BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re: Petition for rate increase by Florida Power \& Light Company

Docket No: 120015-EI

Filed: July 2, 2012

DIRECT TESTIMONY:

OF

J. RANDALL WOOLRIDGE

 ON BEHALF OF THE CITIZENS OF THE STATE OF FLORIDA
FLORIDA POWER \& LIGHT COMPANY

DOCKET NO. 120015-EI

Direct Testimony of Dr. J. Randall Woolridge

TABLE OF CONTENTS

I. IDENTIFICATION OF WITNESS AND PURPOSE OF TESTIMONY 1
II. CAPITAL COSTS IN TODAY'S MARKETS 5
III. PROXY GROUP SELECTION 12
IV. CAPITAL STRUCTURE RATIOS AND DEBT COST RATES 14
V. THE COST OF COMMON EQUITY CAPITAL 19
A. OVERVIEW 19
B. DCF ANALYSIS 26
C. CAPITAL ASSET PRICING MODEL RESULTS 40
VI. EQUITY COST RATE SUMMARY 50
VII. CRITIQUE OF FPL'S RATE OF RETURN TESTIMONY 52
A. CAPITAL STRUCTURE 53
B. EQUITY COST RATE 58

1. Proxy Groups 58
2. DCF Approach 59
3. CAPM Approach 62
4. Risk Premium Approach 67
5. Expected Earnings Approach 68
6. Size Adjustment and Flotation Costs 69

Dr. J. Randall Woolridge

LIST OF APPENDICES AND EXHIBITS

Exhibit

Title

Appendix A	Résumé of Dr. J. Randall Woolridge
Appendix B	Research on Analysts' EPS Growth Rate Forecasts
Appendix C	Building Blocks Equity Risk Premium
JRW-1	Return on Equity Recommendation
JRW-2	Interest Rates
JRW-3	Capital Cost Indicators
JRW-4	Summary Financial Statistics for Proxy Group
JRW-5	Capital Structure Ratios
JRW-6	The Relationship Between Estimated ROE and Market-to-Book Ratios
JRW-7	Utility Capital Cost Indicators
JRW-8	Industry Average Betas
JRW-9	Three-Stage DCF Model
JRW-10	DCF Study
JRW-11	CAPM Study
JRW-12	Summary of FPL's Proposed Equity Cost Rate
JRW-13	Financial Statistics for Avera Group
JRW-14	DCF Growth Rate Analysis
JRW-15	GDP and S\&P 500 Growth Rates

DIRECT TESTIMONY

OF

J. RANDALL WOOLRIDGE

On Behalf of the Office of Public Counsel
Before the
Florida Public Service Commission
Docket No. 120015-EI
I. IDENTIFICATION OF WITNESS AND PURPOSE OF TESTIMONY
Q. PLEASE STATE YOUR FULL NAME, ADDRESS, AND OCCUPATION.
A. My name is J. Randall Woolridge, and my business address is 120 Haymaker Circle, State College, PA 16801. I am a Professor of Finance and the Goldman, Sachs \& Co and Frank P. Smeal Endowed University Fellow in Business Administration at the University Park Campus of the Pennsylvania State University. I am also the Director of the Smeal College Trading Room and President of the Nittany Lion Fund, LLC. A summary of my educational background, research, and related business experience is provided in Exhibit JRW-1.
Q. WHAT IS THE PURPOSE OF YOUR TESTIMONY IN THIS PROCEEDING?
A. I have been asked by the Florida Office of Public Counsel ("OPC") to provide an opinion as to the appropriate return on equity ("ROE") for Florida Power \&

Light Company ("FPL" or "Company") and to evaluate FPL's rate of return testimony in this proceeding.

Q. HOW IS YOUR TESTIMONY ORGANIZED?

A. First, I review my ROE recommendation for FPL. Second, I provide an assessment of capital costs in today's capital markets. Third, I discuss the selection of a proxy group of electric utility companies ("Electric Proxy Group") for estimating the cost of capital for FPL. Fourth, I discuss the relationship between a utility's capital structure and the return on equity that should be associated with that capital structure. Fifth, I discuss the concept of the cost of equity capital, and then estimate the equity cost rate for FPL. Finally, I provide a critique of FPL's rate of return testimony.

Q. PLEASE SUMMARIZE YOUR RECOMMENDATIONS REGARDING

 THE APPROPRIATE RATE OF RETURN FOR FPL.A. I initially show that capital costs, as measured by interest rates, are at historically low levels. With respect to this case, I show that interest rates on utility bonds have declined by about 200 basis points since the Company's last rate case. To estimate an equity cost rate for FPL, I have applied the Discounted Cash Flow ("DCF") Model and the Capital Asset Pricing Model ("CAPM") to my Electric Proxy Group. My recommended ROE depends on the capital structure that is adopted by the Commission. If the Commission adopts OPC's recommended capital structure with a 50% common equity ratio that is presented in the testimony of OPC witness Kevin O'Donnell, I recommend an equity cost rate of 9.0% for FPL. If the Commission adopts
the Company's recommended capital structure with a 59.62% common equity ratio, I recommend an equity cost rate of 8.50%. These findings are summarized in Exhibit JRW-1.

Q. PLEASE SUMMARIZE THE PRIMARY ISSUES REGARDING RATE

 OF RETURN IN THIS PROCEEDING.A. The Company's recommended capital structure has a common equity ratio of 59.62%, which is well in excess of the range within which the common equity ratios of most electric utility companies fall. OPC's recommended capital structure is provided by Mr. Kevin O'Donnell and includes a common equity ratio of 50.0%. Dr. Avera has attempted to justify FPL's proposed capital structure by adjusting the capital structure for the Company's purchased power contracts and by comparing the 59.62% common equity ratio to the common equity ratios for the operating companies (and not the holding companies) for the companies in his proxy group. He also compares FPL's regulatory capital structure to the market value capital structures for the companies in his proxy group. I demonstrate that these methods represent 'apples' and 'oranges' comparisons.

FPL witness Avera provides the Company's proposed common equity cost rate. Dr. Avera's equity cost rate estimate is in the 10.25% to 12.25% range. I have recommended an equity cost rate of 9.0% for FPL using OPC witness O'Donnell's capital structure. Both Dr. Avera and I have applied the DCF and the CAPM approaches to groups of publicly-held electric utility companies. Dr. Avera has also used Risk Premium ("RPM") and Expected Earnings ("EE") approaches to estimate an equity cost rate for FPL. Dr.

Avera employs a proxy group of fourteen electric utility companies. I show that Dr. Avera's group is riskier than FPL and that some of these companies have a low percentage of revenues from regulated electric utility operations. Dr. Avera also employs the equity cost rate results for an inappropriate proxy group of non-utility companies. With respect to the application of the DCF model, the major area of disagreement is the expected DCF growth rate. Dr. Avera relies exclusively on the earnings per share ("EPS") growth rate forecasts of Wall Street analysts and Value Line for his DCF growth rate. I demonstrate that there is an upward bias to these growth rate forecasts.

The CAPM approach requires an estimate of the risk-free interest rate, beta, and the equity risk premium. The primary error in Dr Avera's CAPM is his equity risk premium. This equity risk premium is based on an expected stock market return of 13.50% over time. I provide evidence that: (1) the expected stock market return of 13.5% employed by Dr. Avera in his analysis is not reflective of current market fundamentals; (2) this expected stock market return is based on an expected EPS growth rate that is not reasonable given prospective economic and earnings growth; and (3) Dr. Avera's equity risk premium of 10.5% is well above the equity risk premiums used in the real world of finance. In contrast to Dr. Avera, I use a market risk premium which employs (1) alternative approaches to estimating a market premium and (2) the results of over thirty studies and surveys of the market risk premium. As I will note, my market risk premium of 5.01% is consistent with the market risk premiums: (1) discovered in recent academic studies by leading finance scholars; (2) employed by leading investment banks and management
consulting firms; and (3) that result from surveys of financial forecasters and corporate chief financial officers ("CFOs")"

Dr. Avera's EE approach is subject to a number of errors, and does not provide a reliable estimate of the Company's cost of equity capital. Furthermore, this methodology, which is not market-based, has not been used by regulatory commissions for years as an equity cost rate approach.

In the end, the most significant areas of disagreement in measuring FPL's cost of capital are: (1) the Company's capital structure, and the ROE that is associated with the capital structure; (2) the appropriate proxy group to use in estimating an equity cost rate for FPL, and the riskiness of FPL relative to the proxy group; (3) Dr. Avera's excessive reliance on the earnings per share growth rate forecasts of Wall Street analysts to measure expected DCF growth; (4) the measurement and magnitude of the equity risk premium used in a CAPM approach and RPM approaches; (5) the validity of the EE equity cost rate approach; and (6) whether or not adjustments are needed to account for size and flotation costs.

II. CAPITAL COSTS IN TODAY'S MARKETS

Q. PLEASE DISCUSS CAPITAL COSTS IN U.S. MARKETS.

A. Long-term capital cost rates for U.S. corporations are a function of the required returns on risk-free securities plus a risk premium. The risk-free rate of interest is the yield on long-term U.S. Treasury yields. The yields on tenyear U.S. Treasury bonds from 1953 to the present are provided on page 1 of Exhibit JRW-2. These yields peaked in the early 1980s and have generally
declined since that time. In the summer of 2003, these yields hit a 60 -year low at 3.33%. They subsequently increased and fluctuated between the 4.0% and 5.0% levels over the next four years in response to ebbs and flows in the economy. Ten-year Treasury yields began to decline in mid-2007 at the beginning of the financial crisis. In 2008, Treasury yields declined to below 3.0% as a result of the expansion of the mortgage and subprime market credit crisis, the turmoil in the financial sector, the government bailout of financial institutions, the monetary stimulus provided by the Federal Reserve, and the economic recession. From 2008 until 2011, these rates fluctuated between 2.5% and 3.5%. Over the past six months, the yields on ten-year Treasuries have declined from 2.5% to below 2.0% as economic uncertainties have persisted

Panel B on page 1 of Exhibit JRW-2 shows the differences in yields between ten-year Treasuries and Moody's Baa rated bonds since the year 2000. This differential primarily reflects the additional risk required by bond investors for the risk associated with investing in corporate bonds. The difference also reflects, to some degree, yield curve changes over time. The Baa rating is the lowest of the investment grade bond ratings for corporate bonds. The yield differential hovered in the 2.0% to 3.0% area until 2005 , declined to 1.5% until late 2007, and then increased significantly in response to the financial crisis. This differential peaked at 6.0% at the height of the financial crisis in early 2009 , due to tightening in credit markets, which increased corporate bond yields and the "flight to quality" which decreased treasury yields. The differential subsequently declined and has been in the 2.5% to 3.0% range over the past three years. As previously noted, the risk premium is the return premium required by investors to purchase riskier securities. The risk premium required by investors to buy corporate bonds is observable based on yield differentials in the markets. The equity risk premium is the return premium required to purchase stocks as opposed to bonds. The equity risk premium is not readily observable in the markets (as are bond risk premiums) since expected stock market returns are not readily observable. As a result, equity risk premiums must be estimated using market data. There are alternative methodologies to estimating the equity risk premium, and the alternative approaches and equity risk premium results are subject to much debate. One way to estimate the equity risk premium is to compare the mean returns on bonds and stocks over long historical periods. Measured in this manner, the equity risk premium has been in the 5% to 7% range. However, studies by leading academics indicate that the forward-looking equity risk premium is actually in the 4.0% to 5.0% range. These lower equity risk premium results are in line with the findings of equity risk premium surveys of CFOs, academics, analysts, companies, and financial forecasters.
Q. PLEASE REVIEW THE FINANCIAL CRISIS THAT BEGAN IN 2007 AND THE RESPONSE OF THE U.S. GOVERNMENT.
A. The mortgage crisis, subprime crisis, credit crisis, economic recession, and the restructuring of financial institutions have had tremendous global economic implications. This issue first surfaced in the summer of 2007 as a mortgage crisis. It expanded into the subprime area in late 2008 and led to the collapse of certain financial institutions, notably Bear Stearns, in the first quarter of
2008. Commodity and energy prices peaked and then began to decline in the summer of 2008 , as the crisis in the financial markets spread to the global economy. The turmoil in the financial sector peaked in September of 2008 with the failure of several large financial institutions, Bank of America's buyout of AIG and Merrill Lynch, and the government takeover of Fannie Mae and Freddie Mac.

In response to the market crisis, the Federal Reserve ("Fed") took extraordinary steps in an effort to stabilize capital markets. Most significantly, the Fed has opened its lending facilities to numerous banking and investment firms to promote credit markets. As a result, the balance sheet of the Federal Reserve grew by hundreds of billions of dollars in support of the financial system. The federal government took a series of measures to shore up the economy and the markets. The Troubled Asset Relief Program ("TARP") was aimed at providing over $\$ 700$ billion in government funds to the banking system in the form of equity investments. The federal government spent billions bailing out a number of prominent financial institutions, including AIG, Citigroup, and Bank of America. The government also bailed out other industries, most notably the auto industry. In 2009, President Obama signed into law his $\$ 787$ billion economic stimulus, which included significant tax cuts and government spending aimed at creating jobs and turning around the economy.

The spillover of the financial crisis to the economy has been ongoing. According to the National Bureau of Economic Research ("NBER"), the economy slipped into a recession in the $4^{\text {th }}$ quarter of 2007. The NBER has indicated that the recession ended in the $2^{\text {nd }}$ quarter of 2009. Nonetheless, the
recovery of the economy has lagged the recoveries from previous recessions. Since the $2^{\text {nd }}$ quarter of 2009 , economic growth has been only 2.4% per year, and just 1.8% in the first quarter of 2012 . Furthermore, the muted economic recovery in the U.S. has been hindered by global economic concerns, especially continuing fiscal and monetary issues in Europe and the prospect of slowing economic growth in China. As a result, the U.S. is still saddled with relatively high unemployment, large government budget deficits, continued housing market issues, and uncertainty about future economic growth. The stalled economic recovery is reflected in the stock market. The stock market bottomed out in March of 2009, and then increased about 100% over the next two years. However, since that time, the stock market advance has been slowed by the U.S. and global economic uncertainties and concerns.

In summary, the Federal Reserve and the U.S. government have taken extraordinary actions and committed great sums of money to rescue the economy, certain industries, and the capital markets. But the economy is still on an uncertain path.

Q. PLEASE PROVIDE ADDITIONAL INFORMATION ON THE ACTIONS OF THE GOVERNMENT AND THEIR IMPACT ON U. S. CAPITAL COSTS.

A. The yields on United States Treasury securities have declined to levels not seen since the 1950s. The yields on Treasury bills securities decreased significantly at the onset of the financial crisis and have remained at very low levels. The decline in interest rates reflects several factors, including: (1) the "flight to quality" in the credit markets as investors sought out low-risk investments
during the financial crisis; (2) the very aggressive monetary actions of the Federal Reserve, which were aimed at restoring liquidity and faith in the financial system as well as maintaining low interest rates to boost economic growth; and (3) the continuing slow recovery from the recession.

The credit market for corporate and utility debt experienced higher rates due to the credit crisis. The short-term credit markets were initially hit with credit issues, leading to the demise of several large financial institutions. The primary indicator of the short-term credit market is the 3-month London Interbank Offered Rate ("LIBOR"). LIBOR peaked in the third quarter of 2008 at 4.75%. It has since declined to below 0.5% as the short-term credit markets opened up and U.S. Treasury rates have remained low. The longterm corporate credit markets tightened up during the financial crisis, but have improved significantly since 2009. Interest rates on utility and corporate debt have declined to historically low levels. These low rates reflect the weak economy, as the Federal Reserve has significantly scaled back its aggressive monetary policy actions.

Panel A of page 1 of Exhibit JRW-3 provides the yields on A, BBB+, and BBB rated public utility bonds. These yields peaked in November 2008, and have since declined by nearly 400 basis points. For example, the yields on 'A'-rated utility bonds, which peaked at about 7.75% in November of 2008, have declined to 3.76% as of June 1, 2012. Panel B of Exhibit JRW-3 provides the yield spreads on $\mathrm{A}, \mathrm{BBB}+$, and BBB rated public utility bonds relative to Treasury bonds. These yield spreads increased dramatically in the third quarter of 2008 during the peak of the financial crisis and have decreased significantly since that time. For example, the yield spreads between 30 -year
U.S. Treasury bonds and ' A '-rated utility bonds peaked at over 3.50% in November of 2008 , declined to 1.0% in the summer of 2012 , and have since increased to about 1.25%.

In sum, while the economy continues to face significant problems, the actions of the government and Federal Reserve had a large effect on the credit markets. The capital costs for utilities, as measured by the yields on 30 -year utility bonds, have declined to below pre-financial crisis levels.
Q. PLEASE DISCUSS THE RECENT PERFORMANCE OF UTILITY STOCKS.
A. Utility stocks have performed quite well during the recent period of uncertainty. Page 2 of Exhibit JRW-3 graphs the performance of the Dow Jones Utility Index versus the Standard \& Poor's 500 index (S\&P 500) over the past year. When the S\&P 500 declined by over 10% in early August of 2011, utility stocks declined by much less. As the S\&P 500 recovered in the fourth quarter of 2011, utility stocks continued to increase in value as well. In the first quarter of 2012 , the S\&P 500 performed much better than the stocks of utilities. However, utility stocks have outperformed the S\&P 500 during the second quarter of 2012 as the S\&P 500 has declined by about 7.0% while utility stocks have appreciated about 2.0%.

Overall, utility stocks have proven to be safe havens in volatile markets since utility stocks have low risk relative to the overall stock market. Utility stocks did not decline as much as the overall market in the market decline of the third quarter of 2011 and second quarter of 2012, and they did not increase in value as much as the overall market in the recovery of the
stock market in the first quarter of 2012. The low relative volatility and risk of utility stocks is reflected in their low betas.
Q. OVERALL, WHAT DOES YOUR REVIEW OF THE CAPITAL MARKET CONDITIONS INDICATE ABOUT THE EQUITY COST RATE FOR UTILITIES TODAY?
A. The market data suggests that capital costs for utilities are at relatively low levels. The rates on 30-year utility bonds are at historically low levels. As shown on page 2 of Exhibit JRW-3, the yield on long-term 'A'-rated utility bonds is only 4.45%. In addition, utility stocks have proven to be steady performers over the past year relative to the overall market. As such, equity cost rates for utilities are at relatively low levels. As demonstrated later in my testimony, this observation is supported by the DCF and CAPM data for electric utility companies.

III. PROXY GROUP SELECTION

Q. PLEASE DESCRIBE YOUR APPROACH TO DEVELOPING A FAIR RATE OF RETURN RECOMMENDATION FOR FPL.
A. To develop a fair rate of return recommendation for FPL, I evaluated the return requirements of investors on the common stock of a proxy group of publicly-held electric utility companies ("Electric Proxy Group").

Q. PLEASE DESCRIBE YOUR PROXY GROUP OF COMPANIES.

A. My Electric Proxy Group consists of twenty-eight electric utility companies.

The selection criteria include the following:

1. Listed as Electric Utility by Value Line Investment Survey and listed as an Electric Utility or Combination Electric \& Gas company in AUS Utilities Report;
2. At least 50% of revenues from regulated electric operations as reported by AUS Utilities Report;
3. An investment grade bond rating as reported by AUS Utilities Report;
4. Has paid a cash dividend for the past three years, with no cuts or omissions;
5. Not involved in an acquisition of another utility, and/or was not the target of an acquisition, in the past six months; and
6. Analysts' long-term EPS growth rate forecasts available from Yahoo, Reuters, and Zacks.

The Electric Proxy Group includes thirty-four companies. Summary financial statistics for the proxy group are listed on page 1 of Exhibit JRW-4. ${ }^{1}$ The median operating revenues and net plant for the Electric Proxy Group are $\$ 4,075.1 \mathrm{M}$ and $\$ 9,144.0 \mathrm{M}$, respectively. The group receives 77% of revenues from regulated electric operations, has an $\mathrm{A}-/ \mathrm{BBB}+$ bond rating from Standard \& Poor's, a current common equity ratio of 45.3%, and an earned return on common equity over of 9.9%.

[^0]
IV. CAPITAL STRUCTURE RATIOS AND DEBT COST RATES

Q. WHAT IS FPL'S CURRENT CAPITAL STRUCTURE FOR RATEMAKING PURPOSES?

A. FPL's recommended capital structure from investor capital sources for ratemaking purposes includes 2.22% short-term debt, 38.16% long-term debt, and 59.62% common equity. This is provided in Panel A of Exhibit JRW-5.
Q. HOW DOES FPL'S RECOMMENDED CAPITAL STRUCTURE COMPARE TO THAT OF ITS PARENT, NEXTERA?
A. Panel B of Exhibit JRW-5 shows NextEra's average quarterly capitalization over the past year. This average quarterly capital structure includes 8.75% short-term debt, 52.33% long-term debt, and 38.92% common equity. These ratios highlight the fact that, on a composite basis, NextEra employs much more debt and much less equity than its regulated subsidiary, FPL. Hence, NextEra has a higher degree of financial risk than FPL. These ratios indicate that NextEra finances its other businesses, such as NextEra Energy Resources, with more debt and less equity than the capital structure it employs for FPL.
Q. PLEASE DISCUSS THE CAPITAL STRUCTURES OF THE COMPANIES IN THE ELECTRIC PROXY GROUP.
A. Panel C of Exhibit JRW-5 provides the average quarterly capitalization ratios for the companies in the Electric Proxy Group. Pages 2-6 of Exhibit JRW-5 provide the supporting company data. The average of the quarterly capitalization data for the proxy group is 6.55% short-term debt, 48.02% long-term debt, 0.38% preferred stock, and 45.01% common equity. These are the capital structure
ratios for the holding companies that trade in the markets and are used to estimate an equity cost rate for FPL. These ratios indicate that: (1) the Electric Proxy Group has, on average, a much lower common equity ratio and higher financial risk than FPL; and (2) FPL's parent, NextEra, has somewhat more debt and financial risk than the Electric Proxy Group.
Q. YOU HAVE REFERRED SEVERAL TIMES TO THE DIFFERING EQUITY RATIOS OF THE ELECTRIC PROXY UTILITY GROUP, NEXTERA, AND FPL. PLEASE ELABORATE ON THE SIGNIFICANCE OF THE AMOUNT OF EQUITY THAT IS INCLUDED IN AN ELECTRIC UTILITY'S CAPITAL STRUCTURE.
A. An electric utility's decision as to the amount of equity capital it will incorporate in its capital structure involves fundamental trade-offs relating to the amount of financial risk the firm carries, the overall revenue requirements its customers are required to bear through the rates they pay, and the return on equity that investors will require.
Q. PLEASE DISCUSS A UTILITY'S DECISION TO USE DEBT VERSUS EQUITY TO MEET ITS CAPITAL NEEDS.
A. Utilities satisfy their capital needs through a mix of equity and debt. Because equity capital is more expensive than debt, the issuance of debt enables a utility to raise more capital with a given commitment of dollars than it could raise with just equity. Debt is therefore a means of "leveraging" capital dollars. However, as the amount of debt in the capital structure increases, its financial risk increases and the risk of the utility perceived by equity investors also increases. Significantly for this case, the converse is also true. As the amount of debt in the capital structure decreases, the financial risk decreases. The required return on equity capital is a function of the amount of overall risk that investors perceive, including financial risk in the form of debt.

Q. WHY IS THIS RELATIONSHIP IMPORTANT TO THE UTILITY'S CUSTOMERS?

A. Just as there is a direct correlation between the utility's authorized return on equity and the utility's revenue requirements (the higher the return, the greater the revenue requirement), there is a direct correlation between the amount of equity in the capital structure and the revenue requirements the customers are called on to bear. Again, equity capital is more expensive than debt. Not only does equity command a higher cost rate, it also adds more to the income tax burden that ratepayers are required to pay through rates. As the equity ratio increases, the utility's revenue requirements increase and rates paid by customers increase. If the proportion of equity is too high, rates will be higher than they need to be. For this reason, the utility's management must pursue a capital acquisition strategy that results in the proper balance in the capital structure.
Q. HOW HAVE ELECTRIC UTILITIES TYPICALLY STRUCK THIS BALANCE?
A. Due to regulation and the essential nature of its output, an electric utility is exposed to less business risk than other companies that are not regulated. This means that an electric utility can reasonably carry relatively more debt in its
capital structure than most unregulated companies. The utility should take appropriate advantage of its lower business risk to employ cheaper debt capital at a level that will benefit its customers through lower revenue requirements. Typically, one may see equity ratios for electric utilities ranging from the 40% to 50% range. As I stated earlier, the average amount of common equity in the average capital structure of the utilities in my proxy group is 45%. In my experience, this value is typical for large electric utilities. It is also significant that NextEra has significantly less equity in its overall capital structure-i.e., is significantly more leveraged-than its subsidiary, FPL. In this light, FPL has significantly more equity in its capital structure than other electric utilities.
Q. GIVEN YOUR VIEW THAT FPL'S EQUITY RATIO IS MUCH HIGHER THAN THAT OF THE PROXY GROUP, WHAT SHOULD THE COMMISSION DO IN THIS RATEMAKING PROCEEDING?
A. When a regulated electric utility's actual capital structure contains too high an equity ratio, the options are: (1) to impute a more reasonable capital structure and reflect the imputed capital structure in revenue requirements; or (2) to recognize the downward impact that an unusually high equity ratio will have on the financial risk of a utility and authorize a lower common equity cost rate.
Q. PLEASE ELABORATE ON THIS "DOWNWARD IMPACT."
A. As I stated earlier, there is a direct correlation between the amount of debt in a utility's capital structure and the financial risk that an equity investor will
associate with that utility. A relatively lower proportion of debt translates into a lower required return on equity, all other things being equal. Stated differently, a utility cannot expect to "have it both ways." Specifically, a utility cannot maintain an unusually high equity ratio and not expect to have the resulting lower risk reflected in its authorized return on equity. The fundamental relationship between the lower risk and the appropriate authorized return should not be ignored.

Q. GIVEN THIS DISCUSSION, HOW ARE YOU EVALUATING THE

 CAPITAL STRUCTURE AND EQUITY COST RATE IN THIS PROCEEDING?A. I have estimated an equity cost rate in the range of 8.50% to 9.0% based on my evaluation of the Electric Proxy Group. The proxy group has a common equity ratio of 45%. As such, the financial risk of the proxy group is less than that of FPL. OPC witness O'Donnell has recommended a capital structure for FPL that includes a common equity ratio of 50.0%. To recognize the risk trade-off of the alternative proposed capital structures, I am recommending an equity cost rate of 8.5% if the Commission adopts FPL's requested 59.62% equity capital structure. If the Commission adopts OPC's imputed capital structure, I recommend an equity cost rate of 9.0% for $F P L$.

V. THE COST OF COMMON EQUITY CAPITAL

A. OVERVIEW

Q. WHY MUST AN OVERALL COST OF CAPITAL OR FAIR RATE OF RETURN BE ESTABLISHED FOR A PUBLIC UTILITY?
A. In a competitive industry, the return on a firm's common equity capital is determined through the competitive market for its goods and services. Due to the capital requirements needed to provide utility services and to the economic benefit to society from avoiding duplication of these services, some public utilities are monopolies. It is not appropriate to permit monopoly utilities to set their own prices because of the lack of competition and the essential nature of the services. Thus, regulation seeks to establish prices that are fair to consumers and, at the same time, sufficient to meet the operating and capital costs of the utility (i.e., provide an adequate return on capital to attract investors).
Q. PLEASE PROVIDE AN OVERVIEW OF THE COST OF CAPITAL IN THE CONTEXT OF THE THEORY OF THE FIRM.
A. The total cost of operating a business includes the cost of capital. The cost of common equity capital is the expected return on a firm's common stock that the marginal investor would deem sufficient to compensate for risk and the time value of money. In equilibrium, the expected and required rates of return on a company's common stock are equal.

Normative economic models of the firm, developed under very restrictive assumptions, provide insight into the relationship between firm
performance or profitability, capital costs, and the value of the firm. Under the economist's ideal model of perfect competition, where entry and exit are costless, products are undifferentiated, and there are increasing marginal costs of production, firms produce up to the point where price equals marginal cost. Over time, a long-run equilibrium is established where price equals average cost, including the firm's capital costs. In equilibrium, total revenues equal total costs, and because capital costs represent investors' required return on the firm's capital, actual returns equal required returns, and the market value must equal the book value of the firm's securities.

