIMENSIONS

Model					Weig	Rotor WK ²	
Model	A Inches	(mm)	F Inches (mm)		LBS	KG	(lb. ft.²)
4101B	45"	(1143)	5-5/16"	(135)	475	215	2
4102B	45"	(1143)	8-11/16	(221)	550	250	4
4103B	45"	(1143)	11-7/16"	(291)	665	302	6
4104B	54"	(1372)	14-3/16*	(361)	780	354	8
4105B	54"	(1372)	16-15/16"	(430)	895	406	9
4106B	64"	(1626)	19-11/16"	(500)	1010	458	11
4107B	64"	(1626)	22-7/16*	(570)	1125	510	13
4108B	72"	(1829)	25-3/16"	(640)	1250	567	15
4109B	72"	(1829)	27-15/16"	(710)	1365	620	17
4110B	72"	(1829)	30-11/16"	(780)	1500	681	19

Information is approximate, subject to change, and not to be used for construction purposes.

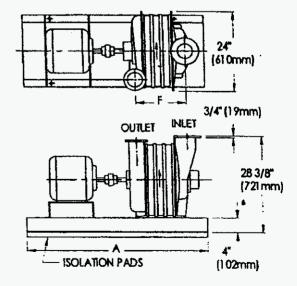
AIR & FILTPATION SYSTEMS

÷.,

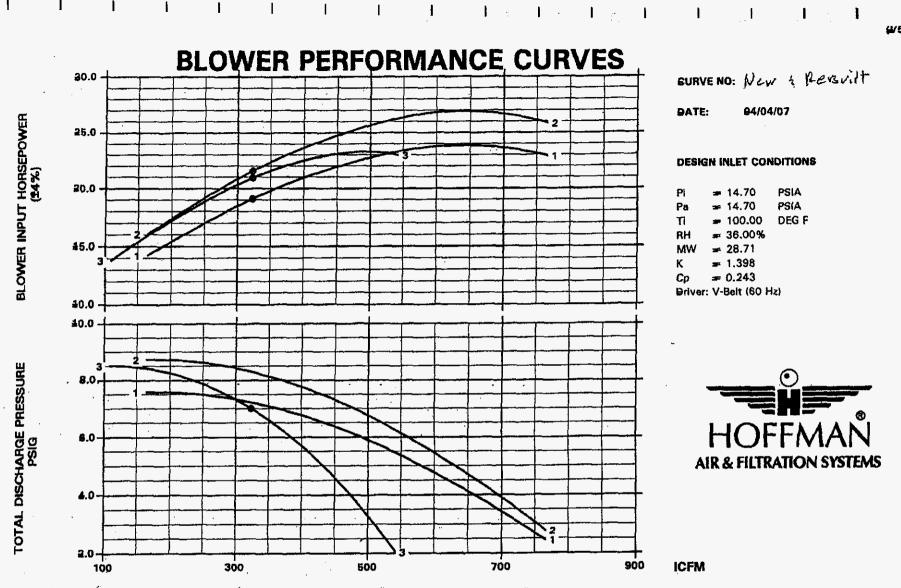
MATERIALS OF CONSTRUCTION

Casing: Heads, Sections and Bearing Housing: Cast Iron ASTM A48, Class 30.

The rods: 1/2" (13mm) diameter cold drawn stee!. Joint sealing compound: RTV silicone.


Shaft: Carbon steel, AISI 1045 (stainless steel available),

Impellers: Cast aluminum. Heresite and other coatings for special applications.


Base: Formed steel.

Motor pedestal: Formed plate.

Finish: Blue enamel over rust inhibitive primer. Base pads: Cork strips.

& BTR Environmental

1

I

1

1

T

1

# same units as shown in axis of curves or in dasign inlet conditions.						USER: Aeration Tank # 3						
Curve	Model #	impeiler 1 Oty PN	impeller 2 Oty PN	impeller 3 Qty PN	*Flow*	Design Po NP(int PSiG	"lo PH	Temp &	PSiA	Rpm	Inlet Throtiloo
1	4108C	8/10041112	· 0/	9 7 ·	323.1	49.1	₹.00	36.0	400.00	14.70	4810.	No
2	4108C	8/10041112	₽/	9/	823.1	21.5	1.00	26.0	40.00	44.70	4810.	No
3	4108C	\$/10041112	P/	Q/	223.1	20.9	₹.00	36.0	40.00	≟4.70	4810.	Yes
4	······											
5	~~~~~										<u> </u>	

£/5.00)

Technical & Performance Data 42 Series Centrifugal Products

DESIGN STANDARD

Number of Stages	1-8 (60 & 50 Hz)
Intet Connection	6" Flange, ANSI 125# Drilling
Outlet Connection	6" Flange, ANSI 125# Drilling
Operating Speed	3550 RPM (60 Hz), 2925 RPM (50 Hz)
Casing Pressure	25 PSIG (1.73 bar)
Air Seals	Carbon Ring Type
Bearings	Anti-friction Type, designed for extended
	L ₁₀ life
Lubrication	AEON [®] CF Grease (AEON [®] CF Oil)
Impeller	
	(statically balanced)
Impeller Tip Speed	372 feet/second (113 meters/second)
Drive Type	Direct Coupled (Inlet drive is standard)
Drive Shaft	1.625 inches (41.28 millimeters) Diameter
Vibration	
Rotor	Factory Balanced Per ISO 1940, ANSI S2.19

