CHAPTER 2

FORECAST OF ELECTRIC POWER DEMAND AND ENERGY CONSUMPTION

<u>CHAPTER 2</u> FORECAST OF ELECTRIC POWER DEMAND AND ENERGY CONSUMPTION

OVERVIEW

The information presented in Schedules 2, 3, and 4 represents DEF's history and forecast of customers, energy sales (GWh), and peak demand (MW). DEF's customer growth is expected to average 1.1 percent between 2015 and 2024, which is more than the ten-year historical average of 0.7 percent. County population growth rate projections from the University of Florida's Bureau of Economic and Business Research (BEBR) were incorporated into this projection. The severe financial crisis witnessed both nationwide and in Florida since 2007 has dampened the DEF historical ten-year growth rate significantly as total customer growth turned negative for a twenty-one month period during 2008, 2009 and 2010. Economic conditions going forward look more amenable to improved customer growth due to low mortgage rates, higher household formations and a large retiring baby-boomer population.

Net energy for load (NEL) dropped by an average 1.5 percent per year between 2005 and 2014 due primarily to the economic recession and the weak economic recovery that followed. Sales for Resale in 2014 were only 26% of their 2005 level. An improved economic environment (including improved migration population rates, construction activity, wage growth and consumer spending) is expected to drive the DEF service area forecast. The 2015 to 2024 period is expected to improve NEL by an average growth rate of 1.5 percent per year matching the rate of customer growth. Going forward, projected NEL growth continues to reflect the FPSC approved DSM energy savings targets.

Summer net firm demand declined an average 0.7 percent per year during the last ten years, mostly driven by lower wholesale load that was only 33% below the average of the previous nine summers. The projected ten year period summer net firm demand growth rate of 1.6 percent is primarily driven by higher population improving net firm retail demand and significantly less drag from the wholesale sector.

ENERGY CONSUMPTION AND DEMAND FORECAST SCHEDULES

The below schedules have been provided:

<u>SCHEDULE</u>	DESCRIPTION
2.1, 2.2 and 2.3	History and Forecast of Energy Consumption and Number of
	Customers by Customer Class
3.1	History and Forecast of Base Summer Peak Demand (MW)
3.2	History and Forecast of Base Winter Peak Demand (MW)
3.3	History and Forecast of Base Annual Net Energy for Load (GWh)
4	Previous Year Actual and Two-Year Forecast of Peak Demand and
	Net Energy for Load by Month

SCHEDULE 2.1 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
		RURAL	AND RESI	DENTIAL			COMMERC	TIAL
YEAR	DEF POPULATION	MEMBERS PER HOUSEHOLD	GWh	AVERAGE NO. OF CUSTOMERS	AVERAGE KWh CONSUMPTION PER CUSTOMER	GWh	AVERAGE NO. OF CUSTOMERS	AVERAGE KWh CONSUMPTION PER CUSTOMER
2005	3,427,860	2.454	19,894	1,397,012	14,240	11,945	161,001	74,190
2006	3,505,058	2.448	20,021	1,431,743	13,983	11,975	162,774	73,568
2007	3,531,483	2.448	19,912	1,442,853	13,800	12,184	162,837	74,821
2008	3,561,727	2.458	19,328	1,449,041	13,339	12,139	162,569	74,669
2009	3,564,937	2.473	19,399	1,441,325	13,459	11,883	161,390	73,632
2010	3,621,407	2.495	20,524	1,451,466	14,140	11,896	161,674	73,579
2011	3,623,813	2.495	19,238	1,452,454	13,245	11,892	162,071	73,374
2012	3,633,620	2.491	18,251	1,458,690	12,512	11,723	163,297	71,792
2013	3,681,835	2.493	18,508	1,477,164	12,529	11,718	163,671	71,594
2014	3,701,245	2.485	19,003	1,489,502	12,758	11,789	165,899	71,060
2015	3,760,148	2.471	19,388	1,521,581	12,742	11,974	169,462	70,659
2016	3,794,503	2.457	19,521	1,544,672	12,638	12,095	172,049	70,300
2017	3,836,847	2.446	19,898	1,568,777	12,684	12,334	174,744	70,583
2018	3,882,632	2.437	20,068	1,593,408	12,594	12,443	177,495	70,103
2019	3,936,092	2.433	20,254	1,618,125	12,517	12,548	180,253	69,613
2020	3,991,020	2.430	20,489	1,642,516	12,474	12,758	182,973	69,726
2021	4,044,019	2.427	20,717	1,666,272	12,433	12,910	185,622	69,550
2022	4,095,523	2.424	20,950	1,689,354	12,401	13,071	188,195	69,455
2023	4,145,499	2.422	21,210	1,711,831	12,390	13,239	190,700	69,423
2024	4,195,255	2.420	21,453	1,733,788	12,373	13,396	193,146	69,357

SCHEDULE 2.2 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		INDUSTRIAL					
YEAR	GWh	AVERAGE NO. OF CUSTOMERS	AVERAGE KWh CONSUMPTION PER CUSTOMER	RAILROADS AND RAILWAYS GWh	STREET & HIGHWAY LIGHTING GWh	OTHER SALES TO PUBLIC AUTHORITIES GWh	TOTAL SALES TO ULTIMATE CONSUMERS GWh
2005	4,140	2,703	1,531,632	0	27	3,171	39,176
2006	4,160	2,697	1,542,455	0	27	3,249	39,432
2007	3,819	2,668	1,431,409	0	26	3,341	39,282
2008	3,786	2,587	1,463,471	0	26	3,276	38,555
2009	3,285	2,487	1,320,869	0	26	3,230	37,824
2010	3,219	2,481	1,297,461	0	26	3,260	38,925
2011	3,243	2,408	1,346,761	0	25	3,200	37,598
2012	3,160	2,372	1,332,209	0	25	3,221	36,381
2013	3,206	2,370	1,352,743	0	25	3,159	36,616
2014	3,267	2,328	1,403,351	0	25	3,157	37,240
2015	3,350	2,251	1,488,227	0	24	3,202	37,938
2016	3,355	2,228	1,505,835	0	24	3,214	38,209
2017	3,356	2,208	1,519,928	0	24	3,234	38,846
2018	3,316	2,189	1,514,847	0	24	3,247	39,098
2019	3,416	2,172	1,572,744	0	23	3,255	39,496
2020	3,450	2,157	1,599,444	0	23	3,278	39,998
2021	3,395	2,143	1,584,228	0	23	3,304	40,349
2022	3,340	2,131	1,567,339	0	22	3,335	40,718
2023	3,282	2,120	1,548,113	0	22	3,362	41,115
2024	3,223	2,110	1,527,488	0	22	3,388	41,482

