BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 110138-EI

TESTIMONY AND EXHIBIT

OF

RAYMOND J. GROVE

 $\begin{array}{c} \text{COM} \underbrace{5} \\ \text{APA} \\ \hline \\ \text{ECR} \\ 10 \\ \hline \\ \text{GCL} \\ \hline \\ \text{RAD} \\ \hline \\ \text{SSC} \\ \hline \\ \text{ADM} \\ \hline \\ \text{OPC} \\ \hline \\ \text{CLK} (\underline{+}, \underline{e}) \\ \end{array}$

DOCUMENT NUMBER-DATE 04667 JUL-8 = FPSC-COMMISSION CLERK

1		GULF POWER COMPANY
2		Before the Florida Public Service Commission Prepared Direct Testimony of
3		Raymond W. Grove Docket No. 110138-El
4		In Support of Rate Relief
5		Date of Filing: July 8, 2011
6		
7	Q.	Please state your name and business address.
8	Α.	My name is Ray Grove. My business address is One Energy Place,
9		Pensacola Florida, 32520.
10		
11	Q	By whom are you employed?
12	Α.	I am employed by Gulf Power Company (Gulf or the Company). I am the
13		Manager of Power Generation Services.
14		
15	Q.	What are your responsibilities as Manager of Power Generation Services?
16	Α.	I am responsible for Generation Planning, including the Ten Year Site
17		Plan and the Renewable Standard Offer Contract, reporting plant
18		performance through the Generation Performance Incentive Factor,
19		supply side renewable energy development, Operations and Maintenance
20		(O&M) budgeting for Production, and capital budgeting for Production.
21		
22	Q.	Please state your prior work experience and responsibilities.
23	Α.	I was hired by Gulf in January 1982 as a district accountant responsible
24		for accounting and budgeting for the Western District. In 1984, I
25		transferred to Internal Auditing, with primary responsibility for auditing

1		Power Generation and Fuel. I transferred to Power Generation in 1998,
2		with responsibility for accounting and budgeting for Power Generation. I
3		assumed the additional responsibility for Generation Planning in 2002 and
4		supply side renewable generation in 2008.
5		
6	Q.	What is your educational background?
7	Α.	I graduated with a Bachelor of Arts in Accounting from the University of
8		West Florida in 1981.
9		
10	Q.	What are the purposes of your testimony?
11	Α.	My testimony discusses Gulf's generation resources used and useful in
12		the provision of electric service to our customers. These resources
13		include Gulf-owned resources, jointly-owned generation resources, the
14		Southern electric system (SES) resources available pursuant to the
15		Intercompany Interchange Contract (IIC), and power purchase
16		agreements (PPAs) with independent generators, including renewable
17		generators. My testimony also addresses Gulf's resource planning
18		process, Production investment, and 2012 Production O&M budget.
19		
20	Q.	Are you sponsoring any exhibits?
21	Α.	Yes. I am sponsoring Exhibit RWG-1, Schedules 1 through 12. Exhibit
22		RWG-1 was prepared under my direction and control, and the information
23		contained therein is true and correct to the best of my knowledge and
24		belief.
25		

1	Q.	Are you sponsoring any of the Minimum Filing Requirements (MFRs) filed
2		by Gulf?
3	Α.	Yes. A list of MFRs I sponsor or cosponsor is included on Exhibit RWG-1,
4		Schedule 1. The information contained in the MFRs I sponsor or co-
5		sponsor is true and correct to the best of my knowledge and belief.
6		
7		
8		I. GULF'S GENERATION RESOURCES
9		
10	Q.	Please describe Gulf's generating resources during the 2012 test year.
11	Α.	Gulf will generate or purchase electricity from a diverse group of resources
12		in 2012. These resources will include: (a) units owned solely by Gulf,
13		(b) units owned jointly with other operating companies within the SES,
14		(c) units in the SES available to Gulf through the SES IIC, and (d) units
15		available to Gulf under PPAs. The fuels used for the generation resources
16		available to Gulf include coal, oil, natural gas, landfill gas and municipal
17		solid waste.
18		
19	Q.	Please describe Gulf's projected capacity mix by fuel type for 2012.
20	Α.	In the summer of 2002 at the beginning of the test year in Gulf's last rate
21		case, Gulf had 2,625 megawatts (MW) of capacity available to serve our
22		customers, as shown on Schedule 2, page 1 of 2, of Exhibit RWG-1. The
23		resources available to Gulf were primarily coal generation, which made up
24		75.7 percent of the resources owned or available through PPAs. For the
25		summer of 2012, Gulf will have 3,852 MW of capacity available for our

Docket No. 110138-EI

Page 3

customers. Exhibit RWG-1, Schedule 2, page 2 of 2, shows that the
 resources available to Gulf will be made up of 48.4 percent coal,
 50.4 percent gas, 0.8 percent oil, and 0.4 percent renewable. Since our
 last rate case, Gulf has increased its fuel diversity and reduced its reliance
 on coal.

6

Through an effective planning process, Gulf has a generation mix which
will allow us to provide our customers energy from whichever resources
are most economical. When coal prices are high, more gas resources can
be utilized; when gas prices are high, more coal resources can be utilized.
In addition, as a party to the SES IIC, Gulf takes advantage of making
purchases or sales through the Southern Company Power Pool (the Pool)
that further benefit our customers.

14

25

15 Q. Please describe the generation resources forecasted to be owned, operated and used by Gulf to serve its retail customers in 2012. 16 17 Α. Exhibit RWG-1, Schedule 3 provides a list of the units owned and 18 operated or co-owned by Gulf and used to provide retail service. The list 19 includes Gulf's ownership in Plant Daniel located in Mississippi. A 20 summary of these units, fuel type, and capacity is as follows: 21 Plant Crist has four coal units totaling 906 MW;

Plant Smith has two coal units, a gas fired Combined Cycle
 (CC), and an oil fired Combustion Turbine (CT) totaling 945
 MW;

Plant Scholz has two coal units totaling 92 MW;

1		 Plant Daniel has two coal units of which Gulf owns 510 MW;
2		 Pea Ridge has three gas fired units totaling 12 MW; and
3		 Perdido has two landfill gas units totaling 3.2 MW.
4		
5	Q.	What PPAs will Gulf have in place and use to provide electric service in
6		2012?
7	Α.	Exhibit RWG-1, Schedule 4 provides a list of the power purchase
8		resources available to Gulf during 2012 and information regarding the
9		fuels and technologies used by these generating resources.
10		
11	Q.	You mentioned the SES Intercompany Interchange Contract, or IIC.
12		Please summarize that arrangement.
13	Α.	The IIC is a contract among Alabama Power Company, Georgia Power
14		Company, Mississippi Power Company, Gulf Power Company and
15		Southern Power Company (collectively the Operating Companies). The IIC
16		is designed to provide for the continued operation of the electrical system
17		of the Operating Companies in such a manner as to achieve the maximum
18		possible economies consistent with the highest practical reliable service,
19		the reasonable utilization of natural resources, and the equitable sharing
20		among the Operating Companies of the costs associated with the
21		operation of facilities that are for the mutual benefit of the Operating
22		Companies and their customers.
23		
24		
25		

1	Q.	How does the SES IIC work to the benefit of Gulf's customers?	
2	Α.	Gulf's customers benefit tremendously from Gulf's participation in this	
3		pooling arrangement. Benefits include, but are not limited to, the	
4		following:	
5		1. Economic dispatch production cost savings,	
6		2. Economic sharing of generating reserve capacity,	
7		3. Lower reserve margin requirements,	
8		4. Ability to install large, efficient generating units,	
9		5. Reduced requirements for operating reserves,	
10 .		6. Pool market for temporary surpluses of capacity and energy on	
11		Gulf's system,	
12		7. Ready supply of energy for purchase when Gulf is short,	
13		8. Peak-hour load diversity, and	
14		9. Opportunity energy sales and purchases.	
15			
16		In summary, Gulf's decision to enter into and participate in the SES IIC	
17		was reasonable and prudent, and the benefits justify that Gulf's	
18		participation in the IIC is in the best interest of our customers.	
19			
20	Q.	Besides the environmental capital projects addressed through Gulf's	
21		Environmental Cost Recovery Clause (ECRC), what major changes have	
22		been made to Gulf's generation resources since Gulf's last base rate	
23		proceeding?	
24	Α.	Since our last rate case, there have been five major changes to Gulf's	
25		generating fleet unrelated to ECRC projects.	

Page 6

(1)	Plant Crist Units 1, 2, and 3 (80MW) were retired as part of an
	agreement with the Florida Department of Environmental Protection
	(FDEP). The retirement of Plant Crist Units 1, 2, and 3 was
	approved in Docket No. 020943-EI, Order No. PSC-02-1396-PAA-
	El.
(2)	In 2006, Gulf signed two PPAs for a total of 488 MW of peaking
·	capacity that took effect in June 2009 and will last for five years
	through May 2014. The contracts are with Shell Energy North
	America for the electrical output from four units at the Coral
	Baconton facility and with Southern Power Company (an affiliate)
	for the electrical output from four units at their Dahlberg facility.
	These PPAs were approved in Docket No. 060811-EI, Order No.
	PSC-07-0329-PAA-EI. In addition, the contract with Southern
	Power Company was approved by the Federal Energy Regulatory
	Commission (FERC).
(3)	In 2008, Gulf signed a 6-year PPA with Bay County in Florida to
	purchase the electrical output from its 11 MW waste-to-energy
	facility. The PPA with Bay County was approved in Docket No.
	080612-EI, Order No. PSC-09-0012-PAA-EI.
(4)	In 2009, Gulf signed a 14-year PPA with Shell Energy North
	America for 885 MW of intermediate capacity from its Central
	Alabama facility. The contract took effect in November 2009. This
	PPA was approved in Docket No. 090169-EI, Order No. PSC-09-
	0534-PAA-EI.
	(2)

1		(5)	In 2010 Gulf finished construction of a 3.2 MW landfill gas-to-
2			energy facility (Perdido) in Escambia County, Florida.
3			
4		Each	of these changes to Gulf's generating resources is discussed later in
5		my te	estimony.
6			
7			
8			II. GULF'S RESOURCE PLANNING PROCESS
9			
10	Q.	Plea	se provide an overview of Gulf's resource planning process.
11	Α.	The	resource planning process utilized by Gulf to determine its future
12		need	Is is coordinated within the SES Integrated Resource Planning (IRP)
13		proc	ess. Gulf participates in the IRP process along with the other SES
14		retail	operating companies (Alabama Power, Georgia Power, and
15		Miss	issippi Power). Gulf receives a number of benefits from being part of
16		a lar	ge system planning process. Since Gulf comprises only about
17		6.9 p	percent of the total SES summer peak demand, its needs are relatively
18		smal	I compared to the entire system. This collaborative planning allows
19		Gulf	to coordinate its capacity additions to meet its demand and reserve
20		requ	irements in a manner that utilizes the temporary surpluses of capacity
21		avail	able on the SES or shares our temporary surpluses of capacity with
22		the c	other retail operating companies.
23			
24		This	ability to coordinate capacity additions and rely temporarily on any
25		surpl	us system reserves also allows Gulf to defer capacity addition

decisions until the timing allows consideration of (a) larger blocks of need
that might justify less costly addition alternatives, (b) emerging
technologies that might not have been available earlier, and (c) emerging
environmental requirements that might affect unit addition choices.
Another benefit to Gulf is the advantage gained from planning a large
system such as the SES without the costs of a large planning staff of its
own.

8

9 As discussed in Gulf's Ten Year Site Plan (TYSP), the SES IRP process 10 employs a 15 percent reserve margin target for long range planning. Gulf, as a member of the SES, has access to all the reserves of Southern 11 12 Company, which at a 15 percent reserve margin represents approximately 5,000 MW. A 15 percent reserve margin in 2012 for Gulf represents 396 13 14 MW. If Gulf were required to carry a 20 percent reserve margin (as other 15 Florida utilities are required to carry) Gulf would need to add 132 MW of 16 capacity. Assuming Gulf purchased or constructed CT capacity to meet 17 this increased reserve requirement, Gulf's customers would be subjected to, at least, an additional \$12.5 million in annual revenue requirements. 18 19 As I discussed earlier in my testimony, the ability for Gulf to carry lower 20 reserve margins is one of the many benefits of Gulf's participation in the IIC. 21

22

The generation mix process employed by the SES uses PROVIEW (a
 computer model) to screen available technologies in order to produce a
 listing of preferred capacity resources from which to select the most cost-

Docket No. 110138-El

Page 9

effective plan for the system. The resulting SES resource needs are
 allocated among the operating companies based on reserve requirements.
 Each operating company then determines the resources that will best
 meet its capacity and reliability needs.

5

Gulf's long-range goal is to have economical, reliable generating capacity 6 available to meet our customers' needs. In order to meet the anticipated 7 demand that often develops irregularly and in increments much smaller 8 than the capacity of a large, efficient generating unit, and to realize the 9 economies of scale inherent in large units, most electric utilities will 10 construct "blocks" of generating capacity which are temporarily in excess 11 of the requirements anticipated at the time the unit is initially brought on 12 13 line. If the utility were to satisfy only the annual increase in demand, these small blocks would be much higher in cost on a per unit basis and much 14 lower in efficiency. 15

16

17In planning generating capacity additions, Gulf has certain advantages18that greatly benefit its customers. Gulf Power, Alabama Power, Georgia19Power, and Mississippi Power operate as an integrated generation and20transmission network over a four-state area. Coordinated planning with21our Southern system affiliates allows for the staggered construction of22larger, more efficient generating units spread throughout the Southern23electric system.

- 24
- 25

Q. Is this the same planning process used in Gulf's last rate case and the
 same process described in Gulf's TYSP?

3 A. Yes.

4

Q. Please address the relationship of Gulf's major generating resource
 changes since its last rate proceeding to Gulf's generation resource
 planning process.

8 Α. Since Gulf's last rate case, Gulf entered into four PPAs, which were the 9 result of Gulf's effective resource planning process. Each of these 10 agreements has been reviewed and approved by the Florida Public 11 Service Commission (FPSC or the Commission). In addition, Gulf 12 constructed a 3.2 MW landfill gas-to-energy facility which began operation 13 in 2010, and this resource addition was evaluated within Gulf's generation 14 resource planning process. The retirements of Plant Crist Units 1, 2 and 3 15 were the result of an agreement negotiated with the FDEP. While the 16 retirement decision was not the product of Gulf's resource planning 17 process, the effect of the retirements was incorporated into Gulf's 18 resource planning process.