MATERIAL STANDARD

{ Offered]

{ Offered }

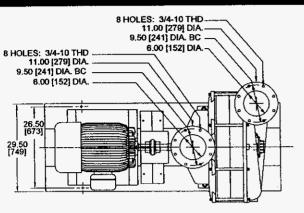
Casing	ASTM A48 Class 30 Gray Cast Iron
Bearing Housings	ASTM A48 Class 30 Gray Cast Iron
Bearing Cap	ASTM A48 Class 30 Gray Cast Iron
Tie Rods	ASTM A307 Zinc Plated Threaded Rod
	ASTM C695 Fine Grain Molded Graphite
	ASTM A48 Class 30 Gray Cast Iron Housing
Joint Seating	RTV Silicone Compound
Shaft	ASTM A108 Grade 1045 HRS (Stainless Steel)
Impeller	ASTM SC64C Sr-319 Cast Aluminum
Blower Base	ASTM A36 Hot Rolled Structural Steel
Motor Pedestal	ASTM A36 Hot Rolled Structural Steel
Isolation Base Pads	ASTM D2000 Neoprene 70 MC-2 11# Cork
Finish	Two Part Epoxy GDI 171 CF Blue

PRESSURE PERFORMANCE 14.7 PSIA [1 Bar], 68°F [20°C], 36% RH, Speed: 3550 RPM VACUUM PERFORMANCE 29.9 inHg [1 Bar], 68°F [20°C], 36% RH, Speed: 3550 RPM Inlet Air Volume - m3/min Inlet Air Volume - m3/min Shaft Power - kW Shaft Power - HP Shaft Power - HP Power-kW Shaft Inlet Air Volume - CFM Inlet Air Volume - CFM Inlet Air Volume - m3/min Inlet Air Volume - m3/min Static Pressure - PSIG Bar Inlet Vacuum - InHg 0.8 inlet Vacuum - mb Static Pressure -0.7 0.6 0.4 0.3 0.1 0.0 Û Inlet Air Volume - CFM Inlet Air Volume - CFM **PRODUCT & PERFORMANCE NOTES**

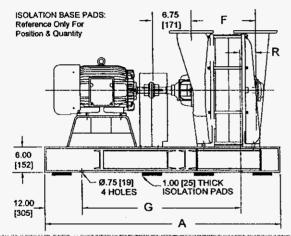
- 1. Information is approximate and subject to change without notice
- 2. Performances noted above are typical and not job specific
- 3. Consult authorized Gardner Denver sales representative for job specific blower or exhauster performance sizing
- 4. Factory ASME PTC-10 test offered for performance verification

Gardner Denver Engineered Products Division

100 Gard	100 Gardner Park, Peachtree City, GA 30269							
Phone:	800-982-3009	/ 770-632-5000						
Fax:	770-486-5628	3						
E-mail:		gardnerdenver.com						
Web:	www.gardnere	www.gardnerdenver.com						
11/2006	Page 1 of 1	CF1496064 Vs 03						


"Over 145 Years of Leadership"

© 2006 Gardner Denver, Inc.



Dimensional Data **42 Series** Centrifugal Products

GENERAL ARRANGEMENT

6" INLET 6" OUTLET

DIMENSIONAL DATA – inches [millimeters]

FRAME	A	F	G	R
4201	48.75 [1238]	9.25 [235]	24.75 [629]	4.50 [114]
4202	60.75 [1543]	12.69 [322]	36.75 [933]	2.00 [51]
4203	60.75 [1543]	16.13 [410]	36.75 [933]	4.50 [114]
4204	72.75 [1848]	19.56 [497]	48.75 [1238]	2.00 [51]
4205	72.75 [1848]	23.00 [584]	48.75 [1238]	2.00 [51]
4205	72.75 [1848]	26.44 [672]	48,75 [1238]	4.50 [114]
4207	84.75 [2153]	29.88 [759]	60.75 [1543]	2.00 [51]
4208	84.75 [2153]	33,31 [846]	60.75 [1543]	2.00 [51]

PRODUCT NOTES

- 1. Information is approximate, subject to change without notice, and not for construction use unless certified
- 2. Position #1 is standard inlet & outlet orientation
- 3. A and G dimensions may vary depending on motor frame size

Gardner Denver Engineered Products Division

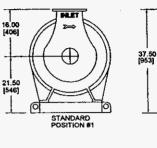
100 Gardner Park, Peachtree City, GA 30269Phone:800-982-3009 / 770-632-5000Fax:770-486-5628E-mail:blowersmktg@gardnerdenver.comWeb:www.gardnerdenver.com

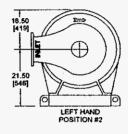
11/2006 Page 1 of 1 CF1496061 Vs 01

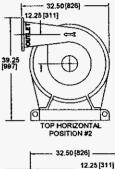
"Over 145 Years of Leadership"

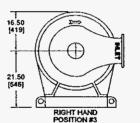
© 2006 Gardner Denver, Inc.