SCHEDULE 2.3 HISTORY AND FORECAST OF ENERGY CONSUMPTION AND NUMBER OF CUSTOMERS BY CUSTOMER CLASS

(1)	(2)	(3)	(4)	(5)	(6)
YEAR	SALES FOR RESALE GWh	UTILITY USE & LOSSES GWh	NET ENERGY FOR LOAD GWh	OTHER CUSTOMERS (AVERAGE NO.)	TOTAL NO. OF CUSTOMERS
2005	5,195	2,507	46,878	22,701	1,583,417
2006	4,220	2,389	46,041	23,182	1,620,396
2007	5,598	2,753	47,633	24,010	1,632,368
2008	6,619	2,484	47,658	24,738	1,638,935
2009	3,696	2,604	44,124	24,993	1,630,195
2010	3,493	3,742	46,160	25,212	1,640,833
2011	2,712	2,180	42,490	25,228	1,642,161
2012	1,768	3,065	41,214	25,480	1,649,839
2013	1,488	2,668	40,772	13,548	1,656,753
2014	1,333	2,402	40,975	25,725	1,683,454
2015	955	2,533	41,426	26,121	1,719,415
2016	1,107	2,631	41,947	26,480	1,745,429
2017	1,230	2,289	42,365	26,863	1,772,592
2018	1,234	2,447	42,779	27,261	1,800,353
2019	1,408	2,668	43,572	27,666	1,828,216
2020	1,539	2,532	44,069	28,071	1,855,717
2021	1,529	2,444	44,322	28,471	1,882,508
2022	1,530	2,433	44,681	28,859	1,908,539
2023	1,530	2,435	45,080	29,238	1,933,889
2024	1,534	2,528	45,544	29,607	1,958,651

SCHEDULE 3.1 HISTORY AND FORECAST OF SUMMER PEAK DEMAND (MW) BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	RESIDENTIAL LOAD MANAGEMENT	RESIDENTIAL CONSERVATION	COMM. / IND. LOAD MANAGEMENT	COMM. / IND. CONSERVATION	OTHER DEMAND REDUCTIONS	NET FIRM DEMAND
2005	10,350	1,118	9,232	448	310	203	38	166	110	9,074
2006	10,147	1,257	8,890	329	307	222	37	170	66	9,016
2007	10,931	1,544	9,387	334	291	239	45	177	110	9,735
2008	10,592	1,512	9,080	500	284	255	66	192	110	9,186
2009	10,853	1,618	9,235	262	291	271	84	211	110	9,624
2010	10,242	1,272	8,970	271	304	298	96	234	110	8,929
2011	9,972	934	9,038	227	317	329	97	256	110	8,636
2012	9,788	1080	8,708	262	328	358	98	280	124	8,337
2013	9,581	581	9,000	317	341	382	101	298	124	8,017
2014	10,067	807	9,260	232	355	404	108	313	132	8,523
2015	10,532	812	9,720	247	363	421	113	324	132	8.932
2016	10,619	647	9,972	247	369	436	118	331	132	8,986
2017	10,905	751	10,154	252	375	449	122	338	132	9,237
2018	11,074	752	10,322	242	381	460	126	343	132	9,390
2019	11,528	1,004	10,524	266	387	468	130	348	132	9,797
2020	11,744	1,005	10,739	303	393	480	135	352	132	9,948
2021	11,667	755	10,912	304	399	491	139	355	132	9,847
2022	11,835	755	11,080	304	405	501	143	357	132	9,993
2023	11,996	755	11,241	304	411	510	148	358	132	10,133
2024	12,155	755	11,400	303	417	519	152	359	132	10,273
	,		,							-,

Historical Values (2005 - 2014):

Col. (2) = recorded peak + implemented load control + residential and commercial/industrial conservation and customer-owned self-service cogeneration.

Cols. (5) - (9) = Represent total cumulative capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) =Customer-owned self-service cogeneration.

Col. (10) = (2) - (5) - (6) - (7) - (8) - (9) - (OTH).

Projected Values (2015 - 2024):

Cols. (2) - (4) = forecasted peak without load control, cumulative conservation, and customer-owned self-service cogeneration.

Cols. (5) - (9) = cumulative conservation and load control capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) = customer-owned self-service cogeneration.

Col. (10) = (2) - (5) - (6) - (7) - (8) - (9) - (OTH).

SCHEDULE 3.2 HISTORY AND FORECAST OF WINTER PEAK DEMAND (MW) BASE CASE

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(OTH)	(10)
YEAR	TOTAL	WHOLESALE	RETAIL	INTERRUPTIBLE	RESIDENTIAL LOAD MANAGEMENT	RESIDENTIAL CONSERVATION	COMM. / IND. LOAD MANAGEMENT	COMM. / IND. CONSERVATION	OTHER DEMAND REDUCTIONS	NET FIRM DEMAND
2004/05	10,828	1,600	9,228	575	779	368	26	124	283	8,673
2005/06	10,695	1,467	9,228	298	762	409	26	125	239	8,835
2006/07	9,894	1,576	8,318	304	671	450	26	127	262	8,055
2007/08	10,962	1,828	9,134	234	763	483	34	133	278	9,036
2008/09	12,089	2,229	9,860	268	759	518	71	148	291	10,034
2009/10	13,694	2,189	11,505	246	651	563	80	163	322	11,670
2010/11	11,343	1,625	9,718	271	661	628	94	180	221	9,288
2011/12	9,721	905	8,816	186	643	686	96	203	206	7,701
2012/13	9,109	831	8,278	287	652	747	97	220	213	6,893
2013/14	9,467	646	8,821	257	654	785	101	229	219	7,222
FORECAST:										
2014/15	11,793	1,381	10,411	224	668	820	109	238	247	9,487
2015/16	11,969	1,344	10,625	224	679	856	113	238	249	9,609
2016/17	11,975	1,197	10,778	229	690	890	118	239	251	9,558
2017/18	12,119	1,198	10,921	219	701	919	122	240	252	9,666
2018/19	12,296	1,198	11,098	241	712	943	126	240	254	9,779
2019/20	12,735	1,448	11,287	275	723	972	130	241	256	10,138
2020/21	12,735	1,299	11,436	276	734	999	135	241	257	10,093
2021/22	12,881	1,299	11,582	276	745	1,025	139	241	259	10,196
2022/23	13,024	1,299	11,725	276	756	1,049	143	242	260	10,298
2023/24	13,161	1,299	11,862	275	767	1,072	147	242	262	10,396

Historical Values (2005 - 2014):

Col. (2) = recorded peak + implemented load control + residential and commercial/industrial conservation and customer-owned self-service cogeneration.

Cols. (5) - (9) = Represent total cumulative capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) = Voltage reduction and customer-owned self-service cogeneration.

Col. (10) = (2) - (5) - (6) - (7) - (8) - (9) - (OTH).

Projected Values (2015 - 2024):

Cols. (2) - (4) = forecasted peak without load control, cumulative conservation, and customer-owned self-service cogeneration.

Cols. (5) - (9) = Represent cumulative conservation and load control capabilities at peak. Col. (8) includes commercial load management and standby generation.

Col. (OTH) = Voltage reduction and customer-owned self-service cogeneration.

Col. (10) = (2) - (5) - (6) - (7) - (8) - (9) - (OTH).

