

John T. Butler Assistant General Counsel – Regulatory Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408-0420 (561) 304-5639 (561) 691-7135 (Facsimile) E-mail: john.butler@fpl.com

August 1, 2012

-VIA HAND DELIVERY -

Ms. Ann Cole Commission Clerk Florida Public Service Commission 2540 Shumard Oak Blvd. Tallahassee, FL 32399-0850

Re: Docket No. 120001-EI

Dear Ms. Cole:

I am enclosing for filing in the above docket the following:

- 1. The original and seven (7) copies of Florida Power & Light Company's ("FPL") Petition for Approval of the Fuel Cost Recovery and Capacity Cost Recovery Actual/Estimated True-Up for the Period January 2012 through December 2012 and its 2013 Risk Management Plan.
- 2. The original and fifteen (15) copies of the prefiled testimony and exhibits of Florida Power & Light Company witness T.J. Keith. The filing also includes FPL's 2012 Risk Management Plan, which is provided in Appendix III as Exhibit GJY-2.

Also included herewith is a CD containing electronic file of FPL's Petition for Approval of Fuel Cost Recovery and Capacity Cost Recovery Actual/Estimated True-up and its 2013 Risk Management Plan.

If there are any questions regarding this transmittal, please contact me at 561-304-5639. COM mony only) ÁFD 4PA Sincerely. ECO ENG GCL IDM John T. Butler TEL -Ct Rep (testimony only) CLK Enclosure Counsel for parties of record (w/encl.) cc:

Florida Power & Light Company

700 Universe Boulevard, Juno Beach, FL 33408

00004ENT NUMBER-DATE

UG -1 PM 3:

FPSC-COMMISSION CLERK

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

)

IN RE: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor

DOCKET NO. 120001-EI

Filed: August 1, 2012

PETITION OF FLORIDA POWER & LIGHT COMPANY FOR APPROVAL OF ITS FUEL COST RECOVERY AND CAPACITY COST RECOVERY ACTUAL/ESTIMATED TRUE-UP FOR THE PERIOD JANUARY 2012 THROUGH DECEMBER 2012 AND ITS 2013 RISK MANAGEMENT PLAN

Florida Power & Light Company ("FPL") hereby petitions the Commission for (1) approval of its actual/estimated Fuel and Purchased Power Cost Recovery ("FCR") true-up of \$100,002,918 over-recovery, including interest, for the period January 2012 through December 2012, (2) approval of its actual/estimated Capacity Cost Recovery ("CCR") true-up of \$15,202,526 under-recovery, including interest, for the period January 2012 through December 2012 and (3) approval of its 2013 Risk Management Plan. In support of this petition, FPL states as follows:

1. By Order No. PSC-99-2512-FOF-EI, dated December 22, 1999, utilities are directed to file current-year estimated true-up data at least 90 days prior to each annual FCR/CCR hearing. The hearing in this docket is scheduled to commence on November 5, 2012, which is more than 90 days after the filing of this petition.

2. The \$100,002,918 actual/estimated FCR over-recovery for the period January 2012 through December 2012 was calculated in accordance with the methodology set forth in Schedule 1, page 2 of 2, attached to Order No. 10093, dated June 19, 1981. It is based on actual data for the period January 2012 through June 2012 and re-estimated data for the period July 2012 through December 2012. The supporting documentation is contained in the prepared testimony and exhibit of FPL witness T.J. Keith, which are being filed together with the Petition and incorporated herein.

NOCUMENT NUMBER-PATE

05195 AUG-I ≌ FPSC-COMMISSION CLERK 3. FPL's total FCR over-recovery to be carried forward and included in the fuel factor for January 2013 through December 2013 is \$48,881,893. This consists of the \$100,002,918 actual/estimated over-recovery for 2012 plus the final under-recovery of \$51,121,025 for the period January 2011 through December 2011 that was filed on March 1, 2012.

4. The actual/estimated \$15,202,526 CCR under-recovery for the period January 2012 through December 2012 was calculated in accordance with the methodology set forth in Order No. 25773 dated February 24, 1992. It is based on actual data for the period January 2012 through June 2012 and re-estimated data for the period July 2012 through December 2012. The supporting documentation is contained in the prepared testimony and exhibit of FPL witness T.J. Keith, which are being filed together with the Petition and incorporated herein.

5. FPL's total CCR under-recovery to be carried forward and included in the CCR factors for January 2013 through December 2013 is \$59,907,101. This consists of the \$15,202,526 actual/estimated under-recovery for 2012 plus the final under-recovery of \$44,704,575 million for the period January 2011 through December 2011 that was filed on March 1, 2012.

6. Consistent with the Hedging Order Clarification Guidelines approved in Order No. PSC-08-0667-PAA-EI issued on October 8, 2008, FPL's 2013 Risk Management Plan is included in Appendix III to this Petition as Exhibit GJY-2, and will be sponsored by FPL witness G. J. Yupp in his 2013 projection testimony that will be filed on August 31, 2012.

WHEREFORE, Florida Power & Light Company respectfully requests the Commission to approve (1) an over-recovery of \$100,002,918, including interest, as the actual/estimated FCR trueup amount for the period January 2012 through December 2012, (2) an under-recovery of \$15,202,526, including interest, as the actual/estimated CCR true-up amount for the period January 2012 through December 2012, and (3) FPL's 2013 Risk Management Plan. Respectfully submitted,

R. Wade Litchfield, Esq. Vice President and General Counsel John T. Butler, Esq. Assistant General Counsel – Regulatory Florida Power & Light Company 700 Universe Boulevard Juno Beach, FL 33408 Telephone: (561) 304-5639 Facsimile: (561) 691-7135

BY: John T. Butler

Fla. Bar No. 283479

CERTIFICATE OF SERVICE DOCKET NO. 120001-EI

I HEREBY CERTIFY that a true and correct copy of the foregoing Petition for Approval of Fuel Cost Recovery and Capacity Cost Recovery Actual/Estimated True-up for the Period January 2012 through December 2012 and FPL's 2013 Risk Management Plan has been furnished by hand delivery (*) or U.S. Mail this 1st day of August, 2012, to the following:

Martha F. Barrera, Esq*	Lisa Bennett, Esq.*
Division of Legal Services	Division of Legal Services
Florida Public Service Commission	Florida Public Service Commission
2540 Shumard Oak Blvd	2540 Shumard Oak Blvd
Tallahassee, Florida 32399-0850	Tallahassee, Florida 32399-0850
James D. Beasley, Esq	John T. Burnett, Esq.
J. Jeffrey Wahlen, Esq.	Dianne M. Triplett, Esq.
Ausley & McMullen	Attorneys for PEF
Attorneys for Tampa Electric	P.O. Box 14042
P.O. Box 391	St. Petersburg, Florida 33733-4042
Tallahassee, Florida 32302	
Samuel Miller, Capt., USAF	Beth Keating, Esq.
USAF/AFLOA/JACL/ULFSC	Gunster Law Firm
139 Barnes Drive, Suite 1	Attorneys for FPUC
Tyndall AFB, FL 32403-5319	215 So. Monroe St., Suite 601
Attorney for the Federal Executive Agencies	Tallahassee, Florida 32301-1804
Jeffrey A. Stone, Esq.	James W. Brew, Esq / F. Alvin Taylor, Esq.
Russell A. Badders, Esq.	Attorney for White Springs
Beggs & Lane	Brickfield, Burchette, Ritts & Stone, P.C
Attorneys for Gulf Power	1025 Thomas Jefferson Street, NW
P.O. Box 12950	Eighth Floor, West Tower
Pensacola, FL 32591-2950	Washington, DC 20007-5201
Robert Scheffel Wright, Esq.	Jon C. Moyle, Esq. and Vicki Kaufman, Esq.
Gardner, Bist, Wiener, et al., P.A.	Moyle Law Firm, P.A.
Attorneys for Florida Retail Federation	118 N. Gadsden St.
1300 Thomaswood Drive	Tallahassee, FL 32301
Tallahassee, FL 32308	Counsel for FIPUG
J. R. Kelly, Esq.	Michael Barrett
Patricia Christensen, Esq.	Division of Economic Regulation
Charles Rehwinkel, Esq.	Florida Public Service Commission
Office of Public Counsel	2540 Shumard Oak Blvd
c/o The Florida Legislature	Tallahassee, Florida 32399-0850
111 West Madison Street, Room 812	
Tallahassee, Florida 32399	

By:

John P. Butler Fla. Bar No. 283479

-4-

DOCUMENT NUMBER -DATE 05195 AUG-I ≅ FPSU-COMMISSION CLERK

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		TESTIMONY OF TERRY J. KEITH
4		DOCKET NO. 120001-EI
5		August 1, 2012
6		
7.	Q.	Please state your name and address.
8	A.	My name is Terry J. Keith and my business address is 9250 West Flagler Street,
9		Miami, Florida 33174.
10	Q.	By whom are you employed and in what capacity?
11	Α.	I am employed by Florida Power & Light Company (FPL) as Director, Cost
12		Recovery Clauses in the Regulatory Affairs Department.
13	Q.	Have you previously testified in this docket?
14	Α.	Yes, I have.
15	Q . 1	What is the purpose of your testimony?
16	А.	The purpose of my testimony is to present for Commission review and approval
17		the calculation of the Actual/Estimated True-up amounts for the Fuel Cost
18		Recovery (FCR) Clause and the Capacity Cost Recovery (CCR) Clause for the
19		period January 2012 through December 2012.
20	Q.	Have you prepared or caused to be prepared under your direction,
21		supervision or control an exhibit in this proceeding?
22	A.	Yes, I have. It consists of various schedules included in Appendices I and II.
23		Appendix I contains the FCR related schedules and Appendix II contains the
24		CCR related schedules.

The FCR Schedules contained in Appendix I include Schedules E3 through E9
 that provide revised estimates for the period July 2012 through December 2012.
 FCR Schedules A1 through A9 provide actual data for the period January 2012
 through June 2012. They are filed monthly with the Commission, are served on
 all parties and are incorporated herein by reference.

6

10

11

Q.

The CCR Schedules contained in Appendix II provide the calculation of the
 actual/estimated true-up amount and actual/estimated variances for the period
 January 2012 through December 2012.

What is the source of the actuals data that you will present by way of

testimony or exhibits in this proceeding?

A. Unless otherwise indicated, the actuals data are taken from the books and records of FPL. The books and records are kept in the regular course of our business in accordance with generally accepted accounting principles and practices, as well as the provisions of the Uniform System of Accounts as prescribed by this Commission.

17 Q. Please describe what data FPL has used as a comparison when calculating
 18 the FCR and CCR true-ups that are presented in your testimony.

- 19A.The FCR and CCR true-up calculations compare actual/estimated data20consisting of actuals for January 2012 through June 2012 and revised estimates21for July 2012 through December 2012 to original projections for 2012 (for fuel,
- comparison is to 2012 mid-course correction filed on November 21, 2011).
- Q. Please explain the calculation of the interest provision that is applicable to
 the FCR and CCR true-ups.
- 25 A. The calculation of the interest provision follows the same methodology used in

1 calculating the interest provision for the other cost recovery clauses, as 2 previously approved by this Commission. The interest provision is the result of 3 multiplying the monthly average true-up amount times the monthly average 4 interest rate. The average interest rate for the months reflecting actual data is 5 developed using the AA financial 30-day rates as published in the Federal 6 Reserve website on the first business day of the current and the subsequent 7 month. The average interest rate for the projected months is the actual rate published as of the first business day in July 2012 reflecting the last business day 8 9 in June 2012.

- 10
- 11
- 12

FUEL COST RECOVERY CLAUSE

Q. Please explain the calculation of the FCR end-of-period net true-up and
 actual/estimated true-up amounts you are requesting this Commission to
 approve.

16 Α. Appendix I, Pages 2 and 3 show the calculation of the FCR end-of-period net 17. true-up and actual/estimated true-up amounts. The end-of-period net true-up amount to be carried forward to the 2013 FCR factor is an over-recovery of 18 \$48,881,893 (Appendix I, Page 3, Column 13, Line C11). This \$48,881,893 over-19 20 recovery includes the 2011 final true-up under-recovery of \$51,121,025 21 (Appendix I, Page 3, Column 13, Line C9b), filed with the Commission on March 22 1, 2012, and the actual/estimated true-up over-recovery, including interest, of 23 \$100,002,918 (Appendix I, Page 3, Column 13, Lines C7 plus C8) for the period 24 January 2012 through December 2012.

25 Q. Were these calculations made in accordance with the procedures

1 previously approved in predecessors to this Docket?

2 A. Yes, they were.

- Q. Have you provided a schedule showing the calculation of the 2012
 actual/estimated true-up by month?
- A. Yes. Appendix I, Pages 2 and 3 entitled "Calculation of Actual True-Up Amount,"
 show the calculation of the FCR actual/estimated true-up by month for the period
 January 2012 through December 2012.
- Q. Have you provided a schedule showing the variances between
 actual/estimated and mid-course correction amounts filed on November 21,
 2011 for 2012?
- 11A.Yes. Appendix I, Page 4 provides a comparison of jurisdictional revenues and12costs on a dollar per MWh basis. Appendix I, Page 5 provides a variance13calculation that compares the actual/estimated period data to the data from the14mid-course correction filing for the January 2012 through December 2012 period.

15 Q. Please summarize the variance analysis on Page 4 of Appendix I.

- 16A.Appendix I, Page 4 provides a comparison of Jurisdictional Total Fuel Revenues17and Jurisdictional Total Fuel Costs and Net Power Transactions on a dollar per18MWh basis. The \$48,881,893 variance is primarily due to a decrease in fuel19costs per MWh of \$34.97/MWh vs. \$36.19/MWh that results in a cost variance of20(\$124,064,459), and a decrease in fuel revenues per MWh of \$36.52/MWh vs.21\$36.76/MWh that results in a cost variance of (\$24,744,591), for a total variance22due to cost of \$99,319,867.
- 23

24

The impact of the variance due to consumption is mostly offset between costs per

MWh and revenues per MWh, netting to a variance due to consumption of \$709,970. When the interest amount of (\$26,920) associated with the 2012 actual/estimated true-up amount and the 2011 final true-up under-recovery amount of (\$51,121,025) are added to the calculation, the total amount of the variance results in the \$48,881,893.

6 Q. Please summarize the variance schedule on Page 5 of Appendix I.

1

2

3

4

5

7 FPL's mid-course correction filed on November 21, 2011 projected Jurisdictional Α. Total Fuel and Net Power Transactions to be \$3.680 billion for 2012 (Appendix I, 8 Page 5, Column 2, line C6). The Actual/Estimated Jurisdictional Total Fuel Costs 9 and Net Power Transactions are now projected to be \$3.572 billion for that period 10 (actual data for January 2012 through June 2012 and revised estimates for July 11 2012 through December 2012) (Appendix I, Page 5, Column 1, Line C6). 12 Therefore, Jurisdictional Total Fuel Costs and Net Power Transactions are 13 \$108,054,364, or 3.0% lower than the mid-course correction filing (Appendix I, 14 Page 5, Column 3, Line C6). Jurisdictional Fuel Revenues for 2012 are projected 15 to be \$8,024,526, or 0.2% lower than the mid-course correction filing (Appendix I, 16 17 Page 5, Column 3, Line C3).

Q. Please explain the variances in Jurisdictional Total Fuel Costs and Net
 Power Transactions.

A. The primary reasons for the \$108.1 million variance are lower than projected Fuel
 Cost of System Net Generation (\$49.2 million), lower than projected Energy Cost
 of Economy Purchases (\$37.6 million), lower than projected Energy Payments to
 Qualifying Facilities (\$32.2 million), lower than projected Nuclear Fuel Disposal
 Costs (\$1.7 million) and lower than projected Coal Cars Depreciation & Return

- (\$47,585 million). These amounts are partially offset by variances in Fuel Cost of Power Sold (\$8.9 million) and Gains from Off-System Sales (\$1.3 million).
- 3

4

5

6

7

8

9

2

1

Fuel Cost of System Net Generation (\$49.2 million decrease)

Natural gas costs are currently projected to be \$66.7 million (2.3%) lower than the mid-course correction. The unit cost of natural gas in the actual/estimated period is \$5.04 per MMBTU, which is 10.2% lower than the \$5.55 per MMBTU included in the mid-course correction. Consumption of natural gas in the actual/estimated period is projected to be 575,119,571 MMBTUs, which is 7.2% higher than the 533,798,607 included in the mid-course correction.

11

10

12Nuclear generation costs are currently projected to be \$26.7 million (21.6%)13lower than the mid-course correction. The unit cost of nuclear generation in the14actual/estimated period is \$0.62 per MMBTU, which is 13.0% lower than the15\$0.70 per MMBTU included in the mid-course correction. Nuclear consumption16in the actual/estimated period is projected to be 199,905,005 MMBTUs, which is177.6% lower than the 215,120,531 MMBTUs included in the mid-course correction.

18

Coal costs are currently projected to be \$16.3 million (12.4%) lower than the midcourse correction. The unit cost of coal in the actual/estimated period is \$2.83 per MMBTU, which is 0.9% lower than the \$2.85 per MMBTU included in the midcourse correction. Coal consumption in the actual/estimated period is projected to be 46,382,878 MMBTUs, which is 11.5% lower than the 51,692,477 MMBTUs included in the mid-course correction.

Heavy oil costs are currently projected to be \$52.6 million (46.6%) higher than the
mid-course correction. Heavy oil burn in the actual/estimated period is projected
to be 7,599,665 MMBTUs, which is 50.0% higher than the 3,797,445 MMBTUs
included in the mid-course correction. Additionally, the unit cost of heavy oil in
the actual/estimated period is \$14.85 per MMBTU, which is 6.8% lower than the
\$15.86 per MMBTU included in the mid-course correction.

Light oil costs are currently projected to be \$7.9 million (98.3%) higher than the mid-course correction. Light oil burn in the actual/estimated period is projected to be 380,692 MMBTUs, which is 98.5% higher than the 5,817 MMBTUs included in the mid-course correction. Additionally, the unit cost of light oil in the actual/estimated period is \$21.21 per MMBTU, or 13.0% lower than the \$23.96 per MMBTU included in the mid-course correction.

14

7

15 Generation data by fuel type for the actual/estimated period January 2012 16 through December 2012 are included in Appendix I, Schedule E3.

17

18 Energy Cost of Economy Purchases (\$37.6 million decrease)

The variance in energy cost of economy purchases is primarily attributable to lower than projected economy purchases. FPL projects that it will purchase approximately 665,000 MWh less of economy energy than its mid-course correction. Lower economy purchases result in a volume variance of approximately \$32.9 million, or 88% of the total variance. FPL also projects that the cost of economy purchases will be \$5.57/MWh lower than originally

projected. Lower costs for economy purchases result in a variance of approximately \$4.7 million, or 12% of the total variance.

3

4

1

2

Energy Payments to Qualifying Facilities (\$32.2 million decrease)

5 The variance in energy payments to qualifying facilities (QF) is primarily 6 attributable to lower than projected QF purchases. FPL now estimates that it will 7 purchase approximately 494,000 MWh less from QF facilities. Lower purchases 8 result in a variance of approximately \$22.7 million, or 70% of the total variance. 9 Additionally, FPL now estimates that the unit cost of QF purchases will be 10 approximately \$3.00/MWh less than originally projected. Lower than projected 11 fuel costs result in a variance of approximately \$9.5 million, or 30% of the total 12 variance.

13

14 Nuclear Fuel Disposal Costs (\$1.7 million decrease)

15 The variance in nuclear fuel disposal costs is primarily due to less generation 16 expected in 2012 resulting from the St. Lucie Unit 2 outage extension and St. 17 Lucie Unit 1 outage scheduled in July. Since the License Amendment Request 18 (LAR) approval was received later than originally anticipated for Unit 1, FPL 19 scheduled a mid-cycle outage to change instrumentation set points and other 20 minor modifications necessary for operation in the approved uprate condition.

21

22 Fuel Cost of Power Sold (\$8.9 million variance)

The variance in the fuel cost of power sold is primarily attributable to lower than
 projected economy sales and lower than projected fuel costs for economy sales.

FPL currently projects that it will sell approximately 121,000 MWh less of 1 2 economy power than originally projected. Additionally, FPL currently projects that its average fuel cost attributable to economy sales will be \$33.03/MWh as 3 compared to an original estimate of \$41.10/MWh. The total variance related to 4 5 fuel costs of economy sales is approximately \$8.1 million lower than projected. Of this total, approximately 61% is due to lower than projected economy sales 6 7 and the remaining 39% is due to lower than projected fuel costs for economy sales. The \$8.1 million variance is slightly increased by lower than projected 8 sales and costs related to the St. Lucie Reliability Exchange. Overall, the total 9 10 variance of \$8.9 million for Fuel Cost of Power Sold is 63% attributable to lower than projected sales and 37% attributable to lower than projected fuel costs. 11

12

13 Gains from Off-System Sales (\$1.3 million variance)

14 The variance in gains from off-system sales is primarily caused by lower than projected economy sales. While FPL currently projects that its average margin 15 16 on economy sales will be slightly lower than originally projected (approximately \$0.18/MWh lower), the major cause for the variance is that FPL now projects to 17 18 sell approximately 121,000 MWh less in economy sales than its original 19 projections. Approximately 95% of the total variance of \$1.3 million is attributable 20 to lower than projected economy sales. The remaining 5% is attributable to lower 21 than projected average margins on economy sales.

