AUSLEY MCMULLEN

FILED 8/24/2017 DOCUMENT NO. 07280-2017 FPSC - COMMISSION CLERK

ATTORNEYS AND COUNSELORS AT LAW

123 SOUTH CALHOUN STREET P.O. BOX 391 (ZIP 32302) TALLAHASSEE, FLORIDA 32301 (850) 224-9115 FAX (850) 222-7560

August 24, 2017

VIA: ELECTRONIC FILING

Ms. Carlotta S. Stauffer Commission Clerk Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850

> Re: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor; FPSC Docket No. 20170001-EI

Dear Ms. Stauffer:

Attached for filing in the above docket on behalf of Tampa Electric Company are the following:

- 1. Petition of Tampa Electric Company.
- 2. Prepared Direct Testimony and Exhibit (PAR-3) of Penelope A. Rusk.
- 3. Prepared Direct Testimony and Exhibit (BSB-2) of Brian S. Buckley.
- 4. Prepared Direct Testimony of J. Brent Caldwell.
- 5. Prepared Direct Testimony of Benjamin F. Smith II.

Thank you for your assistance in connection with this matter.

Sincerely,

James D. Beasley

JDB/pp Attachment

cc: All Parties of Record (w/attachment)

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true copy of the foregoing Petition and Testimonies, filed on behalf of Tampa Electric Company, has been furnished by electronic mail on this 24th day of August 2017, to the following:

Ms. Suzanne S. Brownless Ms. Danijela Janjic Office of the General Counsel Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850 <u>sbrownle@psc.state.fl.us</u> Djanjic@psc.state.fl.us

Ms. Patricia A. Christensen Mr. Erik Sayler Associate Public Counsel Office of Public Counsel 111 West Madison Street – Room 812 Tallahassee, FL 32399-1400 christensen.patty@leg.state.fl.us sayler.erik@leg.state.fl.us

Ms. Dianne M. Triplett Associate General Counsel Duke Energy Florida, LLC 299 First Avenue North St. Petersburg, FL 33701 Dianne.triplett@duke-energy.com

Mr. Matthew R. Bernier Senior Counsel Duke Energy Florida, LLC 106 East College Avenue, Suite 800 Tallahassee, FL 32301-7740 Matthew.bernier@duke-energy.com

Mr. Jon C Moyle, Jr. Moyle Law Firm 118 North Gadsden Street Tallahassee, FL 32301 jmoyle@moylelaw.com Ms. Beth Keating Gunster, Yoakley & Stewart, P.A. 215 S. Monroe St., Suite 601 Tallahassee, FL 32301 <u>bkeating@gunster.com</u>

Mr. John T. Butler Assistant General Counsel – Regulatory Ms. Maria Jose Moncada Principal Attorney Florida Power & Light Company 700 Universe Boulevard (LAW/JB) Juno Beach, FL 33408-0420 john.butler@fpl.com maria.moncada@fpl.com

Mr. Kenneth Hoffman Vice President, Regulatory Relations Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, FL 32301-1859 ken.hoffman@fpl.com

Mr. Mike Cassel Regulatory and Governmental Affairs Florida Public Utilities Company Florida Division of Chesapeake Utilities Corp. 1750 SW 14th Street, Suite 200 Fernandina Beach, FL 32034 mcassel@fpuc.com

Mr. Jeffrey A. Stone General Counsel Gulf Power Company One Energy Place Pensacola, FL 32520-0100 jastone@southernco.com Mr. Russell A. Badders Mr. Steven R. Griffin Beggs & Lane Post Office Box 12950 Pensacola, FL 32591 <u>rab@beggslane.com</u> <u>srg@beggslane.com</u>

Ms. Rhonda J. Alexander Regulatory, Forecasting & Pricing Manager Gulf Power Company One Energy Place Pensacola, FL 32520-0780 rjalexad@southernco.com Mr. James W. Brew Ms. Laura A. Wynn Stone Mattheis Xenopoulos & Brew, PC 1025 Thomas Jefferson Street, NW Eighth Floor, West Tower Washington, D.C. 20007-5201 jbrew@smxblaw.com laura.wynn@smxblaw.com

Mr. Robert Scheffel Wright Mr. John T. LaVia, III Gardner, Bist, Wiener, Wadsworth, Bowden, Bush, Dee, LaVia & Wright, P.A. 1300 Thomaswood Drive Tallahassee, FL 32308 <u>Schef@gbwlegal.com</u> <u>Jlavia@gbwlegal.com</u>

Jan Obco -

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

))

In re: Fuel and Purchased Power Cost Recovery Clause with Generating Performance Incentive Factor.

DOCKET NO. 20170001-EI FILED: August 24, 2017

PETITION OF TAMPA ELECTRIC COMPANY

Tampa Electric Company ("Tampa Electric" or "company"), hereby petitions the Commission for approval of the company's proposals concerning fuel and purchased power factors, capacity cost factors, generating performance incentive factors, and the projected wholesale sales incentive benchmark set forth herein, and in support thereof, says:

Fuel and Purchased Power Factors

1. Tampa Electric projects a fuel and purchased power net true-up amount for the period January 1, 2017 through December 31, 2017 will be an over-recovery of \$17,081,137 (See Exhibit No. PAR-3, Document No. 2, Schedule E1-C).

2. The company's projected expenditures for the period January 1, 2018 through December 31, 2018, when adjusted for the proposed GPIF reward and true-up over-recovery amount and spread over projected kilowatt-hour sales for the period January 1, 2018 through December 31, 2018, produce a fuel and purchased power factor for the new period of 3.132 cents per kWh before the application of time of use multipliers for on-peak or off-peak usage. (See Exhibit No. PAR-3, Document No. 2, Schedule E1-E).

3. The company's projected benchmark level for calendar year 2018 for gains on non-separated wholesale energy sales eligible for the shareholder incentive as set forth by Order No. PSC-2000-1744-PAA-EI, in Docket No. 19991779 is \$881,885 as provided in the direct testimony of Tampa Electric witness Penelope A. Rusk.

Capacity Cost Factor

4. Tampa Electric estimates that its net true-up amount applicable for the period January 1, 2017 through December 31, 2017 will be an under-recovery of \$2,762,938, as shown in Exhibit No. PAR-3, Document No. 1, page 2 of 4.

5. The company's projected expenditures for the period January 1, 2018 through December 31, 2018, when adjusted for the true-up under-recovery amount and spread over projected kilowatt-hour sales for the period, produce a capacity cost recovery factor for the period of 0.00056 cents per kWh. For demand-measured customers, the factor Tampa Electric proposes to recover is \$0.20 per billed kW as set forth in Exhibit No. PAR-3, Document No. 1, page 3 of 4.

GPIF

6. Tampa Electric has calculated that it is subject to a GPIF reward of \$47,392 for performance during the period January 1, 2016 through December 31, 2016.

7. The company is also proposing GPIF targets and ranges for the period January 1, 2018 through December 31, 2018 with such proposed targets and ranges being detailed in the testimony and exhibits of Tampa Electric witness Brian S. Buckley filed herewith.

WHEREFORE, Tampa Electric Company requests that its proposals relative to fuel and purchased power cost recovery, capacity cost recovery and GPIF be approved as they relate to prior period true-up calculations and projected cost recovery charges, and that the Commission approve the company's projected wholesale sales incentive benchmark.

DATED this 24th day of August 2017.