SCHEDULE 3.3 HISTORY AND FORECAST OF ANNUAL NET ENERGY FOR LOAD (GWh) BASE CASE

(1)	(2)	(3)	(4)	(OTH)	(5)	(6)	(7)	(8)	(9)
	TOTAL	RESIDENTIAL CONSERVATION	COMM. / IND. CONSERVATION	OTHER ENERGY REDUCTIONS*	RETAIL	WHOLESALE	UTILITY USE & LOSSES	NET ENERGY FOR LOAD	LOAD FACTOR (%) **
2005	48,475	455	363	779	39,177	5,195	2,506	46,878	52.3
2006	47,399	484	365	509	39,432	4,220	2,389	46,041	52.1
2007	49,310	511	387	779	39,282	5,598	2,753	47,633	52.3
2008	49,208	543	442	565	38,556	6,619	2,483	47,658	53.1
2009	45,978	583	492	779	37,824	3,696	2,604	44,124	44.5
2010	48,135	638	558	779	38,925	3,493	3,742	46,160	45.3
2011	44,580	687	624	779	37,597	2,712	2,181	42,490	46.7
2012	43,396	733	669	780	36,381	1,768	3,065	41,214	52.0
2013	43,142	772	734	864	36,616	1,488	2,668	40,772	53.0
2014	43,442	812	791	864	37,240	1,333	2,402	40,975	50.7
FOREC	AST:								
2015	43,986	838	809	913	36,491	936	3,999	41,426	49.8
2016	44,549	861	825	916	36,948	974	4,025	41,947	49.7
2017	44,999	882	839	913	37,584	1,024	3,757	42,365	50.6
2018	45,443	899	852	913	38,073	795	3,911	42,779	50.5
2019	46,259	912	862	913	38,624	767	4,181	43,572	50.9
2020	46,777	921	871	916	39,350	1,046	3,673	44,069	49.5
2021	47,040	928	877	913	39,983	1,270	3,069	44,322	50.1
2022	47,406	931	881	913	40,404	1,243	3,034	44,681	50.0
2023	47,812	934	885	913	40,991	1,244	2,845	45,080	50.0
2024	48,283	935	888	916	41,469	1,244	2,831	45,544	49.9

* Column (OTH) includes Conservation Energy For Lighting and Public Authority Customers, Customer-Owned Self-service Cogeneration.

** Load Factors for historical years are calculated using the actual winter peak demand except the 2004, 2007, 2012 - 2014 historical load factors which are based on the actual summer peak demand which became the annual peaks for the year. Load Factors for future years are calculated using the net firm winter peak demand (Schedule 3.2)

SCHEDULE 4 PREVIOUS YEAR ACTUAL AND TWO-YEAR FORECAST OF PEAK DEMAND AND NET ENERGY FOR LOAD BY MONTH

(1)	(2)	(3)	(4)	(5)	(6)	(7)
	ACTUA	L	FORECA	ST	FORECA	S T
	2014		2015		2016	
	PEAK DEMAND	NEL	PEAK DEMAND	NEL	PEAK DEMAND	NEL
MONTH	MW	GWh	MW	GWh	MW	GWh
JANUARY	8,329	3,407	10,603	3,123	10,743	3,153
FEBRUARY	6,972	2,648	8,860	2,753	9,159	2,864
MARCH	5,203	2,977	8,005	2,958	8,042	2,949
APRIL	7,514	3,049	8,047	3,028	8,169	3,050
MAY	7,996	3,637	8,805	3,653	8,913	3,697
JUNE	8,608	3,877	9,356	3,963	9,322	4,017
JULY	8,049	4,166	9,412	4,210	9,397	4,268
AUGUST	9,218	4,379	9,655	4,313	9,720	4,356
SEPTEMBER	8,372	3,725	8,908	3,976	8,875	4,019
OCTOBER	8,031	3,333	8,302	3,496	8,272	3,558
NOVEMBER	6,862	2,807	7,093	2,868	7,065	2,911
DECEMBER	6,408	2,970	8,885	3,085	8,783	3,105
TOTAL		40,975		41,426		41,947

NOTE: Recorded Net Peak demands and System requirements include off-system wholesale contracts.

FUEL REQUIREMENTS AND ENERGY SOURCES

DEF's actual and projected nuclear, coal, oil, and gas requirements (by fuel unit) are shown in Schedule 5. DEF's two-year actual and ten-year projected energy sources by fuel type are presented in Schedules 6.1 and 6.2, in GWh and percent (%) respectively. DEF's fuel requirements and energy sources reflect a diverse fuel supply system that is not dependent on any one fuel source. Near term natural gas consumption is projected to increase as plants and purchases with tolling agreements are added to meet future load growth and natural gas generation costs reflect relatively attractive natural gas commodity pricing.

SCHEDULE 5 FUEL REQUIREMENTS

(1)	(2)	(3)	(4)	(5) -ACT	(6) 'UAL-	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
	FU	EL REQUIREMENTS	UNITS	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
(1)	NUCLEAR		TRILLION BTU	0	0	0	0	0	0	0	0	0	0	0	0
()															
(2)	COAL		1,000 TON	4,792	5,176	4,072	3,588	3,540	2,667	3,370	2,285	2,325	2,391	2,614	2,531
(3)	RESIDUAL	TOTAL	1,000 BBL	251	0	0	0	0	0	0	0	0	0	0	0
(4)		STEAM	1,000 BBL	251	0	0	0	0	0	0	0	0	0	0	0
(5)		CC	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(6)		CT	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(7)		DIESEL	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(8)	DISTILLATE	TOTAL	1,000 BBL	132	167	114	102	85	102	108	105	99	102	124	110
(9)		STEAM	1,000 BBL	55	55	47	56	51	45	37	56	61	54	59	50
(10)		CC	1,000 BBL	8	0	0	0	0	0	0	0	0	0	0	0
(11)		CT	1,000 BBL	69	112	67	46	34	57	71	49	39	48	65	60
(12)		DIESEL	1,000 BBL	0	0	0	0	0	0	0	0	0	0	0	0
(13)	NATURAL GAS	TOTAL	1,000 MCF	177,196	182,286	193,425	204,169	223,430	237,360	235,269	252,884	252,638	253,663	252,171	264,768
(14)		STEAM	1,000 MCF	23,404	32,855	28,164	27,199	25,797	19,345	19,223	15,624	16,277	16,315	16,346	15,770
(15)		CC	1,000 MCF	150,875	144,737	158,027	170,803	192,150	212,024	210,806	232,559	231,765	232,858	230,788	238,830
(16)		CT	1,000 MCF	2,917	4,694	7,234	6,168	5,482	5,991	5,241	4,701	4,595	4,490	5,037	10,167
	OTHER (SPECIFY)														
(17)	OTHER, DISTILLATE	ANNUAL FIRM INTERCHANGE	1,000 BBL	N/A	N/A	0	0	0	0	0	0	0	0	0	0
(18)	OTHER, NATURAL GAS	ANNUAL FIRM INTERCHANGE, CC	1,000 MCF	N/A	N/A	24,407	27,509	12,380	9,649	2,379	3,861	4,367	3,844	4,615	4,983
(18.1)	OTHER, NATURAL GAS	ANNUAL FIRM INTERCHANGE, CT	1,000 MCF	N/A	N/A	9,430	7,693	6,801	7,973	6,245	4,283	4,452	4,747	4,968	2,019
(19)	OTHER, COAL	ANNUAL FIRM INTERCHANGE, STEAM	1,000 TON	N/A	N/A	184	87	0	0	0	0	0	0	0	0

SCHEDULE 6.1 ENERGY SOURCES (GWh)