FLANGE ORIENTATIONS


INLET END VIEW


OUTLET END VIEW


Æ


STANDARD POSITION #1

12.25[311]-

38.00 (965) BOTTOM HORIZONTAL POSITION #3

WEIGHTS – Ib [kg] & INERTIA – Ib-ft² [kg-m²]

_	FRAME	PKG. LESS MOTOR	BARE UNIT	WK ²
	4201	749 [340]	590 [268]	9 [0.38]
	4202	925 [420]	760 [345]	18 [0.76]
	4203	1103 [500]	930 [422]	27 [1.14]
	4204	1294 [587]	1100 [499]	36 [1.53]
	4205	1494 [678]	1300 [590]	46 [1.91]
	4206	1666 [756]	1470 [667]	55 [2.29]
	4207	1836 [833]	1640 [744]	64 [2.67]
	4208	2035 [923]	1810 [821]	73 [3.06]

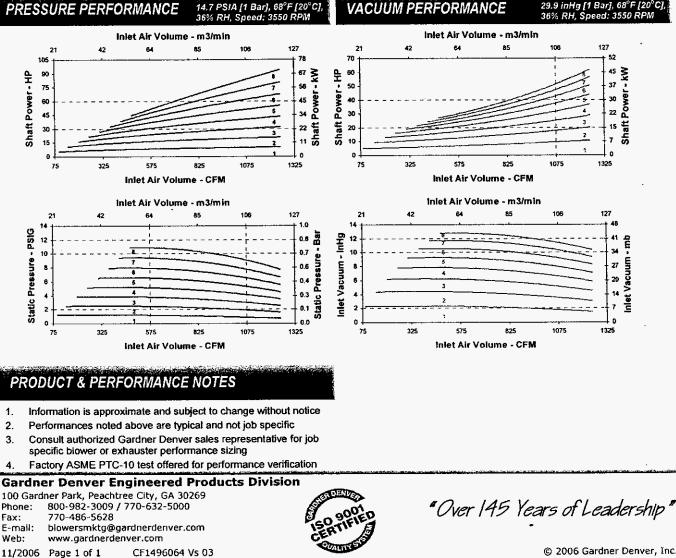
-

Technical & Performance Data 42 Series

Centrifugal Products

DESIGN STANDARD

MATERIAL STANDARD

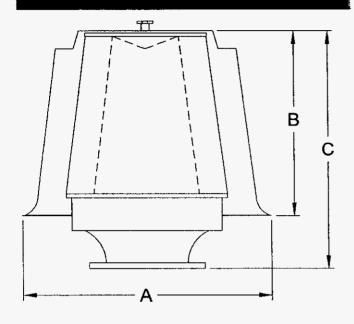

{ Offered }

Number of Stages	1-8 (60 & 50 Hz)	Ca
Inlet Connection	6" Flange, ANSI 125# Drilling	Bea
Outlet Connection	6" Flange, ANSI 125# Drilling	Bea
Operating Speed	3550 RPM (60 Hz), 2925 RPM (50 Hz)	Tie
Casing Pressure	25 PSIG (1.73 bar)	Са
Air Seals	Carbon Ring Type	
Bearings	Anti-friction Type, designed for extended	Joi
	L ₁₀ life	Sh
Lubrication	AEON [®] CF Grease {AEON [®] CF Oil}	Imj
Impeller	24.0 inches (610 millimeters) Diameter	Bic
	(statically balanced)	Mo
Impeller Tip Speed	.372 feet/second (113 meters/second)	iso
Drive Type	Direct Coupled (Inlet drive is standard)	Fir
Drive Shaft	1.625 inches (41.28 millimeters) Diameter	
Rotor		

{ Offered } ASTM A48 Class 30 Gray Cast Iron earing Housings______ASTM A48 Class 30 Gray Cast Iron earing Cap_____ASTM A48 Class 30 Gray Cast Iron e Rods_____ASTM A307 Zinc Plated Threaded Rod arbon Ring Seal_____ASTM C695 Fine Grain Molded Graphite ASTM A48 Class 30 Gray Cast Iron Housing int Sealing RTV Silicone Compound haft_____ASTM A108 Grade 1045 HRS {Stainless Steel} peller_____ASTM SC64C Sr-319 Cast Aluminum ower Base_____ASTM A36 Hot Rolled Structural Steel otor Pedestal_____ASTM A36 Hot Rolled Structural Steel olation Base Pads_____ASTM D2000 Neoprene 70 MC-2 11# Cork nish_____Two Part Epoxy GDI 171 CF Blue

VACUUM PERFORMANCE

29.9 inHg [1 Bar], 68°F [20



© 2006 Gardner Denver, Inc.

Accessories Intake Filter Silencers - Cartridge Centrifugal Products

DIMENSIONAL DATA

SPECIFICATIONS

FLG. FIT: ELEMENT EFFCY:	U	ASME 125# (iron) and 150# (steel) ANSI drilling Ultra: 99.97% efficiency @ 1-micron nom. Hi-Flow: 98% efficiency @ 10-micron nom.						
NOISE ATTENUATION:	Oct	ave E	Band (Center	Freq (Hz)		
Hz Attenuation (dB)	63 9	125 14	250 17	500 19	1000 21	2000 19	4000 17	8000 15

MATERIALS OF CONSTRUCTION

HOUSING:	Carbon Steel, 10 Ga.	L1D: 3" - 8": Carbon Steel, 10 Ga.
FINISH:	Polyester Powder Coat	10" - 18": ASTM B209
		Aluminum, .125 Ga.

