

RE: FMPA's Response to 2011 Ten-Year Site Plan Supplemental Data Request #1

Attached is Florida Municipal Power Agency's Response to 2011 Ten-Year Site Plan Supplemental Data Request #1, submitted by April 29, 2011. Please place this item in Docket No. 110000 – Undocketed Filings for 2011, as it relates to the annual undocketed staff Ten-Year Site Plan Review project.

If you have any additional questions, please contact me.

POE

Attachment

COMMISSION

DOCUMENT NUMBER-DATE - 03136 MAY -5 = FPSC-COMMISSION CLERK

2011 TEN YEAR SITE PLANS : SUPPLEMENTAL DATA REQUEST

Company Name: Florida Municipal Power Agency (FMPA), as agent for the All-Requirements Power Supply Project (the "ARP")

Renewable Generation Resources

As used in the proceeding questions, the term "renewable energy" has the same meaning as used in Section 377.803, Florida Statutes. Please refer to the tables below when identifying fuel and generator types.

Fuel Types	Shorthand	Examples
Biomass	AB	Agriculture By-Products, Bagasse, Straw, Energy Crops.
	MSW	Municipal Solid Waste
	SLW	Sludge Waste.
	WDS	Wood / Wood Waste Solids
	OBS	Biomass Solids
Landfill Gas	LFG	Landfill gas.
Water	WAT	Hydro
Geothermal	GEO	Geothermal
Biofuels	WDL	Wood / Wood Waste Liquids
	BL	Black Liquor
	OBL	Biomass Liquids
	OBG	Biomass Gases
Solar	SUN	Solar Photovoltaic and Thermal devices
Waste Heat	WH	Waste heat from sulfuric acid manufacture
Wind	WND	Wind Energy.
Other	OTH	Any renewable not covered above. Please describe.

Generation Types	Shorthand
Combined Cycle - Steam Part	CA
Combined Cycle - Combustion Turbine Part	CT
Combined Cycle - Total Unit	CC
Compressed Air Energy Storage	CE
Combined Cycle Single Shaft	CS
Fuel Cell	FC
Combustion Turbine	GT
Hydraulic Turbine	HY
Hydraulic Turbine - Pumped Storage	PS
Internal Combustion Engine	IC
Not Available	NA
Other	OT
Photovoltaic Cells	PV
Steam Turbine	ST
Wind Turbine	WT

DOCUMENT NUMBER-DATE 03136 MAY-5 = FPSC-COMMISSION CLERK -

GENERAL QUESTIONS

 Please provide all data requested in the attached forms labeled 'Appendix A,' in electronic (Excel) and hard copy. If any of the requested data is already included in the Company's Ten-Year Site Plan, state so on the appropriate form.

The requested information is being provided in hard copy and electronically as "FMPA Supplemental Appendix A_2011.xls."

2. Please provide all data requested in the attached forms labeled 'Appendix B,' which consist of Schedules 1 through 10 from the Company's Ten-Year Site Plan, in an electronic copy in Excel (.xls file format).

The requested information is being provided electronically as "FMPA Supplemental Appendix B_2011.xls." A hard copy has already been provided as part of FMPA's Ten-Year Site Plan.

LOAD & DEMAND FORECASTING

3. Please provide, on a system-wide basis, an average month of observed peak capacity values for Summer and Winter. From this data, excluding weekends and holidays, generate an average seasonal Daily Loading Curve. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

The tables below provides 30 days of average hourly load data for the ARP during the 2009-2010 Winter season (December 2009 – February 2010) and the month that most represented the 30 day average, which was February.

		_	-					A	verage	30 Da	vs of t	.oad Da	ita Du	ring 20	09-20	10 Wi	nter S	cason		_	_					_			
	14.54		Day of			9.	1		1000			100	Obser	vert Ho	urly P	eak Ca	quacity	(MW)	1	1.1.1	2	al P	1.00	1	-		-	MAX	MIN
rear	Month	Day	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	(MBV)	(106)
2010	Avg[1]	1	- 1	681	662	661	674	698	764	867	924	915	887	852	815	775	743	712	700	711	769	854	860	843	798	738	679	924	661
2010	Avg [1]	2	2	579	\$54	541	541	564	620	717	771	782	787	781	772	758	746	731	726	732	778	849	856	836	790	725	661	856	541
2010	Avg[1]	3	3	622	605	600	606	632	689	796	849	858	851	836	822	799	779	760	746	755	800	876	886	869	828	766	701	386	6(1)
2010	Avg [1]	4	4	658	639	635	640	660	721	821	870	870	835	808	784	.756	734	717	704	702	738	805	806	784	738	677	614	870	614
2010	Avg [4]	5	5	569	\$47	539	534	\$49	596	683	729	733	735	739	737	732	727	719	721	732	761	794	776	749	712	664	612	794	534
2010	Avg	6	6	\$73	549	\$39	539	553	\$75	620	670	736	791	820	825	816	8617	793	782	780	812	870	876	867	840	805	763	876	539
2010	Avg [1]	7	7	732	716	711	715	729	756	806	852	897	907	888	846	809	771	741	733	735	790	870	883	877	845	804	750	907	711
2010	Avg[1]	8	1	714	705	707	718	752	814	931	986	970	927	884	836	795	756	739	720	724	770	854	871	859	813	750	692	986	692
2010	Avg[1]	9	2	652	639	638	648	675	738	843	891	886	851	818	789	778	763	752	740	741	781	843	845	\$20	773	707	644	891	638
2010	Ave 1	10	3	601	588	587	399	630	703	822	885	388	867	847	820	795	772	752	744	746	784	868	885	869	828	766	700	888	587
2040	Avg [1]	11	4	659	645	644	655	687	757	857	902	-968	874	838	798	756	728	706	693	699	735	799	803	779	735	670	605	905	605
2010	Avg [1]	12	- 5	557	537	530	532	552	607	703	762	771	766	761	749	741	735	730	733	740	763	796	781	754	716	665	610	796	530
2010	Avg[]]	13	6	564	541	530	528	\$34	559	598	642	697	741	759	747	721	692	670	6:4	660	692	748	752	734	710	670	622	759	528
2010	Avg [1]	14	7	580	558	547	546	556	582	612	651	698	724	718	710	701	686	677	668	666	688	747	746	724	685	634	580	747	546
2010	Ave [1]	15	1	536	513	508	513	\$35	589	666	719	730	738	729	716	706	699	695	695	695	712	771	765	735	682	617	550	771	508
2010	Avg[1]	16	2	503	481	477	483	5(19)	572	684	752	758	754	744	733	725	720	714	707	705	730	800	813	790	747	681	611	813	477
2010	Avg[1]	17	3	567	\$49	\$46	551	578	646	755	SUS	798	778	754	735	714	701	688	682	683	712	778	786	763	719	656	589	808	.546
2010	Ave[1]	18	4	545	524	517	\$21	543	602	701	754	750	739	740	722	708	696	681	672	678	706	757	763	747	705	645	585	763	517
2010	Avg [1]	19	5	538	-513	503	502	519	\$67	657	705	732	739	734	721	704	692	682	675	673	687	731	724	696	656	605	548	739	502
2010	Avg [1]	20	6	499	473	459	454	461	489	531	574	624	645	647	636	621	608	599	594	595	620	670	670	648	617	578	535	670	454
2010	Avg [1]	21	7	496	473	464	465	474	498	537	576	622	642	642	633	625	617	610	607	608	642	699	705	686	645	396	542	705	464
2010	Ave [1]	22	1	496	473	465	466	483	528	612	670	698	707	711	696	679	665	649	640	644	673	735	743	717	670	609	548	743	465
2010	Avg[1]	23	2	504	479	471	473	493	548	645	702	714	706	694	675	661	650	637	632	633	654	713	725	702	665	609	549	725	471
2010	Avg [1]	.24	3	508	487	479	482	503	359	636	709	716	696	688	672	656	645	634	629	632	.662	722	725	705	671	620	564	725	479
2010	Avg [1]	25	4	516	509	515	531	568	644	769	838	822	779	743	709	676	650	627	618	619	641	717	756	752	721	670	622	838	5(79
2010	Avg [1]	26	5	592	585	591	606	638	712	810	859	826	785	734	695	661	636	615	503	600	610	666	690	680	658	624	584	859	584
2010	Avg[1]	27	6	529	508	497	494	500	521	356	592	638	677	700	701	692	677	661	649	647	673	725	731	714	685	645	601	731	494
2010	Avg[1]	28	7	561	538	529	530	547	571	614	656	699	719	715	696	679	658	641	632	638	674	741	759	743	711	664	611	759	529
2010	Avell	29	1	582	\$\$6	545	542	559	597	658	713	751	767	771	752	729	708	689	679	688	736	828	836	824	793	749	699	836	542
2010	Avg [1]	30	2	667	653	653	670	708	770	857	934	974	954	914	854	792	759	717	709	721	786	889	898	885	849	792	734	974	653
1		AVG [2]		580	562	558	564	588	649	750	804	806	790	772	750	729	712	697	689	692	723	786	793	772	731	673	614	806	558
	and the set	MAX		732	716	711	718	752	814	931	986	974	954	914	854	816	807	793	782	780	812	889	898	885	849	805	763	986	
	1	MIN	1.	496	473	459	454	461	489	531	\$74	622	642	642	613	621	608	\$99	594	595	610	666	670	648	617	578	535		454

The average month is made up of the averages of December 2009 - February 2010 excluding NERC holidays
Average day excludes weekends and NERC holidays