Respectfully submitted,

OBen L

JAMES D. BEASLEY J. JEFFRY WAHLEN Ausley McMullen Post Office Box 391 Tallahassee, Florida 32302 (850) 224-9115

ATTORNEYS FOR TAMPA ELECTRIC COMPANY

CERTIFICATE OF SERVICE

I HEREBY CERTIFY that a true copy of the foregoing Petition, filed on behalf of Tampa Electric Company, has been furnished by electronic mail on this 24th day of August 2017, to the following:

Ms. Suzanne S. Brownless Ms. Danijela Janjic Office of the General Counsel Florida Public Service Commission 2540 Shumard Oak Boulevard Tallahassee, FL 32399-0850 <u>sbrownle@psc.state.fl.us</u> Djanjic@psc.state.fl.us

Ms. Patricia A. Christensen Mr. Erik Sayler Associate Public Counsel Office of Public Counsel 111 West Madison Street – Room 812 Tallahassee, FL 32399-1400 christensen.patty@leg.state.fl.us sayler.erik@leg.state.fl.us

Ms. Dianne M. Triplett Associate General Counsel Duke Energy Florida, LLC 299 First Avenue North St. Petersburg, FL 33701 Dianne.triplett@duke-energy.com

Mr. Matthew R. Bernier Senior Counsel Duke Energy Florida, LLC 106 East College Avenue, Suite 800 Tallahassee, FL 32301-7740 Matthew.bernier@duke-energy.com

Mr. Jon C Moyle, Jr. Moyle Law Firm 118 North Gadsden Street Tallahassee, FL 32301 jmoyle@moylelaw.com Ms. Beth Keating Gunster, Yoakley & Stewart, P.A. 215 S. Monroe St., Suite 601 Tallahassee, FL 32301 <u>bkeating@gunster.com</u>

Mr. John T. Butler Assistant General Counsel – Regulatory Ms. Maria Jose Moncada Principal Attorney Florida Power & Light Company 700 Universe Boulevard (LAW/JB) Juno Beach, FL 33408-0420 john.butler@fpl.com maria.moncada@fpl.com

Mr. Kenneth Hoffman Vice President, Regulatory Relations Florida Power & Light Company 215 South Monroe Street, Suite 810 Tallahassee, FL 32301-1859 ken.hoffman@fpl.com

Mr. Mike Cassel Regulatory and Governmental Affairs Florida Public Utilities Company Florida Division of Chesapeake Utilities Corp. 1750 SW 14th Street, Suite 200 Fernandina Beach, FL 32034 mcassel@fpuc.com

Mr. Jeffrey A. Stone General Counsel Gulf Power Company One Energy Place Pensacola, FL 32520-0100 jastone@southernco.com Mr. Russell A. Badders Mr. Steven R. Griffin Beggs & Lane Post Office Box 12950 Pensacola, FL 32591 <u>rab@beggslane.com</u> <u>srg@beggslane.com</u>

Ms. Rhonda J. Alexander Regulatory, Forecasting & Pricing Manager Gulf Power Company One Energy Place Pensacola, FL 32520-0780 rjalexad@southernco.com Mr. James W. Brew Ms. Laura A. Wynn Stone Mattheis Xenopoulos & Brew, PC 1025 Thomas Jefferson Street, NW Eighth Floor, West Tower Washington, D.C. 20007-5201 jbrew@smxblaw.com laura.wynn@smxblaw.com

Mr. Robert Scheffel Wright Mr. John T. LaVia, III Gardner, Bist, Wiener, Wadsworth, Bowden, Bush, Dee, LaVia & Wright, P.A. 1300 Thomaswood Drive Tallahassee, FL 32308 <u>Schef@gbwlegal.com</u> <u>Jlavia@gbwlegal.com</u>

Jun Bra h

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 20170001-EI FUEL & PURCHASED POWER COST RECOVERY AND CAPACITY COST RECOVERY

PROJECTIONS

JANUARY 2018 THROUGH DECEMBER 2018

TESTIMONY AND EXHIBIT OF PENELOPE A. RUSK

FILED: AUGUST 24, 2017

TAMPA ELECTRIC COMPANY DOCKET NO. 20170001-EI FILED: 08/24/2017

	Ì	
1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		PENELOPE A. RUSK
5		
6	Q.	Please state your name, address, occupation and employer.
7		
8	Α.	My name is Penelope A. Rusk. My business address is 702
9		N. Franklin Street, Tampa, Florida 33602. I am employed
10		by Tampa Electric Company ("Tampa Electric" or "company")
11		in the position of Manager, Rates in the Regulatory
12		Affairs Department.
13		
14	Q.	Have you previously filed testimony in Docket No.
15		20170001-EI?
16		
17	Α.	Yes, I submitted direct testimony on March 1, 2017 and
18		July 27, 2017.
19		
20	Q.	Has your job description, education, or professional
21		experience changed since then?
22		
23	Α.	No, it has not.
24		
25	Q.	What is the purpose of your testimony?
	I	

The purpose of my testimony is to present, for Commission 1 Α. review and approval, the proposed annual capacity cost 2 3 recovery factors, the proposed annual levelized fuel and purchased power cost recovery factors, including an 4 5 inverted or two-tiered residential fuel charge to encourage energy efficiency and conservation and the 6 wholesale incentive benchmark for January 2018 through 7 I also describe significant events that December 2018. 8 affect the factors and provide an overview of the 9 composite effect on the residential bill of changes in 10 11 the various cost recovery factors for 2018.

13 Q. Have you prepared an exhibit to support your direct
14 testimony?

12

15

16 Α. Yes. Exhibit No. PAR-3, consisting of four documents, was prepared under my direction and supervision. Document 17 No. 1, consisting of four pages, is furnished as support 18 for the projected capacity cost recovery factors. 19 20 Document No. 2, which is furnished as support for the proposed levelized fuel and purchased power cost recovery 21 factors, includes Schedules E1 through E10 for January 22 23 2018 through December 2018 as well as Schedule H1 for January through December, 2015 through 2018. Document No. 24 3 provides a comparison of retail residential 25 fuel

	1											
1		revenues under the inverted or tiered fuel rate, which										
2		demonstrates that the tiered rate is revenue neutral.										
3		Document No. 4 presents the capital costs and fuel savings										
4		for the company projects that have been approved through										
5		the fuel clause, as well as the capital structure										
6		components and cost rates relied upon to calculate the										
7		revenue requirement rate of return for the projects.										
8												
9	Capa	city Cost Recovery										
10	Q.	Are you requesting Commission approval of the projected										
11		capacity cost recovery factors for the company's various										
12		rate schedules?										
13												
14	A.	Yes. The capacity cost recovery factors, prepared under										
15		my direction and supervision, are provided in Exhibit No.										
16		PAR-3, Document No. 1, page 3 of 4.										
17												
18	Q.	What payments are included in Tampa Electric's capacity										
19		cost recovery factors?										
20												
21	А.	Tampa Electric is requesting recovery of capacity										
22		payments for power purchased for retail customers,										
23		excluding optional provision purchases for interruptible										
24		customers, through the capacity cost recovery factors.										
25		As shown in Exhibit No. PAR-3, Document No. 1, Tampa										
		3										