STANDARD 1/8 INCH TAP & PLUG TO MOUNT DIFFERENTIAL GAUGEELEMENT CORE:Expanded Flattened Galv. Steel, 24 Ga.ELEMENT END CAP:Galv. Steel, 22 Ga.ELEMENT MEDIA:Proprietary Synthetic Formulation

CONN. SIZE	P/N WITH ULTRA	CFM FLOW ULTRA	P/N WITH HI-FLOW	CFM FLOW HI-FLOW	А	в	с	WEIGHT	P/N ULTRA	P/N HI-FLOW ELEMENT
5" FLG	VP1012702	1100	VP1012710	1300	16.50	8,00	17.50	28	VP1011566	VP1012698
6" FLG	VP1009813	1350	VP1012711	1620	16.50	8.00	17.50	30	VP1011566	VP1012698
6" FLG	VP1011082	2000	VP1012712	2400	25.25	11.25	21.25	49	VP1012694	VP1008206
6" FLG	VP1010621	2250	VP1012714	2700	25.25	15.50	24.25	53	VP1012695	VP1012699
8" FLG	VP1012447	2500	VP1012715	3000	25.25	11.25	21.25	56	VP1012694	VP1008206
8" FLG	VP1012703	2900	VP1012716	3450	25.25	15.50	24.25	60	VP1012695	VP1012699
8" FLG	VP1010679	3300	VP1012717	4000	27.25	20.00	29.00	58	VP1012696	VP1012700
10" FLG	VP1012704	3750	VP1012718	4500	25.25	11.25	21.25	57	VP1012694	VP1008205
10" FLG	VP1012705	4000	VP1012719	4800	25.25	15.50	24.25	61	VP1012695	VP1012699
10" FLG	VP1010680	4250	VP1012579	5100	27.25	20.00	29.00	58	VP1012696	VP1012700
12" FLG	VP1010782	5150	VP1012720	6200	25.25	15.50	24.25	61	VP1012695	VP1012699
12" FLG	VP1011062	6100	VP1011044	7300	27.25	20,00	29.00	62	VP1012696	VP1012700
12" FLG	VP1012706	8250	VP1012721	9900	38.00	26.00	34.50	72	VP1012697	VP1012701
14" FLG	VP1012707	10000	VP1012722	12000	38.00	26,00	34,50	97	VP1012697	VP1012701
16" FLG	VP1012708	11000	VP1012723	13200	38.00	26.00	34.50	107	VP1012697	VP1012701
18" FLG	VP1012709	12000	VP1012724	14400	38.00	26.00	34.50	117	VP1012697	VP1012701

PRODUCT NOTES

- Information is approximate, subject to change without notice, and not for construction use unless certified
- 2. Flow is at three inches water column pressure drop
- 3. All dimensions are in inches and weights in pounds

Gardner Denver Engineered Products Division

 100 Gardner Park, Peachtree City, GA 30269

 Phone:
 800-982-3009 / 770-632-5000

 Fax:
 770-486-5628

 E-mail:
 blowersmktg@gardnerdenver.com

 Web:
 www.gardnerdenver.com

 11/2006
 Page 1 of 1
 CF0059004 Vs 01

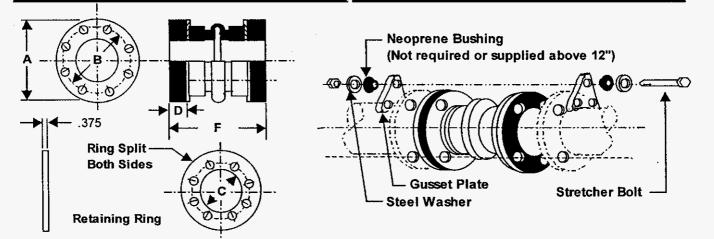
"Over 145 Years of Leadership"

© 2006 Gardner Denver, Inc.

Accessories Expansion Joints Centrifugal Products

SPECIFICATIONS

TEMPERATU	RE: 300° F
VACUUM:	16" Hg
FLG. FIT:	125# (iron)
	150# (steel
	ANSI drillin


PRESSURE:							
3" — 12":	150 PSIG						
14":	135 PSIG						
16" — 20":	110 PSIG						
24":	104 PSIG						
	3" 12": 14": 16" 20":						

MATERIALS OF CONSTRUCTION

- Polyester Reinforced EPDM
- Cast Ductile Iron Retaining Rings (Galvanized)
- **Galvanized Control Units**