(1)	(2)	(3)	(4)	(5) -ACT	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
(1)	ENERGY SOURCES ANNUAL FIRM INTERCHANGE 1/		<u>UNITS</u> GWh	2013 1,409	<u>2014</u> 1,755	<u>2015</u> 2,890	<u>2016</u> 2,938	<u>2017</u> 636	<u>2018</u> 744	<u>2019</u> 583	<u>2020</u> 400	<u>2021</u> 415	<u>2022</u> 442	<u>2023</u> 464	<u>2024</u> 183
(2)	NUCLEAR		GWh	0	0	0	0	0	0	0	0	0	0	0	0
(3)	COAL		GWh	10,577	11,760	8,583	7,386	7,251	5,422	7,125	4,653	4,760	4,910	5,374	5,214
 (4) (5) (6) (7) (8) 	RESIDUAL	TOTAL STEAM CC CT DIESEL	GWh GWh GWh GWh GWh	127 127 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0
(9) (10) (11) (12) (13)	DISTILLATE	TOTAL STEAM CC CT DIESEL	GWh GWh GWh GWh GWh	93 58 7 28 0	38 0 0 38 0	27 0 0 27 0	18 0 0 18 0	13 0 0 13 0	23 0 0 23 0	28 0 0 28 0	20 0 0 20 0	16 0 0 16 0	19 0 0 19 0	25 0 0 25 0	24 0 0 24 0
(14) (15) (16) (17)	NATURAL GAS	TOTAL STEAM CC CT	GWh GWh GWh GWh	23,061 1,951 20,893 217	22,962 2,931 19,674 357	25,477 2,339 22,486 652	26,991 2,216 24,208 567	29,696 2,057 27,122 516	32,177 1,407 30,227 543	32,351 1,458 30,420 473	35,119 1,048 33,615 456	35,044 1,100 33,496 448	35,213 1,126 33,654 433	34,977 1,117 33,381 479	36,559 1,064 34,541 954
(18)	OTHER 2/ QF PURCHASES RENEWABLES OTHER RENEWABLES MSW RENEWABLES BIOMASS RENEWABLES SOLAR		GWh GWh	2,886 1,132	1,654 23 708 196 0	1,570 0 578 656 3	1,684 0 569 663 21	1,746 0 605 692 40	1,745 0 605 692 59	1,742 0 605 692 121	1,747 0 607 694 305	1,745 0 605 692 451	1,743 0 605 692 532	1,662 0 605 692 653	734 0 607 694 851
	IMPORT FROM OUT OF STATE EXPORT TO OUT OF STATE		GWh GWh	1,546 -59	1,958 -79	1,641 0	1,677 0	1,685 0	1,312 0	324 0	525 0	594 0	523 0	628 0	678 0
(19)	NET ENERGY FOR LOAD		GWh	40,772	40,975	41,426	41,947	42,365	42,779	43,572	44,069	44,322	44,681	45,080	45,543

NET ENERGY PURCHASED (+) OR SOLD (-) WITHIN THE FRCC REGION.
 NET ENERGY PURCHASED (+) OR SOLD (-).

SCHEDULE 6.2

ENERGY SOURCES (PERCENT)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
				-ACT	'UAL-										
	ENERGY SOURCES		UNITS	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
(1)	ANNUAL FIRM INTERCHANGE 1/		%	3.8%	4.3%	7.0%	7.0%	1.5%	1.7%	1.3%	0.9%	0.9%	1.0%	1.0%	0.4%
(2)	NUCLEAR		%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	20 V			24.2%	20.5%	20.7%	17 604	17 14	10.5%	1 5 400	10.000	10.70	11.00/	11.00/	11 444
(3)	COAL		%	24.3%	28.7%	20.7%	17.6%	17.1%	12.7%	16.4%	10.6%	10.7%	11.0%	11.9%	11.4%
(4)	RESIDUAL	TOTAL	%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(5)		STEAM	%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(6)		CC	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(7)		СТ	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(8)		DIESEL	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(9)	DISTILLATE	TOTAL	%	0.3%	0.1%	0.1%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.1%	0.1%
(10)		STEAM	%	0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(11)		CC	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(12)		CT	%	0.1%	0.1%	0.1%	0.0%	0.0%	0.1%	0.1%	0.0%	0.0%	0.0%	0.1%	0.1%
(13)		DIESEL	%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(14)	NATURAL GAS	TOTAL	%	58.2%	56.0%	61.5%	64.3%	70.1%	75.2%	74.2%	79.7%	79.1%	78.8%	77.6%	80.3%
(15)		STEAM	%	5.3%	7.2%	5.6%	5.3%	4.9%	3.3%	3.3%	2.4%	2.5%	2.5%	2.5%	2.3%
(16)		CC	%	52.1%	48.0%	54.3%	57.7%	64.0%	70.7%	69.8%	76.3%	75.6%	75.3%	74.0%	75.8%
(17)		СТ	%	0.9%	0.9%	1.6%	1.4%	1.2%	1.3%	1.1%	1.0%	1.0%	1.0%	1.1%	2.1%
(18)	OTHER 2/														
()	QF PURCHASES		%	6.7%	4.0%	3.8%	4.0%	4.1%	4.1%	4.0%	4.0%	3.9%	3.9%	3.7%	1.6%
	RENEWABLES OTHER		%	2.9%	0.1%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
	RENEWABLES MSW				1.7%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.4%	1.3%	1.3%
	RENEWABLES BIOMASS				0.5%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.6%	1.5%	1.5%	1.5%
	RENEWABLES SOLAR				0.0%	0.0%	0.0%	0.1%	0.1%	0.3%	0.7%	1.0%	1.2%	1.4%	1.9%
	IMPORT FROM OUT OF STATE		%	3.8%	4.8%	4.0%	4.0%	4.0%	3.1%	0.7%	1.2%	1.3%	1.2%	1.4%	1.5%
	EXPORT TO OUT OF STATE		%	0.0%	-0.2%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%
(10)	NET ENERCY FOR LOAD		%	100.0%	100.0%	100.0%	100.00/	100.00/	100.00/	100.0%	100.00/	100.0%	100.0%	100.0%	100.0%
(19)	NET ENERGY FOR LOAD		70	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%

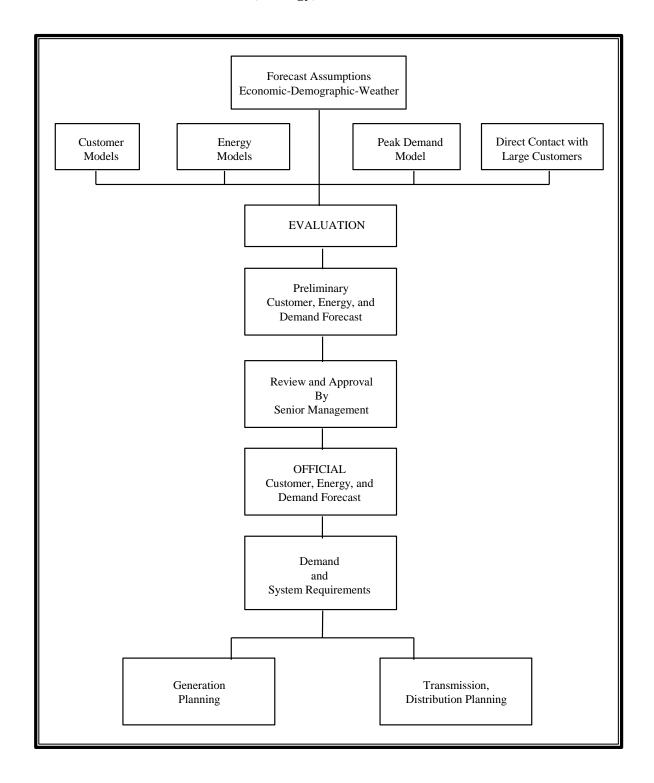
1/ NET ENERGY PURCHASED (+) OR SOLD (-) WITHIN THE FRCC REGION.

2/ NET ENERGY PURCHASED (+) OR SOLD (-).