	1			
1		Electric requests	recovery of	\$10,902,732 after
2		jurisdictional sepa	aration, prior	year true-up, and
3		application of the	revenue tax fac	ctor, for estimated
4		expenses in 2018.		
5				
6	Q.	Please summarize th	ne proposed capa	acity cost recovery
7		factors by metering w	voltage level for	January 2018 through
8		December 2018.		
9				
10	А.	Rate Class and	Capacity Cost	Recovery Factor
11		Metering Voltage	<u>Cents per kWh</u>	\$ per Kw
12		RS Secondary	0.066	
13		GS and CS Secondary	0.060	
14		GSD, SBF Standard		
15		Secondary		0.20
16		Primary		0.20
17		Transmission		0.20
18		IS, IST, SBI		
19		Primary		0.14
20		Transmission		0.14
21		GSD Optional		
22		Secondary	0.047	
23		Primary	0.047	
24		LS1 Secondary	0.016	
25				
	I		4	

1		These factors are shown in Exhibit No. PAR-3, Document
2		No. 1, page 3 of 4.
3		
4	Q.	How does Tampa Electric's proposed average capacity cost
5		recovery factor of 0.056 cents per kWh compare to the
б		factor for January 2017 through December 2017?
7		
8	Α.	The proposed capacity cost recovery factor is 0.018 cents
9		per kWh (or \$0.18 per 1,000 kWh) lower than the average
10		capacity cost recovery factor of 0.074 cents per kWh for
11		the January 2017 through December 2017 period.
12		
13	Fuel	and Purchased Power Cost Recovery Factor
14	Q.	What is the appropriate amount of the levelized fuel and
14 15	Q.	What is the appropriate amount of the levelized fuel and purchased power cost recovery factor for the year 2018?
	Q.	
15	Q. A.	
15 16		purchased power cost recovery factor for the year 2018?
15 16 17		purchased power cost recovery factor for the year 2018? The appropriate amount for the 2018 period is 3.132 cents
15 16 17 18		purchased power cost recovery factor for the year 2018? The appropriate amount for the 2018 period is 3.132 cents per kWh before the application of the time of use
15 16 17 18 19		purchased power cost recovery factor for the year 2018? The appropriate amount for the 2018 period is 3.132 cents per kWh before the application of the time of use multipliers for on-peak or off-peak usage. Schedule E1-
15 16 17 18 19 20		purchased power cost recovery factor for the year 2018? The appropriate amount for the 2018 period is 3.132 cents per kWh before the application of the time of use multipliers for on-peak or off-peak usage. Schedule E1- E of Exhibit No. PAR-3, Document No. 2, shows the
15 16 17 18 19 20 21		purchased power cost recovery factor for the year 2018? The appropriate amount for the 2018 period is 3.132 cents per kWh before the application of the time of use multipliers for on-peak or off-peak usage. Schedule E1- E of Exhibit No. PAR-3, Document No. 2, shows the appropriate value for the total fuel and purchased power
15 16 17 18 19 20 21 21 22		purchased power cost recovery factor for the year 2018? The appropriate amount for the 2018 period is 3.132 cents per kWh before the application of the time of use multipliers for on-peak or off-peak usage. Schedule E1- E of Exhibit No. PAR-3, Document No. 2, shows the appropriate value for the total fuel and purchased power cost recovery factor for each metering voltage level as

Please describe the information provided on Schedule E1-Q. 1 2 C. 3 The Generating Performance Incentive Factor ("GPIF") and Α. 4 5 true-up factors are provided on Schedule E1-C. Tampa Electric has calculated a GPIF reward of \$47,392, which 6 is included in the calculation of the total fuel and 7 purchased power cost recovery factors. In addition, 8 Schedule E1-C indicates the net true-up amount for the 9 January 2017 through December 2017 period. The net true-10 up amount for this period is an over-recovery of 11 \$17,081,137. 12 13 14 Q. Please describe the information provided on Schedule E1-D. 15 16 Α. Schedule E1-D presents Tampa Electric's on-peak and off-17 peak fuel adjustment factors for January 2018 through 18 December 2018. The schedule also presents 19 Tampa 20 Electric's levelized fuel cost factors at each metering level. 21 22 23 Q. Please describe the information presented on Schedule E1-Ε. 24 25

б

1	А.	Schedule E1-E presents the standard, tiered, on-peak and
2		off-peak fuel adjustment factors at each metering voltage
3		to be applied to customer bills.
4		
5	Q.	Please describe information provided in Document No. 3.
6		
7	А.	Exhibit No. PAR-3, Document No. 3 demonstrates that the
8		tiered rate structure is designed to be revenue neutral
9		so that the company will recover the same fuel costs as
10		it would under the traditional levelized fuel approach.
11		
12	Q.	Please summarize the proposed fuel and purchased power
13		cost recovery factors by metering voltage level for
14		January 2018 through December 2018.
15		
16	А.	Metering Voltage Level Fuel Charge Factor
16 17	Α.	Metering Voltage Level Fuel Charge Factor (Cents per kWh)
	А.	
17	Α.	(Cents per kWh)
17 18	Α.	(Cents per kWh) Secondary 3.132
17 18 19	Α.	(Cents per kWh) Secondary 3.132 Tier I (Up to 1,000 kWh) 2.818
17 18 19 20	Α.	(Cents per kWh) Secondary 3.132 Tier I (Up to 1,000 kWh) 2.818 Tier II (Over 1,000 kWh) 3.818
17 18 19 20 21	Α.	(Cents per kWh) Secondary 3.132 Tier I (Up to 1,000 kWh) 2.818 Tier II (Over 1,000 kWh) 3.818 Distribution Primary 3.101
17 18 19 20 21 22	Α.	(Cents per kWh)Secondary3.132Tier I (Up to 1,000 kWh)2.818Tier II (Over 1,000 kWh)3.818Distribution Primary3.101Transmission3.069
17 18 19 20 21 22 23	Α.	(Cents per kWh)Secondary3.132Tier I (Up to 1,000 kWh)2.818Tier II (Over 1,000 kWh)3.818Distribution Primary3.101Transmission3.069Lighting Service3.095

	1	
1		Distribution Primary 3.297 (on-peak)
2		3.017 (off-peak)
3		Transmission 3.263 (on-peak)
4		2.986 (off-peak)
5		
6	Q.	How does Tampa Electric's proposed levelized fuel
7		adjustment factor 3.132 cents per kWh compare to the
8		levelized fuel adjustment factor for the January 2017
9		through December 2017 period?
10		
11	A.	The proposed fuel charge factor is 0.176 cents per kWh
12		(or \$1.76 per 1,000 kWh) higher than the average fuel
13		charge factor of 2.956 cents per kWh for the January 2017
14		through December 2017 period.
15		
16	Even	ts Affecting the Projection Filing
17	Q.	Are there any significant events reflected in the
18		calculation of the 2018 fuel and purchased power and
19		capacity cost recovery projections?
20		
21	Α.	No, there are not any significant events that are
22		reflected in the 2018 projection.
23		
24	Capi	tal Projects Approved for Fuel Clause Recovery
25	Q.	What did Tampa Electric calculate as the estimated Polk
	l	8