22

23 Coal Cars Depreciation & Return (\$47,585 variance)

24 The variance in coal cars depreciation & return is due to a correcting entry that

1		was recorded to reverse Salvage/Other credits charged on December 2011 that
2		resulted from the retirements of Scherer coal cars in August 2011. Since this
3		project is fully recovered there was no additional depreciation expense being
4		recorded and the additional reserve activity created a negative net book value.
5	Q.	What is the appropriate estimated benchmark level for calendar year 2013
6		for gains on non-separated wholesale energy sales eligible for a
7		shareholder incentive as set forth by Order No. PSC-00-1744-PAA-EI, in
8		Docket No. 991779-El?
9	A.	For the forecast year 2013, the three-year average threshold consists of actual
10		gains for 2010, 2011 and January 2012 through June 2012, and estimates for
11		July 2012 through December 2012. Gains on sales in 2013 are to be measured
12		against this three-year average threshold, after it has been adjusted with the true-
13		up filing (scheduled to be filed in March 2013) to include all actual data for the
14		year 2012.
15		2010 \$4,421,987
16		2011 \$4,918,688
17		2012 \$4,019,000
18		Average threshold \$4,453,225
19		
20		CAPACITY COST RECOVERY CLAUSE
21		
22	Q.	Please explain the calculation of the CCR 2012 actual/estimated true-up
23		amount you are requesting this Commission to approve.
24	Α.	Appendix II, Pages 2 and 3 show the calculation of the CCR actual/estimated

true-up amount. The calculation of the actual/estimated true-up for the period
 January 2012 through December 2012 is an under-recovery of \$15,202,526
 including interest (Appendix II, Page 3, Column 13, Lines 14 plus 15).

4 Q. Is this true-up calculation made in accordance with the procedures 5 previously approved in predecessors to this Docket?

6 A. Yes, it is.

Q. Have you provided a schedule showing the variances between the
 actual/estimated and the original projections for 2012?

9 A. Yes. Appendix II, Page 4 shows the actual/estimated capacity charges and 10 applicable revenues (January 2012 through June 2012 reflects actual data and 11 the data for July 2012 through December 2012 is based on updated estimates) 12 compared to the original projections for the January 2012 through December 13 2012 period, filed on October 26, 2011.

capacity 14 Q. Please explain the variances related to charges. As shown in Appendix II, Page 4, Column 3, Line 10, the variance related to 15 Α. jurisdictional capacity charges is \$6.4 million, a 0.9% increase from original 16 projections. The primary reason for this variance is a \$6.5 million or 1.2% 17 increase in total system capacity costs (Page 4, Column 3, and Line 7). 18

19

The \$6.5 million increase is due to an increase in Payments to Cogenerators (\$6.3 million), an increase in Capacity Payments to Non-cogenerators (\$2.8 million) and a variance in Transmission Revenues from Capacity Sales (\$0.4 million), partially offset by a decrease in Incremental Plant Security Costs (\$2.4 million) and a decrease in the SRPP Suspension Accrual (\$0.7 million).

25

1

Payments to Cogenerators (\$6.3 million increase)

2 The \$6.3 million or 2.2% increase in Payments to Cogenerators is primarily due to 3 higher than projected payments to Indiantown (ICL) and Cedar Bay (CB) resulting from better availability performance. Approximately 70% or \$4.4 million of the \$6.3 4 5 million variance was attributable to higher than projected capacity payments to 6 CB. Approximately 18% or \$1.1 million of the variance was attributable to higher 7 than projected payments to ICL. Payments to the Solid Waste Authority (SWA) 8 were approximately \$752,000 higher than originally projected, causing approximately 12% of the total variance. 9

10

11 Payments to Non-cogenerators (\$2.8 million increase)

The \$2.8 million or 1.3% increase in Payments to Non-cogenerators is primarily 12 13 due to the addition of PPA costs associated with the TECO and Seminole 14 agreements not previously included in capacity projections, as well as contract 15 term extensions with both Oleander and Seminole, which account for a variance of approximately \$5.7 million. Additionally, capacity true-ups/adjustments from prior 16 17 periods account for a variance of approximately \$1.2 million. These amounts 18 were partially offset by lower than projected costs for both UPS and SJRPP 19 agreements. There was a reduction of approximately \$3.3 million in costs due to 20 Change In Law (CIL) and Capacity Availability Performance Adjustment (CAPA) 21 payments related to the Scherer unit in the UPS agreement. There was a 22 reduction of approximately \$840,000 in costs associated with the SJRPP 23 agreement. Approximately \$1.5 million of the SJRPP variance was due to lower 24 Debt Service, primarily from a 4th quarter 2011 true-up, and costs for

Transmission Service, offset by approximately \$640,000 in higher than originally
 projected payments for Property Taxes, Cumulative Capital Recovery Amount
 (CCRA) payments, JEA O&M expense charges to FPL, and inventory costs.

4

5

Transmission Revenues from Capacity Sales (\$0.4 million variance)

6 The \$0.4 million or 29.4% variance in Transmission Revenues from Capacity 7 Sales is primarily due to lower than projected economy power sales. FPL sold 8 approximately 80,000 MWh less economy power than projected during the first six 9 months of 2012. For the full year, FPL now projects to sell over 100,000 MWh 10 less of economy power than originally projected.

11

12 Incremental Plant Security Costs (\$2.4 million decrease)

13 The \$2.4 million or 5.5% decrease in Incremental Plant Security Costs is primarily 14 due to less than originally anticipated scope of work related to the Cyber Security 15 Critical Digital Asset Assessment. Additionally, less Force on Force drills were planned due to the extended outages at St. Lucie and Turkey Point plants, which 16 account for a variance of \$2.7 million. This \$2.7 million variance is partially offset 17 18 by an increase of \$0.4 million attributed to the hiring of Burns & McDonnell to 19 support the timely completion of the Documented Internal Corrective Action Plan. 20 Completion of this action plan meets commitments to the Corporate Responsibility Office with compliance of NERC CIP 004 and NERC CIP 007 standards. Burns & 21 22 McDonnell will also support the completion of a Critical Cyber Asset Methodology 23 Revision as well as assist in the application of the recently FERC approved NERC 24 CIP Version 4 standards.

25

1

SJRPP Suspension Accrual (\$0.7 million decrease)

The \$0.7 million or 42.8% decrease in the SJRPP Suspension Accrual is due to lower than projected accrual amounts when compared to original calculations. The suspension date, the point at which it is projected that FPL will no longer be able to take power purchased from SJRPP Units 1 and 2 due to IRS regulations, has been extended into the spring of 2017. Previously, this date was projected to occur in the first half of 2016.

8

In addition to the cost variances, Appendix II, Page 4, Column 3, Line 11 shows 9 that CCR Revenues Net of Revenue Taxes, are \$8.8 million or 1.2% lower than 10 originally projected. The \$6.4 million higher costs (Appendix II, Page 4, Column 3, 11 Line 10) adjusted by the \$8.8 million decrease in revenues (Appendix II, Page 4, 12 Column 3, Line 13) results in an actual/estimated 2012 true-up under-recovery 13 amount of \$15.2 million, including interest (Appendix II, Page 4, Column 3, Lines 14 14 plus 15). This under-recovery of \$15.2 million including interest, plus the final 15 16 2011 true-up under-recovery of \$44.7 million filed on March 1, 2012 results in a net under-recovery of \$59.9 million to be carried forward to the 2013 CCR factor. 17

18 Q. Does this conclude your testimony?

19 A. Yes, it does.

APPENDIX I

FUEL COST RECOVERY

ACTUAL/ESTIMATED TRUE UP CALCULATION

.

1

۰,

-

TJK-3 DOCKET NO. 120001-EI FPL WITNESS: T. J. KEITH August 1, 2012

.

	-0679-FOF-EL	11-DS4 .00 uder No. PSC-11)826'66 × (21/6++'1/5'9	e Incentive Factor is ((5	onamiolia Performance			
(165'581'11)	\$ (329,831,55)	\$ (662,088,91)	\$ (285'898'9E)	\$ (528'158'85)	\$ (744,209,447) \$	End of Period Net True-up Amount Over/(Under) Recovery (Lines C7 through C10)		u
102'915'5	102'915'7	102'915'	10/ 916 7	102'916'5	10/916'	Prior Period True-up Collected/(Refunded) This Period	8	01
(\$20'121'15)	(\$20'121'15)	(\$20'121'15)	(\$20'121'15)	(\$20'121'15)	(\$20'121'15)	Deferred True-up Beginning of Period - Over/(Under) Recovery	9	
665"756"81	986,045,15	14'222'443	051'692'21	(724'880'E1)	(907'008'15)	True-up & Interest Provision Beg. of Period - Over/(Under)	8	6
(110'7)	(71/7)	([\$\phi'Z])	(#\$1'£)	(9£6'‡)	(£ZZ'S)	Interest Provision for the Month		8
110'900'01	(10'017'00'01)	¢ \$78'\$79'ZI	\$ (552'055'7)	\$ 808'5+0'17	\$ 905'007'75 \$	(Line C3 - Line C6)		
119 899 91		100 000 000				True-up Provision for the Month - Over/(Under) Recovery		L
269'S6E'8ZE	\$ 256'520'60E	\$ 819'128'222	\$ 868'561'197	\$ \$6\$'126'\$22	\$ 595'1 <u>7</u> 8'1 <u>7</u> 8'28	Juriadictional Total Fuel Costs & Net Power Transactions (Line C4b x C5 x 1.00085)		9
% £0860'86	% 82811.86	% 51520.86	% \$7711.86	% LEL+6.76	% 7672.86	Jurisdictional Sales % of Total kWh Sales (Line B-4)		S
844,874,456	256,489,416	E85'580'8LZ	649'501'212	525 446 148	118'9\$6'672	Adj Total Fuel Costs & Mei Power Transactions - Excluding 200% Retail Items Adj Total Fuel Costs & Mei Power Transactions - Excluding 200% Retail Items	q	
872,874,455	314'684'325 2	\$ £85'580'827	572,105,649 \$	556'449'148	2 546'62C S	Adjuzted Total Fuel Costa & Net Power Transactions (Line A-7)	8	4
345,064,308	\$ 928'527'262	\$ 282'462'443	564,865,645	S 208'EL6'S#Z	\$ \$20'671'087 \$	Jurisdictional Fuel Revenues Applicable to Period		٤
(977'/ 25)	(972'/.+5)	(922'145)	(922'145)	(922,742)	(241,226)	GPIF, Net of Revenue Taxes (a)	q	
(10/, 915, 4)	(102'916')	(102'915'+)	(102'916'+)	(102,615,4)	(102'916'+)	Prior Period True-up (Collected)/Refunded This Period	8	
						Fuel Adjustment Revenues Not Applicable to Period		Z
557'876'645	\$ 508'/87'/67	\$ 0/£'6\$£'067	\$ 715 671 697	\$ 677'188'057	\$ 700'866'+87 \$	Juris Fuel Revenues (Net of Revenue Taxes)		I
10000000						True-up Calculation		
							-+	-
%£0860'86	%87811'86	%5/£20'86	%\$7711.86	%LELP6 L6	%20722 80	(ESITE) and Intel to A landing hour		-
289'925'072'6	558'458'49E'8	\$250'022'8	812'800'609'1	240,930,011,7	1 282 093 134	Sub-Total Sales (excluding CKW)		٤
\$96'2\$2'581	189'986'251	162,448,949	658'8E9'E1	\$09°196°571	544,888,141	Sale for Resale (excluding CKW)		ζ
LIL'890'555'6	8,207,468,174	985'L09'L50'8	657 698 597 L	144,400,236,8	689'404'048'L	Jurisdictional kWh Sales		1
						KWb Sales		
0/1-0/1-1-CC	t 700'400'410	el cec'cen'erz	< 6+9'C01'7/7	\$ 841'944'677	\$ 118'956'677 \$	Adjusted Total Fuel Costs & Net Power Transactions		L
SLP SLP PLE	3 652 789 712	1 203 380 6LC	C(0'b/	(978'701)	(795'+9)	Non Recoverable Oil/Tank Bottoms - Docket No. 13092	р	
(910'166)	(061'161)	75411	\$20 V2	8/0'11	(861'55)	Ιανεπέστη Αάjustments	3	
(819 122)	(601 (61)	((51'65)	(\$06'\$7)	(926'2)	618'61	Energy Imbalance Fuel Revenues	9	
(760'567)	(101,100)	(887'519)	(610,612)	(205'059)	(\$12,076)	Sales to City of Key West (CKW)	8	
						Adjustments to Fuel Cost		9
115 919 555	\$ 201,085,215	\$ 755'899'812	\$ 725'430'425 \$	\$ 125'111'057	\$ 977'571'057 \$	Total Fuel Costs & Net Power Transactions		Ş
155,084,1	E07'156'b	050'572'4	688'826'1	0/8'597	(969'90£)	Energy Cost of Economy Purchases (Per A9)		7
755'9/8'6	156'850'6	£06'£60'9	\$94'£85'6	202'056'E	205'17L'L	Energy Payments to Qualifying Facilities (Per A8)	q	
Z19'E05'81	972'8++'12	EZ#'ZEL'EZ	968'995'71	061'679'7	ÞE*'851'9	Fuel Cost of Purchased Power (Per A7)	P	٤
(505'777)	(254'28)	(532,884)	(628'691)	(650'959)	(121,189)	Gains from Off-System Sales	q	
(\$66'206)	(1+1,+25)	(330'145)	(255'585)	(+01,952,1)	(0£2'082'1)	Fuel Cost of Power Sold (Per A6)	R	7
0	0	0	0	0	(585'14)	Scherer Coal Cars Depreciation & Return	э	
791'595'1	618'182'1	906'986	1'022'944	0\$1'188'1	125'885'8	Nuclear Fuel Disposal Costs	q	
302'450'131	\$ £25'10E'612	\$ 862'£L9'£ÞZ	548'031'014 2	\$ 820'069'822	\$ 159'885'267 \$	Fuel Cost of System Net Generation	E	1
						Fuel Costs & Net Power Transactions		
NUL	YAM	Я¶А	AAM	FEB	IVN		\vdash	UN
ACTUAL	ACTUAL	VCLOVT	ACTUAL	VCTUAL	VCLOWT	· · · · · · · · · · · · · · · · · · ·	\vdash	
(9)	(5)	(\$)	(E)	(2)			1111	THINC
							1011	
								70070
						N OF ACTUAL TRUE AMOUNT	OITA	112.14

CALC	ЧЛ.А		N OF ACTUAL TRUE-UP AMOUNT				Ľ.				
FLOR	ΠA	POV	VER & LIGHT COMPANY								
FOR	TUE I	DED	TOD LANDARY 2012 THROUGH DECEMBER 2012								
POR		FER	IOD JAINGART 2012 THROOOTH DECLEMBER 2012		(7)	(8)	(9)	(10)	(11)	(12)	(13)
		_			ESTIMATED	ESTIMATED	ESTIMATED	ESTIMATED	ESTIMATED	ESTIMATED	TOTAL
N	1	_			Π.	AUG	SEP	ОСТ	NOV	DEC	PERIOD
	^	_	Rual Casta & Nat Downey Transactions								
r -	+	_			110 617 280	< 356 966 760	\$ 301 817 870	\$ 278 886 597	\$ 236 598 275	S 241 462 652	S 3.274.070 728
<u> </u> +	-	-	Fuel Cost of System Net Generation		1 415 272	1 358 655	1 611 874	1 665 602	1 272 159	1.733.217	16.631.030
<u> </u>		D	Nuclear Fuel Disposar Cosis	_	1,413,272	1,550,055			0	0	(47 585)
\vdash	_+		Scherer Coal Cars Depreciation & Return		(1 750 482)	(2 297 828)	(1 201 397)	(1 629 131)	(2.066.955)	(2 308 784)	(15,733,252)
+			China from Off Suttem Salas		(202 800)	(280 100)	(119,900)	(220,200)	(513,400)	(657,300)	(4,019,000)
┝			Fuel Cost of Purchased Power (Per A7)		27 820 830	25 867.051	21,212,533	19,774,284	12,807,971	12,578,477	205,100,527
\vdash		a h	Energy Payments to Ouslifying Facilities (Per A8)		18.064.903	18.571.111	16,260,211	14,844,281	12,191,134	11,627,271	137,663,766
┝ ─ ─┼	-		Energy 1 ayments to Quantying 1 admites (1 et 140)		8 244 200	8 314 400	5,129,400	1.473.150	376,600	137,500	36,989,767
\vdash	4		Energy Cost of Economy Fulchases (FCI AF)		\$ 174 219 202	 408 500 048 	\$ 344.710.591	\$ 314 794 583	\$ 260.665.784	\$ 264,573,032	\$ 3.650.655.981
\vdash	5		Adjustments to Fuel Cost		a 574,217,202		<u>. </u>			· · · · · ·	
\vdash	-	9	Sales to City of Key West (CKW)		(875,315)	(921,231)	(945,282)	(854,908)	(812,272)	(697,304)	(8,987,711)
\vdash	-	- <u>"</u> b	Energy Imbalance Fuel Revenues		0	0	0	0	0	0	(155,809)
		c	Inventory Adjustments		0	0	0	0	0	0	(288,950)
		d	Non Recoverable Oil/Tank Bottoms - Docket No. 13092		0	0	0	0	0	0	(109,562)
	7		Adjusted Total Fuel Costs & Net Power Transactions		\$ 373,343,887	\$ 407,578,817	\$ 343,765,309	\$ 313,939,675	\$ 259,853,512	\$ 263,875,728	\$ 3,641,113,950
в			kWh Sales								
	1		Jurisdictional kWh Sales		9,935,448,718	9,896,118,255	9,513,044,326	8,905,221,052	7,980,791,178	7,822,284,715	102,143,831,310
	2		Sale for Resale (excluding CKW)		193,552,722	207,650,703	212,816,529	191,906,910	184,834,294	139,877,436	2,067,021,097
	3		Sub-Total Sales (excluding CKW)		10,129,001,441	10,103,768,958	9,725,860,855	9,097,127,961	8,165,625,472	7,962,162,151	104,210,852,407
									D7 00 ()) (80.0422004	07.0166074
	4		Jurisdictional % of Total Sales (B1/B3)		98,08912%	97.94482%	97.81185%	97,89047%	97.73643%	98,24322%	98.01050%
l⊂			True-up Calculation		A 1/5 2/1 080	C 262 816 064	£ 340 733 013	127 387 104	\$ 293.401.906	\$ 287 574 652	\$ 3,730,309,908
	1		Juris Fuel Revenues (Net of Revenue Taxes)		3 303,201,980	JU3,810,034	J J49,732,912	3 527,507,174			• •,•••,•••,•••
	2		Fuel Adjustment Revenues Not Applicable to Period		(12)(20)	(4.21(.701)	(4 216 701)	(4 316 701)	(4 316 701)	(4 316 701)	(51 800 406)
		8	Prior Period True-up (Collected)/Refunded This Period		(4,316,701)	(4,316,701)	(4,310,701)	(4,310,701)	(4,510,701)	(4,510,701)	(6 566 718)
		b	GPIF, Net of Revenue Taxes (a)		(347,220)	158 052 127	(J47,220)	• 122 523 267	C 288 537 070	\$ 282 710 725	\$ 3 671 942 785
	3		Jurisdictional Fuel Revenues Applicable to Period		5 360,398,033	3 3 3 3 3 3 3 3 3 3	3 344,000,983	3 322,323,201	200,557,979	202,710,725	5 5,071,542,705
	4	8	Adjusted Total Fuel Costs & Net Power Transactions (Line A-7)		\$ 373,343,887	\$ 407,578,817	\$ 343,765,309	\$ <u>313,939,675</u>	\$ 259,853,512	\$ 263,875,728	\$ 3,641,113,950
		b	Adj Total Fuel Costs & Net Power Transactions - Excluding 100% Re	tail Items							
					373,343,887	407,578,817	343,765,309	313,939,675	259,853,512	263,875,728	3,641,113,950
	5		Jurisdictional Sales % of Total kWh Sales (Line B-4)		98.08912 %	97.94482 %	97.81185 %	97.89047 %	97.73643 %	98.24322 %	98.01650 %
	6		Jurisdictional Total Fuel Costs & Net Power Transactions								
			(Line C4b x C5 x 1.00085)		s 366,521,012	\$ 399,541,661	\$ 336,529,015	\$ 307,578,243	\$ 254,187,422	\$ 259,460,366	\$ 3,571,912,947
	7		Taxa Branisian for the Month Owner/(Under) Persyany				1	1			
	1		(Line C3 - Line C6)		s (6,122,959)	s (40,589,534)	\$ 8,339,970	\$ 14,945,024	s 34,350,557	\$ 23,250,359	\$ 100,029,838
i	8		Interest Provision for the Month		(1.007)	(2,593)	(3,577)	(2,248)	165	2,923	(26,920)
			The an & Interest Provision Beg. of Period - Over/(Under)		39 935 634	38,128,369	1,852.943	14,506.036	33,765,513	72,432,935	(51,800,406)
		h	Defended Take up Designing of Derind Over//Linder) Despure		(51 121 025)	(51.121.025)	(51,121,025)	(51,121,025)	(51,121,025)	(51,121,025)	(51,121,025)
	10		Deteriou True-up Degraning of Period - Over/(Onder) Recovery		4 316 701	4 316 701	4 316 701	4,316 701	4,316.701	4,316.701	51,800,406
	11		Filor Fenoa True-up Conecteu/(Ketundeu) This Fenoa			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, , , , , ,	, , ,		atu atu an
			C7 through C10)		\$ (12,992,656)	\$ (49,268,082)	\$ (36,614,989)	\$ (17,355,512)	\$ 21,311,910	\$ 48,881,893	\$ 48,881,893
	-				(a) Generation Performan	ice Incentive Factor is ((\$6,571,449/12) x 99.92	80%) - See Order No. F	SC-11-0579-FOF-EI.		
\vdash	-				<u> </u>						