In the real world, firms can achieve competitive advantage due to product market imperfections. Most notably, companies can gain competitive advantage through product differentiation (adding real or perceived value to products) and by achieving economies of scale (decreasing marginal costs of production). Competitive advantage allows firms to price products above average cost and thereby earn accounting profits greater than those required to cover capital costs. When these profits are in excess of that required by investors, or when a firm earns a return on equity in excess of its cost of equity, investors respond by valuing the firm's equity in excess of its book value.

James M. McTaggart, founder of the international management consulting firm Marakon Associates, described this essential relationship between the return on equity, the cost of equity, and the market-to-book ratio in the following manner: ${ }^{2}$

[^1]Fundamentally, the value of a company is determined by the cash flow it generates over time for its owners, and the minimum acceptable rate of return required by capital investors. This "cost of equity capital" is used to discount the expected equity cash flow, converting it to a present value. The cash flow is, in turn, produced by the interaction of a company's return on equity and the annual rate of equity growth High return on equity (ROE) companies in low-growth markets, such as Kellogg, are prodigious generators of cash flow, while low ROE companies in high-growth markets, such as Texas Instruments, barely generate enough cash flow to finance growth.

A company's ROE over time, relative to its cost of equity, also determines whether it is worth more or less than its book value. If its ROE is consistently greater than the cost of equity capital (the investor's minimum acceptable return), the business is economically profitable and its market value will exceed book value. If, however, the business earns an ROE consistently less than its cost of equity, it is economically unprofitable and its market value will be less than book value.

As such, the relationship between a firm's return on equity, cost of equity, and market-to-book ratio is relatively straightforward. A firm that earns a return on equity above its cost of equity will see its common stock sell at a price above its book value. Conversely, a firm that earns a return on equity below its cost of equity will see its common stock sell at a price below its book value.
Q. PLEASE PROVIDE ADDITIONAL INSIGHTS INTO THE RELATIONSHIP BETWEEN RETURN ON EQUITY AND MARKET-TO-BOOK RATIOS.
A. This relationship is discussed in a classic Harvard Business School case study entitled "A Note on Value Drivers." On page 2 of that case study, the author describes the relationship very succinctly: ${ }^{3}$

For a given industry, more profitable firms - those able to generate higher returns per dollar of equity - should have higher market-to-book ratios. Conversely, firms which are unable to generate returns in excess of their cost of equity should sell for less than book value.

Profitability	Value
If $R O E>K$	then Market/Book >1
If $R O E=K$	then Market/Book $=1$
If $R O E<K$	then Market/Book <1

To assess the relationship by industry, as suggested above, I performed a regression study between estimated return on equity ("ROE") and market-tobook ratios using natural gas distribution, electric utility and water utility companies. I used all companies in these three industries that are covered by Value Line and have estimated ROE and market-to-book ratio data. The results are presented in Panels A-C of Exhibit JRW-6. The average R-squares for the electric, gas, and water companies are $0.52,0.71$, and 0.77 , respectively. ${ }^{4}$ This demonstrates the strong positive relationship between ROEs and market-to-book ratios for public utilities.
Q. WHAT ECONOMIC FACTORS HAVE AFFECTED THE COST OF EQUITY CAPITAL FOR PUBLIC UTILITIES?

[^2]A. Exhibit JRW-7 provides indicators of public utility equity cost rates over the past decade. Page 1 shows the yields on long-term ' A ' rated public utility bonds. These yields peaked in the early 2000 s at over 8.0%, declined to about 5.0% in 2005 , and rose to 6.0% in 2006 and 2007. They stayed in that 6.0% range until the third quarter of 2008 when they spiked to almost 7.5% during the financial crisis. They have since retreated significantly over the past three years and now are below 4.5\%.

Page 2 of Exhibit JRW-7 provides the dividend yields for the proxy group. The dividend yields for the Electric Proxy Group generally declined slightly over the decade until 2007. They increased in 2008 and 2009 in response to the financial crisis, but declined in 2010 and 2011 and now are about 4.5%.

Average earned returns on common equity and market-to-book ratios for the group are on page 3 of Exhibit JRW-7. The average earned returns on common equity for the Electric Proxy Group were in the $9.0 \%-12.0 \%$ range over the past decade, and have hovered in the 10.0% range for the past three years. The average market-to-book ratio for the group has been in the 1.20 X to 1.80 X during the decade. The average declined to about 1.20 X in 2009, but increased to 1.30X in 2010 and 1.40X in 2011.

Q. WHAT FACTORS DETERMINE INVESTORS' EXPECTED OR REQUIRED RATE OF RETURN ON EQUITY?

A. The expected or required rate of return on common stock is a function of market-wide as well as company-specific factors. The most important market factor is the time value of money as indicated by the level of interest rates in
the economy. Common stock investor requirements generally increase and decrease with like changes in interest rates. The perceived risk of a firm is the predominant factor that influences investor return requirements on a company-specific basis. A firm's investment risk is often separated into business and financial risk. Business risk encompasses all factors that affect a firm's operating revenues and expenses. Financial risk results from incurring fixed obligations in the form of debt in financing its assets.

Q. HOW DOES THE INVESTMENT RISK OF UTILITIES COMPARE

 WITH THAT OF OTHER INDUSTRIES?A. Due to the essential nature of their service as well as their regulated status, public utilities are exposed to a lesser degree of business risk than other, nonregulated businesses. The relatively low level of business risk allows public utilities to meet much of their capital requirements through borrowing in the financial markets, thereby incurring greater-than-average financial risk. Nonetheless, the overall investment risk of public utilities is below most other industries.

Exhibit JRW-8 provides an assessment of investment risk for 100 industries as measured by beta, which according to modern capital market theory, is the only relevant measure of investment risk. These betas come from the Value Line Investment Survey and are compiled annually by Aswath Damodoran of New York University. ${ }^{5}$ The study shows that the investment risk of utilities is very low. The average beta for electric, water, and gas utility companies are $0.73,0.66$, and 0.66 , respectively. These are well below

[^3]the Value Line average of 1.15 . As such, the cost of equity for utilities is among the lowest of all industries in the U.S.
Q. HOW CAN THE EXPECTED OR REQUIRED RATE OF RETURN ON COMMON EQUITY CAPITAL BE DETERMINED?
A. The costs of debt and preferred stock are normally based on historical or book values and can be determined with a great degree of accuracy. The cost of common equity capital, however, cannot be determined precisely and must instead be estimated from market data and informed judgment. This return to the stockholder should be commensurate with returns on investments in other enterprises having comparable risks.

According to valuation principles, the present value of an asset equals the discounted value of its expected future cash flows. Investors discount these expected cash flows at their required rate of return that, as noted above, reflects the time value of money and the perceived riskiness of the expected future cash flows. As such, the cost of common equity is the rate at which investors discount expected cash flows associated with common stock ownership.

Models have been developed to ascertain the cost of common equity capital for a firm. Each model, however, has been developed using restrictive economic assumptions. Consequently, judgment is required in selecting appropriate financial valuation models to estimate a firm's cost of common equity capital, in determining the data inputs for these models, and in interpreting the models' results. All of these decisions must take into consideration the firm involved as well as current conditions in the economy and the financial markets.
Q. HOW DO YOU PLAN TO ESTIMATE THE COST OF EQUITY CAPITAL FOR THE COMPANY?
A. I rely primarily on the discounted cash flow ("DCF") model to estimate the cost of equity capital. Given the investment valuation process and the relative stability of the utility business, I believe that the DCF model provides the best measure of equity cost rates for public utilities. It is my experience that this Commission has traditionally relied on the DCF method. I have also performed a capital asset pricing model ("CAPM") study, but I give these results less weight because I believe that risk premium studies, of which the CAPM is one form, provide a less reliable indication of equity cost rates for public utilities.

Q. DESCRIBE THE THEORY BEHIND THE TRADITIONAL DCF MODEL.

A. According to the DCF model, the current stock price is equal to the discounted value of all future dividends that investors expect to receive from investment in the firm. As such, stockholders' returns ultimately result from current as well as future dividends. As owners of a corporation, common stockholders are entitled to a pro rata share of the firm's earnings. The DCF model presumes that earnings that are not paid out in the form of dividends are reinvested in the firm so as to provide for future growth in earnings and
dividends. The rate at which investors discount future dividends, which reflects the timing and riskiness of the expected cash flows, is interpreted as the market's expected or required return on the common stock. Therefore, this discount rate represents the cost of common equity. Algebraically, the DCF model can be expressed as:
where P is the current stock price, D_{n} is the dividend in year n , and k is the cost of common equity.
Q. IS THE DCF MODEL CONSISTENT WITH VALUATION TECHNIQUES EMPLOYED BY INVESTMENT FIRMS?
A. Yes. Virtually all investment firms use some form of the DCF model as a valuation technique. One common application for investment firms is called the three-stage DCF or dividend discount model ("DDM"). The stages in a three-stage DCF model are presented in Exhibit JRW-9. This model presumes that a company's dividend payout progresses initially through a growth stage, then proceeds through a transition stage, and finally assumes a steady-state stage. The dividend-payment stage of a firm depends on the profitability of its internal investments, which, in turn, is largely a function of the life cycle of the product or service.

1. Growth stage: Characterized by rapidly expanding sales, high profit margins, and abnormally high growth in earnings per share. Because of highly profitable expected investment opportunities, the payout ratio is low. Competitors are attracted by the unusually high earnings, leading to a decline in the growth rate.
2. Transition stage: In later years, increased competition reduces profit margins and earnings growth slows. With fewer new investment opportunities, the company begins to pay out a larger percentage of earnings.
3. Maturity (steady-state) stage: Eventually the company reaches a position where its new investment opportunities offer, on average, only slightly attractive ROEs. At that time, its earnings growth rate, payout ratio, and ROE stabilize for the remainder of its life. The constant-growth DCF model is appropriate when a firm is in the maturity stage of the life cycle.

In using this model to estimate a firm's cost of equity capital, dividends are projected into the future using the different growth rates in the alternative stages, and then the equity cost rate is the discount rate that equates the present value of the future dividends to the current stock price.
Q. HOW DO YOU ESTIMATE STOCKHOLDERS' EXPECTED OR REQUIRED RATE OF RETURN USING THE DCF MODEL?
A. Under certain assumptions, including a constant and infinite expected growth rate, and constant dividend/earnings and price/earnings ratios, the DCF model can be simplified to the following:

$$
P=\frac{D_{1}}{k-----}
$$

where D_{1} represents the expected dividend over the coming year and g is the expected growth rate of dividends. This is known as the constant-growth version of the DCF model. To use the constant-growth DCF model to
estimate a firm's cost of equity, one solves for k in the above expression to obtain the following:

$$
\mathrm{k}=\frac{\mathrm{D}_{1}}{-\ldots-\mathrm{P}}+\mathrm{g}
$$

Q. IN YOUR OPINION, IS THE CONSTANT-GROWTH DCF MODEL

 APPROPRIATE FOR PUBLIC UTILITIES?A. Yes. The economics of the public utility business indicate that the industry is in the steady-state or constant-growth stage of a three-stage DCF. The economics include the relative stability of the utility business, the maturity of the demand for public utility services, and the regulated status of public utilities (especially the fact that their returns on investment are effectively set through the ratemaking process). The DCF valuation procedure for companies in this stage is the constant-growth DCF. In the constant-growth version of the DCF model, the current dividend payment and stock price are directly observable. However, the primary problem and controversy in applying the DCF model to estimate equity cost rates entails estimating investors' expected dividend growth rate.
Q. WHAT FACTORS SHOULD ONE CONSIDER WHEN APPLYING THE DCF METHODOLOGY?
A. One should be sensitive to several factors when using the DCF model to estimate a firm's cost of equity capital. In general, one must recognize the assumptions under which the DCF model was developed in estimating its components (the dividend yield and expected growth rate). The dividend
yield can be measured precisely at any point in time, but tends to vary somewhat over time. Estimation of expected growth is considerably more difficult. One must consider recent firm performance, in conjunction with current economic developments and other information available to investors, to accurately estimate investors' expectations.
Q. PLEASE DISCUSS EXHIBIT JRW-10.
A. My DCF analysis is provided in Exhibit JRW-10. The DCF summary is on page 1 of this Exhibit, and the supporting data and analysis for the dividend yield and expected growth rate are provided on the following pages of the Exhibit.
Q. WHAT DIVIDEND YIELDS ARE YOU EMPLOYING IN YOUR DCF ANALYSIS FOR THE PROXY GROUP?
A. The dividend yields on the common stock for the companies in the proxy group are provided on page 2 of Exhibit JRW-10 for the six-month period ending June 2012. For the DCF dividend yields for the Group, I use the average of the six-month and June 2012 dividend yields. The table below shows these dividend yields.

Proxy Group	June 2012 Dividend Yield	6-Month Average Dividend Yield	DCF Dividend Yield
Electric Proxy Group	4.3%	4.4%	4.35%

Q. PLEASE DISCUSS THE APPROPRIATE ADJUSTMENT TO THE SPOT DIVIDEND YIELD.
A. According to the traditional DCF model, the dividend yield term relates to the dividend yield over the coming period. As indicated by Professor Myron Gordon, who is commonly associated with the development of the DCF model for popular use, this is obtained by: (1) multiplying the expected dividend over the coming quarter by 4 , and (2) dividing this dividend by the current stock price to determine the appropriate dividend yield for a firm that pays dividends on a quarterly basis. ${ }^{6}$

In applying the DCF model, some analysts adjust the current dividend for growth over the coming year as opposed to the coming quarter. This can be complicated because firms tend to announce changes in dividends at different times during the year. As such, the dividend yield computed based on presumed growth over the coming quarter as opposed to the coming year can be quite different. Consequently, it is common for analysts to adjust the dividend yield by some fraction of the long-term expected growth rate.
Q. GIVEN THIS DISCUSSION, WHAT ADJUSTMENT FACTOR WILL YOU USE FOR YOUR DIVIDEND YIELD?
A. I will adjust the dividend yield by one-half (1/2) the expected growth to reflect growth over the coming year. This is the approach employed by the Federal Energy Regulatory Commission ("FERC")." The DCF equity cost rate ("K") is computed as:

$$
\mathrm{K}=[(\mathrm{D} / \mathrm{P}) *(1+0.5 \mathrm{~g})]+\mathrm{g}
$$

[^4]
Q. PLEASE DISCUSS THE GROWTH RATE COMPONENT OF THE DCF MODEL.

A. There is much debate as to the proper methodology to employ in estimating the growth component of the DCF model. By definition, this component is investors' expectation of the long-term dividend growth rate. Presumably, investors use some combination of historical and/or projected growth rates for earnings and dividends per share and for internal or book value growth to assess long-term potential.

Q. WHAT GROWTH DATA HAVE YOU REVIEWED FOR THE PROXY

 GROUP?A. I have analyzed a number of measures of growth for companies in the Electric Proxy Group. I reviewed Value Line's historical and projected growth rate estimates for earnings per share ("EPS"), dividends per share ("DPS"), and book value per share ("BVPS"). In addition, I utilized the average EPS growth rate forecasts of Wall Street analysts as provided by Yahoo, Reuters, and Zacks. These services solicit five-year earnings growth rate projections from securities analysts and compile and publish the means and medians of these forecasts. Finally, I also assessed prospective growth as measured by prospective earnings retention rates and earned returns on common equity.
Q. PLEASE DISCUSS HISTORICAL GROWTH IN EARNINGS AND DIVIDENDS AS WELL AS INTERNAL GROWTH.
A. Historical growth rates for EPS, DPS, and BVPS are readily available to investors and are presumably an important ingredient in forming expectations concerning future growth. However, one must use historical growth numbers as measures of investors' expectations with caution. In some cases, past growth may not reflect future growth potential. Also, employing a single growth rate number (for example, for five or ten years), is unlikely to accurately measure investors' expectations due to the sensitivity of a single growth rate figure to fluctuations in individual firm performance as well as overall economic fluctuations (i.e., business cycles). However, one must appraise the context in which the growth rate is being employed. According to the conventional DCF model, the expected return on a security is equal to the sum of the dividend yield and the expected long-term growth in dividends, Therefore, to best estimate the cost of common equity capital using the conventional DCF model, one must look to long-term growth rate expectations.

Internally generated growth is a function of the percentage of earnings retained within the firm (the earnings retention rate) and the rate of return earned on those earnings (the return on equity). The internal growth rate is computed as the retention rate times the return on equity. Internal growth is significant in determining long-run earnings and, therefore, dividends. Investors recognize the importance of internally generated growth and pay premiums for stocks of companies that retain earnings and earn high returns on internal investments.
Q. PLEASE DISCUSS THE SERVICES THAT PROVDE ANALYSTS' EPS

FORECASTS.

A. Analysts' EPS forecasts for companies are collected and published by a number of different investment information services, including Institutional Brokers Estimate System ("I/B/E/S"), Bloomberg, FactSet, Zacks, First Call and Reuters, among others. Thompson Reuters publishes analysts' EPS forecasts under different product names, including IBES, First Call, and Reuters. Bloomberg, FactSet, and Zacks publish their own set of analysts' EPS forecasts for companies. These services do not reveal: (1) the analysts who are solicited for forecasts; or (2) the actual analysts who actually provide the EPS forecasts that are used in the compilations published by the services. IBES, Bloomberg, FactSet, and First Call are fee-based services. These services usually provide detailed reports and other data in addition to analysts' EPS forecasts. Thompson Reuters and Zacks do provide limited EPS forecasts data free-of-charge on the internet. Yahoo finance (http://finance.yahoo.com) lists Thompson Reuters as the source of its summary EPS forecasts. The Reuters website (www.reuters.com) also publishes EPS forecasts from Thompson Reuters, but with more detail. Zacks (www.zacks.com) publishes its summary forecasts on its website Zacks estimates are also available on other websites, such as msn.money (http://money.msn.com)

Q. PLEASE PROVIDE AN EXAMPLE.

A. These services solicit the EPS forecasts of analysts of investment and financial service firms and publish the average EPS estimates for future quarterly and annual time periods as well as the average long-term EPS growth rate forecasts. As shown in the figure below, the projected EPS near-term estimates are usually provided for the next quarter, the current fiscal year, and the next fiscal year. The long-term projected EPS growth rate is for a three-to-five-year time period.

Q. PLEASE PROVIDE AN EXAMPLE OF THESE EPS FORECASTS.

A. The following example provides the EPS forecasts compiled by Reuters for American Electric Power (stock symbol "AEP").

$$
\begin{aligned}
& \text { Consensus Earnings Estimates } \\
& \text { American Electric Power (AEP) } \\
& \frac{\text { www.reuters.com }}{\text { June 1, 2012 }} \\
& \text { \# of Estimates Mean High Low }
\end{aligned}
$$

Eamings feer share\}

Quater Ending Jun-12	B	0 ba	0.31	0 en
Quater Endin Sepr 12	\square	105	1.17	0
Year Enaing Dec-12	21	305	3.16	257
Year Ensing Dec-13	E	3.15	332	3.00
LT Growth Rate 's\%')	8	3.20	6.00	1.40

Q. WHICH OF THESE EPS FORECASTS IS USED IN DEVELOPING A

 DCF GROWTH RATE?A. The DCF growth rate is the long-term projected growth rate in EPS, DPS, and BVPS. Therefore, in developing an equity cost rate using the DCF model, the projected long-term growth rate is the projection used in the DCF model.
Q. WHY ARE YOU NOT RELYING EXCLUSIVELY ON THE EPS FORECASTS OF WALL STREET ANALYSTS IN ARRIVING AT A DCF GROWTH RATE FOR THE PROXY GROUP?
A. There are several issues with using the EPS growth rate forecasts of Wall Street analysts as DCF growth rates. First, the appropriate growth rate in the DCF model is the dividend growth rate, not the earnings growth rate

Nonetheless, over the very long-term, dividends and earnings will have to grow at a similar growth rate. Therefore, consideration must be given to other indicators of growth, including prospective dividend growth, internal growth, as well as projected earnings growth. Second, a new study by Lacina, Lee, and Xu (2011) has shown that analysts' long-term earnings growth rate forecasts are not more accurate at forecasting future earnings than naïve random walk forecasts of future earnings. ${ }^{8}$ Employing data over a twentyyear period, these authors demonstrate that using the most recent year's EPS figure to forecast EPS in the next 3-5 years proved to be just as accurate as using the EPS estimates from analysts' long-term earnings growth rate forecasts. In the authors' opinion, these results indicate that analysts' longterm eamings growth rate forecasts should be used as inputs for valuation and cost of capital purposes with caution. Finally, and most significantly, it is well known that the long-term EPS growth rate forecasts of Wall Street securities analysts are overly optimistic and upwardly biased. This has been demonstrated in a number of academic studies over the years. This issue is discussed at length in Appendix B of this testimony. Hence, using these growth rates as a DCF growth rate will provide an overstated equity cost rate. On this issue, a study by Easton and Sommers (2007) found that optimism in analysts' growth rate forecasts leads to an upward bias in estimates of the cost of equity capital of almost 3.0 percentage points. ${ }^{9}$

[^5]
Q. IS IT YOUR OPINION THAT STOCK PRICES REFLECT THE UPWARD BIAS IN THE EPS GROWTH RATE FORECASTS?

A. Yes, I do believe that investors are well aware of the bias in analysts' EPS growth rate forecasts, and therefore, stock prices reflect the upward bias.
Q. HOW DOES THAT AFFECT THE USE OF THESE FORECASTS IN A DCF EQUITY COST RATE STUDY?
A. According to the DCF model, the equity cost rate is a function of the dividend yield and expected growth rate. Since stock prices reflect the bias, it would affect the dividend yield. In addition, the DCF growth rate needs to be adjusted downward from the projected EPS growth rate to reflect the upward bias.
Q. PLEASE DISCUSS THE HISTORICAL GROWTH OF THE COMPANIES IN THE ELECTRIC PROXY GROUP AS PROVIDED BY VALUE LINE.
A. Page 3 of Exhibit JRW-10 provides the 5-and 10-year historical growth rates for the companies in the group, as published in the Value Line Investment Survey. The historical growth measures in EPS, DPS, and BVPS for the Electric Proxy Group, as measured by the medians, range from 1.0% to 4.5%, with an average of 3.3%.
Q. PLEASE SUMMARIZE VALUE LINE'S PROJECTED GROWTH RATES FOR THE COMPANIES IN THE PROXY GROUP.
A. Value Line's projections of EPS, DPS, and BVPS growth for the companies in the Electric Proxy Group are shown on page 4 of Exhibit JRW-10. As noted
above, due to the presence of outliers, the medians are used in the analysis. For the group, the medians range from 3.5% to 5.0%, with an average of 4.3%.

Also provided on page 4 of Exhibit JRW-10 is prospective sustainable growth for the proxy group as measured by Value Line's average projected retention rate and return on shareholders' equity. As noted above, sustainable growth is significant as a primary driver of long-run earnings growth. For the Electric Proxy Group, the median prospective sustainable growth rate is 4.0%.
Q. PLEASE ASSESS GROWTH FOR THE PROXY GROUP AS MEASURED BY ANALYSTS' FORECASTS OF EXPECTED LONGTERM EPS GROWTH.
A. Yahoo, Zacks, and Reuters collect, summarize, and publish Wall Street analysts' long-term EPS growth rate forecasts for the companies in the proxy group. These forecasts are provided for the companies in the proxy group on page 5 of Exhibit JRW-10. The median of analysts' projected EPS growth rates for the Electric Proxy Group is $4.5 \%{ }^{10}$
Q. PLEASE SUMMARIZE YOUR ANALYSIS OF THE HISTORICAL AND PROSPECTIVE GROWTH OF THE PROXY GROUP.
A. Page 6 of Exhibit JRW-10 shows the summary DCF growth rate indicators for the proxy group. A growth rate of 3.3% is indicated by the historic growth rate measures. Value Line's projected growth for EPS, DPS, and BVPS is 4.3%,

[^6]while prospective sustainable growth rate, measured using Value Line inputs, is 4.0%. Analysts' projected EPS growth is 4.5% for the group. Given these figures, and giving greater weight to projected growth rate measures, an expected DCF growth rate in the range of 4.0% to 4.5% is reasonable for the Electric Proxy Group. I will use the midpoint of the range, 4.25%, as my DCF growth rate for the Electric Proxy Group.
Q. BASED ON THE ABOVE ANALYSIS, WHAT ARE YOUR INDICATED COMMON EQUITY COST RATES FROM THE DCF MODEL FOR THE GROUP?
A. My DCF-derived equity cost rate for the group is summarized on page 1 of Exhibit JRW-10.
DCF Equity Cost Rate $(\mathrm{k}) \quad=\frac{\mathrm{D}}{\mathrm{P}}-\mathrm{P}+\mathrm{g}$

	Dividend Yield	$1+1 / 2$ Growth Adjustment	DCF Growth Rate	Equity Cost Rate
Electric Proxy Group	4.35%	1.02125	4.25%	8.70%

C. CAPITAL ASSET PRICING MODEL RESULTS
Q. PLEASE DISCUSS THE CAPITAL ASSET PRICING MODEL ("CAPM").
A. The CAPM is a risk premium approach to gauging a firm's cost of equity capital. According to the risk premium approach, the cost of equity is the sum of the interest rate on a risk-free bond $\left(R_{f}\right)$ and a risk premium (RP), as in the following:

$$
\mathrm{k}=\mathrm{R}_{\mathrm{f}}+\mathrm{RP}
$$

The yield on long-term Treasury securities is normally used as R_{f}. Risk premiums are measured in different ways. The CAPM is a theory of the risk and expected returns of common stocks. In the CAPM, two types of risk are associated with a stock: firm-specific risk or unsystematic risk, and market or systematic risk, which is measured by a firm's beta. The only risk that investors receive a return for bearing is systematic risk.

According to the CAPM, the expected return on a company's stock, which is also the equity cost rate (K), is equal to:

$$
K=\left(R_{f}\right)+\beta *\left[E\left(R_{m}\right)-\left(R_{f}\right)\right]
$$

Where:

- $\quad K$ represents the estimated rate of return on the stock;
- $E\left(R_{m}\right)$ represents the expected return on the overall stock market. Frequently, the 'market' refers to the S\&P 500;
- $\quad\left(R_{f}\right)$ represents the risk-free rate of interest;
- $\quad\left[E\left(R_{m}\right)-\left(R_{f}\right)\right]$ represents the expected equity or market risk premiumthe excess return that an investor expects to receive above the risk-free rate for investing in risky stocks; and
- Beta-((β) is a measure of the systematic risk of an asset.

To estimate the required return or cost of equity using the CAPM requires three inputs: the risk-free rate of interest $\left(R_{f}\right)$, the beta (β), and the expected equity or market nisk premium $\left[E\left(R_{m}\right)-\left(R_{f}\right)\right] . R_{f}$ is the easiest of the inputs to measure - it is the yield on long-term Treasury bonds. β, the
measure of systematic risk, is a little more difficult to measure because there are different opinions about what adjustments, if any, should be made to historical betas due to their tendency to regress to 1.0 over time. And finally, an even more difficult input to measure is the expected equity or market risk premium $\left(E\left(R_{m}\right)-\left(R_{f}\right)\right)$. I will discuss each of these inputs below.

Q. PLEASE DISCUSS EXHIBIT JRW-11.

A. Exhibit JRW-11 provides the summary results for my CAPM study. Page 1 shows the results, and the following pages contain the supporting data.
Q. PLEASE DISCUSS THE RISK-FREE INTEREST RATE.
A. The yield on long-term U.S. Treasury bonds has usually been viewed as the risk-free rate of interest in the CAPM. The yield on long-term U.S. Treasury bonds, in turn, has been considered to be the yield on U.S. Treasury bonds with 30-year maturities.
Q. WHAT RISK-FREE INTEREST RATE ARE YOU USING IN YOUR CAPM?
A. The yield on 30-year Treasury bonds has been in the 2.6% to 4.0% range over the last six months. These rates are currently at the lower end of this range. Given the recent range of yields, and the prospect of higher rates in the future, I will use 4.0% as the risk-free rate, or R_{f}, in my CAPM.