19

Q. Please address Gulf's decision to retire Plant Crist Units 1, 2 and 3.
A. In 2002, Plant Crist Units 1, 2, and 3 were the oldest units on Gulf's system and were scheduled for retirement in 2011. On August 28, 2002, Gulf entered into an agreement with the FDEP for the purpose of ensuring compliance with new air quality standards for ozone. The agreement required Gulf to undertake various activities at Plant Crist in order to

Docket No. 110138-EI

Page 11

1		reduce overall plant-wide air emissions of nitrogen oxides. The
2		Commission approved this settlement with the FDEP, including the early
3		retirement of Crist Units 1, 2, and 3, in Docket No. 020943-EI, Order No.
4		PSC-02-1396-PAA-EI.
5		
6	Q.	Please address Gulf's decision to enter into 488 MW of five-year power
7	•	purchase contracts from June 2009 through May 2014.
8	Α.	In the 2005 TYSP, Gulf forecasted that its reserve margins in 2009 would,
9		absent construction or purchase of resources, be below its reserve margin
10		criterion of 15 percent. The forecasted reserve deficiency was
11		approximately 400 MW.
12		
13		Confronted with a need for additional peaking capacity, Gulf determined,
14		for a variety of reasons, to look to the market rather than self-build
15		alternatives to meet its additional short-term needs. First, Gulf's
16		assessment of the competitive wholesale market suggested there was
17		likely capacity available that could be obtained through a Request for
18		Proposals (RFP) process. Second, Gulf desired, if the costs were
19		appropriate, to diversify its portfolio of resources. Third, Gulf desired the
20		flexibility associated with deferring a decision that would involve
21		consideration of a self-build alternative. Deferring consideration of a self-
22		build alternative at this time of great uncertainty about prospective
23		environmental compliance costs provided several advantages. The type
24		and timing of Gulf's 2009 need suggested an addition of CT capacity if
25		Gulf's need were to be met by a self-build option in 2009. However,

deferring that need to 2014 would allow Gulf to consider other types of
 technologies and allow Gulf to defer capital investment. As a result, the
 deferral allowed more time for the emergence of technology improvements
 that might enhance performance and/or reduce costs.

5

To meet its projected 2009-2014 reserve margin shortfall, Gulf conducted a capacity solicitation in 2005. The RFP was conducted consistent with the Commission's rule regarding capacity solicitations, even though the rule was inapplicable because Gulf was not considering a self-build option.

10

Gulf received three bids in response to the RFP, and after careful
analysis, Gulf selected two bids that best fit Gulf's needs. The contract
negotiations resulted in Gulf submitting two executed PPAs to the
Commission for approval. The contracts were approved by the
Commission in Docket No. 060811-EI, in Order No. PSC-07-0329-PAA-EI.
In addition, because one of the contracts was with an affiliate (Southern
Power), that contract was reviewed and approved by the FERC.

18

Q. Please address Gulf's decision to enter into a power purchase agreement
with Bay County for the electrical output from its Municipal Solid Waste
Facility.

A. Bay County owns and operates a Solid Waste Facility in Panama City,
 Florida. Gulf is committed to obtaining cost-effective energy supplies for
 our customers and to obtaining the benefits of fuel diversity wherever
 practical. Gulf is also committed to encouraging and promoting renewable

Docket No. 110138-EI

energy pursuant to several sections of Chapter 366, including Sections
366.82, 366.91, and 366.92, Florida Statutes. This negotiated contract
provides renewable energy produced by an existing in-state facility with a
proven performance record. It also enhances Gulf's fuel diversity. The
resulting contract between Gulf and Bay County was reviewed and
approved by the Commission in Docket No. 080612-EI, Order No. PSC09-0012-PAA-EI.

8

9 Q. Please address Gulf's decision to enter into the 14-year PPA with Shell
10 Energy North America (SENA) for the capacity and energy from its Central
11 Alabama facility.

12A.The PPA with SENA was also the result of Gulf's generation resource13planning process. Anticipating the expiration of the 2009 PPAs, Gulf14began the process of developing an RFP for 2014. The primary drivers of15Gulf's need to add generation resources in 2014 were the expiration of16two PPAs totaling 488 MW and projected load growth. Gulf's 2009 TYSP17indicated that Gulf's 2014 generation resource need was expected to be18976 MW, and Gulf anticipated issuing an RFP with a self-build option.

19

Just prior to the date scheduled for issuing the final RFP, Gulf learned that SENA desired to enter into a bilateral negotiation for a PPA with Gulf for the output of its facility located in Central Alabama. Initial review indicated that the SENA resource might be an extraordinary opportunity for Gulf's customers. Therefore, Gulf decided not to proceed with its RFP.

25

Further cost-benefit analysis revealed a net present value (NPV) cost savings to customers of \$587 million in 2014 dollars associated with the PPA compared to the self-build resource. Therefore, Gulf entered into a PPA with SENA.

5

6 The resulting contract between Gulf and SENA was reviewed and 7 approved by the Commission in Docket No. 090169-EI, Order No. PSC-8 09-0534-PAA-EI. It should be noted that the forecasted \$587 million NPV 9 savings to customers did not reflect the additional benefits of having the 10 capacity and energy of the unit available to Gulf prior to 2014. Every time 11 the unit is dispatched prior to June 2014, Gulf's customers benefit from 12 additional energy savings.

13

Q. Please address Gulf's decision to construct a landfill gas-to-energy facility
at the Perdido landfill.

16 Α. In July 2008, Escambia County, Florida issued an RFP for the sale of 17 landfill methane gas from its Perdido landfill. Landfill gas is defined as a 18 renewable energy resource pursuant to Section 366.91(2), Florida 19 Statutes. The Florida Legislature has repeatedly recognized that it is in 20 the public interest to promote the development of renewable energy 21 resources in the state in order to, among other things, reduce dependence 22 on natural gas, minimize volatility of fuel costs, encourage investment in 23 the state and improve environmental conditions. Given these facts, Gulf 24 began to evaluate the possibility of developing a project to utilize the gas 25 being offered through this RFP.

Page 15

In order to minimize or negate any impact to our customers, Gulf used the
 avoided cost of the unit contained in its Renewable Standard Offer
 Contract (RSOC) as the basis for determining the price Gulf would be
 willing to pay to Escambia County for its landfill methane gas. Using the
 established avoided cost concepts, Gulf submitted a bid for the
 procurement of the gas being offered under this RFP.

- After submitting a winning bid in response to the RFP, Gulf entered into a twenty-year agreement with Escambia County to purchase landfill gas necessary to fuel a 3.2 MW landfill gas to energy facility to be located adjacent to the Perdido landfill. The total price to construct the project was \$5.5 million, including the associated connection to Gulf's distribution system.
- 14

7

15 The facility's investment and expenses are included in Gulf's base rate 16 request. The O&M expense included in the test year is \$770,000. The 17 fuel savings associated with this project are already being passed to 18 customers through the fuel clause. At the time Gulf conducted its analysis 19 of the Perdido project, Gulf estimated that it would result in approximately 20 \$23.5 million in fuel savings to Gulf's customers over its twenty-year life.

21

As Gulf continues to evaluate technologies available to provide renewable energy, it has become clear that the ability for a renewable energy provider to develop a project at or below avoided cost will be very challenging. Landfill gas may be the most cost-effective renewable

Page 16

1		resource available at this time. This confirms that Gulf's decision to
2		develop this project was prudent and in the best interest of our customers.
3		
4	Q.	Are the major changes to Gulf's generating resources since its last rate
5		case proceeding reasonable and prudent?
6	Α.	Yes. The changes in Gulf's generating fleet since our last rate case were
7	•	driven by Gulf's desire to provide economical and reliable generating
8		capacity to our customers. The retirement of Crist Units 1, 2 and 3 was
9		required by an agreement that Gulf entered into with the FDEP as part of
10		a plan to ensure compliance with new air quality standards for ozone.
11		These retirements accelerated Gulf's projected need to add capacity to
12		meet our customers' rising demands.
13		
14		Gulf's subsequent decision to solicit intermediate-term PPAs to defer its
15		2009 capacity need was also reasonable and prudent. Indeed, the
16		Commission determined the reasonableness of that capacity solicitation in
17		approving the contracts that were the products of the RFP. Gulf went
18		beyond legal requirements in soliciting alternatives and ultimately
19		purchased power at a cost less than the cost of a self-build option.
20		
21		As noted in the Commission order approving the agreement, the contract
22		between Gulf and Bay County provides Gulf with a viable source of
23		electric energy from a renewable fuel source. It also meets all the
24		requirements and rules governing Qualified Facilities and small power
25		producers, including purchases at or below avoided cost. It was

reasonable and prudent for Gulf to enter into the Bay County agreement 1 consistent with the Commission's policy to encourage Qualifying Facilities. 2 3 Gulf's decision to enter into a 14-year PPA with SENA for the output of 4 gas-fired combined cycle units from 2010 through 2023 was also 5 reasonable and prudent, as the Commission determined in Order No. 6 PSC-09-0534-PAA-EI. Gulf seized the opportunity to use a market 7 8 resource which was available at a cost well below the cost at which Gulf could have built comparable combined cycle units. These cost savings 9 will flow entirely to Gulf's customers, who at the same time avoid having to 10 11 pay carrying costs on an additional investment. This decision also 12 forestalled Gulf from having to make other generating addition decisions at 13 a time of great uncertainty about prospective environmental compliance 14 costs.

15

Gulf's decision to develop the landfill gas project in Escambia County was reasonable and prudent. The methodology employed to determine cost effectiveness was sound and in compliance with Gulf's RSOC that was approved by the Commission.

20

In each instance, Gulf Power clearly had an eye on the future and
 considered the effect of these decisions on prospective Gulf Power
 capacity decisions. Each decision met Gulf's long-range resource
 planning goal to have economical, reliable generating capacity available to

25

1		meet our customers' needs. Each decision was reasonable, prudent and
2		in the best interests of our customers.
3		
4		
5		III. GULF'S PRODUCTION INVESTMENT
6		
7	Q.	Mr. Grove, Gulf Witness McMillan shows a total of \$2.6 billion of plant in
8		service investment in Gulf's 2012 rate base in this case. Other witnesses
9		have testified that these costs are properly recorded consistent with the
10		Uniform System of Accounts and generally accepted accounting
11		principles. Are the Production assets associated with these costs used
12		and useful in the provision of electric service to the public?
13	Α.	Yes. The Production assets, which comprise a total of \$1,043,349,000 of
14		plant in service in Gulf's 2012 rate base in this case, are used and useful
15		in Gulf's provision of electric service.
16		
17	Q.	Were these Production costs reasonable and prudently incurred?
18	Α.	Yes. They were incurred pursuant to our capital budget process. I will
19		discuss that process later in my testimony. They also were subject to cost
20		controls used to govern budgeted expenditures. These cost controls are
21		also discussed later in my testimony.
22		
23	Q.	What is Gulf's projected Production Capital Additions Budget for 2011 and
24		2012 excluding Plant Scherer and items recovered through the ECRC?
25		

1	Α.	Gulf's Production non-ECRC Capital Additions Budget for 2011 is
2		\$68,334,000. As shown on Exhibit RWG-1, Schedule 5 page 1 of 2, there
3		are 75 projects scheduled for 2011.
4		
5		Gulf's Production, non-ECRC Capital Additions Budget for 2012 is
6		\$43,738,000. The major items included in the Production non-ECRC
7		Capital Additions Budget for the test year are:
8		Crist Unit 6 Spring Boiler/Turbine Outage (\$6,200,000);
9		Crist Unit 7 Fall Boiler/Turbine Outage (\$14,000,000);
10		• Static Exciter and Voltage Regulators on Crist Units 6 & 7 (\$5,000,000)
11		 Smith Unit 2 & 3 Spring Boiler Outages (\$3,400,000); and
12		Daniel Unit 1 Spring Boiler Outage (\$800,000).
13		All of these budgeted projects are needed to address safety issues, to
14		maintain efficiency (heat rate), or to sustain reliability. As shown in Exhibit
15		RWG-1, Schedule 5, page 2 of 2, there are 58 capital projects in 2012.
16		
17	Q.	Please address how Gulf's Production Capital Additions Budget is
18		formulated.
19	Α.	The Production Capital Additions Budget process is a multi-step process
20		that begins at the plant level and is ultimately approved by Gulf's
21		Executive Management Team, which is made up of the CEO and the four
22		Vice Presidents of Gulf. All capital projects are evaluated to ascertain the
23		necessity of performing the work.
24		
25		

1 Plant personnel begin the Production budgeting process by evaluating 2 existing plant equipment performance and maintenance costs. Where 3 performance has degraded or is forecasted to degrade to an unacceptable 4 level and maintenance costs are increasing, replacement of the equipment 5 becomes necessary. As part of this evaluation process, plant personnel 6 review the information provided by Gulf to the North American Electric Reliability Corporation Generation Availability Data System (NERC GADS) 7 8 to evaluate events that have triggered unplanned outages or unit derates. 9 Gulf develops plans to address GADS events that continue to be problematic and makes decisions to repair or replace existing equipment. 10 11 Once plant personnel have identified specific projects, the Group 12 Managers at each plant review the proposed project list to determine 13 which projects will be submitted to the Plant Management Team (the Plant 14 Manager and his direct reports). The Plant Management Team meets to 15 discuss each proposed project to determine which projects will be 16 submitted for the next level of review to be included for consideration in 17 the final budget.

18

Each plant presents its proposed list of capital projects to the Power
Generation Leadership Team (the Vice President of Power Generation
and his direct reports). The Plant Managers then meet with the Power
Generation Leadership Team to prioritize all projects at the Power
Generation Level to ensure the most critical projects are included in the
budget submitted for final review by Gulf's executives.

25

Lastly, the Production Capital Additions Budget request is presented to
 Gulf's executives. The Vice President of Power Generation is required to
 explain and justify the Production Capital Additions Budget, and the final
 Capital Additions Budget is ultimately approved by executive
 management.

- 6
- Q. How does Gulf control capital costs after the Capital Additions Budget is
 developed?