,

,

1	JURISDICTIONAL FUEL REVENUES	ACTUAL/ESTIMATED	MID-COURSE CORRECTION	\$[DIFFERENCE
2 3	REVENUES	\$3,730,309,908	\$3,738,334,434		(\$8,024,526)
4 5	MWH	102,143,831	101,686,000		457,831
6 7	\$ per MWH	36.52017	36.76351		(0.24334)
8 9 10	VARIANCE DUE TO CONSUMPTION			\$ \$	16,720,065 (24,744,591)
11				<u>₹</u>	(8 024 526)

REVENUE/ COST VARIANCE ANALYSIS - 2012 ACTUAL/ESTIMATED TRUE UP

\$ (8,024,526)

13	JURISDICTIONAL TOTAL FUEL COSTS	ACTUAL/ESTIMATED	MID-COURSE CORRECTION	\$[
14 15	COSTS	\$3,571,912,947	\$3,679,967,310		(\$108,054,363)
16 17 18	MWH	102,143,831	101,686,000		457,831
19 20	\$ per MWH	34.96944	36.18952		(1.22007)
21	VARIANCE DUE TO CONSUMPTION			\$	16,010,095
22	VARIANCE DUE TO COST			<u>\$</u>	(124,064,459)
23				\$	(108,054,363)
~ '[

25	TOTAL VARIANCE	\$1	DIFFERENCE
26			
27	VARIANCE DUE TO CONSUMPTION	\$	709,970
28	VARIANCE DUE TO COST	\$	99,319,867
29		\$	100,029,837
30	INTEREST	\$	(26,920)
31	2011 FINAL TRUE-UP	\$	(51,121,025)
33		\$	48,881,893

FLORIDA POWER & LIGHT COMPANY FUEL COST RECOVERY CLAUSE CALCULATION OF VARIANCE - ACTUAL/ESTIMATED VS. MID-COURSE CORRECTION FOR THE PERIOD JANUARY 2012 THROUGH DECEMBER 2012

				(1)		(2)		(3)	
LIN	Ε			ACTUAL/	M	ID-COURSE		DIFFERE	NCE
NO	·	<u></u>		ESTIMATED	C	ORRECTION		AMOUNT	%
A		Fuel Costs & Net Power Transactions						(10.101.004)	(= = = = = = = = = = = = = = = = = = =
	1	a Fuel Cost of System Net Generation	15	3,274,070,728	5	3,323,255,714	\$	(49,184,985)	(1.5) %
		b Nuclear Fuel Disposal Costs		16,631,030		18,308,769		(1,677,740)	(10.1) %
		c Coal Cars Depreciation & Return		(47,585))	0		(47,585)	100.0 %
	2	a Fuel Cost of Power Sold		(15,733,252))	(24,625,002)		8,891,750	(56.5) %
		b Gains from Off-System Sales		(4,019,000))	(5,343,994)		1,324,994	(33.0) %
	3	a Fuel Cost of Purchased Power		205,100,527		205,157,608		(57,081)	(0.0) %
		b Energy Payments to Qualifying Facilities		137,663,766		169,890,243		(32,226,478)	(23.4) %
	4	Energy Cost of Economy Purchases	l	36,989,767		74,564,350		(37,574,583)	(101.6) %
	5	Total Fuel Costs & Net Power Transactions	\$	3,650,655,981	\$	3,761,207,688	\$	(110,551,707)	(3.0) %
	4	A divintments to Eval Costs							
	0	Aujustments to Fuer Cost.	1	(8 087 711)	`	(9 597 070)		600 350	(6.8) %
		a Sales to City of Key west (CKW)		(0,207,711)	,	(3,377,070)		(155 900)	(0.0) /0
		o Reactive and voltage Control Fuel Revenue		(133,007)	,	0		(100,009)	IN/A
		c Inventory Adjustments]	(288,950))	U		(288,950)	N/A
	_	d Non Recoverable Otl/Tank Bottoms		(109,562)	2	0		(109,562)	N/A
l	7	Adjusted Total Fuel Costs & Net Power Transactions	5	3,641,113,950	\$	3,751,610,618	S	(110,496,668)	(3.0) %
ъ		kWh Sales							
10	1	Jurisdictional kWh Salas		102 143 831 310	14	01 686 000 925		457 830 385	04 %
	2	Sale for Bearle (Evoluting CKW)	•	2 067 021 097	1	2 076 720 916		(0 600 819)	(0.5) %
]	2	Total Sales (Excluding CKW)		104 210 852 407	1	03 762 721 841		448 130 566	0.4 %
	5	Total Dates (Excluding CR IF)	⊨	104,210,052,107		00,102,121,011		110,100,000	
	4	Jurisdictional % of Total kWh Sales (lines B1/B3)		N/A		N/A		N/A	N/A
C		I rue-up Calculation				2 7 7 8 2 3 4 4 5 4	*	(0.004.60()	(0.2) 8/
(1	Jurisdictional Fuel Revenues - Net of Revenue Taxes	13	3,730,309,908	3	3,/38,334,434	э	(8,024,526)	(0.2) %
	2	Fuel Adjustment Revenues Not Applicable to Period:							
l I		a Prior Period True-up (Collected)/Refunded This Period	1	(51,800,406))	(51,800,406)	I	0	0.0 %
		b GPIF, Net of Revenue Taxes (a)	<u> </u>	(6,566,718)	<u>) </u>	(6,566,718)	-	0	N/A
]	3	Jurisdictional Fuel Revenues Applicable to Period	<u>s</u>	3,671,942,785	<u> </u>	3,679,967,310	5	(8,024,526)	(0.2) %
1	4	a Adjusted Total Fuel Costs & Net Power Transactions (Line A-7)	15	3,641,113,950	\$	3,751,610,618	\$	(110,496,668)	(3.0) %
		B Adj Total Fuel Costs & Net Fower Transactions - Excinding 100%	l e	2 6 41 112 050	e	2 751 610 619		(110 406 668)	(3.0) %
	~	Keian nems	ŀੈ−	3,041,113,930		5,751,010,010		(110,490,008) NI/A	(J.0) /0
	2	Jurisdictional Sales % of Lotal KWA Sales (Line 5-4)	<u> </u>	<u>N/A</u>		<u>IN/A</u>		N/A	N/A
ļ	0	C5 x 1.00085)	\$	3,571,912,947	\$	3,679, <u>96</u> 7,310	\$	(108,054,364)	(3.0) %
		True-up Provision for the Month - Over/(Under) Recovery (Line C3 -	_				_		
	7	Line (6)	5	100 029.838	S	0	\$	100.029.838	100.0 %
	8	Interest Provision for the Month		(26 920	9	0		(26.920)	100.0 %
	9	True-up & Interest Provision Beg of Period-Over/(Under) Recovery	1	(51 800 406)	á	(51 800 404)		(,- 24)	0.0 %
		Def		(51,500,400	3	(31,000,400)	,	(51 121 025	NI/A
	10	Deterred The-up Beginning of Period - Over(Under) Recovery	1	21 000 406 220,121,12)	2	51 200 405		(31,121,023	N/A
	ιu	File CD (1) Net T (1) A want O (1) (1) Ford		51,600,406		51,600,400			IN/A
	11	End of Period Net True-up Amount Over/(Under) Recovery (Lines C7 through C10)	s	48 881 893	\$		\$	48 881 893	100.0 %
h	**		1.*		-				

Notes

(a) Generation Performance Incentive Factor is ((\$6,571,449/12) x 99.9280%) - See Order No. PSC-11-0579-FOF-EL

Florida Power Light Company

Schedule E3 1 of 4

	Generating S	System Compa	rative Data by	ruer Type		
	Jan-12 ACTUAL	Feb-12 ACTUAL	Mar-12 ACTUAL	Apr-12 ACTUAL	May-12 ACTUAL	Jun-12 ACTUAL
Fuel Cost of System Net Generation (\$)						
1 Heavy Oil	\$53,392	\$17,479	\$1,629,602	\$2,525,145	\$4,010,095	\$18,504,995
2 Light Oil	\$185,796	\$674,134	\$256,211	\$1,457,784	\$3,076,017	\$385,191
3 Coal	\$8,601,469	\$8,942,471	\$3,083,162	\$4,908,647	\$10,428,109	\$14,834,518
4 Gas	\$220,050,276	\$206,362,637	\$236,571,945	\$228,090,339	\$253,000,554	\$261,409,020
5 Nuclear	\$8,698,977	\$7,690,687	\$6,494,418	\$6,691,228	\$8,792,748	\$10,287,006
6 Total	\$237,589,910	\$223,687,408	\$248,035,338	\$243,673,143	\$279,307,524	\$305,420,730
System Net Generation (MWH)						
[°] 7 Heavy Oil	-3,061	-2,554	10,144	16,410	25,353	130,264
8 Light Oil	1,328	4,360	1,864	3,255	2,715	1,017
9 Coal	309,269	312,461	80,166	96,850	328,702	490,655
10 Gas	5,726,282	5,683,015	6,861,614	6,468,686	7,311,849	7,212,644
11 Nuclear	1,641,263	1,422,266	1,080,243	1,075,490	1,316,959	1,566,528
12 Solar	5,247	4,472	7,102	7,149	7,310	5,846
13 Total	7,680,329	7,424,020	8,041,134	7,667,839	8,992,889	9,406,954
Units of Fuel Burned						
14 Heavy Oil (BBLS)	645	218	18,340	28,800	43,914	212,971
15 Light Oil (BBLS)	1,838	5,769	2,485	12,100	24,125	3,410
16 Coal (TONS)	23,815	27,654	27,654	47,542	46,033	56,396
17 Gas (MCF)	40,800,284	40,532,794	50,130,127	47,882,980	54,076,871	53,844,201
18 Nuclear (MBTU)	18,475,242	16,197,715	12,649,635	12,820,249	15,704,300	17,823,399
BTU Burned (MMBTU)						
19 Heavy Oil	4,124	1,394	117,391	183,600	278,305	1,357,795
20 Light Oil	10,657	33,363	14,418	67,674	139,048	19,674
21 Coal	3,211,894	3,266,113	443,219	1,400,022	3,543,549	5,108,219
22 Gas	41,494,571	41,135,386	50,862,507	48,549,882	55,057,650	54,617,393
23 Nuclear	18,475,242	16,197,715	12,649,635	12,820,249	15,704,300	17,823,399
24 Total	63,196,488	60,633,971	64,087,170	63,021,427	74,722,852	78,926,480

σ

Florida Power Light Company

Schedule E	-3
2 of	4

	Generating S	Generating System Comparative Data by Fuel Type						
	Jan-12 ACTUAL	Feb-12 ACTUAL	Mar-12 ACTUAL	Apr-12 ACTUAL	May-12 ACTUAL	Jun-12 ACTUAL		
Generation Mix (%MWH)								
25 Heavy Oil	-0.04%	-0.03%	0.13%	0.21%	0.28%	1.38%		
26 Light Oil	0.02%	0.06%	0.02%	0.04%	0.03%	0.01%		
27 Coal	4.03%	4.21%	1.00%	1.26%	3.66%	5.22%		
28 Gas	74.56%	76.55%	85.33%	84.36%	81.31%	76.67%		
29 Nuclear	21.37%	19.16%	13.43%	14.03%	14.64%	16.65%		
30 Solar	0.07%	0.06%	0.09%	0.09%	0.08%	0.06%		
31 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%		
Fuel Cost per Unit								
32 Heavy Oil (\$/BBL)	82.7776	80.1795	88.8551	87.6787	91.3170	86.8897		
33 Light Oil (\$/BBL)	101.0861	116.8546	103.1030	120.4780	127.5033	112.9592		
34 Coal (\$/ton)	88.5808	87.1136	87,1136	85.9999	85.3963	83.2027		
35 Gas (\$/MCF)	5.3934	5.0913	4.7192	4.7635	4.6785	4.8549		
36 Nuclear (\$/MBTU)	0.4708	0.4748	0.5134	0.5219	0.5599	0.5772		
Fuel Cost per MMBTU (\$/MMBTU)								
37 Heavy Oil	12.9465	12.5388	13.8818	13.7535	14.4090	13.6287		
38 Light Oil	17.4342	20.2060	17.7702	21.5413	22.1220	19.5787		
39 Coal	2.6780	2.7380	6.9563	3.5061	2.9428	2.9040		
40 Gas	5.3031	5.0167	4.6512	4.6981	4.5952	4.7862		
41 Nuclear	0.4708	0.4748	0.5134	0.5219	0.5599	0.5772		
BTU burned per KWH (BTU/KWH)								
42 Heavy Oil	-1,347	-546	11,572	11,188	10,977	10,423		
43 Light Oil	8,023	7,652	7,736	20,793	51,209	19,343		
44 Coal	10,385	10,453	5,529	14,456	10,780	10,411		
45 Gas	7,246	7,238	7,413	7,505	7,530	7,572		
46 Nuclear	11,257	11,389	11,710	11,920	11,925	11,378		
Generated Fuel Cost per KWH (cents/KWH)								
47 Heavy Oil	-1.7444	-0.6845	16.0641	15.3877	15.8169	14.2058		
48 Light Oil	13.9880	15.4625	13.7473	44.7907	113.2846	37.8711		
49 Coal	2.7812	2.8620	3.8460	5.0683	3.1725	3.0234		
50 Gas	3.8428	3.6312	3.4478	3.5261	3.4601	3.6243		
51 Nuclear	0.5300	0.5407	0.6012	0.6222	0.6677	0.6567		
52 Total	3.0935	3.0130	3.0846	3.1779	3.1059	3.2468		

Florida Power Light Company

Schedule E3 3 of 4

	Generating	System Comp	arative Data b	y Fuel Type			
	Jul-12 ESTIMATES	Aug-12 ESTIMATES	Sep-12 ESTIMATES	Oct-12 ESTIMATES	Nov-12 ESTIMATES	Dec-12 ESTIMATES	Total
Fuel Cost of System Net Generation (\$)			•				
1 Heavy Oil	\$13,301,200	\$45,203,150	\$17,629,500	\$8,442,950	\$892,900	\$638,500	\$112,848,908
2 Light Oil	\$0	\$2,039,400	\$0	\$0	\$0	\$0	\$8,074,533
3 Coal	\$13,797,700	\$14,016,800	\$13,267,700	\$13,531,200	\$12,848,900	\$12,795,200	\$131,055,877
4 Gas	\$281,929,580	\$284,625,810	\$257,525,670	\$243,070,947	\$212,318,375	\$213,568,452	\$2,898,523,604
5 Nuclear	\$11,598,800	\$11,081,600	\$13,395,000	\$13,841,500	\$10,538,100	\$14,460,500	\$123,570,563
6 Total	\$320,627,280	\$356,966,760	\$301,817,870	\$278,886,597	\$236,598,275	\$241,462,652	\$3,274,073,486
System Net Generation (MWH)							
7 Heavy Oil	86,507	280,854	112,468	53,739	5,094	3,869	719,088
8 Light Oil	0	5,084	0	0	0	0	19,623
9 Coal	489,874	496,431	469,713	477,966	461,855	461,067	4,475,008
10 Gas	7,692,989	7,603,354	6,893,959	6,416,313	5,583,491	5,368,570	78,822,766
11 Nuclear	1,513,822	1,453,262	1,724,114	1,781,583	1,360,743	1,853,906	17,790,179
12 Solar	19,484	19,120	17,383	18,122	16,336	17,195	144,766
13 Total	9,802,676	9,858,105	9,217,637	8,747,723	7,427,519	7,704,607	101,971,431
Units of Fuel Burned							
14 Heavy Oil (BBLS)	135,275	459,488	182,822	90,152	9,417	6,759	1,188,801
15 Light Oil (BBLS)	0	16,443	0	0	0	0	66,170
16 Coal (TONS)	264,720	268,191	254,433	260,005	251,968	254,007	1,782,418
17 Gas (MCF)	55,517,807	55,551,121	49,723,412	45,881,087	39,214,646	37,514,109	570,669,438
18 Nuclear (MBTU)	16,610,273	16,060,425	19,177,108	19,816,342	14,692,912	19,877,405	199,905,005
BTU Burned (MMBTU)							
19 Heavy Oil	865,765	2,940,724	1,170,063	576,976	60,271	43,257	7,599,665
20 Light Oil	0	95,862	0	0	0	0	380,696
21 Coal	5,041,974	5,104,484	4,838,623	4,931,862	4,738,195	4,754,724	46,382,878
22 Gas	55,517,807	55,551,121	49,723,412	45,881,087	39,214,646	37,514,109	575,119,571
23 Nuclear	16,610,273	16,060,425	19,177,108	19,816,342	14,692,912	19,877,405	199,905,005
24 Total	78,035,819	79,752,616	74,909,206	71,206,267	58,706,024	62,189,495	829.387.815

œ

Florida Power Light Comp	pany
--------------------------	------

Θ

Schedule	E3
4 0	of 4

Generating System Comparative Data by Fuel Type														
	Jul-12 Aug-12 Sep-12 Oct-12 Nov-12 ESTIMATES ESTIMATES ESTIMATES ESTIMATES ESTIMATES eneration Mix (%MWH)													
Generation Mix (%MWH)														
25 Heavy Oil	0.88%	2.85%	1.22%	0.61%	0.07%	0.05%	0.71%							
26 Light Oil	0.00%	0.05%	0.00%	0.00%	0.00%	0.00%	0.02%							
27 Coal	5.00%	5.04%	5.10%	5.46%	6.22%	5.98%	4.39%							
28 Gas	78.48%	77.13%	74.79%	73.35%	75.17%	69.68%	77.30%							
29 Nuclear	15.44%	14.74%	18.70%	20.37%	18.32%	24.06%	17.45%							
30 Solar	0.20%	0.19%	0.19%	0.21%	0.22%	0.22%	0.14%							
31 Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%							
Fuel Cost per Unit														
32 Heavy Oil (\$/BBL)	98.3271	98.3772	96.4299	93.6524	94.8179	94.4666	94,9267							
33 Light Oil (\$/BBL)	0.0000	124.0285	0.0000	0.0000	0.0000	0.0000	122.0271							
34 Coal (\$/ton)	52.1219	52.2642	52,1461	52.0421	50.9942	50.3734	73.5270							
35 Gas (\$/MCF)	5.0782	5.1237	5.1792	5.2978	5.4143	5.6930	5.0792							
36 Nuclear (\$/MBTU)	0.6983	0.6900	0.6985	0.6985	0.7172	0.7275	0.6181							
Fuel Cost per MMBTU (\$/MMBTU)														
37 Heavy Oil	15.3635	15.3714	15.0671	14.6331	14.8148	14.7606	14.8492							
38 Light Oil	0.0000	21,2743	0.0000	0.0000	0.0000	0.0000	21.2099							
39 Coal	2.7366	2,7460	2,7420	2.7436	2.7118	2.6910	2.8255							
40 Gas	5.0782	5,1237	5.1792	5.2978	5.4143	5.6930	5.0399							
41 Nuclear	0.6983	0.6900	0.6985	0.6985	0.7172	0.7275	0.6181							
BTU burned per KWH (BTU/KWH)														
42 Heavy Oil	10,008	10,471	10,404	10,737	11,832	11,180	10.568							
43 Light Oil	0	18,856	0	, 0	0	0	19.401							
44 Coal	10,292	10,282	10,301	10,318	10,259	10.312	10.365							
45 Gas	7,217	7,306	7,213	7,151	7,023	6,988	7.296							
46 Nuclear	10,972	11,051	11,123	11,123	10,798	10,722	11,237							
Generated Fuel Cost per KWH (cents/KWH)														
47 Heavy Oil	15.3759	16.0949	15.6751	15.7110	17.5285	16.5030	15.6933							
48 Light Oil	0.0000	40.1141	0.0000	0.0000	0.0000	0.0000	41.1486							
49 Coal	2.8166	2.8235	2.8246	2.8310	2.7820	2.7751	2.9286							
50 Gas	3.6648	3.7434	3.7355	3,7883	3.8026	3.9781	3.6773							
51 Nuclear	0.7662	0.7625	0.7769	0.7769	0.7744	0.7800	0.6946							
52 Total	3.2708	3.6210	3.2744	3.1881	3.1854	3.1340	3.2108							