			_							Τv	x cal W	inter .	Nonth	tor 20	10: Fe	bruar	<u>y</u>			_		<i>6</i>							
		ant of	Day of	-				-				-	Obser	ved Ho	urly P	cak C:	macity	(NRV)		-	-	-	-				_	MAY	MIN
Year	Month	Day	Week	I	2	3	4	5	6	7	8	4	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	(ABA)	INN
2010	Feb	1	1	553	529	519	516	534	588	678	718	712	705	698	691	677	664	651	651	660	691	735	720	686	627	559	495	924	661
2010	Feb	2	2	445	418	407	403	415	465	551	597	616	634	652	653	647	6,19	631	627	631	647	692	693	663	613	551	490	×56	\$41
2910	Feh	3	3	451	431	424	427	452	508	511	667	672	671	665	648	633	620	612	606	611	631	700	710	694	651	595	536	886	600
2010	Feb	4	4	498	479	470	471	489	542	634	673	665	646	636	629	623	618	613	611	612	623	675	678	648	597	534	471	870	614
2010	Feb	5	5	424	398	388	384	399	446	528	\$74	589	610	631	637	639	640	635	641	646	650	674	656	624	582	529	474	794	514
2010	Feb	6	6	433	404	389	383	389	409	447	484	540	579	597	597	587	577	563	557	557	576	633	645	628	600	563	523	876	539
2010	Feb	7	7	490	473	469	471	484	505	558	605	663	698	702	678	649	622	601	592	597	630	689	705	702	680	666	619	907	711
2010	Feb	8	1	589	581	587	6631	638	710	832	892	859	799	745	691	659	620	611	596	598	623	693	712	693	647	586	528	986	692
2010	Feb	9	2	493	480	479	483	511	573	674	713	704	694	682	671	671	675	669	(69	669	684	724	719	683	625	558	498	891	638
2010	Feb	10	3	454	434	431	446	487	575	713	790	801	787	765	736	706	675	651	639	644	687	786	835	841	815	765	717	888	587
2010	Feb	Н	4	689	683	690	710	753	848	952	1004	980	940	885	831	772	724	700	692	713	752	833	853	837	795	726	663	905	605
2010	Feb	12	5	616	593	587	590	618	679	774	823	831	834	838	\$34	832	829	824	833	848	852	866	857	835	798	752	709	796	\$30
2010	Ech	13	6	678	666	669	678	696	735	786	858	918	953	951	893	819	750	695	660	668	704	798	846	854	850	823	791	759	\$28
2010	Feb	14	7	766	761	775	797	831	885	930	995	1007	955	863	789	726	666	630	613	614	649	732	764	768	749	719	683	747	546
2010	Feb	15	1	660	660	675	701	747	829	919	979	931	873	789	719	66X	632	614	610	621	647	708	713	697	650	594	539	771	508
2010	Feb	16	2	505	495	\$05	527	574	660	795	872	862	836	804	755	714	681	655	645	649	693	798	861	865	840	792	742	813	477
2010	Feb	17	3	713	710	722	739	781	878	999	1054	L(NN)	938	864	8356	755	712	682	673	678	718	812	859	859	829	778	724	808	546
2010	Feb	18	4	691	683	693	707	743	835	953	1012	961	887	845	782	730	686	653	631	633	662	755	8116	813	794	745	701	763	517
2010	Feb	19	5	666	657	660	671	702	767	884	942	926	880	811	743	691	652	625	611	614	637	700	722	711	682	642	594	739	502
2010	Feb	20	6	556	532	- 524	521	534	571	-620	665	691	666	634	606	581	562	552	546	547	561	602	625	605	579	545	509	670	454
2010	Feb	21	7	482	469	468	479	496	\$26	\$71	609	632	617	596	577	.568	559	553	549	551	569	617	634	607	.561	506	419	705	464
2010	Feb	22	1	404	379	370	370	385	436	531	579	593	602	612	620	621	623	614	612	614	621	666	681	650	597	528	465	743	465
2010	Feb	23	2	417	386	373	371	382	427	518	561	582	598	616	622	626	632	632	635	635	634	666	685	651	- 599	531	461	725	471
2010	Feb	24	3	414	392	383	383	401	455	551	600	618	621	629	624	620	622	620	621	632	657	703	709	680	- 640	585	530	725	479
2010	Feb	25	1	500	495	504	524	565	647	783	865	865	837	809	770	728	692	660	639	638	670	759	827	837	818	774	731	838	509
2010	Feb	26	5	708	713	728	751	797	891	992	1042	978	906	819	758	701	659	624	603	598	614	681	735	742	737	715	684	859	584
2010	Feb	27	6	661	653	655	655	664	692	731	769	X(X)	813	813	805	787	760	729	707	6.96	705	758	796	7987	270	736	698	731	494
2010	Feb	28	7	663	649	650	662	685	726	784	830	835	792	740	684	641	602	573	555	552	\$73	647	706	703	682	647	605	759	529
				-		-									-													<u> </u>	
-	Carlos a	AVG		545	530	530	539	569	638	744	798	787	765	740	711	686	665	649	642	647	670	731	752	735	697	642	587	798	530
		MAX	1	766	761	775	797	831	891	499	1054	1007	955	951	893	832	829	824	833	848	852	866	861	865	850	823	791	986	
		MIN		404	379	370	370	382	409	447	484	\$40	\$79	596	\$77	568	559	552	546	\$47	\$61	6112	625	605	561	506	449		370

[1] Average day excludes weekends and NERC holidays

The tables below provides 30 days of average of hourly load data for the ARP during the 2010 Summer season (May through September) and the month that most represented the 30 day average, which was August.

		_		-					Avera	ge 30 1	Days o	t Load	Data D	uring	2010 \$	umno	er Sea	on						-				-	
1110	1.	De	Day of						1.0			-	Olser	wed Ho	urly Pe	eak Ca	quacity	(MNV)			1			100				MAX	MIN
rear	Nonen	Day	Week	1	2	3	4	5	6	7	N	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	(MIW)	(MM
2010	Avg[1]	1	I	657	610	578	561	559	587	645	689	754	830	911	976	1046	1091	1123	1134	1129	1112	1074	1029	1011	952	856	760	1134	\$59
2010	Ave [1]	2	2	674	623	590	570	566	593	651	696	760	837	917	986	1047	1092	1116	1122	1122	1091	1046	997	977	924	837	743	1122	\$66
2010	Avg[1]	3	3	670	622	588	568	564	589	650	694	760	836	914	977	1027	1071	1094	1108	1105	1076	1033	981	958	906	816	713	1108	564
2010	Avg[1]	4	4	646	\$97	565	546	\$43	569	628	673	741	821	901	971	1033	1079	1107	1107	1098	1063	1020	966	949	900	810	718	1107	\$43
2010	Avg[1]	5	5	643	594	560	540	538	563	620	660	-725	797	872	938	992	1033	1067	1085	1087	1061	1018	968	948	901	828	744	1087	538
2010	Avg [1]	6	6	673	621	583	559	\$47	551	564	586	663	759	1846	915	969	1007	1025	1027	1019	1002	968	927	910	859	802	729	1027	547
2010	Ave [4]	7	7	664	618	581	357	\$44	546	-555	\$73	646	727	800	856	902	935	951	952	942	922	890	856	842	8(19	750	682	952	544
2010	Avg [1]	8	1	619	\$73	544	\$29	529	559	622	672	740	812	876	930	971	1004	1033	1050	1054	1038	1006	947	928	888	800	705	1054	529
2010	Avg[1]	9	2	622	576	54X	531	530	557	615	661	727	801	871	929	977	1018	1043	1049	1048	1026	986	942	922	879	792	702	1049	530
2010	Ave [1]	10	3	631	582	551	532	528	555	610	660	731	809	889	952	1000	1044	1068	1081	1083	1062	1013	967	943	894	806	713	1083	528
2010	Avg[1]	11	4	637	587	552	532	\$27	551	605	648	717	798	880	951	1004	1054	1088	1107	1119	1104	1070	1019	991	937	843	747	1119	527
2010	Avg[1]	12	5	669	617	578	556	551	571	621	665	740	826	912	986	1042	1097	1124	1135	1135	1106	1065	1015	980	932	853	769	1135	551
2010	Ave[1]	13	6	696	642	601	573	560	\$6t	570	594	679	779	872	948	1010	1061	1088	1097	1101	1093	1056	1005	982	934	857	775	1101	560
2010	Avg[1]	14	7	704	650	610	582	567	563	568	589	675	778	868	939	1001	1048	1070	1078	1071	1048	1007	963	946	9(12	828	745	1078	561
2010	Avg[1]	15	1	672	623	591	573	-\$70	595	651	696	766	850	930	999	1054	1095	1117	1122	1117	1092	1052	1017	1000	941	851	759	1122	570
2010	Avg [1]	16	2	681	633	599	578	574	598	655	702	775	859	943	1015	1079	1126	1154	1156	1[4]	1111	1072	1024	1001	943	848	758	1156	574
2010	Avg[1]	17	3	683	630	595	575	569	589	645	689	759	844	932	1004	1064	1110	1136	1146	1132	1092	1040	997	973	917	832	741	1146	569
2010	Avg []]	18	4	669	620	587	\$67	563	588	643	686	753	844	933	1003	1062	1102	1121	1116	1105	1072	1022	976	954	902	816	728	1121	563
2010	Avg [1]	19	5	656	605	571	549	544	568	620	-666	740	829	919	991	1050	1089	1102	1103	1097	1067	1016	963	939	894	818	740	1103	544
2010	Avell	20	6	670	620	586	\$62	551	554	365	589	675	773	863	940	995	1035	1066	1081	1086	1068	1021	964	937	892	820	741	1186	551
2010	Avg[1]	21	7	671	621	583	557	544	\$43	\$50	\$73	658	756	846	917	974	1018	1038	1038	1030	1010	969	927	908	865	789	706	1038	543
2010	Avg [1]	22	1	637	590	560	544	543	572	630	677	742	818	904	975	1033	1081	1104	1108	1097	1060	1011	971	953	899	.808	720	1108	543
2010	Avg[1]	23	2	648	641	571	\$52	550	577	641	683	742	821	898	950	997	1036	1056	1058	1052	1034	1005	968	949	9(10)	811	725	1058	550
2010	Avg [1]	24	3	643	591	570	552	551	578	637	683	743	815	889	948	1002	1052	1083	1100	1102	1087	1050	1009	979	930	840	745	1102	551
2010	Avg[1]	25	4	669	618	582	562	557	580	639	682	746	823	5116	973	1027	1071	1103	1120	1121	1099	1057	1017	988	938	849	756	1121	557
2010	Avg [1]	26	5	681	630	594	571	564	587	637	683	753	835	919	985	1039	1080	1096	10560	1075	1040	992	949	924	886	819	745	1096	564
2010	Avg [1]	27	6	679	632	598	\$75	\$65	571	583	607	685	775	860	924	975	1011	1035	1040	1037	1013	975	936	921	882	817	746	1040	565
2010	Avg [1]	28	7	679	- 630	595	- 573	\$60	560	567	589	668	756	840	911	971	1014	1039	1046	1047	1025	984	951	931	888	815	736	1047	560
2010	Avg[1]	29	1	687	638	(518)	580	\$75	600	656	699	769	858	949	1028	1089	1138	1154	1146	1134	1108	1064	1029	997	941	852	763	1154	575
2010	Avg [1]	30	2	688	642	608	588	587	614	671	714	767	835	905	967	1025	1073	1087	1079	1062	1053	1030	1005	984	923	833	752	1087	587
- Ve		AVG [2]		658	609	576	557	554	579	636	681	748	827	908	974	1030	1074	1099	1106	1101	1075	1033	989	966	915	828	738	1106	554
		MAX	1	704	650	610	588	587	614	671	714	775	859	949	1028	1089	1138	1154	1156	1141	1112	1074	1029	1011	952	857	775	1156	-
and the second	1	MIN	1	619	573	\$44	529	527	543	550	573	646	727	SDO	8.56	9612	935	951	952	942	922	890	856	842	81.19	750	682		527

The average month is made up of the averages of May 20.
Average day excludes weekends and NERC holidays