Q. WHAT BETAS ARE YOU EMPLOYING IN YOUR CAPM?

A. Beta (β) is a measure of the systematic risk of a stock. The market, usually taken to be the S\&P 500 , has a beta of 1.0 . The beta of a stock with the same price movement as the market also has a beta of 1.0. A stock whose price movement is greater than that of the market, such as a technology stock, is riskier than the market and has a beta greater than 1.0. A stock with belowaverage price movement, such as that of a regulated public utility, is less risky than the market and has a beta less than 1.0. Estimating a stock's beta involves running a linear regression of a stock's return on the market return.

As shown on page 3 of Exhibit JRW-11, the slope of the regression line is the stock's β. A steeper line indicates the stock is more sensitive to the return on the overall market. This means that the stock has a higher β and greater-than-average market risk. A less steep line indicates a lower β and less market risk.

Several online investment information services, such as Yahoo and Reuters, provide estimates of stock betas. Usually these services report different betas for the same stock. The differences are usually due to: (1) the time period over which the β is measured; and (2) any adjustments that are made to reflect the fact that betas tend to regress to 1.0 over time. In estimating an equity cost rate for the proxy group, I am using the betas for the companies as provided in the Value Line Investment Survey. As shown on page 3 of Exhibit JRW-11, the average beta for the companies in the Electric Proxy Group is 0.73 .

Q. PLEASE DISCUSS THE ALTERNATIVE VIEWS REGARDING THE EQUITY RISK PREMIUM.

A. The equity or market risk premium $-\left(E\left(R_{m}\right)-R_{f}\right)$ - is equal to the expected return on the stock market (e.g., the expected return on the $\mathrm{S} \& \mathrm{P} 500\left(\mathrm{E}\left(R_{m}\right)\right)$ minus the risk-free rate of interest $\left(R_{f}\right)$. The equity premium is the difference in the expected total return between investing in equities and investing in "safe" fixed-income assets, such as long-term government bonds. However, while the equity risk premium is easy to define conceptually, it is difficult to measure because it requires an estimate of the expected return on the market,
Q. PLEASE DISCUSS THE ALTERNATIVE APPROACHES TO ESTIMATING THE EQUITY RISK PREMIUM.
A. Page 4 of Exhibit JRW-11 highlights the primary approaches to and issues in estimating the expected equity risk premium. The traditional way to measure the equity risk premium was to use the difference between historical average stock and bond returns. In this case, historical stock and bond returns, also called ex post returns, were used as the measures of the market's expected return (known as the ex ante or forward-looking expected return). This type of historical evaluation of stock and bond returns is often called the "Ibbotson approach" after Professor Roger Ibbotson, who popularized this method of using historical financial market returns as measures of expected returns. Most historical assessments of the equity risk premium suggest an equity risk premium of 5-7 percent above the rate on long-term U.S. Treasury bonds. However, this can be a problem because: (1) ex post returns are not the same as ex ante expectations, (2) market risk premiums can change over time,
increasing when investors become more risk-averse and decreasing when investors become less risk-averse, and (3) market conditions can change such that ex post historical returns are poor estimates of ex ante expectations.

The use of historical returns as market expectations has been criticized in numerous academic studies. ${ }^{11}$ The general theme of these studies is that the large equity risk premium discovered in historical stock and bond returns cannot be justified by the fundamental data. These studies, which fall under the category "Ex Ante Models and Market Data," compute ex ante expected returns using market data to arrive at an expected equity risk premium. These studies have also been called "Puzzle Research" after the famous study by Mehra and Prescott in which the authors first questioned the magnitude of historical equity risk premiums relative to fundamentals. ${ }^{12}$

In addition, there are a number of surveys of financial professionals regarding the equity risk premium. There have been several published surveys of academics on the equity risk premium. CFO Magazine conducts a quarterly survey of CFOs, which includes questions regarding their views on the current expected returns on stocks and bonds. Usually over 500 CFOs participate in the survey. ${ }^{13}$ Questions regarding expected stock and bond returns are also included in the Federal Reserve Bank of Philadelphia's annual survey of financial forecasters, which is published as the Survey of Professional Forecasters. ${ }^{14}$ This survey of professional economists has been published for

[^7]almost 50 years. In addition, Pablo Fernandez conducts occasional surveys of financial analysts and companies regarding the equity risk premiums they use in their investment and financial decision-making.
Q. PLEASE PROVIDE A SUMMARY OF THE EQUITY RISK PREMIUM STUDIES.
A. Derrig and Orr (2003), Fernandez (2007), and Song (2007) have completed the most comprehensive reviews to date of the research on the equity risk premium. ${ }^{15}$ Derrig and Orr's study evaluated the various approaches to estimating equity risk premiums as well as the issues with the alternative approaches and summarized the findings of the published research on the equity risk premium. Fernandez examined four alternative measures of the equity risk premium - historical, expected, required, and implied. He also reviewed the major studies of the equity risk premium and presented the summary equity risk premium results. Song provides an annotated bibliography and highlights the alternative approaches to estimating the equity risk summary.

Page 5 of Exhibit JRW-11 provides a summary of the results of the primary risk premium studies reviewed by Derrig and Orr, Fernandez, and Song, as well as other more recent studies of the equity risk premium. In developing page 5 of Exhibit JRW-11, I have categorized the studies as

[^8]discussed on page 4 of Exhibit JRW-11. I have also included the results of the "Building Blocks" approach to estimating the equity risk premium, including a study I performed, which is presented in Appendix C. The Building Blocks approach is a hybrid approach employing elements of both historic and $e x$ ante models.

Q. PLEASE DISCUSS PAGE 5 OF EXHIBIT JRW-11.

A. Page 5 of JRW-11 provides a summary of the results of the equity risk premium studies that I have reviewed. These include the results of: (1) the various studies of the historical risk premium, (2) ex ante equity risk premium studies, (3) equity risk premium surveys of CFOs, Financial Forecasters, analysts, companies and academics, and (4) the Building Block approaches to the equity risk premium. There are results reported for over thirty studies, and the median equity risk premium is 5.06%.

Q. PLEASE HIGHLIGHT THE RESULTS OF THE MORE RECENT RISK PREMIUM STUDIES AND SURVEYS.

A. The studies cited on page 5 of Exhibit JRW-11 include all equity risk premium studies and surveys I could identify that were published over the past decade and that provided an equity risk premium estimate. Most of these studies were published prior to the financial crisis of the past two years. In addition, some of these studies were published in the early 2000 s at the market peak. It should be noted that many of these studies (as indicated) used data over long periods of time (as long as fifty years of data) and so they were not estimating an equity risk premium as of a point in time (e.g., the year 2001).

To assess the effect of the earlier studies on the equity risk premium, on page 6 of Exhibit JRW-11, I have reconstructed page 5 of Exhibit JRW-11, but I have eliminated all studies dated before January 2, 2010. The median for this subset of studies is 5.01%.
Q. GIVEN THESE RESULTS, WHAT EQUITY RISK PREMIUM ARE YOU USING IN YOUR CAPM?
A. I use the median equity risk premium for the 2010-12 studies and surveys, which is 5.01%.
Q. IS YOUR EX ANTE EQUITY RISK PREMIUM CONSISTENT WITH THE EQUITY RISK PREMIUMS USED BY CFOS?
A. Yes. In the June 2012 CFO survey conducted by CFO Magazine and Duke University, the expected 10 -year equity risk premium was 4.5%.
Q. IS YOUR EX ANTE EQUITY RISK PREMIUM CONSISTENT WITH THE EQUITY RISK PREMIUMS OF PROFESSIONAL FORECASTERS?
A. Yes. The financial forecasters in the previously referenced Federal Reserve Bank of Philadelphia survey project both stock and bond returns. As shown on Panels D and E of page 8 of Exhibit JRW-11, the mean long-term expected stock and bond returns were 6.80% and 4.0%, respectively. This provides an ex ante equity risk premium of 2.80%.
Q. IS YOUR EX ANTE EQUITY RISK PREMIUM CONSISTENT WITH THE EQUITY RISK PREMIUMS OF FINANCIAL ANALYSTS AND COMPANIES?
A. Yes. Pablo Fernandez recently published the results of a 2012 survey of financial analysts and companies. This survey included over 7,000 responses. The median equity risk premiums employed by U.S. analysts and companies were 5.0% and 5.5%, respectively.
Q. IS YOUR EX ANTE EQUITY RISK PREMIUM CONSISTENT WITH THE EQUITY RISK PREMIUMS USED BY THE LEADING CONSULTING FIRMS?
A. Yes. McKinsey \& Co. is widely recognized as the leading management consulting firm in the world. It published a study entitled "The Real Cost of Equity" in which the McKinsey authors developed an ex ante equity risk premium for the U.S. In reference to the decline in the equity risk premium, as well as what is the appropriate equity risk premium to employ for corporate valuation purposes, the McKinsey authors concluded the following:

We attribute this decline not to equities becoming less risky (the inflation-adjusted cost of equity has not changed) but to investors demanding higher returns in real terms on government bonds after the inflation shocks of the late 1970s and early 1980s. We believe that using an equity risk premium of 3.5 to 4 percent in the current environment better reflects the true longterm opportunity cost of equity capital and hence will yield more accurate valuations for companies. ${ }^{16}$

[^9]Q. WHAT EQUITY COST RATE IS INDICATED BY YOUR CAPM ANALYSIS?
A. The results of my CAPM study for the proxy group are provided below:
$$
K=\left(R_{f}\right)+\beta *\left[E\left(R_{m}\right)-\left(R_{f}\right)\right]
$$

	Risk-Free Rate	Beta	Equity Risk Premium	Equity Cost Rate
Electric Proxy Group	4.00%	0.73	5.01%	7.7%

These results are summarized on page 1 of Exhibit JRW-11.

VI. EQUITY COST RATE SUMMARY

Q. PLEASE SUMMARIZE YOUR EQUITY COST RATE STUDY.
A. The results for my DCF and CAPM analyses for the proxy group are indicated below:

	DCF	CAPM
Electric Proxy Group	8.7%	7.7%

Q. GIVEN THESE RESULTS, WHAT IS YOUR ESTIMATED EQUITY COST RATE FOR THE GROUP?
A. Given these results, I conclude that the appropriate equity cost rate for the Electric Proxy Group is in the 7.7% to 8.7% range. However, since I give greater weight to the DCF model, I am using the upper end of the range as the equity cost rate. Therefore, I conclude that the appropriate equity cost rate for the Electric Proxy Group is in the 8.50% to 9.0% range at this time.

Q. GIVEN THIS RANGE, WHAT IS YOUR RECOMMENDED ROE FOR FPL?

A. Given this range, I recommend an equity cost rate of 9.0% for FPL using OPC's recommended capital structure. If the Commission adopts FPL's capital structure with a 59.62% common equity ratio, I recommend a ROE of 8.50% for FPL. Page 2 of Exhibit JRW-1 shows the average yield differentials between long-term, A and BBB-rated utility bonds. Given these differentials, I believe that 50 basis points represents an appropriate return differential to compensate for the large difference in the common equity ratios associated with Company's recommended capital structure and OPC's recommended capital structure.
Q. PLEASE INDICATE WHY A 9.0% RETURN IS APPROPRIATE FOR FPL AT THIS TIME.
A. There are several reasons why a 9.0% return on equity is appropriate for the Company in this case. First, as shown on in Exhibit JRW-8, the electric utility industry is one of Value Line's lowest risk industries in the U.S. as measured by beta. As such, the cost of equity capital for this industry is amongst the lowest in the U.S. according to the CAPM. Second, as shown in Exhibit JRW-3, capital costs for utilities, as indicated by long-term bond yields, have declined to below their pre-financial crisis levels. Third, while the financial markets have recovered significantly in the past year, the economy has not. The economic times are still viewed as being difficult, with nearly ten percent unemployment. As a result, interest rates and inflation are at relatively low levels, and hence the expected returns on financial assets - from savings accounts to Treasury bills to common stocks - are low. Therefore, in my opinion, a 9.0% return is appropriate for a regulated electric utility. Finally, in this economy it seems especially burdensome to consumers to pay higher utility rates associated with ROEs in excess of returns that investors require.

VII. CRITIQUE OF FPL'S RATE OF RETURN TESTIMONY

Q. PLEASE SUMMARIZE FPL'S OVERALL RATE OF RETURN RECOMMENDATION.

A. FPL's return on equity recommendation is provided by Dr. William E. Avera. FPL's rate of return recommendation is summarized on page 1 of Exhibit JRW-12. The Company's recommended capital structure from investor sources consists of 2.22% short-term debt, 38.16% long-term debt, and 59.62% common equity.
Q. WHAT ISSUES DO YOU HAVE WITH THE COMPANY'S COST OF CAPITAL POSITION?
A. The primary areas of disagreement in measuring FPL's cost of capital are: (1) the appropriate capital structure for FPL; (2) the proxy group to estimate an equity cost rate for FPL; (3) the expected DCF growth rate, and in particular Dr. Avera's excessive reliance on the projected growth rates of Wall Street analysts to measure expected DCF growth; (4) the measurement and magnitude of the equity risk premium used in CAPM and RPM approaches; (5) the validity of the Expected Earnings equity cost rate approach; and (6) Dr.

Avera's adjustments for size and flotation costs. These issues are addressed below.

A. CAPITAL STRUCTURE

Q. PLEASE REVIEW THE CAPITAL STRUCTURE ISSUE.

A. FPL has recommended a capital structure that includes a common equity ratio of 59.62%. Such a capital structure includes much more equity and less debt than the capital structures of other electric utilities and FPL's parent, NextEra. The average common equity ratios for the Electric Proxy Group and NextEra are 45.01% and 38.92%, respectively. These ratios highlight the fact that proxy companies and NextEra have a higher degree of financial risk than FPL.
Q. HOW HAS DR. AVERA ATTEMPTED TO DEFEND THE COMPANY'S PROPOSED EQUITY-HEAVY CAPITAL STRUCTURE?
A. Dr. Avera has made three attempts to justify FPL's requested capital structure: (1) he has adjusted the capital structure for the Company's purchased power contracts; (2) he has computed the capital structure ratios for the operating companies (and not the holding companies) for the companies in his proxy group; and (3) he has computed the market value capital structures for the companies in his proxy group.
Q. PLEASE REVIEW THE COMPANY'S RECOMMENDED CAPITAL STRUCTURE AND IMPUTED DEBT.
A. To make the Company's recommended capital structure appear more reasonable, in Exhibit WEA-14, Dr. Avera has imputed $\$ 949$ million in debt and included it in his "adjusted capital structure." This adjustment effectively increases FPL's debt by $\$ 949$ million to account for the Company's Purchased Power Agreements ("PPAs"). The $\$ 949$ million is computed by multiplying a risk factor of 25% to the present value of the Company's capacity contracts. In computing credit rating metrics, S\&P applies such a risk factor ranging from 0% to 100%, which is intended to reflect the risk of recovery of the PPA payments. However, S\&P does not indicate how the risk factor that ranges from 0% to 100% is determined. Given a recovery mechanism for PPA payments, the financial condition of an electric utility company is not impaired by entering into these contracts. Hence, providing incremental revenues through a higher equity ratio and a higher overall rate of return is unnecessary and would result in an unwarranted revenue benefit to the utility. I have identified several flaws in the adjustment.

Risk Factor

Given the methodology for imputing debt from PPAs, the risk factor is extremely important. FPL has presumed that a risk factor of 25% is appropriate for the Company. However, S\&P does not indicate how the risk factor that ranges from 0% to 100% is determined. Hence, the S\&P risk factor for imputing debt is not well defined and cannot be assessed in this situation. Given the Commission's support for the collection of long-term contractual payments, the risk of non-recovery appears to be extremely low (perhaps even zero percent). Hence, a risk factor as high as 25% seems out of line. However, given the lack
of guidance from $\mathrm{S} \& \mathrm{P}$, it is impossible to properly assess the risk factor in this situation.

In addition, as opposed to S\&P, Moody's appears to recognize some of the benefits of PPAs and looks at them in a more positive manner. For example, Moody's states: ${ }^{17}$
"If a utility enters into a PPA for the purpose of providing an assured supply and there is reasonable assurance that regulators will allow the costs to be recovered in regulated rates, Moody's may view the PPA as being most akin to an operating cost. In this circumstance, there most likely will be no imputed adjustment to the obligations of the utility."

In other words, under this scenario Moody's would rate the risk factor at 0% and there would be no imputed debt.

S\&P Adjustments are Not GAAP Accounting

Even if debt were imputed by S\&P from a PPA (assuming a risk factor greater than 0%), no changes would be made to the company's generally accepted accounting principles ("GAAP") financial statements. Hence, investors would not see the impact of S\&P's adjustment. In addition, the Company does not incur a liability on its GAAP-based financial statements for the PPAs. Furthermore, given a regulatory-mandated recovery method for the payments, investors should be indifferent to a utility entering into a PPA.

From a Regulatory Perspective, PPA Payments are Unlike Debt

In a regulatory setting, a utility is given the 'opportunity to earn' its cost of debt as well as its overall cost of capital through the ratemaking process. Given the many uncertainties associated with revenues and expenses between rate cases,

[^10]there is no guarantee that the overall cost of debt can be earned. However, with long-term PPAs, the timely and certain recovery of fixed payments is assured. That is, PPA costs do not feature the uncertainty associated with the 'opportunity to eam' as do debt payments. In sum, given S\&P's lack of guidance on the risk factor, the Commission's support for the collection of payments for PPAs, the notion that these are not GAAP adjustments and are not recorded as liabilities on the books of the company, and the fact that, from a regulatory perspective, PPA payments are unlike debt, the PPA adjustment to the Company's capital structure is inappropriate.
Q. PLEASE DISCUSS DR. AVERA'S ANALYSIS OF THE CAPITALIZATIONS OF THE OPERATING COMPANIES OF HIS PROXY GROUP.
A. In Exhibit WEA-15, Dr. Avera computes the capitalization ratios for the operating subsidiaries of the companies in his utility group. He claims that this analysis supports the Company's proposed capital structure with a 59.62% common equity ratio.

The major issue with Dr. Avera's analysis is that the capital structure ratios that he uses are for the operating subsidiaries and not for the parent companies. The stocks of the parent companies trade in the markets. Dr. Avera and I used the data for the parent companies to estimate an equity cost rate for the Company. The investment and financial risks of the parent companies that trade in the markets are a function of the overall capitalization of the parent companies, not the subsidiaries. As such, it is their capitalization ratios, which are indicative of the financial risk they are exposed to, that are relevant when making capitalization comparisons, not the operating subsidiaries.
Q. DR. AVERA HAS ALSO JUSTIFIED FPL'S PROPOSED CAPITAL STRUCTURE TO THE MARKET VALUE CAPITAL STRUCTURE RATIOS OF HIS UTILITY GROUP. PLEASE COMMENT.
A. In Exhibit WEA-16, Dr Avera computes the capitalization ratios for the companies in his utility group using market values and not book values. He uses this comparison to support the Company's proposed capital structure with a 59.62% common equity ratio.

Dr. Avera's analysis using market value capital structures represents an 'apples and oranges' comparison. FPL is setting rates in this proceeding using its book value capital structure. Dr Avera's comparison to market value capital structures is simply done to make the Company's equity-heavy capital structure appear to be more in-line with the capital structures of other electric utilities.
Q. PLEASE SUMMARIZE DR. AVERA'S DEFENSE OF FPL'S PROPOSED CAPITAL STRUCTURE.
A. FPL has proposed a capital structure that is far out of line with the capital structures of its parent company, NextEra, as well as other electric utilities. Dr. Avera's defense of the proposed capital structure - by imputing debt based on PPAs, and by comparing the capital structures of operating companies of his utility proxy group to the market value capital structures of his utility proxy group - is erroneous and does not justify the Company's proposed capital structure.

B. EQUITY COST RATE

1. Proxy Groups

Q. PLEASE DISCUSS DR. AVERA'S PROXY GROUPS.

A. Dr. Avera has used two proxy groups to estimate an equity cost rate for FPL. These include: (1) Utility Group - a group of fourteen electric utility companies; and (2) a Non-Utility Group - a group of thirteen non-utility companies.

Q. PLEASE DISCUSS DR. AVERA'S UTILITY GROUP.

A. Dr. Avera's utility group includes companies that are listed as combination electric and gas companies by AUS Utilities Reports and as electric utility companies by Value Line Summary financial statistics for this group are provided on page 1 of Exhibit JRW-13. These companies receive 69% of revenues from regulated electric operations and 17% of their revenues from regulated gas operations. The average bond rating is A-. As a result, these companies are more combination electric and gas companies as opposed to pure electric companies. In addition, certain companies in the group, such as Integrys, SEMPRA, and Vectren, receive a much higher percent of revenues from regulated gas than electric operations,
Q. PLEASE DISCUSS THE PROBLEM WITH DR. AVERA'S NONUTILITY PROXY GROUP.
A. Dr. Avera has estimated an equity cost rate for FPL using a proxy group of 35 non-utility companies. These companies are listed in Exhibit WEA-6. This group includes such companies as Abbott Labs, AT\&T, Coca-Cola, General

Mills, Johnson \& Johnson, McDonald's, McKesson, PepsiCo, Pfizer, and WalMart. While many of these companies are large and successful, their lines of business are vastly different from the electric utility business and they do not operate in a highly regulated environment. In addition, as discussed below, the upward bias in the EPS growth rate forecasts of Wall Street analysts is particularly severe for non-utility companies, thus the DCF equity cost rate estimates for this group are particularly overstated. As such, the non-utility group is not an appropriate proxy for FPL, and therefore the equity cost rate results for this group should be ignored.

2. DCF Approach

Q. PLEASE SUMMARIZE DR. AVERA'S DCF ESTIMATES.

A. On pages 40-55 of his testimony and in Exhibit Nos. WEA-4 - WEA-8, Dr. Avera develops an equity cost rate by applying a DCF model to his two proxy groups. In the traditional DCF approach, the equity cost rate is the sum of the dividend yield and expected growth. For the DCF growth rate, Dr. Avera uses four measures of projected EPS growth - the projected EPS growth of Wall Street analysts as compiled by IBES and Zack's, Value Line's projected EPS projected growth rate, and a measure of sustainable growth as computed by the sum of internal ("br") and external ("sv") growth.

Dr. Avera's DCF results are summarized in Panel B of page 1 of Exhibit JRW-12. The average of the DCF results is 10.0% for the utility group and 11.95% for the non-utility group.
Q. PLEASE EXPRESS YOUR CONCERNS WITH DR. AVERA'S DCF STUDY.
A. I have several issues with Dr. Avera's DCF equity cost rate: (1) the use of the combination utility and non-utility groups to estimate an equity cost rate for FPL; (2) the excessive reliance on the EPS growth rate forecasts of Wall Street analysts and Value Line as a DCF growth rate; and (3) the flotation cost adjustment. The errors in the proxy groups were discussed above. The use of analysts' EPS growth rate forecasts and flotation costs are addressed below.
Q. PLEASE DISCUSS DR. AVERA'S RELIANCE ON THE PROJECTED GROWTH RATES OF WALL STREET ANALYSTS AND VALUE LINE.
A. It seems highly unlikely that investors today would rely excessively on the EPS growth rate forecasts of Wall Street analysts and ignore other growth rate measures in arriving at expected growth. As I previously indicated, the appropriate growth rate in the DCF model is the dividend growth rate, not the earnings growth rate. Hence, consideration must be given to other indicators of growth, including historic growth prospective dividend growth, internal growth, as well as projected earnings growth. In addition, a recent study by Lacina, Lee, and Xu (2011) has shown that analysts' long-term earnings growth rate forecasts are not more accurate at forecasting future earnings than naïve random walk forecasts of future earnings. ${ }^{18}$ As such, the weight given to analysts' projected EPS growth rate should be limited. And finally, and

[^11]most significantly, it is well-known that the long-term EPS growth rate forecasts of Wall Street securities analysts are overly optimistic and upwardly biased. Hence, using these growth rates as a DCF growth rate produces an overstated equity cost rate. A recent study by Easton and Sommers (2007) found that optimism in analysts' growth rate forecasts leads to an upward bias in estimates of the cost of equity capital of almost 3.0 percentage points. ${ }^{19}$ These issues are addressed in more detail in Appendix B.
Q. PLEASE ALSO DISCUSS DR. AVERA'S SUSTAINABLE GROWTH ANALYSIS.
A. Dr. Avera's sustainable growth rate is computed as the sum of internal ("br") and external ("sv") growth. For the utility group, his calculations indicate a median growth rate of 5.6% for the utility proxy group (right-hand column of page 1 of WEA-5). The primary error with his approach is that these sustainable growth rate figures are higher than the median Value Line's projected BVPS growth rate, which is only 5.0% for the utility group (see page 2 of Exhibit JRW-13). This suggests that his methodology is flawed, in that it produces higher sustainable growth rates (using Value Line data) than the sustainable growth that Value Line actually is forecasting.
Q. WHAT ARE YOUR OBSERVATIONS OF THE DCF RESULTS FOR THE NON-UTILITY GROUP?
A. As I indicated above, I do not believe that the non-utility group is an appropriate group to estimate an equity cost rate for FPL. The primary issue with the DCF

[^12]results for this group is that they are much more impacted by the upward bias in the EPS growth rate forecasts of Wall Street analysts than are the DCF results for the utility groups. This issue is addressed in Appendix B.
Q. PLEASE SUMMARIZE YOUR ASSESSMENT OF DR. AVERA'S DCF EQUITY RATE STUDY.
A. Dr. Avera's DCF equity cost rates are overstated because he has relied excessively on the upwardly biased EPS growth rate forecasts of Wall Street analysts and Value Line. In addition, his sustainable growth rate methodology is flawed, since it produces higher sustainable growth rates (using Value Line data) than the sustainable growth that Value Line actually is forecasting. The issue of flotation costs is addressed below.

3. CAPM Approach

Q. PLEASE DISCUSS DR. AVERA'S CAPM.

A. On pages 55 to 64 and Exhibit No. WEA-9, Dr. Avera applies the CAPM method to his utility group. For the group, he calculates a CAPM equity cost rate using the current long-term Treasury bond yield of 3.0% and a projected bond yield of 4.3%. A market risk premium is computed for each risk-free rate, and both are based on an expected stock market return of 13.5%. He uses the average beta for the utility group of 0.70 . He also adds a size premium of 0.81% to his CAPM equity cost rate. His CAPM equity cost rates using current and projected bond yields are 11.2% and 11.6%. His results are summarized in Panel C of page 1 of Exhibit JRW-1.2.
Q. WHAT ARE THE ERRORS IN DR. AVERA'S CAPM ANALYSIS?
A. The primary errors with Dr. Avera's CAPM analysis are: (1) the expected market return used to compute the equity risk premium; and (2) the size adjustment.
Q. PLEASE REVIEW DR. AVERA'S EQUITY OR MARKET RISK PREMIUM IN HIS CAPM APPROACH.
A. The primary problem with Dr. Avera's CAPM analysis is the magnitude of the market or equity risk premium. Dr. Avera develops an expected market risk premium by: (1) applying the DCF model to the S\&P 500 to get an expected market return; and (2) subtracting the risk-free rate of interest. Dr. Avera's estimated market return of 13.5% for the S\&P 500 equals the sum of the dividend yield of 2.6% and expected EPS growth rate of 10.9%. The expected EPS growth rate is the average of the expected EPS growth rates from IBES. The primary error in this approach is his expected DCF growth rate. As previously discussed, the expected EPS growth rates of Wall Street analysts are upwardly biased. In addition, as explained below, the projected growth rate is inconsistent with economic and earnings growth in the U.S.
Q. BEYOND YOUR PREVIOUS DISCUSSION OF THE UPWARD BIAS IN WALL STREET ANALYSTS' AND VALUE LINE'S EPS GROWTH RATE FORECASTS, WHAT OTHER EVIDENCE CAN YOU PROVIDE THAT THE DR. AVERA'S S\&P 500 GROWTH RATE IS EXCESSIVE?
A. A long-term EPS growth rate of 10.9% is not consistent with historic as well as projected economic and earnings growth in the U.S. for several reasons: (1) long-term EPS and economic growth, as measured by Gross Domestic Product ("GDP"), is about $1 / 2$ of Dr. Avera's projected EPS growth rate of 10.9%; (2) more recent trends in GDP growth, as well as projections of GDP growth, suggest slower economic and earnings growth in the future; and (3) over time, EPS growth tends to lag behind GDP growth.