9 Α. Once the Capital Additions Budget is approved, each project is assigned a 10 project manager who is responsible for all aspects of the project. The 11 project manager will develop documentation outlining the scope of the 12 project and work with Supply Chain Management to develop a bid package. From start to finish, the project manager is responsible for all 13 14 on-site management, including contractor performance and invoice 15 review. The plant manager receives a report from the Manager of Power 16 Generation Services each month detailing capital project expenditures and 17 any budget variance for all projects. The plant manager is responsible for 18 explaining all budget variances. At the Company level, the Corporate 19 Planning group requires a detailed explanation guarterly of all budget 20variances greater than 10 percent or \$250,000 (whichever is lower). 21 Variances less than \$10,000 do not require a variance explanation. 22

- Q. How are new capital projects or changes to existing projects incorporated
 in the current year budget?
- 25

1	Α.	In the event a new project or an increase in expenditures associated with
2		an existing project is necessary, the planning unit must submit a
3		justification letter to the Vice President with functional responsibility. If
4		approved by the functional Vice President, the letter is also reviewed and
5		approved by the Chief Financial Officer. Finally, the letter is sent to
6		Corporate Planning where the change is documented and added to the
7		financial plan.
8		
9	Q.	Was Gulf's Production non-ECRC Capital Additions Budget of
10		\$68,334,000 in 2011 and \$43,738,000 in 2012 developed by this budget
11		and cost control process?
12	Α.	Yes. The projects included in Gulf's Production Capital Additions Budget
13		were approved pursuant to this rigorous evaluation and approval process.
14		Gulf's effective capital budgeting and spending program has helped
15		ensure our generating fleet has continued to provide reliable and efficient
16		generation. The dollars included in the test year non-ECRC Capital
17		Additions Budget for Production are reasonable, prudent, and necessary.
18		Gulf will continue to evaluate the benefits of additional capital projects in
19		the future to ensure that we are able to provide our customers with
20		reliable, cost-effective and efficient generating capacity.
21		
22		
23		
24		
25		

1		IV. GULF'S 2012 PRODUCTION O&M BUDGET
2		
3	Q.	What are Gulf's Production O&M budgets for 2011 and 2012?
4	Α.	Gulf's Production O&M budget for 2012 is set forth on Exhibit RWG-1,
5		Schedule 6 and Schedule 7. Gulf's Production O&M budget for 2012 is
6		\$110,888,000, including Steam Production, Other Production, and Other
7		Power Supply expenses.
8		
9		Gulf's Production O&M budget for 2011 is set forth on Exhibit RWG-1,
10		Schedule 7. Gulf's Production O&M budget for 2011 is \$110,435,000,
11		including Steam Production, Production Other, and Other Power Supply
12		expenses.
13		
14	Q.	Are Gulf's projected levels of Production O&M expenses of \$110,435,000
15		in 2011 and \$110,888,000 in 2012 reasonable and prudent?
16	Α.	Yes. My conclusion is based primarily on the fact that Gulf's 2011 and
17		2012 Production O&M budget are the product of a rigorous budget
18		process implemented by experienced employees who know their jobs and
19		their facilities. Each year, Gulf's Power Generation Organization develops
20		a five-year O&M budget based on historical results, projected
21		maintenance and outage planning. As we develop the budget request, we
22		focus on planned outages and baseline expenses.
23		
24		Over the years, Gulf's plant personnel have gained valuable knowledge
25		relating to the maintenance of our equipment. Our experience indicates

that each unit should have a regularly scheduled planned outage to
inspect and repair fuel handling equipment, boilers, turbine valves and
auxiliary equipment every 18 to 24 months. In addition, a major planned
outage is scheduled on each unit every 8 to 10 years, which includes work
on the turbine and generator equipment in addition to the equipment listed
above.

7

Baseline expenses are costs required to conduct the day-to-day operation
and maintenance of the generating equipment and auxiliary equipment
and facilities. Baseline expenses include all labor, material and other
expenses, such as contracts for maintaining grounds, janitorial services,
and other services.

13

14 The five-year O&M budgets are developed at the plant level with the goal 15 of maintaining high reliability and efficiency. As discussed in Gulf Witness 16 Burroughs' testimony, Gulf has done an exceptional job of maintaining 17 high unit reliability and efficiency while at the same time fostering an 18 environment where employee safety is our number one priority.

19

As each plant develops a five-year O&M budget, the Plant Management Team seeks input from system owners and unit owners to ensure the most critical issues receive attention. Each plant assigns a system owner (expert) over major systems such as boiler, turbine or generator. In addition, each unit has an individual assigned as the unit owner with the expectation that the individual will be the coordinator of any work related

Docket No. 110138-EI

to the assigned unit. As the O&M budget is developed, the Plant
 Management Team, which includes the plant manager and his direct
 reports, meets to discuss all aspects of the equipment maintenance
 requirements.

5

6 Once the Plant Management Teams are satisfied that their O&M budgets meet the plant's needs, the Power Generation Leadership Team (the Vice 7 8 President of Power Generation and his direct reports) meets to discuss 9 the overall Power Generation O&M budget. In the event that there are 10 resource (labor, physical, or financial) constraints, the Power Generation Leadership Team discusses risks associated with projects and prioritizes 11 12 projects to help ensure the most critical activities are included in the 13 budget. Lastly, the Power Generation budget is submitted to Gulf's 14 Corporate Planning group. Gulf Witness Buck discusses the budget 15 process that takes place after Corporate Planning receives the Power Generation O&M budget request. 16

17

The \$110,888,000 2012 Production O&M budget was developed using 18 19 teams from the plants whose expertise and understanding of plant 20 equipment and plant operations has been clearly demonstrated by the 21 continued high performance indicators of the units. Their budgets were 22 then reviewed and modified by Plant Management Team, the Vice 23 President of Power Generation and his leadership team, and ultimately Gulf's Executive Management Team. The 2012 Production O&M budget 24 25 is the product of this robust budgeting process.

Q. Is Gulf's projected level of Production O&M expenses of \$110,888,000 in
 2012 representative of a going forward level of Production O&M expenses
 beyond 2012?

A. Yes. As shown on Schedule 7 of Exhibit RWG-1, the average Production
O&M budget for the five year period (2011 – 2015), which includes the
prior year and the test year, is \$113,223,000. The Production O&M
expense for 2011 and the 2012 test period are consistent with this
average, and they are representative of the ongoing level of expense
necessary to maintain generation performance and reliability.

10

Q. Production O&M expenses in 2012 are higher than the five year historical
 average for the period 2006 through 2010. Why is the 2012 Production
 O&M Budget representative of the ongoing level of expenses necessary to
 maintain generation performance and reliability?

A. The historical average levels of Production O&M expense for the years 2006 through 2010 are not representative of Gulf's going forward level of Production O&M expenses. If Gulf were held to such a level of expenses, necessary and essential maintenance would have to be foregone, and generation unit performance would likely suffer significantly. There are a number of factors that have led to the increase in Production O&M

- 21 expenses for the period 2011-2015 relative to the period 2006-2010.
- 22
- Q. Please address the factors that are driving Gulf's Production O&M
 expense level up in the period 2011-2015.
- 25

There are at least five primary factors that are driving the Production O&M 1 Α. expense increase. First, despite the retirement of old units and the 2 addition of new units, the age of Gulf's generation fleet is increasing, and 3 4 with age, greater levels of maintenance are necessary to maintain or 5 improve generating unit performance. Second, there are a number of costs in the Production function that are simply increasing at a rate higher 6 7 than the Consumer Price Index (CPI), the general measure of inflation. 8 Third, Gulf has a generating unit (Smith Unit 3) that was relatively new in 9 the 2006-2010 time-periods and required very little O&M expense. Fourth, 10 Gulf has one new unit (Perdido) that was not constructed and operational 11 until October 2010. Fifth, Gulf worked very hard during the 2009-2010 12 time frames to avoid asking for base rate relief when customers were 13 struggling during the worst economic downturn since the Great 14 Depression. The lower O&M expenses incurred during this historical 15 period helped Gulf avoid asking for base rate relief without affecting the reliability or efficiency of our generating fleet. However, the historical level 16 17 of expenses is not sustainable without affecting the reliability and efficiency of our fleet. 18

19

Q. Mr. Grove, please address the effect of Gulf's aging generation fleet on its
Production O&M budget in 2012.

A. This is best explained by comparing the ages of Gulf's generating units at
 the time of its last rate case with the age of Gulf's generating units in
 2012, and comparing the amount of Production O&M expense allowed in

the last rate case with not only the levels of actual expenses in 2006-2010, but also the budgeted levels of Production O&M expense in 2011-2015.

All of Gulf's generating units that were in-service at the end of 2002 are now 9.5 years older. Exhibit RWG-1, Schedule 8 shows the age of the fleet in 2002 compared to 2012.

8 When one examines the trend of Production O&M expenses over both the 9 2006-2010 periods and the projected 2011-2015 period, the trend is 10 generally upward. This is shown on Exhibit RWG-1, Schedule 7. As the 11 age of the generating fleet increases, so does the cost necessary to 12 maintain and repair the fleet. There are only two years during this period 13 in which that relationship has not held true: 2009 and 2013. In each of 14 those years, factors other than age cause a slight deviation from this 15 discernable trend of cost increases. In 2009, the Production O&M 16 expense declined from the 2008 level because Gulf made a conscious 17 decision to avoid requesting a rate increase during a severe economic 18 recession. In 2013, the projected O&M level of expenses is only modestly 19 below projected 2012 levels, due primarily to a decrease in planned 20 outage expense from \$23,149,000 in 2012 to \$18,886,000 in 2013. This 21 reduction in planned outage expense in 2013 is driven by a smaller scope 22 of outages. When these differences are explained, the general 23 relationship between aging units and levels of operation and maintenance 24 expenses is clear - as units age, more must be spent on maintenance to 25 maintain or improve reliability.

1

2

3

4

5

6

7

Page 29

1	Q.	Since Gulf's last rate case has the projected useful life of your generating
2		fleet changed?
3	Α.	Yes. Based on Gulf's effective ongoing maintenance practices, we have
4		been able to extend the projected retirement dates on many of Gulf's units
5		by up to 20 years. Exhibit RWG-1, Schedule 9 shows the estimated
6		retirement dates included in the 2002 TYSP and the 2012 TYSP.
7		
8	Q.	What are the expected benefits of extending the projected lives of these
9		units?
10	Α.	There are two major benefits. First, extending the lives of the units
11		reduces the effective depreciation rate of the assets. This, in turn,
12		reduces the need for rate relief. In addition, extending the lives of units
13		allows Gulf to postpone the procurement or construction of additional
14		resources. That also reduces or defers Gulf's need for rate relief.
15		
16	Q.	Mr. Grove, the second reason you gave for projected O&M expenses for
17		2011-2015 being higher than historical expenses in the 2006-2010 period
18		was an increase of certain costs at a rate greater than the rate of inflation.
19		Please explain your observation.
20	А	All other things being equal, if the same work was performed in 2002 and
21		in 2012, one would expect the cost of the work to have risen close to the
22		rate of inflation. However, that has not been the case; costs for the same
23		scope of work have risen much faster than inflation. For example, in
24		2005, Plant Crist replaced the Lower Economizer on Unit 6 at a cost of
25		\$1,127,667 for material. The same work was performed again in 2010,

and the cost of the material was \$2,050,120. That is an increase of 1 2 81 percent, or a 16.4 percent increase each year. In comparison, the CPI 3 rose cumulatively by only 11.64 percent between 2005 and 2010. 4 5 In its O&M benchmark calculations, the Commission uses CPI, which is a general measure of inflation for consumers. However, the rate of inflation 6 7 for the work performed on generating units is better captured in other 8 measures of inflation. The Producer Price Index (PPI) is a better overall 9 measure for inflation than CPI when it comes to addressing Production 10 O&M expense inflation. From the test year in Gulf's last rate case through 11 the 2012 test year requested in this case, CPI has risen 25.34%, while: PPI - Turbine & Generator set manufactures has risen 37.4%; 12 13 PPI - Commodities - Metals and Metal Products has risen 64.3%; 14 PPI - Commodities - Iron and Steel has risen 95.2%; and PPI - Industrial - Valve Manufacturing has risen 48.8%. 15 16 These escalation rates, which are more closely tied to Production O&M 17 expenses than CPI, explain some of the increase in Production O&M 18 expense between test periods. 19 20 Q. The third reason you gave for the increase of Production O&M expenses 21 between 2006-2010 historical periods and the 2011-2015 projected period 22 was the aging of a generator (Smith 3) that was relatively new in the 23 historical period. Please address how that affects the relative levels of 24 Production O&M expenses in those time periods. 25

Α. In our prior rate case, Plant Smith Unit 3 was in its first full year of 1 operation. As discussed later in the benchmark variance justification for 2 Production Other, the budget for Plant Smith has risen significantly since 3 4 the last rate case. Similarly, the average projected cost associated with Smith 3 in the period 2011-2015 of \$7.3 million is \$1.7 million higher than 5 the average cost in the historical period 2006 through 2010 of \$5.6 million. 6 Once again, this increase is being driven by an increase in maintenance 7 8 expense that is directly related to repairing equipment that was relatively 9 new in the historical period.

10

Q. The fourth reason you gave for the increase of Production O&M expenses
between the 2006-2010 historical period and the 2011-2015 projected
period was the addition of new generating units (Perdido). Please
address how this affects the relative levels of Production O&M expenses
in those time periods.

A. Gulf added new generation at Perdido in October 2010. There were no
 O&M expenses associated with this facility in the years 2005 through
 2009. In addition, there was less than a full year of expenses in 2010;
 however, the years 2011 through 2015 fully reflect the annual O&M
 expense associated with the Perdido facility.

21

Q. The final reason you gave as to why the 2012 level of Production O&M
expenses is more representative of ongoing levels of Production O&M
levels than the levels of Production O&M levels during the period 20062010 relates to Gulf's efforts to control expenses to avoid asking for a

base rate increase at a time when Gulf's customers were struggling
 through the worst economic downturn since the Great Depression. Please
 address that point in more detail.