				_			_			Ту	ical S	umniei	Mont	h for 2	010: /	August				_			_	_		_	_		_
			Day of	The same	S	-		01-				-	Olser	ved Ho	urly P	eak Ca	macity	(MBV)			UP ES		-		-	1-11		MAX	MIN
Year	Month	Day	Week	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	(MW)	ARV
2010	Aug	1	7	742	692	656	627	612	613	617	630	713	819	922	1007	1069	1115	1114	1102	1081	1036	987	934	922	881	815	740	1115	612
2010	Aug	2	1	675	631	599	581	577	598	648	683	756	843	937	1029	1108	1173	1208	1214	1211	1205	1166	1110	1077	1014	916	825	1214	577
2010	Aug	3	2	742	686	649	626	620	638	685	720	788	883	967	1054	1130	1186	1218	1218	1219	1189	1124	1065	1039	990	9115	SOS	1219	620
2040	Aug	4	3	735	685	644	619	64.18	626	675	705	786	868	948	1026	1090	1144	1182	1208	1213	1195	1156	1094	1059	1012	919	817	1213	608
2010	Aug	5	4	736	681	643	618	608	625	670	705	789	880	969	1037	1097	1146	1180	1198	1189	1156	1115	1062	1040	996	906	811	1198	608
2010	Aug	6	5	730	675	637	613	608	626	665	697	789	887	985	1061	1114	1148	1178	1194	12(8)	1165	1122	1071	1043	997	916	828	1200	6/18
2010	Aug	7	6	754	701	661	634	622	623	635	646	720	822	90K	969	1011	1032	1022	1016	997	980	956	922	913	828	806	747	1032	622
2010	Aug	8	7	688	645	615	594	582	586	598	611	683	762	829	854	885	918	938	950	939	916	884	855	856	826	763	693	950	582
2010	Aug	9	1	636	592	\$66	-552	557	584	637	680	749	830	907	970	1020	1052	1075	1088	1083	1071	1036	991	965	928	846	759	1088	552
2010	Aug	10	2	687	637	606	588	585	606	655	696	768	844	905	954	986	1003	1032	1042	1043	1014	965	923	912	878	798	718	1043	585
2010	Aug	11	3	652	607	580	562	559	585	630	677	763	856	943	1019	1070	1105	1102	1125	1120	1082	1026	976	967	914	831	744	1125	559
2010	Aug	12	4	672	624	590	572	569	591	644	677	760	860	958	1042	1091	1124	1134	1145	1140	1113	1081	1033	1014	969	881	790	1145	569
2010	Aug	13	5	717	667	632	612	616	624	670	705	794	897	991	1056	1109	1149	1137	1115	1091	1039	996	952	942	908	843	769	1149	606
2010	Aug	14	6	704	658	624	601	591	595	610	629	719	826	921	997	1055	1082	1096	1093	1101	1095	1065	1018	1007	959	889	812	1101	591
2010	Aug	15	7	740	688	646	615	59%)	596	605	617	7114	815	909	989	1053	1090	1103	1116	1107	1068	1024	984	979	933	858	775	1116	596
2010	Agg	16	1	706	653	619	600	598	620	676	710	783	882	982	1075	1148	1189	1210	1192	1158	1114	1076	1031	1026	969	879	788	1210	\$98
2010	Aug	17	2	714	667	636	620	614	641	703	743	821	916	1009	1090	1158	1206	1237	1243	1232	1208	1170	1110	1073	1004	906	817	1243	614
2010	Aug	18	3	743	690	652	634	627	638	697	732	816	912	1011	1095	1165	1212	1240	1241	1233	1204	1147	1096	1063	[(XX)	908	818	1241	627
2010	Aug	19	4	741	690	657	636	632	655	710	748	830	931	1029	1109	1177	1226	1258	1263	1255	1222	1178	1104	1076	1(8)7	910	813	1263	632
2010	Aug	20	5	734	682	648	627	619	642	696	736	815	910	1006	1082	1150	1197	1198	1185	1166	1132	1074	1023	1008	959	861	784	1198	619
2010	Aug	21	6	711	660	624	597	586	390	61)5	623	709	811	916	999	1044	1070	1100	1115	1104	1065	1014	956	941	890	827	757	1115	586
2010	Aug	22	7	693	649	615	593	582	389	603	616	688	781	879	959	1019	1058	1085	1078	1142	1(8)4	958	918	405	854	773	699	1085	382
2010	Aug	23		636	597	572	562	568	606	679	716	764	832	919	- 988	1037	1057	1051	1039	1030	996	-952	928	933	875	784	705	1057	562
2010	Aug	24	2	640	603	579	565	568	604	683	722	759	811	871	897	909	912	910	899	883	866	849	841	856	811	731	658	912	565
2010	Aug	25	3	557	499	530	529	531	567	651	694	731	777	825	865	919	980	1025	1043	1033	10879	978	945	942	889	799	707	1043	499
2010	Aug	26	4	638	596	569	554	553	582	658	693	730	795	874	- 939	996	1050	1076	1087	1067	1023	986	953	950	888	798	709	1087	553
2010	Aug	27	5	636	591	564	547	544	574	637	672	722	7%	867	937	990	1028	1056	1061	1060	1024	967	916	898	844	780	708	1061	544
2010	Aug	28	6	648	606	573	554	543	553	576	593	666	750	824	890	946	. 990	1013	1021	1017	1000	959	915	917	870	806	737	1021	543
2010	Aug	29	7	674	628	598	578	568	571	587	600	660	740	806	865	908	937	962	972	978	961	927	896	898	848	769	691	978	568
2010	Aug	30	1	628	588	559	543	549	588	657	694	747	815	887	943	991	1023	1056	1070	1075	1047	1005	965	.956	892	794	699	1075	543
2010	Aug	31	2	631	589	561	545	544	579	656	696	743	820	898	957	1002	1032	1059	1068	1078	1054	1014	974	971	907	813	723	1078	544
	a sere	AVG	1	681	633	604	587	584	609	667	705	773	857	940	1010	1066	1106	1128	1134	1126	1097	1054	1007	991	939	851	764	1134	584
	1	MAX		754	701	661	636	632	655	710	748	830	931	1029	1109	1177	1226	1258	1263	1255	1222	1178	1110	1077	1014	919	828	1263	
		MIN		557	300	510	\$20	531	553	\$76	507	660	740	NIN.	854	885	912	910	899	883	866	849	841	856	811	731	658		449

The tables and graphic have been provided electronically as sheet "3" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

4. Please provide, on a system-wide basis, historical annual heating degree day (HDD) and cooling degree day (CDD) data for the period 2001 through 2010 and forecasted annual HDD and CDD data for the period 2011 through 2020. Describe how the Company derives system-wide temperature if more than one weather station is used. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Tem	perature	Data
-----	----------	------

	Year	HDD	CDD
	2001	513	3348
	2002	614	3572
	2003	654	3550
12.5	2004	531	3447
Ac	2005	524	3424
ua	2006	433	3545
	2007	393	3641
	2008	468	3362
	2009	591	3616
	2010	1196	3361
	2011	580	3428
	2012	580	3428
	2013	580	3428
-	2014	580	3428
roj	2015	580	3428
octe	2016	580	3428
-	2017	580	3428
1	2018	580	3428
	2019	580	3428
	2020	580	3428

FMPA forecasts demand and energy data for each municipal electric utility participating in the ARP (ARP Participant) using local temperature data. Data reported above is from the Orlando International Airport weather station, which may be used as an indicator of weather conditions over the geographically diverse service area of the ARP.

The table has been provided electronically as sheet "4" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

5. Please provide the following data to support Schedule 4 of the Company's Ten-Year Site Plan: the

12 monthly peak demands for the years 2008, 2009, and 2010; the date when these monthly peaks

occurred; and, the temperature at the time of these monthly peaks. Describe how the Company derives system-wide temperature if more than one weather station is used. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

-	1000	Peak Demand		Day of		Temperature
Year	Month	(MW)	Date	Week	Hour	(F)
	1	1,330.191	1/3/2008	Thu	09	54/31
	2	1,051.653	2/28/2008	Thu	08	60/37
	3	1,012.305	3/19/2008	Wed	17	86/63
	4	1,078.182	4/4/2008	Fri	17	88/67
	5	1,285.897	5/21/2008	Wed	17	93/71
8	6	1,405.848	6/5/2008	Thu	[7	93/72
200	7	1,405.359	7/21/2008	Mon	16	95/74
	8	1,450.149	8/7/2008	Thu	16	95/76
	9	1,318.513	9/15/2008	Mon	16	92/74
	10	1,147.422	10/1/2008	Wed	16	89/66
	11	1,008.631	11/14/2008	Fri	16	88/69
	12	1,021.878	12/3/2008	Wed	08	69/39
24	1	1,406.274	1/22/2009	Thu	08	60/29
	2	1,418.504	2/5/2009	Thu	08	52/30
	3	1,059.151	3/3/2009	Tue	08	63/39
	4	1,030.269	4/24/2009	Fri	17	91/60
	5	1,270.851	5/11/2009	Mon	17	95/66
3	6	1,482.740	6/22/2009	Mon	16	97/81
20	7	1,351.545	7/23/2009	Thu	17	93/74
	8	1,381.687	8/11/2009	Tue	17	94/75
	9	1,293.857	9/25/2009	Fri	16	92/75
	10	1,325.850	10/8/2009	Thu	17	95/72
	11	953.694	11/1/2009	Sun	16	86/62
	12	974.888	12/29/2009	Tue	09	68/46
	1	1,412.038	01/11/2010	Mon	08	46/27
	2	1,053.729	02/17/2010	Wed	08	58/39
	3	999.691	03/05/2010	Fri	08	62/37
	4	839.747	04/23/2010	Fri	17	86/61
	5	1,087.256	05/20/2010	Thu	17	91/70
10	6	1,272.051	06/15/2010	Tue	15	98/75
20	7	1,255.058	07/27/2010	Tue	16	98/78
	8	1,262.994	08/19/2010	Thu	16	95/76
	9	1,170.919	09/10/2010	Fri	16	93/77
	10	1,048.684	10/27/2010	Wed	17	91/70
	11	844.142	11/01/2010	Mon	17	85/61
	12	1,258.264	12/14/2010	Tue	08	49/28

Historic Monthly Peaks

Temperature data shown above represents daily high and low temperatures recorded at the Orlando International Airport weather station. FMPA does not currently collect hourly

temperature data. FMPA forecasts demand and energy data for each ARP Participant using the Orlando temperature data as representative of weather conditions over the geographically diverse service area of the ARP.

The table has been provided electronically as sheet "5" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

6. Please discuss any recent trends in customer growth, by customer type (residential, industrial & commercial, etc), and as a whole. Please explain the nature or reason for these trends, and identify what types of customers are most affected by these trends. (For example, is a decline in customers a loss of temporary construction meters or a decline in population?)

Many ARP Participants have experienced declines across most customer classes. These trends have been driven mainly by the national and local economic downturn, the housing and credit crises, a downturn in tourism, and higher electricity prices. Residential average use has decreased significantly over the last few years primarily as a result of a surge in still-connected vacancies and "under-occupied" homes (long- and short-term rentals, vacation homes, etc.). Residential customer counts have flattened or have declined over the last couple of years as a result of vacant homes that are no longer connected.

7. Please discuss any impacts of "smart" or digital meter installations on forecasting sales and net energy for load. Please explain the nature or reason for these trends, and identify what types of customers are most affected by these trends. (For example, are increased sales due to more accurate measurement of low-load conditions?)