}

Company:	Florida Power & Light									Schedule E4			
Period:	Jul-2012			Endowed P			7/1 001 0		121/2012				
				Estimated P	or the Period		////2012	100	(1) [/2012				
(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit
TURKEY POINT 1	378	32,106	25.6	94,9	64.7	10,349	Heavy Oil BBLS -> Gas MMCF ->	48,688 434,541	6,400,016	311,604 434,541	4,703,219 2,292,561	14,65 5,73	96.60 5.28
TURKEY POINT 2	3 78	0	0.0	0.0	0.0	D	Heavy Oil BBLS -> Gas MMCF ->	0 0		0 0	0		
TURKEY POINT 3	802	0	0,0	0.0	0.0	0	Nuclear Othr ->	0		0	0	0 -	
TURKEY POINT 4	693	502,707	97.5	97.5	97.5	11,371	Nuclear Othr ->	5,716,230	1,000,000	5,716,230	3,681,400	0,73	0.64
FURKEY POINT 5	1,053	711,758	90.9	95,0	90,9	6,902	Gas MMCF ->	4,912,399	1,000,000	4,912,399	25,284,178	3,33	5.15
LAUDERDALE 4	438	75,559	23.2	36.7	94.8	8,081	Gas MMCF ->	610,590	1,000,000	610,590	3,232,529	4.28	5.29
LAUDERDALE 5	438	0 181,434	55.7	94.8	94.8	8,080	Gas MMCF >	1,465,960	1,000,000	1,465,960	7,712,939	4.25	5.26
PT EVERGLADES 1	205	0 0	0.0	100.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0	0		
PT EVERGLADES 2	205	0	0,0	100.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0 0	0 Ø		
PT EVERGLADES 3	374	0 77,863	28.0	94.9	81.3	10,485	Heavy Oil BBLS -> Gas MMCF ->	0 816,410	1,000,000	0 816,410	0 4,323,200	5,55	5.30
PT EVERGLADES 4	374	0 66,342	23.8	94.9	80.6	10,632	Heavy Oil BBLS -> Gas MMCF ->	0 705,350	1,000,000	0 705,350	0 3,730,167	5,62	5,29
RIVIERA 3	0	0	0,0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0 0	0 0		
RIVIERA 4	0	0 0	0,0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0 0		0 0	0 0		
ST LUCIÉ 1	961	472,238	66.0	66.4	97.5	10,777	Nuclear Othr->	5,089,293	1,000,000	5,089,293	3,596,600	0.76	0.71
ST LUCIE 2	743	538,877	97.5	97.5	97.5	10,772	Nuclear Othr ->	5,804,750	1,000,000	5,804,750	4,320,800	0.80	0.74
CAPE CANAVERAL 1	0	0	0_0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0 0	0 0		
CAPE CANAVERAL 2	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0	0		
CUTLER 5	68	0	0,0	100.0	0.0	0	Gas MMCF ->	0		0	0		
CUTLER 6	137	0	0,0	100.0	0.0	0	Gas MMCF ->	0	1 000 000	0	0	2 62	4.09
FORT MYERS 2	1,349	828,452	82.5	94.9	91.5	7,100	Uas MMCF ->	5,882,099	1,000,000	5,882,099	29,280,419	3,03	4.98
FORT MYERS 3A_B	296	44,791	40.7	94.9	94.9	14,290	Gas MMCF ->	640,081	1,000,000	640,081	3,346,749	7,47	5.23
SANFORD 3	138	U 410.492	0,0	100,0	02.0	7.010	Car MMCE >	4 343 003	1,000,000	4 343 903	21 673 777	3.50	4 99
SANFORD 4	903	619,482	92,0	94.9	92,0	7,012	Gas MMCF ->	3 702 954	1,000,000	3 702 954	18 482 922	3 55	4.99
PUTNAM 1	239	0	42.9	95.0	95.0	8,906	Light Oil BBLS ->	0	1,000,000	0	0	0,55	
		76,315					Gas MMCF ->	679,688	1,000,000	679,688	3,565,107	4.67	5.25
PUTNAM 2	239	0 70 864	39,9	95.0	95.0	8,940	Light Oil BBLS -> Gas MMCF ->	0 633,498	1,000,000	0 633,498	0 3,318,862	4,68	5.24

Schedule E4

	company	Piolida i owor de Esgin													
	Period:	Jul-2012													
					Estimated Fo	or The Period	l of :		/2012	Thru	7/31/2012				
	 (A)	(B)	(C)	(D)	(E)	(F)	(G)	((H)	(I)	(J)	(K)	(L)	(M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	F T	^r uel ype	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
42 43	MANATEE 1	788	24,823 16,549	7.1	94.9	80.8	10,785	Heavy Gas	Di BBLS -> MMCF ->	43,069 170,350	6,400,033 1,000,000	275,643 170,550	4,175,112 904,532	16.82 5.47	96.94 5,30
44 45	MANATEE 2	788	o o	0,0	16.4	0.0	0	Heavy (Gas	Dil BBLS -> MMCF ->	0		0	0 0		
46	MANATEE 3	1,058	725,225	92.1	94.9	92.1	6,857	Gas	MMCF ->	4,972,583	1,000,000	4,972,583	25,799,922	3,56	5.19
47	MARTIN 1	802	Ó	0.0	95.0	0,0	0	Heavy Geo	Oil BBLS ->	0		0	0		
48 49 50	MARTIN 2	802	29,578 69,222	16.6	95.0	64.2	10,597	Heavy Gas	Oil BBLS -> MMCF ->	43,518 768,427	6,400,064 1,000,000	278,518 768,427	4,422,869 4,037,226	14.95 5.83	101.63 5.25
51	MARTIN 3	431	188,329	58.7	94.8	94.8	7,392	Gas	MMCF ->	1,392,219	1,000,000	1,392,219	6,876,305	3.65	4.94
52	MARTIN 4	431	194,633	60.7	94.7	94.5	7,365	Gas	MMCF ->	1,433,481	1,000,000	1,433,481	7,080,304	3.64	4.94
53	MARTIN 8	1,052	731,866	93.5	94.9	93.5	6,876	Gas	MMCF ->	5,031,993	1,000,000	5,031,993	25,181,755	3.44	5,00
54	FORT MYERS 1-12	552	0	0.0	95.3	0,0	0	Light (Oil BBLS ->	0		0	0		
55	LAUDERDALE 1-24	684	0	0.0	91.8	0.0	0	Light (Oil BBLS ->	0		0	0		
56			0					Gas	MMCF ->	0		0	0		
57	EVERGLADES 1-12	342	0	0.0	88.4	0.0	0	Light (oii BBLS ->	Û		0	0		
58			0					Gas	MMCF ->	0		0	0		
59	ST JOHNS 10	124	65,949	71.5	94.0	71.5	10,176	Coal	TONS ->	26,779	25,060,122	671,085	2,571,400	3.90	96.02
60	ST JOHNS 20	124	67,932	73.6	94.3	73.6	10,097	Coal	TONS ->	27,370	25,060,139	685,896	2,628,100	3.87	96.02
61	SCHERER 4	629	355,993	76.1	93.8	76.]	10,351	Coal	TONS ->	210,571	17,500,002	3,684,993	8,598,200	2.42	40.83
62	WCEC_01	1,219	810,686	89.4	94.7	89.4	6,906	Gas	MMCF ->	5,598,929	1,000,000	5,598,929	28,455,312	3.51	5.08
63	WCEC_02	1,219	818,029	90.2	94.7	90.2	6,900	Gas	MMCF ->	5,644,075	1,000,000	5,644,075	27,774,184	3.40	4.92
64	WCEC_03	1,219	837,024	92.3	94.6	92.3	6,784	Gas	MMCF ->	5,678,076	1,000,000	5,678,076	27,941,484	3.34	4.92
65	DESOTO	25	5,151					SO	LAR						
66 67	SPACE COAST	10	1,782					SO	LAR						
68 69	TOTAL	24,891	9,802,676				7,961	Gas Nucl	MMCF-> ear Othr->	55,517,806 16,610,273		78,035,818	318,992,132	3.25	
70 71		PeriodHours>		744	ł			Coal Heavy (TONS -> OILBBLS ->	264,720 135,275					

Schedule E4

<u>-</u>

1 - 1

Florida

& Links

	Period:	Aug-2012												
					Estimated Fo	or The Period	lof:	8/1/2012	Thru	8/31/2012				
	 (A)	· (B)	(C)	 (D)	(E)	 (F)	 (G)	(H)	(1)	 (J)	(K)	(L)	(M)	(N)
	Plant Unit	Net Capabili (MW)	Net ity Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost o Fuel (\$/Uni
1	TURKEY POINT 1	378	42,508 37,619	28.5	94,9	77.1	10,216	Heavy Oil BBLS -> Gas MMCF ->	64,112 408,289	6,400,019 1,000,000	410,318 408,289	6,228,438 2,194,411	14.65 5.83	97,15 5.37
3	TURKEY POINT 2	378	0 0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0 0	0		
5	TURKEY POINT 3	802	183,916	30.8	88,9	34.1	11,323	Nuclear Othr ->	2,082,467	1,000,000	2,082,467	1,533,500	0.83	0.74
6	TURKEY POINT 4	693	502,707	97.5	97.5	97.5	11,371	Nuclear Othr ->	5,716,230	1,000,000	5,716,230	3,681,400	0.73	0,64
7	TURKEY POINT 5	1.053	730,714	93.3	95.0	93,3	6,883	Gas MMCF ->	5,029,830	1,000,000	5,029,830	26,408,613	3,61	5.25
8 Q	LAUDERDALE 4	438	0 156.931	48,2	94.8	94.8	8,106	Light Oil BBLS -> Gas MMCF ->	0 1,272,152	1,000,000	0 1,272,152	0 6,797,232	4.33	5.34
10	LAUDERDALE 5	438	0 170.640	52.4	94.8	94.8	8,091	Light Oil BBLS -> Gas MMCF ->	0	1,000,000	0 1,380,589	0 7,362,108	4.31	5,33
12	PT EVERGLADES 1	205	0	0.0	100.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0 0	0		
14	PT EVERGLADES 2	205	0	0.0	100.0	0,0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0	0 0		
16 17	PT EVERGLADES 3	374	0 88,339	31.7	94.9	90.5	10,407	Heavy Oil BBLS -> Gas MMCF ->	• 0 • 919,340	1,000,000	0 919,340	0 4,970,139	5,63	5.41
18	PT EVERGLADES 4	374	0 86,474	31,1	94.9	88.2	10,545	Heavy Oil BBLS -> Gas MMCF ->	0 911,856	1,000,000	0 911,856	0 4,923,801	5.69	5.40
20 21	RIVIERA 3	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0	0 0		
22 23	RIVIERA 4	0	0 0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	· 0	·	0 0	0 0		
24	ST LUCIE 1	961	697,107	97.5	98.1	97.5	10,777	Nuclear Othr ->	7,512,731	1,000,000	7,512,731	5,309,200	0,76	0.71
25	ST LUCIE 2	743	69,532	12.6	12.6	97.5	10,772	Nuclear Othr->	748,997	1,000,000	748,997	557,500	0.80	U, /4
26	CAPE CANAVERAL I	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS ->	• 0		0	U		
27			0					Gas MMCF ->	• 0		0	0		
28	CAPE CANAVERAL 2	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS ->	• 0		0	0		
29			0					Gas MMCF ->			0	0		
30	CUTLER 5	68	0	0.0	100.0	0.0	0	Gas MMCF >	· U		0	0		
31	CUTLER 6	137	0	0.0	100.0	0,0	0	Gas MMCF->	· U	1 000 000	6 367 530	21 609 036	3 56	5.04
32	FORT MYERS 2	1,349	886,773	88.4	94.9	93.6	7,068	Gas MMCF ->	6,267,520	1,000,000	0,207,320	31,008,030	3.00	5,04
33 34	FORT MYERS 3A_B	296	0 23,730	21.5	94.9	94.9	14,293	Gas MMCF ->	339,157	1,000,000	339,157	1,807,861	7,62	5.33
35	SANFORD 3	138	0	0.0	100.0	0.0	0	Gas MMCF->	- U	1 000 000	U 4 460 0177	U 708	7 67	R 06
36	SANFORD 4	905	637,449	94.7	94.9	94.7	6,986	Gas MMCF ->	4 452 937	1,000,000	4,452,937	22,520,708	3.33	5.00
37	SANFORD 5	901	584,147	87.1	94.9	94.5	7.053	Gas MMCF->	• 4,120,104	1,000,000	4,120,104	20,840,461	10.0	5.00
38 39	PUTNAM 1	239	0 62,460	35.1	95.0	95.0	8,951	Light Oil BBLS → Gas MMCF →	559,107	1,000,000	559,107	2,978,442	4.77	5,33
40 41	PUTNAM 2	239	0 61,779	34,7	95.0	95.0	8,972	Light Oil BBLS -> Gas MMCF ->	• 0 • 554,268	1,000,000	554,268	2,952,630	4.78	5.33

Schedule E4

Florida Power & Light

Company:

	Company:	Florida Power & Light									Schedule E4			
	Period	Aug-2012												
					Estimated F	or The Period	l of :	8/1/2012	Դհու	8/31/2012				
	(A)	(B)	(C)	(D)	(E)		(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Qut FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuei Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
42 43	MANATEE 1	788	82,481	23.4	94.9	80.8	10,715	Heavy Oil BBLS ->	141,563	6,400,020	906,006	13,800,946	16.73	97,49
44 45	MANATEE 2	788	102,993	29.3	95.0	83.1	10,671	Heavy Oil BBLS -> Gas MMCE ->	175,559	6,399,985	1,123,575 208,103	3,062,342 17,115,074 3,826,364	5.57 16.62 5.57	5.40 97.49 5.40
46	MANATEE 3	1,058	737,661	93.7	94.9	93.7	6,848	Gas MMCF ->	5.051.859	1,000,000	5.051.859	26.660.642	3.61	5.28
47	MARTIN 1	802	19,973	11.2	95.0	69.2	10,767	Heavy Oil BBLS ->	29,748	6,399,926	190,385	3,063,465	15,34	102.98
48	MADTELA		46,604					Gas MMCF ->	526,442	1,000,000	526,442	2,812,989	6.04	5.34
50	MARTIN 2	802	34,899	18.4	95.0	74.5	10,568	Heavy Oil BBLS ->	48,506	6,400,033	310,440	4,995,226	15.18	102,98
50	MARTINI	42)	10,972		04.0		7 (00	Gas MMCF ->	850,635	1,000,000	850,635	4,550,681	5.91	5.35
52	MARTIN 4	431	188 505	50.0	24.8	94.8	7,400	Gas MMCF ->	1,315,098	1,000,000	1,315,098	6,577,167	3,70	5.00
53	MARTIN	1.052	745 736	017	24.7	94,7	1,000	Cas MMCF ->	1,389,210	1,000,000	1,389,216	5,948,435	3,68	5.00
54	FORT MYERS 1-12	552	5 084	17	09.J	43.9	19 854		3,116,761	5,000,000	2,116,761	23,950,274	J.48	5.97
55	LAUDERDALE 1-24	684	0	0.2	91.8	170	27 506	Light Oil BBLS ~	10,443	7,029,938	95,802	2,039,400	40.11	124.03
56			1.049	0.2	21.8	17.0	27,000		28.854	1.000.000	28.854	145.401	13.86	5.04
57	EVERGLADES 1-12	342	0	0.0	88.4	0.0	0	Light Oil BBI S ->	20,004	1,000,000	10,854	143,491	13.60	5.04
58			0	0,0	55,4	0.0	•	Gas MMCF ->	0		Ď	0		
59	ST JOHNS 10	124	66,268	71.8	94.0	71.8	10.167	Coal TONS >	26 885	25.060.031	673 764	2 605 200	3 03	96.00
60	ST JOHNS 20	124	68,292	74.0	94.3	74.0	10.090	Coal TONS ->	27 497	25,060,225	689 081	2 664 400	3.90	96.90
61	SCHERER 4	629	361,871	77.3	93.8	77.3	10,340	Coal TONS ->	213.808	17,499,995	3.741.639	8,747 200	2.42	40.91
62	WCEC_01	1,219	830,108	91.5	94.7	91.5	6,893	Gas MMCF ->	5,722,216	1,000,000	5,722,216	28,698,236	3.46	5.02
63	WCEC_02	1,219	315,756	34.8	37.7	41.4	7,371	Gas MMCF ->	2,327,475	1,000,000	2,327,475	11.611.204	3.68	4.99
64	WCEC_03	1,219	844,987	93.2	94.6	93.Z	6,782	Gas MMCF ->	5,730,290	1,000,000	5,730,290	28,587,106	3,38	4.99
65	DESOTO	25	4,898					SOLAR				•••••		
66	SPACE COAST	10	1,695					SOLAR						
67														
08	TUTAL	24,891	9,858,104				8,090	Gas MMCF ->	55,551,121		79,752,616	357,142,321	3.62	
09								Nuclear Othr ->	16,060,425					
70		D 1 11						Coal TONS >	268,191					
71		renodhours>		744				Heavy Oil BBLS ->	459,488					