The long-term economic, earnings, and dividend growth rate in the U.S. has only been in the 5% to 7% range. I performed a study of the growth in nominal GDP, S\&P 500 stock price appreciation, and S\&P 500 EPS and DPS growth since 1960. The results are provided on page 1 of Exhibit JRW15 , and a summary is given in the table below.

GDP, S\&P 500 Stock Price, EPS, and DPS Growth
1960-Present

Nominal GDP	6.80%
S\&P 500 Stock Price	6.21%
S\&P 500 EPS	6.98%
S\&P 500 DPS	5.18%
Average	6.29%

The results are presented graphically on page 2 of Exhibit JRW-15. In sum, the historical long-run growth rates for GDP, S\&P EPS, and S\&P DPS are in the 5% to 7% range. By comparison, Dr. Avera's long-run growth rate projection of 10.9% is vastly overstated. These estimates suggest that companies in the U.S. would be expected to: (1) increase their growth rate of EPS by over 50% in the future, and (2) maintain that growth indefinitely in an economy that is expected to grow at about one-half of his projected growth rates.
Q. DO MORE RECENT DATA SUGGEST THAT THE U.S. ECONOMY GROWTH IS FASTER OR SLOWER THAN THE LONG-TERM DATA?
A. The more recent trends suggest lower future economic growth than the longterm historic GDP growth. The historic GDP growth rates for $10-, 20-, 30-, 40-$ and 50- years are presented in Panel A of page 3 of Exhibit JRW-15. These figures clearly suggest that nominal GDP growth in recent decades has slowed and that a figure in the range of 4.0% to 5.0% is more appropriate today for the U.S. economy. These figures indicate that Dr. Avera's long-term growth EPS growth rate of 10.9% is even more inflated.
Q. WHAT LEVEL OF GDP GROWTH IS FORECASTED BY ECONOMISTS AND VARIOUS GOVERNMENT AGENCIES?
A. There are several forecasts of annual GDP growth that are available from economists and government agencies. These are listed in Panel B of page 3 of Exhibit JRW-15. The mean 10-year nominal GDP growth forecast (as of February 2012) by economists in the recent Survey of Professional Forecasters is 4.9%. The Energy Information Administration (EIA), in its projections used in preparing Annual Energy Outlook, forecasts long-term GDP growth of 4.8% for the period 2009-2035. The Congressional Budget Office, in its forecasts for the period 2012 to 2022, projects a nominal GDP growth rate of 4.8%. As such, projections of nominal GDP growth provide additional evidence that Dr. Avera's long-term EPS growth rate of 10.9% is highly overstated.
Q. PLEASE HIGHLIGHT THE RECENT RESEARCH ON THE LINK BETWEEN ECONOMIC AND EARNINGS GROWTH AND EQUITY RETURNS.
A. Brad Cornell of the California Institute of Technology recently published a study on GDP growth, earnings growth, and equity returns. He finds that long-term EPS growth in the U.S. is directly related to GDP growth, with GDP growth providing an upward limit on EPS growth. In addition, he finds that long-term stock returns are determined by long-term earnings growth. He concludes with the following observations: ${ }^{20}$

The long-run performance of equity investments is fundamentally linked to growth in earnings. Earnings growth, in turn, depends on growth in real GDP. This article demonstrates that both theoretical research and empirical research in development economics suggest relatively strict limits on future growth. In particular, real GDP growth in excess of 3 percent in the long run is highly unlikely in the developed world. In light of ongoing dilution in earnings per share, this finding implies that investors should anticipate real returns on U.S. common stocks to average no more than about $4-5$ percent in real terms.

Given current inflation in the 3% range, the results imply nominal expected stock market returns in the 7% to 8% range. As such, Dr. Avera's projected earnings growth rates and implied expected stock market returns and equity risk premiums are not indicative of the realities of the U.S. economy and stock market. As such, his CAPM equity cost rates are vastly overstated and should be ignored.

[^13]Q. PLEASE PROVIDE A SUMMARY ASSESSMENT OF DR. AVERA'S EQUITY RISK PREMIUMS DERIVED FROM EXPECTED MARKET RETURNS.
A. Dr. Avera's equity risk premium derived from his DCF application to the $S \& P$ 500 is inflated due to errors and bias in his study. Investment banks, consulting firms, and CFOs use the equity risk premium concept every day in making financing, investment, and valuation decisions. On this issue, the opinions of CFOs and financial forecasters are especially relevant. CFOs deal with capital markets on an ongoing basis since they must continually assess and evaluate capital costs for their companies. The June 2012 CFO Magazine - Duke University Survey of approximately 500 CFOs shows an expected return on the S\&P 500 of 6.3% over the next ten years. In addition, the financial forecasters in the February 2012 Federal Reserve Bank of Philadelphia survey expect an annual market return of 6.8% over the next ten years. As such, the appropriate equity cost rate for a public utility should be in the 8.0% to 9.0% range, and not in the 11.0% range.

4. Risk Premium Approach

Q. PLEASE DISCUSS DR. AVERA'S RISK PREMIUM METHOD (RPM) APPROACH.
A. At pages 64-67 of his testimony and in Exhibit Nos. WEA-10 and WEA-11, Dr. Avera estimates equity cost rates ranging from of 9.57% to 10.40% using the RPM approach. These results are summarized in Panel D of page 1 of Exhibit JRW-12. Dr. Avera's RPM approach is based on the historical relationship between the yields on Moody's public utility bond yields and authorized ROEs for electric utilities.

Q. WHAT ARE THE ISSUES WITH DR. AVERA'S RPM APPROACH?

A. This approach overstates the equity cost rate for the Company in two ways. First, the base yield is in excess of investor return requirements. This is because the base yield, the rate on "A" rated utility bonds, is subject to credit risk. With credit risk, the expected return on the bond is below the yield-tomaturity. Hence, the yield-to-maturity of the bond is above the expected return. Second, and more importantly, the risk premium is inflated as a measure of investor's required risk premium since the utilities have been selling at market-to-book ratios in excess of 1.0 for many years. This indicates that the authorized rates of return have been greater than the return that investors require. Therefore, the risk premium produced from the study is overstated as a measure of investor return requirements and produced an inflated equity cost rate.

5. Expected Earnings Approach

Q. PLEASE DISCUSS DR. AVERA'S EXPECTED EARNINGS ANALYSIS.
A. In pages 67-70 of his testimony and Exhibit WEA-12, Dr. Avera estimates an equity cost rate of 12.00% for the utility group using an approach he calls the Expected Earnings ("EE") approach. These results are summarized in Panel E of page 1 of Exhibit JRW-12. His methodology simply involves using the expected ROE for the companies in the proxy group as estimated by Value Line. This approach is fundamentally flawed for several reasons. First, these ROE results include the profits associated with the unregulated operations of the utility proxy group. More importantly, since Dr. Avera has not evaluated the market-to-book ratios for these companies, he cannot indicate whether the past and projected returns on common equity are above or below investors' requirements. These returns on common equity are excessive if the market-tobook ratios for these companies are above 1,0 .

6. Size Adiustment and Flotation Costs

Q. PLEASE DISCUSS DR. AVERA'S SIZE ADJUSTMENT.

A. Dr. Avera includes a size adjustment of 0.81% in his CAPM approach for the size of the companies in the utility group. This adjustment is based on the historical stock market returns studies as performed by Morningstar (formerly Ibbotson Associates). There are numerous errors in using historical market returns to compute risk premiums. These errors provide inflated estimates of expected risk premiums. Among the errors are survivorship bias (only successful companies survive - poor companies do not survive) and unattainable return bias (the Ibbotson procedure presumes monthly portfolio rebalancing). The net result is that Ibbotson's size premiums are poor measures for risk adjustment to account for the size of the Company.

In addition, Professor Annie Wong has tested for a size premium in utilities and concluded that, unlike industrial stocks, utility stocks do not exhibit a significant size premium. ${ }^{21}$ As explained by Professor Wong, there are

[^14]several reasons why such a size premium would not be attributable to utilities. Utilities are regulated closely by state and federal agencies and commissions, and hence, their financial performance is monitored on an ongoing basis by both the state and federal governments. In addition, public utilities must gain approval from government entities for common financial transactions such as the sale of securities. Furthermore, unlike their industrial counterparts, accounting standards and reporting are fairly standardized for public utilities. Finally, a utility's earnings are predetermined to a certain degree through the ratemaking process in which performance is reviewed by state commissions and other interested parties. Overall, in terms of regulation, government oversight, performance review, accounting standards, and information disclosure, utilities are much different than industrials, which could account for the lack of a size premium.

Q. PLEASE DISCUSS RECENT RESEARCH ON THE SIZE PREMIUM

 IN ESTIMATING THE EQUITY COST RATE.A. As noted, there are errors in using historical market returns to compute risk premiums. With respect to the small firm premium, Richard Roll (1983) found that one-half of the historic return premiums for small companies disappear once biases are eliminated and historic returns are properly computed. The error arises from the assumption of monthly portfolio rebalancing and the serial correlation in historic small firm returns. ${ }^{22}$

[^15]In a more recent paper, Ching-Chih Lu (2009) estimated the size premium over the long run. Lu acknowledges that many studies have demonstrated that smaller companies have historically earned higher stock market returns. However, Lu highlights that these studies rebalance the size portfolios on an annual basis. This means that at the end of each year the stocks are sorted based on size, split into deciles, and the returns are computed over the next year for each stock decile. This annual rebalancing creates the problem. Using a size premium in estimating a CAPM equity cost rate requires that a firm carry the extra size premium in its discount factor for an extended period of time, not just for one year, which is the presumption with annual rebalancing. Through an analysis of small firm stock returns for longer time periods (and without annual rebalancing), Lu finds that the size premium disappears within two years. Lu's conclusion with respect to the size premium is: ${ }^{23}$

However, an analysis of the evolution of the size premium will show that it is inappropriate to attach a fixed amount of premium to the cost of equity of a firm simply because of its current market capitalization For a small stock portfolio which does not rebalance since the day it was constructed, its annual return and the size premium are all declining over years instead of staying at a relatively stable level. This confirms that a small firm should not be expected to have a higher size premium going forward sheerly because it is small now.

Q. PLEASE DISCUSS DR. AVERA'S ADJUSTMENT FOR FLOTATION

 costs.A. Dr. Avera claims that an upward adjustment to the equity cost rate is warranted for flotation costs. This adjustment factor is erroneous for several

[^16]reasons. First, FPL has not identified any actual flotation costs for itself. Therefore, FPL is requesting annual revenues in the form of a higher return on equity for flotation costs that have not been identified. Second, it is commonly argued that a flotation cost adjustment (such as that used by FPL) is necessary to prevent the dilution of the existing shareholders. In this case, a flotation cost adjustment is justified by reference to bonds and the manner in which issuance costs are recovered by including the amortization of bond flotation costs in annual financing costs. However, this is incorrect for several reasons:
(1) If an equity flotation cost adjustment is similar to a debt flotation cost adjustment, the fact that the market-to-book ratios for utility companies are over 1.5 X actually suggests that there should be a flotation cost reduction (and not increase) to the equity cost rate. This is because when (a) a bond is issued at a price in excess of face or book value, and (b) the difference between market price and the book value is greater than the flotation or issuance costs, the cost of that debt is lower than the coupon rate of the debt. The amount by which market values of utility companies are in excess of book values is much greater than flotation costs. Hence, if common stock flotation costs were exactly like bond flotation costs, and one was making an explicit flotation cost adjustment to the cost of common equity, the adjustment would be downward. (2) If a flotation cost adjustment is needed to prevent dilution of existing stockholders' investment, then the reduction of the book value of stockholder investment associated with flotation costs can occur only when a company's stock is selling at a market price at/or below its book value. As noted above, utility companies are selling at market prices well in excess of book value.

Hence, when new shares are sold, existing shareholders realize an increase in the book value per share of their investment, not a decrease.
(3) Flotation costs consist primarily of the underwriting spread or fee and not out-of-pocket expenses. On a per share basis, the underwriting spread is the difference between the price the investment banker receives from investors and the price the investment banker pays to the company. Hence, these are not expenses that must be recovered through the regulatory process. Furthermore, the underwriting spread is known to the investors who are buying the new issue of stock, who are well aware of the difference between the price they are paying to buy the stock and the price that the Company is receiving. The offering price which they pay is what matters when investors decide to buy a stock based on its expected return and risk prospects. Therefore, the company is not entitled to an adjustment to the allowed return to account for those costs.
(4) Lastly, flotation costs, in the form of the underwriting spread, are a form of a transaction cost in the market. They represent the difference between the price paid by investors and the amount received by the issuing company. Whereas the Company believes that it should be compensated for these transaction costs, they have not accounted for other market transaction costs in determining a cost of equity for the Company. Most notably, brokerage fees that investors pay when they buy shares in the open market are another market transaction cost. Brokerage fees increase the effective stock price paid by investors to buy shares. If the Company had included these brokerage fees or transaction costs in their DCF analysis, the higher effective stock prices paid for stocks would lead to lower dividend yields and equity cost rates. This
would result in a downward adjustment to their DCF equity cost rate.

3 Q. DOES THIS CONCLUDE YOUR TESTIMONY?

4
A. Yes.

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true and foregoing Direct Testimony of J. Randall Woolridge has been furnished by electronic mail and/or U.S. Mail on this 2nd day of June, 2012, to the following:

Caroline Klancke
Keino Young
Florida Public Service Commission
Division of Legal Service
2540 Shumard Oak Boulevard
Tallahassee, FL 32399-0850

Ken Hoffman
R. Wade Litchfield

Florida Power \& Light Company
215 South Monroe Street, Suite 810
Tallahassee, FL 32301-1858

Daniel R. and Alexandria Larson
06933 W. Harlena Dr.
Loxahatchee, FL 33470

Vickie Gordon Kaufman
Jon C. Moyle
c/o Moyle Law Firm
118 North Gadsden Street
Tallahassee, Fl 32301
Karen White
Federal Executive Agencies
c/o AFLOA/JACL-ULFSC
139 Barnes Drive, Suite 1
Tyndall Air Force Base, FL 32403
John W. Hendricks
367 S Shore Drive
Sarasota, FL 34234

John T. Butler
Florida Power \& Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420

Kenneth L. Wiseman
Mark F. Sundback
J. Peter Ripley

Andrew Kurth LLP
1350 I Street, NW, Suite 1100
Washington, DC 20005
Charles Milsted
Associate State Director
200 West College Avenue
Tallahassee, FL 32301
Robert Scheffel Wright
John T. LaVia
Gardner Law Firm
1.300 Thomaswood Drive

Tallahassee, FL 32.308
ThomasSaporito
177 US Hwy 1N, Unit 212
Tequesta, FL 33469

William Cn Garner, Esq.
Brian P. Armstrong, Esq.
Nabors, Giblin \& Nickerson, P.A.
1500 Mahan Drive, Suite 200
Tallahassee, FL 32308

Linda S. Quick, President
South Florida Hospital and
Healthcare Association
6030 Hollywood Blvd., Suite 140
Hollywood, FL 33024

Paul Woods, Quang Ha, Patrick Ahlm
Algenol Biofuels, Inc.
28100 Bonita Grande Dr., Suite 2000
Bonita Springs, FL 24135

Appendix A Educational Background, Research, and Related Business Experience J. Randall Woolridge

J. Randall Woolridge is a Professor of Finance and the Goldman, Sachs \& Co. and Frank P. Smeal Endowed Faculty Fellow in Business Administration in the College of Business Administration of the Pennsylvania State University in University Park, PA. In addition, Professor Woolridge is Director of the Smeal College Trading Room and President and CEO of the Nittany Lion Fund, LLC.

Professor Woolridge received a Bachelor of Arts degree in Economics from the University of North Carolina, a Master of Business Administration degree from the Pennsylvania State University, and a Doctor of Philosophy degree in Business Administration (major area-finance, minor area-statistics) from the University of lowa He has taught Finance courses including corporation finance, commercial and investment banking, and investments at the undergraduate, graduate, and executive MBA levels.

Professor Woolridge's research has centered on empirical issues in corporation finance and financial markets. He has published over 35 articles in the best academic and professional journals in the field, including the Journal of Finance, the Journal of Financial Economics, and the Harvard Business Review. His research has been cited extensively in the business press. His work has been featured in the New York Times, Forbes, Fortune, The Economist, Barron's, Wall Street Journal, Business Week, Investors' Business Daily, USA Today, and other publications. In addition, Dr. Woolridge has appeared as a guest to discuss the implications of his research on CNN's Money Line, CNBC's Morning Call and Business Today, and Bloomberg's Morning Call.

Professor Woolridge's stock valuation book, The StreetSmart Guide to Valuing a Stock (McGraw-Hill, 2003), was released in its second edition. He has also co-authored Spinoffs and Equity Carve-Outs: Achieving Faster Growth and Better Performance (Financial Executives Research Foundation, 1999) as well as a textbook entitled Basic Principles of Finance (Kendall Hunt, 2011), Dr. Woolridge is a founder and a managing director of www.valuepro.net - a stock valuation website.

Professor Woolridge has also consulted with corporations, financial institutions, and government agencies. In addition, he has directed and participated in university- and company- sponsored professional development programs for executives in 25 countries in North and South America, Europe, Asia, and Africa.

Over the past twenty-five years Dr . Woolridge has prepared testimony and/or provided consultation services in regulatory rate cases in the rate of return area in following states: Alaska, Arizona, California, Colorado, Connecticut, Delaware, Florida, Hawaii, Indiana, Kansas, Kentucky, Massachusetts, Missouri, Nebraska, New Jersey, New York, Ohio, Oklahoma, Pennsylvania, South Carolina, Texas, Utah, Vermont, Washington, and Washington, D.C. He has also prepared testimony which was submitted to the Federal Energy Regulatory Commission.

The Research on Analysts' Long-Term EPS Growth Rate Forecasts

Q. PLEASE DISCUSS THE ISSUE REGARDING THE ACCURACY OF ANALYSTS' EPS FORECASTS.
A. Most of the attention given the accuracy of analysts' EPS forecasts comes from media coverage of company's quarterly earnings announcements. When companies announced earnings beat Wall Street's EPS estimates ("a positive surprise"), their stock prices usually go up. When a company's EPS figure misses or is below Wall Street's forecasted EPS ("A negative surprise"), their stock price usually declines, sometimes precipitously so. Wall Street's estimate is the consensus forecast for quarterly EPS made by analysts who follow the stock as of the announcement date. And so Wall Street's estimate is the consensus EPS made in the days leading up to the EPS announcement.

In recent years, it has become more common for companies to beat Wall Street's quarterly EPS estimate. A recent Wall Street Journal article summarized the results for the first quarter of 2012: "While this "positive surprise ratio" of 70% is above the 20 year average of 58% and also higher than last quarter's tally, it is just middling since the current bull market began in 2009. In the past decade, the ratio only dipped below 60% during the financial crisis. Look before 2002, though, and 70% would have been literally off the chart. From 1993 through 2001, about half of companies had positive surprises. ${ }^{1}$ Figure 1 below provides the record for

[^17]companies beating Wall Street's EPS estimate on a quarterly basis over the past twenty years.

Figure 1
Percent of Companies Beating Wall Street's Quarterly Estimates Percentage of S\&P 500 stocks that beat earnings estimates

Source: BEH Equity Strategy Research
Q. PLEASE REVIEW THE ACADEMIC RESEARCH ON THE ACCURACY OF ANALYSTS' NEAR-TERM EPS ESTIMATES.
A. There is a long history of studies that evaluate how well analysts forecast near-term EPS estimates and long-term EPS growth rates. Most of these studies have evaluated the accuracy of earnings forecasts for the current quarter or year Many of the early studies indicated that analysts make overly optimistic EPS earnings forecasts for quarter-to-quarter EPS (Stickel (1990); Brown (1997); Chopra (1998)). ${ }^{2}$ More recent studies have shown that the optimistic bias tends to be larger for longer-term forecasts and smaller for forecasts made nearer to the EPS announcement date. Richardson, Teoh, and Wysocki (2004) report that the

[^18]upward bias in earnings growth rates declines in the quarters leading up to the earnings announcement date. ${ }^{3}$ They call this result the "walk-down to beatable analyst forecasts." They hypothesize that the walk-down might be driven by the "earning-guidance game," in which analysts give optimistic forecasts at the start of a fiscal year, then revise their estimates downwards until the firm can beat the forecasts at the earnings announcement date.

However, two regulatory developments over the past decade have potentially impacted analysts' EPS growth rate estimates. First, Regulation Fair Disclosure ("Reg FD") was introduced by the Securities and Exchange Commission ("SEC") in October of 2000. Reg FD prohibits private communication between analysts and management so as to level the information playing field in the markets. With Reg FD, analysts are less dependent on gaining access to management to obtain information and therefore, are not as likely to make optimistic forecasts to gain access to management. Second, the conflict of interest within investment firms with investment banking and analyst operations was addressed in the Global Analysts Research Settlements ("GARS"). GARS, as agreed upon on April 23, 2003, between the SEC, NASD, NYSE and ten of the largest U.S. investment firms, includes a number of regulations that were introduced to prevent investment bankers from pressuring analysts to provide favorable projections.

[^19]The previously cited Wall Street Journal article acknowledged the impact of the new regulatory rules in explaining the recent results: "What changed? One potential reason is the tightening of rules governing analyst contacts with management. Analysts now must rely on publicly available guidance or, gasp, figure things out by themselves. That puts companies, with an incentive to set the bar low so that earnings are received positively, in the driver's seat. While that makes managers look good short-term, there is no lasting benefit for buy-and-hold investors."

These comments on the impact of regulatory developments on the accuracy of short-term EPS estimates were addressed in a study by Hovakimian and Saenyasiri (2010). ${ }^{5}$ The authors investigate analysts' forecasts of annual earnings for the following time periods: (1) the time prior to Reg FD (1984-2000); (2) the time period after Reg FD but prior to GARS (2000-2002); ${ }^{6}$ and (3) the time period after GARS (2002-2006). For the pre-Reg FD period, Hovakimian and Saenyasiri find that analysts generally make overly optimistic forecasts of annual earnings. The forecast bias is higher for early forecasts and steadily declines in the months leading up to the earnings announcement. The results are similar for the time period after Reg FD but prior to GARS. However, the bias is lower in the later forecasts (the forecasts made just prior to the announcement).

[^20]For the time period after GARS, the average forecasts declined significantly, but a positive bias remains. In sum, Hovakimian and Saenyasiri find that: (1) analysts make overly optimistic short-term forecasts of annual earnings; (2) Reg FD had no effect on this bias; and (3) GARS did result in a significant reduction in the bias, but analysts' short-term forecasts of annual earnings still have a small positive bias.
Q. PLEASE TURN TO THE REVIEW THE ACADEMIC RESEARCH ON THE ACCURACY OF ANALYSTS' LONG-TERM EPS GROWTH RATE FORECASTS.
A. There have been very few studies regarding the accuracy of analysts' long-term EPS growth rate forecasts. Cragg and Malkiel (1968) studied analysts' long-term EPS growth rate forecasts made in 1962 and 1963 by five brokerage houses for 185 firms. They concluded find that analysts' long-term earnings growth forecasts are on the whole no more accurate than naive forecasts based on past earnings growth. Harris (1999) evaluated the accuracy of analysts' long-term EPS forecasts over the 1982-1997 time-period using a sample of 7,002 firm-year observations. ${ }^{7}$ He concluded the following: (1) the accuracy of analysts' longterm EPS forecasts is very low; (2) a superior long-run method to forecast longterm EPS growth is to assume that all companies will have an earnings growth rate equal to historic GDP growth; and (3) analysts' long-term EPS forecasts are

[^21]significantly upwardly biased, with forecasted earnings growth exceeding actual earnings growth by seven percent per annum Subsequent studies by DeChow, P, A. Hutton, and R. Sloan (2000), and Chan, Karceski, and Lakonishok (2003) also conclude that analysts' long-term EPS growth rate forecasts are overly optimistic and upwardly biased. ${ }^{8}$ The Chan, Karceski, and Lakonishok (200.3) study evaluated the accuracy of analysts' long-term EPS growth rate forecasts over the 1982-98 time-period. They reported a median IBES growth forecast of 14.5%, versus a median realized five-year growth rate of about 9%. They also found the IBES forecasts of EPS beyond two years are not accurate. They concluded the following: "Over long horizons, however, there is little forecastability in earnings, and analysts' estimates tend to be overly optimistic."

Lacina, Lee, and Xu (2011) evaluated the accuracy of analysts' long-term earnings growth rate forecasts over the 198.3-2003 time-period. ${ }^{9}$ The study included 27,081 firm year observations, and compare the accuracy of analysts' EPS forecasts to those produced by two naïve forecasting models: (1) a random walk model ("RW") where the long-term EPS ($\mathrm{t}+5$) is simply equal to last year's EPS figure (t-1); (2) a RW model with drift ("RWGDP"), where the drift or growth rate is GDP growth for period $t-1$. In this model, long-term EPS $(t+5)$ is simply equal to last year's EPS figure ($t-1$) times $(1+$ GDP growth $(t-1))$. The

[^22]authors conclude that that using the RW model to forecast EPS in the next 3-5 years proved to be just as accurate as using the EPS estimates from analysts' longterm earnings growth rate forecasts. They find that the RWGDP model performs better than the pure RW model, and that both perform as well as analysts; in forecasting long-term EPS. They also discover an optimistic bias in analysts' long-term EPS forecasts. In the authors' opinion, these results indicate that that analysts' long-term earnings growth rate forecasts should be used with caution as inputs for valuation and cost of capital purposes.
Q. PLEASE ADDRESS THE ISSUE REGARDING THE SUPERIORITY OF ANALYSTS' EPS FORECASTS OVER HISTORIC AND TIME-SERIES ESTIMATES OF EPS GROWTH?
A. As highlighted by the classic study by Brown and Rozeff (1976) and the other studies that followed, analysts' forecasts of quarterly earnings estimates are superior to the estimates derived from historic and time-series analyses. ${ }^{10}$ This is often attributed to the information and timing advantage that analysts have over historic and time-series analyses. These studies relate to analysts' forecasts of quarterly and/or annual forecasts, and not to long-term EPS growth rate forecasts. The previously cited studies by Harris (1999), Chan, Karceski, and Lakonishok (2003), and Lacina, Lee, and Xu (2011) all conclude that analysts' forecasts are no better than time-series models and historic growth rates in forecasting long-term EPS.

[^23]Docket No. 120015-EI

Harris (1999) and Lacina, Lee, and Xu (2011) concluded that historic GDP growth was superior to analysts' forecasts for long run earnings growth. These overall results are similar to the findings by Bradshaw, Drake, Myers, and Myers (2009) that discovered that time-series estimates of annual earnings are more accurate over longer horizons than analysts' forecasts of earnings. As the authors state, "These findings suggest an incomplete and misleading generalization about the superiority of analysts' forecasts over even simple time-series-based earnings forecasts." 11

Q. PLEASE DISCUSS YOUR STUDY OF THE ACCURACY OF ANALYSTS' LONG-TERM EARNINGS GROWTH RATES.

A. To evaluate the accuracy of analysts' EPS forecasts, I have compared actual 3-5 year EPS growth rates with forecasted EPS growth rates on a quarterly basis over the past 20 years for all companies covered by the $/ / B / E / S$ data base. In Panel A of page 1 of Exhibit JRW-14, I show the average analysts' forecasted 3-5 year EPS growth rate with the average actual $3-5$ year EPS growth rate for the past twenty years.

The following example shows how the results can be interpreted. For the 3-5 year period prior to the first quarter of 1999, analysts had projected an EPS growth rate of 15.13%, but companies only generated an average annual EPS growth rate over the $3-5$ years of 9.37%. This projected EPS growth rate figure

[^24] represented the average projected growth rate for over 1,510 companies, with an average of 4.88 analysts' forecasts per company. For the entire twenty-year period of the study, for each quarter there were on average 5.6 analysts' EPS projections for 1,281 companies. Overall, my findings indicate that forecast errors for long-term estimates are predominantly positive, which indicates an upward bias in growth rate estimates. The mean and median forecast errors over the observation period are 143.06% and 75.08%, respectively. The forecasting errors are negative for only eleven of the eighty quarterly time periods: five consecutive quarters starting at the end of 1995 and six consecutive quarters starting in 2006. As shown in Panel A of page 1 of Exhibit JRW-14, the quarters with negative forecast errors were for the 3-5 year periods following earnings declines associated with the 1991 and 2001 economic recessions in the U.S. Thus, there is evidence of a persistent upward bias in long-term EPS growth forecasts.