•

	1	
1		Unit 1 ignition oil conversion project costs for the
2		period January 2018 through December 2018?
3		
4	Α.	The estimated Polk Unit 1 ignition oil conversion project
5		capital costs, including depreciation and return, for the
6		period of January 2018 through December 2018 are
7		\$1,650,886. This is shown in Exhibit PAR-3, Document No.
8		4.
9		
10	Q.	Do Tampa Electric's estimated Polk Unit 1 ignition oil
11		conversion project savings exceed estimated costs for the
12		period January 2018 through December 2018?
13		
14	Α.	Yes, as reflected in Exhibit No. PAR-3, Document No. 4,
15		fuel savings exceed costs for the period January 2018
16		through December 2018.
17		
18	Q.	Should Tampa Electric's Polk Unit 1 ignition oil
19		conversion project capital costs be recovered through the
20		fuel clause?
21		
22	A.	Yes. The January 2018 through December 2018 estimated
23		fuel savings are greater than the project capital costs,
24		providing an expected net benefit to customers, and the
25		costs are eligible for recovery through the fuel clause
	l	0

	i	
1		in accordance with FPSC Order No. PSC-2012-0498-PAA-EI,
2		issued in Docket No. 20120153-EI on September 27, 2012.
3		
4	Q.	What did Tampa Electric calculate as the estimated Big
5		Bend Units 1-4 ignition oil conversion project costs for
6		the period January 2018 through December 2018?
7		
8	Α.	The estimated Big Bend Units 1-4 ignition oil conversion
9		project capital costs, including depreciation and return,
10		are \$4,877,765. This is shown in Exhibit No. PAR-3,
11		Document No. 4.
12		
13	Q.	Does Tampa Electric's estimated Big Bend Units 1-4
14		ignition oil conversion project fuel savings exceed costs
15		for the period January 2018 through December 2018?
16		
17	A.	Yes, fuel savings exceed costs for the period January
18		2018 through December 2018. This information is also
19		presented in Exhibit No. PAR-3, Document No. 4.
20		
21	Q.	Should Tampa Electric's Big Bend Units 1-4 ignition oil
22		conversion project capital costs be recovered through the
23		fuel clause?
24		
25	А.	Yes. The January 2018 through December 2018 estimated fuel
		10

savings are greater than the projected capital costs, 1 providing an expected net benefit to customers, and the 2 3 costs are eligible for recovery through the fuel clause in accordance with FPSC Order No. PSC-2014-0309-PAA-EI, 4 issued in Docket No. 20140032-EI on June 12, 2014. 5 6 Please describe the capital structure components and cost 7 Q. rates relied upon to calculate the revenue requirement 8 rate of return for these two projects. 9 10 11 Α. The capital structure components and cost rates relied upon to calculate the revenue requirement rate of return 12 for the company's projects that are approved for recovery 13 14 through the fuel clause are shown in Document No. 4. 15 Wholesale Incentive Benchmark Mechanism 16 What is Tampa Electric's projected wholesale incentive ο. 17 benchmark for 2018? 18 19 The company's projected 2018 benchmark is \$881,855, which 20 Α. is the three-year average of \$496,810, \$683,509 and 21 22 \$1,465,247 in gains on the company's non-separated 23 wholesale sales, excluding emergency sales for 2015, 2016 and 2017 (actual/estimated), respectively. 24 25

Q.	Does Tampa Electric expect gains in 2018 from non-												
	separated wholesale sales to exceed its 2018 wholesale												
	incentive benchmark?												
A.	No. Tampa Electric anticipates that sales will not exceed												
	the projected wholesale benchmark for 2018. Therefore,												
	all sales margins are expected to flow back to the												
	customers.												
Cost	Recovery Factors												
Q.	What is the composite effect of Tampa Electric's proposed												
	changes in its base, capacity, fuel and purchased power,												
	environmental, and energy conservation cost recovery												
	factors on a 1,000 kWh residential customer's bill?												
A.	The composite effect on a residential bill for 1,000 kWh												
	is an increase of \$1.32 beginning January 2018, when												
	compared to the January 2017 through December 2017												
	charges. These charges are shown in Exhibit No. PAR-3,												
	Document No. 2, on Schedule E10.												
Q.	When should the new rates go into effect?												
A.	The new rates should go into effect concurrent with meter												
	reads for the first billing cycle for January 2018.												
	A. Cost Q. A.												

1	Q.	Does	this	conclude	your	direct	testimony?
2							
3	Α.	Yes,	it do	bes.			
4							
5							
б							
7							
8							
9							
10							
11							
12							
13							
14							
15							
16							
17							
18							
19							
20							
21							
22							
23							
24							
25							

DOCKET NO. 20170001-EI CCR 2018 PROJECTION FILING EXHIBIT NO. PAR-3 DOCUMENT NO. 1

EXHIBIT TO THE TESTIMONY OF

PENELOPE A. RUSK

DOCUMENT NO. 1

PROJECTED CAPACITY COST RECOVERY

JANUARY 2018 - DECEMBER 2018

AND

SCHEDULE E12

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2018 THROUGH DECEMBER 2018 PROJECTED

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	AVG 12 CP	PROJECTED	PROJECTED	DEMAND	ENERGY	PROJECTED	PROJECTED	PERCENTAGE	PERCENTAGE	12 CP & 1/13
	LOAD FACTOR	SALES AT	AVG 12 CP	LOSS	LOSS	SALES AT	AVG 12 CP	OF SALES AT	OF DEMAND AT	AVG DEMAND
	AT METER	METER	AT METER	EXPANSION	EXPANSION	GENERATION	AT GENERATION	GENERATION	GENERATION	FACTOR
RATE CLASS	(%)	(MWH)	(MW)	FACTOR	FACTOR	(MWH)	(MW)	(%)	(%)	(%)
RS,RSVP	54.90%	9,247,032	1,923	1.07913	1.05247	9,732,187	2,075	47.46%	56.37%	55.68%
GS, TS	60.53%	947,710	179	1.07913	1.05245	997,418	193	4.86%	5.24%	5.21%
GSD Optional	3.53%	373,897	55	1.07468	1.04884	392,159	59	1.91%	1.60%	1.62%
GSD, SBF	74.34%	7,873,825	1,154	1.07468	1.04884	8,258,409	1,240	40.27%	33.69%	34.20%
IS,SBI	100.93%	911,875	103	1.02898	1.01784	928,138	106	4.53%	2.88%	3.01%
LS1	291.75%	189,780	7	1.07913	1.05247	199,737	8	0.97%	0.22%	0.28%
TOTAL		19,544,119	3,421			20,508,048	3,681	100.00%	100.00%	100.00%

(1) AVG 12 CP load factor based on 2017 projected calendar data.

(2) Projected MWH sales for the period January 2018 thru December 2018.

(3) Based on 12 months average CP at meter.

(4) Based on 2017 projected demand losses.

(5) Based on 2017 projected energy losses.

(6) Col (2) * Col (5).

(7) Col (3) * Col (4).

(8) Based on 12 months average percentage of sales at generation.

(9) Based on 12 months average percentage of demand at generation.