FORECASTING METHODS AND PROCEDURES

INTRODUCTION

Accurate forecasts of long-range electric energy consumption, customer growth, and peak demand are essential elements in electric utility planning. Accurate projections of a utility's future load growth require a forecasting methodology with the ability to account for a variety of factors influencing electric consumption over the planning horizon. DEF's forecasting framework utilizes a set of econometric models as well as the Itron statistically adjusted end-use (SAE) approach to achieve this end. This section will describe the underlying methodology of the customer, energy, and peak demand forecasts including the principal assumptions incorporated within each. Also included is a description of how DSM impacts the forecast and a review of DEF's DSM programs.


Figure 2.1, entitled "Customer, Energy and Demand Forecast," gives a general description of DEF's forecasting process. Highlighted in the diagram is a disaggregated modeling approach that blends the impacts of average class usage, as well as customer growth, based on a specific set of assumptions for each class. Also accounted for is some direct contact with large customers. These inputs provide the tools needed to frame the most likely scenario of the Company's future demand.

FORECAST ASSUMPTIONS

The first step in any forecasting effort is the development of assumptions upon which the forecast is based. A collaborative internal Company effort develops these assumptions including the research efforts of a number of external sources. These assumptions specify major factors that influence the level of customers, energy sales, or peak demand over the forecast horizon. The following set of assumptions forms the basis for the forecast presented in this document.

FIGURE 2.1

Customer, Energy, and Demand Forecast

GENERAL ASSUMPTIONS

- Normal weather conditions for energy sales are assumed over the forecast horizon using a salesweighted 10-year average of conditions at the St Petersburg, Orlando, and Tallahassee weather stations. For billed kilowatt-hour (kWh) sales projections, the normal weather calculation begins with a historical 10-year average of the billing cycle weighted monthly heating and cooling degree-days. The expected consumption period read dates for each projected billing cycle determines the exact historical dates for developing the ten year average weather condition each month. Each class displays different weather-sensitive base temperatures from which degree day values begin to accumulate. Seasonal peak demand projections are based on a 30year historical average of system-weighted temperatures at time of seasonal peak at the same three weather stations. The remaining non-seasonal peak months of the year may use less than 30 years if an historical monthly peak occurred due to unusual weather.
- 2. DEF customer forecast is based upon historical population estimates and produced by the BEBR at the University of Florida (as published in "Florida Population Studies", Bulletin No. 65 March 2014) and provides the basis for the 29 county population forecast used in the development of the DEF customer forecast. National and Florida economic projections produced by Moody's Analytics in their July 2014 forecast, along with EIA 2014 surveys of residential appliance saturation and average appliance efficiency levels provided the basis for development of the DEF energy forecast.
- 3. Within the DEF service area, the phosphate mining industry is the dominant sector in the industrial sales class. Three major customers accounted for nearly 32 percent of the industrial class MWh sales in 2014. These energy intensive customers mine and process phosphate-based fertilizer products for the global marketplace. The supply and demand (price) for their products are dictated by global conditions that include, but are not limited to, foreign competition, national/international agricultural industry conditions, exchange-rate fluctuations, and international trade pacts. The market price of the raw mined commodity often dictates production levels. Load and energy consumption at the DEF-served mining or chemical processing sites depend heavily on plant operations, which are heavily influenced by these global as well as the local conditions, including environmental regulations. Going forward,

global currency fluctuations and global stockpiles of farm commodities will determine the demand for fertilizers. The DEF forecast calls for a continuation of the depressed level of annual electric energy consumption experienced in 2014 due to a mine shutdown brought about by the merger of two mining customers. Also, the current strength of U.S. Dollar makes all domestic production less price competitive at home and abroad. The forecast does account for one customer's intention to open a new mine later in this decade. A risk to this projection lies in the price of energy, which is a major cost in mining and producing phosphoric fertilizers.

- 4. DEF supplies load and energy service to wholesale customers on a "full" and "partial" requirement basis. Full requirements (FR) customers demand and energy are assumed to grow at a rate that approximates their historical trend. Contracts for this service include the cities of Chattahoochee, Mt. Dora and Williston. Partial requirements (PR) customers load is assumed to reflect the current contractual obligations reflected by the nature of the stratified load they have contracted for, plus their ability to receive dispatched energy from power marketers any time it is more economical for them to do so. Contracts for PR service included in this forecast are with the Reedy Creek Improvement District (RCID), Seminole Electric Cooperative, Inc. (SECI), and the cities of New Smyrna Beach and Homestead.
- 5. This forecast assumes that DEF will successfully renew all future franchise agreements.
- 6. This forecast incorporates demand and energy reductions expected to be realized through currently FPSC approved DSM targets as stated in Docket No. 130200-EI.
- 7. Expected energy and demand reductions from customer-owned self-service cogeneration facilities are also included in this forecast. DEF will supply the supplemental load of self-service cogeneration customers. While DEF offers "standby" service to all cogeneration customers, the forecast does not assume an unplanned need for power at time of peak.
- 8. This forecast assumes that the regulatory environment and the obligation to serve our retail customers will continue throughout the forecast horizon. Regarding wholesale customers, the forecast does not plan for generation resources unless a long-term contract is in place. FR

customers are typically assumed to renew their contracts with DEF except those who have termination provisions and have given their notice to terminate. PR contracts are typically projected to terminate as terms reach their expiration date.

ECONOMIC ASSUMPTIONS

The economic outlook for this forecast was developed in the Fall of 2014 as the nation's economy appeared to display stronger signs of growth. Most economic indicators pointed to significant year-over-year improvements. These included strong employment growth and declining unemployment, lower home foreclosures, moderately higher construction levels and much improved consumer confidence. Nationally, energy prices were declining, along with interest rates, and consumers were spending (and borrowing) again. What was not reported, however, were gains in median household incomes (after inflation) and improvement in the rate of homeownership. Both may be the result of a prolonged impact from the Great Recession where an oversupply of labor forced down wage rates, increased the number of lower paid part-time positions, damaged personal credit histories for many potential homebuyers and severely restricted mortgage credit compared to levels reached in the pre-financial crisis period.

In Florida, statewide job growth was among the highest nationally. In 2014, the State became the third most populous in the nation, according to the U.S. Census Bureau. Construction cranes could be seen again in almost every direction. Tourism levels have returned, boosting the vibrancy of the local economies. Public sector tax receipts have improved, allowing this sector to become a positive force on aggregate demand in the economy after many years in decline.

The DEF forecast incorporates the economic assumptions implied in the Moody's Analytics U.S. and Florida forecasts with some minor tempering to its short term optimism. This view suggests that the de-leveraging American consumer has begun to spend again, feeling more secure about the future. The newfound abundance of American energy supplies will improve tourism travel, both by air and car. Finally, low oil and natural gas prices, are expected to improve the country's competitive advantage in several manufacturing sectors. A tempering of this optimistic picture must be applied by recognizing the number of weak economies around the globe and the amount of excess capacity available to out-bid American producers in a strong USD World. Gains will come

from service-related sectors in which the Florida economy does well. The State economy will benefit from more spending in health care and the retiring baby-boom generation. An improvement in the State's building products and infrastructure manufacturers has already begun. Throughout the ten year forecast horizon, risks and uncertainties are always recognized and handled on a "highest probability of outcome" basis. General rules of economic theory, namely, supply and demand equilibrium are maintained in the long run. This notion is applied to energy/commodity prices, currency levels, the housing market, wage rates, inflation and interest rates. Uncertainty surrounding international crises, such as wars or terrorist acts, are not explicitly designed into this projection. Thus, any situations of this variety will force a deviation from the forecast.