The average 3-5 year EPS growth rate projections for all companies provided in the $\mathrm{I} / \mathrm{B} / \mathrm{E} / \mathrm{S}$ database on a quarterly basis from 1988 to 2008 are shown in Panel B of page 1 of Exhibit JRW-14. In this graph, no comparison to actual EPS growth rates is made, and hence, there is no follow-up period Therefore, since companies are not lost from the sample due to a lack of followup EPS data, these results are for a larger sample of firms. Analysts' forecasts for EPS growth were higher for this larger sample of firms, with a more pronounced run-up and then decline around the stock market peak in 2000. The average projected growth rate hovered in the $14.5 \%-17.5 \%$ range until 1995 and then
increased dramatically over the next five years to 23.3% in the fourth quarter of the year 2000. Forecasted EPS growth has since declined to the 15.0% range.

Q. IS THE UPWARD BIAS IN ANALYSTS' GROWTH RATE FORECASTS GENERALLY KNOWN IN THE MARKETS?

A. Yes. Page 2 of Exhibit JRW-14 provides an article published in the Wall Street Journal, dated March 21, 2008, that discusses the upward bias in analysts' EPS growth rate forecasts. ${ }^{12}$ In addition, a recent Bloomberg Businessweek article also highlighted the upward bias in analysts' EPS forecasts, citing a study by McKinsey Associates. This article is provided on pages 3 and 4 of Exhibit JRW-12. The article concludes with the following: ${ }^{13}$

The bottom line: Despite reforms intended to improve Wall Street research, stock analysts seem to be promoting an overly rosy view of profit prospects.

Q. HAVE REGULATORY DEVELOPMENTS LIKE REGULATION FD

 IMPACTED THE ACCURACY OF ANALYSTS' LONG-TERM EARNINGS GROWTH RATES.A. Whereas Hovakimian and Saenyasiri evaluated the impact of regulations on analysts' short-term EPS estimates, there is little research on the impact of Reg

[^25]FD and GARS on the long-term EPS forecasts of Wall Street analysts. My study with Patrick Cusatis did find that the long-term EPS growth rate forecasts of analysts did not decline significantly and have continued to be overly-optimistic in the post Reg FD and GARS period. ${ }^{14}$ Analysts' long-term EPS growth rate forecasts before and after GARS are about two times the level of historic GDP growth. These observations are supported by a Wall Street Journal article entitled "Analysts Still Coming Up Rosy - Over-Optimism on Growth Rates is Rampant and the Estimates Help to Buoy the Market's Valuation." The following quote provides insight into the continuing bias in analysts' forecasts:

Hope springs eternal, says Mark Donovan, who manages Boston Partners Large Cap Value Fund. "You would have thought that, given what happened in the last three years, people would have given up the ghost. But in large measure they have not.

These overly optimistic growth estimates also show that, even with all the regulatory focus on too-bullish analysts allegedly influenced by their firms' investment-banking relationships, a lot of things haven't changed. Research remains rosy and many believe it always will. ${ }^{15}$

Q. ARE THESE OBSERVATIONS CONSISTENT WITH THE FINDINGS OF

A RECENT MCKINSEY STUDY ON THE IMPACT OF THESE REGULATIONS ON THE ACCURACY OF ANALYSTS' EPS GROWTH

 RATE FORECASTS?[^26]A. Yes. McKinsey recently published a study entitled "Equity Analysts: Still too Bullish" in which they reported on a study of the accuracy on analysts long-term EPS growth rate forecasts. They concluded that after a decade of stricter regulation, analysts' long-term earnings forecasts continue to be excessively optimistic.

They made the following observation (emphasis added): ${ }^{16}$
Alas, a recently completed update of our work only reinforces this viewdespite a series of rules and regulations, dating to the last decade, that were intended to improve the quality of the analysts' long-term earnings forecasts, restore investor confidence in them, and prevent conflicts of interest. For executives, many of whom go to great lengths to satisfy Wall Street's expectations in their financial reporting and long-term strategic moves, this is a cautionary tale worth remembering. This pattern confirms our earlier findings that analysts typically lag behind events in revising their forecasts to reflect new economic conditions. When economic growth accelerates, the size of the forecast error declines; when economic growth slows, it increases. So as economic growth cycles up and down, the actual earnings S\&P 500 companies report occasionally coincide with the analysts' forecasts, as they did, for example, in 1988, from 1994 to 1997, and from 2003 to 2006. Moreover, analysts have been persistently overoptimistic for the past 25 years, with estimates ranging from 10 to 12 percent a year, compared with actual earnings growth of 6 percent. Over this time frame, actual earnings growth surpassed forecasts in only two instances, both during the earnings recovery following a recession. On average, analysts' forecasts have been almost 100 percent too high.

Q. ARE ANALYSTS' EPS GROWTH RATE FORECASTS LIKEWISE

 UPWARDLY BIASED FOR UTILITY COMPANIES?[^27]A. Yes. To evaluate whether analysts' EPS growth rate forecasts are upwardly biased for utility companies, I conducted a study similar to the one described above using a group of electric utility and gas distribution companies. The results are shown on Panels A and B of page 5 of Exhibit JRW-14. The projected EPS growth rates for electric utilities have been in the 4% to 6% range over the last twenty years, with the recent figures approximately 5%. As shown, the achieved EPS growth rates have been volatile and on average, below the projected growth rates. Over the entire period, the average quarterly 3-5 year projected and actual EPS growth rates are 4.59% and 2.90%, respectively.

For gas distribution companies, the projected EPS growth rates have declined from about 6% in the 1990 s to about 5% in the 2000 s. The achieved EPS growth rates have been volatile. Over the entire period, the average quarterly 3-5 year projected and actual EPS growth rates are 5.15% and 4.53%, respectively.

Overall, the upward bias in EPS growth rate projections for electric utility and gas distribution companies is not as pronounced as it is for all companies. Nonetheless, the results here are consistent with the results for companies in general -- analysts' projected EPS growth rate forecasts are upwardly-biased for utility companies.
Q. ARE VALUE LINE'S GROWTH RATE FORECASTS OVERLY OPTIMISTIC?
A. Yes Value Line has a decidedly positive bias to its earnings growth rate forecasts as well. To assess Value Line's earnings growth rate forecasts, I used the Value Line Investment Analyzer. The results are summarized in Panel A of Page 6 of Exhibit JRW-14. I initially filtered the database and found that Value Line has 35 year EPS growth rate forecasts for 2,333 firms. The average projected EPS growth rate was 14.70%. This is high given that the average historical EPS growth rate in the U.S. is about 7%. A major factor seems to be that Value Line only predicts negative EPS growth for 43 companies. This is less than two percent of the companies covered by Value Line. Given the ups and downs of corporate earnings, this is unreasonable.

To put this figure in perspective, I screened the Value Line companies to see what percent of companies covered by Value Line had experienced negative EPS growth rates over the past five years. Value Line reported a five-year historic growth rate for 2,219 companies. The results are shown in Panel B of page 6 of Exhibit JRW-14 and indicate that the average 5 -year historic growth rate was 3.90%, and Value Line reported negative historic growth for 844 firms which represents 38.0% of these companies.

These results indicate that Value Line's EPS forecasts are excessive and unrealistic. It appears that the analysts at Value Line are similar to their Wall Street brethren in that they are reluctant to forecast negative earnings growth.
Q. PLEASE DISCUSS YOUR DEVELOPMENT OF AN EQUITY RISK PREMIUM COMPUTED USING THE BUILDING BLOCKS METHODOLOGY.
A. Ibbotson and Chen (2003) evaluate the ex post historical mean stock and bond returns in what is called the Building Blocks approach. ${ }^{1}$ They use 75 years of data and relate the compounded historical returns to the different fundamental variables employed by different researchers in building ex ante expected equity risk premiums Among the variables included were inflation, real EPS and DPS growth, ROE and book value growth, and price-earnings ("P/E") ratios. By relating the fundamental factors to the ex post historical returns, the methodology bridges the gap between the ex post and ex ante equity risk premiums. Ilmanen (2003) illustrates this approach using the geometric returns and five fundamental variables - inflation ("CPI"), dividend yield ("D/P"), real earnings growth ("RG"), repricing gains ("PEGAIN") and return interaction/reinvestment ("INT"). ${ }^{2}$ This is shown on page 7 of Exhibit JRW-11. The first column breaks the 1926-2000 geometric mean stock return of 10.7% into the different return components demanded by investors: the historical U.S. Treasury bond return (5.2\%), the excess equity return (5.2\%), and a small interaction term (0.3\%). This 10.7% annual stock return over the $1926-2000$ period can then be broken down

[^28]into the following fundamental elements: inflation (3.1\%), dividend yield (4.3\%), real earnings growth (1.8%), repricing gains (1.3%) associated with higher P / E ratios, and a small interaction term (0.2%).
Q. HOW ARE YOU USING THIS METHODOLOGY TO DERIVE AN EX ANTE EXPECTED EQUITY RISK PREMIUM?
A. The third column in the graph on page 7 of Exhibit JRW-11 shows current inputs to estimate an ex ante expected market return. These inputs include the following:

CPI - To assess expected inflation, I have employed expectations of the shortterm and long-term inflation rate. L.ong term inflation forecasts are available in the Federal Reserve Bank of Philadelphia's publication entitled Survey of Professional Forecasters. While this survey is published quarterly, only the first quarter survey includes long-term forecasts of gross domestic product ("GDP") growth, inflation, and market returns. In the first quarter 2011 survey, published on February 10,2012 , the median long-term (10-year) expected inflation rate as measured by the CPI was 2.30% (see Panel A of page 8 of Exhibit JRW-11).

The University of Michigan's Survey Research Center surveys consumers on their short-term (one-year) inflation expectations on a monthly basis. As shown on page 9 of Exhibit JRW-11, the current short-term expected inflation rate is 3.2%.

As a measure of expected inflation, I will use the average of the long-term (2.3\%) and short-term (3.2\%) inflation rate measures, or 2.8%.
$\underline{\mathrm{D} / \mathrm{P}}$ - As shown on page 10 of Exhibit JRW-11, the dividend yield on the $\mathrm{S} \& \mathrm{P}$ 500 has fluctuated from 1.0% to almost 3.5% over the past decade. Ibbotson and Chen (200.3) report that the long-term average dividend yield of the S\&P 500 is 4.3%. As of May 17, 2012, the indicated S\&P 500 dividend yield was 2.4% I will use this figure in my ex ante risk premium analysis.
$\underline{\mathrm{RG}}$ - To measure expected real growth in earnings, I use the historical real earnings growth rate $\mathrm{S} \& \mathrm{P} 500$ and the expected real GDP growth rate. The S\&P 500 was created in 1960 and includes 500 companies which come from ten different sectors of the economy. On page 11 of Exhibit JRW-11, real EPS growth is computed using the CPI as a measure of inflation. The real growth figure over 1960-2010 period for the S\&P 500 is 2.8%.

The second input for expected real earnings growth is expected real GDP growth. The rationale is that over the long-term, corporate profits have averaged 5.50% of U.S. GDP. ${ }^{3}$ Expected GDP growth, according to the Federal Reserve Bank of Philadelphia's Survey of Professional Forecasters, is 2.6% (see Panel B of page 8 of Exhibit JRW-11)

Given these results, I will use 2.70%, for real earnings growth.
PEGAIN - PEGAIN is the repricing gain associated with an increase in the P / E ratio. It accounted for 1.3% of the 10.7% annual stock return in the $1926-2000$

[^29]period. In estimating an ex ante expected stock market return, one issue is whether investors expect P / E ratios to increase from their current levels. The P / E ratios for the S\&P 500 over the past 25 years are shown on page 10 of Exhibit JRW-11. The run-up and eventual peak in P/Es in the year 2000 is very evident in the chart. The average P/E declined until late 2006, and then increased to higher high levels, primarily due to the decline in EPS as a result of the financial crisis and the recession. As of $3 / 31 / 12$, the average P / E for the $S \& P 500$ was 15.97, which is in line with the historic average. Since the current figure is near the historic average, a PEGAIN would not be appropriate in estimating an ex ante expected stock market return.
Q. GIVEN THIS DISCUSSION, WHAT IS THE EX ANTE EXPECTED MARKET RETURN AND EQUITY RISK PREMIUM USING THE "BUILDING BLOCKS METHODOLOGY"?
A. My expected market return is represented by the last column on the right in the graph entitled "Decomposing Equity Market Returns: The Building Blocks Methodology" set forth on page 7 of Exhibit JRW-11. As shown, my expected market return of 7.90% is composed of 2.80% expected inflation, 2.40% dividend yield, and 2.70% real earnings growth rate.

Q. IS AN EXPECTED MARKET RETURN OF 7.90\% CONSISTENT WITH

 THE FORECASTS OF MARKET PROFESSIONALS?A. Yes. In the first quarter 2012 Survey of Financial Forecasters, published on February 10, 2012 by the Federal Reserve Bank of Philadelphia, the median longterm expected return on the S\&P 500 was 6.8% (see Panel D of page 8 of Exhibit JRW-11)

Q. IS AN EXPECTED MARKET RETURN OF 7.90\% CONSISTENT WITH THE EXPECTED MARKET RETURNS OF CORPORATE CHIEF FINANCIAL OFFICERS (CFOs)?

A. Yes. John Graham and Campbell Harvey of Duke University conduct a quarterly survey of corporate CFOs. The survey is a joint project of Duke University and CFO Magazine. In the June 2012 survey, the mean expected return on the $\mathrm{S} \& \mathrm{P}$ 500 over the next ten years was $6.3 \%{ }^{4}$
Q. GIVEN THIS EXPECTED MARKET RETURN, WHAT IS THE EX ANTE EQUITY RISK PREMIUM USING THE BUILDING BLOCKS METHODOLOGY?
A. The current 30 -year U.S. Treasury yield is 2.80%. This ex ante equity risk premium is simply the expected market return from the Building Blocks methodology minus this risk-free rate:

Ex Ante Equity Risk Premium $=7.90 \%-2.80 \%=5.10 \%$

[^30]Q. HOW ARE YOU USING THIS EQUITY RISK PREMIUM ESTIMATE IN YOUR CAPM EQUITY COST RATE STUDY?
A. This is only one estimate of the equity risk premium. As shown on page 6 of Exhibit JRW-11, I am also using the results of other studies and surveys to determine an equity risk premium for my CAPM

Exhibit JRW-1
Return on Equity Recommendation
Page 1 of 2

Exhibit JRW-1
 Florida Power \& Light Company

Return on Equity Recommendation

Capital Structure	Common Equity Ratio	Return on Equity
OPC	50.00%	9.00%
FPL	59.62%	8.50%

Interest Rate Differentials

Exhibit JRW-1
Yield Differential - Long-Term Utility Bonds - Ratings A, BBB+ and BBB

Average Basis Point Differential A to BBB $=50 \mathrm{BPs}$

Docket No. 120015-EI
Exhibit JRW-2
Interest Rates
Page 1 of 1

Panel A
Ten-Year Treasury Yields 2009 and 2012

$2 / 1 / 09$	2.87	$1 / 1 / 12$	1.97
$3 / 1 / 09$	2.82	$2 / 1 / 12$	1.97
$4 / 1 / 09$	2.93	$3 / 1 / 12$	2.17
$5 / 1 / 09$	3.29	$4 / 1 / 12$	2.05
$6 / 1 / 09$	3.72	$5 / 1 / 12$	1.98
$7 / 1 / 09$	3.56	$6 / 1 / 12$	1.47
Average	3.20	Average	1.94

Panel B
Thirty-Year, A-Rated Public Utility Bonds 2009 and 2012

$2 / 6 / 2009$	5.99	$1 / 6 / 12$	4.20
$3 / 6 / 2009$	5.90	$2 / 3 / 12$	4.17
$4 / 3 / 2009$	6.20	$3 / 2 / 12$	4.06
$5 / 1 / 2009$	6.28	$4 / 6 / 12$	4.23
$6 / 5 / 2009$	6.16	$5 / 4 / 12$	4.10
$7 / 3 / 2009$	5.79	$6 / 1 / 12$	3.77
Average	6.05	Average	4.09

Exhibit JRW-3

Panel A
Ten-Year Treasury Yields
1953-Present

Source: http://research.stlouisfed.org/fred2/data/GS10.txt
Panel B
Long-Term Moody's Baa Yields Minus Ten-Year Treasury Yields 2000-Present

Exhibit JRW-3
Panel A
Thirty-Year Public Utility Yields

Panel B
Thirty-Year Public Utility Yield Spread Over Treasuries

Exhibit JRW-3

Dow Jones Utility Index vs. S\&P 500-12 Months

Company	$\begin{array}{r} \hline \text { Operating } \\ \text { Revenue } \\ (\text { Smil }) \\ \hline \end{array}$	Percent Elec Revenue	Percent Gas Revenue	Net Plant (\$mil)	Market Cap (\$mil)	S\&P Bond Rating	$\begin{gathered} \hline \text { Moody's } \\ \text { Bond } \\ \text { Rating } \end{gathered}$	Pre-Tax Interest Coverage	Primary Service Area	Common Equity Ratio	Return on Equity	Market to Book Ratio
ALLETE, Inc. (NYSE-ALE)	926.0	90	0	2,002.8	1,468.4	A-	Baal	3.9	MN, WI	56.3	7.7	1.32
Alliant Energy Corporation (NYSE-LNT)	3,486.0	74	12	7,081.3	4,825.2	A-/BBB +	A2/A3	3.7	WS,IA, IL, MN	51.2	13.8	1.54
Ameren Corporation (NYSE-AEE)	7,285.0	87	13	17,535.0	7,746.2	BBB-	Baa2	3.1	IL,MO	51	2.1	1.04
American Electric Power Co. (NYSE-AEP)	15,011.0	95	0	37,432.0	18,127.6	BBB	Baa2	3.3	10 States	44.7	14.2	1.22
Avista Corporation (NYSE-AVA)	1,595.5	61	34	2,872.9	1,494.5	A-	Baal	3.3	WA,OR,ID	44	12.8	1.24
Black Hills Corporation (NYSE-BKH)	1,234.7	50	41	2,819.1	1,393.6	BBB+	A3	1.4	CO,SD,WY,MT	44.8	8.8	1.14
Cleco Corporation (NYSE-CNL)	1,086.4	94	0	2,906.0	2,408.5	BBB	Baa2	3.5	LA	51.9	NM	1.68
CMS Energy Corporation (NYSE-CMS)	6,191.0	62	34	10,755.0	5,837.8	BBB+	A3	2.5	MI	29.6	9.4	1.91
Consolidated Edison, Inc. (NYSE-ED)	12,666.0	70	13	25,255.0	17,184.4	A-	A3/Baal	3.8	NY,PA	51	11.3	1.49
Dominion Resources, Inc. (NYSE-D)	13,814.0	51	12	30,288,0	29,857.6	A	Baa1/Baa2	3.7	VA,NC	36.7	7.6	2.51
DTE Energy Company (NYSE-DTE)	8,715.0	59	16	13,924.0	9,365.7	A	A2	3.3	MI	47.1	5.4	1.32
Edison International (NYSE-EIX)	12,834.0	84	0	32,680,0	14,276.6	BBB+	A1	2.7	CA	38.2	8.7	1.43
Entergy Corporation (NYSE-ETR)	11,071.5	79	1	25,586.8	11,177.8	A-/BBB +	Baal	4.5	AK,LA,MS,TX	41.1	8.2	1.24
Exelon Corporation (NYSE-EXC)	18,559.0	51	4	42,105.0	30,956.1	A-	A2/A3	6.7	PA,MD,IL	53.5	4.5	1.41
FirstEnergy Corporation (ASE-FE)	16,760.0	63	0	30,566.0	19,990.0	BBB	Baal	2.4	OH,PANJ,WV,MD,NY	42.1	35.9	1.50
Great Plains Energy Incorporated (NYSE-GXP)	2,304.8	100	0	7,119.2	2,705.6	BBB	Baa2	2.2	MO,KS	41.8	8.2	0.93
Hawaiian Electric Industries, Inc. (NYSE-HE)	3,346,6	92	0	3,375,7	2,519.6	BBB-	Baa2	3.8	HI	47.7	11.8	1.62
IDACORP, Inc. (NYSE-IDA)	1,016.4	100	0	3,420.6	1,917.8	A-	A2	2.6	ID	51.8	11.7	1.15
MGE Energy, Inc. (NYSE-MGEE)	531.0	72	27	1,006.9	1,048.0	AA-	A1	5.8	WI	60.6	9.9	1.88
NextEra Energy (NYSE-NEE)	15,579.0	68	0	43,968.0	27,105.0	A	Aa3	3.5	FL	38.8	6.5	1.78
OGE Energy Corp. (NYSE-OGE)	3,916.1	57	10	7,704.6	5,199.2	BBB+	Baal	4.4	OK,AR	42.3	7.6	2.04
Pepco Holdings, Inc. (NYSE-POM)	5,578.0	76	4	8,399,0	4,233.1	A	A3	2.5	DC.MD, VA, NJ	45.3	5.7	0.97
PG\&E Corporation (NYSE-PCG)	15,000.0	78	22	34,249.0	18,323.0	BBB	A3	3.5	CA	48.3	9.6	1.46
Pinnacle West Capital Corp. (NYSE-PNW)	3,213.2	100	0	9,889.0	5,234.1	BBB-	Baa2	3.3	AZ	49.8	10.7	1.40
PNM Resources, Inc. (NYSE-PNM)	1,618.3	80	0	3,656.2	1,431.4	BBB/BBB-	Baa2	2.8	NM,TX	45.2	5.2	0.91
Portland General Electric (NYSE-POR)	1,808.0	100	0	4,288.0	1,848.2	A-	A3	2.7	OR	49.3	14.6	1.09
SCANA Corporation (NYSE-SCG)	4,234.0	57	18	10,255.0	5,981.4	A-	A3	2.9	SC,NC,GA	42.1	14.3	1.50
Southern Company (NYSE-SO)	17,249.0	95	0	45,855.0	39,499.4	A	A2/A3	4.9	GA,AL,FL,MS	46.5	14.2	2.15
TECO Energy, Inc. (NYSE-TE)	3,277.3	62	12	5,985.6	3,718.2	BBB+	Baal	3.2	FL	42.9	12.2	1.64
UIL Holdings Corporation (NYSE-UIL)	1,467.7	54	46	2,605.6	1,655.1	NR	Baa2	3.0	CT	38.8	11.6	1.47
UniSource Energy Corporation (NYSE-UNS)	1,483.6	85	9	3,203.9	1,417.0	BBB+	NR	NA	AZ	33.3	11.6	1.49
Westar Energy, Inc. (NYSE-WR)	2,164.9	100	0	6,884.9	3,456.4	BBB+	Baal	3.0	KS	45.9	13.2	1.25
Wisconsin Energy Corporation (NYSE-WEC)	4,348.9	74	24	10,235.0	8,461.7	A-	A1	3.7	WI	43.9	9.8	2.07
Xeel Energy Inc. (NYSE-XEL)	10,416.3	83	16	22,672.7	13,272.9	A	A3	3.1	MN,WI,ND,SD,MI	45.5	10.3	1.56
Mean	6,758.5	77	11	15,252.4	9,562.9	A-/BBB+	A3/Baal	3.4		45.4	10.6	1.48
Median	4,075.1	77	7	9,144.0	5,216.6	A-/BBB+	A3/Baal	3.3		45.3	9.9	1.47

[^31]
Exhibit JRW-5

Florida Power \& Light Company
Capital Structure Ratios

Panel A - FPL's Proposed Capitalization Ratios

Capital Source	Capitalization Amounts	Capitalization Ratio
Short-Term Debt	360,542	2.22%
Long-Term Debt	$6,199,550$	38.16%
Common Equity	$9,684,101$	59.62%
Total	$16,244,193$	100.00%

Panel B - Electric Proxy Group Capitalization Ratios

	$3 / 31 / 2012$	$12 / 31 / 2011$	$9 / 30 / 2011$	$6 / 30 / 2011$	Mean
Short-Term Debt	11.68%	8.33%	7.92%	7.09%	8.75%
Long-Term Debt	50.77%	53.36%	52.83%	52.34%	52.33%
Preferred Stock	0.00%	0.00%	0.00%	0.00%	0.00%
Common Equity	37.55%	38.32%	39.25%	40.56%	38.92%
Total Capital	100.00%	100.00%	100.00%	100.00%	100.00%

Panel C - Electric Proxy Group Capitalization Ratios

	$3 / 31 / 2012$	$12 / 31 / 2011$	$9 / 30 / 2011$	$6 / 30 / 2011$	Mean
Short-Term Debt	6.85%	6.90%	6.41%	6.04%	6.55%
Long-Term Debt	47.78%	47.69%	48.04%	48.73%	48.06%
Preferred Stock	0.34%	0.31%	0.39%	0.48%	0.38%
Common Equity	45.03%	45.10%	45.16%	44.75%	45.01%
Total Capital	100.00%	100.00%	100.00%	100.00%	100.00%

Exhibit JRW-5

Capital Structure Ratios

Electric Proxy Group

ALE		3/31/12	12/31/11	9/30/11	6/30/11	ALE		3/31/12	12/31/11	9/30/11	6/30/11
	Short Term Debt	7,100	6,500	18,400	15,400		Short Term Debt	0.36\%	0.33\%	0.96\%	0.85\%
	Long-Term Debt	856,500	857,900	844,400	770,700		Long-Term Debt	43.31\%	44.14\%	44.11\%	42.46\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	1,113,800	1,079,300	1,051,400	1,029,000		Common Equity	56.33\%	55.53\%	54.93\%	56.69\%
	Total	1,977,400	1,943,700	1,914,200	1,815,100		Total	100.00\%	100.00\%	100.00\%	100.00\%
LNT	LNT										
	Short Term Debt	120,300	160,100	64,800	31,700		Short Term Debt	2.01\%	2.66\%	1.10\%	0.55\%
	Long-Term Debt	2,728,200	2,703,100	2,703,600	2,703,500		Long-Term Debt	45.54\%	44.89\%	45.71\%	46.55\%
	Preferred Stock	205,100	205,100	205,100	205,100		Preferred Stock	3.42\%	3.41\%	3.47\%	3.53\%
	Common Equity	2,937,500	2,953,000	2,941,600	2,867,200		Common Equity	49.03\%	49.04\%	49.73\%	49.37\%
	Total	5,991,100	6,021,300	5,915,100	5,807,500		Total	100.00\%	100.00\%	100.00\%	100.00\%
AEE	AEE										
	Short Term Debt	525,000	488,000	646,000	477,000		Short Term Debt	3.59\%	3.24\%	4.22\%	3.11\%
	Long-Term Debt	6,677,000	6,677,000	6,682,000	7,054,000		Long-Term Debt	45.63\%	44.27\%	43.60\%	46.05\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	7,432,000	7,919,000	7,997,000	7,788,000		Common Equity	50.79\%	52.50\%	52.18\%	50.84\%
	Total	14,634,000	15,084,000	15,325,000	15,319,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
AEP	AEP										
	Short Term Debt	3,215,000	3,233,000	2,659,000	2,804,000		Short Term Debt	9.62\%	9.80\%	8.18\%	8.68\%
	Long-Term Debt	15,340,000	15,083,000	15,183,000	15,564,000		Long-Term Debt	45.91\%	45.73\%	46.72\%	48.18\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	14,856,000	14,664,000	14,653,000	13,939,000		Common Equity	44.46\%	44.46\%	45.09\%	43.15\%
	Total	$33,411,000$	32,980,000	32,495,000	32,307,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
AVA	AVA										
	Short Term Debt	232,396	235,467	221,748	162,519		Short Term Debt	8.64\%	8.97\%	8.95\%	6.70\%
	Long-Term Debt	1,249,356	1,202,629	1,084,661	1,094,978		Long-Term Debt	46.45\%	45.84\%	43.78\%	45.14\%
	Preferred Stock	57,633	51,809	52,070	52,367		Preferred Stock	2.14\%	1.97\%	2.10\%	2.16\%
	Common Equity	1,150,506	1,133,892	1,118,848	1,115,768		Common Equity	42.77\%	43.22\%	45.16\%	46.00\%
	Total	2,689,891	2,623,797	2,477,327	2,425,632		Total	100.00\%	100.00\%	100.00\%	100.00\%
BKH	BKH										
	Short Term Debt	310,336	431,840	491,056	476,162		Short Term Debt	11.06\%	14.78\%	17.16\%	17.20\%
	Long-Term Debt	1,272,016	1,280,409	1,282,194	1,183,583		Long-Term Debt	45.32\%	43.83\%	44.81\%	42.76\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	1,224,692	1,209,336	1,088,005	1,108,069		Common Equity	43.63\%	41.39\%	38.03\%	40.03\%
	Total	2,807,044	2,921,585	2,861,255	2,767,814		Total	100.00\%	100.00\%	100.00\%	100.00\%
CNL	CNL										
	Short Term Debt	16,636	29,594	13,108	18,426		Short Term Debt	0.60\%	1.06\%	0.47\%	0.66\%
	Long-Term Debt	1,319,631	1,337,056	1,370,576	1,387,346		Long-Term Debt	47.58\%	47.98\%	49.13\%	49.67\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	1,436,958	1,419,857	1,406,113	1,387,075		Common Equity	51.82\%	50.95\%	50.40\%	49.67\%
	Total	2,773,225	2,786,507	2,789,797	2,792,847		Total	100.00\%	100.00\%	100.00\%	100.00\%
CMS	CMS										
	Short Term Debt	837,000	1,057,000	1,140,000	1,123,000		Short Term Debt	8.17\%	10.27\%	10.97\%	10.75\%
	Long-Term Debt	6,355,000	6,207,000	6,208,000	6,361,000		Long-Term Debt	62.05\%	60.31\%	59.74\%	60.92\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	3,049,000	3,028,000	3,043,000	2,958,000		Common Equity	29.77\%	29.42\%	29.28\%	28.33\%
	Total	10,241,000	10,292,000	10,391,000	10,442,000		Total	100.00\%	100.00\%	100.00\%	100.00\%