Certain of the ARP Participants have installed or are currently installing "smart" or digital meters on portions of their systems. As these efforts are either in the early deployment or implementation phases, FMPA has assumed zero impact on sales and net energy for load at this time and will reconsider this after further deployment of ARP Participant programs.

RENEWABLE GENERATION

8. Please provide the estimated total capacity of all renewable resources the utility owns or purchases as of January 1, 2011. Include in this value the sum of all utility-owned, and purchased power contracts (firm and non-firm), and purchases from as-available energy producers (net-metering, self-generators, etc.). Please also include the estimated total capacity of all renewable resources (firm and non-firm) the utility is anticipated to own or purchase as of the end of the planning period in 2020.

Fuel Type	Renewabl	e Resource ty (MW)
	Existing	Planned
Solar	0.544	0.544
Wind		
Biomass	20 [1]	20 [1]
Municipal Solid Waste		
Waste Heat		
Landfill Gas	NA [2]	NA [2]
Hydro		
Total		

- [1] Biomass Plant US Sugar has 3 generators. The first generator was installed in September 2004 (14 MW), the second, in November 2006 (20 MW) and the third in 2007 (14 MW) for a total of 48 MW on-site generation. The facility uses 45MW in-house which leaves 3MW available for the market on-peak. There is a 20 MW transformer at the site which limits the total amount of generation available to sell to the grid to a maximum of 20 MW at any time. The biomass facility is a non-firm resource and energy is received on an "As Available" basis.
- [2] Not Available the All-Requirements Project's 21.42% ownership share of the Stanton Energy Center Units 1 & 2 which burns land fill gas as a supplemental fuel an on an "As Available" basis. Capacity from this resource is accounted for in the overall capacity of the Stanton Energy Center.

The table has been provided electronically as sheet "8" in the attached "FMPA TYSP Supplemental Tables 2011.xls."

9. Please provide a description of each existing utility-owned renewable generation resource and each renewable purchased power agreement as of January 1, 2011. For both utility-owned and purchased resources, please divide them into Firm and Non-Firm categories as shown below. Please also include those renewable resources which provide fuel to conventional facilities, if applicable, with estimates of their capacity and energy contributions. As part of this response, please include the description of the unit's generator type, fuel type, commercial in-service date, seasonal net capacity (even if not considered firm capacity), annual energy generation. For

purchased power agreements, also provide the contract start and end dates. Please complete the tables below and provide an electronic copy in Excel format and hardcopy.

Existing Renewables as of January 1, 2011

Utility-Owned Firm Renewable Resources

Facility Name	Unit Type	Fuel Type	Commercial In-Service Date	Net C (k	apacity W)	Annual Generation	Capacity Factor
-	-	-	(MM/YYYY)	Sum	Win	(MWh)	(%)
N/A							

Utility-Owned Non-Firm Renewable Resources

Facility Name	Unit Type	Fuel Type	Commercial In-Service Date	Net C: (k)	apacity W)	Annual Generation	Capacity Factor
			(MM/YYYY)	Sum	Win	(MWh)	(%)
Orange County Landfill [1]	ST	LFG - Methane gas is used as a supplemental fuel source at the Stanton Energy Center	04/1998	[1]	[1]	12,598	N/A
NOAA Discovery Center [2]	PV	SUN -	12/2009	30	30	47.361	18%

[1] See note I in question 8

[2] The NOAA Discovery Center is a joint partnership between the National Oceanic and Atmospheric Administration (NOAA) and FMPA. FMPA receives 62% of the energy generated from the solar PV system.

Firm Renewable Purchased Power Agreements

Facility Name	Unit Type	Fuel Type	Unit Commercial In-Service Date	Net C: (k)	apacity W)	Annual Generation	Capacity Factor	Contract Start Date	Contract End Date
-	-		(MM/YYYY)	Sum	Win	(MWh)		Line Land	(%)
N/A						_			

Non-Firm Renewable Purchased Power Agreements

Facility Name	Unit Type	Fuel Type	Unit Commercial In-Service Date	Net Ca	apacity W)	Annual Generation	Capacity Factor	Contract Start Date	Contract End Date
-	-	-	(MM/YYYY)	Sum[1]	Win [1]	(MWh)	(%)		
US Sugar Corp.	ST	AB	09/2004	20,000	20,000	15,800	9.0% [2]	04/1990	On-going with 90 days cancellation notice

[1] US Sugar has 3 generators. The first generator was installed in September 2004 (14 MW), the second, in November 2006 (20 MW) and the third in 2007 (14 MW) for a total of 48 MW on-site generation. The facility uses 45MW in-house which leaves 3MW available for the market on-peak. There is a 20 MW transformer at the site which limits the total amount of generation available to sell to the grid to a maximum of 20 MW.

[2] The 9.0% capacity factor is based off a maximum capacity of 20MW.

The above tables have been provided electronically as sheet "9" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

10. Please provide a description of each existing utility-owned renewable generation resource and each renewable purchased power agreement planned during the 2011 through 2020 period. For both utility-owned and purchased resources, please divide them into Firm and Non-Firm categories as shown below. Please also include those renewable resources which provide fuel to conventional facilities, if applicable, with estimates of their capacity and energy contributions. As part of this response, please include the description of the unit's generator type, fuel type, commercial inservice date, seasonal net capacity (even if not considered firm capacity), annual energy generation. For purchased power agreements, also provide the contract start and end dates. Please complete the tables below and provide an electronic copy in Excel format and hardcopy.

Planned Renewables for 2011 through 2020

Utility-Owned Firm Renewable Resources

Unit Type	Fuel Type	In-Service Date	Net C. (k	apacity W)	Annual Generation	Capacity Factor
-	-	(MM/YYYY)	Sum	Win	(MWh)	(%)
	Unit Type	Unit Fuel Type Type	Unit Fuel Type Type Commercial In-Service Date (MM/YYYY)	Unit Type Fuel Type Commercial In-Service Date Net C. (k - - (MM/YYYY) Sum	Unit Type Fuel Type Commercial In-Service Date Net Capacity (kW) - - (MM/YYYY) Sum Win	Unit Type Fuel Type Commercial In-Service Date Net Capacity (kW) Annual Generation - - (MM/YYYY) Sum Win (MWh)

Utility-Owned Non-Firm Renewable Resources

Facility Name	Unit Type	Fuel Type	Commercial In-Service Date	Net C: (k	apacity W)	Annual Generation	Capacity Factor
		-	(MM/YYYY)	Sum	Win	(MWh)	(%)
N/A							

Firm Renewable Purchased Power Agreements

Facility Name	Unit Type	Fuel Type	Unit Commercial In-Service Date	Net C: (k	apacity W)	Annual Generation	Capacity Factor	Contract Start Date	Contract End Date
	-	1227	(MM/YYYY)	Sum	Win	(MWh)			(%)
N/A									

Non-Firm Renewable Purchased Power Agreements

Facility Name	Unit Type	Fuel Type	Unit Commercial In-Service Date	Net Ci (k	apacity W)	Annual Generation	Capacity Factor	Contract Start Date	Contract End Date
-	-	-	(MM/YYYY)	Sum	Win	(MWh)		(%)	(%)
N/A									

11. Please refer to the list of planned utility-owned renewable resource additions with an in-service date for the renewable generator during the 2011 through 2020 period outlined above. Please discuss the current status of each project.

Not Applicable

12. Please refer to the list of existing or planned renewable PPAs with an in-service date for the renewable generator during the 2011 through 2020 period outlined above. Please discuss the current status of each project.

Not Applicable

13. Please provide a description of each renewable facility in the company's service territory that it does not currently have a PPA with, including self-service facilities. As part of this response, please include the description of the unit's location, generator type, fuel type, commercial in-service date, seasonal net capacity (even if not considered firm capacity), annual energy generation. Please exclude from this response small customer-owned renewable resources, such as rooftop PV, which are more appropriately included in the following question. Please complete the tables below and provide an electronic copy in Excel format and hardcopy.

FacilityUnitFuelNameTypeType		Commercial In-Service Date	Net Capacity (kW)		Annual Generation	Capacity Factor	
-		-	(MM/YYYY)	Sum	Win	(MWh)	(%)

The All-Requirements Project is a wholesale power supply project and as such, does not have a service territory. FMPA does not collect this information on behalf of the ARP Participants.

14. Please provide the number of customer-owned renewable resources within the Company's service territory. Please organize by resource type, and include total estimated installed capacity and annual output. Please exclude from this response any customer-owned renewable resources already accounted for under PPAs or other sources. If renewable energy types beyond those listed were utilized, please include an additional row and a description of the renewable fuel and generator. For non-electricity generating renewable energy systems, such as geothermal cooling and solar hot water heaters, please use kilowatt-equivalent and kilowatt-hour-equivalent units. Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Customer Class	Renewable Type	# of Connections	Installed Capacity	Annual Output
			(kW)	(kWh)
Residential	Solar Photovoltaic	80	446	221,073
Residential	Solar Thermal Water Heating			
Residential	Geothermal Heat Pump			
Residential	Wind Turbine			
Residential	Other (Describe)			
Commercial	Solar Photovoltaic	5	98	31,935
Commercial	Solar Thermal Water Heating			
Commercial	Geothermal Heat Pump			
Commercial	Wind Turbine			
Commercial	Other (Describe)			

The ARP provides wholesale power to the ARP Participants. As a power supply project, the ARP does not have a service territory. However, FMPA and ARP Participants, through the ARP Net

Metering Policy, do sponsor a net metering program for ARP Participants' customer-owned renewable generation. Figures shown above for number of installations and installed capacity are based on the net metering program as of December 31, 2010, and annual output is the recorded metered energy sent to the grid in the calendar year 2010.

The above table has been provided electronically as sheet "14" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

15. Please provide the annual output for the company's renewable resources (owned and purchased through PPA), retail sales, and the net energy for load for the period 2010 through 2020. Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Annual O	utput	Actual	1000	1 Same	Le pla		Proje	ected			1	
(GWI	1)	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
	Utility	13	21	20	18	16	15	14	13	12	[]	11
Ceneration	PPA	16	16	16	16	16	16	16	16	16	16	16
Generation	Total	29	37	36	34	32	31	30	29	28	27	27
Retail Sal	es [1]	n/a										
Net Energy f	or Load	6,299	6,409	6,593	6,771	6,495	6,665	6,705	6,866	7,021	7,180	7,341

[1] The All-Requirements Project (ARP) provides wholesale power to the ARP Participants and does not make retail sales.

The above table has been provided electronically as sheet "15" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

16. Provide, on a system-wide basis, the historical annual average as-available energy rate in the Company's service territory for the period 2001 through 2010. Also, provide the forecasted annual average as-available energy rate in the Company's service territory for the period 2011 through 2020. Please use the Consumer Price Index to calculate real as-available energy rates. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Year	As-Availa (S/N	able Energy (IWh)	CPI
	Real	Nominal	
2010			
2011			
2012			
2013			
2014			
2015			
2016			
2017			
2018			
2019			
2020			

The All Requirements Project does not have and does not forecast an as-available energy rate.