4 Α. This is best explained by looking at the allowed Production O&M 5 expenses in the 2002/2003 test year, the actual Production O&M expenses in 2006 through 2010 and the budget levels of Production O&M 6 expenses for 2011 through 2015. There was a clear trend of an increase 7 in Production O&M expenses from the 2002/2003 test year level of 8 9 \$76,996,000 in Gulf's last rate case through the actual level in 2008 of \$88,424,000. (Actual Production O&M expense for 2006 through 2010 is 10 11 shown on Exhibit RWG-1, Schedule 7). Then, in 2009, Gulf decreased its 12 Production O&M expenses to \$84,209,000. This \$4,215,000 reduction in 13 Production O&M expenses was part of the effort that Gulf undertook to 14 defer its need to ask for base rate relief.

15

16This reduction in Production O&M expenses in 2009 was not done without17careful deliberation. We prioritized our maintenance decisions to address18critical issues. We took the approach of trying to perform as much19maintenance as we could on our larger units that are dispatched more20often, and we did not perform selective maintenance on smaller units21which, if they experienced forced outages, would not as severely impact22overall reliability.

23

A similar effort was undertaken in 2010, but in that year we could no longer drive down Production O&M costs. They had to increase. 1 Although our internal budget process had developed and submitted a 2 Production budget of \$94,665,000, we were able to hold actual expenses to \$92,889,000. Once again, we prioritized maintenance, but we did it to 3 avoid having to ask for a base rate increase during a time of weak 4 5 economic recovery and high unemployment. We made calculated risk assessments of what maintenance had to be performed. Our EFOR 6 performance indicator shows Gulf was able to make these reductions 7 while we continued to maintain excellent performance. 8

- 9
- Q. Does the level of Gulf's actual expenses in 2009 and 2010 indicate that it
 is not necessary for Gulf to spend Production O&M at the levels
 suggested by its 2011 budget process?
- 13A.Absolutely not. A well maintained system such as Gulf's can forego some14scheduled maintenance for a limited period of time without a severe risk of
- 15 adverse consequences. However, it cannot forego scheduled
- 16 maintenance over an extended period of time without predictable adverse
- 17 consequences in unit performance, system reliability and ultimately
- 18 customer satisfaction. Gulf has no prudent choice other than to increase
- 19 Production O&M expenses to avoid these adverse consequences.
- 20 Continued operation at these levels of Production O&M is simply too risky
- 21 for our customers. It is time to increase Gulf's Production O&M expenses
- 22 and recognize those levels on a going forward basis.
- 23
- 24
- 25

1	Q.	Mr. Grove, the Commission has historically employed an O&M benchmark
2		calculation in base rate proceedings. How does Gulf's 2012 Production
3		O&M expense forecast compare to the O&M expense benchmark?
4	Α.	The O&M benchmark for Production is \$96,507,000, as provided to me by
5		Mr. McMillan. Gulf's projected 2012 Production O&M expenses for 2012
6		are \$110,888,000, which results in a benchmark variance of \$14,381,000.
7		This is shown on Exhibit RWG-1, Schedule 10.
8		
9	Q.	Does Gulf's O&M benchmark variance for 2012 undermine your
10		conclusion that Gulf's 2012 Production O&M expenses are reasonable
11		and prudent?
12	Α.	No. The O&M benchmark has never been, nor is it meant to be, a
13		budgeting tool. It is a regulatory mechanism used to provide a reference
14		point to reflect CPI growth between rate cases. As discussed by
15		Mr. McMillan, benchmark variations may be explained by a variety of
16		different factors. For example, an O&M increase due to the cost of
17		compliance with a new regulatory requirement would be totally unrelated
18		to inflation. Gulf's projected 2012 Production O&M budget is the result of
19		a sophisticated and robust budgeting process, and it is that process that
20		assures that those projected expenses are reasonable and prudent.
21		Indeed, that process has been used to justify Gulf's entire Production
22		O&M budget, not just the O&M benchmark variance.
23		
24	Q.	Please break down the \$14,381,000 Production benchmark variance into
25		Production Steam, Production Other, and Production Other Power Supply.

1	Α.	As shown on Exhibit RWG-1, Schedule 10, Production Steam is
2		\$9,965,000 over the benchmark, Production Other is \$2,940,000 over the
3		benchmark and Production Other Power Supply is \$1,476,000 over the
4		benchmark.
5		
6	Q.	Please justify Gulf's \$9,965,000 Production Steam O&M benchmark
7		variance.
8	Α.	Gulf's Production Steam O&M benchmark variance justification consists of
9		two general categories. First, there are certain Production Steam O&M
10		expenses in the 2012 test period that were not included in the test year of
11		Gulf's last rate case; therefore, these costs are not captured by the O&M
12		benchmark calculation. These expenses total \$3,559,000. Second,
13		certain Production Steam expenses have grown faster than inflation since
14		Gulf's last rate case. This growth is explained both by increased scope of
15		work and underlying costs that have risen faster than inflation as
16		measured by CPI. This second group of Steam Production O&M
17		expenses totals \$7,565,000.
18		
19	Q.	Please justify the \$3,559,000 of Production Steam O&M expenses that are
20		new or incremental and therefore not captured in the O&M benchmark
21		calculation.
22	Α.	None of the following Production Steam O&M expenses projected for
23		2012 were included in the Steam Production O&M expenses allowed in
24		Gulf's last rate case. Therefore, they are not captured in the O&M
25		benchmark calculation. They are all new or incremental activities, and all

1		of them are necessary for Gulf to provide continued reliable service to our		
2		customers.		
3		Genguard cyber security	\$ 550,000	
4		 Research and Development (R&D) 	370,000	
5		Renewable energy manager	150,000	
6		O&M improperly attributed to Scherer Unit 3	<u>2,489,000</u>	
7		Total	<u>\$3.559.000</u>	
8				
9	Q.	Please justify the \$550,000 of O&M expenses associa	ted with Gulf's	
1 <u>0</u>		Genguard cyber security programs that were not proje	cted to be incurred	
11		in Gulf's last rate case.		
12	Α.	The Genguard Cyber Security program is Gulf's respo	nse to the need to	
13		ensure protection and reliability of the grid and to ensu	re compliance with	
14		the NERC Cyber Security policies of 2009. Gulf is req	uired by law to	
15		comply with these policies, subject to penalties. Failur	re to comply with	
16		these policies would also expose Gulf's system to relia	ability risks. The	
17		project improves cyber security and control for selecte	d units whose loss	
18		potentially could impact the reliability of the grid. This	is an entirely new	
19		activity that is necessary to meet requirements that ha	ve been imposed	
20		since Gulf's last rate case.		
21				
22	Q.	Please justify the \$370,000 of O&M expenses associa	ted with R&D	
23		projects that were not projected to be incurred in Gulf's	s last rate case.	
24	Α.	The test year of Gulf's last rate case included \$867,00	0 of R&D expenses.	
25		Escalating that amount by CPI (25.34 percent) results	in an O&M	

Docket No. 110138-EI

Page 37

benchmark for Steam Production O&M R&D expenses of \$1,087,000.
 Gulf projects it will spend \$1,457,000 on Steam Production O&M R&D
 expenses in 2012, resulting in a \$370,000 benchmark variance.

This 2012 Steam Production O&M R&D expense benchmark variance is 5 primarily due to Gulf's participation in three ongoing projects: (1) Flue Gas 6 Treatment, (2) the Power System Development Facility at Wilsonville, and 7 (3) the 25 MW Carbon Capture center at Plant Barry in Alabama. As I 8 9 discuss below, these projects are important to Gulf's customers. Gulf, 10 indeed the entire Southern system, relies heavily on coal generation, and 11 efforts to control emissions in the face of new environmental emission 12 regulations will be critical to keeping these units operating to serve 13 customers.

14

4

15 The Flue Gas Treatment project screens, develops, and tests new 16 technologies for more cost effective compliance with new and future 17 power plant emission regulations. Power plant flue gas is treated with emissions control equipment, including the scrubber and Selective 18 19 Catalytic Reduction system currently installed at Plant Crist. With proper 20 development and testing, these technologies can be used to increase the 21 collection of other emissions that are the subject of new regulations. 22 These emissions include particulates, mercury and hydrochloric acid 23 aerosols. However, other new technologies such as baghouses, activated 24 carbon and wet electrostatic precipitation may still be required. Gulf's 25 customers benefit as a result of the knowledge gained through the

Page 38

program, which helps provide a foundation on which our decisions are
made relative to the types of technologies that best suit our generating
fleet. In our prior rate case, Gulf included \$75,897 in our requested O&M
expenses for this project. When escalated by CPI, the benchmark for this
project is \$95,000. Our request of \$221,000 in the 2012 test year for
Gulf's share of the project creates a benchmark variance of \$126,000.

8 Southern Company manages and operates the U.S. Department of Energy's National Carbon Capture Center (NCCC), a focal point of the 9 10 national effort to develop advanced technologies to reduce greenhouse 11 gas emissions from coal-fired power plants. Working with scientists and 12 technology developers, the NCCC, located at the Power Systems 13 Development Facility in Alabama, screens, develops, and tests emerging 14 technologies to capture carbon dioxide from coal-based power plants. 15 The center accelerates carbon dioxide technology by offering 16 infrastructure that bridges the gap between lab-scale research and large 17 demonstration projects, providing a testing ground for the next generation 18 of more cost effective, higher-performing carbon capture technologies. In 19 2012, Gulf's portion of this R&D demonstration project is \$178,000.

20

7

A portfolio of solutions is needed to provide timely and least cost
reductions in carbon dioxide emissions from power generation sources.
Accordingly, Southern Company, Mitsubishi Heavy Industries and the
Electric Power Research Institute began construction of a 25 MW carbon
dioxide capture and storage demonstration at Alabama Power's Plant

Docket No. 110138-El

Page 39

Barry. The demonstration involves the construction and operation of a 1 500 ton per day carbon capture plant. The captured carbon dioxide will be 2 transported through an 11 mile pipeline and injected into a deep geologic 3 formation near the Citronelle Oil Field. Extensive geologic formations like 4 that found in the Citronelle area are common in the Southeast U.S. 5 providing a large carbon dioxide storage capacity. In 2012, Gulf projects 6 O&M R&D expenses of \$219,000 for its portion of this demonstration 7 8 project. If EPA's carbon control rule is adopted or carbon control 9 legislation is adopted, carbon capture and sequestration will become 10 critically important and may be necessary for Gulf to preserve any coal 11 fired generation.

12

Q. Please justify the \$150,000 of 2012 Production Steam O&M expenses
associated with Gulf's Renewable Energy Manager that were not included
in Gulf's last rate case.

As I discussed earlier, Gulf is committed to obtaining cost-effective energy 16 Α. 17 supplies for our customers and to obtaining the benefits of fuel diversity 18 wherever practical. Gulf is also committed to encouraging and promoting 19 renewable energy pursuant to several sections of Chapter 366, including 20 Sections 366.82, 366.91, and 366.92, Florida Statutes. In order to 21 effectively manage the continuous inquiries related to renewable energy 22 projects and to develop cost effective supply side renewable projects, Gulf 23 has created a Renewable Energy Manager position to deal with all issues 24 associated with supply-side renewable energy. This position will play a 25 critical role in developing Gulf's overall renewable energy program in a

Page 40

manner that maximizes the benefits of emerging technologies while at the
 same time ensuring the impacts to our customers are minimized.

3

Q. You also mentioned that another \$2,489,000 of 2012 Production Steam
O&M expenses are projected for Gulf's retail operations that were not
included in Gulf's Production Steam O&M expenses in the last rate case.
Please explain.

8 In the 2012 test year, all expenses associated with Plant Scherer have Α. 9 been removed from the retail base rate calculation due to the fact that Gulf uses the output from Plant Scherer to serve wholesale contracts. In our 10 prior rate case, Gulf also removed all expenses associated with Plant 11 12 Scherer from our base rate calculation. However, in making that adjustment Gulf made an error and removed \$1,986,000 of Steam 13 14 Production expenses greater than the Steam Production expenses 15 included in the financial projection for Plant Scherer. As a result of this 16 error, Gulf's request for Steam Production O&M expense in the prior rate 17 case was \$1,986,000 below what was actually needed for maintenance of 18 Gulf's territorial units. Since Gulf's retail rates were set including this 19 error, Gulf's retail customers have received the benefit of this error for the 20 past ten years. For 2012, only those O&M expenses specifically 21 associated with Plant Scherer have been removed from Gulf's request for 22 Production Steam O&M expense.

23

- 24
- 25

1		The error discussed above accounts for \$2,489,000 of the benchmark
2		variance in 2012. Without this error in Production O&M expenses in Gulf's
3		last test year, Gulf's 2012 Steam Production O&M benchmark would have
4		been \$91,098,000 million rather than \$88, 609,000. Consequently, Gulf's
5		benchmark variance would have been \$7,476,000 instead of \$9,965,000.
6		Gulf's error, which has worked to the benefit of Gulf's customers for
7		almost a decade, should not be perpetuated into the future.
8		
9	Q.	Earlier you mentioned another type of Production Steam O&M expenses
10		that was part of Gulf's O&M benchmark justification - expenses that have
11		grown faster than inflation as measured by CPI. Why have these
12		expenses exceeded the O&M benchmark?
13	Α.	There are two reasons that these expenses (listed below) have exceeded
14		inflation as measured by CPI. First, Gulf has expanded the scope of this
15		work in 2012 relative to the scope of the work performed in the last test
16		year of 2002/03 in Gulf's last rate case. This expansion of scope is
17		necessary and is representative of the expenses Gulf will incur on a going
18		forward basis. Second, the costs associated with these types of expenses
19		have escalated at a rate faster than the rate of inflation reflected in CPI,
20		the measure of inflation used in the O&M benchmark calculation. These
21		increases are beyond Gulf's control.
22		
23		
24		
25		

1		The Production Steam O&M expenses that share these justifications are:		
2		Planned outage expenses	\$4,422,000	
3		Enterprise Solutions	587,000	
4		Fuels Management expenses	1,135,000	
5		Ash disposal and sales	<u>1,421,000</u>	
6		Total	<u>\$7.565.000</u>	
7	•			
8	Q.	Please discuss Gulf's approach to planned of	outages.	
9	Α.	Gulf has 12 generating units, and in 2012 th	ere are 8 planned outages. A	
10		total of 40 planned outage weeks are sched	uled across the fleet. The	
11		planned outage schedule varies from year to year based on the		
12		maintenance requirements of each generating unit and the need for		
13		adequate generating capacity in service to meet demand throughout the		
14		year. The planned maintenance forecast for 2012 is typical of the		
15		expected future planned outage requirements.		
16				
17		In general, Gulf plans outages on each unit	every 18 to 24 months, unless	
18		conditions indicate a planned outage is needed sooner. Outage planning		
19		begins as soon as the previous outage is completed. Plant management,		
20		system owners, and unit owners continually evaluate unit performance		
21		and determine what items need to be addre	ssed at the next outage. Prior	
22		to the unit outage the team meets to determ	ine what specific items need	
23		to be addressed while the unit is off-line. The major equipment evaluated		
24		for each outage includes boilers, pulverizers	, condenser systems, turbine	
25		valves and other auxiliary equipment.		