Also incorporated in this energy forecast is a projection of customer-owned solar photovoltaic generation and electric vehicle ownership. The net energy impact of both are expected to result in only marginal impacts to the forecasted energy growth.

FORECAST METHODOLOGY

The DEF forecast of customers, energy sales, and peak demand applies both an econometric and end-use methodology. The residential and commercial energy projections incorporate Itron's SAE approach while other classes use customer class-specific econometric models. These models are expressly designed to capture class-specific variation over time. Peak demand models are projected on a disaggregated basis as well. This allows for appropriate handling of individual assumptions in the areas of wholesale contracts, load management, interruptible service and changes in self-service generation capacity.

ENERGY AND CUSTOMER FORECAST

In the retail jurisdiction, customer class models have been specified showing a historical relationship to weather and economic/demographic indicators using monthly data for sales models and customer models. Sales are regressed against "driver" variables that best explain monthly fluctuations over the historical sample period. Forecasts of these input variables are either derived internally or come from a review of the latest projections made by several independent forecasting concerns. The external sources of data include Moody's Analytics and the University of Florida's

BEBR. Internal company forecasts are used for projections of electricity price, weather conditions, and the length of the billing month. The incorporation of residential and commercial "end-use" energy have been modeled as well. Surveys of residential appliance saturation and average efficiency performed by the company's Market Research department and the Energy Information Agency (EIA), along with trended projections of both by Itron capture a significant piece of the changing future environment for electric energy consumption. Specific sectors are modeled as follows:

Residential Sector

Residential kWh usage per customer is modeled using the SAE framework. This approach explicitly introduces trends in appliance saturation and efficiency, dwelling size and thermal efficiency. It allows for an easier explanation of usage levels and changes in weather-sensitivity over time. The "bundling" of 19 residential appliances into "heating", "cooling" and "other" end uses form the basis of equipment-oriented drivers that interact with typical exogenous factors such as real median household income, cooling degree-days, heating degree-days, the real price of electricity to the residential class and the average number of billing days in each sales month. This structure captures significant variation in residential usage caused by changing appliance efficiency and saturation levels, economic cycles, weather fluctuations, electric price, and sales month duration. Projections of kWh usage per customer combined with the customer forecast provide the forecast of total residential energy sales. The residential customer forecast is developed by correlating monthly residential customers with households within DEF's 29-county service area. County level population projections for counties in which DEF serves residential customers are provided by the BEBR.

Commercial Sector

Commercial MWh energy sales are forecast based on commercial sector (non-agricultural, nonmanufacturing and non-governmental) employment, the real price of electricity to the commercial class, the average number of billing days in each sales month and heating and cooling degree-days. As in the residential sector, these variables are interacted with the commercial end-use equipment (listed below) after trends in equipment efficiency and saturation rates have been projected.

• Heating

- Cooling
- Ventilation
- Water heating
- Cooking
- Refrigeration
- Outdoor Lighting
- Indoor Lighting
- Office Equipment (PCs)
- Miscellaneous

The SAE model contains indices that are based on end-use energy intensity projections developed from EIA's commercial end-use forecast database. Commercial energy intensity is measured in terms of end-use energy use per square foot. End-use energy intensity projections are based on end-use efficiency and saturation estimates that are in turn driven by assumptions in available technology and costs, energy prices, and economic conditions. Energy intensities are calculated from the EIA's Annual Energy Outlook (AEO) commercial database. End-use intensity projections are derived for eleven building types. The energy intensity (EI) is derived by dividing end-use electricity consumption projections by square footage:

 $EI_{bet} = Energy_{bet} / sqft_{bt}$

Where:

 $Energy_{bet}$ = energy consumption for building type b, end-use e, year t $Sqft_{bt}$ = square footage for building type b in year t

Commercial customers are modeled using the projected level of residential customers.

Industrial Sector

Energy sales to this sector are separated into two sub-sectors. A significant portion of industrial energy use is consumed by the phosphate mining industry. Because this one industry is such a large share of the total industrial class, it is separated and modeled apart from the rest of the class. The term "non-phosphate industrial" is used to refer to those customers who comprise the remaining portion of total industrial class sales. Both groups are impacted significantly by changes in economic activity. However, adequately explaining sales levels requires separate explanatory variables. Non-phosphate industrial energy sales are modeled using Florida manufacturing

employment interacted with the Florida industrial production index, and the average number of sales month billing days.

The industrial phosphate mining industry is modeled using customer-specific information with respect to expected market conditions. Since this sub-sector is comprised of only three customers, the forecast is dependent upon information received from direct customer contact. DEF industrial customer representatives provide specific phosphate customer information regarding customer production schedules, inventory levels, area mine-out and start-up predictions, and changes in self-service generation or energy supply situations over the forecast horizon. The projection of industrial accounts are expected to continue its historic decline. The decline in manufacturing nationwide, the increased competitiveness between the states, mergers between companies within the state, all have resulted in a continued decline in customer growth for this class.

Street Lighting

Electricity sales to the street and highway lighting class have remained flat for years but have declined of late. A continued decline is expected as improvements in lighting efficiency are projected. The number of accounts, which has dropped by more than one-third since 1995 due to most transferring to public authority ownership, is expected to decline further before leveling off in the intermediate term. A simple time-trend was used to project energy consumption and customer growth in this class.

Public Authorities

Energy sales to public authorities (SPA), comprised of federal, state and local government operated services, is also projected to grow within the size of DEF's service area. The level of government services, and thus energy, can be tied to the population base, as well as the amount of tax revenue collected to pay for these services. Factors affecting population growth will affect the need for additional governmental services (i.e. public schools, city services, etc.) thereby increasing SPA energy consumption. Government employment has been determined to be the best indicator of the level of government services provided. This variable, along with cooling degree-days and the sales month billing days, results in a significant level of explained variation over the historical sample period. Adjustments are also included in this model to account for the large change in school-

related energy use throughout the year. The SPA customer forecast is projected linearly as a function of a time-trend. Recent budget issues have also had an impact on the near-term pace of growth.

Sales for Resale Sector

The Sales for Resale sector encompasses all firm sales to other electric power entities. This includes sales to other utilities (municipal or investor-owned) as well as power agencies (rural electric authority or municipal).

SECI is a wholesale, or sales for resale, customer of DEF that contracts for both seasonal and stratified loads over the forecast horizon. The municipal sales for resale class includes a number of customers, divergent not only in scope of service (i.e., full or partial requirement), but also in composition of ultimate consumers. Each customer is modeled separately in order to accurately reflect its individual profile. Three customers in this class, Chattahoochee, Mt. Dora, and Williston, are municipalities whose full energy requirements are supplied by DEF. Energy projections for full requirement customers grow at a rate that approximates their historical trend with additional information coming from the respective city officials. DEF serves partial requirement service (PR) to municipalities such as New Smyrna Beach, Homestead, and another power provider, RCID. In each case, these customers contract with DEF for a specific level and type of stratified capacity needed to provide their particular electrical system with an appropriate level of reliability. The energy forecast for each contract is derived using its historical load factors where enough history exists, or typical load factors for a given type of contracted stratified load and expected fuel prices.

PEAK DEMAND FORECAST

The forecast of peak demand also employs a disaggregated econometric methodology. For seasonal (winter and summer) peak demands, as well as each month of the year, DEF's coincident system peak is separated into five major components. These components consist of potential firm retail load, interruptible and curtailable tariff non-firm load, conservation and load management program capability, wholesale demand, company use demand, and interruptible demand.