DIMENSIONAL DATA – Without Control Units

Nominal	Part N	umber						# Bolt	We	ight
Size I.D.	W/o C.U.	W/C.U.	Α	B	С	D	F	Holes	W/o C.U.	W/C.U.
3	HF00485044	HF00485074	7.50	6.00	4.13	0.44	6.00	4	8.50	17.00
4	HF00485045	HF00485075	9.00	7.50	5.13	0.44	6.00	8	10.00	18.00
5	HF00485046	HF00485076	10.00	8.50	6.13	0.44	6.00	8	12.50	21.00
6	HF00485047	HF00485077	11.00	9.50	7.13	0.44	6.00	8	16.50	26.00
8	HF00485048	HF00485078	13.50	11.75	9.25	0.50	6.00	8	22.00	35.00
10	HF00485049	HF00485079	16.00	14.25	11.25	0.50	8.00	12	34.00	53.00
12	HF00485050	HF00485080	19.00	17.00	13.38	0.50	8.00	12	45.00	65.00
14	HF00485051	HF00485081	21.00	18.75	15.50	0.56	8.00	12	55.00	82.00
16	HF00485059	HF00485082	23.50	21.25	17.50	0.56	8.00	16	64.00	91.00
18	HF00485060	HF00485083	25.00	22.75	19.63	0.63	8.00	16	71.00	100.00
20	HF00485052	HF00485084	27.50	25.00	21.63	0.63	8.00	20	82.00	111.00
24	HF00485061	HF00485085	32.00	29.50	25.88	0.75	10.00	20	102.00	148.00
30	HF00896822	HF00896821	38.75	36.00	31.50	0.75	10.00	28	150.00	213.00

PRODUCT NOTES

Specifications subject to change without notice 1.

2. All dimensions are in inches and weights in pounds

Gardner Denver Engineered Products Division

100 Gardner Park, Peachtree City, GA 30269 Phone: 800-982-3009 / 770-632-5000 770-486-5628 Fax: E-mail: blowersmktg@gardnerdenver.com www.gardnerdenver.com Web: 11/2006 Page 1 of 1 CF0535002 Vs 01

"Over 145 Years of Leadership"

Accessories Butterfly Valves – Wafer Style

Centrifugal Products

SPECIFICATIONS (3" – 8" VALVES)

Wafer -- Double Seated

ASME 125# (iron) and 150# (steel) ANSI drilling

ASTM A126 Class B ANSI B16.1 Cast Iron

200 PSI CWP Max

Bi-Directional

Maximum 275°F

EPDM

TYPE:

PRESSURE:

SEAT TEMP .:

ACTUATOR:

FLG. FIT: FLOW:

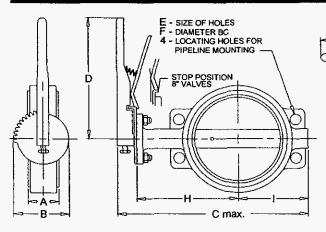
BODY:

DISC:

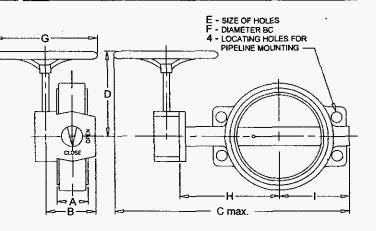
SEAT:

SHAFT:

SPECIFICATIONS (10" - 24" VALVES)


TYPE:	Wafer Double Seated
PRESSURE:	200 PSI CWP Max
FLG. FIT:	ASME 125# (iron) and 150# (steel) ANSI drilling
FLOW:	Bi-Directional
BODY:	10" & 12" ASTM A126 Class B ANSI B16.1 Cast Iron
	14" - 24" ASTM A395 ANSI B16.42 Ductile Iron
DISC:	ASTM B148 Aluminum Bronze
SEAT:	EPDM
SEAT TEMP .:	Maximum 275°F < 18 inch valves ≥ 225°F
SHAFT:	ASTM A582 416 Stainless Steel
ACTUATOR:	Hand wheel gear

DIMENSIONAL DATA – Lever Actuator


ASTM B148 Aluminum Bronze

ASTM A582 416 Stainless Steel

10 position locking lever

DIMENSIONAL DATA – Gear Actuator

PART No.	SIZE	ACT.	А	В	Ç	D	ε	F	G	н	<u> </u>	WGT.
VP1005971	3	Lever	1.88	2.25	12.38	10,50	.69	6.00	N/A	7.13	4.00	11.8
VP1005972	4	Lever	2.13	2.25	14.00	10.50	.69	7,50	N/A	7.88	4.88	13.1
VP1005973	5	Lever	2.25	2.25	15.00	10.50	.81	8,50	NIA	8.38	5.38	19.8
VP1005974	6	Lever	2.25	2.25	16.00	10.50	.81	9,50	N/A	8.88	5.88	21.8
VP1005368	8	Lever	2.50	3.34	19.75	14.00	.81	11.75	N/A	10.25	7.75	36.0
VP1024063	10	Gear	2.75	6.36	27.2B	9.04	.94	14.25	12	11.50	8.25	73.7
VP1005976	12	Gear	3.13	6.36	30.53	9.04	.94	17.00	12	13.25	9.75	101.7
VP1024065	14	Gear	3.13	6.36	33.03	9.04	1.06	18.75	18	14.50	11.00	126.7
VP1024066	16	Gear	3.50	10.00	39.09	11.08	1.06	21.25	18	15.75	12.00	194.4
VP1024067	18	Gear	4.25	10.00	42.91	11.08	1.25	22.75	18	16.63	15.00	242.4
VP1024068	20	Gear	5.25	13.80	45.00	12.6	1.25	25.00	18	18.88	14.63	396.0
VP1024069	24	Gear	6.13	13.80	51.63	13.3	1.25	29.50	18	22.13	18.00	572.0

PRODUCT NOTES

1. Specifications subject to change without notice

2. All dimensions are in inches and weights in pounds

3. Flange gaskets are not needed; seat face seals against mating flange

Gardner Denver Engineered Products Division

 100 Gardner Park, Peachtree City, GA 30269

 Phone:
 800-982-3009 / 770-632-5000

 Fax:
 770-486-5628

 E-mail:
 blowersmktg@gardnerdenver.com

 Web:
 www.gardnerdenver.com

 11/2006
 Page 1 of 1
 CF0776001 Vs 02

"Over 145 Years of Leadership"

© 2006 Gardner Denver, Inc.