Docket No. 110138-EI

Page 43

1	Q.	Please address why Gulf's request for \$22,016,000 for planned outages in		
2		Production Steam in the test year is representative of planned outage		
3		expenses in the future.		
4	Α.	Exhibit RWG-1, Schedule 11 provides a detailed analysis of planned		
5		outage expense in Production Steam for the five-year period beginning		
6		with 2011. The planned outage expenses for the 2012 test year are		
7		\$22,016,000. The prior year (2011) is budgeted for \$21,923,000.		
8				
9	Q.	How does Gulf's 2012 Production Steam O&M planned outage expenses		
10		compare with Gulf's planned outage expenses allowed in its last rate		
11		case?		
12	Α.	Exhibit RWG-1, Schedule 11, page 2 of 2 shows the total outage expense		
13		requested for Production Steam in the last rate case was \$14,037,000,		
14		which escalates to a benchmark amount of \$17,594,000. The Gulf		
15		Production Steam request for the test year is \$22,016,000, for a variance		
16		of \$4,422,000.		
17				
18	Q.	Why do Gulf's 2012 planned outage O&M expenses for Production Steam		
19		exceed the O&M benchmark level of \$17,594,000 based upon Gulf's		
20		allowed level of planned outage expenses from its last rate case?		
21	Α.	As I noted earlier in my testimony, there are two primary reasons. First,		
22		Gulf's scheduled planned outages in the 2012 test year are much broader		
23		in scope than the planned outages in Gulf's 2002/2003 test year. Even		
24		though Gulf will be performing fewer planned outages in 2012 than in the		
25		last test year, the dollars associated with the planned outages is much		

greater due to the increased scope of work needed to maintain reliability
 on an aging fleet.

Second, the cost of planned outages and the equipment and materials 4 used in these outages have risen much faster than inflation as measured 5 by CPI. These cost increases are beyond Gulf's control and are not 6 captured in the O&M benchmark calculation. For instance, turbine and 7 8 generator set manufacturing costs, a critical part of the planned outages in 9 2012 at Plant Crist on Units 6 and 7, have risen 37.4 percent since the last 10 test year, although CPI has risen only 25.34 percent. Similarly, industrial-11 valve manufacturing costs have risen 48.8 percent since Gulf's last rate 12 case whereas CPI has risen only 25.34 percent. Industrial valves are 13 critical equipment in almost every outage. In each of Gulf's planned 14 outages in 2012, iron and steel will comprise component parts. The price 15 of iron and steel commodities has risen 95.2 percent since Gulf's last rate 16 case, whereas the rate of inflation in the CPI benchmark calculation has 17 risen only 25.34 percent. Similarly, the cost of metals and metal products, 18 also used in Gulf's planned outages in 2012, have risen 64.3 percent 19 since Gulf's last rate case, instead of the CPI increase of only 25.34 20 percent.

21

3

Q. Please address why the scope of planned outages assumed in the 2012
test year is appropriate.

A. As I have discussed throughout my testimony, Gulf has worked hard to
 maintain our fleet of generators in a manner that ensures high reliability.

Our success is demonstrated in the testimony of Mr. Burroughs. We 1 achieved this success while controlling cost to prevent Gulf from having to 2 ask for a base rate increase at a time when our customers were 3 4 recovering from a major hurricane and a major recession. However, we have reached a point where additional dollars are needed to maintain the 5 reliability of our fleet. As one can see from the outages discussed below, 6 the work we are planning simply includes the normal type of maintenance 7 8 that is required to maintain our fleet of generation. Moreover, the work 9 described below is indicative of the work we plan to continue on our entire 10 fleet in the future. The following is a list of the outages planned for the 11 test-year:

Plant Crist Unit 6 has a 72-day planned outage to address turbine,
 turbine valves, generator, Selective Catalytic Reduction (SCR) tie in, boiler inspection/repairs, fan/air preheater, pulverizers, and ash
 handling systems.

- Plant Crist Unit 7 has a 79-day planned outage to address turbine,
 turbine valves, generator, boiler inspection/repairs, fan/air
 preheater, condensate pumps, pulverizers, and ash handling
 systems.
- Plant Scholz Unit 1 has a 22-day planned outage to address off-line
 work orders and general boiler inspection.
- Plant Smith Unit 2 has a 23-day planned outage to address turbine
 valves, fans/ductwork, ash handling, boiler inspection/repairs, and
 boiler feed pumps.

25

Page 46

1		 Plant Daniel Unit 1 has a 58-day planned outage to address turbine
2		valves, fans/air preheater, pulverizers, ash handling, boiler
3		inspection/repairs, and boiler feed pumps.
4		 Plant Daniel Unit 2 has a 9-day planned outage to address
5		common equipment and install ductwork isolation blanks.
6		 Plant Daniel Unit 2 has an additional 7-day planned outage to
7		address common equipment and remove ductwork isolation blanks.
8		
9	Q.	How do the planned outages scheduled in the 2012 test year compare to
10		the prior test year planned outages?
11	Α.	The scope of the work on an outage has a direct impact on the cost of the
12		outage. In the prior test year Gulf had outages scheduled on Crist Units 6
13		and 7, Smith Unit 2, and Daniel Unit 1. Gulf has scheduled outages on
14		these same units in the current test year; however, the scope of the work
15		in 2012 is much larger.
16		
17		In the prior test year, the outage on Plant Crist Unit 6 included work on the
18		boiler, pulverizers, precipitator and cooling towers. In 2012 Gulf will
19		perform work on the boiler, pulverizers, and precipitator. However, Gulf
20		will also perform significant work on the turbine (\$2,400,000) and the
21		generator (\$2,200,000). The total benchmark variance for Plant Crist
22		Unit 6 is \$5,098,000.
23		
24		In the prior test year, the outage on Plant Crist Unit 7 included work on the
25		boiler, pulverizers, precipitator, turbine valves, and cooling towers. In

2012 Gulf will again perform work on the boiler, pulverizers, and
 precipitator. However, Gulf will also perform significant work on the
 turbine (\$750,000) and the generator (\$2,300,000). The total benchmark
 variance for Plant Crist Unit 7 is \$3,899,000.

5

In the prior test year, the outage on Plant Smith Unit 2 included work on
the boiler, ash handling, and pulverizers. In 2012 Gulf will again perform
work on the boiler and pulverizers. However, Gulf will also perform
significant work on the turbine valves (\$750,000). The total benchmark
variance for Plant Smith Unit 2 is \$986,000.

11

In the prior test year, the outage on Plant Daniel Unit 1 included work on
the boiler, pulverizers, generator and turbine. In 2012, Gulf will again
perform work on the boiler and pulverizers. However, Gulf will also
perform significant work on the nose arch of the boiler (\$3,200,000). The
total benchmark variance for Plant Daniel Unit 1 is \$1,626,000.

17

18 Q. Mr. Grove, you justified Steam Production O&M outage expense 19 benchmark variances totaling \$11,609,000 for outages associated with 20 four units due to increased scope of work and increased cost of materials 21 since the last rate case. Why do you use only \$4,422,000 of that 22 benchmark variance in your benchmark variance justification? 23 Α. All of the \$11,609,000 of increased outage related Steam Production O&M 24 expenses for these four units is justified by the increased scope of work 25 and increased costs in 2012 relative to the last test year. However, there

were some Steam Production outages in the last test year that are not
 scheduled again for 2012. So, to be conservative in my approach, I have
 netted the benchmark escalated costs of the projects that do not reoccur
 in 2012 against the \$11,609,000 variance justification.

5

Q. Please justify the \$587,000 of Production Steam O&M related to
Enterprise Solutions forecast in 2012 that were not projected to be
incurred in Gulf's last test year and so are not in the O&M benchmark
calculation.

10 Α. As described by Gulf Witness Erickson, the Enterprise Solutions project consisted of the installation of Oracle and Maximo to replace the aging 11 accounting, supply chain, and generation systems. Oracle and Maximo 12 13 are used to input, process, and summarize accounting information. In 14 addition, the system allows users to procure and pay for materials and 15 services as well as manage work orders. Many of the previous systems 16 were old, highly customized, and were becoming increasingly expensive 17 to maintain. The expenses of \$587,000 are the portion of Enterprise 18 Solution expenses being charged directly to Production Steam that are 19 above the level of expense charged for the old systems.

20

21 Q. Please address the \$1,135,000 of Production Steam O&M fuels

- management expenses forecasted in the 2012 test year that are above
 the benchmark.
- A. Gulf's fuels management expenses have exceeded the benchmark as a
 result of a variety of changes in these activities:

1	Railcar lease and management
2	 Fuel Services management and oversight
3	 Crist Scrubber limestone and gypsum management, and
4	 Plant Daniel fuel unloading expenses.
5	
6	Since Gulf's last rate case Plant Daniel has begun using Powder River
7	Basin (PRB) Coal. This has increased the management oversight
8	associated with this new coal supply and transportation requirement. Gulf
9	has also changed the delivery mode for a majority of its coal supply from
10	an exclusive barge transportation mode to rail and barge transportation.
11	This shift in transportation mode has required Gulf to lease a fleet of open
12	hopper railcars for the movement of coal from the coal's origin to the
13	Alabama State Docks in Mobile, Alabama. This fleet of railcars requires
14	both logistic support and maintenance by our Fuel Services organization.
15	Additional personnel were needed to perform these railcar management
16	functions, and the labor, overhead, and expenses of these new employees
17	are being included in Gulf's O&M expenses. In 2012 these expenses will
18	be \$351,000 over the benchmark. The increased cost of managing the
19	PRB coal is more than offset by associated fuel savings.
20	
21	Since Gulf's last rate case a new fuel accounting system (COMTRAC)
22	was purchased to replace the original fuel accounting system (FAACS).
23	This was necessary because the FAACS system software was no longer
24	being technically supported due to outdated source code. In addition,
25	more stringent accounting controls adopted as a result of Sarbanes-Oxley

Docket No. 110138-El

Page 50

requirements made changes to the fuel accounting process necessary. 1 As a result of accounting system upgrades and new accounting control 2 requirements, additional O&M costs associated with management of 3 4 software system and accounting oversight have been incurred by Fuel Services. Additional personnel were needed to perform these fuel 5 accounting management functions, and the labor, overhead, and 6 expenses of these new employees are being included in Gulf's O&M 7 8 expenses. In 2012 these expenses will be \$355,000 over the benchmark.

9 Since the last rate case Gulf has added Flue Gas Desulfurization 10 11 (scrubber) equipment at Plant Crist for the reduction of sulfur emissions. 12 The scrubber uses limestone as a feedstock to react with sulfur in the gas stream which produces a synthetic gypsum product. The procurement 13 14 and delivery of the limestone feedstock and the associated contract administration is being managed by Fuel Services, but it is not being 15 recovered by Gulf in either the Fuel or ECRC clauses. In addition, the 16 17 synthetic gypsum product is required to be disposed of in a beneficial use 18 under an agreement between Gulf and the FDEP. This cost is not being 19 recovered through ECRC. Fuel Services also manages the marketing and sales of Gulf's synthetic gypsum to end users in the wallboard, cement, 20 21 and agricultural industries. Additional personnel were needed to perform 22 these limestone and gypsum management functions, and the labor, 23 overheads, and expenses of these new employees are being included in 24 Gulf's O&M budget. In 2012 these expenses will be \$264,000 over the 25 benchmark.

1		Since our last rate case Mississippi Power Company (MPC) contracted
2		with a third party to unload coal trains at Plant Daniel. This work was
3		previously performed by MPC employees. Plant Daniel has leased
4		additional equipment to handle the increased requirements of managing
5		PRB coal inventory. In 2012 these expenses will be \$367,000 over the
6		benchmark. This increased cost is more than offset by fuel savings
7		associated with burning PRB coal.
8		
9		Other Fuel expenses increased at less than the O&M benchmark.
10		Collectively, these expenses are \$202,000 below the benchmark.
11		
12	Q	Please address why the cost of ash disposal and sales has increased
13		beyond the benchmark.
14	Α.	In the prior test year, Gulf budgeted \$918,000 for ash disposal and sales.
15		Using the CPI adjustment, the benchmark for ash disposal and sales is
16		\$1,150,000. Gulf's current request for ash disposal and sales is
17		\$2,571,000, resulting in a benchmark variance of \$1,421,000.
18		
19	Q.	What has caused the cost of managing ash to increase beyond the CPI
20		benchmark?
21	Α.	The ash disposal expense included in the test year, which is above the
22		benchmark by \$1,421,000, is necessary to manage ash and meet all
23		environmental requirements at our four coal electric generating facilities.
24		The major change in ash handling expense is not driven by an increase in
25		volume as one might expect. The ash contracts (which are competitively

Page 52

bid) are renegotiated every three or four years, and the contract price to 1 2 handle ash has exceeded CPI growth. As an example, in 2002 the contract for managing ash at Plant Crist was \$339,000; in 2012 the 3 contract is \$800,000, or an increase of 136 percent. This is far beyond the 4 5 25.34 percent increase used in the benchmark calculation. Another contributing factor is that in the prior test period Plant Daniel was able to 6 dispose of ash by selling the ash in the market. Such sales are no longer 7 8 available. The change in the market for ash sales has reduced revenues 9 which previously were credited against ash disposal costs.

10

Plant Crist has increased the budget for removing solids from the ash
pond settling basins by approximately \$250,000 in order to meet the more
stringent water quality standards required by Gulf's National Pollution
Discharge Elimination System industrial wastewater permits. The
stringent water quality-based copper effluent limitations included in
Chapter 62 Part 302, Florida Administrative Code, became effective in
May 2002.