Potential firm retail load refers to projections of DEF retail hourly seasonal net peak demand (excluding the non-firm interruptible/curtailable/standby services) before any historical activation of DEF's General Load Reduction Plan. The historical values of this series are constructed to show the size of DEF's firm retail net peak demand assuming no utility activated load control had ever taken place. The value of constructing such a "clean" series enables the forecaster to observe and correlate the underlying trend in retail peak demand to retail customer levels and coincident weather conditions at the time of the peak without the impacts of year-to-year variation in load control reductions. Seasonal peaks are projected using the historical seasonal peak hour regardless of which month the peak occurred. The projections become the potential retail demand projection for the months of January (winter) and August (summer) since this is typically when the seasonal peaks occur. The non-seasonal peak months are projected the same as the seasonal peaks, but the analysis is limited to the specific month being projected. Energy conservation and direct load control estimates are consistent with DEF's DSM goals that have been established by the FPSC. These estimates are incorporated into the MW forecast. Projections of dispatchable and cumulative non-dispatchable DSM impacts are subtracted from the projection of potential firm retail demand resulting in a projected series of firm retail monthly peak demand figures.

Sales for Resale demand projections represent load supplied by DEF to other electric suppliers such as SECI, RCID, and other electric transmission and distribution entities. For Partial Requirement demand projections, contracted MW levels dictate the level of monthly demands. The Full Requirement municipal demand forecast is estimated for individual cities using historically trended growth rates adjusted for current economic conditions.

DEF "company use" at the time of system peak is estimated using load research metering studies and is assumed to remain stable over the forecast horizon as it has historically. The interruptible and curtailable service (IS and CS) load component is developed from historic trends, as well as the incorporation of specific information obtained from DEF's large industrial accounts by account executives.

Each of the peak demand components described above is a positive value except for the DSM program MW impacts and IS and CS load. These impacts represent a reduction in peak demand

and are assigned a negative value. Total system firm peak demand is then calculated as the arithmetic sum of the five components.

CONSERVATION

On August 16, 2011, the PSC issued Order No. PSC-11-0347-PAA-EG, Modifying and Approving the Demand Side Management Plan of DEF (formerly known as Progress Energy Florida, Inc.). In this Order, the FPSC modified DEF's DSM Plan to consist of those existing programs in effect as of the date of the Order.

The following tables show the 2010 through 2014 achievements from DEF's existing set of DSM programs.

Year	Summer MW	Winter MW	GWh Energy
Tear	Achieved	Achieved	Achieved
2010	44	85	58
2011	83	160	111
2012	118	233	159
2013	144	281	200
2014	169	322	243

Residential Conservation Savings Cumulative Achievements

Year	Summer MW	Winter MW	GWh Energy
	Achieved	Achieved	Achieved
2010	36	31	66
2011	65	61	132
2012	94	82	199
2013	121	103	243
2014	157	133	300

Commercial Conservation Savings Cumulative Achievements

Year	Summer MW	Winter MW	GWh Energy
	Achieved	Achieved	Achieved
2010	80	116	124
2011	148	221	243
2012	212	315	358
2013	265	384	442
2014	326	455	542

DEF's currently approved DSM programs consist of six residential programs, eight commercial and industrial programs, one research and development program, and six solar pilot programs that will continue to be offered through 2015. The programs are subject to periodic monitoring and evaluation for the purpose of ensuring that all demand-side resources are acquired in a cost-effective manner and that the program savings are durable. A brief description of each of the currently offered DSM programs is provided below.

In 2012, DEF received administrative approval of revisions to four programs as a result of changes to the Florida Building Code: Home Energy Improvement, Residential New Construction, Business New Construction and Better Business. The Building Code changes resulted in increased minimum efficiency levels which resulted in an increase in the baseline efficiency level from which DEF provides incentives. The revisions to the four programs are incorporated in the descriptions below.

In 2013, the increased efficiency standards impacted participation in DEF's approved DSM programs as measures that previously were eligible for incentives became required standards ineligible for incentives. The higher performance requirements established by the changes to the Florida Building Code, along with the state and federal minimum efficiency standards for residential appliances and commercial equipment, resulted in a reduction of demand and energy savings from DEF's DSM programs. As the U.S. Department of Energy (DOE) continues the implementation of increased energy efficiency standards for residential and commercial end-uses, the amount of demand and energy savings captured by DEF's DSM programs will decrease. On March 16, 2015, DEF submitted new programs to the PSC designed to meet the

goals established in Docket Number 130200-EI. If the new programs are approved by the Commission this year, DEF will reflect the changed programs, and resulting demand and energy savings, in its next TYSP filing.

DEF's CURRENTLY APPROVED DSM PROGRAMS:

RESIDENTIAL PROGRAMS

Home Energy Check

This energy audit program provides residential customers with an analysis of their current energy use and provides recommendations on how they can save on their electricity bills through low-cost or no-cost energy-saving practices and measures. The Home Energy Check program currently offers DEF customers the following types of audits: Type 1: Free Walk-Through Audit (Home Energy Check); Type 2: Customer-Completed Mail-In Audit (Do It Yourself Home Energy Check); Type 3: Online Home Energy Check (Internet Option)-a customer-completed audit; Type 4: Phone Assisted Audit – a customer assisted survey of structure and appliance use; Type 5: Computer Assisted Audit; Type 6: Home Energy Rating Audit (Class I, II, III); and Type 7: Student Mail In Audit - a student-completed audit. The Home Energy Check program serves as the foundation of the Home Energy Improvement program in that the audit is a prerequisite for participation in the energy saving measures offered in the Home Energy Improvement Program.

Home Energy Improvement

The Home Energy Improvement Program is the umbrella program that serves to increase energy efficiency for existing residential homes. All residential customers are eligible to participate in this program. The program includes a cost-effective and comprehensive portfolio of measures across all housing types designed to provide customer energy savings and reduce system demand.

The program provides incentives for a number of energy conservation measures including attic insulation upgrades, duct testing and repair, and high efficiency electric heat pumps.

Residential New Construction

This program promotes energy efficient new home construction in order to provide customers with more efficient dwellings combined with improved environmental comfort. The program provides education and information to the design and building community on energy efficient equipment and construction. It also facilitates the design and construction of energy efficient homes by working directly with the builders to comply with program requirements. The program provides incentives to the builder for high efficiency electric heat pumps and high performance windows. The highest level of the program incorporates the U.S. Environmental Protection Agency's Energy Star Homes Program and qualifies participants for cooperative advertising. Additional measures within the Residential New Construction program include HVAC commissioning, window film or screen, reflective roof for single-family homes, attic spray-on foam insulation, conditioned space air handler, and energy recovery ventilation.

Low Income Weatherization Assistance

This umbrella program seeks to improve energy efficiency for low-income customers in existing residential dwellings. It combines efficiency improvements to the thermal envelope with upgrades to electric appliances. The program provides incentives for attic insulation upgrades, duct testing and repair, reduced air infiltration, water heater wrap, HVAC maintenance, high efficiency heat pumps, heat recovery units, and dedicated heat pump water heaters.

Neighborhood Energy Saver

This program consists of 12 measures including compact fluorescent bulb replacement, water heater wrap and insulation for water pipes, water heater temperature check and adjustment, low-flow faucet aerator, low-flow showerhead, refrigerator coil brush, HVAC filters, and weatherization measures (i.e. weather stripping, door sweeps, etc.). In addition to the installation of new conservation measures, an important component of this program is educating families on energy efficiency techniques and the promotion of behavioral changes to help customers control their energy usage.