Accessories **Check Valves Centrifugal Products**

SPECIFICATIONS

BODY:	Cast Iron (Flanged & Wafer) 125#/150# Drilling
	Carbon Steel (Threaded)
SEALING MEMBER:	High Quality Silicone, 500° F Max. Rating
INTERNALS:	Aluminum
DESIGN:	Springless & Seatless
CWP THREADED:	
CWP FLANGED:	50 PSI (2"-14") & 125 PSI (16"-24") Rating
CWP WAFER:	125 PSI Rating

DIMENSIONAL DATA – Threaded Type

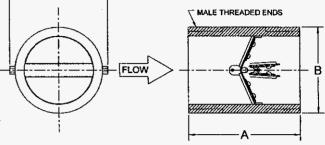
PART NO.	SIZE	Α	В	C	WGT.
BA1006200000	2.0	4,00	2.38	2.81	2.0
BA1006210000	2.5	5.00	2.88	3.31	2.8
BA1006220000	3.0	5.50	3.50	4.12	4.5
BA1006230000	4.0	6.00	4.50	5.12	6.9
BA1006240000	5.0	7.00	5.56	6.19	11.0
1. 1999 10 1 date	n An an Robert State of American	a . When the survey day to a barry	and confident to serve the se	entre i contente electedorio alle di al co	المعادية والمعادية

DIMENSIONAL DATA - Flange Type (FF)

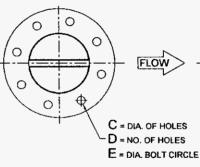
PART NO.	SIZE	A	В	С	D	E	WGT.
BA1006010000 BA1006020000	2.0 2.5	4.50 5.00	6.00 7.00	0.75 0.75	4	4.75 5.50	12,5 19,0
BA1006030000	3.0	5.00	7.50	0.75	4	6.00	22.0
BA1006040000	4.0	5.50	9.00	0.75	8	7.50	31.0
BA1006050000	5.0	6.00	10.00	0.88	8	8.50	37.0
BA1006060000	6.0	7.00	11.00	0.88	8	9,50	53.0
BA1006070000	8.0	9.00	13.50	0.88	8	11.75	86.0
BA1006080000	10.0	11.00	16.00	1.00	12	14.25	127.0
BA1006090000	12.0	13.00	19.00	1.00	12	17.00	210.0
BA1006100000	14.0	15.00	21.00	1.13	12	18.75	220.0
BA1006110000	16.0	17.00	23,50	1,13	16	21.25	375.0
BA1006120000	18.0	19.00	25.00	1.25	16	22.75	440.0
BA1006130000	20.0	21.00	27.50	1.25	20	25.00	525.0
BA1006140000	24.0	25.00	32,00	1.38	20	29.50	775.0

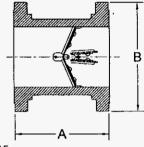
DIMENSIONAL DATA – Wafer Type

PART NO.	SIZE	A	В	С	WGT.
BA1006510000	2.0	1.38	4.25	0.50	4.0
BA1006520000	2.5	1.62	5.50	0.56	7.0
BA1006530000	3.0	1.88	6.00	0.69	10.0
BA1006540000	4.0	2.38	7.50	0.88	12.0
BA1006550000	5.0	2.88	9,00	1.13	15.0
BA1006560000	6.0	3.38	10.50	1.50	25.0
BA1006570000	8.0	4.38	13.00	2.25	45.0
BA1006580000	10.0	5.38	14.87	2.50	70.0
BA1006590000	12.0	6.38	17.50	3.00	120.0
BA1006600000	14.0	7.38	21.00	3.25	175.0
BA1006610000	16.0	8.38	23.50	3.75	220.0
BA1006620000	18.0	9.38	25.00	4.25	230.0
BA1006630000	20.0	10.38	27.50	4.75	320.0
BA1006640000	24.0	12.38	32.00	5.75	410.0

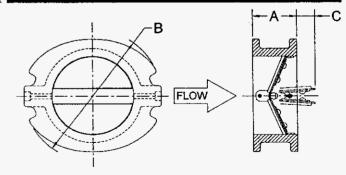

PRODUCT NOTES

- 1. Information is approximate, subject to change without notice, and not for construction use unless certified
- 2. All dimensions are in inches and weights in pounds


Gardner Denver Engineered Products Division


100 Gardner Park, Peachtree City, GA 30269 Phone: 800-982-3009 / 770-632-5000 Fax: 770-486-5628 E-mail: blowersmktg@gardnerdenver.com Web: www.gardnerdenver.com 11/2006 Page 1 of 1 CF0308002 Vs 02

THREADED CHECK VALVE



FLANGED CHECK VALVE

WAFER CHECK VALVE

"Over 145 Years of Leadership"

© 2006 Gardner Denver, Inc.