18

19The ash disposal expense included in the 2012 test year is necessary to20manage ash and meet all environmental requirements at our four coal21electric generating facilities.

- 22
- Q. Please justify Gulf's \$2,940,000 Production Other O&M benchmark
 variance.
- 25

1	Α.	Expenses in this area relate mainly to the Plant Smith I	Jnit 3 Combined	
2		Cycle and the Perdido Landfill gas to energy project. T	he following is a list	
3		of projects that have caused Gulf to exceed the benchr	mark calculation:	
4		Plant Smith Unit 3 planned outage	\$830,000	
5		Plant Smith Unit 3 maintenance	845,000	
6		Gas Fuel Management	593,000	
7		Perdido	770,000	
8		Total Other Production	\$3.038.000	
9				
10	Q.	How old was Smith Unit 3 at the time of Gulf's last rate	case?	
11	Α.	Smith Unit 3 went into commercial service in April 2002	2, approximately	
12		two months earlier than projected. The test year for the last rate case was		
13		June 2002 through May 2003, which corresponded with the first twelve		
14		months that Smith Unit 3 was projected to be in service. At the end of		
15		2002, Smith Unit 3 had been in service nine months.		
16				
17	Q.	How old will Smith Unit 3 be at the midpoint of the 2012	2 test year?	
18	Α.	At the midpoint of the 2012 test year, Plant Smith Unit	3 will be ten years	
19		old.		
20				
21	Q.	How has the relative age of Smith Unit 3 affected the le	evel of Production	
22		Other O&M expenses in the projected test year versus	the test year in	
23		Gulf's last rate case and the O&M benchmark calculati	on?	
24	Α.	Because Smith Unit 3 was a new unit in Gulf's last rate	e case and will be	
25		over a decade old in the 2012 projected test year in thi	s case, there are far	

1		more O&M expenses projected for Smith Unit 3 in the 2012 test year.
2		Since the O&M expenses associated with Smith Unit 3 comprise a
3		significant portion of Gulf's Other Production O&M expenses, a major
4		portion of the O&M benchmark variance for Other Production is justified by
5		examining the Smith Unit 3 O&M expenses.
6		
7	Q.	What is the O&M benchmark level of Smith Unit 3 planned outage
8		expenses escalated from the last test year to 2012?
9	Α.	Exhibit RWG-1, Schedule 11, page 2 of 2 shows the total outage expense
10		requested for Production Other in the last rate case was \$242,000. That
11		escalates to an O&M benchmark amount of \$303,000. Gulf's Smith Unit 3
12		planned outage expense for the test year is \$1,133,000, which results in a
13		benchmark variance of \$830,000.
14		
15	Q.	Why is the 2012 Smith Unit 3 planned outage expenses of \$830,000 over
16		the O&M benchmark?
17	Α.	This is due to a combination of factors. First, Smith Unit 3 is no longer
18		new. It has aged, and like other units, with the passage of time, more
19		O&M expenses are required. Second, the scope of the planned outage at
20		Smith Unit 3 in 2012 is appreciably larger than the scope of the Smith
21		Unit 3 planned outage included in the 2002/03 test period. In Gulf's last
22		rate case, most of the \$241,000 was budgeted for work on the turbine
23		system and the heat recovery steam generator. In the current test year,
24		the planned outage scope includes work on the gas supply system,
25		generator system, cooling towers, condenser/hotwell system, boiler feed

pumps, air and gas system, combustion turbine system, heat recovery
 steam generator valves and piping, and the control system.

The scope of the planned outage at Smith Unit 3 in 2012 has been developed based upon the manufacturer's recommended maintenance schedule, the expertise of the capable people at Gulf who operate and maintain Smith Unit 3 and Gulf's Production Management Team. This scope of work is necessary to preserve the reliability and performance of this valuable generating asset.

10

3

- Q. Please discuss the \$845,000 O&M expenses over the benchmark for
 maintenance related to the Smith Unit 3.
- A. There are three major systems at Smith Unit 3 that are causing
 maintenance to exceed the O&M benchmark. Those three systems are
 the feedwater system, the combustion turbine system and the heat
 recovery steam generator system.
- 17

18 The feedwater system includes a vast amount of transport piping, drains 19 and valves. All of this is insulated and much of the piping is elevated 20 above ground level. We have been steadily replacing components as 21 needed to prevent reliability issues. The majority of the work requires 22 scaffold and insulation removal and reinstallation. Components are being 23 changed from carbon steel to stainless steel to increase longevity while 24 helping to control future costs. This work represents \$130,000 of the 25 benchmark variance.

1		
2		The combustion turbine system also contains piping, drains, and valves.
3		Additionally, multiple platforms, enclosures, exposed motor and electrical
4		boxes are being replaced. Where possible, components are being
5		replaced with stainless steel to increase longevity while helping to control
6		future costs. This work represents \$370,000 of the benchmark variance.
7		
8		The heat recovery steam generator requires the same type of ongoing
9		maintenance as the feedwater and combustion turbine systems. Piping,
10		valves, platforms, and handrails are commonly replaced. Various paint
11		coatings are also being applied to assess their impact on longevity and the
12		future cost control. This work represents \$670,000 of the benchmark
13		variance.
14		
15		Other maintenance that will be performed on Smith Unit 3 will increase at
16		less than the O&M benchmark. Collectively, these expenses are
17		\$325,000 below the benchmark.
18		
19	Q.	Please discuss the \$593,000 of Production Other O&M expenses related
20		to the gas procurement program.
21	Α.	Smith Unit 3 was Gulf's first large scale gas asset, and in the prior rate
22		case no dollars were requested to support the gas program. The
23		\$593,000 of Production Other O&M expenses for the gas procurement
24		program covers procuring gas, managing the transportation contract, and
25		managing the hedging program for Smith Unit 3. In addition, these dollars

- include the gas procurement program for Gulf's three PPAs totaling over
 1,350 MW.
- Q. Please justify the \$770,000 of 2012 Production Other O&M expenses
 associated with the Perdido landfill gas to energy facility that were not
 included in Gulf's last test year.
- As I discussed earlier, in July 2008, Escambia County, Florida issued an 7 Α. RFP for the sale of landfill gas from its Perdido landfill. Landfill gas is 8 9 defined as a renewable energy resource pursuant to section 366.91(2), 10 Florida Statutes. The Florida Legislature has repeatedly stated that it is in the public interest to promote the development of renewable energy 11 12 resources in the state. They recognized that renewable energy reduces dependence on natural gas, minimizes volatility of fuel costs, encourages 13 investment in the state and improves environmental conditions. To 14 15 address these legislative concerns, Gulf began to evaluate the possibility 16 of developing a project to utilize the gas being offered within this RFP.
- 17

3

- In order to minimize or negate any impact to our customers, Gulf used the
 RSOC as the basis for determining the price Gulf would be willing to pay
 the County for its gas. Using the established avoided cost concepts, Gulf
 submitted a bid for the procurement of the landfill gas being offered under
 this RFP.
- 23
- 24
- 25

1		The O&M dollars used in this evaluation were part of the overall			
2		assessment of avoided cost for the Perdido project. As a result, the cost			
3		is prudent, necessary and reflective of expenses going forward.			
4					
5	Q.	Please justify Gulf's \$1,476,000 Production Other Power Supply O8	ЗM		
6		benchmark variance.			
7	Α.	Expenses in Production Other Power Supply that exceed the bench	nmark		
8		are related to the following:			
9		Energy Management Systems \$486	,000		
10		Resource Planning 79	,000		
11		Fleet Operations and Trading 700	,000		
12		Financial and Contract Services <u>277</u>	.000		
13		Production Other Power Supply <u>\$1,542</u>	<u>.000</u>		
14					
15	Q.	Please justify the \$486,000 of 2012 Production Other Power Supply	y O&M		
16		expenses associated with the Energy Management Systems that are over			
17		the Benchmark calculation.			
18	Α.	Energy Management System budget increases over the last 10 year	ars are		
19		a reflection of expanding industry regulations as well as increasing			
20		complexities in managing the bulk electric system. Bulk Power Operations			
21		(BPO) is responsible for ensuring a reliable and economic operation of the			
22		bulk electric system and as such provides direct benefit to Gulf. The			
23		Sarbanes-Oxley Act of 2002 and the Energy Policy Act of 2005 (along with			
24		the resulting establishment of the Electric Reliability Organization and			
25		mandatory reliability standards) have resulted in additional processes,			

Docket No. 110138-EI

Page 59

procedures, application features, new tools, and resources to maintain
 and demonstrate compliance with the industry regulations. In addition to
 the regulatory requirements, new business requirements related to power
 purchase agreements at Plant Dahlberg, Coral Baconton, and Central
 Alabama that directly benefit Gulf Power have been implemented.

- 6 The additional complexity related to the bulk electric system stems from a 7 8 need to continuously improve our ability to collect and manage 9 supervisory control and data acquisition assets in compliance with 10 regulatory requirements and support business requirements. Over the 11 past 10 years, BPO and Energy Management Systems (EMS) have 12 continued to enhance current systems and implemented new systems, 13 such as operator training simulators, N-1 contingency analysis, situational 14 awareness, and transient stability analysis. Implementation of these 15 technologies has a direct benefit to Gulf Power associated with operating 16 the transmission system at an increased level of reliability due to the 17 advancements of these technologies. The operator training simulators are 18 a benefit because they afford our Power Systems Coordinators (PSCs) 19 the opportunity to participate in training that provides Continuing 20 Education Hours, thus helping the PSCs maintain their NERC 21 Certification. Without such technology and training improvements, Gulf's 22 ability to manage its increasingly complex bulk electric system would 23 decline, system reliability would deteriorate and customer satisfaction
 - 25 business requirements, BPO and EMS have increased their need for

would drop. As a direct result of these additional technologies and

24

Page 60

- resources and have increased their reliance on application/tools to
 increase efficiency and reduce risk of errors.
- 3

Q. Please justify the \$79,000 of 2012 Production Other Power Supply O&M
expenses associated with the Resource Planning that are over the
Benchmark calculation.

7 Α. The Resource Planning Organization is responsible for developing 8 generation mix studies, Integrated Resource Planning, environmental 9 compliance evaluations and supporting RFP development for supplying 10 generation resources to meet our retail customers' growing demands. In 11 addition, they support the eventual development of contracts (PPAs) and 12 contract negotiations that develop as a result of an RFP. The complexities 13 associated with planning at a time with so much uncertainty related to 14 potential environmental legislation have also resulted in additional 15 expenses. Additional personnel are needed to support the overall 16 planning process, and the labor, overhead, and expenses of these new 17 employees are being included in Gulf's O&M expenses.

18

The prior test year budget for planning was \$124,000, resulting in a
benchmark of \$155,000. In the 2012 test year Gulf has budgeted
\$234,000 for Resource Planning. This results in a variance of \$79,000.
The O&M dollars budgeted for generation planning are prudent and
necessary to insure the Company has adequate generation to meet our
customers' needs.

25

1	Q.	Please justify the \$700,000 of 2012 Production Other Power Supply O&M
2		expenses associated with the Fleet Operations and Trading that are over
3		the Benchmark calculation.
4	Α.	Fleet Operations and Trading (FOT) is responsible for ensuring a reliable
5		and economic generation supply for the Pool. Budget increases in FOT
6		over the last 10 years reflect the ever-increasing complexity in managing
7		the generation Pool and growing compliance requirements.
8		
9		The additional complexity related to the Pool stems from an increased
10		reliance on third-party generation and contract implementation for those
11		resources, as well as managing new challenges in operations. FOT has
12		implemented numerous new contracts including Gulf's PPAs for facilities
13		located at Plant Dahlberg, Coral Baconton, and Central Alabama.
14		
15		With respect to regulatory and compliance requirements, FOT
16		responsibilities have increased in areas such as NERC requirements,
17		energy auction, market based rates and generation dominance analysis.
18		As a direct result of these additional complexities, FOT has increased its
19		reliance on application/tools to increase efficiency and reduce the risk of
20		errors.
21		
22	Q.	Please justify the \$277,000 of 2012 Production Other Power Supply O&M
23		expenses associated with the Financial and Contract Services that are
24		over the Benchmark calculation.
25		

Page 62

Financial and Contract Services manages the billings for capacity and 1 Α. energy purchases (PPAs), which ultimately provide energy to our retail 2 customers. This includes Gulf's PPAs for power from the facilities located 3 at Plant Dahlberg, Coral Baconton and Central Alabama. The costs 4 associated with these contracts are incremental to our prior rate case, and 5 each of these contracts provides value to our retail customers. The other 6 services provided by the Financial and Contract Services group include 7 8 (a) wholesale fuel and emission reconciliations which document the wholesale portions of these costs to ensure retail customers do not 9 subsidize the wholesale customers, (b) administration of the Intercompany 10 Interchange Contract, (c) and Pool Billing. The increase in expenses 11 associated with the Financial and Contract Services group are a direct 12 13 result of additional workload associated with an increase in the number and complexities of contracts used to support Gulf's retail customers. The 14 benchmark variance of \$277,000 is prudent and necessary to effectively 15 support Gulf's PPAs. 16 17 18 V. 2012 PRODUCTION WORKFORCE 19 20 Mr. Grove, at the end of 2010, Gulf had 342 full time equivalent (FTE) 21 Q. 22 employees in the Production function. In the test year Gulf has budgeted labor costs equivalent to 394 FTE employees in Production. Why does 23

24 Gulf need to add 52 FTEs in Production by 2012?

25

1	Α.	At the end of 2010, three years of holding the line on Production O&M
2		expenses to help avoid asking for a base rate increase had taken a toll on
3		Gulf's Production labor force. It was clear that it was necessary to hire
4		additional employees in the Production function to be able to perform not
5		only baseline maintenance, but also a broader scope of unit outages. This
6		increased personnel requirement was reflected in the 2011 O&M budget
7		cycle.
8		
9	Q.	What is the status of Gulf filling the 52 FTE positions budgeted for 2012
10		that were vacant at the end of 2010?
11	Α.	We are in the process of filling the positions with the exception of the
12		positions at Plant Scholz. We plan to have the majority of the positions
13		filled by the end of 2011. I will discuss the status of the positions as they
14		relate to the Power Generation Office, Plant Crist, Plant Smith and Plant
15		Scholz.
16		
17	Q.	Please address the projected additional workforce at the Power
18		Generation Office.
19	Α.	As of December 2010, there was one vacant position, the Renewable
20		Energy Manager, at the Power Generation Office. The previous
21		incumbent took a position at Alabama Power at the end of 2010, and Gulf
22		hired a replacement in March 2011. I have previously justified this
23		incremental position in the O&M benchmark justification section.
24		
25		

1 Q. Please address the projected additional workforce at Plant Crist.

2 Α. At Plant Crist, there were 15 vacancies at the end of 2010 that we are in 3 the process of filling. These 15 vacancies, as well as five new positions at 4 Plant Crist, are set forth by position and budget type on Exhibit RWG-1, 5 Schedule 12. Six of the positions at Plant Crist will either be charged to 6 capital projects or the Environmental Cost Recovery Clause. Also note 7 that five of the positions are for Utilitypersons. These are entry level 8 positions that form the pool for future mechanics, electricians, or 9 operators. It is our intent to fill all 20 of these positions. A complete work 10 force capable of performing all necessary operation and maintenance at 11 this site is in the best interest of Gulf's customers.