17. Please discuss any studies conducted or planned regarding the use combinations of renewable and fossil fuels in existing or future fossil units. What potential does the Company identify in this area?

The ARP is currently generating renewable energy through the combustion of landfill gas at the Stanton Energy Center Units 1 and 2 as a supplemental fuel to coal. Past studies have indicated that this is viable fuel use combination for the Stanton coal-fired units. No new combined renewable/fossil fuel use studies are planned at this time.

18. Please discuss any planned renewable generation or renewable purchased power agreements within the past 5 years that did not materialize. What was the primary reason these generation plans or purchased power contracts were not realized? What, if any, were the secondary reasons?

On June 29, 2007 FMPA issued a Request for Proposals as an invitation to qualified companies to submit proposals for the supply of renewable capacity and energy. Three bids were received, including: i) a 58 MW summer rated biomass circulating fluidized bed (CFB) plant proposed to burn waste wood and other materials including recycled pallets and paper derived fuel, (ii) 10 MW of roof-mounted photovoltaic systems, and (iii) a 1 MW to 3 MW centralized PV system. In all three cases the levelized costs for the three renewable alternatives were projected to be significantly higher that FMPA's avoided costs based on a 2007 study report. FMPA explored different pricing arrangements with each developer, however, the projects were deemed not to be cost effective for the All-Requirements Project.

In 2007, FMPA, as agent for the ARP issued a request for proposals for solar photovoltaic (PV) energy supply with a goal of implementing 10 MW. FMPA entered into a Letter of Intent with one vendor in March 2008, but this agreement was cancelled in November 200 due to the vendor's continued unresponsiveness to FMPA. In early 2009, FMPA conducted an evaluation of six solar integrators to identify a partner for a potential 10 MW solar PV project. In June 2009, the ARP selected a vendor for the project; however the project has been put on hold due to the potential cost impacts of the project at this time.

FMPA also considered a biomass project which used heat from combustion of a mixture of horse manure (or "muck") and urban woody waste in a combined cycle to produce steam and generate electricity. The developer eventually decided not to pursue the power cycle portion of the plant, so discussions were discontinued

19. Please discuss whether the company purchases or sells Renewable Energy Credits. As part of this response, please discuss whether the company offers the sale of Renewable Energy Credits to its customers through a green pricing or similar program.

FMPA has not entered into any contracts to purchase or sell RECs. As a wholesale power project, the All-Requirements Project does not offer green pricing programs to retail customers.

TRADITIONAL GENERATION

20. Please provide the cumulative present worth revenue requirement of the Company's Base Case for the 2011 Ten-Year Site Plan. If available, please provide the cumulative present worth revenue requirement for any sensitivities conducted of the Company's generation expansion plan.

The cumulative present worth revenue requirements (CPWRR) over the period 2011-2020 for the Base Case were approximately \$4.5 billion.

21. Please illustrate what the Company's generation expansion plan would be as a result of sensitivities to the base case demand. Include impacts on unit in-service dates for any possible delays, cancellations, accelerated completion, or new additions as a result.

FMPA's current base case capacity expansion plan does not require any additional resources until the year 2020 where it will require an additional 12 MW to maintain a summer season reserve margin of 18%. In FMPA's high load (severe weather) scenario, 13 MWs of additional resource capacities would be required in 2018, 30 MW more in 2019 and another 5MW in 2020 for a cumulative total of 48 MW in order to maintain the 18% summer season reserve margin. It is anticipated that the need for additional resources will be met either through joint participation agreements in new resource projects, or through purchase power agreements with other generators.

22. Please complete the following table detailing planned unit additions, including information on capacity and in-service dates. Please include only planned conventional units with an in-service date past January 1, 2011, and including nuclear units, nuclear unit uprates, combustion turbines, and combined-cycle units. For each planned unit, provide the date of the Commission's Determination of Need and Power Plant Siting Act certification (if applicable), and the anticipated in-service date.

	Cummer	Certification Da	tes (if Applicable)	
Generating Unit Name	Capacity	Need Approved	PPSA Certified	In-Service Date
	(MW)	(Commission)		
	Nuclea	ar Unit Additions /	Uprates	
Crystal River 3 /1/	1	[1]	[1]	05/2011
St. Lucie 2 /1/	6		[1]	10/2012
Crystal River 3 [1]	7	[1]	[1]	05/2013
	Combus	stion Turbine Unit	Additions	
N/A				

Planned Unit Additions for 2011 through 2020

and the second se			and the second se
Cane Island Unit 4	300	8-Aug-08	May, 2011
	Steam	n Turbine Unit Additions	

[1] Both St. Lucie #2 and Crystal River #3 will be receiving uprates in the 2011-2013 timeframe. Increases shown are FMPA's ARP share of the uprates. Additional details should be reflected in the responses from their respective unit operators: FPL and PEF.

The above table has been provided electronically as sheet "22" in the attached "FMPA TYSP Supplemental Tables 2011.xls."

23. For each of the generating units contained in the Company's Ten-Year Site Plan, please discuss the "drop dead" date for a decision on whether or not to construct each unit. Provide a time line for the construction of each unit, including regulatory approval, and final decision point.

The ARP currently has only one generating unit planned in the ten-year horizon. Construction of Cane Island Unit 4 (CI4), a 300 MW combined cycle, began in the spring of 2009, prior to the current ten year planning period, and it is expected to be commercial in May 2011. As such, the "drop dead" date for deciding whether or not to construct CI4 has already passed. A typical construction schedule for a combined cycle unit is shown below.

24. Please complete the following table detailing unit specific information on capacity and fuel consumption for 2010. For each unit on the Company's system, provide the following data based upon historic data from 2010: the unit's capacity; annual generation; resulting capacity factor; estimated annual availability factor; unit average heat rate; quantity of fuel burned; average cost of fuel; and resulting average energy cost for the unit's production. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Plant	Unit#	Unit Type	Fuel Type	Nameplate	Net Ca	pacity [2]	Annual	Capacity	Availability	In-Service
				Capacity	()	(W)	Generation [3]	Factor [3]	Factor [3]	Date
	Too Mile			(MW)	Sum	Win	(MWh)	(%)	(%)	R. C. M
Crystal River	3	NP	UR	[4]	[4]	[4]	[4]	[4]	[4]	03/1977
St. Lucie	2	NP	UR	[5]	[5]	[5]	[5]	[5]	[5]	08 1983
Stanton Energy Center	1	ST	BIT	[6]	[6]	[6]	[6]	[6]	[6]	07 1987
Stanton Energy Center	2	ST	BIT	[6]	[6]	[6]	[6]	[6]	[6]	06 1996
Stanton Energy Center	A	CC	NG	[8]	[8]	[8]	[8]	[8]	[8]	10/2003
Indian River	CT A	GT	NG	[6]	[6]	[6]	[6]	[6]	[6]	06 1989
Indian River	CT B	GT	NG	[6]	[6]	[6]	[6]	[6]	[6]	07 1989
Indian River	CT C	GT	NG	[6]	[6]	[6]	[6]	[6]	[6]	08 1992
Indian River	CT D	GT	NĞ	[6]	[6]	[6]	[6]	[6]	[6]	10/1992
Cane Island	1	GT	NG	40	34	36	9,474	3.0%	91%	01 1995
Cane Island	2	CC	NG	122	108	112	165.202	17.9%	88%	06 1995
Cane Island	3	CC	NG	280	240	250	1.264.033	62.8%	92%	01 2002
Stock Island	CT 2	GT	DFO	21	15	15	638.414	0.5%	94%	06 1999
Stock Island	CT 3	GT	DFO	21	15	15	609.956	0.4%	97%	06/1999
Stock Island	GT 4	GT	DFO	61	45	45	3163.649	0.8%	96%	06/2006
Treasure Coast	1	CC	NG	315	300	310	1,705,994	62.0%	91%	05 2008
Hansel Plant	21	CT	NG		28	34				02 1983
Hansel Plant	22	CA	WH	54	8	5	13,770	4.3%	99%	11/1983
Hansel Plant	23	CA	WH	1 1	8	5				11 1983
Tom G. Smith	GT-1	GT	DFO	31	26	27	62	0.0%	38%	12/1976
Tom G. Smith	GT-2	СТ	NG	20	20	21	14 670	7 10/	010/	03 1978
Tom G. Smith	S-5	CA	WH	10	8	9	14.079	7.170	0170	03.1978
Tom G. Smith	MUI	IC	DFO		2	2	86	0.5%	100%	12 1965
Tom G. Smith	M U2	IC	DFO	1 1	2	2	87	0.5%	99%	12 1965
Tom G. Smith	M U3	IC	DFO	10	2	2	89	0.5%	100%	12 1965
Tom G. Smith	MU4	IC	DFO	1 1	2	2	9	0.1%	65%	12 1965
Tom G. Smith	MU5	IC	DFO	1 1	2	2	86	0.5%	100%	12 1965
Tom G. Smith	S-3	ST	DFO	27	24	25	3,864	1.8%	92%	11 1967
Stock Island	CT I	GT	DFO	20	18	18	1.856	1 3%	95%	11 1978
Stock Island	MSDI	IC	DFO	9	6	6	1,599	2.3%	100%	06 1991
Stock Island	M SD2	IC	DFO	9	7	7	2,238	3.2%	100%	09/1991

[1] For those generating units wholly owned by FMPA as agent for the All-Requirements Power Supply Project or by ARP Participants.

[2] Base on 2010 net capacity seasonal ratings reported in FMPA's 2011 Ten-Year Site Plan

[3] Information reported for Fiscal Year 2010 (October 1, 2009 - September 30, 2010).