(10) Col (8) * 0.0769 + Col (9) * 0.9231

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2018 THROUGH DECEMBER 2018 PROJECTED

	_	January	February	March	April	May	June	July	August	September	October	November	December	Total
1	UNIT POWER CAPACITY CHARGES	839,740	839,740	839,740	839,740	839,740	839,740	839,740	839,740	839,740	839,740	839,740	812,650	10,049,790
2	CAPACITY PAYMENTS TO COGENERATORS	0	0	0	0	0	0	0	0	0	0	0	0	0
3	(UNIT POWER CAPACITY REVENUES)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(159,820)	(1,917,840)
4	TOTAL CAPACITY DOLLARS	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$652,830	\$8,131,950
5	SEPARATION FACTOR	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
6	JURISDICTIONAL CAPACITY DOLLARS	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$652,830	\$8,131,950
7	ACTUAL/ESTIMATED TRUE-UP FOR THE PERIOD JAN. 2017 - DEC. 2017)											_	2,762,938
8	TOTAL													\$10,894,888
9	REVENUE TAX FACTOR													1.00072
10	TOTAL RECOVERABLE CAPACITY DOLLARS												=	\$10,902,732

TAMPA ELECTRIC COMPANY CAPACITY COST RECOVERY CLAUSE CALCULATION OF ENERGY & DEMAND ALLOCATION BY RATE CLASS JANUARY 2018 THROUGH DECEMBER 2018 PROJECTED

RATE CLASS	(1) PERCENTAGE OF SALES AT GENERATION (%)	(2) PERCENTAGE OF DEMAND AT GENERATION (%)	(3) ENERGY RELATED COSTS (\$)	(4) DEMAND RELATED COSTS (\$)	(5) TOTAL CAPACITY COSTS (\$)	(6) PROJECTED SALES AT METER (MWH)	(7) EFFECTIVE AT SECONDARY LEVEL (MWH)	(8) BILLING KW LOAD FACTOR (%)	(9) PROJECTED BILLED KW AT METER (kw)	(10) CAPACITY RECOVERY FACTOR (\$/kw)	(11) CAPACITY RECOVERY FACTOR (\$/kwh)
RS	47.46%	56.37%	397,914	5,673,253	6,071,167	9,247,032	9,247,032				0.00066
GS, CS	4.86%	5.24%	40,747	527,370	568,117	947,710	947,710				0.00060
GSD, SBF Secondary Primary Transmission						6,412,460 1,452,710 8,655	6,412,460 1,438,183 8,482			0.20 0.20 0.20)
GSD, SBF - Standard	40.27%	33.69%	337,632	3,390,667	3,728,299	7,873,825	7,859,125	58.99%	18,250,438		
GSD - Optional Secondary Primary	1.91%	1.60%	16,014	161,029	177,043	363,508 10,389	363,508 10,285				0.00047 0.00047
IS, SBI Primary Transmission						184,182 727,693	182,340 713,139			0.14 0.14	
Total IS, SBI	4.53%	2.88%	37,980	289,852	327,832	911,875	895,479	52.85%	2,321,101		
LS1	0.97%	0.22%	8,133	22,141	30,274	189,780	189,780				0.00016
TOTAL	100.00%	100.00%	838,420	10,064,312	10,902,732	19,544,119	19,512,919				0.00056

(1) Obtained from page 1.

(2) Obtained from page 1.

(3) Total capacity costs * 0.0769 * Col (1).

(4) Total capacity costs * 0.9231 * Col (2).

(5) Col (3) + Col (4).

(6) Projected kWh sales for the period January 2018 through December 2018.

(7) Projected kWh sales at secondary for the period January 2018 through December 2018.

(8) Col 7 / (Col 9 * 730)*1000

(9) Projected kw demand for the period January 2018 through December 2018.

(10) Total Col (5) / Total Col (9).

(11) {Col (5) / Total Col (7)} / 1000.

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 1, PAGE 3 OF 4

TAMPA ELECTRIC COMPANY

CAPACITY COSTS

ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

TERM CONTRACT CONTRACT START END TYPE QF = QUALIFYING FACILITY LT = LONG TERM PASCO COGEN ST = SHORT-TERM 1/1/2009 12/31/2018 LT SEMINOLE ELECTRIC ** ** THREE YEAR NOTICE REQUIRED FOR TERMINATION. 6/1/1992 ----

CONTRACT	JANUARY MW	FEBRUARY MW	MARCH MW	APRIL MW	MAY MW	JUNE MW	JULY MW	AUGUST MW	SEPTEMBER MW	OCTOBER MW	NOVEMBER MW	DECEMBER MW	
PASCO COGEN	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	121.0	
SEMINOLE ELECTRIC	1.4	1.4	1.5	1.8	1.3	1.4	1.5	1.7	1.4	1.4	1.2	1.2	
CAPACITY	JANUARY	FEBRUARY	MARCH	APRIL	MAY	JUNE	JULY	AUGUST	SEPTEMBER	OCTOBER	NOVEMBER	DECEMBER	TOTAL
	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)	(\$)

PASCO COGEN - D SUBTOTAL CAPACITY PURCHASES													
SEMINOLE ELECTRIC - D VARIOUS MARKET BASED SUBTOTAL CAPACITY SALES													
TOTAL PURCHASES AND (SALES)	679,920	679,920	679,920	679,920	679,920	679,920	679,920	679,920	679,920	679,920	679,920	652,830	8,131,950
TOTAL CAPACITY	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$679,920	\$652,830	\$8,131,950

SCHEDULE E12

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 1, PAGE 2

4 OF 4

DOCKET NO. 20170001-EI FAC 2018 PROJECTION FILING EXHIBIT NO. PAR-3 DOCUMENT NO. 2

EXHIBIT TO THE TESTIMONY OF

PENELOPE A. RUSK

DOCUMENT NO. 2

PROJECTED FUEL AND PURCHASED POWER COST RECOVERY

JANUARY 2018 - DECEMBER 2018

SCHEDULES E1 THROUGH E10 SCHEDULE H1

TAMPA ELECTRIC COMPANY

TABLE OF CONTENTS

PAGE NO.	DESCRIPTION	PERIOD				
2	Schedule E1 Cost Recovery Clause Calculation	(JAN. 2018 - DEC. 2018)				
3	Schedule E1-A Calculation of Total True-Up	(")				
4	Schedule E1-C GPIF & True-Up Adj. Factors	(")				
5	Schedule E1-D Fuel Adjustment Factor for TOD	(")				
6	Schedule E1-E Fuel Recovery Factor-with Line Losses	(")				
7	Schedule E2 Cost Recovery Clause Calculation (By Month)	(")				
8-9	Schedule E3 Generating System Comparative Data	(")				
10-21	Schedule E4 System Net Generation & Fuel Cost	(")				
22-23	Schedule E5 Inventory Analysis	(")				
24-25	Schedule E6 Power Sold	(")				
26	Schedule E7 Purchased Power	(")				
27	Schedule E8 Energy Payment to Qualifying Facilities	(")				
28	Schedule E9 Economy Energy Purchases	(")				
29	Schedule E10 Residential Bill Comparison	(")				
30	Schedule H1 Generating System Comparative Data	(JAN DEC. 2015-2018)				