12

13 Q. Please address the projected additional workforce at Plant Smith.

14 Α. At Plant Smith, there were 23 vacancies at the end of 2010 that are 15 included in Gulf's 2012 O&M budget. These 23 vacancies are set forth by 16 position and budget type on Exhibit RWG-1, Schedule 12. Gulf has filled 17 or is in the process of filling all except 2 of these 23 vacancies. There are 18 two positions that are open. An Instrument and Control (I&C) Specialist 19 position is currently on hold pending resolution of uncertainty regarding 20 environmental regulation. This open position is included in Gulf's 2012 21 O&M budget. The second open position is for an Operations Team 22 Leader, and that position is being used as a developmental position. That 23 position will be filled by the end of 2011. Eight of the 23 positions are for 24 entry level Utilitypersons. These are entry level positions that form the 25 pool for future mechanics, electricians, or operators. With the exception of

1		the I&C Specialist, all other positions at Plant Smith that were vacant at
2		year end 2010 are scheduled to be filled.
3		
4	Q.	Please address the vacancies at Plant Scholz at year end 2010 and
5		whether those positions are likely to be filled by 2012.
6	Α.	At year end 2010 there were 26 filled positions at Plant Scholz, and in
7		2012 Gulf has budgeted a full complement or 34 positions at Plant Scholz.
8		The eight vacancies at Plant Scholz are set forth by position and budget
9		type on Exhibit RWG-1, Schedule 12.
10		
11		Due to current uncertainty associated with environmental regulations, Gulf
12		has not begun to fill these eight vacant positions at Plant Scholz. Contract
13		labor and temporary reassignments from Plant Smith have been used to
14		supplement the workforce at Plant Scholz. Although Gulf has chosen not
15		to fill those positions until there is more clarity about prospective
16		environmental regulations, the labor expenses included in the 2012 test
17		year are appropriate for the ongoing operation of this plant.
18		
19		
20		VI. SUMMARY
21		
22	Q.	Please summarize your testimony.
23	Α.	Gulf maintains and operates a diverse set of generation resources
24		designed to serve our customers economically and reliably. Since our last
25		rate case, Gulf has made sound generation planning decisions that were

Page 66

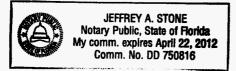
1	clearly in the best interest of our customers. In the case of the Central
2	Alabama PPA, the Company was able to defer potentially large
3	construction expenditures with a solid contract that is expected to provide
4	over \$500 million (NPV) in savings to our customers.
5	
6	Gulf's Production operation continues to provide low cost, reliable electric
7	service to our customers to meet their increasing demand for electricity.
8	The reliability of Gulf's generating units and low EFOR are clear
9	indications that Gulf has executed an effective maintenance program that
10	continues to provide our customers with reliable service. Gulf is
11	committed to maintaining our generating facilities through the effective use
12	of resources that focuses not only on reliability but also efficiency.
13	
14	Gulf's entire Production, Other Production, and Other Power Supply
15	investment should be included in Gulf's rate base. This property is used
16	and useful in providing service to Gulf's customers. Moreover, the
17	investment has been reasonably and prudently incurred and managed.
18	
19	Gulf's Production capital additions and O&M expenses are carefully
20	controlled and utilized in a manner to ensure high availability and low
21	EFOR. The \$110,888,000 budgeted for Power Production O&M and
22	\$43,738,000 budgeted for Capital Additions in the test year are
23	reasonable, prudent, and necessary expenditures and should be included
24	in establishing Gulf's base rates.
25	

1	Q.	Does this conclude your testimony?
2	Α.	Yes, it does.
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

AFFIDAVIT

STATE OF FLORIDA COUNTY OF ESCAMBIA Docket No. 110138-EI

Before me the undersigned authority, personally appeared Raymond W. Grove, who being first duly sworn, deposes, and says that he is the Manager of Power Generation Services for Gulf Power Company, a Florida corporation, and that the foregoing is true and correct to the best of his knowledge, information, and belief. He is personally known to me.


Raymond W. Grove Manager of Power Generation Services

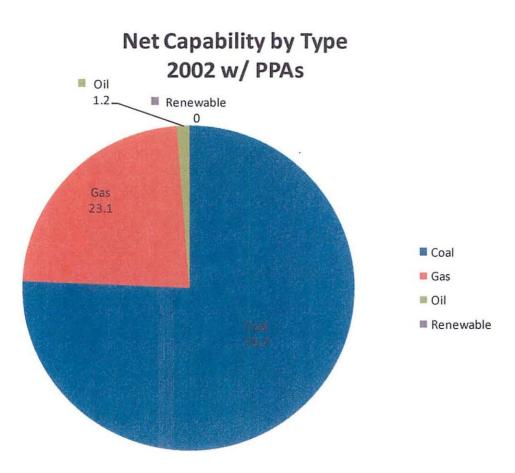
Sworn to and subscribed before me this 30^{h} day of 30^{h} , 2011.

Notary Public, State of Florida at Large

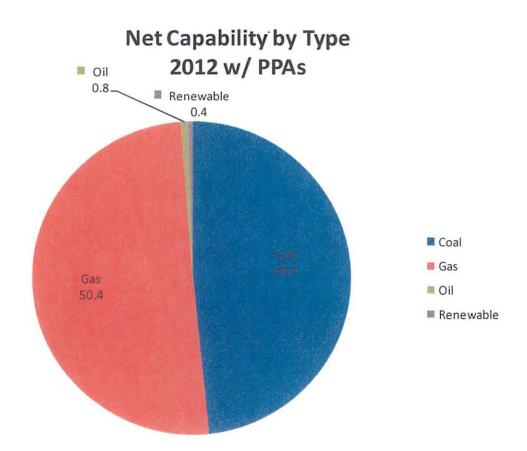
Commission No. DO 750 816

My Commission Expires April 2-2, 2012

Florida Public Service Commission Docket No. 110138-El GULF POWER COMPANY Witness: R. W. Grove Exhibit No. ____(RWG-1) Schedule 1


Responsibility for Minimum Filing Requirements

Schedule <u>Title</u>


- B-11 Capital Additions and Retirements
- B-12 Net Production Plant Additions
- C-6 Budgeted Versus Actual Operating Revenues and Expenses
- C-8 Detail of Changes in Expenses
- C-9 Five Year Analysis Change in Cost
- C-34 Statistical Information
- C-41 O&M Benchmark Variance by Function
- F-5 Forecasting Models
- F-8 Assumptions

Florida Public Service Commission Docket No. 110138-El GULF POWER COMPANY Witness: R. W. Grove Exhibit No.____ (RWG-1) Schedule 2 Page 1 of 2

Total Capacity 2,625 MW

Total Capacity 3,852 MW

.

Owned and Operated or Jointly Owned Generating Capacity

Unit Description	Net Generation (MW)	Commercial Operation Date
Crist Unit 4	75	July 1959
Crist Unit 5	75	June 1961
Crist Unit 6	291	May 1970
Crist Unit 7	465	Aug 1973
Smith Unit 1	162	June 1965
Smith Unit 2	195	June 1967
Smith Unit 3	556	Apr 2002
Smith Unit A	32	May 1971
Scholz Unit 1	46	Mar 1953
Scholz Unit 2	46	Oct 1953
Pea Ridge Unit 1	4	May 1998
Pea Ridge Unit 2	4	May 1998
Pea Ridge Unit 3	4	May 1998
Perdido Unit 1	1.6	Oct 2010
Perdido Unit 2	1.6	Oct 2010
Daniel Unit 1	255	Sep 1977
Daniel Unit 2	255	Jun 1981

Power Purchase Agreements

Agreement	Technology	<u>Fuel</u>	<u>MW</u>	Start Date	End Date
Bay County	Steam	MSW	11	July 2008	July 2014
Coral Baconton	СТ	Gas/Oil	196	June 2009	May 2014
Dahlberg	СТ	Gas/Oil	292	June 2009	May 2014
Central Ala.	CC	Gas	885	Nov 2009	May 2023

2011 Production Capital Additions Budget (\$000)

Description	2011	Description	2011
PERDIDO LANDFILL GAS ENERGY	120	CRIST U6 SW COOLER REPLACEMENT	500
CRIST UNIT 7 HRA SIDEWALLS HEADER TO HEADER	1,000	CRIST UNIT 6 REHEAT AND SUPERHEAT DAMPERS	840
CRIST UNIT 7 REHEATER	2,000	CRIST 6&7 IGNITER AIR SYSTEM	250
CRIST UNIT 6 PRIMARY SUPERHEATER	2,500	CRIST 7C AIR COMPRESSOR	135
CRIST UNIT 6 HRA SIDEWALLS HEADER TO HEADER	3,450	CRIST CYBER SECURITY	400
CRIST 6 STATIC EXCITER AND VOLTAGE REGULATOR	2,200	CRIST HYDRO-MIXERS	1,000
CRIST 7 STATIC EXCITER & VOLTAGE REGULATOR	1,700	CRIST - UNIT 6 REPLACE REHEATER	3,500
ENVIR - WASTE - CRIST FLY ASH LANDFILL STORAGE CELL C	350	CRIST 6&7 BOILER AWARE PROGRAM	80
CRIST U6 REPL BREAKERS CABLE & SWITCHES PER ARC FLA:	100	CRIST COMMON - CONVEYOR BELTS REPLACEMENT	150
CRIST 5 BOTTOM ASH DOGHOUSE AND SLUICE GATE	138	CRIST 4-7 DEMINERALIZER NEUTRALIZATION BASIN PUMP	210
CRIST 6 - 6A 4160 VOLT BREAKERS	400	CRIST UNIT 6 HOT REHEAT PIPING	2,000
CRIST 6 -6B 4160 VOLT BREAKERS	375	SCHOLZ-MISC. STEAM PLANT ADDITION	120
CRIST 6 REHEAT SPRAY SYSTEM	250	SMITH - MISC. STEAM PLANT ADDITIO	425
CRIST 4-7 NITROGEN CAPPING SYSTEM	210	SMITH-U3 TURBINE CONTROLS REPLACEMENT	1,500
CRIST UNIT 6 TURBINE OIL COOLER	290	SMITH UNIT 1 VACUUM PUMPS	250
CRIST 6 FINISHING SUPERHEAT HEADER	1,150	SMITH-U1 FLY ASH AND SOOTBLOWER CONTROLS	200
CRIST 7 REPLACE FINISHING SUPERHEAT OUTLET HEADER	1,500	SMITH UNIT 1 REPLACE RETRACTS ON BOILERS	350
CRIST FUEL HANDLING CRANE	7,328	SMITH UNIT #2 EXPANSION JOINT REPLACEMENT	300
CRIST - MINOR MISC ITEMS	500	SMITH 3 MISC REPLACEMENTS	1,200
CRIST 7 REHEAT OUTLET HEADER REPLACEMENT	1,000	SMITH-BUILD NEW WAREHOUSE FOR INVENTORY	2,250
CRIST 6 LOWER ECONOMIZER AND HEADER REPLACEMEN1	2,450	SMITH-CYBER SECURITY	167
CRIST 5 - PULVERIZED COAL PIPING	1,500	ENVIR - WASTE-SMITH 1&2 - CAP ASH LANDFILL CELLS	200
CRIST 5 GENERATOR STATOR REWIND	3,500	SMITH 3 CC AIR HANDLING UNIT	85
CRIST 6 REHEAT HEADER	1,100	SMITH - U3 CORROSION PROJECT	1,000
CRIST 4 & 5 REPLACE INTAKE SCREENS	500	DANIEL-MISC. STEAM PLANT ADDITIONS &	213
CRIST 6 FD FAN OUTLET POSITIONER REPLACEMENTS	138	DANIEL 2 ACE TWIP C05348 MS PE 2185	201
CRIST 6 CONTROL UPGRADE	385	DANIEL 2 HP/IP TURBINE UPGRADE	5,228
CRIST 5 - L-0 TURBINE BLADE	566	DANIEL 1&2 CONVEYOR BELT	38
CRIST 5 - 16-17-AND 18 STAGE TURBINE BLADE	300	DANIEL 2 CAPITAL VALVE REPLACEMENTS	52
CRIST 6 GRAPHICS UPGRADES	330	DANIEL 1&2 CONTROL ROOM A/C SYSTEMS	100
CRIST 7 OVATION 400 CONTROLLERS REPLACEMENT	100	DANIEL 2 HOT AIR HEATER BASKETS	376
CRIST 4, 5, 6 & 7 BATTERY BANK	250	DANIEL 1&2 FIRE PROTECTION CONTROLS	38
CRIST 4&5 BATTERY BANK	250	DANIEL !&2 CONVEYOR DIRECT DRIVE GEARBOXES	110
CRIST - MISC ADDITIONS	500	DANIEL 1&2 AIR COMPRESSORS	140
CRIST 6 BATTERY BANK	250	DANIEL 2 INLET VANES ON PA FANS	186
CRIST CONDENSATE MAKEUP PIPING	300	DANIEL 2 EXPANSION JOINTS C00435 C00437 C01716	130
CRIST U7 REPL BREAKERS CABLE & SWITCHES PER ARC FLA	175	DANIEL 1 GSU TRANSFORMER	5,005
CRIST US REPL BREAKERS CABLE & SWITHCES FOR ARC FLA	250		68,334