Residential Energy Management (EnergyWise)

This program allows DEF to reduce peak demand and thus defer generation construction. Peak demand is reduced by interrupting service to selected electrical equipment with radio-controlled switches installed on the customer's premises. These interruptions are at DEF's option, during specified time periods, and coincident with hours of peak demand. Participating customers receive a monthly credit on their electricity bills prorated for usage in excess of 600 kWh per month.

COMMERCIAL/INDUSTRIAL (C/I) PROGRAMS

Business Energy Check

This energy audit program provides commercial and industrial customers with an assessment of the current energy usage at their facilities, recommendations on how they can improve the environmental conditions of their facilities while saving on their electricity bills, and information on low-cost energy efficiency measures. The Business Energy Check consists of a free walk-through audit and a paid walk-through audit. Small business customers also have the option to complete a Business Energy Check online. In most cases, this program is a prerequisite for participation in the other C/I programs.

Better Business

This is the umbrella efficiency program for existing commercial and industrial customers. The program provides customers with information, education, and advice on energy-related issues as well as incentives on efficiency measures. The Better Business program promotes energy efficient HVAC, building retrofit measures (in particular, ceiling insulation upgrade, duct leakage test and repair, energy-recovery ventilation, and Energy Star cool roof coating products), demand-control ventilation, efficient compressed air systems, efficient motors, efficient indoor lighting, green roof, occupancy sensors, packaged AC steam cleaning, roof insulation, roof-top unit recommissioning, thermal energy storage and window film or screen.

Commercial/Industrial New Construction

The primary goal of this program is to foster the design and construction of energy efficient buildings. The new construction program: 1) provides education and information to the design community on all aspects of energy efficient building design; 2) requires that the building design, at a minimum, surpass the State of Florida energy code; 3) provides financial incentives for specific energy efficient equipment; and 4) provides energy design awards to building design teams. Incentives are available for high efficiency HVAC equipment, energy recovery ventilation, Energy Star cool roof coating products, demand-control ventilation, efficient compressed air systems, efficient motors, efficient indoor lighting, green roof, occupancy sensors, roof insulation, thermal energy storage and window film or screen.

Innovation Incentive

This program promotes a reduction in demand and energy by subsidizing energy conservation projects for DEF customers. The intent of the program is to encourage legitimate energy efficiency measures that reduce peak demand and/or energy, but are not addressed by other programs. Energy efficiency opportunities are identified by DEF representatives during a Business Energy Check audit. If a candidate project meets program specifications, it may be eligible for an incentive payment, subject to DEF approval.

Commercial Energy Management (Rate Schedule GSLM-1)

This direct load control program reduces DEF's demand during peak or emergency conditions. As described in DEF's DSM Plan, this program is currently closed to new participants. It is applicable to existing program participants who have electric space cooling equipment suitable for interruptible operation and are eligible for service under the Rate Schedule GS-1, GST-1, GSD-1, or GSDT-1. The program is also applicable to existing participants who have any of the following electrical equipment installed on permanent structures and utilized for the following purposes: 1) water heater(s), 2) central electric heating system(s), 3) central electric cooling system(s), and or 4) swimming pool pump(s). Customers receive a monthly credit on their bills depending on the type of equipment in the program and the interruption schedule.

Standby Generation

This demand control program reduces DEF's demand based upon the indirect control of customer generation equipment. This is a voluntary program available to all commercial, industrial, and agricultural customers who have on-site generation capability of at least 50 kW, and are willing to reduce their demand when DEF deems it necessary. Customers participating in the Standby Generation program receive a monthly credit on their electric bills according to their demonstrated ability to reduce demand at DEF's request.

Interruptible Service

This direct load control program reduces DEF's demand at times of capacity shortage during peak or emergency conditions. The program is available to qualified non-residential customers with an average billing demand of 500 kW or more, who are willing to have their power interrupted. DEF will have remote control of the circuit breaker or disconnect switch supplying the customer's equipment. In return for the ability to interrupt load, customers participating in the Interruptible Service program receive a monthly credit applied to their electric bills.

Curtailable Service

This load control program reduces DEF's demand at times of capacity shortage during peak or emergency conditions. The program is available to qualified non-residential customers who are willing to curtail demand. Customers participating in the Curtailable Service program receive a monthly credit applied to their electric bills.

RESEARCH AND DEVELOPMENT PROGRAMS

Technology Development

The primary purpose of this program is to establish a system to "Aggressively pursue research, development and demonstration projects jointly with others as well as individual projects" (Rule 25-17.001(5)(f), Florida Administration Code). In accordance with the rule, the Technology Development program facilitates the research of innovative technologies and continued advances within the energy industry. DEF will undertake certain development, educational and demonstration projects that have potential to become DSM programs. Examples of projects included in this program include the evaluation of off-peak generation with energy storage for on-peak demand consumption, small-scale wind and smart charging for plug-in hybrid electric vehicles. In most cases, each demand reduction and energy efficiency project that is proposed and investigated under this program requires field-testing with customers.

DEMAND-SIDE RENEWABLE PORTFOLIO

Solar Water Heating for the Low-income Residential Customers Pilot

This pilot program is designed to assist low-income families with energy costs by incorporating a solar thermal water heating system in their residence while it is under construction. DEF collaborates with non-profit builders to provide low-income families with a residential solar thermal water heater. The solar thermal system is provided at no cost to the non-profit builders or the residential participants.

Solar Water Heating with Energy Management

This pilot program encourages residential customers to install new solar thermal water heating systems on their residence with the requirement for customers to participate in our residential Energy Management program (EnergyWise). Participants receive a one-time \$550 rebate designed to reduce the upfront cost of the renewable energy system, plus a monthly bill credit associated with their participation in the residential Energy Management program.

Residential Solar Photovoltaic Pilot

This pilot encourages residential customers to install new solar photovoltaic (PV) systems on their home. A DEF audit is required prior to system installation to qualify for this rebate. Participating customers will receive a one-time rebate of up to \$20,000 to reduce the initial investment required to install a qualified renewable solar PV system. The rebate is based on the wattage of the PV (DC) power rating.

Commercial Solar Photovoltaic Pilot

This pilot encourages commercial customers to install new solar PV systems on their facilities. A DEF energy audit is required prior to system installation to qualify for this rebate. The program provides participating commercial customers with a tiered rebate to reduce the initial investment in a qualified solar PV system. The rebate is based on the PV (DC) power rating of the unit installed. The total incentives per participant will be limited to \$130,000, based on a maximum installation of 100 kW.

Photovoltaic For Schools Pilot

This pilot is designed to assist schools with energy costs while promoting energy education. This program provides participating public schools with new solar photovoltaic systems at no cost to the school. The primary goals of the program are to:

- Eliminate the initial investment required to install a solar PV system
- Increase renewable energy generation on DEF's system
- Increase participation in existing residential Demand Side Management measures through energy education
- Increase solar education and awareness in DEF communities and schools

The program will be limited to an annual target of one system with a rating up to 100 KW installed on a post secondary public school and ten 10 KW systems with battery backup option installed on public K-12 schools, preferably serving as emergency shelters.

Research and Demonstration Pilot

The purpose of this pilot program is to research technology and establish Research and Design initiatives to support the development of renewable energy pilot programs. Demonstration projects will provide real-world field testing to assist in the development of these initiatives. The program will be limited to a maximum annual expenditure equal to 5% of the total Demand-Side Renewable Portfolio annual expenditures.

(Blank Page)