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 2 OF 30

TAMPA ELECTRIC COMPANY FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

SCHEDULE E1

		DOLLARS	MWH	CENTS/KWH
1.	Fuel Cost of System Net Generation (E3)	606,993,585	20,067,160	3.02481
2.	Nuclear Fuel Disposal Cost	0	0	0.00000
	Coal Car Investment	0	0	0.00000
a.	Big Bend Units 1-4 Igniters Conversion Project	4,877,765	20,067,160 ⁽¹⁾	0.02431
b.	Polk Unit 1 Ignition Conversion Project	1,650,886	20,067,160 ⁽¹⁾	0.00823
5.	TOTAL COST OF GENERATED POWER (LINES 1 THROUGH 4b)	613,522,236	20,067,160	3.05734
	Fuel Cost of Purchased Power - System (Exclusive of Economy)(E7)	2,681,380	67,450	3.97536
	Energy Cost of Economy Purchases (E9)	9,706,470	313,280	3.09834
	Demand and Non-Fuel Cost of Purchased Power	0	0	0.00000
•	Energy Payments to Qualifying Facilities (E8)	2,579,410	90,110	2.86251
0.	TOTAL COST OF PURCHASED POWER (LINES 6 THROUGH 9)	14,967,260	470,840	3.17884
1.	TOTAL AVAILABLE KWH (LINE 5 + LINE 10)		20,538,000	
2.	Fuel Cost of Schedule D Sales - Jurisd. (E6)	270,150	10,340	2.61267
3.	Fuel Cost of Market Based Sales - Jurisd. (E6)	361,827	11,990	3.01774
4.	Gains on Sales	54,590	NA	N/
5.	TOTAL FUEL COST AND GAINS OF POWER SALES	686,567	22,330	3.07464
6.	Net Inadvertant Interchange		0	
7.	Wheeling Received Less Wheeling Delivered		0	
8.	Interchange and Wheeling Losses		(598)	
9.	TOTAL FUEL AND NET POWER TRANSACTIONS (LINE 5+10-15+16+17-18)	627,802,929	20,516,268	3.06003
0.	Net Unbilled	NA ^{(1)(a)}	NA ^(a)	NA
1.	Company Use	1,064,890 ⁽¹⁾	34,800	0.00545
2.	T & D Losses	28,683,156 ⁽¹⁾	937,349	0.14676
3.	System MWH Sales	627.802.929	19,544,119	3.21223
	Wholesale MWH Sales	0	0	0.00000
	Jurisdictional MWH Sales	627,802,929	19,544,119	3.21223
	a construction of the second			1.00000
5.	Jurisdictional Loss Multiplier			
5. 6.		627,802,929	19,544,119	3.21223
5. 6. 7.				
5. 6. 7. 8.	Jurisdictional MWH Sales Adjusted for Line Loss	627,802,929 (17,081,137) 610,721,792	19,544,119 <u>19,544,119</u> 19,544,119	(0.08740
5. 5. 7. 3. 9.	Jurisdictional MWH Sales Adjusted for Line Loss True-up ⁽²⁾	(17,081,137)	19,544,119	(0.08740 3.12484
5. 6. 7. 8. 9.	Jurisdictional MWH Sales Adjusted for Line Loss True-up ⁽²⁾ Total Jurisdictional Fuel Cost (Excl. GPIF)	(17,081,137)	19,544,119	3.21223 (0.08740 3.12484 1.00072 3.12709
5. 6. 7. 8. 9. 0.	Jurisdictional MWH Sales Adjusted for Line Loss True-up ⁽²⁾ Total Jurisdictional Fuel Cost (Excl. GPIF) Revenue Tax Factor	(17,081,137) 610,721,792	<u>19,544,119</u> 19,544,119	(0.08740 3.12484 1.00072

34. Fuel Factor Rounded to Nearest .001 cents per KWH

3.127

^(a) Data not available at this time.

(1) Included For Informational Purposes Only

(2) Calculation Based on Jurisdictional MWH Sales

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 3 OF 30

SCHEDULE E1-A

TAMPA ELECTRIC COMPANY CALCULATION OF PROJECTED PERIOD TOTAL TRUE-UP FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

1.	ESTIMATED OVER/(UNDER) RECOVERY (SCH. E1-B) January 2017 - December 2017 (6 months actual, 6 months estimated)	\$38,652,694
2.	FINAL TRUE-UP (January 2016 - December 2016) (Per True-Up filed March 1, 2017)	(21,571,557)
3.	TOTAL OVER/(UNDER) RECOVERY (Line 1 + Line 2) To be included in the 12-month projected period January 2018 through December 2018 (Schedule E1, line 28)	\$17,081,137
4.	JURISDICTIONAL MWH SALES (Projected January 2018 through December 2018)	19,544,119
5.	TRUE-UP FACTOR - cents/kWh (Line 3 / Line 4 * 100 cents / 1,000 kWh)	(0.0874)

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 4 OF 30

TAMPA ELECTRIC COMPANY INCENTIVE FACTOR AND TRUE-UP FACTOR FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

SCHEDULE E1-C

1. TOTAL AMOUNT OF ADJUSTMENTS

	A.	GENERATING PERFORMANCE INCENTIVE REWARD / (PENALTY) (January 2018 through December 2018)	\$47,392	
	В.	TRUE-UP OVER / (UNDER) RECOVERED (January 2017 through December 2017)	\$17,081,137	
2.	то	TAL SALES (January 2018 through December 2018)	19,544,119	MWh
3.	AD	JUSTMENT FACTORS		
	A.	GENERATING PERFORMANCE INCENTIVE FACTOR	0.0002	Cents/kWh
	В.	TRUE-UP FACTOR	(0.0874)	Cents/kWh

DETERMINATION OF FUEL RECOVERY FACTOR TIME OF USE RATE SCHEDULES TAMPA ELECTRIC COMPANY ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

SCHEDULE E1-D

FUEL COST (%)	\$24.05 \$22.01 1.0927	OFF PEAK 3.0472 3.047			
NET ENERGY FOR LOAD (%)	30.13 69.87 100.00	ON PEAK 3.3296 3.330	%6 2%	Off-Peak 30 3.047 97 3.017 63 2.986	
			25.38% 74.62% 100.00%	On-Peak 3.330 3.263	
	ON PEAK OFF PEAK	TOTAL \$627,802,929 19,544,119 19,512,919 3.2122 1.00000 (\$17,081,137) \$610,721,792 1.00072 3.1323 3.1323 3.132	WWH) Secondary 17,160,490	1,630,808 721,621 19,512,919 3 132 3 101 3 069 2 818	3.818 3.095
		(Sch E1 line 25) (Sch E1 line 25) (line 1 / line 2) (Sch E1 line 28) (Sch E1 line 28) (line 1 x line 4)+line 6 (line 7 x line 8) / line 2a / 10 (Sch E1-C line 3a) (line 9 + line 10)	Jurisdictional Sales (MWH) Meter Sec 17,160,490 17	1,647,281 736,348 19,544,119 19,544,119 Distribution Secondary Distribution Primary Transmission RS 14 Tier	RS 2nd Tier Lighting
		Total Fuel & Net Power Trans (Jurisd) MWH Sales (Jurisd) Effective MWH Sales (Jurisd) Cefter MWH Sales (Jurisd) Cefter MWH Sales (Jurisd) Uurisdictional Loss Factor Jurisdictional Loss Factor True-Up Urisdictional Fuel Factor True-Up TOTAL Revenue Tax Factor Reverue Factor GPIF Factor GPIF Factor Recovery Factor Rounded to Recovery Factor Rounded to the Nearest Off Cont Carrisd WMH	Hours: ON PEAK OFF PEAK Metering Voltage: Distribution Secondary	Distribution Primary Transmission Total	
		-080400 2009;50	£ 4		

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 5 OF 30

SCHEDULE E1-E

TAMPA ELECTRIC COMPANY FUEL COST RECOVERY FACTORS ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

METERING VOLTAGE LEVEL	LEVELIZED FUEL RECOVERY FACTOR cents/kWh	FIRST TIER (Up to 1000 kWh) cents/kWh	SECOND TIER (OVER 1000 kWh) cents/kWh
STANDARD			
Distribution Secondary (RS only)		2.818	3.818
Distribution Secondary	3.132		
Distribution Primary	3.101		
Transmission	3.069		
Lighting Service ⁽¹⁾	3.095		
TIME-OF-USE			
Distribution Secondary - On-Peak	3.330		
Distribution Secondary - Off-Peak	3.047		
Distribution Primary - On-Peak	3.297		
Distribution Primary - Off-Peak	3.017		
Transmission - On-Peak	3.263		
Transmission - Off-Peak	2.986		

(1) Lighting service is based on distribution secondary, 17% on-peak and 83% off-peak