[^32]
Exhibit JRW-5

Capital Structure Ratios

Electric Proxy Group

ED		3/31/12	12/31/11	9/30/11	6/30/11	ED		3/31/12	12/31/11	9/30/11	6/30/11
	Short Term Debt	1,228,000	699,000	406,000	114,000		Short Term Debt	5.38\%	3.11\%	1.81\%	0.51\%
	Long-Term Debt	10,043,000	10,145,000	10,371,000	10,673,000		Long-Term Debt	44.02\%	45.10\%	46.21\%	47.97\%
	Preferred Stock		213,000	213,000	213,000		Preferred Stock	0.00\%	0.95\%	0.95\%	0.96\%
	Common Equity	11,545,000	11,436,000	11,454,000	11,251,000		Common Equity	50.60\%	50.84\%	51.03\%	50.56\%
	Total	22,816,000	22,493,000	22,444,000	22,251,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
D	D										
	Short Term Debt	4,059,000	4,244,000	2,110,000	2,599,000		Short Term Debt	12.28\%	12.83\%	6.83\%	8.44\%
	Long-Term Debt	17,079,000	17,394,000	17,153,000	16,500,000		Long-Term Debt	51.68\%	52.58\%	55.52\%	53.61\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	11,909,000	11,446,000	11,632,000	11,680,000		Common Equity	36.04\%	34.60\%	37.65\%	37.95\%
	Total	33,047,000	33,084,000	30,895,000	30,779,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
DTE	DTE										
	Short Term Debt	1,081,000	1,103,000	636,000	587,000		Short Term Debt	7.08\%	7.21\%	4.21\%	3.95\%
	Long-Term Debt	7,093,000	7,187,000	7,497,000	7,507,000		Long-Term Debt	46.43\%	46.98\%	49.64\%	50.45\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	7,104,000	7,009,000	6,970,000	6,785,000		Common Equity	46.50\%	45.81\%	46.15\%	45.60\%
	Total	15,278,000	15,299,000	15,103,000	14,879,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
ELX	EIX										
	Short Term Debt	659,000	754,000	901,000	679,000		Short Term Debt	2.66\%	3.08\%	3.61\%	2.79\%
	Long-Term Debt	14,131,000	13,689,000	13,010,000	12,956,000		Long-Term Debt	57.03\%	55.88\%	52.19\%	53.18\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	9,990,000	10,055,000	11,015,000	10,726,000		Common Equity	40.31\%	41.04\%	44.19\%	44.03\%
	Total	24,780,000	24,498,000	24,926,000	24,361,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
ETR	ETR										
	Short Term Debt	460,100	2,304,700	2,170,900	262,500		Short Term Debt	2.11\%	10.66\%	9.99\%	1.23\%
	Long-Term Debt	12,158,600	10,082,100	10,281,300	12,097,500		Long-Term Debt	55.74\%	46.61\%	47.32\%	56.88\%
	Preferred Stock	280,500	280,500	310,700	310,700		Preferred Stock	1.29\%	1.30\%	1.43\%	1.46\%
	Common Equity	8,914,300	8,961,300	8,965,400	8,597,600		Common Equity	40.87\%	41.43\%	41.26\%	40.42\%
	Total	21,813,500	21,628,600	21,728,300	21,268,300		Total	100.00\%	100.00\%	100.00\%	100.00\%
EXC	EXC										
	Short Term Debt	1,299,000	1,216,000	1,701,000	1,413,000		Short Term Debt	3.19\%	4.36\%	5.92\%	5.09\%
	Long-Term Debt	17,458,000	12,189,000	12,565,000	12,154,000		Long-Term Debt	42.94\%	43.72\%	43.77\%	43.77\%
	Preferred Stock	87,000	87,000	87,000	87,000		Preferred Stock	0.21\%	0.31\%	0.30\%	0.31\%
	Common Equity	21,816,000	14,385,000	14,356,000	14,112,000		Common Equity	53.65\%	51.60\%	50.01\%	50.82\%
	Total	40,660,000	27,877,000	28,709,000	27,766,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
FE	FE										
	Short Term Debt	3,146,000	1,839,000	2,042,000	3,001,000		Short Term Debt	9.69\%	5.87\%	6.47\%	9.06\%
	Long-Term Debt	15,985,000	16,185,000	16,488,000	17,140,000		Long-Term Debt	49.25\%	51.70\%	52.22\%	51.72\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	13,323,000	13,280,000	13,046,000	12,998,000		Common Equity	41.05\%	42.42\%	41.32\%	39.22\%
	Total	32,454,000	31,304,000	31,576,000	33,139,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
GXP	GXP										
	Short Term Debt	1,013,900	1,185,400	1,084,900	1,115,000		Short Term Debt	14.48\%	17.11\%	15.82\%	16.17\%
	Long-Term Debt	3,021,600	2,742,300	2,750,100	2,860,800		Long-Term Debt	43.16\%	39.59\%	40.11\%	41.49\%
	Preferred Stock	39,000	39,000	39,000	39,000		Preferred Stock	0.56\%	0.56\%	0.57\%	0.57\%
	Common Equity	2,925,700	2,959,900	2,982,800	2,879,700		Common Equity	41.79\%	42.73\%	43.50\%	41.77\%
	Total	7,000,200	6,926,600	6,856,800	6,894,500		Total	100.00\%	100.00\%	100.00\%	100.00\%

[^33]
Docket No. 120015-EI
 Exhibit JRW-5
 Capital Structure Ratios
 Page 4 of 6

Exhibit JRW-5

Capital Structure Ratios

Electric Proxy Group

HE		3/31/12	12/31/11	9/30/11	6/30/11	HE		3/31/12	12/31/11	9/30/11	6/30/11
	Short Term Debt	389,131	302,050	289,129	239,122		Short Term Debt	12.06\%	9.52\%	9.13\%	7.49\%
	Long-Term Debt	1,282,602	1,340,070	1,340,038	1,440,006		Long-Term Debt	39.76\%	42.22\%	42.31\%	45.12\%
	Preferred Stock	34,293	34,293	34,293	34,293		Preferred Stock	1.06\%	1.08\%	1.08\%	1.07\%
	Common Equity	1,519,805	1,497,656	1,503,465	1,477,914		Common Equity	47.11\%	47.18\%	47.47\%	46.31\%
	Total	3,225,831	3,174,069	3,166,925	3,191,335		Total	100.00\%	100.00\%	100.00\%	100.00\%
IDA	IDA										
	Short Term Debt	64,064	155,264	53,167	68,067		Short Term Debt	1.99\%	4.85\%	1.66\%	2.18\%
	Long-Term Debt	1,486,568	1,387,550	1,487,468	1,487,387		Long-Term Debt	46.15\%	43.35\%	46.52\%	47.69\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	1,670,568	1,657,654	1,656,847	1,563,092		Common Equity	51.86\%	51.79\%	51.82\%	50.12\%
	Total	3,221,200	3,200,468	3,197,482	3,118,546		Total	100.00\%	100.00\%	100.00\%	100.00\%
MGEE	MGEE										
	Short Term Debt	10,865	2,667	2,667	2,667		Short Term Debt	1.17\%	0.29\%	0.29\%	0.30\%
	Long-Term Debt	360,249	360,903	361,556	362,210		Long-Term Debt	38.77\%	39.46\%	39.53\%	40.10\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	558,164	550,952	550,433	538,312		Common Equity	60.06\%	60.24\%	60.18\%	59.60\%
	Total	929,278	914,522	914,656	903,189		Total	100.00\%	100.00\%	100.00\%	100.00\%
NEE	NEE										
	Short Term Debt	4,735,000	3,247,000	3,003,000	2,607,000		Short Term Debt	11.68\%	8.33\%	7.92\%	7.09\%
	Long-Term Debt	20,582,000	20,810,000	20,039,000	19,235,000		Long-Term Debt	50.77\%	53.36\%	52.83\%	52.34\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	15,223,000	14,943,000	14,887,000	14,906,000		Common Equity	37.55\%	38.32\%	39.25\%	40.56\%
	Total	40,540,000	39,000,000	37,929,000	36,748,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
OGE	OGE										
	Short Term Debt	489,800	277,500	295,900	223,300		Short Term Debt	8.47\%	4.97\%	5.46\%	4.30\%
	Long-Term Debt	2,737,300	2,737,100	2,586,900	2,586,800		Long-Term Debt	47.36\%	49.07\%	47.70\%	49.77\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	2,553,100	2,563,300	2,540,900	2,387,800		Common Equity	44.17\%	45.95\%	46.85\%	45.94\%
	Total	5,780,200	5,577,900	5,423,700	5,197,900		Total	100.00\%	100.00\%	100.00\%	100.00\%
POM	POM										
	Short Term Debt	1,108,000	852,000	666,000	514,000		Short Term Debt	11.49\%	9.07\%	7.22\%	5.69\%
	Long-Term Debt	4,170,000	4,180,000	4,196,000	4,205,000		Long-Term Debt	43.24\%	44.48\%	45.51\%	46.54\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	4,366,000	4,366,000	4,357,000	4,316,000		Common Equity	45.27\%	46.46\%	47.26\%	47.77\%
	Total	9,644,000	9,398,000	9,219,000	9,035,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
PCG	PCG										
	Short Term Debt	1,451,000	1,697,000	1,187,000	1,260,000		Short Term Debt	5.63\%	6.64\%	4.81\%	5.14\%
	Long-Term Debt	11,767,000	11,766,000	11,516,000	11,466,000		Long-Term Debt	45.65\%	46.03\%	46.70\%	46.77\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	12,560,000	12,101,000	11,959,000	11,789,000		Common Equity	48.72\%	47.34\%	48.49\%	48.09\%
	Total	25,778,000	25,564,000	24,662,000	24,515,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
PNW	PNW										
	Short Term Debt	407,515	531,403	937,030	969,500		Short Term Debt	5.44\%	7.27\%	11.89\%	13.20\%
	Long-Term Debt	3,341,198	2,953,507	3,046,587	2,761,695		Long-Term Debt	44.59\%	40.42\%	38.67\%	37.60%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	3,744,917	3,821,850	3,894,085	3,613,705		Common Equity	49.97\%	52.31\%	49.43\%	49.20\%
	Total	7,493,630	7,306,760	7,877,702	7,344,900		Total	100.00\%	100.00\%	100.00\%	100.00\%

Source: www.yahoo.com, 10-Q and $10-\mathrm{k}$ Reports

Docket No. 120015-EI
 Exhibit JRW-5
 Capital Structure Ratios
 Page 5 of 6

Exhibit JRW-5

Capital Structure Ratios

Electric Proxy Group

PNM		3/31/12	12/31/11	9/30/11	6/30/11	PNM		3/31/12	12/31/11	9/30/11	6/30/11
	Short Term Debt	154,356	86,719	292,998	333,537		Short Term Debt	4.52\%	2.59\%	8.47\%	9.39\%
	Long-Term Debt	1,671,792	1,671,626	1,564,077	1,563,916		Long-Term Debt	48.90\%	49.99\%	45.21\%	44.01\%
	Preferred Stock	11,500	11,500	11,500	111,500		Preferred Stock	0.34\%	0.34\%	0.33\%	3.14\%
	Common Equity	1,580,900	1,574,000	1,591,300	1,544,500		Common Equity	46.24\%	47.07\%	45.99\%	43.46\%
	Total	3,418,548	3,343,845	3,459,875	3,553,453		Total	100.00\%	100.00\%	100.00\%	100.00\%
POR	POR										
	Short Term Debt	342,000	346,000	196,000	163,000		Short Term Debt	9.32\%	9.50\%	5.37\%	4.52\%
	Long-Term Debt	1,635,000	1,635,000	1,798,000	1,798,000		Long-Term Debt	44.56\%	44.87\%	49.30\%	49.86\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	1,692,000	1,663,000	1,653,000	1,645,000		Common Equity	46.12\%	45.64\%	45.32\%	45.62\%
	Total	3,669,000	3,644,000	3,647,000	3,606,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
SCG	SCG										
	Short Term Debt	615,000	684,000	866,000	832,000		Short Term Debt	6.51\%	7.44\%	9.54\%	9.23\%
	Long-Term Debt	4,862,000	4,622,000	4,376,000	4,379,000		Long-Term Debt	51.43\%	50.27\%	48.19\%	48.57\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	3,977,000	3,889,000	3,838,000	3,805,000		Common Equity	42.07\%	42.29\%	42.27\%	42.20\%
	Total	9,454,000	9,195,000	9,080,000	9,016,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
SO	SO										
	Short Term Debt	3,129,000	2,785,000	2,164,000	2,319,000		Short Term Debt	7.71\%	7.01\%	5.52\%	6.01\%
	Long-Term Debt	19,051,000	18,647,000	18,733,000	18,554,000		Long-Term Debt	46.94\%	46.95\%	47.74\%	48.11\%
	Preferred Stock	707,000		707,000	707,000		Preferred Stock	1.74\%	0.00\%	1.80\%	1.83\%
	Common Equity	17,699,000	18,285,000	17,633,000	16,982,000		Common Equity	43.61\%	46.04\%	44.94\%	44.04\%
	Total	40,586,000	39,717,000	39,237,000	38,562,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
TE	TE										
	Short Term Debt	430,000	386,100	386,100	165,100		Short Term Debt	8.11\%	7.23\%	7.23\%	3.10\%
	Long-Term Debt	2,598,700	2,687,300	2,690,000	2,949,100		Long-Term Debt	49.01\%	50.32\%	50.39\%	55.33\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	2,274,100	2,266,600	2,261,900	2,215,800		Common Equity	42.88\%	42.45\%	42.37\%	41.57\%
	Total	5,302,800	5,340,000	5,338,000	5,330,000		Total	100.00\%	100.00\%	100.00\%	100.00\%
UIL	UIL										
	Short Term Debt	257,137	277,600	180,108	130,961		Short Term Debt	8.78\%	9.51\%	6.38\%	4.78\%
	Long-Term Debt	1,546,906	1,548,347	1,551,478	1,508,223		Long-Term Debt	52.83\%	53.02\%	54.92\%	55.01\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	1,123,966	1,094,361	1,093,436	1,102,362		Common Equity	38.39\%	37.47\%	38.71\%	40.21\%
	Total	2,928,009	2,920,308	2,825,022	2,741,546		Total	100.00\%	100.00\%	100.00\%	100.00\%
UNS	UNS										
	Short Term Debt	236,182	123,949	109,755	227,765		Short Term Debt	8.11\%	4.30\%	3.91\%	8.11\%
	Long-Term Debt	1,721,918	1,870,093	1,805,527	1,735,250		Long-Term Debt	59.13\%	64.88\%	64.28\%	61.75\%
	Preferred Stock						Preferred Stock	0.00\%	0.00\%	0.00\%	0.00\%
	Common Equity	954,038	888,474	893,669	847,095		Common Equity	32.76\%	30.82\%	31.82\%	30.14\%
	Total	2,912,138	2,882,516	2,808,951	2,810,110		Total	100.00\%	100.00\%	100.00\%	100.00\%

Source: www.yahoo.com, 10-Q and $10-\mathrm{k}$ Reports

Docket No. 120015-EI
 Exhibit JRW-5

 Capital Structure Ratios

 Capital Structure Ratios
 Page 6 of 6

Exhibit JRW-5

Capital Structure Ratios

Electric Proxy Group

WR		3/31/12	12/31/11	9/30/11	6/30/11	WR		3/31/12	12/31/11	9/30/11	6/30/11
	Short Term Debt	330,061	314,414	419,991	497,991		Short Term Debt	5.50\%	5.38\%	7.28\%	8.67\%
	Long-Term Debt	2,894,225	2,740,392	2,741,604	2,761,049		Long-Term Debt	48.20\%	46.88\%	47.51\%	48.08\%
	Preferred Stock	21,436	21,436	21,436	21,436		Preferred Stock	0.36\%	0.37\%	0.37\%	0.37\%
	Common Equity	2,758,509	2,769,211	2,587,866	2,462,349		Common Equity	45.94\%	47.37\%	44.84\%	42.88\%
	Total	6,004,231	5,845,453	5,770,897	5,742,825		Total	100.00\%	100.00\%	100.00\%	100.00\%
WEC	WEC										
	Short Term Debt	591,100	702,500	528,500	573,000		Short Term Debt	6.37\%	7.55\%	5.80\%	6.45\%
	Long-Term Debt	4,602,800	4,614,300	4,618,900	4,334,600		Long-Term Debt	49.62\%	49.56\%	50.65\%	48.78\%
	Preferred Stock	30,400	30,400	30,400	30,400		Preferred Stock	0.33\%	0.33\%	0.33\%	0.34\%
	Common Equity	4,051,500	3,963,300	3,940,700	3,947,600		Common Equity	43.68\%	42.57\%	43.22\%	44.43\%
	Total	9,275,800	9,310,500	9,118,500	8,885,600		Total	100.00\%	100.00\%	100.00\%	100.00\%
XEL	XEL										
	Short Term Debt	1,704,813	1,436,336	637,928	749,917		Short Term Debt	9.05\%	7.65\%	3.43\%	4.09\%
	Long-Term Debt	8,598,363	8,848,513	9,450,157	9,263,556		Long-Term Debt	45.64\%	47.15\%	50.74\%	50.47\%
	Preferred Stock			104,980	104,980		Preferred Stock	0.00\%	0.00\%	0.56\%	0.57\%
	Common Equity	8,537,671	8,482,198	8,431,303	8,234,565		Common Equity	45.31\%	45.20\%	45.27\%	44.87\%
	Total	18,840,847	18,767,047	18,624,368	18,353,018		Total	100.00\%	100.00\%	100.00\%	100.00\%
						Average		3/31/12	12/31/11	9/30/11	6/30/11
							Short Term Debt	6.85\%	6.90\%	6.41\%	6.04\%
							Long-Term Debt	47.78\%	47.69\%	48.04\%	48.73\%
							Preferred Stock	0.34\%	0.31\%	0.39\%	0.48\%
							Common Equity	45.03\%	45.10\%	45.16\%	44.75\%
							Total	100.00\%	100.00\%	100.00\%	100.00\%

The Relationship Between Estimated ROE and Market-to-Book Ratios
Page 1 of 2

Exhibit JRW-6

Panel A

R-Square $=.52, \mathrm{~N}=51$.
Panel B

[^34]The Relationship Between Estimated ROE and Market-to-Book Ratios
Page 2 of 2

Exhibit JRW-6

R-Square $=.77, \mathrm{~N}=5$.

Exhibit JRW-7

Long-Term 'A' Rated Public Utility Bonds

Exhibit JRW-7

Electric Proxy Group Average Dividend Yield

Data Source: Value Line Investment Survey.

Exhibit JRW-7

Electric Proxy Group Average Return on Equity and Market-to-Book Ratios

Data Source: Value Line Investment Survey.

Page 1 of 1

Exhibit JRW-8

Industry Average Betas

Industry Name	No.	Beta	Industry Name	No.	Beta	Industry Name	No.	Beta
Public/Private Equity	11	2.18	Natural Gas (Div.)	29	1.33	IT Services	60	1.06
Advertising	31	2.02	Financial Svcs. (Div.)	225	1.31	Retail Building Supply	8	1.04
Furn/Home Furnishings	35	1.81	Toiletries/Cosmetics	15	1.30	Computer Software	184	1.04
Heavy Truck \& Equip	21	1.80	Apparel	57	1.30	Med Supp Non-Invasiy	146	1.03
Semiconductor Equip	12	1.79	Computers/Peripherals	87	1.30	Biotechnology	158	1.03
Retail (Hardlines)	75	1.77	Retail Store	37	1.29	E-Commerce	57	1.03
Newspaper	13	1.76	Chemical (Specialty)	70	1.28	Telecom. Equipment	99	1.02
Hotel/Gaming	51	1.74	Precision Instrument	77	1.28	Pipeline MLPs	27	0.98
Auto Parts	51	1.70	Wireless Networking	57	1.27	Telecom. Services	74	0.98
Steel	32	1.68	Restaurant	63	1.27	Oil/Gas Distribution	13	0.96
Entertainment	77	1.63	Shoe	19	1.25	Utility (Foreign)	4	0.96
Metal Fabricating	24	1.59	Publishing	24	1.25	Industrial Services	137	0.93
Automotive	12	1.59	Trucking	36	1.24	Bank (Midwest)	45	0.93
Insurance (Life)	30	1.58	Human Resources	23	1.24	Reinsurance	13	0.93
Oilfield Svcs/Equip.	93	1.55	Entertainment Tech	40	1.23	Food Processing	112	0.91
Coal	20	1.53	Engineering \& Const	25	1.22	Medical Services	122	0.91
Chemical (Diversified)	31	1.51	Air Transport	36	1.21	Insurance (Prop/Cas.)	49	0.91
Building Materials	45	1.50	Machinery	100	1.20	Beverage	34	0.88
Semiconductor	141	1.50	Securities Brokerage	28	1.20	Telecom. Utility	25	0.88
R.E.I.T.	5	1.47	Petroleum (Integrated)	20	1.18	Tobacco	11	0.85
Homebuilding	23	1.45	Healthcare Information	25	1.17	Med Supp Invasive	83	0.85
Recreation	56	1.45	Packaging \& Container	26	1.16	Educational Services	34	0.83
Railroad	12	1.44	Precious Metals	84	1.15	Environmental	82	0.81
Retail (Softlines)	47	1.44	Diversified Co.	107	1.14	Bank	426	0.77
Maritime	52	1.40	Funeral Services	6	1.14	Electric Util. (Central)	21	0.75
Office Equip/Supplies	24	1.38	Property Management	31	1.13	Electric Utility (West)	14	0.75
Cable TV	21	1.37	Pharmacy Services	19	1.12	Retail/Wholesale Food	30	0.75
Retail Automotive	20	1.37	Drug	279	1.12	Thrift	148	0.71
Chemical (Basic)	16	1.36	Aerospace/Defense	64	1.10	Electric Utility (East)	21	0.70
Paper/Forest Products	32	1.36	Foreign Electronics	9	1.09	Natural Gas Utility	22	0.66
Power	93	1.35	Internet	186	1.09	Water Utility	11	0.66
Petroleum (Producing)	176	1.34	Information Services	27	1.07	Total Market	5891	1.15
Electrical Equipment	68	1.33	Household Products	26	1.07			
Metals \& Mining (Div.)	73	1.33	Electronics	139	1.07			

Source: Damodaran Online 2012 - http://pages.stern.nyu.edu/~adamodar/

Exhibit JRW-9
Three-Stage DCF Model

Source: William F. Sharpe, Gordon J. Alexander, and Jeffrey V. Bailey, Investments (Prentice-Hall, 1995), pp. 590-91.

Exhibit JRW-10

Florida Power \& Light Company Discounted Cash Flow Analysis

Electric Proxy Group

Dividend Yield*	4.35%
Adjustment Factor	$\underline{1.02125}$
Adjusted Dividend Yield	4.4%
Growth Rate ${ }^{* *}$	$\underline{4.25 \%}$
Equity Cost Rate	8.7%

* Page 2 of Exhibit JRW-10
** Based on data provided on pages 3, 4, 5, and 6 of Exhibit JRW-10

Exhibit JRW-10

Florida Power \& Light Company
Monthly Dividend Yields
Electric Proxy Group

Company	Jan	Feb	Mar	Apr	May	Jun	Mean
ALLETE, Inc. (NYSE-ALE)	4.5\%	4.3\%	4.5\%	4.6\%	4.4\%	4.8\%	4.5\%
Alliant Energy Corporation (NYSE-LNT)	4.0\%	4.0\%	4.2\%	4.1\%	4.2\%	4.1\%	4.1\%
Ameren Corporation (NYSE-AEE)	5.0\%	4.9\%	5.1\%	5.1\%	5.1\%	5.0\%	5.0\%
American Electric Power Co. (NYSE-AEP)	4.7\%	4.5\%	4.7\%	4.9\%	4.9\%	5.0\%	4.8\%
Avista Corporation (NYSE-AVA)	4.3\%	4.4\%	4.3\%	4.5\%	4.6\%	4.6\%	4.5\%
Black Hills Corporation (NYSE-BKH)	4.5\%	4.4\%	4.4\%	4.5\%	4.5\%	4.7\%	4.5\%
Cleco Corporation (NYSE-CNL)	3.4\%	3.4\%	3.2\%	3.2\%	3.2\%	3.1\%	3.3\%
CMS Energy Corporation (NYSE-CMS)	4.0\%	3.8\%	4.5\%	4.4\%	4.4\%	4.2\%	4.2\%
Consolidated Edison, Inc. (NYSE-ED)	4.0\%	4.1\%	4.2\%	4.2\%	4.2\%	4.1\%	4.1\%
Dominion Resources, Inc. (NYSE-D)	3.9\%	3.9\%	3.9\%	4.2\%	4.2\%	4.0\%	4.0\%
DTE Energy Company (NYSE-DTE)	4.6\%	4.4\%	4.4\%	4.3\%	4.3\%	4.3\%	4.4\%
Edison International (NYSE-EIX)	3.3\%	3.2\%	3.2\%	3.0\%	3.0\%	3.0\%	3.1\%
Entergy Corporation (NYSE-ETR)	4.6\%	4.7\%	4.9\%	5.0\%	4.9\%	5.3\%	4.9\%
Exelon Corporation (NYSE-EXC)	5.0\%	5.3\%	5.4\%	5.6\%	5.4\%	4.0\%	5.1\%
FirstEnergy Corporation (ASE-FE)	4.9\%	5.2\%	5.1\%	4.8\%	4.9\%	4.6\%	4.9\%
Great Plains Energy Incorporated (NYSE-GXP)	4.1\%	4.0\%	4.1\%	4.3\%	4.2\%	4.3\%	4.2\%
Hawaiian Electric Industries, Inc. (NYSE-HE)	4.8\%	4.8\%	4.8\%	4.9\%	4.9\%	4.7\%	4.8\%
IDACORP, Inc. (NYSE-IDA)	2.9\%	2.9\%	3.2\%	3.3\%	3.2\%	3.4\%	3.2\%
MGE Energy, Inc. (NYSE-MGEE)	3.4\%	3.5\%	3.4\%	3.5\%	3.4\%	3.4\%	3.4\%
NextEra Energy (NYSE-NEE)	3.8\%	3.7\%	3.7\%	3.8\%	4.0\%	3.7\%	3.8\%
OGE Energy Corp. (NYSE-OGE)	2.8\%	2.8\%	3.0\%	3.0\%	3.0\%	3.0\%	2.9\%
Pepco Holdings, Inc. (NYSE-POM)	5.5\%	5.4\%	5.5\%	5.8\%	5.6\%	5.8\%	5.6\%
PG\&E Corporation (NYSE-PCG)	4.6\%	4.4\%	4.4\%	4.2\%	4.2\%	4.2\%	4.3\%
Pinnacle West Capital Corp. (NYSE-PNW)	4.5\%	4.4\%	4.4\%	4.4\%	4.5\%	4.4\%	4.4\%
PNM Resources, Inc. (NYSE-PNM)	2.9\%	2.8\%	2.8\%	3.2\%	2.7\%	3.2\%	2.9\%
Portland General Electric (NYSE-POR)	4.3\%	4.3\%	4.3\%	4.2\%	4.3\%	4.3\%	4.3\%
SCANA Corporation (NYSE-SCG)	4.5\%	4.4\%	4.3\%	4.4\%	4.4\%	4.3\%	4.4\%
Southern Company (NYSE-SO)	4.2\%	4.2\%	4.3\%	4.2\%	4.3\%	4.3\%	4.3\%
TECO Energy, Inc. (NYSE-TE)	4.7\%	4.6\%	5.0\%	5.0\%	5.0\%	5.1\%	4.9\%
UIL Holdings Corporation (NYSE-UIL)	5.1\%	5.0\%	4.9\%	5.1\%	5.1\%	5.3\%	5.1\%
UniSource Energy Corporation (NYSE-UNS)	4.6\%	4.6\%	4.5\%	4.8\%	4.7\%	4.7\%	4.7\%
Westar Energy, Inc. (NYSE-WR)	4.7\%	4.5\%	4.6\%	4.7\%	4.8\%	4.8\%	4.7\%
Wisconsin Energy Corporation (NYSE-WEC)	3.1\%	3.0\%	3.5\%	3.4\%	3.5\%	3.3\%	3.3\%
Xcel Energy Inc. (NYSE-XEL)	3.9\%	3.9\%	4.0\%	3.9\%	3.9\%	3.8\%	3.9\%
Mean	4.2\%	4.2\%	4.3\%	4.3\%	4.3\%	4.3\%	4.2\%
Median	4.4\%	4.4\%	4.4\%	4.4\%	4.4\%	4.3\%	4.4\%

Data Source: AUS Utility Reports, monthly issues.