[4] Historical operating data for this unit is available from Progress Energy Florida

[5] Historical operating data for this unit is available from Florida Power and Light

[6] Historical operating data for this unit is available from Orlando Utilities Commission

[7] Information is not available

[8] Historical opterating data for this unit is available from Southern Company

Plant	Unit #	Fuel Type	Heat Rate [1]	Total Fuel Burned	Total Fuel Cost	Unit Fuel Cost	
			(BTU/kWh)	(MMBTU)	(\$000)	(\$/MMBTU)	(c/kWh)
Crystal River	3	UR	10680	[2]	[2]	[2]	[2]
St. Lucie	2	UR	12780	[3]	[3]	[3]	[3]
Stanton Energy Center	1	BIT	10391	[4]	[4]	[4]	[4]
Stanton Energy Center	2	BIT	9550	[4]	[4]	[4]	[4]
Stanton Energy Center	A	NG	7270	[4]	[4]	[4]	[4]
Indian River	CT A	NG	13620	[4]	[4]	[4]	[4]
Indian River	CT B	NG	14020	[4]	[4]	[4]	[4]
Indian River	CT C	NG	12780	[4]	[4]	[4]	[4]
Indian River	CT D	NG	13040	[4]	[4]	[4]	[4]
Cane Island	1	NG	10470	[5]	[5]	[5]	[5]
Cane Island	2	NG	9320	[5]	[5]	[5]	[5]
Cane Island	3	NG	8007	[5]	[5]	[5]	[5]
Stock Island	CT 2	DFO	15270	[5]	[5]	[5]	[5]
Stock Island	CT 3	DFO	15290	[5]	[5]	[5]	[5]
Stock Island	GT 4	DFO	10500	[5]	[5]	[5]	[5]
Treasure Coast	1	NG	7347	[5]	[5]	[5]	[5]
Hansel Plant	21	NG		[5]	[5]	[5]	[5]
Hansel Plant	22	WH	10680	[5]	[5]	[5]	[5]
Hansel Plant	23	WH		[5]	[5]	[5]	[5]
Tom G. Smith	GT-1	DFO	0	[5]	[5]	[5]	[5]
Tom G. Smith	GT-2	NG	10022	[5]	[5]	[5]	[5]
Tom G. Smith	S-5	WH	- 10923	[5]	[5]	[5]	[5]
Tom G. Smith	MUI	DFO	10500	[5]	[5]	[5]	[5]
Tom G. Smith	MU2	DFO	10500	[5]	[5]	[5]	[5]
Tom G. Smith	MU3	DFO	10500	[5]	[5]	[5]	[5]
Tom G. Smith	MU4	DFO	10500	[5]	[5]	[5]	[5]
Tom G. Smith	MU5	DFO	10530	[5]	[5]	[5]	[5]
Tom G. Smith	S-3	DFO	13620	[5]	[5]	[5]	[5]
Stock Island	CT 1	DFO	15270	[5]	[5]	[5]	[5]
Stock Island	MSDI	DFO	10550	[5]	[5]	[5]	[5]
Stock Island	MSD2	DFO	10670	[5]	[5]	[5]	[5]
1							

[1] Heat Rates shown are the FMPA modeling average heat rates of the units at maximum load.

[2] Historical operating data for this unit is available from Progress Energy Florida

[3] Historical operating data for this unit is available from Florida Power and Light

[4] Historical operating data for this unit is available from Orlando Utilities Commission

[5] Information is not available at this time

The tables above have been provided electronically as sheet "24" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

25. For each unit on the Company's system, provide the following data based upon historic data from 2010 and forecasted capacity factor values for the period 2011 through 2020. Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

				Actual	Projected Capcity Factor (%)									
Plant	Unit #	Unit Type	Fuel Type	2010 [1]	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
0				101	02.00/	0.1.20/	22.004	0.4.10/	02.504	0.1.201	00.60	0.1.00	00.000	01.001
Crystal River	3	NP	UR	[2]	83.0%	94.5%	82.9%	94.1%	83.5%	94.3%	82.5%	94,0%	83.6%	94.2%
St. Lucie [6]	2	NP	UR	[3]	90.4%	90.6%	85.1%	90.4%	90.2%	85.4%	90.4%	90.3%	85.1%	90.7%
Stanton Energy Center [6]	1	SI	BII	[4]	64.1%	63.2%	68.1%	69.0%	70.3%	70.2%	67.6%	61.3%	58.0%	60.3%
Stanton Energy Center	2	SI	BIT	[4]	//.4%	/8.2%	80.5%	819%	82.0%	82.3%	80.7%	75.8%	12.3%	76.1%
Stanton Energy Center	A	СС	NG	[4]	27.9%	25.3%	27.0%	27 1%	28.3%	29.9%	32.1%	38.5%	40.9%	39.7%
Indian River	CT A	GT	NG	[4]	0.1%	0.0%	0.2%	0.2%	0.3%	0.0%	0.4%	0.4%	0.6%	0.4%
Indian River	CT B	GT	NG	[4]	0.1%	0.0%	0.2%	0.2%	0.4%	0.2%	0.5%	0.5%	0.6%	0.6%
Indian River	CTC	GT	NG	[4]	0.6%	0.1%	0.5%	0.7%	0.7%	0.6%	1.2%	1.3%	1.6%	1.6%
Indian River	CTD	GT	NG	[4]	0.8%	0.3%	0.8%	1.2%	1.5%	1.0%	1.7%	1.9%	2.0%	21%
Cane Island	l	GT	NG	3.0%	1.9%	1.1%	2.0%	2.6%	2.8%	2.6%	3.7%	4.0%	5.2%	4.0%
Cane Island	2	СС	NG	17.9%	8.0%	4.8%	7.1%	8.6%	8.5%	9.5%	13.8%	13.9%	17.4%	15.7%
Cane Island	3	СС	NG	62.8%	19.4%	15.5%	19.3%	20.8%	23.7%	24.4%	26.7%	28.1%	39.0%	31.6%
Stock Island	CT 2	GT	DFO	0.5%	0.4%	0.2%	0.5%	0.5%	0.4%	0.4%	0.5%	0.5%	0.9%	0.6%
Stock Island	CT 3	GT	DFO	0.4%	0.5%	0.5%	0.8%	0.8%	0.6%	0.4%	0.5%	1.0%	0.9%	0.8%
Stock Island	GT 4	GT	DFO	0.8%	0.2%	0.5%	1.2%	1.8%	2.4%	3.1%	3.2%	4.2%	4 9%	6.3%
Treasure Coast	1	CC	NG	62.0%	55.4%	52.5%	53.3%	50.1%	52.9%	53.3%	56.7%	58.4%	60.3%	60.3%
Hansel Plant	21	CT	NG											-
Hansel Plant	22	CA	WH	4.3%	0.0%	0.0%	0.5%	0.0%	[5]	[5]	[5]	[5]	[5]	[5]
Hansel Plant	23	CA	WH											
Tom G. Smith	GT-1	GT	DFO	0.0%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	GT-2	СТ	NG	7.10/	0.39/	0.19/	0.694	0.0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	S-5	CA	WH	7.170	0.3%	U.170	0.0%	0.0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	MUT	IC	DFO	0.5%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	MU2	IC	DFO	0.5%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	MU3	IC	DFO	0.5%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	MU4	IC	DFO	01%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	MU5	IC	DFO	0.5%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Tom G. Smith	S-3	ST	DFO	1.8%	0%	0%	0%	0%	[6]	[6]	[6]	[6]	[6]	[6]
Stock Island	CTI	GT	DFO	1.3%	0.2%	0.5%	1.2%	1.8%	2.4%	3.1%	3.2%	4.2%	4.9%	6.3%
Stock Island	M SD I	IC	DFO	2.3%	15.5%	16.7%	17.8%	18.0%	19.5%	18.7%	19.5%	19.2%	18.6%	19.1%
Stock Island	M SD2	IC	DFO	3.2%	9.9%	11.1%	12.0%	13.0%	14.2%	14.3%	14.8%	14.7%	14.4%	14.5%
													_	

Projected Unit Information - Capacity Factor (%)

[1] 2010 Capacity Factor is based upon Fiscal Year 2010 (October 2009 - September 2010)

[2] Historical operating data for this unit is available from Progress Energy Florida

[3] Historical operating data for this unit is available from Florida Power and Light

[4] Historical operating data for this unit is available from Orlando Utilities Commission

[5] Hansel Plant is currently planned for retirement in September 2014.

[6] The City of Lake Worth has provided notice to FMPA that it will exercise the right to modify its A RP full requirements membership. Effective January 1, 2014, the ARP will no longer utilize Lake Worth's generating resouces (TG Smith Units), including its entitlement shares in the Stanton and St. Lucie Projects.

The table above has been provided electronically as sheet "25" in the attached "FMPA TYSP Supplemental Tables 2011.xls."

26. Please complete the table below, providing a list of all of the Company's steam units or combustion turbines that are candidates for repowering. As part of this response, please provide the unit's fuel

and unit type, summer capacity rating, in-service date, and what potential conversion/repowering would be most applicable. Also include a description of any major obstacles that could affect repowering efforts at any of these sites, such as unit age, land availability, or other requirements.

Plant Name	Fuel & Unit Type	Summer Capacity (MW)	In-Service Date	Potential Conversion Type
N/A				

FMPA has not identified any ARP generating units that are candidates for repowering at this time.

27. Please complete the table below, in electronic (Excel) and hard copy, regarding the Company's generation fleet and the typical use of each unit. Please identify capacity type as either Baseload, Intermediate, or Peaking, and group units by their capacity type. Please use the abbreviations for fuel and generation facilities from the FRCC Load and Resource Plan for the table below. (For example, a combustion turbine that is not part of a combined cycle unit is identified with generator code "GT.") Please complete the tables below and provide an electronic copy in Excel (.xls file format) and hard copy.

Plant	Unit #	Unit Type	Fuel Type	Typical Capacity Factor [1]	Capacity Type	Summer Capacity
				(%)		(MW)
Crystal River	3	NP	UR	89%	Baseload	26
St. Lucie	2	NP	UR	89%	Baseload	49
Stanton Energy						
Center	1	ST	BIT	65%	Baseload	101
Stanton Energy						
Center	2	ST	BIT	79%	Baseload	84
A STATE OF STATE	TENTING	The Time	1.1.1.1.1	Sub-Total	Baseload	260
Stanton Energy						
Center	A [2]	CC	NG	32%	Intermediate	42
Cane Island	2	CC	NG	11%	Intermediate	108
Cane Island	3	CC	NG	25%	Intermediate	240
Treasure Coast	1	CC	NG	55%	Intermediate	300
		L. S. Sarray		Sub-Total	Intermediate	690
Indian River	CT A	GT	NG	0%	Peaking	18
Indian River	CTB	GT	NG	0%	Peaking	18
Indian River	CTC	GT	NG	1%	Peaking	22
Indian River	CTD	GT	NG	1%	Peaking	22
Cane Island	1	GT	NG	3%	Peaking	34
Stock Island	CT2	GT	DFO	0%	Peaking	15
Stock Island	CT3	GT	DFO	1%	Peaking	15
Stock Island	GT4	GT	DFO	3%	Peaking	45
Hansel Plant	21	CT	NG		Peaking	28
Hansel Plant	22	CA	WΗ	0%	Peaking	8
Hansel Plant	23	CA	WH		Peaking	8
Tom G. Smith	GT-1	GT	DFO	0%	Peaking	26
Tom G. Smith	GT-2	CT	NG	0.0%	Peaking	20
Tom G. Smith	S-5	CA	W H	0%	Peaking	8
Tom G. Smith	MUI	1C	DFO	0%	Peaking	2
Tom G. Smith	MU2	IC	DFO	0%	Peaking	2
Tom G. Smith	MU3	IC	DFO	0%	Peaking	2
Tom G. Smith	MU4	IC	DFO	0%	Peaking	2
Tom G. Smith	MU5	IC	DFO	0%	Peaking	2
Tom G. Smith	S-3	ST	NG	0%	Peaking	24
Stock Island	CT1	GT	DFO	3%	Peaking	18
Stock Island MS	MSDI	IC	DFO	18%	Peaking	6
Stock Island MS	MSD2	IC	DFO	13%	Peaking	7
	TELL	16 10	1000 1 -	Sub-Total	Peaking	354
		and the state of the			Total	1304

Existing Facilities as of January 1, 2011

[1] Represents the projected average capacity factor for 2011-20.

[2] Capacity shown excludes amounts purchased from Southern Company.