Date: 4/19/2007 Project: Customer: Sales Order Number: Application Engineer: Comments:

Cypress Lakes WWT HDR Engineering

Jim Ward 450 SCFM @ 8 PSIG New & Reman 4206A Blowers Aeration RTanks #1 & 2

Gas Mix: Air(100%)

2

θ.,

ι.

£

Model: 42, 6 Stage(s) (6 x 136), 4085 RPM

Corrected Values	Original	Unit	English	Unit	Metric Unit
Inlet Set # 1					
Barometer	14.70	PSIA	14.70	PSIA	1.01 Bars (A)
Inlet Pres.	0.00	PSIG	14.70	PSIA	1.01 Bars (A)
Inlet Temp.	100.00	Deg F	100.00	Deg F	37.78 Deg C
Inlet Flow	450.00	SCFM	489.11	ICFM	830.97 m^3/hr (A)
Dis. Pres.	8.00	PSIG	8.00	PSIG	0.55 Bars (G)
Rel. Humid.	50.00	8	50.00	8	50.00 %
Inlet Set # 2					
Barometer	14.70	· · ·	14.70		1.01 Bars (A)
Inlet Pres.	0.00	PSIG	14.70		1.01 Bars (A)
Inlet Temp.	40.00	2		Deg F	4.44 Deg C
Inlet Flow	450.00	SCFM	424.34		720.93 m^3/hr (A)
Dis. Pres.	8.00			PSIG	0.55 Bars (G)
Rel. Humid.	50.00	용	50.00	ş	50.00 %
Measured Values	Plot	Unit	English	Unit	Metric Unit
Inlet Set # 1					
Surge Flow Rate	171.11	ICFM	171.11	ICFM	290.71 m^3/hr(A)
Surge Pressure	8.49	PSIG	8.49	PSIG	0.59 Bars (G)
Pres. Rise to Surge	0.49	PSIG		PSIG	0.03 Bars (G)
Max. Vol. Turndown	65.02	£	65.02	8	65.02 %
Pressure @ Design	8.04	PSIG	8.04	PSIG	0.55 Bars (G)
Power @ Design	37.61	HP	37.61		28.04 KW
Effic. @ Design	38.74	8	38.74		38.74 %
Temp. @ Design	290.74	Deg F	290.74	F	143.74 C
Inlet Set # 2					
Surge Flow Rate	171.11	ICFM	171.11		290.71 m^3/hr (A)
Surge Pressure		PSIG		PSIG	0.65 Bars (G)
Pres. Rise to Surge		PSIG		PSIG	0.10 Bars (G)
Max. Vol. Turndown	59.68		59.68		59.68 %
Pressure @ Design		PSIG) PSIG	0.55 Bars (G)
Power @ Design	39.07		39.07		29.13 KW
Effic. @ Design	36.85		36.85		36.85 %
Temp. @ Design	245.04	Deg F	245.04	l F	118.35 C

GARDNER

Gas Mix: Air(100%)

ī,

Hij

-

τ.

1.

Ры) —

ل....! —

ι.

Model: 42, 6 Stage(s) (6 x 136), 4085 RPM

Gas Parameters	English Unit	Metric	Unit
Inlet Set # 1			
Molecular Weight	28.62 lbm/lbmo	1 28.62	kg/kgmol
R Value	54.00 ft. 1bf/	lbm.R 0.29	kJ/kg.K
Density	0.07 lbm/ft^3	1.12	kg/m^3
Sp. Heat @ Const. P	0.24 BTU/1bm.1	3 1.02	kJ/kg.K
Ratio of Sp. Heats	1.40 [.]	1.40	
Saturated Vapor Pres.	0.95 PSIA	0.07	Bars (A)
Partial Pres. of Gas	14.22 PSIA	0.98	Bars (A)
Partial Pres. of Vapor	0.47 PSIA	0.03	Bars (A)
Inlet Set # 2			
Molecular Weight	28.92 lbm/lbmo	1 28.92	kg/kgmol
R Value	53.43 ft. lbf/	1bm.R 0.29	kJ/kg.K
Density	0.08 lbm/ft^3	1.27	kg/m^3
Sp. Heat @ Const. P	0.24 BTU/1bm.	R 1.01	kJ/kg.K
Ratio of Sp. Heats	1.40	1.40	
Saturated Vapor Pres.	0.12 PSIA	0.01	Bars (A)
Partial Pres. of Gas	14.64 PSIA	1.01	Bars (A)
Partial Pres. of Vapor	0.06 PSIA	0.00	Bars (A)

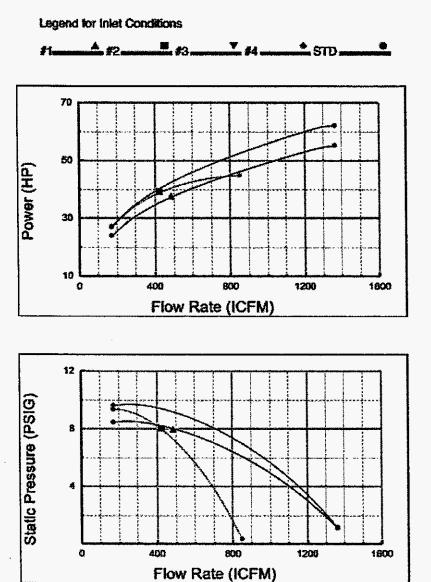
2

.