Exhibit JRW-10

Florida Power \& Light Company DCF Equity Cost Growth Rate Measures

Value Line Historic Growth Rates

Electric Proxy Group						
Company	Value Line Historic Growth					
	Past 10 Years			Past 5 Years		
	Earnings	Dividends	Book Value	Earnings	Dividends	Book Value
ALLETE, Inc. (NYSE-ALE)				0.5\%	12.0\%	5.5\%
Alliant Energy Corporation (NYSE-LNT)	2.0\%	-3.0\%	0.5\%	5.0\%	8.0\%	3.5\%
Ameren Corporation (NYSE-AEE)	-1.5\%	-5.0\%	3.5\%	-1.5\%	-6.5\%	1.0\%
American Electric Power Co. (NYSE-AEP)	2.0\%	-3.0\%	1.0\%	1.5\%	4.0\%	5.0\%
Avista Corporation (NYSE-AVA)	5.0\%	7.5\%	3.5\%	9.5\%	12.5\%	4.0\%
Black Hills Corporation (NYSE-BKH)	-4.0\%	3.0\%	7.5\%	-4.0\%	2.5\%	4.0\%
Cleco Corporation (NYSE-CNL)	5.0\%	1.5\%	8.0\%	10.0\%	2.0\%	10.0\%
CMS Energy Corporation (NYSE-CMS)	-5.5\%	-7.5\%	-4.5\%	8.5\%		2.0\%
Consolidated Edison, Inc. (NYSE-ED)	1.0\%	1.0\%	4.0\%	4.5\%	1.0\%	4.5\%
Dominion Resources, Inc. (NYSE-D)	7.0\%	3.5\%	3.5\%	6.5\%	6.5\%	3.5\%
DTE Energy Company (NYSE-DTE)	2.0\%	0.5\%	3.5\%	5.0\%	1.5\%	4.0\%
Edison International (NYSE-EIX)		7.0\%	11.0\%	6.0\%	5.5\%	8.5\%
Entergy Corporation (NYSE-ETR)	9.5\%	10.0\%	4.5\%	8.5\%	9.0\%	4.5\%
Exelon Corporation (NYSE-EXC)	8.0\%		5.5\%	4.5\%	7.0\%	7.5\%
FirstEnergy Corporation (ASE-FE)	0.5\%	4.0\%	3.0\%	-2.0\%	4.0\%	1.5\%
Great Plains Energy Incorporated (NYSE-GXP)	-2.5\%	-6.5\%	4.5\%	-9.5\%	-13.0\%	5.5\%
Hawaiian Electric Industries, Inc. (NYSE-HE)	-2.0\%		2.0\%	-3.0\%		1.5\%
IDACORP, Inc. (NYSE-IDA)	-0.5\%	-4.5\%	3.5\%	8.5\%		5.0\%
MGE Energy, Inc. (NYSE-MGEE)	4.5\%	1.0\%	6.5\%	6.5\%	1.5\%	6.0\%
NextEra Energy (NYSE-NEE)	7.5\%	6.5\%	8.0\%	11.0\%	7.5\%	9.0\%
OGE Energy Corp. (NYSE-OGE)	6.0\%	1.0\%	6.0\%	8.5\%	2.0\%	8.5\%
Pepco Holdings, Inc. (NYSE-POM)	-0.5\%		0.5\%	-0.5\%	1.5\%	1.0\%
PG\&E Corporation (NYSE-PCG)		8.5\%	8.0\%	3.5\%	16.0\%	6.5\%
Pinnacle West Capital Corp. (NYSE-PNW)	-2.0\%	4.0\%	2.0\%	. 01.015		0.5\%
PNM Resources, Inc. (NYSE-PNM)	-7.5\%	-0.5\%	1.5\%	-12.0\%	-8.0\%	-1.0\%
Portland General Electric (NYSE-POR)				8.5\%		2.0\%
SCANA Corporation (NYSE-SCG)	4.5\%	4.5\%	3.5\%	2.0\%	4.0\%	4.5\%
Southern Company (NYSE-SO)	3.0\%	3.0\%	3.5\%	3.0\%	4.0\%	6.0\%
TECO Energy, Inc. (NYSE-TE)	-5.0\%	-4.5\%	-2.0\%	3.5\%	1.5\%	6.5\%
UIL Holdings Corporation (NYSE-UIL)	-2.0\%			4.5\%		-0.5\%
UniSource Energy Corporation (NYSE-UNS)	7.0\%	20.0\%	7.0\%	13.0\%	14.5\%	5.0\%
Westar Energy, Inc. (NYSE-WR)		-4.5\%	-3.0\%	1.0\%	7.0\%	6.0\%
Wisconsin Energy Corporation (NYSE-WEC)	9.0\%	3.0\%	6.5\%	10.0\%	14.0\%	7.0\%
Xcel Energy Inc. (NYSE-XEL)	-1.0\%	-4.0\%		4.5\%	3.5\%	4.5\%
Mean	1.7\%	1.7\%	3.8\%	3.8\%	4.5\%	4.5\%
Median	2.0\%	1.3\%	3.5\%	4.5\%	4.0\%	4.5\%
Data Source: Value Line Investment Survey.	Average of Median Figures $=3.3 \%$					

Exhibit JRW-10
Florida Power \& Light Company
DCF Equity Cost Growth Rate Measures
Value Line Projected Growth Rates

	Electric Proxy Group			Value Line		
	Value Line					
Company	Projected Growth Est'd. '09-'11 to '15-'17			Sustainable Growth		
					Retention	Internal
	Earnings	Dividends	Book Value	Equity	Rate	Growth
ALLETE, Inc. (NYSE-ALE)	7.5\%	2.0\%	4.0\%	10.0\%	41.0\%	4.1\%
Alliant Energy Corporation (NYSE-LNT)	6.0\%	5.5\%	3.5\%	10.5\%	33.0\%	3.5\%
Ameren Corporation (NYSE-AEE)	-1.0\%	2.5\%	0.5\%	7.0\%	28.0\%	2.0\%
American Electric Power Co. (NYSE-AEP)	4.5\%	3.5\%	4.5\%	10.0\%	41.0\%	4.1\%
Avista Corporation (NYSE-AVA)	5.5\%	6.5\%	3.5\%	9.0\%	38.0\%	3.4\%
Black Hills Corporation (NYSE-BKH)	7.0\%	2.0\%	2.0\%	8.5\%	38.0\%	3.2\%
Cleco Corporation (NYSE-CNL)	6.5\%	11.5\%	6.0\%	11.5\%	44.0\%	5.1\%
CMS Energy Corporation (NYSE-CMS)	7.0\%	10.0\%	5.0\%	12.5\%	39.0\%	4.9\%
Consolidated Edison, Inc. (NYSE-ED)	4.0\%	1.0\%	8.0\%	9.5\%	43.0\%	4.1\%
Dominion Resources, Inc. (NYSE-D)	6.5\%	6.0\%	5.5\%	14.5\%	35.0\%	5.1\%
DTE Energy Company (NYSE-DTE)	4.0\%	3.5\%	3.5\%	9.5\%	40.0\%	3.8\%
Edison International (NYSE-EIX)	1.0\%	3.0\%	4.0\%	9.0\%	55.0\%	5.0\%
Entergy Corporation (NYSE-ETR)	-4.5\%	1.0\%	3.0\%	9.5\%	37.0\%	3.5\%
Exelon Corporation (NYSE-EXC)	-2.0\%	0.0\%	6.0\%	12.0\%	39.0\%	4.7\%
FirstEnergy Corporation (ASE-FE)	5.0\%	1.5\%	4.5\%	10.5\%	38.0\%	4.0\%
Great Plains Energy Incorporated (NYSE-GXP)	5.5\%	5.0\%	2.0\%	7.5\%	38.0\%	2.9\%
Hawaiian Electric Industries, Inc. (NYSE-HE)	9.0\%	1.0\%	5.5\%	9.0\%	35.0\%	3.2\%
IDACORP, Inc. (NYSE-IDA)	3.0\%	8.0\%	5.5\%	8.0\%	46.0\%	3.7\%
MGE Energy, Inc. (NYSE-MGEE)	4.5\%	3.5\%	5.0\%	10.5\%	24.0\%	2.5\%
NextEra Energy (NYSE-NEE)	5.0\%	8.0\%	6.5\%	12.5\%	47.0\%	5.9\%
OGE Energy Corp. (NYSE-OGE)	6.0\%	4.5\%	8.0\%	11.5\%	59.0\%	6.8\%
Pepco Holdings, Inc. (NYSE-POM)	7.0\%	1.0\%	2.0\%	8.0\%	31.0\%	2.5\%
PG\&E Corporation (NYSE-PCG)	4.5\%	2.0\%	4.0\%	10.5\%	47.0\%	4.9\%
Pinnacle West Capital Corp. (NYSE-PNW)	5.0\%	2.5\%	3.5\%	9.0\%	36.0\%	3.2\%
PNM Resources, Inc. (NYSE-PNM)	-7.5\%	-0.5\%	1.5\%	9.0\%	56.0\%	5.0\%
Portland General Electric (NYSE-POR)	5.5\%	3.5\%	4.0\%	9.0\%	46.0\%	4.1\%
SCANA Corporation (NYSE-SCG)	4.0\%	2.0\%	5.5\%	9.5\%	44.0\%	4.2\%
Southern Company (NYSE-SO)	5.0\%	4.0\%	5.5\%	12.5\%	30.0\%	3.8\%
TECO Energy, Inc. (NYSE-TE)	7.5\%	5.0\%	4.5\%	13.0\%	37.0\%	4.8\%
UIL Holdings Corporation (NYSE-UIL)	4.0\%	0.0\%	3.5\%	9.5\%	29.0\%	2.8\%
UniSource Energy Corporation (NYSE-UNS)	4.0\%	6.0\%	3.0\%	13.0\%	39.0\%	5.1\%
Westar Energy, Inc. (NYSE-WR)	6.5\%	3.0\%	4.5\%	8.5\%	39.0\%	3.3\%
Wisconsin Energy Corporation (NYSE-WEC)	6.5\%	13.5\%	3.5\%	14.0\%	37.0\%	5.2\%
Xcel Energy Inc. (NYSE-XEL)	6.0\%	5.0\%	4.5\%	10.0\%	38.0\%	3.8\%
Mean	4.4\%	4.0\%	4.3\%	10.2\%	39.6\%	4.1\%
Median	5.0\%	3.5\%	4.3\%	9.8\%	38.5\%	4.0\%
Average of Median Figures =		4.3\%				4.0\%

Data Source: Value Line Investment Survey.

Exhibit JRW-10

> Florida Power \& Light Company
> DCF Equity Cost Growth Rate Measures Analysts Projected EPS Growth Rate Estimates

Electric Proxy Group				
Company	Yahoo	Zack's	Reuters	Average
ALLETE, Inc. (NYSE-ALE)	5.0\%	5.0\%	6.5\%	5.5\%
Alliant Energy Corporation (NYSE-LNT)	6.4\%	6.2\%	5.9\%	6.2\%
Ameren Corporation (NYSE-AEE)	-2.3\%	0.3\%	-3.1\%	-1.7\%
American Electric Power Co. (NYSE-AEP)	3.5\%	4.3\%	3.9\%	3.9\%
Avista Corporation (NYSE-AVA)	4.0\%	4.7\%	4.5\%	4.4\%
Black Hills Corporation (NYSE-BKH)	6.0\%	6.0\%	6.0\%	6.0\%
Cleco Corporation (NYSE-CNL)	3.0\%	na	3.0\%	3.0\%
CMS Energy Corporation (NYSE-CMS)	6.0\%	5.8\%	6.0\%	5.9\%
Consolidated Edison, Inc. (NYSE-ED)	3.2\%	3.7\%	3.3\%	3.4\%
Dominion Resources, Inc. (NYSE-D)	5.4\%	4.9\%	5.6\%	5.3\%
DTE Energy Company (NYSE-DTE)	4.3\%	4.4\%	3.8\%	4.2\%
Edison International (NYSE-EIX)	-0.5\%	1.5\%	2.4\%	1.1\%
Entergy Corporation (NYSE-ETR)	-1.7\%	2.0\%	1.8\%	0.7\%
Exelon Corporation (NYSE-EXC)	-10.2\%	0.0\%	-1.1\%	-3.8\%
FirstEnergy Corporation (ASE-FE)	3.2\%	1.0\%	3.9\%	2.7\%
Great Plains Energy Incorporated (NYSE-GXP)	9.8\%	5.0\%	8.5\%	7.8\%
Hawaiian Electric Industries, Inc. (NYSE-HE)	8.0\%	7.1\%	6.4\%	7.2\%
IDACORP, Inc. (NYSE-IDA)	4.0\%	5.0\%	4.5\%	4.5\%
MGE Energy, Inc. (NYSE-MGEE)	4.0\%	4.0\%	4.0\%	4.0\%
NextEra Energy (NYSE-NEE)	5.4\%	5.6\%	5.7\%	5.6\%
OGE Energy Corp. (NYSE-OGE)	5.0\%	5.8\%	6.0\%	5.6\%
Pepco Holdings, Inc. (NYSE-POM)	4.9\%	4.0\%	4.9\%	4.6\%
PG\&E Corporation (NYSE-PCG)	1.5\%	4.6\%	3.3\%	3.1\%
Pinnacle West Capital Corp. (NYSE-PNW)	6.2\%	5.3\%	6.0\%	5.9\%
PNM Resources, Inc. (NYSE-PNM)	9.3\%	12.6\%	9.5\%	10.4\%
Portland General Electric (NYSE-POR)	4.1\%	4.8\%	4.6\%	4.5\%
SCANA Corporation (NYSE-SCG)	4.6\%	4.1\%	4.7\%	4.5\%
Southern Company (NYSE-SO)	5.6\%	5.1\%	5.5\%	5.4\%
TECO Energy, Inc. (NYSE-TE)	4.1\%	3.5\%	4.5\%	4.0\%
UIL Holdings Corporation (NYSE-UIL)	4.1\%	4.0\%	4.0\%	4.0\%
UniSource Energy Corporation (NYSE-UNS)	5.5\%	4.5\%	5.5\%	5.2\%
Westar Energy, Inc. (NYSE-WR)	5.8\%	5.7\%	6.0\%	5.9\%
Wisconsin Energy Corporation (NYSE-WEC)	5.4\%	5.3\%	6.2\%	5.6\%
Xcel Energy Inc. (NYSE-XEL)	5.3\%	5.0\%	5.1\%	5.1\%
Mean	4.0\%	4.6\%	4.6\%	4.4\%
Median	4.7\%	4.8\%	4.8\%	4.5\%

Data Sources: www.reuters.com, www.zacks.com, http://quote.yahoo.com, June 2012.

Exhibit JRW-10

Florida Power \& Light Company DCF Growth Rate Indicators

> | Electric and Proxy Group |
| :--- |
| Summary Growth Rates |

Growth Rate Indicator	Electric Proxy Group
Historic Value Line Growth in EPS, DPS, and BVPS	3.3%
Projected Value Line Growth in EPS, DPS, and BVPS	4.3%
Sustainable Growth ROE * Retention Rate	4.0%
Projected EPS Growth from Yahoo, Zacks, and Reuters	4.5%
Average of Historic and Projected Growth Rates	4.0%
Average of Sustainable and Projected Growth Rates	4.3%

Exhibit JRW-11

Florida Power \& Light Company Capital Asset Pricing Model

Electric Proxy Group

Risk-Free Interest Rate	$\mathbf{4 . 0 0 \%}$
Beta* *	0.73
Ex Ante Equity Risk Premium**	$\mathbf{5 . 0 1 \%}$
CAPM Cost of Equity	$\mathbf{7 . 7 \%}$
* See page 3 of Exhibit JRW-11	
** See pages 5 and 6 of Exhibit JRW-11	

Ten-Year U.S. Treasury Yields
January 2000-Present

Exhibit JRW-11

Electric Proxy Group

Company Name	Beta
ALLETE, Inc. (NYSE-ALE)	0.70
Alliant Energy Corporation (NYSE-LNT)	0.75
Ameren Corporation (NYSE-AEE)	0.80
American Electric Power Co. (NYSE-AEP)	0.70
Avista Corporation (NYSE-AVA)	0.70
Black Hills Corporation (NYSE-BKH)	0.85
Cleco Corporation (NYSE-CNL)	0.70
CMS Energy Corporation (NYSE-CMS)	0.75
Consolidated Edison, Inc. (NYSE-ED)	0.60
Dominion Resources, Inc. (NYSE-D)	0.70
DTE Energy Company (NYSE-DTE)	0.75
Edison International (NYSE-EIX)	0.80
Entergy Corporation (NYSE-ETR)	0.70
Exelon Corporation (NYSE-EXC)	0.80
FirstEnergy Corporation (ASE-FE)	0.80
Great Plains Energy Incorporated (NYSE-GXP)	0.75
Hawaiian Electric Industries, Inc. (NYSE-HE)	0.70
IDACORP, Inc. (NYSE-IDA)	0.70
MGE Energy, Inc. (NYSE-MGEE)	0.60
NextEra Energy (NYSE-NEE)	0.75
OGE Energy Corp. (NYSE-OGE)	0.80
Pepco Holdings, Inc. (NYSE-POM)	0.75
PG\&E Corporation (NYSE-PCG)	0.55
Pinnacle West Capital Corp. (NYSE-PNW)	0.70
PNM Resources, Inc. (NYSE-PNM)	0.95
Portland General Electric (NYSE-POR)	0.75
SCANA Corporation (NYSE-SCG)	0.70
Southern Company (NYSE-SO)	0.55
TECO Energy, Inc. (NYSE-TE)	0.85
UIL Holdings Corporation (NYSE-UIL)	0.70
UniSource Energy Corporation (NYSE-UNS)	0.75
Westar Energy, Inc. (NYSE-WR)	0.75
Wisconsin Energy Corporation (NYSE-WEC)	0.65
Xcel Energy Inc. (NYSE-XEL)	0.65
Mean	0.73
Median	0.73

Data Source: Value Line Investment Survey, 2012.

Exhibit JRW-11

Risk Premium Approaches

	Historical Ex Post Excess Returns	Surveys	Ex Ante Models and Market Data
Means of Assessing the Equity-Bond Kisk Premium	Historical average is a popular proxy for the ex ante premium - but likely to be misleading	Investor and experi surveys can provide direct estimaies of prevailing expected returns/premiums	Current financial market prices (simple valuation ratios or DCFbased measures) can give most objective estimates of feasible ex ante equity-bond risk premium
ProblemsiDebated Issues	Time variation in required returns and systematic selection and other biases have boosted valuations over time, and have exaggerated realized excess equity returns compared with ex anie expected premiums	Limited survey histories and questions of survey representativeness. Surveys may tell more about hoped-for expected returns than about objective required premiums due to irrational biases such as extrapolation.	Assumptions needed for DCF inputs, notably the trend earnings growth rate, make even these models' outputs subjective. The range of views on the growth rate, as well as the debate on the relevant stock and bond yields, leads to a range of premium estimates.

Source: Antti Ilmanen, Expected Returns on Stocks and Bonds," Journal of Portfolio Management, (Winter 2003).

Florida Pewer \& Light Company Capital Asset Pricing Model Equity Risk Premium					Docket No. 120015-EI Exhibit JRW-11 CAPM Study Page 5 of 11					
Category	Study Authors	Publication Date	Time Period Of Study	Methodology	Return Measure		nge High	Midpoint of Range	Mean	Median
Historical Risk Premium										
	Ibbotson	2012	1926-2011	Historical Stock Retums - Bond Retums	Arithmetic				5.70\%	
					Geometric				4.10\%	
	Bate	2008	1900-2007	Historical Stock Retums - Bond Returns	Geometric				4.50\%	
	Shiller	2006	1926-2005	Historical Stock Retums - Bond Retums	Arihmetic				7.00\%	
					Geometric				5.50\%	
	Damodoran	2006	1926-2005	Historical Stock Returms - Bond Returns	Arithmetic				6.70\%	
					Geometric				5.10\%	
	Siegel	2005	1926-2005	Historical Stock Retums - Bond Returns	Arithmetic				6.10\%	
					Geometric				4.60\%	
	Dimson, Marsh and Stuunton	2006	1900-2005	Historical Stock Retums - Bond Retums	Arithmetic				5.50\%	
	Goyal \& Welch	2006	1872-2004	Historical Stock Retums - Bond Returns					4.77\%	
	Medim									5.50%
Ex Ante Models (Puzzle Research)										
	Claus Thomas	2001	1985-1998	Abnormal Eamings Model					3.00\%	
	Amott and Bermstein	2002	1810-2001	Fundamentals - Div Y Yid + Growth					2.40\%	
	Constantinides	2002	1872-2000	Historical Retums \& Fundamentals - P/D \& P/E					6.90\%	
	Comell	1999	1926-1997	Historical Returns \& Fundamental GDP/Eamings		3.50\%	5.50\%	4.50\%	4.50\%	
	Easton, Taylor, et al	2002	1981-1998	Residual lincome Model					5.30\%	
	Fama French	2002	1951-2000	Fundamental DCF with EPS and DPS Growth		2.55\%	4.32\%		3.44\%	
	Harris \& Marston	2001	1982-1998	Fundamental DCF with Analysts' EPS Growth					7.14\%	
	Best \& Byme	2001								
	McKinsey	2002	1962-2002	Fundamental (P/E, D/P, \& Eamings Growth)		3.50\%	4.00\%		3.75\%	
	Siegel	2005	1802-2001	Historical Eamings Yield	Geometric				2.50\%	
	Grabowsti	2006	1926-2005	Historical and Projected		3.50%	6.00\%	4.75\%	4.75\%	
	Maheu \& McCurdy	2006	1885-2003	Historical Excess Retums, Structural Breaks,		4.02\%	5.10\%	4.56\%	4.56\%	
	Bostock	2004	1960-2002	Bond Yields, Credit Risk, and Income Volatility		390\%	1.30\%	2.60\%	2.60\%	
	Bulahi \& Chen	2005	1982-1998	Fundamentals - Interest Rates					7.31\%	
	Donaldson, Kamstra, \& Kramer	2006	1952-2004	Fundamental, Dividend yld, Returns, \& Volatility		3.00\%	4.00\%	3.50\%	3.50\%	
	Campbell	2008	1982-2007	Historical \& Projections (D/P \& Eamings Growth)		4.10\%	5.40\%		4.75\%	
	Best \& Byme	2001	Projection	Fundamentals - Div Yld + Growth					200\%	
	Femandez	2007	Projection	Required Equiry Risk Premium					4.00\%	
	DeLong \& Magin	2008	Projection	Earnings Yield - TIPS					3.22\%	
	Damodoran	2012	Projection	Fundamentals - Implied from FCF to Equity Model					6.54\%	
	Social Security									
	Office of Chief Actury		1900-1995							
	John Campbell	2001	1860-2000	Historical \& Projections (D/P \& Earnings Growth)	Arithmetic	3.00\%	4.00\%	3.50\%	3.50\%	
			Projected for 75 Years		Geometric	1.50\%	250\%	2.00\%	2.00\%	
	Peter Diamond	2001	Projected for 75 Years	Fundamentals (D/P, GDP Growth)		3.00\%	4.80\%	3.90\%	3.90\%	
	John Shoven	2001	Projected for 75 Years	Fundrmentals (DPP, PE, GDP Growth)		3.00\%	3.50\%	3.25\%	3.25\%	
	Medim									3.75\%
Surveys										
	Surrey of Financial Forecasters	2012	10-Year Projection	About 50 Financial Forecasters					2.80\%	
	Duke - CFO Magaine Survey	2012	10-Year Projection	Approximately 500 CFOs					4.50\%	
	Weich - Academics	2008	30-Year Projection	Random Academics		5.00\%	5.74\%	5.37\%	5.37\%	
	Femandez - Academics	2012	Lons-Term	Survey of Academics					5.60%	
	Femandez - Analysts	2012	Lons-Term	Survey of Analysts					5.00\%	
	Femandez - Companies	2012	Long-Term	Surev of Companies					5.50\%	
	Median									5.19\%
Building Block										
	Ibbotson and Chen	2012	1926-2010	Historical Supply Model (D/P \& Earnings Growth)	Arithmetic			5.99\%	4.95\%	
					Geometric			3.91\%		
	Woolridge		2012	Current Supply Model (D/P \& Eamings Growth)					5.10\%	
	Median									5.03\%
Mean										4.87\%
Median										5.11\%

Exhibit JRW-11

Florida Power \& Light Company
Capital Asset Pricing Model
Capital Asset Pricing Model
Equity Risk Premium

Exhibit JRW-11

Florida Power \& Light Company Decomposing Equity Market Returns

The Building Blocks Methodology

Florida Power \& Light Company

2012 Survey of Professional Forecasters
 Philadelphia Federal Reserve Bank
 Long-Term Forecasts

Table Seven
LONG-TERM (10 YEAR) FORECASTS

Panel A		Panel B	
SERIES: CPI INFLATION RATE		SERIES: REAL GDP GROWTH RATE	
STATISTIC		STATISTIC	
MINIMUM	0.99	MINIMUM	1.90
LOWER QUARTILE	2.10	LOWER QUARTILE	2.50
MEDIAN	2.30	MEDIAN	2.64
UPPER QUARTILE	2.70	UPPER QUARTILE	2.90
MAXIMUM	6.40	MAXIMUM	3.75
MEAN	2.49	MEAN	2.67
STD. DEV.	0.84	STD. DEV.	0.41
N	37	N	37
MISSING	8	MISSING	8
Panel C		Panel D	
SERIES: PRODUCTIVITY GROWTH		SERIES: STOCK RETURNS (S\&P 500)	
STATISTIC		STATISTIC	
MINIMUM	1.20	MINIMUM	4.00
LOWER QUARTILE	1.60	LOWER QUARTILE	5.00
MEDIAN	1.85	MEDIAN	6.80
UPPER QUARTILE	2.10	UPPER QUARTILE	7.60
MAXIMUM	3.10	MAXIMUM	9.20
MEAN	1.93	MEAN	6.30
STD. DEV.	0.45	STD. DEV.	1.54
N	26	N	19
MISSING	19	MISSING	26
Panel E		Panel F	
SERIES: BOND RETURNS (10-YEAR)		SERIES: BILL RETURNS (3-MONTH)	
STATISTIC		STATISTIC	
MINIMUM	-2.00	MINIMUM	-2.00
LOWER QUARTILE	3.40	LOWER QUARTILE	2.75
MEDIAN	4.00	MEDIAN	3.00
UPPER QUARTILE	4.50	UPPER QUARTILE	3.31
MAXIMUM	8.40	MAXIMUM	4.75
MEAN	3.83	MEAN	2.93
STD. DEV.	1.72	STD. DEV.	1.13
N	26	N	30
MISSING	19	MISSING	13

Source: Philadelphia Federal Reserve Bank, Survey of Professional Forecasters, February 10, 2012.