TAMPA ELECTRIC COMPANY FUEL AND PURCHASED POWER COST RECOVERY CLAUSE CALCULATION ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

	(a)	(b)	(c)	(d)	(e)	(f) ESTIMATI	(g) ED	(h)	(i)	(j)	(k)	(I)	(m) TOTAL
	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	PERIOD
1. Fuel Cost of System Net Generation	48,013,965	42,401,087	47,784,228	45,706,999	52,094,831	57,479,687	59,460,784	60,772,408	55,242,221	50,276,622	42,752,770	45,007,983	606,993,585
2. Nuclear Fuel Disposal	0	0	0	0	0	0	0	0	0	0	0	0	0
3. Fuel Cost of Power Sold ⁽¹⁾	60,351	54,428	69,944	58,306	51,273	53,454	63,542	71,188	52,994	64,355	38,714	48,018	686,567
4. Fuel Cost of Purchased Power	35,830	60,680	162,060	107,650	147,910	288,370	391,020	309,040	254,740	362,720	423,770	137,590	2,681,380
5. Demand and Non-Fuel Cost of Purchased Power	0	0	0	0	0	0	0	0	0	0	0	0	0
6. Payments to Qualifying Facilities	283,760	230,640	185,740	158,380	219,420	183,820	220,950	259,590	184,910	241,610	220,790	189,800	2,579,410
7. Energy Cost of Economy Purchases	787,240	720,460	864,050	930,880	730,820	707,410	927,720	963,660	897,480	870,580	595,610	710,560	9,706,470
8. Big Bend Units 1-4 Igniters Conversion Project	420,537	417,981	415,425	412,870	410,315	407,757	405,202	402,647	400,092	397,535	394,980	392,424	4,877,765
9. Polk Unit 1 Ignition Conversion Project	280,083	278,109	276,136	274,161	272,186	270,211	0	0	0	0	0	0	1,650,886
10. TOTAL FUEL & NET POWER TRANSACTIONS	49,761,064	44,054,529	49,617,695	47,532,634	53,824,209	59,283,801	61,342,134	62,636,157	56,926,449	52,084,712	44,349,206	46,390,339	627,802,929
11. Jurisdictional MWH Sold	1,503,217	1,350,421	1,353,832	1,444,680	1,584,433	1,851,326	1,928,300	1,914,344	1,972,230	1,748,364	1,457,563	1,435,409	19,544,119
12. Jurisdictional % of Total Sales	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	1.0000000	
 Jurisdictional Total Fuel & Net Power Transactions (Line 10 * Line 12) 	49,761,064	44,054,529	49,617,695	47,532,634	53,824,209	59,283,801	61,342,134	62,636,157	56,926,449	52,084,712	44,349,206	46,390,339	627,802,929
14. Jurisdictional Loss Multiplier	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	
15. JURISD. TOTAL FUEL & NET PWR. TRANS. Adjusted for Line Losses (Line 13 * Line 14)	49,761,064	44,054,529	49,617,695	47,532,634	53,824,209	59,283,801	61,342,134	62,636,157	56,926,449	52,084,712	44,349,206	46,390,339	627,802,929
16. Cost Per kWh Sold (Cents/kWh)	3.3103	3.2623	3.6650	3.2902	3.3971	3.2022	3.1812	3.2719	2.8864	2.9791	3.0427	3.2319	3.2122
17. True-up (Cents/kWh) (2)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)	(0.0874)
18. Total (Cents/kWh) (Line 16+17)	3.2229	3.1749	3.5776	3.2028	3.3097	3.1148	3.0938	3.1845	2.7990	2.8917	2.9553	3.1445	3.1248
19. Revenue Tax Factor	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072	1.00072
20. Recovery Factor Adjusted for Taxes (Cents/kWh) (Excluding GPIF)	3.2252	3.1772	3.5802	3.2051	3.3121	3.1170	3.0960	3.1868	2.8010	2.8938	2.9574	3.1468	3.1270
21. GPIF Adjusted for Taxes (Cents/kWh) ⁽²⁾	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
22. TOTAL RECOVERY FACTOR (LINE 20+21)	3.2254	3.1774	3.5804	3.2053	3.3123	3.1172	3.0962	3.1870	2.8012	2.8940	2.9576	3.1470	3.1272
23. RECOVERY FACTOR ROUNDED TO NEAREST 0.001 CENTS/KWH	3.225	3.177	3.580	3.205	3.312	3.117	3.096	3.187	2.801	2.894	2.958	3.147	3.127

^{1} Includes Gains

26

^{2} Based on Jurisdictional Sales Only

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 8 OF 30

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH JUNE 2018

SCHEDULE E3

	ESTIMATE	D FOR THE PERIOD:	JANUARY 2018 THRC	OUGH JUNE 2018		
	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18
FUEL COST OF SYSTEM NET	GENERATION (\$)					
1. HEAVY OIL	0	0	0	0	0	0
2. LIGHT OIL	66,291	56,093	50,993	53,543	66,291	53,543
 COAL NATURAL GAS 	15,655,404	13,607,271	13,486,830	12,065,932	14,195,155	15,854,483
4. NATURAL GAS 5. NUCLEAR	32,292,270 0	28,737,723 0	34,246,405 0	33,587,524 0	37,833,385 0	41,571,661 0
6. OTHER	0	0	0	0	0	0
7. TOTAL (\$)	48,013,965	42,401,087	47,784,228	45,706,999	52,094,831	57,479,687
SYSTEM NET GENERATION (I	MWH)					
8. HEAVY OIL	0	0	0	0	0	0
9. LIGHT OIL	280	240	220	220	280	220
10. COAL 11. NATURAL GAS	537,300 941,940	452,910 850,750	434,830 1,004,250	384,760 1.151.110	449,160 1,345,730	496,070 1,453,840
12. NUCLEAR	0	030,730	1,004,230	0	1,545,750	1,433,040
13. OTHER	3,030	3,200	4,370	4,870	5,150	4,530
14. TOTAL (MWH)	1,482,550	1,307,100	1,443,670	1,540,960	1,800,320	1,954,660
UNITS OF FUEL BURNED						
15. HEAVY OIL (BBL)	0	0	0	0	0	0
16. LIGHT OIL (BBL)	520	440	400	420	520	420
17. COAL (TON)	228,730	194,850	182,600	162,120	190,710	212,270
18. NATURAL GAS (MCF) 19. NUCLEAR (MMBTU)	6,542,810 0	5,862,520 0	7,276,570 0	8,223,690 0	9,567,090 0	10,557,220 0
20. OTHER	0	0	0	0	0	0
BTUS BURNED (MMBTU)						
21. HEAVY OIL	0	0	0	0	0	0
22. LIGHT OIL	2,980	2,580	2,360	2,440	2,960	2,440
23. COAL	5,535,180	4,673,320	4,474,730	3,991,810	4,659,160	5,147,330
24. NATURAL GAS 25. NUCLEAR	6,713,440	6,010,490	7,430,670	8,430,630	9,807,370	10,814,500
26. OTHER	0	0	0	0	0	0
27. TOTAL (MMBTU)	12,251,600	10,686,390	11,907,760	12,424,880	14,469,490	15,964,270
GENERATION MIX (% MWH)						
28. HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00
29. LIGHT OIL	0.02	0.02	0.02	0.01	0.02	0.01
30. COAL	36.24	34.65	30.12	24.97	24.94	25.38
31. NATURAL GAS 32. NUCLEAR	63.54 0.00	65.09 0.00	69.56 0.00	74.70 0.00	74.75 0.00	74.38 0.00
33. OTHER	0.00	0.00	0.00	0.00	0.00	0.00
34. TOTAL (%)	100.00	100.00	100.00	100.00	100.00	100.00
FUEL COST PER UNIT						
35. HEAVY OIL (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00
36. LIGHT OIL (\$/BBL)	127.48	127.48	127.48	127.48	127.48	127.48
37. COAL (\$/TON)	68.44	69.83	73.86	74.43	74.43	74.69
38. NATURAL GAS (\$/MCF) 39. NUCLEAR (\$/MMBTU)	4.94 0.00	4.90 0.00	4.71 0.00	4.08 0.00	3.95 0.00	3.94 0.00
40. OTHER	0.00	0.00	0.00	0.00	0.00	0.00
FUEL COST PER MMBTU (\$/M	IMBTU)					
41. HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00
42. LIGHT OIL	22.25	21.74	21.61	21.94	22.40	21.94
43. COAL	2.83	2.91	3.01	3.02	3.05	3.08
44. NATURAL GAS 45. NUCLEAR	4.81 0.00	4.78 0.00	4.61 0.00	3.98 0.00	3.86 0.00	3.84 0.00
46. OTHER	0.00	0.00	0.00	0.00	0.00	0.00
47. TOTAL (\$/MMBTU)	3.92	3.97	4.01	3.68	3.60	3.60
BTU BURNED PER KWH (BTU	I/KWH)					
48. HEAVY OIL	0	0	0	0	0	0
49. LIGHT OIL	10,643	10,750	10,727	11,091	10,571	11,091
50. COAL	10,302	10,318	10,291	10,375	10,373	10,376
51. NATURAL GAS 52. NUCLEAR	7,127 0	7,065 0	7,399 0	7,324 0	7,288 0	7,439 0
53. OTHER	0	0	0	0	0	0
54. TOTAL (BTU/KWH)	8,264	8,176	8,248	8,063	8,037	8,167
GENERATED FUEL COST PER	R KWH (CENTS/KWH)					
55. HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00
56. LIGHT OIL	23.68	23.37	23.18	24.34	23.68	24.34
57. COAL 58. NATURAL GAS	2.91 3.43	3.00 3.38	3.10 3.41	3.14 2.92	3.16 2.81	3.20 2.86
		0.00	0.00	0.00	0.00	0.00
59. NUCLEAR	0.00					
59. NUCLEAR 60. OTHER	0.00 0.00	0.00	0.00	0.00	0.00	0.00