Planned Facilities during 2011 to 2020

Plant	Unit#	Unit Type	Fuel Type	Typical Capacity Factor	Capacity Type	Summer Capacity
			7	(%)		(MW)
N/A						
	A State State	The contract		Sub-Total	Baseload	0
Cane Island	4	CC	NG	89%	Intermediate	300
		1	124 - 224	Sub-Total	Intermediate	300
N/A						
Service and the service of the servi		- Andrewski (A Start	Sub-Total	Peaking	0
	THE PARTY	A States		1	Total	300

The tables above have been provided electronically as sheet "27" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

28. Please complete the table below regarding the system's installed capacity, categorized by capacity type, for the period 2001 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

	Year	Baseload Capacity	Intermediate Capacity	Peaking Capacity	Total Installed Capacity
	2001	204	129	447	780
	2002	204	174	447	825
	2003	307	348	622	1,277
	2004	307	390	622	1,319
ual	2005	307	390	622	1,319
Act	2006	308	395	610	1,313
	2007	307	401	605	1,313
	2008	308	697	501	1,506
	2009	308	697	501	1,506
	2010	259	678	352	1,289
	2011	260	978	354	1,592
	2012	266	978	354	١,598
	2013	270	978	354	1,602
ed	2014 [1][2]	239	978	263	1,480
ject	2015	239	978	220	1,437
Pro	2016	239	978	. 220	1,437
	2017	239	978	220	1,437
	2018	239	978	220	1,437
	2019	239	978	220	1,437
	2020	239	978	220	1,437

- The City of Lake Worth has provided notice to FMPA that it will exercise the right to modify its ARP full requirements membership. Effective January 1, 2014, the ARP will no longer utilize Lake Worth's generating resources (TG Smith Units), including its entitlement shares in the Stanton and St. Lucie Projects.
- [2] The Hansel plant is currently planned for retirement in September 2014.

The table above has been provided electronically as sheet "28" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

29. Please provide the system average heat rate for the generation fleet for each year for the period 2001 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Y	'ear	System Average Heat Rate
		(BTU/kWh)
	2001	
	2002	
	2003	
Actual	2004	
	2005	
	2006	
-	2007	
	2008	
	2009	
	2010]
	2011	
	2012	
	2013	
2	2014	
ecti	2015	
.io	2016	
7	2017	
	2018	
	2019	
	2020	

FMPA is part of the Florida Municipal Power Pool and, as such, the resources used to serve the ARP are pooled with resources of the other Pool members to serve the energy needs of the ARP Participants and other Pool member loads. As such, information on the system average heat rate for the ARP generation resources, a subset of pool resources, is not tracked and is therefore not available.

30. Please provide the average cost of a residential customer bill, based upon a monthly usage of 1200 kilowatt-hours, in nominal and real dollars for the period 2001 through 2020. Please use the

Consumer Price Index to calculate real residential bill values. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Year		Resid	lential Bill 200-kWh)	СРІ
		Real	Nominal	
	2001			
	2002			
	2003			
_	2004			
na	2005			
Le la	2006			
	2007			
	2008			
	2009			
	2010			
	2011			
	2012			
	2013			
E	2014			
ect	2015			
io.	2016			
2	2017			
	2018			
	2019			
	2020			

The All-Requirements Project (ARP) provides wholesale power to the ARP Participants and does not make retail sales.

POWER PURCHASES / SALES

31. Please identify each of the Company's existing and planned power purchase contracts, including firm capacity imports reflected in Schedule 7 of the Company's Ten-Year Site Plan. Provide the seller, capacity, associated energy, and term of each purchase, and provide unit information if a unit power purchase. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Seller	Contract Term		Contract Capacity (MW)		Annual Generation	Capacity Factor	Primary Fuel	Description
	Begins [1]	Ends	Summer	Winter	(MWh)	(%)	(if any)	
Florida Power and Light Company	Jun-93	5/31/2013	45	45	NA	NA	NA	PPA with Florida Power and Light
Southern Company Florida, LLC	Mar-01	9/30/2030	85.7 [2]	85.7 [2]	NA	NA	NG (Primary)	Unit contingent purchase from the Stanton Energy Center CC Unit A
Oleander Power Project, LP	Feb-06	[2/15/2027	160.2 [2]	160.2 [2]	NA	NA	NG (Primary)	Unit contingent purchase from the Oleander Power Plant CT 5
					•			

Existing Purchased Power Agreements as of January 1, 2011

[1] Contract execution

[2] Based on capacity tests performed pursuant to the Contract, and reflective of FMPA and ARP Participant's percentage purchase amounts

Planned Purchased Power Agreements for 2011 through 2020

Seller	Contract Term		Contract Capacity (MW)		Annual Capacity Generation Factor		Primary Fuel	Description	
	Begins	Ends	Summer	Winter	(MWh)	(%)	(if any)		
Unknown [1]	2020	Unknown	12	NA	NA	NA	NA	Future PPA to meet 2020 18% Reserve Margin	

[1] Seasonal peaking purchase from a supplier yet to be determined.

The tables above have been provided electronically as sheet "31" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

32. Please identify each of the Company's existing and planned power sales, including firm capacity exports reflected in Schedule 7 of the Company's Ten-Year Site Plan. Provide the purchaser, capacity, associated energy, and term of each purchase, and provide unit information if a unit power sale. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Existing Power Sales as of January 1,	201	1
---------------------------------------	-----	---

Purchaser	urchaser Contract Term		Contract Capacity (MW)		Annual Generation	Capacity Factor	Primary Fuel	Description
	Begins	Ends	Summer	Winter	(MWh) [1]	(%)[1]	(if any)	
City of Quincy	1/1/2011	12/31/2015	26	25	N/A	N/A	N/A	This is an All- Requirements sale.

[1] The projected annual energy usage for Quincy in 2011 is 116,026 MWh, which would be a Load Factor of approximately 51%.

Planned Power Sales for 2011 through 2020

Purchaser	Contract Term		Contract Capacity (MW)		Annual Generation	Capacity Factor	Primary Fuel	Description
	Begins	Ends	Summer	Winter	(MWh)	(%)	(if any)	

The tables above have been provided electronically as sheet "32" in the attached "FMPA TYSP Supplemental Tables 2011.xls."

33. Please discuss and identify the impacts on the Company's capacity needs of all known firm power purchases and sales over the planning horizon. As part of this discussion, please include whether options to extend purchases or sales exist, and the potential effects of expiration of these purchase or sales.

Refer to Question 31 to see the FMPA's current capacity purchases. The capacity purchases that expire during the 10 year planning horizon either do not have extension options or are not projected to provide benefit to the ARP beyond their scheduled expiration. The longer-term purchases (ending after 2020) do have extension options which will be evaluated at a time closer to their extension deadline dates. These contracts will be weighed against new generation or other potential future PPAs. The All-Requirements sale to the City of Quincy expires on December 31. This sale allows FMPA to better utilize their excess generation and lessen the capital cost impacts to FMPA's ARP members.

•

ENVIRONMENTAL ISSUES

34. Please discuss the impact of environmental restrictions, relating to air or water quality or emissions, on the Company's system during the 2010 period, such as unit curtailments. As part of your discussion, please include the potential for environmental restrictions to impact unit dispatch or retirement during the 2011 through 2020 period.

By May 2013, MSD1 and MSD2 at the Stock Island facility will need to be retrofitted with control equipment, in order to meet the new requirements for stationary reciprocating internal combustion engines (RICE) in 40 CFR 63, Subpart ZZZZ.

FMPA is tracking the recently proposed Clean Air Transport Rule to determine the potential affects of new allowance allocations for NOx and SO2. Currently, EPA has proposed three alternatives that would have different outcomes for FMPA, depending on which alternative is implemented when the rule is finalized.

The recently proposed EGU MACT standards will impact OUC Stanton Units 1 and 2, in which FMPA has ownership interest. FMPA is communicating with OUC to track the impact of these proposed standards on those generation assets, but we are not able to provide specific information.

The recently proposed 316 B standards for cooling water intake structures will impact the FPL St. Lucie Unit 2 nuclear unit, in which FMPA has ownership interest. FMPA is communicating with FPL to track the impact of these proposed standards on this generation asset, but we are not able to provide specific information.

FMPA is also following the development of greenhouse gas (GHG) regulations by EPA and evaluating potential impacts.

35. Please provide the rate of emissions, on an annual and per megawatt-hour basis, of regulated materials and carbon dioxide for the generation fleet each year for the period 2001 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

	11800	SOX		NOX		Mercury		Particu	lates	CO2e	
, r	ear	lb/MWh	Tons	lb/MWh	Tons	lb/MWh	Tons	lb/MWh	Tons	lb/MWh	Tons
MR	2001										
	2002										
	2003										
-	2004										
na	2005										
Act	2006										
	2007										
	2008										
	2009										
-	2010										
	2011										
1.145	2012										
	2013										
ed	2014										
ect	2015										
roj	2016										
-	2017										
	2018										
	2019										
	2020										

The Responsible Official at each plant in the generation fleet used by the ARP is responsible for reporting emissions information to all appropriate agencies. FMPA does not currently compile or aggregate this data for the fleet of resources that support the ARP.

FUEL

36. Please provide, on a system-wide basis, the historic average fuel price (in nominal \$/MMBTU) for each fuel type for the period 2001 through 2010. Also, provide the forecasted annual average fuel price (in nominal \$/MMBTU) for each fuel type for the period 2011 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Nor	ninal Fuel Price	Uranium	Coal	Natural Gas [1]	Residual	Distillate
(\$/1	MMBTU)			Gas [1]	- On	on
	2001	[2]	[3]	\$3.96	[4]	[4]
1431	2002	[2]	[3]	\$3.38	[4]	[4]
	2003	[2]	[3]	\$5.42	[4]	[4]
	2004	[2]	[3]	\$5.92	[4]	[4]
ual	2005	[2]	[3]	\$9.25	[4]	[4]
Act	2006	[2]	[3]	* \$7.01	[4]	[4]
	2007	[2]	[3]	\$7.32	[4]	[4]
	2008	[2]	[3]	\$9.13	[4]	[4]
	2009	[2]	[3]	\$3.98	[4]	[4]
	2010	[2]	[3]	\$4.42	[4]	[4]
	2011	\$0.62	\$3.35	\$6.33	\$10.32	\$14.74
	2012	\$0.65	\$3.56	\$6.74	\$10.95	\$15.30
	2013	\$0.68	\$3.76	\$7.27	\$11.51	\$15.80
151	2014	\$0.71	\$3.90	\$7.65	\$12.06	\$16.23
ted	2015	\$0.74	\$4.07	\$8.01	\$12.46	\$16.75
ojec	2016	\$0.78	\$4.21	\$8.19	\$12.92	\$17.66
Pre	2017	\$0.81	\$4.36	\$8.32	\$13.40	\$18.41
	2018	\$0.83	\$4.51	\$8.24	\$13.91	\$19.16
	2019	\$0.85	\$4.97	\$8.46	\$14.27	\$19.89
	2020	\$0.87	\$5.09	\$8.81	\$14.59	\$20.59

[1] The historical natural gas values are the annual average of daily spot market prices for Gas Daily FGT Zone 3. Transportation and other charges would be in addition to these spot prices.