Pailed Sep-2012 Entimated For The Paired 67: 91/2012 Thu 90/07012 (A) (B) (C) (D) (E) (P) (G) (P) (D)		Company:	Florida Power & Light									Schedule E4			
Image: constrained for The Finded: 91/2012 The 99/2012 Image: constrained for The Finded: 91/2012 The 99/2012 Image: constrained for The Finded: 91/2012 The 99/2012 Image: constrained for The Finded: Net Aregin Finde Net		Period:	Sep-2012												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Estimated F	or The Period	lof:	9/1/2012	Thru	9/30/2012				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		(A)	(B)	(C)	 (D)	 (E)	 (F)	(G)	(H)	(I)	(J)	 (K)	(L)	(M)	(N)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuei Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 2	TURKEY POINT 1	378	30,505	22,3	94.9	73.2	10,221	Heavy Oil BBLS -> Gas MMCF ->	46,018 324,563	6,399,996 1,000,000	294,515 324,563	4,377,545	14,35 5.80	95.13 5.38
5 TURKEY POINT 3 802 563,003 97.5 97.4 97.5 11,323 Nuclear Oth > 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 6,374,885 1,000,000 4,785,612 2,537,117 3,66 1 1,1703 1,1703 1,033 64,84 8,103 1,113,54 8,596,212 6,374,885 1,000,000 1,113,548 5,596,214 4,35 11 1,1703 1,123 1,113,148 1,014,144 1,113,15 1,000,000 1,215,156 6,095,1166 4,33 11 1,244,444 0 0,00 0 0 0 0 0 0 0 0 0 0 0 0	- 3 4	TURKEY POINT 2	378	0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0	0		
6 TURKEY POINT 4 693 466,491 97.5 97.5 97.5 97.5 11.371 Nuclear Ontr> 5311.336 1,000,000 5,318.36 1,356.2 3,562,700 0.73 7 TURKEY POINT 5 1,033 693,001 91.5 6,98 Gas <mmcr> 00</mmcr>	5	TURKEY POINT 3	802	563,003	97.5	98.4	97.5	11,323	Nuclear Othr ->	6,374,885	1,000,000	6,374,885	4,694,400	0.83	0.74
7 TURKEY POINT 5 1,053 693,801 91,5 94,9 91,5 6,498 Case MACP > 4,785,512 1,000,00 4,785,512 2,537,137 3,66 9 137,003 137,003 137,003 137,003 0<	6	TURKEY POINT 4	693	486,491	97,5	97.5	97.5	11,371	Nuclear Othr ->	5,531,836	1,000,000	5,531,836	3,562,700	0.73	0.64
8 LADDERDALE 4 918 0 4.34 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 94.8 8,102 113.548 1,000,000 1,133.44 5,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 1,233.45 6,000,000 0,00 0,00 0	7	TURKEY POINT 5	1,053	693,801	91.5	94.9	91.5	6,898	Gas MMCF ->	4,785,612	1,000,000	4,785,612	25,374,137	3.66	5.30
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	8	LAUDERDALE 4	438	0	43.4	94.8	94.8	8,128	Light Oil BBLS ->	0		0	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	9			137,003					Gas MMCF ->	1,113,548	1,000,000	1,113,548	5,956,274	4,35	5.35
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	LAUDERDALE 5	438	0	49.0	94,8	94.8	8,103	Light Oil BBLS ->	0		0	0		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	11			154,448					Gas MMCF ->	1,251,526	1,000,000	1,251,526	6,695,106	4.35	2.32
13 D D D D D D 14 PT EVERGLADES 2 205 0 0.0 0.0 0.0 Heary OII BILS > 0 0 0 15 0 0 0 0 0 0 0 0 0 16 PT EVERGLADES 3 374 0 23.9 94.9 87.1 10.434 Heary OII BILS > 0 0 0 0 17 64.466 0 0 0.0 0.0 0	12	PT EVERGLADES 1	205	0	0.0	100.0	0.0	0	Heavy Oil BBLS ->	0		U	U		
14 9T EVERCLADES 2 205 0 0 0 0 100.0 0 100.0 0 100.0 0 100.0 0 100.0 0 100.0 0	13			0					Gas MMCF ->	0		U	U		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	PT EVERGLADES 2	205	0	0.0	100.0	0.0	0	Heavy OI BBLS ->	0		0	0		
16 PT EVERGLADES 3 374 0 23.9 94.9 87.1 10.434 Heavy OII BBLS > 0 <	15			0					Gas MMCF ->	0		0	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	16	PT EVERGLADES 3	374	0	23.9	94.9	87.1	10,434	Heavy UI BBLS ->	672,610	1 000 000	672 630	3 633 541	5.62	5 10
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17			64,400				10 500	User OIDBLE >	072,030	1,000,000	072,000	3,022,343	2,02	5.55
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	18	PT EVERGLADES 4	374	0	20.1	94.9	85,2	10,398	Con MMCE >	474 100	1 000 000	574 198	1 085 307	5 60	5 27
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	19	000004	•	54,179	0.0	0.0	0.0	0		0	1,000,000	0	0,000,077	5,65	0.01
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	KIVIEKA 3	U	0	0.0	0.0	0.0	v	Car MMCE ->	ŏ		0	ő		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21		0	0	0.0	0.0	0.0	0		ő		0	ő		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	22	KIYIEKA 4	U	ő	0.0	0.0	0.0	v	Gas MMCF ->	â		ō	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	CT LUCID 1	061	674 620	075	08.1	975	10 777	Nuclear Othr ->	7.270.387	1.000.000	7,270,387	5,137,900	0,76	0.71
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	24	ST LUCIE 2	701	014,020	0.0	0.0	0.0	0	Nuclear Othr ->	0	-,	0	, o		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	76	CADE CANALERAL 1	/45	õ	0.0	0.0	0.0	õ	Heavy Oil BBLS ->	0		0	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	CAFE CANAVERAL I	v	õ	0,0	0,0	0.0	·	Gas MMCF ->	0		0	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	78	CADE CANAURDAL 2	٥	õ	0.0	0.0	0.0	٥	Heavy Oil BBLS ->	Ō		0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20	CALL CHARACTERAD 2	v	õ	0.0	0,0	0.0	•	Gas MMCF ->	0		0	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	CUTT FR S	68	Ő	0.0	100.0	00	0	Gas MMCF ->	0		0	0		
SALE COLLENCE 1,349 653,558 67.3 94.9 94.1 7,134 Gas MMCF -> 4,662,683 1,000,000 4,662,683 23,967,954 3,67 33 FORT MYERS 2 1,349 653,558 67.3 94.9 94.1 7,134 Gas MMCF -> 4,662,683 1,000,000 4,662,683 23,967,954 3,67 34 Identities of the state of the st	1	CUTTIER 6	117	Ď	0.0	100.0	0.0	0	Gas MMCF ->	0		0	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	FORT MYERS 2	1 349	653,558	67.3	94.9	94.1	7.134	Gas MMCF ->	4,662,683	1,000,000	4,662,683	23,967,954	3,67	5.14
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33	FORT MYERS 3A B	296	0	17.7	94.9	94.9	14,350	Light Oil BBLS ->	0		0	0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	34			18,815					Gas MMCF ->	270,001	1,000,000	270,001	1,444,447	7,68	5.35
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	35	SANFORD 3	138	0	0.0	100.0	0.0	0	Gas MMCF ->	0		0	0		
37 SANFORD 5 901 503,649 77.6 94.9 93.2 7,097 Gas MMCF -> 3,574,513 1,000,000 3,574,513 18,448,780 3.66 38 PUTNAM 1 239 0 32.5 95.0 95.0 8,972 Light Oil BBLS -> 0 0 0 0 0 36 39 Cras MMCF -> 501,281 1,000,000 501,281 2,681,001 4.80 40 PUTNAM 2 239 0 32.3 95.0 95.0 8,991 Light Oil BBLS -> 0 0 0 41 55,646 550,287 1,000,000 500,287 2,675,611 4.81	36	SANFORD 4	905	577,202	88.6	94.9	92,8	7,019	Gas MMCF ->	4,051,194	1,000,000	4,051,194	20,933,792	3.63	5.17
38 PUTNAM ! 239 0 32.5 95.0 8,972 Light Oil BBLS -> 0 0 0 39 55,874 Cas MMCF -> 501,281 1,0000,000 501,281 2,681,001 4.80 40 PUTNAM 2 239 0 32.3 95.0 8,991 Light Oil BBLS -> 0 0 0 0 41 55,646 Gas MMCF -> 500,287 1,000,000 500,287 2,675,611 4.81	37	SANFORD 5	901	503,649	77.6	94,9	93.2	7,097	Gas MMCF ->	3,574,513	1,000,000	3,574,513	18,448,780	3.66	5,16
39 Gas MMCF > 501,281 1,000,000 501,281 2,681,001 4.80 40 PUTNAM 2 239 0 32.3 95.0 95.0 8,991 Light Oil BBLS > 0 0 0 0 4.80 41 55,646 Gas MMCF > 500,287 1,000,000 500,287 2,675,611 4.81	38	PUTNAM 1	239	0	32.5	95.0	95.0	8,972	Light Oil BBLS ->	0		0	0		
40 PUTNAM 2 239 0 32.3 95.0 95.0 8.991 Light Oil BBLS >> 0 0 0 41 55.646 Gas MMCF >> 500,287 2,675,611 4.81	39			55,874					Gas MMCF ->	501,281	1,000,000	501,281	2,681,001	4,80	5,35
41 55,646 Gras MMCF -> 500,287 1,000,000 500,287 2,675,611 4.81	40	PUTNAM 2	239	0	32,3	95.0	95,0	8,991	Light Oil BBLS ->	· 0		0	0		
	41			55,646					Gas MMCF ->	500,287	1,000,000	500,287	2,675,611	4.81	5.35

÷

}

	Сотралу:	Florida Power & Light												
	Period:	Sep-2012			Estimated Fo	or The Period	lof:	9/1/2012	Thru	9/30/2012				
		(B)		 (D)	 (E)	 (F)	 (G)	 (H)	(I)	 (J)	 (K)	(L)	 (M)	(N)
	(A) Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$ /Unit)
42	MANATEE 1	788	0	0.0	3.3	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0 0	0	16.60	05.47
43 44	MANATEE 2	788	60,278 40,394	17.7	95.0	75.6	10,795	Heavy Oil BBLS -> Gas MMCF ->	104,838	6,399,998 1,000,000	670,963 415,811 4 837 933	10,008,650 2,234,130 25,273,486	5.53	5.37 5.22
, 43	MANATER 1	1.058	705,849	92.7	94,9	92.7	6,854	Gas MMCF ->	4,837,933	1,000,000	4,637,935	540 584	15.13	101.46
40	NAPTEL 3	807	3,572	2.1	95.0	61.9	10,887	Heavy Oil BBLS ->	5,328	0,399,904	05 543	508 858	6.10	5,33
47	MARINI		8,336					Gas MMCF ->	95,543	1,000,000	170 486	2 702 721	14.92	101.46
46	MARTELS	802	18,113	10.5	95.0	67.2	10,669	Heavy Oil BBLS ->	26,638	6,400,102	170,480	2 527 325	5.98	5,34
49	MARINY 2	002	42,264					Gas MMCF ->	473,091	1,000,000	989 642	5 069 240	3.84	5,12
20	MAD TIM 2	431	131,953	42.5	83.1	85.8	7,500	Gas MMCF ->	> 989,042	1,000,000	1071158	5 230 662	3.83	5,12
31	MANTINA	431	136,576	44.0	83.0	85.0	7,477	Gas MMCF	> 1,021,158	1,000,000	4 549 185	23 527 045	3.58	5.17
52	MARTIN 9	1 052	657,637	86.8	89,1	88.8	6,917	Gas MMCF	> 4,349,163	1,000,000	4,545,165	0		
33	FORT MVERS 1.12	552	0	0,0	98.4	0.0	0	Light Oil BBLS -	> 0		ő	ñ		
54	LAUDERDALE 1 24	684	ò	0.0	91.8	0.0	0	Light Oil BBLS -	> 0		ő	ň		
33	LAUDERDALS 1-24	007	0					Gas MMCF ->	> 0		ò	ň		
20	EVERCIADES 1 12	347	0	0.0	88.4	0.0	0	Light Oil BBLS	> 0		0	õ		
57	EVERGLADES 1-12	542	Ď					Gas MMCF -	> U	07 070 0 4 0	677 660	2 426 900	3.95	96.90
28	CT TOTALS 10	124	61,456	68.8	94.0	68.8	10,213	Coal TONS -	> 25,046	25,060,289	652 014	2 521 100	3.91	96.89
39	ST JOHNS TO	124	64,440	72.2	94.2	72.2	10,118	Coal TONS -	> 26,019	25,059,535	2 559 030	8 3 19 700	2 42	40.91
60	ST JOHNS 20	629	343.817	75.9	93.8	75.9	10,351	Coal TONS -	> 203,368	17,499,993	5,556,957	78 349 794	3.57	5.18
61	SCHERER 4	1 210	793,898	90.5	94.6	90.5	6,898	Gas MMCF -	> 5,476,319	1,000,000	3,470,313	20,671,029	3 59	5.09
62	WCEC_01	1,219	575 671	65.6	66.9	67.2	7,054	Gas MMCF -	> 4,060,744	1,000,000	4,000,744	28,071,027	3 45	5.09
· 63	WCEC_02	1,219	814 205	92.8	94.6	92.8	6,781	Gas MMCF -	> 5,521,359	1,000,000	3,321,335	20,100,207	2,	
64	WCEC_03	25	4.356					SOLAR						
65	DESCIO	. 10	1 501					SOLAR						
66	SPACE CUASI	10	1,201								74 000 704	201 410 040	3 78	
67	TOT 11	74 RQ1	9 212 636				8,127	Gas MMCF -	> 49,723,41	2	74,909,206	302,419,349		
68	TOTAL	24,071						Nuclear Othr -	> 19,177,10	8				
69								Coal TONS -	> 254,43	3				
70		Red dlaure		7	20			Heavy Oil BBLS	> 182,82	2				
71		renounours						Light Oil BBLS .	>	0				

Schedule E4

Florida Power & Light

•	Company:	Florida Power & Light									Schedule E4			
	Period:	Oct-2012							·····					
					Estimated F	or The Period	of:	10/1/2012	Thru	10/31/2012				
	(A)	 (B)	(C)	(D)	(E)	(F)	 (G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit}
1 2	TURKEY POINT 1	378	12,913	10.2	94.9	62.9	10,496	Heavy Qil BBLS -> Gas MMCF ->	19,688	6,400,041 1,000,000	126,004 175,744	1,820,705 949,050	14.10 5.99	92.48 5.40
3	TURKEY POINT 2	378	0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	Ó G		0	0 D		
5	TURKEY POINT 3	802	581,769	97.5	98.4	97.5	11,323	Nuclear Othr ->	6,587,381	1,000,000	6,587,381	4,850,900	0.83	0.74
· 6	TURKEY POINT 4	693	502,707	97.5	97.5	97.5	11,371	Nuclear Othr ->	5,716,230	1,000,000	5,716,230	3,681,400	0.73	0.64
7	TURKEY POINT 5	1,053	710,512	90.7	95,0	90,7	6,906	Gas MMCF ->	4,906,743	1,000,000	4,906,743	26,457,839	3,72	5.39
8	LAUDERDALE 4	438	0	35.6	94.8	94.0	8,168	Light Oil BBLS ->	0		0	0		
9			116,144					Gas MMCF ->	948,604	1,000,000	948,604	5,130,043	4.42	5.41
10	LAUDERDALE 5	438	0	41.8	94.8	94.2	8,135	Light Oil BBLS ->	0		0	0		
11			136,172					Gas MMCF ->	1,107,818	1,000,000	1,107,818	5,984,209	4.39	5.40
12	PT EVERGLADES 1	205	0	0,0	100.0	0.0	0	Heavy Oil BBLS ->	0		0	0		
13			0					Gas MMCF->	0		0	0		
14	PT EVERGLADES 2	205	0	0.0	100.0	0.0	0	Heavy Oil BBLS ->	0		0	0		
35			Û					Gas MMCF ->	0		0	0		
16	PT EVERGLADES 3	374	0	0.0	94.9	0.0	0	Heavy Oil BBLS ->	0		0	D		
17			0					Gas MMCF ->	0		0	0		
18	PT EVERGLADES 4	374	0	0.0	94,9	0.0	0	Heavy Oil BBLS ->	0		0	0		
19			0					Gas MMCF ->	0		U	0		
20	RIVIERA 3	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS ->	v		Ű	U		
21		_	U				_	Gas MMUF->	0		0	0		
22	RIVIERA 4	Q	U	0.0	0.0	0.0	0	Heavy OII BBLS ->	U O		0	0		
23	the state of the second st	• •	0					Gas MMCF->		1 000 000	7 (12 72)	U 200 200	0.76	0.71
24	ST LUCIE I	961	697,107	97.5	98.1	97.5	10,777	Nuclear Other	7,312,732	1,000,000	1.512,151	3,309,200	0.74	0.74
25	ST LUCIE 2	743	0	0.0	0.0	0.0	0	NUCLEAR OTH ~	0		0	0		
20	LAPE CANAVERAL 1	0	0	0.0	0,0	0.0	U	C LOACE >	0		0	0		
27	CIDE CANASER (L. A.	0	U A		~ ~		•	Uas Musici ~	0		0	0		
20	CAPE CANAVERAL Z	U	U O	0.0	0,0	0.0	0	Con MACE ->	0		0	0		
10	מל דדו א	29	õ	0.0	100.0	0.0	0	Gas MMCF ->	ň		å	0		
31	CULERS	137	Ň	0.0	100.0	0.0	0	Gas MMCF ->	Ň		0	ů		
32	FORT MYERS 2	1349	493 862	49.2	82.0	82.8	7 788	Gas MMCF ->	3 599.245	1.000.000	3.599.245	19.041.477	3,86	5.29
33	FORT MYERS 14 B	796	0	18 2	94.9	94.9	14 371	Light Oil BBLS ->	0	-,	0	0		
34	TORC MILLO M. D	270	20 079	10.2	24.2	74.7	1-1,5 / 1	Gas MMCF ->	288,533	1.000.000	288,533	1.554.333	7.74	5,39
35	SANFORD 1	138	0	0.0	100.0	0.0	n	Gas MMCF ->	0	., ,	0	0		
36	SANFORD 4	905	409.885	60 9	77.2	78 (7.294	Gas MMCF ->	2,989,883	1,000,000	2,989,883	15,850,194	3,87	5.30
37	SANFORD 5	901	324,260	48.4	94.9	78.2	7.437	Gas MMCF ->	2,411,620	1,000,000	2,411,620	12,783,377	3.94	5.30
38	PUTNAM 1	239	0	24,7	83.7	83.0	9,245	Light Oil BBLS ->	0		0	0		
39		-	43,836					Gas MMCF ->	405,248	1,000,000	405,248	2,188,039	4.99	5.40
40	PUTNAM 2	239	0	25,7	95.0	95.0	8,995	Light Oil BBLS ->	0		a	0		
, 4 1			45,653					Gas MMCF ->	410,633	1,000,000	410,633	2,213,713	4.85	5.39

	Сотралу:	Florida Power & Light										Schedule E4			
	Perio d:	Oct-2012													
					Estimated Fo	or The Period	l of :	10/	1/2012	Thru	10/31/2012				
	 (A)	(B)	(C)	 (D)	 (E)	(F)	(G)		(H)	(T)	 (J)	 (K)	 (L)	(M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	נ ר	Fuel Гуре	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
2	MANATEE 1	788	0	0.0	0.0	0.0	0	Heavy	Oil BBLS ->	0		0	0		
3 4 5	MANATEE 2	788	31,623 22,115	9.2	95.0	64,3	11,023	Heavy Gas	Oil BBLS -> MMCF ->	56,807 228,780	6,400,056 1,000,000	363,568 228,780	5,272,813 1,239,925	16.67 5.61	92.82 5.42
6	MANATEE 3	1,058	722,291	91.8	94.9	91.8	6,862	Gas	MMCF ->	4,956,171	1,000,000	4,956,171	26,474,223	3.67	5.34
7	MARTIN 1	802	2,159	1.2	95.0	56.1	11,050	Heavy	Oil BBLS ->	3,239	6,400,123	20,730	320,052	14.82	98,81
8			5,037		<i></i>			Gas	MMCF ->	58,789	1,000,000	58,789	317,393	0.30	0.4U 09.91
9	MARTIN 2	802	7,044	3.9	62.7	61.0	10,819	Fleavy	ULBBLS >	10,418	1,000,000	187 352	1,029,380	616	5 40
U 1	MADTINI 1	421	10,430	15.0	83.5	78.7	7 503	Gas	MMCF ->	852 612	1,000,000	852 612	4.487.058	4.00	5.26
2	MARTINA	431	146 171	45.6	94.7	94 7	7 408	Gas	MMCF ->	1,082,887	1,000,000	1,082,887	5,699,017	3,90	5 26
ĩ	MARTIN 8	1.052	640 899	819	85.2	85.9	6.940	Gas	MMCF ->	4,448,030	1,000,000	4,448,030	23,601,942	3.68	5.31
4	FORT MYERS 1-12	552	0	0.0	98.4	0.0	0	Light	Oil BBLS ->	Ó	• •	0	0		
5	LAUDERDALE 1-24	684	ō	0.0	91.8	0.0	0	Light	Oil BBLS ->	0		0	0		
6			0					Gas	MMCF ->	0		0	0		
7	EVERGLADES 1-12	342	0	0,0	88.4	0.0	0	Light	Oil BBLS ->	0		0	0		
8			0					Gas	MMCF ->	0		0	0		
9	ST JOHNS 10	124	59,724	64.7	94.0	64.7	10,281	Coal	TONS ->	24,502	25,059,913	614,018	2,406,800	4.03	98,23
0	ST JOHNS 20	124	64,117	69.5	94.3	69.5	10,161	Coal	TONS ->	25,997	25,060,045	651,486	2,553,600	3.98	98.23
1	SCHERER 4	629	354,125	75.7	93,8	75.7	10,353	Coal	TONS >	209,506	17,500,014	3,666,358	8,570,800	2.42	40.91
2	WCEC_01	1,219	804,153	88.7	94.7	88.7	6,919	Gas	MMCF ->	5,563,712	1,000,000	5,563,712	29,334,220	3.65	5.27
3	WCEC_02	1,219	812,726	89.6	94.7	89.6	6,911	Gas	MMCF ->	5,616,804	1,000,000	5,616,804	29,386,822	3.62	5.23
4	WCEC_03	1,219	830,431	91.6	94.6	91.6	6,794	Gas	MMCF ->	5,641,881	1,000,000	5,641,881	29,518,049	3,55	5.23
5	DESOTO	25	4,204					SO)LAR						
6 7	SPACE COAST	10	1,446					\$0)LAR						
8	TOTAL	24,891	8,747,723				8,140	Gas	MMCF ->	45,881,087		71,206,267	279,039,299	3.19	
9								Nucl	lear Othr ->	19,816,342					
0								Coal	TONS ->	260,005					
1		PeriodHours ->		74	4			Heavy Light	OF BBLS ->	90,152					