Exhibit JRW-11

Florida Power \& Light Company

University of Michigan Survey Research Center Expected Short-Term Inflation Rate

Data Source: http://research.stlouisfed.org/fred2/series/MICH?cid=98

Exhibit JRW-11

Decomposing Equity Market Returns The Building Blocks Methodology

S\&P 500 Dividend Yield

S\&P 500 P/E Ratio

Exhibit JRW-11
Florida Power \& Light Company
CAPM
Real S\&P 500 EPS Growth Rate

Year	S\&P 500 EPS	Annual Inflation CPI	Inflation Adjustment Factor	$\begin{aligned} & \text { Real } \\ & \text { S\&P } 500 \\ & \text { EPS } \end{aligned}$	
1960	3.10	1.48		3.10	10-Year
1961	3.37	0.07	1.01	3.35	
1962	3.67	1.22	1.02	3.59	
1963	4.13	1.65	1.04	3.99	
1964	4.76	1.19	1.05	4.55	
1965	5.30	1.92	1.07	4.97	
1966	5.41	3.35	1.10	4.90	
1967	5.46	3.04	1.14	4.80	
1968	5.72	4.72	1.19	4.81	
1969	6.10	6.11	1.26	4.83	
1970	5.51	5.49	1.34	4.13	(10-Year 2.89%
1971	5.57	3.36	1.38	4.04	
1972	6.17	3.41	1.43	4.33	
1973	7.96	8.80	1.55	5.13	
1974	9.35	12.20	1.74	5.37	
1975	7.71	7.01	1.86	4.14	
1976	9.75	4.81	1.95	4.99	
1977	10.87	6.77	2.08	5.22	
1978	11.64	9.03	2.27	5.13	
1979	14.55	13.31	2.57	5.66	
1980	14.99	12.40	2.89	5.18	2.30\%
1981	15.18	8.94	3.15	4.82	
1982	13.82	3.87	3.27	4.23	
1983	13.29	3.80	3.40	3.91	
1984	16.84	3.95	3.53	4.77	
1985	15.68	3.77	3.66	4.28	
1986	14.43	1.13	3.70	3.90	
1987	16.04	4.41	3.87	4.15	
1988	22.77	4.42	4.04	5.64	
1989	24.03	4.65	4.22	5.69	
1990	21.73	6.11	4.48	4.85	-0.65\%
1991	19.10	3.06	4.62	4.14	
1992	18.13	2.90	4.75	3.81	
1993	19.82	2.75	4.88	4.06	
1994	27.05	2.67	5.01	5.40	
1995	35.35	2.54	5.14	6.88	
1996	35.78	3.32	5.31	6.74	
1997	39.56	1.70	5.40	7.33	
1998	38.23	1.61	5.48	6.97	
1999	45.17	2.68	5.63	8.02	
2000	52.00	3.39	5.82	8.93	$\frac{10-\mathrm{Year}}{6.29 \%}$
2001	44.23	1.55	5.92	7.48	
2002	47.24	2.38	6.06	7.80	
2003	54.15	1.88	6.17	8.77	
2004	67.01	3.26	6.37	10.51	
2005	68.32	3.42	6.60	10.35	
2006	81.96	2.54	6.77	12.11	
2007	87.51	4.08	7.04	12.43	
2008	65.39	0.09	7.05	9.28	
2009	59.65	2.72	7.24	8.24	10-Year
2010	83.66	1.50	7.35	11.39	2.46\%
2011	97.05	2.96	7.57	12.83	
Data Source: http://pages.stern.nyu.edu/~adamodar/				Real EPS Growth	2.8\%

Panel A
Summary of Dr. Avera's Equity Cost Rate Approaches and Results

Approach	Utility Group	Non-Utility Group
DCF		
Earnings Growth		
Value Line	10.20%	12.30%
IBES	10.30%	11.50%
Zack's	9.60%	11.80%
brtsv	9.90%	12.20%
Average	10.00%	11.95%
CAPM - Current Bond Yield		
Unadjusted	10.40%	
Size Adjusted	11.20%	
CAPM - Projected Bond Yield	10.80%	
Unadjusted	11.60%	
Size Adjusted		
Utility Risk Premium	9.60%	
Current Bond Yields	10.40%	
Projected Bond Yields		
	10.50%	
Expected Earnings	12.00%	
Value Line 2014-16		

Panel B
Summary of Dr. Avera's DCF Results

	Utility Group	Non-Utility Group
Average Adjusted Dividend Yield	4.10%	2.70%
Growth		5.90%
DCF Result	10.00%	11.95%

* Expected EPS Growth from IBES and Zacks, Value Line projected EPS growth, and br+sv growth.

Panel C
Summary of Dr. Avera's CAPM Results
Current Bond Yield

	Utility Group
Risk-Free Rate	3.00%
Beta	0.70
Market Risk Premium	10.50%
CAPM Result	10.35%
Size Adjustment	0.81%
Adjusted CAPM Result	11.2%

Projected Bond Yield	
	Utility Group
Risk-Free Rate	4.30%
Beta	0.70
Market Risk Premium	9.20%
CAPM Result	10.80%
Size Adjustment	0.81%
Adjusted CAPM Result	11.6%

Panel D
Summary of Dr. Avera's RP Results Current Bond Yield

	Utility Group
BBB Bond Yield	4.33%
Adjusted Risk Premium	5.24%
Risk Premium Result	9.57%

Projected Bond Yield

Projected Bond	
BBB Bond Yield	Utility Group
Adjusted Risk Premium	5.72%
Risk Premium Result	4.68%

Panel E
Summary of Dr. Avera's Expected Earnings Approach

	Utility Group
Adjusted Expected ROE	12.00%

Exhibit JRW-13

Florida Power \& Light Company

Summary Financial Statistics

Combination Utility Group

Company	$\begin{array}{r} \hline \text { Operating } \\ \text { Revenue } \\ \text { (\$mil) } \\ \hline \end{array}$	Percent Electric Revenue	Percent Gas Revenue	Net Plant (Smil)	Market Capital (\$bil)	S\&P Bond Rating	Moody's Bond Rating	Common Equity Ratio	Return on Equity	Market to Book Ratio
Alliant Energy Corporation (NYSE-LNT)	3,665.3	72	13	7,037.1	1,511.3	A-/BBB+	A2/A3	51.2	9.7	1.53
Consolidated Edison, Inc. (NYSE-ED)	12,937.0	69	13	25,004.0	16,991.1	A-	A3/Baa1	51.7	9.2	1.46
Dominion Resources, Inc. (NYSE-D)	14,379.0	49	12	29,670.0	28,853.4	A	Baa1/Baa2	35.3	12.0	2.52
Integrys Energy Group (NYSE-TEG)	4,708.7	28	42	5,199.1	4,087.4	A-/BBB +	A2/A3	54.9	7.7	1.36
NextEra Energy (NYSE-NEE)	15,342.0	69	0	42,490.0	26,124.8	A	Aa3	39.4	13.1	1.75
OGE Energy Corp. (NYSE-OGE)	3,915.9	56	10	7,474.0	5,100.2	BBB+	Baa1	43.9	14.1	1.99
PG\&E Corporation (NYSE-PCG)	14,956.0	78	22	33,655.0	17,687.7	BBB	A3	46.9	7.2	1.46
SCANA Corporation (NYSE-SCG)	4,408.0	55	19	10,047.0	5,829.2	A-	A3	42.3	10.2	1.50
SEMPRA Energy (NYSE-SRE)	10,036.0	28	55	23,572.0	15,228.0	A+	Aa3	46.2	14.6	1.56
Southern Company (NYSE-SO)	17,657.0	95	0	45,010.0	39,423.5	A	A2/A3	47.9	12.5	2.16
Vectren Corporation (NYSE-VVC)	2,325.2	28	35	3,032.6	2,330.1	A-	A2	44.2	9.8	1.59
Wisconsin Energy Corporation (NYSE-WEC)	4,486.4	72	26	10,160.4	8,196.6	A-	A1	42.8	13.4	2.05
Xcel Energy Inc. (NYSE-XEL)	10,654.8	82	17	22,353.4	12,829.0	A	A3	45.6	10.1	1.51
Mean	9,190.1	60	20	20,361.9	14,168.6	A-	A2/A3	45.6	11.0	1.73
Median	10,036.0	69	17	22,353.4	12,829.0	A-	A2/A3	45.6	10.2	1.56

Data Source: AUS Utility Reports, May, 2012.
br+sv Growth Versus Value Line Projected BVPS Growth

Company		Value Line Projected BVPS Growth
Alliant Energy Corporation (NYSE-LNT)	5.6\%	3.0\%
Consolidated Edison, Inc. (NYSE-ED)	3.9\%	8.0\%
Dominion Resources, Inc. (NYSE-D)	5.2\%	5.5\%
Integrys Energy Group (NYSE-TEG)	3.1\%	2.5\%
NextEra Energy (NYSE-NEE)	13.8\%	6.5\%
OGE Energy Corp. (NYSE-OGE)	6.4\%	7.5\%
PG\&E Corporation (NYSE-PCG)	7.0\%	4.0\%
SCANA Corporation (NYSE-SCG)	6.0\%	5.5\%
SEMPRA Energy (NYSE-SRE)	5.0\%	5.0\%
Southern Company (NYSE-SO)	6.1\%	5.5\%
Vectren Corporation (NYSE-VVC)	5.6\%	3.0\%
Wisconsin Energy Corporation (NYSE-WEC)	3.9\%	3.5\%
Xcel Energy Inc. (NYSE-XEL)	4.7\%	4.5\%
Mean	4.3\%	4.9\%
Median	5.6\%	5.0\%

Data Source: Atmos Exhibit WEA-2, page 2, and Value Line Investment Survey, March 9, 2012.

Panel A
Long-Term Forecasted Versus Actual EPS Growth Rates 1988-2009

Panel B
Long-Term Forecasted EPS Growth Rates
1988-2007

Source: Patrick J. Cusatis and J. Randall Woolridge, "The Accuracy of Analysts' Long-Term Earnings Per Share Growth Rate Forecasts," (July, 2008).

THE WALL STREETJOURNAL.

Study Suggests Bias in Analysts' Rosy Forecasts

By ANDREW EDWARDS

March 21, 2008; Page C6
Despite an economy teetering on the brink of a recession -- if not already in one -analysts are still painting a rosy picture of earnings growth, according to a study done by Penn State's Smeal College of Business.

The report questions analysts' impartiality five years after then-New York Attorney General Eliot Spitzer forced analysts to pay $\$ 1.5$ billion in damages after finding evidence of bias.
"Wall Street analysts basically do two things: recommend stocks to buy and forecast earnings," said J. Randall Woolridge, professor of finance. "Previous studies suggest their stock recommendations do not perform well, and now we show that their longterm earnings-per-share growth-rate forecasts are excessive and upwardly biased."

The report, which examined analysts' long-term (three to five years) and one-year pershare earnings expectations from 1984 through 2006 found that companies' long-term earnings growth surpassed analysts' expectations in only two instances, and those came right after recessions.

Over the entire time period, analysts' long-term forecast earnings-per-share growth averaged 14.7%, compared with actual growth of 9.1%. One-year per-share earnings expectations were slightly more accurate: The average forecast was for 13.8% growth and the average actual growth rate was 9.8%.
"A significant factor in the upward bias in long-term earnings-rate forecasts is the reluctance of analysts to forecast" profit declines, Mr. Woolridge said. The study found that nearly one-third of all companies experienced profit drops over successive three-to-five-year periods, but analysts projected drops less than 1% of the time.

The study's authors said, "Analysts are rewarded for biased forecasts by their employers, who want them to hype stocks so that the brokerage house can garner trading commissions and win underwriting deals."

They also concluded that analysts are under pressure to hype stocks to generate trading commissions, and they often don't follow stocks they don't like.

Wite to Andrew Edwards at andrew.edwards@dowjones.com

Bloomberg Businessweek

For Analysts, Things Are Always Looking Up

They ${ }^{-1}$ re raising earnings estimates for U.S. companies at a record pace

By Roben Frazad

For years, the rap on Wall Street securities anolysts was that they were shills, reflexively producing upbest resestch on compenies they cover to help their employers win investment benking business. The dynamic was well understood: Let my bank take your company public, or advise it on this acquisition, and-wink, wink-I will recommend your stock through thick or thin. Aiter the Internet bubble burst, thet was supposed to change. In April 2003 the Securities \& Exchenge Commission resched a setdement with 10 Wall Street firms in which they agreed, among other things, to sepseste resesrch from invesment banking.

Seven years on, Wall Street analysts remsin a decidedly optimistic lot. Some economists look at the global economy and see troubles-the Europenn debt crisis, persistently high unemployment worldwide, and housing woes in the U.S. Stock anslysts as a group seem unfazed. Projected 2010 prozit growth for companies in the Standsrd \& Poor's 500 -stock index has climbed seven percentage points this quarter, to 34 percent, data compiled by Bloomberg show. According to Senford C. Bemstem (AB), that's the fastest pace since 1980, when the Dow Jones industrial average was quoted in the hundreds and Nancy Reagan was getting ready to order new window treatments for the Oval Office.

Among the compenies analysts expect to excel: Intel (NIL) is projected to post in increase in net income of 142 percent this year. Ceterpiller, a multinational that gets much of its revenue abrosd, is expected to boost its net income by 47 percent this year. Analysts have also hiked their S\&P 500 pronit estimste for 2011 to $\$ 95.53$ a share, up from $\$ 92.45$ at the beginning of January, according to Blocmberg data. That would be a record, surpassing the previous high reached in 2007.

With such prospects, ifts not surprising thet more then helf of S\&P 500-listed stocks bosst overall buy retings. It is telling that the proportion hes essentially held constant at both the merket's October 2007 high and March 2009 low, bookends of a period that saw stocks fall by more than half. If the analysts are correct, the market would appear to be attractively priced right now. Using the $\$ 95.53$ per shsre sigure, the price-to-ennings ratio of the $\mathrm{S} \& \mathrm{P} 500$ is a modest 11 as of June 9. If, however, anslysts end up being too high by, szy, 20 percent, the PE would jump to slmost 14.

If history is sny guide, chances are good that the analysts are wrong. According to a recent Mokinsey report by Mare Goedhst, Rishi Raj, and Abhishek Sasens, "Andysts have been persistenty oreroptimistic for 25 years," a stretch that saw them peg esmings growth st 10 percent to 12 percent a yeer when the sctual number was ultimstely 6 percent. "On average," the researchers note, "Enalysts" forecasts have been almost 100 percent too high," even after regulations were enscted to weed out conlicts and improve the rigor of their calcultions. As the chart below shows, in most years malysts have been forced to lower their estimates after it became apparent they had set them too high.

While a few anslysts, like Meredith Whimey, have made their names on bearish cells, most are chronically bullish. Part of the problem is that despite all the reiorms they remain too aligned with the compznies they cover. "Analysts still need to get the bulk of their information from compmies, which have zn incentive to be over-optimistic," says Stephen Beimbriage, a professor at UCLA Law School who specielizes in the securities industry. Meenwhile, snalysts dont went to thresten that ongoing access by being too negative." Bsinbridge says that with the era of the overpsid, superstar snalyst long over, todeys job description cells for resisting the urge to be an iconoclast. "Its a matter of herd behavior," he says.

So what's a more plausible estimate of companies' eaming porer? Looking at factors including the strengthening dollst, which hurts exports, snd higher corporate borrowing costs, David Rosenberg, chief economist at Toronto-based imvestment shop Gluskin Sheff + Associstes, says "dissppointment looms." Bemstein's Adam Parker says every 10 percent drop in the value of the euro blocks U.S. conporate earnings down by 2.5 percent to 3 percent He sees the S\&P 500 eaming $\$ 86$ a share next year.

As realities hit home, "Itis only natural that mnslysts will have to revise down their views," says Todd Salemone, senior vice-president at Scheffer's Investment Research. The market may be making its own downward sdjusment, as the S $\&$ P 500 has slresdy fellen 14 percent from its high in April. If precedent holds, snalysts sre bound to curb their enthusiasm belatedy, telling us next yesr what we really needed to know this year.

The bottom line: Daspite reforms intended to buprove Wail Streat research, stock anajus seem to be promoung an overly rosy wisc of proft prospect.

Bhomberg Suizbassweà Senior Writer Farzad covers Wall Street and intemationsl Inance.

The Earnings Roller Coaster

$\therefore \quad \because \because=\pi+\infty$

Panel A
Long-Term Forecasted Versus Actual EPS Growth Rates Electric Utility Companies

1988-2008

Data Source: IBES

Panel B

Long-Term Forecasted Versus Actual EPS Growth Rates Gas Distribution Companies

Panel A
Value Line 3-5 year EPS Growth Rate Forecasts

	Average Projected EPS Growth rate	Number of Negative EPS Growth Projections	Percent of Negative EPS Growth Projections
2,333 Companies	14.70%	43	1.80%

Value Line Investment Survey, June, 2012
Panel B
Historical Five-Year EPS Growth Rates for Value Line Companies

	Average Historical EPS Growth rate	Number with Negative Historical EPS Growth	Percent with Negative Historical EPS Growth
2,219 Companies	3.90%	844	38.00%

Value Line Investment Survey, June, 2012

Growth Rates
GNP, S\&P 500 Price, EPS, and DPS

Data Sources: GDPA - http://research.stlouisfed.org/fred2/categories/106
S\&P 500, EPS and DPS - http://pages.stern.nyu.edu/~adamodar/

Long-Term Growth of GDP, S\&P 500, S\&P 500 EPS, and S\&P 500 DPS

	GDP	S\&P 500	S\&P 500 EPS	S\&P 500 DPS
Growth Rates	6.80	6.21	6.98	5.18

Panel A
Historic GDP Growth Rates
10-Year Average

Panel B
 Projected GDP Growth Rates

	Time Frame	Projected Nominal GDP Growth Rate
Congressional Budget Office	2012-2022	4.8%
Survey of Financial Forecasters	Ten Year	4.9%
Energy Information Administration	2009-2035	4.8%

Sources:
http://wuw.cbo.gov/sites/defaultfiles/cbofiles/attachments/02-01-OutlookTestimonyHouse.pdf

[^0]: ${ }^{1}$ In my testimony, I present financial results using both mean and medians as measures of central tendency. However, due to outliers among means, I have used the median as a measure of central tendency.

[^1]: ${ }^{2}$ James M McTaggart, "The Ultimate Poison Pill: Closing the Value Gap," Commentary (Spring 1988), p. 2.

[^2]: ${ }^{3}$ Benjamin Esty, "A Note on Value Drivers," Harvard Business School, Case No. 9-297-08.2, April 7, 1997.
 "R-square measures the percent of variation in one variable (e.g., market-to-book ratios) explained by another variable (e.g, expected ROE). R-squares vary between zero and 10 , with values closer to 1.0 indicating a higher relationship between two variables.

[^3]: ${ }^{5}$ Available at http://www stern nyu edu/-adamodar.

[^4]: ${ }^{6}$ Petition for Modification of Prescribed Rate of Renurn, Federal Communications Commission, Docket No. 7905, Direct Testimony of Myron J. Gordon and Lawrence I. Gould at 62 (April 1980).
 ${ }^{7}$ Opinion No. 414-A, Transcontinental Gas Pipe Line Corp, 84 FERC $\$ 61,084$ (1998)

[^5]: ${ }^{8}$ M. Lacina, B. Lee and Z Xu, Advances in Business and Management Forecasting (Vol. 8), Kenneth D Lawrence, Ronald K. Klimberg (ed.), Emerald Group Publishing Limited, pp.77-101.
 ${ }^{9}$ Easton, P., \& Sommers, G (2007). Effect of analysts' optimism on estimates of the expected rate of return implied by earnings forecasts. Journal of Accounting Research, 45(5), 98.3-1015.

[^6]: ${ }^{10}$ Since there is considerable overlap in analyst coverage between the three services, and not all of the companies have forecasts from the different services, I have averaged the expected five-year EPS growth rates from the three services for each company to arrive at an expected EPS growth rate by company

[^7]: ${ }^{11}$ The problems with using ex post historical returns as measures of ex ante expectations will be discussed at length later in my testimony
 ${ }^{12}$ R. Mehra and Edward Prescott, "The Equity Premium: A Puzzle," Journal of Monetary Economics (1985).
 ${ }^{13}$ See, www.cfosurvey.org.
 ${ }^{14}$ Federal Reserve Bank of Philadelphia, Survey of Professional Forecasters, (February 12, 2012). The Survey, of Professional Forecasters was formerly conducted by the American Statistical Association ("ASA") and the

[^8]: National Bureau of Economic Research ("NBER") and was known as the ASA/NBER survey The survey, which began in 1968, is conducted each quarter. The Federal Reserve Bank of Philadelphia, in cooperation with the NBER, assumed responsibility for the survey in June 1990
 ${ }^{15}$ See Richard Derrig and Elisha Orr, "Equity Risk Premium: Expectations Great and Small," Working Paper (version 3.0), Automobile Insurers Bureau of Massachusetts, (August 28, 2003); Pablo Fernandez, "Equity Premium: Historical, Expected, Required, and Implied," IESE Business School Working Paper, (2007); Zhiyi Song, "The Equity Risk Premium: An Annotated Bibliography," CFA Institute, (2007).

[^9]: ${ }^{16}$ Marc H. Goedhart, et al., "The Real Cost of Equity," McKinsey on Finance (Autumn 2002), p. 15

[^10]: ${ }^{17}$ Moody's Rating Methodology: Global Regulated Electric Utilities, March 2005, page 10

[^11]: ${ }^{18}$ M. Lacina, B. Lee and Z Xu, Advances in Business and Management Forecasting (Vol. 8), Kenneth D. Lawrence, Ronald K. Klimberg (ed.), Emerald Group Publishing Limited, pp.77-101.

[^12]: ${ }^{19}$ Easton, P., \& Sommers, G. (2007). Effect of analysts' optimism on estimates of the expected rate of return implied by earnings forecasts Journal of Accounting Research, 45(5), 983-1015.

[^13]: ${ }^{20}$ Bradford Comell, "Economic Growth and Equity Investing," Financial Analysts Journal (January-February, 2010), p. 63

[^14]: ${ }^{21}$ Annie Wong, "Utility Stocks and the Size Effect: An Empirical Analysis," Journal of the Midwest Finance Association, pp. 95-101, (1993).

[^15]: ${ }^{22}$ See Richard Roll, "On Computing Mean Returns and the Small Firm Premium," Journal of Financial Economics, pp 371-86, (1983)

[^16]: ${ }^{23}$ Ching-Chih Lu, "The Size Premium in the Long Run," 2009 Working Paper, SSRN abstract no. 1368705.

[^17]: 'Spencer Jakab, "Earnings Surprises Lose Punch," Wall Street Journal (May 7, 201.2), p. C1.

[^18]: ${ }^{2}$ S. Stickel, "Predicting Individual Analyst Eamings Forecasts," Journal of Accounting Research, Vol 28, 409-417, 1990. Brown, L. D., "Analyst Forecasting Errors: Additional Evidence," Financial Analysts Journal, Vol. 53, 81-88, 1997, and Chopra, V K., "Why So Much Error in Analysts' Earnings Forecasts?" Financial Analysts Journal, Vol. 54, 30-37 (1998).

[^19]: ${ }^{3}$ S. Richardson, S. Teoh, and P. Wysocki, "The Walk-Down to Beatable Analyst Forecasts: The Role of Equity Issuance and Insider Trading Incentives," Contemporary Accounting Research, pp. 885-924, (2004)

[^20]: ${ }^{4}$ Spencer Jakab, "Earnings Surprises Lose Punch," Wall Street Journal (May 7, 2012), p. C1
 ${ }^{5}$ A. Hovakimian and E. Saenyasiri, "Conflicts of Interest and Analysts Behavior: Evidence from Recent Changes in Regulation," Financial Analysts Journal (July-August, 2010), pp. 96-107.
 ${ }^{6}$ Whereas the GARS settlement was signed in 2003, rules addressing analysts' conflict of interest by separating the research and investment banking activities of analysts went into effect with the passage of NYSE and NASD rules in July of 2002.

[^21]: ${ }^{7}$ R.D. Harris, "The Accuracy, Bias, and Efficiency of Analysts' Long Run Earnings Growth Forecasts," Joumnal of Business Finance \& Accounting, pp. 725-55 (June/July 1999).

[^22]: ${ }^{8}$ P. DeChow, A. Hutton, and R Sloan, "The Relation Between Analysts' Forecasts of Long-Term Earnings Growth and Stock Price Performance Following Equity Offerings," Contemporary Accounting Research (2000) and K. Chan, L., Karceski, J, \& Lakonishok, J., "The Level and Persistence of Growth Rates," Journal of Finance pp 643-684, (2003)
 ${ }^{9}$ M Lacina, B Lee and Z. Xu, Advances in Business and Management Forecasting (Vol 8), Kenneth D. Lawrence, Ronald K Klimberg (ed), Emerald Group Publishing Limited, pp.77-101

[^23]: ${ }^{10}$ L. Brown and M Rozeff, "The Superiority of Analyst Forecasts as Measures of Expectations: Evidence from Earnings," The Journal of Finance 33 (1): pp. 1-16 (1976).

[^24]: ${ }^{11}$ M. Bradshaw, M. Drake, J. Myers, and L. Myers, "A Re-examination of Analysts' Superiority Over Time-Series Forecasts," Workings paper, (1999), http://ssmcom/abstract=1528987.

[^25]: 12 Andrew Edwards, "Study Suggests Bias in Analysts' Rosy Forecasts," Wall Street Journal (March 21, 2008), p. C6.
 ${ }^{13}$ Roben Farzad, 'For Analysts, Things are Always Looking Up,' Bloomberg Businessweek (June 14, 2010), pp. 3940

[^26]: ${ }^{14}$ P. Cusatis and J. R. Woolridge, "The Accuracy of Analysts' Long-Term EPS Growth Rate Forecasts," Working Paper, (July 2008).
 ${ }^{15}$ Ken Brown, "Analysts Still Coming Up Rosy - Over-Optimism on Growth Rates is Rampant - and the Estimates Help to Buoy the Market's Valuation," Wall Street Joumal, p. C1, (January 27, 2003).

[^27]: ${ }^{16}$ Marc H. Goedhart, Rishi Raj, and Abhishek Saxena, "Equity Analysts, Still Too Bullish," McKinsey on Finance, pp. 14-17, (Spring 2010)

[^28]: ' Roger Ibbotson and Peng Chen, "Long Run Returns: Participating in the Real Economy," Financial Analysts Journal, (January 2003)
 ${ }^{2}$ Antti Ilmanen, Expected Retums on Stocks and Bonds,", Joumal of Portfolio Management, (Winter 2003), p 11

[^29]: ${ }^{3}$ Marc. H. Goedhart, et al, "The Real Cost of Equity," McKinsey on Finance (Autumn 2002), p. 14

[^30]: ${ }^{4}$ The survey results are available at www cfosurvey org.

[^31]: Data Source: AUS Utility Reports, June, 2012; Pre-Tax Interest Coverage and Primary Service Territory are from Value Line Investment Survey, 2012

[^32]: Source: www.yahoo.com, 10-Q and 10-k Reports

[^33]: Source: www.yahoo.com, 10-Q and 10-k Reports

[^34]: R-Square $=.71, \mathrm{~N}=11$.