- [2] Historical Uranium pricing is available from Florida Power and Light, and Progress Energy Florida
- [3] Historical coal pricing is available from Orlando Utilities Commission
- [4] Historical actual annual Fuel Oil pricing is not available at this time.
- [5] The projected fuel costs are from fuel pricing received from R.W. Beck in Q1 of 2010 and were used in FMPA's 2010 IRP.

The table above has been provided electronically as sheet "36" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

37. Please provide, on a system-wide basis, the historic annual fuel usage (in GWh) for each fuel type for the period 2001 through 2010. Also, provide the forecasted annual fuel usage (in GWh) for each fuel type for the period 2011 through 2020. Please complete the table below and provide an electronic copy in Excel (.xls file format) and hard copy.

Fuel L (GW	Jsage Vh)	Uranium	Coal	Natural Gas	Residual Oil	Distillate Oil
	2001	416	1124	798	0	27
1.1.1.1	2002	520	1169	1609	0	21
	2003	670	1388	2159	0	22
1.12.19	2004	677	1366	2066	0	17
ua	2005	628	1496	2051	0	27
Let	2006	684	1450	1927	0	19
-	2007	601	1558	2068	0	19
	2008	694	1444	2199	0	8
-W. 1.	2009	644	1499	2964	0	8
	2010	538	1,181	3,648	0	10
	2011	585	1,140	3,238	0	20
199.00	2012	626	1,136	3,611	0	22
intro to a	2013	627	1,200	3,781	0	28
2	2014	525	1,165	3,618	0	30
ect	2015	497	1,172	3,808	0	34
fo	2016	510	1,170	3,903	0	36
-	2017	495	1,138	4,095	0	38
13.5 - 1	2018	524	1,051	4,313	0	42
	2019	481	999	4,648	0	45
	2020	526	1,048	4,525	0	50

The table above has been provided electronically as sheet "37" in the attached "FMPA TYSP Supplemental Tables_2011.xls."

38. Please discuss how the Company compares its fuel price forecasts to recognized, authoritative independent forecasts.

FMPA fuel forecast data is obtained from authoritative, independent consultants. These forecasts are then compared to information received from other utilities, suppliers, market exchanges, and trade literature. ARP Participants and FMPA staff evaluate the reasonableness the data contained in any fuel forecast and adjust values as deemed appropriate.

39. For each fuel type (coal, natural gas, nuclear fuel, etc.), please discuss in detail the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

Please see the responses in the following questions.

40. What steps has the Company taken to ensure gas supply availability and transport over the 2011 through 2020 planning period?

FMPA continually explores opportunities to diversify its natural gas supply portfolio and reviews industry trends as production sources change over time. FMPA also continues to evaluate its gas transportation capacity requirements to ensure an optimal amount of firm transportation capacity is reserved to ensure reliable delivery of natural gas to its generating units.

41. Regarding existing and planned natural gas pipeline expansion projects, including new pipelines, affecting the Company for the period 2011 through 2020, please identify each project and discuss it in detail.

Please refer to FMPA's Need for Power application for Cane Island Unit 4 submitted to the PSC in May 2008 for information regarding FMPA's position on existing and planned natural gas pipeline expansion projects.

Three projects have been added since the May 2008 application. They are as follows:

- 1. There was a small expansion on Gulfstream that increased the capacity of that system by 35,000 MMBtu/day. This capacity was fully subscribed by Progress Energy Florida and had no impact upon FMPA.
- 2. FPL had applied to build a new intrastate gas pipeline in Florida to serve facilities that it planned to convert to natural gas. This pipeline followed much of the same proposed path that the Sunshine project had proposed with the exception that it planned on receiving gas through a new interstate pipeline which would have brought gas into the state from new pipeline facilities bringing shale production to Transco's Station 85. The Sunshine Project planned to interconnect with Southern Natural at Cypress as its supply source.

This initial application was rejected by the Public Service Commission. FPL is continuing to evaluate available alternatives and may resubmit a modified application in the future.

It was not anticipated that this project would cause any direct impact upon FMPA. However, having a third pipeline into the state would be a positive for natural gas supply source diversity.

3. Transco has filed a two phased expansion plan for transporting gas from is Station 85 Pooling Point south on its Mobile Bay Pipeline lateral. This facility was initially constructed to deliver gas from the Mobile Bay area to it mainline facilities at Station 85. Due to the development of shale gas reserves in Texas, Arkansas, and northern Louisiana, substantial new volumes have become available at Station 85 that exceeds currently available "take-away" capacity. When second phase is complete, Transco will have the ability to deliver in excess of 600,000 MMBtu/day into a combination of Gulfstream and FGT. This new source of supply will further diversify supply options that are available to serve natural gas demand in Florida. FMPA has entered into a Precedent Agreement with Transco to acquire 50,000 MMBtu/day of firm capacity in this expansion.

42. Please discuss in detail any existing or planned natural gas pipeline expansion project, including new pipelines and off-shore projects, outside the State of Florida that will affect the Company over the period 2011 through 2020.

Please refer to the answer provided in the previous question. FMPA has no additional information at this time.

43. Regarding unconventional natural gas production (shale gas, tight sands, etc.), please discuss in detail the expected industry factors and trends for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

FMPA believes that the continued developments of what is referred to as "unconventional production" will enhance the availability of natural gas supplies during the subject period. The Energy Information Administration has recently stated that the United States now has natural gas reserves sufficient to meet demand for the next 100 years. Detailed effects to this development and their impact to trends and/or industry factors have not been compiled by FMPA. However, the introduction of these supplies and the related pipeline facilities being built to move this production to market was a significant aspect for FMPA in its decision to subscribe to pipeline capacity in Transco's Station 85 South expansion.

44. Regarding liquefied natural gas (LNG) imports to the United States, please discuss in detail the expected industry factors and trends for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

LNG offers supplemental supply to the United States that enhance deliverability of domestic production to meet demand. The prediction of a few years ago that stated that the United States would require this supply source to meet demand has not come to pass. With the success of domestic untraditional production, LNG is no longer thought of as required to meet demand. However, there has been a substantial increase worldwide in liquefaction facilities that will create an excess of LNG seeking market over the next few years. The result will cause a dampening effect on prices for natural gas in the next few years. Any time there is a price increase, additional cargoes will be sent to the U.S., thereby capping any price increase and the duration of the increase. This "LNG effect" will continue until worldwide LNG demand increases sufficiently to supply source into balance. This balance should occur sometime within the time period of the study, 2011 through 2020.

There were several planned LNG projects specifically targeting the Florida Market. However, only one of these projects is currently continuing to be actively developed, while all others have either been indefinitely postponed or canceled.

The Port Dolphin Energy project is the only LNG facility that continues its development. As of this date, it has obtained most of the critical permits for proceeding from federal, state, and local government bodies. They are now beginning to explore commercial interest in their proposed LNG deliveries. This gas will be delivered to existing pipeline facilities of Gulfstream and FGT just south of Tampa, assuming construction is completed. The full impact of gas being delivered to the state from these facilities has not been projected by FMPA staff at this time.

45. Please discuss in detail the Company's plans for the use of firm natural gas storage for the period 2011 through 2020.

Firm natural gas storage is viewed as a critical component to ensure reliable generation of power to meet FMPA obligations to serve ARP Participants retail needs. In the event of a production supply interruption, gas inventory held in FMPA's contracted storage capacity will guarantee that natural gas supplies are always available for the operation of FMPA's generating units. FMPA maintains a minimum inventory of approximately five (5) days of natural gas demand during time periods of greatest likelihood of a supply interruption (hurricane season). Currently, FMPA has 500,000 MMBtu of capacity with a firm withdrawal delivery capacity of 50,000 MMBtu/day. FMPA's storage capacity is scheduled to increase to 1 Bcf in 2011 to coincide with the commercial operation of Cane Island 4. At that time, withdrawal delivery capacity will increase to 100,000 MMBtu/day.

46. Please discuss the actions taken by the Company to promote competition within and among coal transportation modes.

FMPA is a joint owner in the coal-fired steam units Stanton Units 1 and 2, which are operated by OUC. OUC is the majority owner of these facilities and is responsible for all coal supply and transportation related arrangements for these units.

47. Regarding coal transportation by rail, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company. Also include a discussion of any expected changes to terminals and port facilities that could affect coal transportation for the Company.

See the response to question 46.

48. Regarding coal transportation by water, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company. Also include a discussion of any expected changes to terminals and port facilities that could affect coal transportation for the Company.

See the response to question 46.

49. Regarding planned changes and construction projects at coal generating units, please discuss the expected changes for coal handling, blending, unloading, and storage for the period 2011 through 2020.

See the response to question 46.

50. For the period 2011 through 2020, please discuss in detail the Company's plans for the storage and disposal of spent nuclear fuel. As part of this discussion, please include the Company's expectation regarding Yucca Mountain, dry cask storage, and litigation involving spent nuclear fuel, and the future of the Nuclear Waste Disposal Act.

Some FMPA members own entitlement shares in the St. Lucie Unit 2 nuclear generation facility, and some FMPA members have minority ownership interests in the Crystal River Unit 3 nuclear generation facility. Many of these FMPA members are also ARP Participants. Their respective entitlements and ownership shares in these nuclear facilities are resources for serving the hourly needs of the ARP. Information regarding the storage and disposal of spent nuclear fuel are controlled by the majority owners of these facilities, Florida Power and Light and Progress Energy Florida, respectively. FMPA has no role in these issues.

51. Regarding uranium production, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

See the response to question 50.

52. Regarding the transportation of heavy fuel oil and distillate fuel oil, please discuss the expected industry trends and factors for the period 2011 through 2020. As part of this discussion, please include how these factors and trends will affect the Company.

The dual fuel capable resources of the ARP are designed predominately to use distillate fuel oil. Except for ARP generation resources in Key West, this service capability is for back-up purposes only when a natural gas supply interruption occurs. Consumed volumes of fuel oil are replaced at market pricing to maintain necessary inventory levels. Given the selective nature of whether FMPA operates certain of the ARP resources on fuel oil, changing market trends have little impact upon the ARP and its operations.

53. Please discuss the effect of changes in fossil fuel prices on the competitiveness of renewable technologies.

FMPA expects that as fossil fuel prices escalate, renewable technologies will become more viable.

54. Please discuss the effect of renewable resource development (for electric generation and nongeneration technologies) on fossil fuel prices.

FMPA expects that as renewable resources become more prolific, either due to economic competitiveness or regulation, fossil fuel prices will adjust downward.

TRANSMISSION

55. Please provide a list of all proposed transmission lines in the planning period that require certification under the Transmission Line Siting Act. Please also include those that have been approved, but are not yet in-service.

Transmission Line	Line Length	Nominal Voltage	Date Need	Date TLSA	In-Service Date
	(Miles)	(kV)	Approved	Certified	
N/A				1	

FMPA does not have any proposed transmission lines during the study period.