Priod Nov-2012 Extransical file: The Period of: 11/1/2012 Time 11/202012 How 2015 Image: Constraint of the Period of: 11/1/2012 Time 11/202012 Time 11/202012 Time 11/202012 Image: Constraint of the Period of: Constraint of the Period of: Constraint of the Period of: Time 11/202012 Time 11/202012 Time Period Constraint of the Period of: Period Constraintof the Period of: Period Constraintof t		Company:	Florida Power & Light									Schedule E4			
Image: constrained first the Period of: IL/1/2012 Time JJ002012 (A) (B) (C)		Period:	Nov-2012												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						Estimated Fo	or The Period	of:	11/1/2012	Thru	11/30/2012				
Part Unit Net Capability (MW) Net (W) Part (W) Fuel (P) Fuel (P) </th <th></th> <th> (A)</th> <th> (B)</th> <th>(C)</th> <th> (D)</th> <th> (E)</th> <th>(F)</th> <th>(G)</th> <th>(H)</th> <th>(1)</th> <th>(J)</th> <th>(K)</th> <th>(L)</th> <th>(M)</th> <th>(N)</th>		 (A)	 (B)	(C)	 (D)	 (E)	(F)	(G)	(H)	(1)	(J)	(K)	(L)	(M)	(N)
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
1 TURKEY POINT 2 380 0 0.0 0.0 0.0 Herry GIBLLS - 0 0 0 0 1 TURKEY POINT 3 82.6 579.855 97.5 98.4 97.5 11.0994 Nacker Ohr - 5 373.619 1.000,000 77.171 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 473.600 0.71 478.91 1.000,000 773.619 1.000,000 737.619 1.000,000 737.619 1.000,000 737.619 1.000,000 737.619 1.000,000 737.619 1.000,000 737.619 1.000,000 632.669 1.644.44 4.42 5.48 11 71 0 0 0 0 0 0 0 0 0 0 0 0 0	1	TURKEY POINT 1	380	851 4,745	2.0	94.9	36.8	11,566	Heavy Oil BBLS -> Gas MMCF ->	1,372 55,931	6,401,603 1,000,000	8,783 55,931	129,700 305,102	15.24 6.43	94.53 5.46
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	TURKEY POINT 2	380	0 0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0 0		0 0	0 0		
	. 5	TURKEY POINT 3	826	579,855	97.5	98,4	97.5	10,994	Nuclear Othr ->	6,374,884	1,000,000	6,374,884	4,694,400	0.81	0,74
7 TURKEY POINT 5 1,14 447379 58.3 86.9 93.4 6,521 Gas MACP 3,234,678 1,7,82,017 3.80 5.50 9 78,454 78,454 -	6	TURKEY POINT 4	717	67,111	13.0	13.0	97.5	10,991	Nuclear Othr ->	737,619	1,000,000	737,619	475,000	0.71	0.64
s LAUDERDALE 4 447 0 24' 9.8 90.9 8,064 Light Oli BBLS > 0 0 0 0 10 LAUDERDALE 5 447 0 32.2 9.8 91.4 8,077 Light Oli BBLS > 0 <td>7</td> <td>TURKEY POINT 5</td> <td>1,114</td> <td>467,379</td> <td>58,3</td> <td>80.9</td> <td>93.4</td> <td>6,921</td> <td>Gas MMCF -></td> <td>3,234,678</td> <td>1,000,000</td> <td>3.234,678</td> <td>17,782,017</td> <td>3,80</td> <td>5.50</td>	7	TURKEY POINT 5	1,114	467,379	58,3	80.9	93.4	6,921	Gas MMCF ->	3,234,678	1,000,000	3.234,678	17,782,017	3,80	5.50
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	8	LAUDERDALE 4	447	0	24.4	94.8	90.9	8,064	Light Oil BBLS ->	0		0	0		
10 LAUDERDALE 5 447 0 32.2 94.8 91.4 8,077 Lagit Out BISL 5-5 0 </td <td>9</td> <td></td> <td></td> <td>78,454</td> <td></td> <td></td> <td></td> <td></td> <td>Gas MMCF ></td> <td>632,636</td> <td>1,000,000</td> <td>632,636</td> <td>3,464,844</td> <td>4.42</td> <td>J.48</td>	9			78,454					Gas MMCF >	632,636	1,000,000	632,636	3,464,844	4.42	J.48
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	LAUDERDALE 5	447	0	32.2	94.8	91.4	8,077	Light Oil BBLS ->	0	1 000 000	10 1027-006	4 693 004	4.42	6 47
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	11			103,736				•	Gas MMUF->	837,905	1,000,000	637,905	4,583,904	4.42	3.47
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	12	PT EVERGLADES 1	207	0	0.0	100.0	0.0	U	Heavy OL BBLS ->	0		0	0		
14 PT EVERGLADES 2 207 0 0 00 100 0.0 0.0 100.0 0.0 100.0 0.0 100.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0	13			U	~ ~	100.0		^	Gas MMCr ->	0		0	ő		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	14	PT EVERGLADES 2	207	U O	0.0	100,0	0.0	v		ő		0	õ		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	15		776	0	0.0	04.0	0.0	0	Hamay Oil BBI S ->	ñ		0	ŏ		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	10	PI EVERGLADES 3	370	0	0.0	94.9	0.0	U	Gas MMCE ~>	ň		ő	õ		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	17	BT EVER CLADES A	176	0	0.0	94.9	0.0	0	Heavy Oil BBLS ->	õ		ō	ō		
20 RIVIERA 3 0 0.0 <	10		5,0	ő	0.0		0.0	•	Gas MMCF ->	0		0	0		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	RIVIERA 3	0	ō	0.0	0.0	0.0	0	Heavy Oil BBLS ->	0		0	0		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	21		-	0					Gas MMCF ->	0		0	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	RIVIERA 4	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS ->	0		0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· 23			0					Gas MMCF ->	0		0	0		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	ST LUCIE 1	975	684,449	97.5	98. l	97,5	10,623	Nuclear Othr ->	7,270,940	1,000,000	7,270,940	5,138,300	0.75	0.71
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25	ST LUCIE 2	836	29,328	4.9	16.3	29.2	10,552	Nuclear Othr ->	309,469	1,000,000	309,469	230,400	0.79	0.74
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	26	CAPE CANAVERAL I	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS ->	0		0	0		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	27			0					Gas MMCF ->	0		0	0		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	CAPE CANAVERAL 2	0	0	0.0	0,0	0.0	0	Heavy Oil BBLS ->	0		U	U		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	29			0					Gas MMCF ->	0		0	U		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	30	CUTLER 5	69	0	0.0	100.0	0.0	0	Gas MMCF ->	U		0	U		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31	CUTLER 6	138	0	0.0	100.0	0.0	0	Gas MMCF->	2 010 967	2 000 000	3 010 947	11 226 500	2.00	5.46
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	32	FORT MYERS 2	1,440	546,580	52.7	84.9	80.9	7,100	Units MINICE	0,00,007	1,000,000	0,910,807	0	5.70	5.40
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	33	FORT MYERS 3A_B	328	7167	0,1	94.9	94.9	13,704	Cas MMCE ->	98 508	1,000,000	98 508	538 890	7 53	5 47
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	34	CANEORD 1	140	,137	0.0	100.0	0.0	0	Gas MMCF ->	0	1,000,000	0	0		
36 SANFORD 4 953 943,603 503 614 60.5 7,216 Gas MMCF \rightarrow 2,11,433 11,466,779 3,96 5,43 37 SANFORD 5 952 289,790 42.3 94.9 86.5 7,286 Gas MMCF \rightarrow 2,11,433 11,466,779 3,96 5,43 38 PUTNAM 1 248 0 12.0 95.0 87.9 8,964 Light Oil BBLS \rightarrow 0 <	33	SANFORD J	140	245 902	50.2	874	86.8	7210	Gas MMCF ->	2 496 342	1 000 000	2,496,342	13.623.740	3.94	5.46
38 PUTNAM 1 248 0 12.0 95.0 87.9 8,964 Light Oil BBLS \rightarrow 0 0 0 39 21,368 Gas MMCF \rightarrow 191,543 1,000,000 191,543 1,046,322 4.90 5.46 40 PUTNAM 2 248 0 6.3 95.0 95.0 8,905 Light Oil BBLS \rightarrow 0 0 0 40 PUTNAM 2 248 0 6.3 95.0 95.0 8,905 Light Oil BBLS \rightarrow 0 0 0	30	SANDORD 4	953	289 790	42.3	94.9	86.5	7 286	Gas MMCF ->	2.111.433	1,000,000	2,111,433	11,466,779	3,96	5.43
39 Cas MMCF -> 191,543 1,000,000 191,543 1,046,322 4.90 5.46 40 PUTNAM 2 248 0 6.3 95.0 95.0 8,905 Light Oil BBLS -> 0 <td>19</td> <td>DITINAN I</td> <td>748</td> <td>0</td> <td>12.0</td> <td>95.0</td> <td>87.9</td> <td>8 964</td> <td>Light Oil BBLS -></td> <td>0</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td>	19	DITINAN I	748	0	12.0	95.0	87.9	8 964	Light Oil BBLS ->	0		0	0		
40 PUTNAM 2 248 0 6.3 95.0 95.0 8,905 Light Oil BBLS -> 0 0 0 40 PUTNAM 2 248 0 6.3 95.0 95.0 8,905 Light Oil BBLS -> 0 0 0 0	70	LOTIVANT	270	21 368	12.0	22.0	•	0,701	Gas MMCF ->	191,543	1,000,000	191,543	1,046,322	4,90	5.46
Gee MM/CF -> 100 740 100 000 100 740 551 006 4 87 5 47	40	PITNAM 2	748	0	6.3	95.0	95.0	8,905	Light Oil BBLS ->	Ó		ò	0		
41 11.515 URD MIRCL - 100,170 1,003,000 100,170 551,000 4.01 5.11	`4I		2.0	11,313					Gas MMCF ->	100,740	1,000,000	100,740	551,006	4,87	5.47

÷

	Company:	Florida Power & Light										Schedule E4			
	Period:	Nov-2012													
					Estimated Fo	or The Period	1 of :	11/1/201	2	Thru 	11/30/2012				
	(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)		(I)	(J)	 (K)	(L)	(M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type		Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
12	MANATEE 1	798	0	0.0	0.0	0.0	0	Heavy Oil Bl	BLS ->	0		0	0		
44 45	MANATEE 2	798	4,243 5,986	1.8	95.0	37.7	11,331	Heavy Oil Bl Gas MM	BLS ->	8,045 64,417	6,400,000 1,000,000	51,488 64,417	763,200 350,794	17,99 5,86	94.87 5.45
16 17	MANATEE 3 MARTIN 1	1,117 808	493,293 0	61.3 0,0	77,4 95.0	78.7 0.0	6,962 0	Gas MM Heavy Oil Bl	4CF -> BLS ->	3,434,492 0	1,000,000	3,434,492 0	18,733,258 0	3,80	\$,45
18 19 10	MARTIN 2	808	0	0,0	95.0	0.0	0	Gas MM Heavy Oil Bl Gas MM	ACF -> BLS -> ACF ->	0		0	0		
i1 52	MARTIN 3 MARTIN 4	462 462	115,802 125,854	34.8 37.8	94.8 94.7	92.2 93.9	7,374 7,338	Gas MM Gas MM	4CF ->	853 948 923 497	1,000,000 1,000,000	853,948 923,497	4,610,542 4,987,140	3.98 3.96	5,40 5,40
i3 54	MARTIN 8 FORT MYERS 1-12	1,112 627	597,736 0	74.7 0.0	81.6 98.4	80.6 0.0	6,850 0	Gas MM Light Oil Bl	ACF -> BLS ->	4,094,550 0	1,000,000	4,094,550 0	22,311,008 0	3.73	3,45
i5 56	LAUDERDALE 1-24	766	0 0	0.0	91.8	0.0	0	Light Oil BI Gas MM	BLS -> ACF ->	0 0		0 0	0 0		
17 18	EVERGLADES 1-12	383	0 0	0.0	88.4	0.0	0	Light Oil BI Gas MM	BLS -> 1CF ->	0		0	0 0		
9 10	ST JOHNS 10 ST JOHNS 20	124 124	50,206 \$5,790	56.2 62.5	94.0 94.2	56.2 62.5	10,368 10,203	Coal TC Coal TC	ONS -> ONS ->	20,771 22,714	25,060,324 25,059,743	520,528 569,207	2,055,600 2,247,900	4,09 4.03	98.96 98.97
51 52	SCHERER 4 WCEC_01	635 1,335	355,859 620,368	77,8 64.5	93.8 78.0	77.8 89.4	10,253 6,851	Coal TO Gas MM	ONS -> ACF ->	208,483 4,250,426	17,500,036	3,648,460 4,250,426	8,545,400 22,954,266	2.40 3.70	40.99 5.40
53 54 55	WCEC_02 WCEC_03 DESOTO	1,335 1,335 25	867,576 892,056	90.3 92.8	94.7 94.6	90.3 92.8	6,846 6,707 ·	Gas MM Gas MM	ACF -> ACF ->	5,939,688 5,983,047	1,000,000	5,939,688 5,983,047	32,016,502 32,250,211	3.69	5.39 5,39
6	SPACE COAST	10	1,236					SOLAR							
8	TOTAL	26,156	7,427,518				7,904	Gas MM Nuclear (1CF -> Othr ->	39,214,646 14,692,912		58,706,024	237,192,825	3.19	
1		PeriodHours>		720)			Coal TC Heavy Oil BI	UNS-> BLS->	251,968 9,417					

}

.

.

	Company:	Florida Power & Light									Schedule E4			
,	Period:	Dec-2012												
					Estimated Fo	or The Period	of:	12/1/2012	Thru	12/31/2012				
	(A)	(B)	(C)	(D)	(E)	 (F)	 (G)	(H)	(I)	 (J)	(K)	(L)	(M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fuel Type	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost of Fuel (\$/Unit)
1	TURKEY POINT 1	380	674 793	0.5	94.9	48.2	10,832	Heavy Oil BBLS -> Gas MMCF ->	1,048	6,396,947 1,000,000	6,704 9,176	98,700 52,399	14.64 6.61	94.18 5.71
3	TURKEY POINT 2	380	0	0.0	0,0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	· 0 • 0		0	0		
5 6	TURKEY POINT 3 TURKEY POINT 4	826 717	599,183 0	97.5 0.0	98,4 0.0	97.5	10 ,994	Nuclear Othr -> Nuclear Othr ->	6,587,380 0	1,000,000	6,587,380 0	4,850,900 0	0.81	0.74
7	TURKEY POINT 5	1,114	358,313	43.2	55.8	89.8 87.6	6,954 8.098	Gas MMCF -> Light Oil BBLS ->	2,491,525	1,000,000	2,491,525 0	14,358,265 0	4.01	5.76
`ĝ	LAUDERDALE 4	447	50,130	13,1	24.0	87.0	0,070	Gas MMCF ->	405,942	1,000,000	405,942	2,332,396	4.65	5.75
10 11	LAUDERDALE 5	447	0 75,801	22.8	94,8	88.3	8,073	Gas MMCF ->	611,961	1,000,000	0 611,961	3,515,703	4.64	5 74
12	PT EVERGLADES 1	207	0	0.0	100.0	0,0	0	Heavy Oil BBLS -> Gas MMCF ->	- 0 - 0		0	0		
14	PT EVERGLADES 2	207	0	0.0	100.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	• • •		0	0		
16	PT EVERGLADES 3	376	0	0.0	94.9	0,0	0	Heavy Oil BBLS -> Gas MMCF ->	- 0 - 0		0	0		
18	PT EVERGLADES 4	376	0	0.0	94.9	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	0		0	0		
20	RIVIERA 3	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	- 0 - 0		0	0		
22	RIVIERA 4	0	0	0.0	0.0	0.0	0	Heavy Oil BBLS -> Gas MMCF ->	• 0 • 0		0	0		
24	ST LUCIE 1	975	707,263	97.5	98.1	97.5	10,623	Nuclear Othr~>	7,513,307	1,000,000	7,513,307	5,309,600	0,75	0.71
25 26	ST LUCIE 2 CAPE CANAVERAL 1	836 0	547,460 0	88.1 0.0	97.5 0.0	88.1	10,552	Heavy Oil BBLS ->	· 0	1,000,000	0	4,500,000	0.75	0.74
27 28	CAPE CANAVERAL 2	0	0	0.0	0.0	0.0	0	Gas MMCF Heavy Oil BBLS	- 0 - 0		0	0		
29	· · · · · ·	0	0	2.0	0.0	0.0	0	Gas MMCF ->	· 0		0	0		
30	CUTLER 5	0	0	0.0	0,0	0.0	0	Gas MMCF ->	• 0		ũ	Ď		
32	FORT MYERS 2	1 440	533,159	49.8	94.9	91.6	7,109	Gas MMCF ->	3,790,222	1,000,000	3,790,222	21,705,773	4,07	5.73
33	FORT MYERS 3A_B	328	0	1.4	94,9	94,8	13,722	Light Oil BBLS -> Gas MMCF ->	0	1,000,000	0 23,478	0 134,782	7.88	5.74
35	SANFORD 3	0	0	0.0	0,0	0.0	0	Gas MMCF ->	• 0		0	0		
36	SANFORD 4	955	257,731	36.3	70.7	72.0	7,325	Gas MMCF →	1,887,781	1,000,000	1,887,781	10,795,550	4.19	5.72
37	SANFORD 5	952	186,132	26.3	94,9	67.9	7,427	Gas MMCF ->	1,382,385	1,000,000	1,382,385	7,871,228	4,23	5.69
38 39	PUTNAM I	248	0 8,911	4.8	95.0	76.4	9,261	Light Oil BBLS -> Gas MMCF ->	0 82,529	1,000,000	0 82,529	0 473,671	5.32	5.74
40 41	PUTNAM 2	248	0 7,039	3.8	95,0	72.8	9,377	Light Oil BBLS -> Gas MMCF ->	0 65,992	1,000,000	0 65,992	0 378,668	5.38	5.74

	Company:	Florida Power & Light										Schedule E4			
	Period:	Dec-2012													
					Estimated F	or The Period	1 of :	12/1/2	:012	Thru	12/31/2012				
		 (B)	(C)	 (D)	 (E)	 (F)	(G)	(H))	(I)	(J)	 (K)	(L)	 (M)	(N)
	Plant Unit	Net Capability (MW)	Net Gen (MWH)	Capacity FAC (%)	Equiv Avail FAC (%)	Net Out FAC (%)	Avg Net Heat Rate (BTU/KWH)	Fue Typ	el De	Fuel Burned (Units)	Fuel Heat Value (BTU/Unit)	Fuel Burned (MMBTU)	As Burned Fuel Cost (\$)	Fuel Cost per KWH (C/KWH)	Cost o Fuel (\$/Uni
2	MANATEE 1	798	0	0.0	0.0	0.0	0	Heavy Oil	BBLS ->	0		0	0		
	MANATEE 2	798	0 3,195 5 107	1,4	95.0	40.0	10,984	Gas N Heavy Oil Gas N	AMCF -> BBLS-> AMCF ->	5,711 54,639	6,400,455 1,000,000	36,553 54,639	539,800 311,676	16,90 6,10	94.52 5.70
;	MANATEE 3 MARTIN 1	· 1,117 808	549,008 0	66.1 0.0	89,3 62.7	88.6 0,0	6,888 0	Gas N Heavy Oil	MMCF -> BBLS ->	3,781,345 0	1,000,000	3,781,345 0	21,692,132 0	3.95	5,74
}	MARTIN 2	808	0	0.0	95.0	0.0	0	Gas M Heavy Oil	MMCF ->	0		0	0		
)	MARTIN 3	462	0 107,480	31.3	94.8	89.1	7,377	Gas N Gas N	MMCF ->	792,895	1,000,000	792,895	4,496,191	4,18	5,67
2	MARTIN 4	462	110,655	32.2	94.7	91.8	7,322	Gas N	AMCF ->	810,178	1,000,000	810,178	4,597,737	4.16	5.67
3	MARTIN 8	1,112	524,621	63.4	94.9	79.3	6,876	Gas N	/IMCF ->	3,607,193	1,000,000	3,607,193	20,689,274	3.94	5.74
ŀ	FORT MYERS 1-12	627	0	0,0	98.4	0.0	0	Light Oil	BBLS ->	0		0	0		
i	LAUDERDALE 1-24	766	0	0.0	91.8	0,0	0	Light Oil Gas N	ibbls -> /IMCF ->	0		U 0	0		
	EVERGLADES 1-12	383	0	0.0	88.4	0.0	0	Light Oil Gan M	BBLS ->	0		0	0		
	ST TOURS 10.	174	46 506	50.4	94.0	50.4	10.558	പ്രം പ	TONS ->	19 593	25 060 226	491 005	1 943 800	4 18	99.2
	ST JOINS TO	124	51 544	550	94.3	55.9	10 384	Coal	TONS ->	21.358	25 060 199	535 240	2 118 900	4.11	99.2
	SCHERER 4	635	363.017	76.8	93.8	76.8	10,001	Coal	TONS ->	213,056	17,499,995	3,728,479	8,732,500	2,41	40.9
	WCEC 01	1 335	843 559	84.9	94 7	84.9	6 846	Gas M	MMCF ->	5,775,368	1,000,000	5,775,368	32,697,753	3.88	5.66
	WCEC 02	1 335	863,156	86.9	94.7	86.9	6,846	Gas N	MMCF ->	5,909,322	1,000,000	5,909,322	33,439,023	3,87	5,66
1	WCEC 03	1.335	898,099	90.4	94,6	90,4	6,717	Gas N	/IMCF ->	6,032,178	1,000,000	6,032,178	34,134,265	3.80	5.66
5	DESOTO	25	3,265					SOLA	AR.						
;	SPACE COAST	10	1,093					SOLA	A R						
)	. TOTAL	26,156	7,704,606				8,072	Gas M Nuclear	MMCF-> rOthu->	37,514,108 19,877,405		62,189,494	241,570,688	3.14	
J		PeriodHours>		74	4			Heavy Oil	BBLS ->	6,759					

Company: Florida Power & Light

+-

Schedule: E5 Page : 1

System Generated Fuel Cost Inventory Analysis Estimated For the Period of : July 2012 thru December 2012