CF Select version 1.2

Gas Mix: Air(100%)

Model: 42, 6 Stage(s) (6 x 136), 4085 RPM


Date: 4/19/2007

Υ.

ŧ

٤

3

POSITIVE DISPLACEMENT BLOWERS

-MANUFACTURER DATA-

ς.

+

April 3, 2007


Project: Cypress Lakes WWTP

Customer: TSC Jacobs

Proposal: Two (2) 4M Blower Packages

Notes:

- This proposal is for two Gardner Denver Sutorbilt model 4M blower packages utilizing 15 HP TEFC NEMA frame motors.
- The attached drawing is from a similar project. This configuration can be modified to meet dimensional constraints or other customer needs.
- The unit will operate within an Attenu-Pac full enclosure at an estimated noise level of 73 dbA at 1m in a free field. We can provide a fiberglass hood in lieu of the Attenu-Pac, however, attenuation will be limited.
- Specifications have been provided.

Date: 4/3/2007

_

٠.

N. 1994

١.,

÷ :

 $\mathbf{U}_{12}^{(i)}$

×...

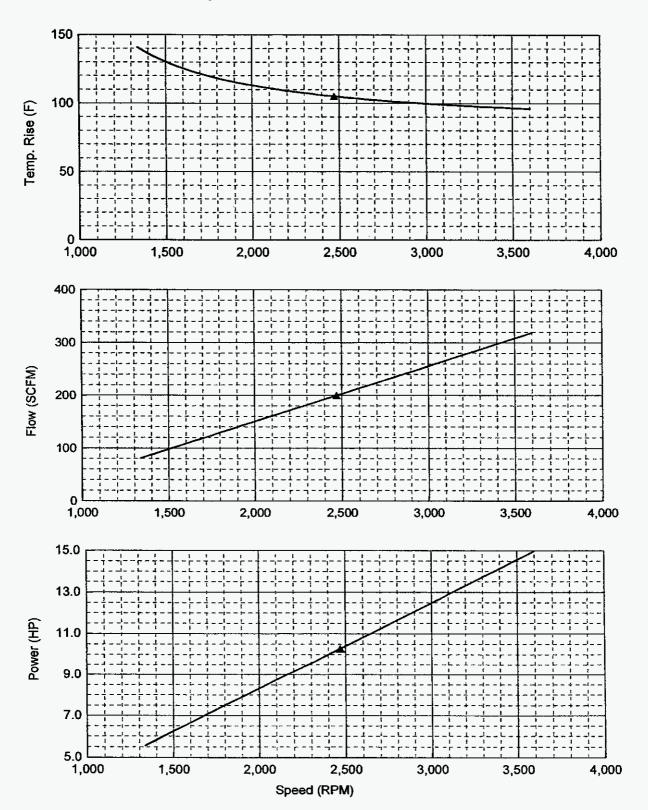
Application: Sludge Holding / Equalization Customer Name: TSC Jacobs Comments:

Application Engineer: Sales Order Number:

GAS MIXTURE: Air(100%) MACHINE SELECTION: 4M-LegendP SERVICE: Pressure

CORRECTED VALUES	ORIGINAL UNITS
Inlet Set #1	
Barometer	14.696 PSIA
Inlet Pres.	0.000 PSIG
Inlet Temp.	100.00 F
Inlet Flow	200.00 SCFM
Dis. Pres.	7.500 PSIG
Rel. Humid.	85.0 %
Delta Pressure	7.500 PSIG

MEASURED VALUES	PLOT UNITS
Inlet Set #1	
Blower Speed	2,471 RPM
<pre>% of Max. Speed</pre>	68.6 %
Blower Power **	10.3 HP
Efficiency	60.7 %
Discharge Temp.	205.1 F
Estimated Noise	84.7 dBA


** Drive losses not included

GAS PARAMETERS	ENGL	ISH UNITS	METRI	C UNITS
Inlet Set #1				
Molecular Weight	28.57	lbm/lbmol	28.57	kg/kgmol
R Value	54.09	ft.lbf/lbm.R	0.29	kJ/kg.K
Density	0.069	lbm/ft^3	1.111	kg/m^3
Sp. Heat @ Const. P	0.247	BTU/lbm.R	1.034	kJ/kg.K
Ratio of Sp. Heats	1.40		1.40	
Saturated Vapor Pres.	12.7941	PSIA	0.8821	Bars(A)
Partial Pres. of Gas	13.8896	PSIA	0.9577	Bars(A)
Partial Pres. of Vapor	0.8064	PSIA	0.0556	Bars(A)

PROJECT: Cypress Lakes WWTP

GAS MIXTURE: Air(100%) MACHINE SELECTION: 4M-LegendP

Gardner Denver, Inc. GDSmartPik tm - V 1.06.4