2012 Production Capital Additions Budget (\$000)

Description	2012	Description	2012
PERDIDO LANDFILL GAS ENERGY	120	CRIST - UPGRADE PLANT RADIO SYSTEM	400
CRIST 7 BOTTOM ASH PIT TRASH HOPPER	150	CRIST 7 BOTTOM ASH HOPPER	3,000
CRIST UNIT 7 HRA SIDEWALLS HEADER TO HEADER	2,000	ENVIR-WASTE- CRIST-FLY ASH LANDFILL STORAGE CELL DE	500
CRIST UNIT 7 REHEATER	3,000	CRIST UNIT 6 HOT REHEAT PIPING	2,000
CRIST 6 STATIC EXCITER AND VOLTAGE REGULATOR	2,000	CRIST 5 ID FAN MONORAIL	250
CRIST 7 STATIC EXCITER & VOLTAGE REGULATOR	3,000	SCHOLZ-MISC. STEAM PLANT ADDITION	120
CRIST U6 REPL BREAKERS CABLE & SWITCHES PER ARC FLA:	200	SMITH - MISC. STEAM PLANT ADDITIO	500
CRIST 4 STEAM COOLED FRONT WALL REPLACEMENT	300	SMITH-U2 TURBINE CONTROLS REPLACEMENT	900
CRIST 5 STEAM COOLED FRONT WALL REPLACEMENT	300	SMITH UNIT 2-REPLACE DUCTWORK/EXPANSION JOINTS	350
CRIST 7 PYRITE LINES	144	SMITH 3 REPLACE INLINE AIR FILTERS	364
CRIST 7 HOT END AIR HEATER BASKETS	1,208	SMITH 1&2 - REPLACE #5 HP HEATER	500
CRIST 4&5 SSS TRANSFORMER REPLACEMENT	50	SMITH UNIT #2 EXPANSION JOINT REPLACEMENT	300
CRIST 6 FINISHING SUPERHEAT HEADER	1,150	SMITH 3 MISC REPLACEMENTS	1,200
CRIST 7 REPLACE FINISHING SUPERHEAT OUTLET HEADER	1,500	SMITH-CYBER SECURITY	86
CRIST - MINOR MISC ITEMS	500	ENVIR - WASTE-SMITH 1&2 - CAP ASH LANDFILL CELLS	200
CRIST 7 PYRITE HOPPERS	180	SMITH PLANT-INSTALL NEW PLANT EMBANKMENTS	475
CRIST 7 FLY ASH CONTROLS	300	SMITH - U3 CORROSION PROJECT	1,000
CRIST 7 REHEAT OUTLET HEADER REPLACEMENT	1,000	DANIEL-MISC. STEAM PLANT ADDITIONS &	863
CRIST 6 - PULVERIZED COAL PIPING	3,000	DANIEL 1 VALVE REPLACEMENT C05249 MS PE 2154	53
CRIST 7 - MAIN TURBINE OIL COOLERS	600	DANIEL FIRE PUMP DIESEL	26
CRIST 7 OVATION 400 CONTROLLERS REPLACEMENT	3,750	DANIEL 1&2 CONVEYOR BELT	28
CRIST 7 UPS REPLACEMENT	88	DANIEL 2 HOT AIR HEATER BASKETS	258
CRIST - MISC ADDITIONS	500	DANIEL 1&2 CONVEYOR DIRECT DRIVE GEARBOXES	70
CRIST CONDENSATE MAKEUP PIPING	300	DANIEL 1&2 AIR COMPRESSORS	140
CRIST UNIT 7 PARTICIAN WALL HEADER TO HEADER	1,400	DANIEL 1 INLET VANERS ON PA FANS	185
CRIST U6 SSS TRANSFORMER TIE BREAKER	850	DANIEL UNIT 1 & 2 LAB ANALYSIS EQIP	250
CRIST U4 REPL BREAKERS CABLE & SWITCHES FOR ARC FLA	75	DANIEL 1 EXPANSION JOINTS C01693	200
CRIST US SW COOLER REPLACEMENT	1,000	DANIEL 1 DCS UPGRADE	260
CRIST UNIT 6 NO. 6 HIGH PRESSURE FEEDWATER HEATER	500	DANIEL 1 BOILER FEED PUMPS	95
			43,738

2012 Production O&M Budget (\$000's)

	V	2012 Test Year
<u>Description</u>		Amount
Steam Production		98,574
Other Production		7,801
Other Power Supply		<u>4,513</u>
Total Production		<u>110,888</u>

Excludes Environmental Cost Recovery O&M and Plant Scherer

Gulf Power Company Production O&M Expenses (\$000)

	Actual 2006	Actual 2007	Actual 2008	Actual 2009	Actual 2010
Baseline Materials	7,362	7,906	7,288	6,376	7,762
Baseline Other	38,359	37,832	40,727	37,820	46,923
Baseline Labor	27,146	26,347	27,328	25,769	27,237
Total Baseline	72,867	72,085	75,343	69,965	81,922
Total Outages	6,342	10,260	13,014	14,183	10,871
Special Projects	301	58	67	61	96
Total Actual/Budget	79,510	82,403	88,424	84,209	92,889

	Average	85,487			
Baseline Materials	Budget <u>2011</u> 9,526	Budget <u>2012</u> 8,734	Budget <u>2013</u> 10,055	Budget <u>2014</u> 9,821	Budget <u>2015</u> 10,326
Baseline Other	47,485	47,544	49,430	51,036	55,973
Baseline Labor	30,077	30,828	31,614	32,480	33,371
Total Baseline	87,088	87,106	91,099	93,337	99,670
Total Outages	22,960	23,149	18,886	20,195	20,615
Special Projects	387	633	314	355	322
Total Actual/Budget	110,435	110,888	110,299	113,887	120,607
	Average	113,223			

Excludes Environmental Cost Recovery O&M and Plant Scherer

Owned and Operated or Jointly Owned Generating Capacity

(Age of generating fleet in 2002 compared to 2012)

		Operation	Age At June	Age At January	Projected	Remaining Useful
UNIT	<u>MW</u>	Date	2002	<u>2012</u>	Retirment Date	<u>Life</u>
Crist Unit 4	75	7/1/1959	43	53	Dec-24	12
Crist Unit 5	75	6/1/1961	42	53	Dec-26	14
Crist Unit 6	291	5/1/1970	32	42	Dec-35	23
Crist Unit 7	465	8/1/1973	29	39	Dec-38	26
Smith Unit 1	162	6/1/1965	37	47	Dec-30	18
Smith Unit 2	195	6/1/1967	35	45	Dec-32	20
Smith Unit 3	556	4/1/2002	0	10	Dec-42	30
Smith Unit A	32	5/1/1971	31	41	Dec-27	15
Scholz Unit 1	46	3/1/1953	49	59	Note	
Scholz Unit 2	46	10/1/1953	49	59	Note	
Pea Ridge Unit 1	4	5/1/1998	4	14	Dec-18	6
Pea Ridge Unit 2	4	5/1/1998	4	14	Dec-18	6
Pea Ridge Unit 3	4	5/1/1998	4	14	Dec-18	6
Perdido Unit 1	1.6	10/1/2010	0	2	Dec-29	17
Perdido Unit 2	1.6	10/1/2010	0	2	Dec-29	17
Daniel Unit 1	255	9/1/1977	25	35	Dec-42	30
Daniel Unit 2	255	6/1/1981	21	31	Dec-46	34

Note - Gulf has not included a retirement date for Plant Scholz in Gulf's Ten-Year-Site plan. Gulf has not made a firm decision or commitment to retire any of these units on the projected retirement dates shown.

Owned and Operated or Jointly Owned Generating Capacity

2002 Ten Year Site Plan Compared to 2012 Ten Year Site Plan

		Operation	2002 TYSP	Forecast Life	2012 TYSP Retirement Date	Forecast Life In 2012
UNIT	MW	Date	Retirement Date	In 2002		
Crist Unit 4	75	7/1/1959	Dec 2014	55	Dec-24	65
Crist Unit 5	75	6/1/1961	Dec 2016	55	Dec-26	65
Crist Unit 6	291	5/1/1970	Dec 2015	45	Dec-35	65
Crist Unit 7	465	8/1/1973	Dec 2018	45	Dec-38	65
Smith Unit 1	162	6/1/1965	Dec 2015	50	Dec-30	65
Smith Unit 2	195	6/1/1967	Dec 2017	50	Dec-32	65
Smith Unit 3	556	4/1/2002	Dec 2027	25	Dec-42	40
Smith Unit A	32	5/1/1971	Dec 2006	35	Dec-27	55
Scholz Unit 1	46	3/1/1953	Dec 2011	58	Note	
Scholz Unit 2	46	10/1/1953	Dec 2011	58	Note	
Pea Ridge Unit 1	4	5/1/1998	Dec 2018	20	Dec-18	20
Pea Ridge Unit 2	4	5/1/1998	Dec 2018	20	Dec-18	20
Pea Ridge Unit 3	4	5/1/1998	Dec 2018	20	Dec-18	20
Perdido Unit 1	1.6	10/1/2010	N/A	N/A	Dec-29	20
Perdido Unit 2	1.6	10/1/2010	N/A	N/A	Dec-29	20
Daniel Unit 1	255	9/1/1977	Dec 2022	45	Dec-42	65
Daniel Unit 2	255	6/1/1981	Dec 2026	45	Dec-46	65

Note - Gulf has not included a retirement date for Plant Scholz in Gulf's Ten-Year-Site plan. Gulf has not made a firm decision or commitment to retire any of these units on the projected retirement dates shown.

2012 Production O&M Benchmark Comparison (\$000)

Description	2002/2003 Base Year <u>Allowed</u>	Test Year <u>Benchmark</u>	2012 Test Year Production <u>O&M Budget</u>	Variance
Steam Production	70,695	88,609	98,574	9,965
Other Production	3,878	4,861	7,801	2,940
Other Power Supply	2,423	<u>3,037</u>	<u>4,513</u>	<u>1,476</u>
Total Production	76,996	96,507	<u>110,888</u>	<u>14,381</u>

Gulf Power Company Planned Outages 2011 - 2015 (\$000's)

	<u>2011</u>	2012	2013	<u>2014</u>	2015
			2 5 4 9	2 702	
Crist Plant Unit 4	-	-	2,548	2,703	-
Crist Plant Unit 5	5,762	-	2,205	2,950	-
Crist Plant Unit 6	4,738	6,966	2,814	-	4,490
Crist Plant Unit 7	4,412	6,120	-	3,515	4,493
Crist Common	317	322	309	207	212
Scholz Plant Unit 1	-	-	-	825	250
Scholz Plant Unit 2	-	-	-	-	1,075
Scholz Common	39	39	40	25	26
Smith Plant Unit 1	3,015	-	2,535	-	4,477
Smith Plant Unit 2	-	2,269	-	4,916	-
Smith CT	-	-	125	-	-
Smith CC	1,037	1,133	1,891	1,138	1,640
Smith Common	129	153	145	75	346
Plant Daniel	3,511	6,147	6,274	3,522	3,319
Perdido _				319	287
Total	22,960	23,149	18,886	20,195	20,615
			46.070	40 720	10 (00
Production Steam	21,923	22,016	16,870	18,738	18,688
5 year average	19,647				
Production Other	1,037	1,133	2,016	1,457	1,927
5 year average	1,514				

		Gulf Po	wer Compan	У	
		Plann	ed Outages		
	•	Benchr	nark Comparision		
Crist	Prior Test Year		Benchmark	Test Year	Variance
4	1,142,000	1.2534	1,432,000	-	(1,432,000)
5	1,305,000	1.2534	1,636,000	-	(1,636,000)
6	1,491,000	1.2534	1,868,000	6,966,000	5,098,000
7	1,772,000	1.2534	2,221,000	6,120,000	3,899,000
Common	791,000	1.2534	991,000	322,000	(669,000)
Scholz	Prior Test Year		Benchmark	Test Year	Variance
1	551,000	1.2534	691,000	-	(691,000)
2	201,000	1.2534	252,000	-	(252,000)
Common	34,000	1.2534	43,000	39,000	(4,000)
Smith	Prior Test Year		Benchmark	Test Year	Variance
1	2,055,000	1.2534	2,576,000	-	(2,576,000)
2	1,024,000	1.2534	1,283,000	2,269,000	986,000
СТ	-	1.2534	-	-	-
СС	242,000	1.2534	303,000	1,133,000	830,000
Common	64,000	1.2534	80,000	153,000	73,000
Daniel	Prior Test Year		Benchmark	Test Year	Variance
	3,607,000	1.2534	4,521,000	6,147,000	1,626,000
Total Production	14,279,000		17,897,000	23,149,000	5,252,000
Production Steam	14,037,000		17,594,000	22,016,000	4,422,000
Production Other	242,000		303,000	1,133,000	830,000

2012 Production Workforce

Location	Position	Number	Salary Type
Power Generation Office	Renewable Energy Manager	1	0&M
Plant Crist	Welder Mecahnic	4	Capital
	Welder Mecahnic	2	0&M
	Operations Specialist	1	0&M
	Operators	-4	0&M
	l&C Specialist	3	0&M
	Planner	1	0&M
	Engineers	2	0&M
	Maintenance Specialist	2	0&M
	Administrative Assistant	1	Capital
	Chemical & Results Technicians	2	ECRC
	Team Leader - Fuel	1	0&M
	Utility Persons	5	0&M
Total Plant Crist		20	
Plant Smith	Operators	2	0&M
	Team Leader - Operations	1	0&M
	Utility Person	8	0&M
	Electrician	3	0&M
	Welder Mechanic	3	0&M
	I&C Specialist	1	0&M
	Engineers	1	0&M
	Planner	1	0&M
	C&R Technician	1	0&M
	Compliance Specialist	1	0&M
	Contract Support Specialist	<u>1</u>	0&M
Total Plant Smith		23	
Plant Scholz	Operations Specialist	1	0&M
	Operators	1	0&M
	Utility Person	1	0&M
	I&C Technician	1	0&M
	Welder Mechanic	2	0&M
	Maintenance Specialist	1	0&M
	Team Leader - Compliance	1	0&M
Total Plant Scholz			
Total Capital		5	289,000
Total ECRC		2	129,000
Total O&M	······································	45	2,800,000