			July 2012	August 2012	September 2012	October 2012	November 2012	December 2012	Totai
	Heavy Oil								
1 2 3 4	Purchases: Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)		459,488 96,9013 44,525,000	182,822 96.5256 17,647,000	70,464 96.3755 6,791,000	0 0.0000 0	0 0.0000 0	848,049 96.9838 82,247,000
5	Burned:								
8 9	Units Unit Cost Amount	(BBLS) (\$/BBLS) (\$)	135,275 98.3256 13,301,000	459,488 98.3759 45,202,550	182,822 96.4288 17,629,300	90,152 93.6568 8,443,350	9,417 94.8285 893,000	6,759 94.5406 639,000	883,913 97.4171 86,108,200
10 11	Ending Inver	itory:							
12 13 14 15 16	Units Unit Cost Amount Light Oil	(BBLS) (\$/BBLS) (\$)	3,430,000 98,0090 336,171,000	3,430,000 98.0090 336,171,000	3,430,000 98,0090 336,171,000	3,410,312 98.0271 334,303,000	3,400,895 98.0360 333,410,000	3,394,136 98.0432 332,772,000	3,394,136 98.0432 332,772,000
17									
20 21 22 23	Units Unit Cost Amount	(BBL\$) (\$/BBL\$) (\$)	0 0.0000 0	16,443 124.0041 2,039,000	0 0.0000 0	0 0.0000 0	0 0.0000 0	0 0.0000 0	16,443 124.0041 2,039,000
24 25 26 27	Burned: Units Unit Cost Amount	(BBLS) (5/BBLS) (5)	0 0.0000 0	16,443 124.0041 2,039,000	0 0000.0 0	0 0.0000 0	0 0.0000 0	0 0000.0 0	16,443 124.0041 2,039,000
29	Ending Inver	itory:	770.000	770.000	770 000	770.000	770 000	770.000	778 000
30 31 32 33	Unit Cost Amount	(\$/BBLS) (\$)	121.0506 93,209,000	121.0506 93,209,000	121.0506 93,209,000	121,0506 93,209,000	121.0506 93,209,000	121.0506 93,209,000	121.0506 93,209,000
34 35	Coal - SJRPI		_						
36 37	Purchases:								
38 39 40 41	Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	54,149 96.0129 5,199,000	54,383 96.9053 5,270,000	51,064 96.8980 4,948,000	50,498 98,2217 4,960,000	43,485 98.9537 4,303,000	40,952 99,2137 4,063,000	294,531 97,5890 28,743,000
42 43 44 45	Burned: Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	54,149 96.0129 5,199,000	54,383 96.9053 5,270,000	51,064 96.8980 4,948,000	50,498 98.2217 4,960,000	43,485 98.9537 4,303,000	40,952 99,2137 4,063,000	294,531 97.5890 28,743,000
46 47	Ending Inver	tory.	÷						
48 49 50	Units Unit Cost Amount	(Tons) (\$/Tons) (\$)	90,999 94.4846 8,598,000	90,999 94,4846 8,598,000	90,999 94,4846 8,598,000	90,999 94,4846 8,598,000	91,000 94,4835 8,598,000	91,000 94,4835 8,598,000	91,000 94.4835 8,598,000
52 53	Coal - SCHE	RER							
54 55	Purchases:								
56 57 58 59	Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	3,684,993 2,3332 8,598,000	3,741,640 2,3377 8,747,000	3,558,940 2.3378 8,320,000	3,666,355 2,3377 8,571,000	3,648,453 2.3421 8,545,000	3,728,480 2,3420 8,732,000	22,028,860 2.3384 51,513,000
60 61	Burned:	(MBTID	3 684 993	3 741 640	3 558 940	3 666 355	3 648 453	3 739 490	22.028.840
62 63 64	Unit Cost Amount	(\$/MBTU) (\$)	2,3332 8,598,000	2,3377 8,747,000	2.3378 8,320,000	2.3377 8,571,000	2.3421 8,545,000	2,3420 8,732,000	2.3384 51,513,000
65 66	Ending Inver Units	(MBTU)	5,035,414	5,035,413	5,035,416	5,035,415	5,035,416	5,035,417	30,212,491
67 68 69 70	Unit Cost Amount Gas	(\$/MBTU) (\$)	2.3333 11,749,143	2.3333 11,749,143	2.3333 11,749,143	2.3333 11,749,143	2.3333 11,749,143	2.3333 11,749,143	2.3333 70,494,857
71									
73 74 75 76	Units Units Unit Cost Amount	(MCF) (\$/MCF) (\$)	55,517,757 5.0782 281,930,080	55,551,121 5.1237 284,626,810	49,723,412 5.1792 257,527,670	45,881,086 5,2979 243,071,147	39,214,332 5,4143 212,318,275	37,513,544 5.6930 213,566,252	283,401,252 5,2683 1,493,040,233
77 78 79 80	Nuclear		_						
81 82 83 84	Burned: Units Unit Cost Amount	(MBTU) (\$/MBTU) (\$)	16,610,273 0.6983 11,599,000	16,060,425 0.6900 11,082,000	19,177,108 0,6985 13,395,000	19,816,342 0.6985 13,841,000	14,692,912 0.7171 10,537,000	19,877,405 0,7275 14,461,000	106,234,465 0.7052 74,915.000

Company: Florida Power & Light

					POW	ER SOLD				
				Estimated for t	he Period of: J	uly 2012 through	December 2012			
(1)	(2)	(3)	(4)	(5)	(6)	(7A)	(7B)	(8)	(9)	(10)
		Туре	Total	MWH	MWH From	Fuel	Total	Total \$ For	Total	\$ Gain
Month	Sold To	&	MWH	Wheeled From	Own	Cost	Cost	Fuel Adjustment	Cost \$	From Off System
		Schedule	Sold	Other Systems	Generation	(Cents / KWH)	(Cents / KWH)	(6) * (7A)	(6)*(7B)	Sales
July		OS	20,000		20,000	7.413	8.746	1, 482 ,502	1,749,102	202,800
2012	St. Lucie Rel.		35,171		35,171	0.762	0.762	267,980	267,980	
Total			55,171		55,171	3.173	3.656	1,750,482	2,017,082	202,800
August		OS	24,000		24,000	7.926	9.434	1,902,240	2,264,140	280,100
2012	St. Lucie Rel.		51,919		51,919	0.762	0.762	395,588	395,588	
Total			75,919		75,919	3.027	3.503	2,297,828	2,659,728	280,100
September		OS	12,000		12,000	6.821	8.102	818,570	972,270	119,900
2012	St. Lucie Rel.		50,244		50,244	0.762	0.762	382,827	382,827	
Total			62,244		62,244	1.930	2.177	1,201,397	1,355,097	119,900
October		OS	23,700		23,700	5.205	6.413	1,233,543	1,519,843	220,200
2012	St. Lucie Rel.		51,919		51,919	0.762	0.762	395,588	395,588	
Total			75,619		75,619	2.154	2.533	1,629,131	1,915,431	220,200
November		OS	50,500		50,500	3.335	4.653	1,684,099	2,349,799	513,400
2012	St. Lucie Rel.		50,976		50,976	0.751	0.751	382,856	382,856	
Total			101,476		101,476	2.037	2.693	2,066,955	2,732,655	513,400
December		OS	57,200		57,200	3.345	4.764	1,913,166	2,724,966	657,300
2012	St. Lucie Rel.		52,676		52,676	0.751	0.751	395,618	395,618	
Total			109,876		109,876	2.101	2.840	2,308,784	3,120,584	657,300
Period		OS	187,400		187,400	4,821	6.179	9,034,120	11,580,120	1,993,700
	St. Lucie Rel.		292,905		292,905	0.758	0.758	2,220,457	2,220,457	0
Total			480,305		480,305	2.343	2.873	11,254,577	13,800,577	1,993,700

]

Schedule: E6

Purchased Power (Exclusive of Economy Energy Purchases) Estimated for the Period of: July 2012 through December 2012

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
		Туре	Total	Mwh	Mwh	Mwh	Fuel	Total	Total \$ For
Month	Purchase From	&	Mwh	For Other	For	For	Cost	Cost	Fuel Adj
		Schedule	Purchased	Utilities	Interruptible	Firm	(Cents/Kwh)	(Cents/Kwh)	(7) x (8A)
2012	UPS		384,734			384,734	3.058		11,763,388
July	St. Lucie Rel.		40,134			40,134	0.802		321,737
	SJRPP		211,174			211,174	3.878		8,190,000
	PPAs		172,084			172,084	4.385		7,545,705
Total			808,126			808,126	3.443		27,820,830
2012	UPS		328,078			328,078	3.152		10,339,907
August	St. Lucie Rel.		5,179			5,179	0.802		41,514
	SJRPP		212,519			212,519	3.910		8,310,000
	PPAs		158,301			158,301	4.533		7,175,630
Total	···· -		704,077			704,077	3.674		25,867,051
2012	UPS		293,678			293,678	3,207		9,418,467
September	St. Lucie Rel.		-			-	-		•
	SJRPP		200,098			200,098	3.922		7,848,000
	PPAs		87,352			87,352	4,517		3,946,066
lotal			581,128			581,128	3.650		21,212,533
2012	UPS		292,359			292,359	3.207		9,3/4,708
October	St. Lucie Rel.		-			-	-		-
	SJRPP		198,403			198,403	3,993		7,922,000
	PPAS		53,028			53,028	4.672		2,477,576
Total			543 790			543 790	3 636		19 774 284
2012	1105		147 294			147 294	3.510		5 169 917
November	St. Lucie Rel		2 184			2 184	0.010		17 216
Novembe.	SIRPP		174 089			174 089	4 033		7 021 000
	PPAs		12 405			12 405	4 835		599,838
			12,400			12,400	1.000		000,000
Total			335,972			335,972	3.812		12,807,971
2012	UPS		152,098			152,098	3.498		5,320,566
December	St. Lucie Rel.		40,773			40,773	0.788		321,369
	SJRPP		160,141			160,141	4.114		6,589,000
	PPAs		6,938			6,938	5.009		347,542
Total			359,950			359,950	3.495		12,578,477
	UPS		1,598,241			1,598,241	3.215		51,386,952
Period	St. Lucie Rel.		88,270			88,270	0.795		701,836
Total	SJRPP		1,156,424			1,156,424	3.967		45,880,000
	PPAs		490,108			490,108	4.508		22,092,357
Total			3,333,043			3,333,043	3,602		120,061,145

Company: Florida Power & Light

Energy Payment to Qualifying Facilities Estimated for the Period of: July 2012 through December 2012

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8A)	(8B)	(9)
		Туре	Total	Mwh	Mwh	Mwh	Fuel	Total	Total \$ For
Month	Purchase From	æ	Mwh	For Other	For	For	Cost	Cost	Fuel Adj
		Schedule	Purchased	Utilities	Interruptible	Firm	(Cents/Kwh)	(Cents/Kwh)	(7) x (8A)
2012	Qual. Facilities		385,865			385,865	4.682		18,064,903
July									
Total			385,865			385,865	4.682		18,064,903
2012	Qual. Facilities		385,666			385,666	4.815		18,571,111
August									
Total			385,666			385,666	4.815		18,571,111
2012	Qual. Facilities		346,904			346,904	4,687		16,260,211
September									
Total			346,904			346,904	4.687		16,260,211
2012	Qual, Facilities		320,972			320,972	4.625		14,844,281
October									
Total			320,972			320,972	4.625		14,844,281
2012	Qual. Facilities		275,393			275,393	4.427		12,191,134
November									
Total			275,393	_		275,393	4.427		12,191,134
2012	Qual. Facilities		266,185			266,185	4.368		11,627,271
December									
Total			266,185			266,185	4.368		11,627,271
Period	Qual. Facilities		1,980,985			1,980,985	4.622		91,558,911
Total									
Total			1,980,985			1.980.985	4.622		91,558,911

-

Company: Florida Power & Light

Schedule: E9

Economy Energy Purchases Estimated for the Period of: July 2012 through December 2012 (1) (2) (3) (4) (5) (6) (7A) (7B) (8) Month Purchase & MWH Cost Fuel Adjustment Generated Generat Generated Gene									
(1)	(2)	(3) Type	(4) Total	(5) Transaction	(6) Total \$ For	(7A) Cost if	(7B) Cost if	(8) Fuel	
Month	Purchase	&	MWH	Cost	Fuel Adjustment	Generated	Generated	Savings	
	From	Schedule	Purchased	(Cents / KWH)	(4) * (5)	(Cents / KWH)	(\$)	(7B) - (6)	
July	Florida	OS	101,900	5,922	6,034,200	9.934	10,123,130	4,088,930	
	Non-Florida	OS	45,000	4.911	2,210,000	8.552	3,848,350	1,638,350	
	Total		146,900	5.612	8,244,200	9.511	13,971,480	5,727,280	
August	Florida	OS	100,800	5.768	5,814,400	10.070	10,150,688	4,336,288	
	Non-Florida	OS	50,000	5.000	2,500,000	8.718	4,359,000	1,859,000	
	Total		150,800	5.514	8,314,400	9.622	14,509,688	6,195,288	
September	Florida	OS	70,700	4.077	2,882,600	9,041	6,391,938	3,509,338	
	Non-Florida	OS	52,600	4.271	2,246,800	8,789	4,623,084	2,376,284	
	Total		123,300	4.160	5,129,400	8,934	11,015,022	5,885,622	
October	Florida	OS	19,800	3.327	658,650	6.984	1,382,847	724,197	
	Non-Florida	OS	23,800	3.422	814,500	6.977	1,660,522	846,022	
	Total		43,600	3.379	1,473,150	6.980	3,043,369	1,570,219	
November	Florida	OS	7,000	2,500	175,000	3.849	269,430	94,430	
	Non-Florida	OS	9,600	2.100	201,600	3.849	369,504	167,904	
	Total		16,600	2.269	376,600	3,849	638,934	262,334	
December	Florida	OS	1,300	2,500	32,500	3.927	51,051	18,551	
	Non-Florida	OS	5,300	1.981	105,000	3.805	201,676	96,676	
	Total		6,600	2.083	137,500	3.829	252,727	115,227	
Total Period	Florida	OS	301,500	5.173	15,597,350	9,409	28,369,084	12,771,734	
Period	Non-Florida	OS	186,300	4.336	8,077,900	8.085	15,062,136	6,984,236	
	Total		487 800	4 853	23 675 250	8 003	43 431 770	19 755 978	

APPENDIX II

CAPACITY COST RECOVERY

ACTUAL/ESTIMATED TRUE-UP CALCULATION

-

1

TJK-4 DOCKET NO. 120001-EI FPL WITNESS: T. J. KEITH August 1, 2012

	· · · ·									
						LOK-EI	1-6/50-11-354 PN	ved on Order	adde sy (#)	:5310 N
						14 400				
(086'261'95) \$	(826'608'55) \$	(1 ,181,12) 2	(610,202,019) \$	(165,204,2E) 2	(202'159'02) \$	· ·		-	sh 18) rder)	U End of Period True-up - Over/Ui world \$1 each 1 o mu2 yreyosaal
(220'986'2)	(5,284,023)	(2,384,023)	(520,485,2)	(220,486,2)	(2.384.023)			_		noizivor9 qu-sur1 bons9 ron9 81
2		14.45.415.1	1		(creshint)				Alancoati	() (Detected Face-bp - Over/Under)
(SES PUL PP)	(SLS POL P#)	(SLS POL PP)	(SLS POL PP)		(SES POC PP)					
(555'501'11)	(696'0/+'0)	966706	496'105'71	8987701*27	Z/Z'809'8Z				To Snimi	8.5 True-up & Interest Provision Beg vision Tobe vision - dimoM
	woo 927 97		74010001							INVOLVE IN INVESTIGATING STREET
{\$98'\$}	(\$25'5)	(EZI')	(061.5)	(1757)	(8711)					dreekd and anising terreted 21
3,001,336	(892'882'2)	(645,162,4)	(512,215)	(025,435,920)	(2,170,233)				(Under)	Recovery (Line 14 - Line 10)
\$15 468 99	\$ \$15'125'85 \$	S 174,828,477 S	828'SEL'ES \$	955'502'05 \$	194'SOL'SS \$				s Applicable	13 Capacity Cost Recovery Revenue to Current Period (Net of Revenue
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·							
2,384,023	5.384.023	5.384.023	5.384.023	5.384.023	ECU P81. C					noising an and honed road fi
				CCC'17C'05 \$	96+175'55 \$				s	(Net of Revenue Taxes) (Net of Revenue Taxes)
CSE UIS P9 3	10720195 3	5 PSP PPO PS 3	50815815 3	100 100 80 3	02F1C225 0					
660 668 49	282,007,00	978'616'19 \$	\$ 248.043	929'690'09 \$	\$69'\$L8'L5 \$				beziroritu.	 Iurisdictional Capacity Charges A
						· _ · _ · _ · _ · _ · _ · _ · _ ·				
10,744,593	128'522'51	050'510'51	885'267'91	15,890,348	828.227.21	·				9h Muclear Cost Recovery Costs
42 148 449	114'984'54	9/1 106'91	\$\$\$ 012 9\$	825'621'29	42'125'899					9a Jurisdictional Capacity Charges
%\$6810'86	%\$6510'86	%\$6£10'86	%\$6810.86	%56210'86	% <u>\$6</u> £10`86				(1	8 Iurisdictional Separation Factor (s
\$6,063,285	660'802'92	\$ \$07'SS8'Lt	946'959'24 \$	616'521'87 \$	\$61,710,84 2017				<u> </u>	7 Total (Lines I through 6)
(cc)(co)	(100(+7))	(107'00)	76107	(9+7'(0))	(01 6' (91)				spice 2 spice	
(102.18)	(200 92)	(186 59)	COL SC	(avc dal)	(917 281)					
(084'469)	1'385'051	\$12'E12	5,193,846	191,652,2	580'202'2	···-			hera	C vd vitoritoold To noissimager T
16E'0E0'E	2,0,222,5	3'069'58¢	651.616 Z	9/2'928'2	3'122'584			C-05-1261	Order No. PS	4 Incremental Plant Security Costs-
(10£'277)	(178,844)	(446,053)	(822,242)	(408,444)	(444'180)				billiy	3b Return on SIRPP Suspension Lia
L86'LL	L86'LL	L86'LL	L86'LL	L86'LL	L86'LL					3a SIRPP Suspension Accrual
() () () () () () () () () () () () () ()	057'955'57	<i>\\/</i> //01'c7	657, 496, 47	¥\$8'685'¥Z	947,740,22					2 Payments to Cogenerators (QFs)
					17:407'717'01	· · · · ·			(50.1	J) SIOTRIGUEROS CONTON OF STREAMARA
100 865 81	C58 679 L1	LC 6LV L68 61	26 182 096 21	80 289 522 81	20 080 010 91				(374	
5015	5015 MVV	5015 VLV	5015 NIVER	5015	5015 1V/					ON TRE
	TVOLDV	TVULOV	VILIN	VCLOVT	τναιών					
(9)	(5)	(4)	(€)	(2)	(1)			-		
							015	DECEMBER 3	HEODORH	OR THE PERIOD JANUARY 2012
								LINUIC	USE	CAPACITY COST RECOVERY CLA

								Notes: (a) As approved on Order No PSC-11-0579-POP-EI
61	(101/206/65) \$	(201°206'65) \$	(LEP,010,84) S	(118263281)	(£16,188,14) 2	(esi'sel'++) \$	(565,124,02) 2	Recovery (Sum of Lines 14 through 18)
								(shall/see) or see a
81	(272,808,82)	(2,384,023)	(5'384'033)	(2'384'033)	(2,384,023)	(2,384,023)	(520,486,2)	18 Prior Period True-up Provision
1	(C/ C'tr() 'trt)	(c/c/en//ee)	(C1C,PU1,PP)	(C/ C'b0/ 'bb)	((((()))))	(\$7,5,401,444)	(C'p()/ 'pp)</td <td>17 Deferred Γινε-υρ - Ονει/(Under) Recovery</td>	17 Deferred Γινε-υρ - Ονει/(Under) Recovery
					GE7 / GE / //			
91	78'908'5115	{Z98'\$1Z'\$}	7,828,344	3'845'905	(825'05)	(810'2+2'5)	(\$0\$'£6\$'11)	16 True-up & Interest Provision Begiuning of
ŝī	(908,21)	(252,4)	(182°E)	(88 1 ,E)	(209'E)	(796'E)	(200'0)	15 Interest Provision for Month
Þ1	(072/951'51)	(011,992,8)	(704'559'+)	E22,E72,5	608'097'5	LZ\$'\$01'8	158"ÞEI"8	Recovery (Line 14 - Line 10)
								14 True-up Provision for Monda - Over/(Under)
٤I	\$61,212,457 295	2 26'344'360	958'6†0'85 \$	112'261'19 \$	197'111'89 \$	261'60 † '12 \$	\$Z\$'E89'IL \$	to Current Period (Net of Kevenic Taxes)
								alfenitor & sumany for the sumany fo
13	74,5809,82	5,384,023	5,384,023	5,384,023	5'384'053	2,384,023	5,384,023	12 Prior Period True-up Provision
	F7.5' H09'50/. \$	857'095'#5 \$	£18,000,00 &	689'511'79 \$	857'555'99 \$	0/1'570'69 \$	705'667'69 \$	1 Capacity Cost Recovery Revenues
					75-12/4-50			1.0. 1 แต่เกตะแอเพตะ เวลาซิเล พุณภายระด
01	915 691 672 5	12EEPS 59 5	862 SOL 29 S	850 00 00 3	C579L789 S	992 POE E9 3	VL98VSE9 3	besided accellation of the second of the sec
96	728'880'96I	18'922'91	Þ8E'ÞE9'LI	852,724,71	244'111'21	ELZ 6E9 9I	265'9E5'91	3p Nuclear Coat Recovery Costs
¥6	769'087'655	ZSL 188'9+	ÞS8'0L0'SÞ	¢¢'69'550	010'59£'9#	767,299,35	780'710'2*	9a Jurisdictional Capacity Charges
8	¥/N	%56510.86	%56510'86	%56510'86	%56510'86	%\$6£10'86	%\$6610.86	8 Jurisdictional Separation Factor (a)
,	19/144 400 0	CC9'/C9'/+ +	771'+94'64	(14'709'ch	Inc'hoc'/h	7/01/0//# 0	(90'506'/± €	\ 10131 (Fruce 1 DUCONEU e)
-		(nach tr)	CCI FOUSF 3				(aac'ro)	
9	(652 220 1)	(005 951)	1006 251)	(001 99)	(008 EE/	(008 18)	(008 29)	sele? vincered, mod severes T mission of the
ç	11'023'582	686'\$£8'[767'188'1	£09'¢2£' [1321,189	952'612'1	105'550'1	
4	196 \$LL 0\$	246 289 4	LT9'660'E	999'170'E	EL6'0EE'Þ	2/1014	9121126'E	4 Incremental Plant Security Costs-Order No. PSC-02-1761
96	(156'126'5)	(\$\$0'[\$†)	(174'054)	(L6L'6++)	(EL1'61+1)	(648,844)	(526,744)	3p Keturu on SJKBP Suspension Liebility
¥Е.	PP8'SE6	L86'LL	L86'LL	L86'LL	L86'LL	L86'LL	L86'LL	3# SIRPP Suspension Accrual
2	561 146 200	54,510,356	54'210'329	54'210'329	54'210'326	9\$£'01\$'\$Z	54'210'329	3 Payments to Cogenerations (QPs)
Ţ.	671,120,212 2	28.001,155,71	185'L90'LI	102'461'21	696 ⁵ 9†5 [°] LI	6#5`EZ6'81	6#5*626*81	 Раутель to Non-cogenerators (PPAs)
'ON	PERIOD	7015	5015	2102	2013	5015	2102	······································
3พิม	TOTAL	DEC	NON ESTIMATED	OCT ESTIMATED	2EP ESTTMATED	VIC	IÚL ESLIWVIED	
	(E1)	(21)	(1)	(01)	(6)	(8)	ω	

	FLORIDA POV	VER & L	IGHT COMPAN	NY		
	CAPACITY CO	DST REC	OVERY CLAUS	SE DEICINAL BROJECTIC	NC	
	FOR THE PERIOD JANUA	RY 2012	THROUGH DE	CEMBER 2012		
			(1)	(2)	(2)	(1)
Ĩ ine					(3) VADIA	(4) NCE
No.	· · · · · · ·		ESTIMATED	PROJECTIONS	AMOUNT	WCE %
				TROUGETIONS	AMOUNT	
1	Payments to Non-cogenerators (PPAs)	\$	215,021,729	\$ 212,267,891	\$ 2,753,839	1.3 9
2	Payments to Cogenerators (QFs)		297,149,560	290,874,574	6,274,986	2.2 %
3.9	SIRPP Suspension Accrual		935 844	1 637 100	(701.256)	(42.8) 9
-7a	Sherr Suspension Product		///////////////////////////////////////	1,057,100	(701,250)	(42.6) /
3b	Return Requirements on SJRPP Suspension Liability		(5,371,351)	(5,405,019)	33,668	(0.6)
4	Incremental Plant Security Costs-Order No. PSC-02-1761		40,774,967	43,151,276	(2,376,308)	(5.5) 9
	Transmission of Electricity by Others		17 052 295	16 964 769	99.512	0.5 0
J	Tradstitission of Electricity by Others		17,005,280	10,904,709	88,310	0,5 /
6	Transmission Revenues from Capacity Sales		(1,072,253)	(1,517,701)	445,448	(29.4) 9
	• • • • • • • • • • • • • • • • • • •					
7	Total (Lines 1 through 6)	\$	564,491,781	\$ 557,972,889	\$ 6,518,893	1.2 %
8	Jurisdictional Separation Factor		98.01395%	98.01395%	-	
0-			552 280 (02	£ 646 001 260	¢ (280 424	12.0
9a	Jurisdictional Capacity Charges	\$	553,280,692	3 340,891,208	\$ 6,389,424	1.2 7
9b	Nuclear Cost Recovery Costs	s	196.088.823	\$ 196.088.824	s (1)	(0,0) 9
					í	
10	Jurisdictional Capacity Charges Authorized					
	for Recovery through CCR Clause	\$	749,369,515	\$ 742,980,092	\$ 6,389,423	0.9 9
			705 (01 505		0 (0 7 (7 007)	(10)
	Capacity Cost Recovery Revenues		705,604,523	\$ /14,3/1,820	5 (8,767,297)	(1.2) *
	(Net Of Revenue Taxes)					1
12	Prior Period True-up Provision		28,608,272	28,608,272	\$0	N/A
13	Capacity Cost Recovery Revenues Applicable					
	to Current Period (Net of Revenue Taxes)		734,212,795	\$ 742,980,092	\$ (8,767,297)	(1.2)
14	True up Providen for Period Over/(Under)					+····
	Recovery (Line 13 - Line 10)	s	(15,156,719)	0	(15,156,719)	N/A
			(· · ·		
15	Interest Provision for Period		(45,806)	0	(45,806)	N/A
16	True-up & Interest Provision Beginning of		28,608,272	28,608,272	0	N/A
	Period - Over/(Under) Recovery					
17	Deferred True-up - Over/(Under) Recovery		(44,704,575)	0	(44,704,575)	N/A
18	Prior Period True-up Provision					
	- Collected/(Refunded) this Period		(28,608,272)	(28,608,272)) 0	N/A
10	End of Derind Tour up. (Durr/(Linder)					
19	Recovery (Sum of Lines 14 through 18)	s	(59,907.100)	02	\$ (59.907.100)	N/A
		Ť				
Notes:	(a) As approved on Order No PSC-11-0579-FOF-EI	· · · · ·				·
				1	1	1

.

4

-

•

APPENDIX III

FUEL COST RECOVERY

2013 RISK MANAGEMENT PLAN

GJY-2 DOCKET NO. 120001-EI FPL WITNESS: G. J. YUPP August 1, 2012

APPENDIX III

2013 RISK MANAGEMENT PLAN

TABLE OF CONTENTS

PAGE	DESCRIPTION	<u>SPONSOR</u>
1-7	2013 Risk Management Plan	G.Yupp
8-64	Trading and Risk Management Procedures Manual	G. Yupp
65-90	Energy Trading and Risk Management Policy	G. Yupp
91- 9 9	Planned Position Strategy	G. Yupp

<u>Florida Power and Light Company</u> 2013 Risk Management Plan

Florida Power & Light ("FPL") recognizes the importance of managing price volatility in the fuel and power it purchases to provide electric service to its customers. Further, FPL recognizes that the greater the proportion of a particular energy source it relies upon to provide electric services to its customers, the greater the importance of managing price volatility associated with that energy source.

FPL's risk management plan is based on the following guiding principles:

- a) A well-managed hedging program does not involve speculation or market timing. Its primary purpose is not to reduce FPL's fuel costs paid over time, but rather to reduce the variability or volatility in fuel costs over time.
- b) Hedging can result in significant lost opportunities for savings in the fuel costs to be paid by customers if fuel prices actually settle at lower levels than at the time the hedges were placed. FPL does not predict or speculate on whether markets will ultimately rise or fall and actually settle higher or lower than the price levels that existed at the time hedges were put into place.
- c) Market prices and forecasts of market prices have experienced significant volatility and are expected to continue to be highly volatile and, therefore, FPL does not intend to "outguess the market" in choosing the specific timing for effecting hedges or the percentage or volume of fuel hedged.
- d) In order to balance the goal of reducing customers' exposure to rising fuel prices against the goal of allowing customers to benefit from falling fuel prices, it is appropriate to hedge a portion of the total expected volume of fuel purchases.

Overall Quantitative and Qualitative Risk Management Objectives (TFB-4, Item 1)

FPL's risk management objectives are to effectively execute a well-disciplined and independently controlled fuel hedging strategy to achieve the goals of fuel price stability (volatility minimization) and asset optimization. FPL's fuel hedging strategy aims to reduce fuel price volatility, while maintaining the opportunity to benefit from price decreases in the marketplace for FPL's customers.

Fuel Procurement Risks (TFB-4, Item 3)

FPL encounters several potential risks when executing its fuel procurement activities. These risks are grouped into four categories as detailed below:

Market Risk

Market Risk is the risk of changes in economic fair value due to fluctuations in market prices, volatility, correlation, and interest rates. Market risk has a direct impact on any open or unhedged energy positions.

Market Risk Limits ("Limits") are set by the Chairman and Chief Executive Officer ("CEO") of NextEra Energy ("NEE") and delegated to the Exposure Management Committee ("EMC"). The EMC establishes a forum for discussion of NEE's energy risk profile and operations and develops guidelines required for an appropriate risk management control infrastructure, which includes implementation and monitoring of compliance with the NextEra Energy Trading and Risk Management Policy ("Policy"). The EMC has in turn delegated limits to FPL Energy Marketing and Trading ("EMT") for specific portfolios.

NextEra Energy limits (collectively referred to as "NEE Limits") are generally expressed in terms of:

- Maximum portfolio tenor;
- Stop-loss (where appropriate);
- Open (un-hedged) positions (where appropriate); and
- Maximum Value-at-Risk ("VaR") (where appropriate).

The FPL enhanced hedging program Limits will be managed in accordance with established corporate guidance. During the ordinary course of business, EMT management will have regard to these NEE Limits, such that pre-approval will be obtained before committing to transactions or contracts which might otherwise cause them to be breached. Adherence to Limits is monitored by the Risk Management Department.

Credit Risk

Credit risk management includes appropriate creditworthiness review and monitoring processes, the request for collateral if deemed necessary, and the inclusion of contractual risk mitigation terms and conditions whenever possible. Such credit risk mitigations include collateral threshold amounts, cross default amounts, payment netting, and set-off agreements.

Liquidity Risk

Transacting Liquidity: The availability of market participants willing to transact or having credit quality to transact will have an impact on the utility's ability to execute hedging and risk management strategies.

Short-Term Funding Liquidity: Changes in underlying market parameters may impact movements of cash in relation to business activities. Positions that are balanced for fair value purposes, but unbalanced for cash flow purposes, may give rise to large swings in cash balances.

Operational Risk

Operating risk is the physical risk associated with maintaining and operating generation assets. The potential risks that FPL encounters with its physical fuel procurement are fuel supply and transportation availability, product quality, delivery timing, weather, environmental, and supplier failure to deliver.

Fuel Procurement Oversight/Policies and Procedures (TFB-4, Items 4, 5, 6, 7 and 9)

FPL provides its fuel procurement activities with independent oversight.

The President of FPL is responsible for authorizing all hedging activities. Changes in strategies and any deviations from the program are approved by the President of FPL or his designee prior to execution. Program activity is included in the Monthly Operations Performance Review ("MOPR") chaired by the CEO of NEE. In addition, the EMC meets monthly to review performance and discuss current procurement/hedging activities and monitors daily results of procurement activity.

The utility has a separate and independent middle office Risk Management department that provides oversight of fuel procurement activities. FPL has formal Policy and Procedures documents, signed by all employees, which include controls specifically related to the fuels hedging program. The Risk Management department ensures that the approved execution strategies are followed for each program. Daily, weekly, and monthly reporting is performed by the Risk Management department and distributed to a wide audience, including executive management. Credit reviews are performed by the Risk Management department and included in the reporting mentioned above. Execution strategies must be approved prior to the execution of any transactions and documented as a Planned Position Strategy ("PPS"). All hedge transactions are to be addressed within this strategy document per the ranges and percentages defined in the Risk Management Plan and may be modified from time to time.

Policy and Procedures

As part of this Risk Management Plan, FPL is attaching the latest Policy and Trading and Risk Management Procedures Manual ("Procedures"). NEE updates the Policy and Procedures as necessary. For details that are not covered in this document, please refer to the Policy and Procedures. FPL considers its Policy and Procedures to be confidential.

The NEE corporate risk Policy delineates individual and group transaction limits and authorizations for all fuel procurement activities. The Policy sets out the NEE approach to energy risk and the management of risk, as follows:

- Identification and definition;
- Quantification and measurements;
- Reporting;
- Authority to transact; and

- Ownership and roles and responsibilities.

The Procedures provide guidance that will promote efficient and accurate processing of transactions, effective preparation and distribution of information relating to trading and marketing activities, and efficient monitoring of the portfolio of risks, all within a well-controlled environment.

FPL's deal execution and capture functions coordinate activities across relevant departments, personnel, and systems. This framework of activity properly links the responsibilities of personnel and provides a sufficient medium to resolve issues.

The Procedures clearly list authorized trading personnel, trading limits, tenors, and acceptable instruments. Access to the data entry privileges in the deal capture system is limited to only those individuals who are formally granted permissions to enter trades. All transactions are entered and managed through a centralized deal capture system that supports routine reporting, settlements, and review. Transaction record editing is managed through acceptable authorizations and processes. Credit information is available to traders on a timely basis through daily reporting produced by the credit section of the Risk Management department. Auditable records of all transactions are gathered and reviewed on a regular basis.

Deal Execution Details

FPL traders receive daily credit reports and credit watch lists from the Risk Management department to ensure that FPL does not enter into a trade with an unauthorized counterparty. FPL traders then select counterparties from this list to transact with as the hedging program is executed. FPL uses a market comparison approach to execute financial hedges. For natural gas, real-time prices can be observed by FPL through electronic tools, such as ICE ("InterContinental Exchange"), FutureSource, or over-the-counter brokers.

FPL traders generally execute trades with counterparties offering the best price for a given instrument. However, in a case where two or more counterparties are offering similar pricing, the traders will attempt to execute trades with the counterparty that has the least amount of credit exposure with FPL. This is done primarily to allow FPL to spread its risk among as many counterparties as possible, but also affords the advantage of preventing the inadvertent telegraphing of FPL's commercial intentions to the market, thus helping to ensure favorable pricing for FPL's hedges.

2013 Hedging Strategy (TFB-4, Items 2 and 8)

FPL plans to hedge a portion of its projected 2014 natural gas requirements during 2013. Absent special circumstances (e.g. a hurricane that FPL concludes

to

will substantially impair market functions); FPL will implement its hedging program within the following parameters:

Natural Gas

- 1) FPL will hedge approximately for of its projected 2014 natural gas requirements within the Hedging Window during 2013. This hedge percentage is consistent with 2013 hedge levels and is within FPL's system base load requirements. FPL will hedge approximately for each individual month's projected natural gas requirements.
- FPL will utilize hedge its projected natural gas requirements.
 FPL will execute its natural gas hedges for 2014 from
- 3) FPL will execute its natural gas hedges for 2014 from through as shown below:

Hedging Window

During each month of the Hedging Window, FPL will hedge the percentages shown of its projected 2014 natural gas requirements. FPL will have flexibility within any given month to determine the appropriate timing for executing hedges.

4) FPL intends to rebalance its natural gas hedge positions during the year based on changes in forecasted market prices, projected unit outage schedules or changes in FPL's load forecast. Once the initial monthly target volumes have been hedged, rebalancing will be executed to maintain the hedge percentages inside approved tolerance bands. The monthly tolerance bands for natural gas are **sectors** Therefore, the minimum and maximum monthly hedge percentages are **sectors** and **sectors**.

Heavy Fuel Oil

As explained below, FPL does not intend to hedge heavy fuel oil for 2014.

A number of factors have led to a large drop in FPL's heavy oil burn projections for 2014. Projections can vary drastically from actuals due to operational constraints, unit outages or unexpected weather conditions. However, with the modernized Cape Canaveral gas unit coming on line in 2013 and the modernized Riviera gas unit coming on line in 2014; it is reasonable to expect lower heavy oil consumption. FPL is currently estimating approximately 120,000 barrels of heavy oil consumption from May 2014 through October 2014. It is worth noting that 120,000 barrels of heavy oil consumption is equivalent to approximately 0.77 Bcf of natural gas consumption or, less than ¹/₂ day of typical gas usage in the summer period. FPL currently hedges for of heavy oil burns and is required to keep hedges within a certain percentage band. However, the projected heavy oil burns are so low that small changes in projected fuel burns often require FPL to rebalance insignificant volumes because total hedges fall outside of the required band. Rebalancing such small volumes of heavy oil thus adds unnecessary transaction activity and costs, while doing little for providing fuel price certainty.

Reporting System for Fuel Procurement Activities (TFB-4, Items 13 and 14)

FPL reporting systems comprehensively identify, measure, and monitor all forms of risk associated with fuel procurement activities.

FPL's philosophy on reporting is that it should be timely, consistent, flexible, and transparent. Timely and consistent reporting of risk information is critical to the effective management of risk. The utility has sufficient systems capability for identifying, measuring, and monitoring all types of risk associated with fuel procurement activities. These systems include: deal capture, current and historical pricing database, deal information, and valuation models, and a reporting system that utilizes the information in the trade capture system and the database.

Specifically, several reports are available at FPL to monitor risk:

Daily Management Report

For each business day there should be a formal report produced in hard copy or electronically, for distribution to business and desk heads and members of the EMC. This report should detail the current energy, spot and forward, unrealized profit and loss, VaR, and position amounts. This report should be published only after proper and thorough discussion between Risk Management and desk heads, if necessary for clarification, and resolution of any issues raised.

Credit Exposure Reporting

For each business day there should be a formal report produced in hard copy or electronically, for distribution to business and desk heads and members of the EMC. This report should detail:

- Allowable deal types by counterparty
- Restrictions on counterparties

EMC Update

The Vice President Trading Risk Management will provide a formal update to the EMC on a monthly basis. The agenda for the update will be agreed in advance with the EMC Chairman, but should at a minimum contain the following items:

- Summary and explanation of significant changes in market risk and fair value;
- Summary and explanation of significant changes in credit risk;
- Exception to Risk Management Policy; and
- Minutes of previous EMC update for approval.

Hedge Program Limitations (TFB-4, Item 15)

FPL does not currently have any limitations in implementing certain hedging techniques that would provide a net benefit to customers.

Summary Update on Dodd-Frank Wall Street Reform and Consumer Protection Act (the Act) on Utility Hedgers

FPL is monitoring the development of rules related to the Dodd-Frank Act and is actively implementing those rules that affect its business. A number of rules have already been finalized and have become or will become effective over the next 2 to 12 months. The Commodity Futures Trading Commission voted to finalize the definition of a swap in July. This rule will become effective around the end of September 2012, resulting in formal effective dates for a number of dependent rules over the next 12 months, including position limits and the reporting and recordkeeping obligations applicable to derivative end users like FPL.

It is FPL's current understanding that FPL should be classified as a bona-fide hedger under the new rules; therefore, FPL should be able to transact swaps in the over-thecounter market without being subject to the mandatory clearing.

FPL cannot predict the impact that all of these new rules will have on its ability to hedge its commodity risk or on the OTC derivatives market as a whole, but these rules could have a material effect on FPL's risk exposure and financial results. If the still-to-befinalized margin rules require FPL to post significant amounts of cash collateral with respect to swap transactions, FPL's liquidity could be materially affected and its ability to enter into OTC derivatives to hedge commodity risks could be significantly limited.

Energy Marketing & Trading A division of Florida Power & Light Company

Trading and Risk Management

Procedures Manual

Revision: March 2012

Approved By: (If the original signature is needed, please contact Risk Management at 304-6028)

REDACTED VERSION OF CONFIDENTIAL DOCUMENTS PAGES 9 THROUGH 64

TRADING AND RISK MANAGEMENT PROCEDURES MANUAL

APPROVED BY THE EMC ON:

Last approved on December 27, 2011

Updated on April 30, 2012

(See EMC Emails dated December 14, 21, & 27, 2011. Please contact Risk Management at 304-6028)

NextEra Energy, Inc. Energy Trading and Risk Management Policy

ENERGY-

REDACTED VERSION OF CONFIDENTIAL DOCUMENTS PAGES 66 THROUGH 90

5.000

ENERGY TRADING AND RISK MANAGEMENT POLICY

REDACTED VERSION OF CONFIDENTIAL DOCUMENTS PAGES 91 THROUGH 99

PLANNED POSITION STRATEGY