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 9 OF 30

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE ESTIMATED FOR THE PERIOD: JULY 2018 THROUGH DECEMBER 2018

SCHEDULE E3

		ESTIMA	TED FOR THE PER	IOD: JULY 2018 TH	IROUGH DECEMBE	R 2018		
		Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	TOTAL
FUEI	COST OF SYSTEM NET GENER	ATION (\$)						
1.	HEAVY OIL	0	0	0	0	0	0	0
2.	LIGHT OIL	50,993	63,742	53,543	66,291	40,795	66,291	688,409
3.	COAL	16,474,522	14,572,656	11,925,854	13,013,277	15,849,558	13,905,918	170,606,860
4. 5.	NATURAL GAS NUCLEAR	42,935,269 0	46,136,010 0	43,262,824 0	37,197,054 0	26,862,417 0	31,035,774 0	435,698,316 0
5. 6.	OTHER	0	0	0	0	0	0	0
7.	TOTAL (\$)	59,460,784	60,772,408	55,242,221	50,276,622	42,752,770	45,007,983	606,993,585
SYS	TEM NET GENERATION (MWH)							
8.	HEAVY OIL	0	0	0	0	0	0	0
9.	LIGHT OIL	220	280	220	280	180	280	2,920
10.	COAL	513,350	457,910	376,400	404,900	503,610	445,770	5,456,970
11.	NATURAL GAS	1,499,930	1,586,040	1,496,860	1,258,190	844,760	1,031,760	14,465,160
12. 13.	NUCLEAR OTHER	0 4,420	0 4,260	0 29,420	0 30,310	0 25,660	0 22,890	0 142,110
14.	TOTAL (MWH)	2,017,920	2,048,490	1,902,900	1,693,680	1,374,210	1,500,700	20,067,160
	S OF FUEL BURNED							
15.	HEAVY OIL (BBL)	0	0	0	0	0	0	0
16.	LIGHT OIL (BBL)	400	500	420	520	320	520	5,400
17.	COAL (TON)	219,420	200,420	169,900	174,790	215,060	187,780	2,338,650
18.	NATURAL GAS (MCF)	10,839,890	11,657,860	10,955,480	9,360,880	6,349,920	7,276,700	104,470,630
19.	NUCLEAR (MMBTU)	0	0	0	0	0	0	0
20.	OTHER	0	0	0	0	0	0	0
BTU	S BURNED (MMBTU)							
21.	HEAVY OIL	0	0	0	0	0	0	0
22.	LIGHT OIL	2,360	2,960	2,440	2,960	1,820	3,040	31,340
23. 24.	COAL NATURAL GAS	5,320,520 11,096,940	4,747,190 11,957,950	3,914,400 11,233,460	4,211,090 9,577,140	5,211,620 6,506,600	4,591,740 7,457,170	56,478,090 107.036.360
24. 25.	NUCLEAR	0	0	0	9,577,140	0,500,000	7,437,170	107,030,300
26.	OTHER	õ	õ	õ	Ő	Ő	õ	0 0
27.	TOTAL (MMBTU)	16,419,820	16,708,100	15,150,300	13,791,190	11,720,040	12,051,950	163,545,790
GEN	ERATION MIX (% MWH)							
28.	HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00
29.	LIGHT OIL	0.01	0.01	0.01	0.02	0.01	0.02	0.01
30.	COAL	25.44	22.36	19.78	23.90	36.65	29.70	27.20
31. 32.	NATURAL GAS NUCLEAR	74.33 0.00	77.42 0.00	78.66 0.00	74.29 0.00	61.47 0.00	68.75 0.00	72.08 0.00
32. 33.	OTHER	0.00	0.00	1.55	1.79	1.87	1.53	0.00
34.	TOTAL (%)	100.00	100.00	100.00	100.00	100.00	100.00	100.00
FUE	COST PER UNIT							
35.	HEAVY OIL (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00	0.00
36.	LIGHT OIL (\$/BBL)	127.48	127.48	127.48	127.48	127.48	127.48	127.48
37.	COAL (\$/TON)	75.08	72.71	70.19	74.45	73.70	74.05	72.95
38.	NATURAL GAS (\$/MCF)	3.96	3.96	3.95	3.97	4.23	4.27	4.17
39. 40.	NUCLEAR (\$/MMBTU) OTHER	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00	0.00 0.00
40.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	COST PER MMBTU (\$/MMBTU)		0.00		0.00			
41.	HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00
42. 43.	LIGHT OIL COAL	21.61 3.10	21.53 3.07	21.94 3.05	22.40 3.09	22.41 3.04	21.81 3.03	21.97 3.02
44.	NATURAL GAS	3.87	3.86	3.85	3.88	4.13	4.16	4.07
45.	NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
46.	OTHER	0.00	0.00	0.00	0.00	0.00	0.00	0.00
47.	TOTAL (\$/MMBTU)	3.62	3.64	3.65	3.65	3.65	3.73	3.71
BTU	BURNED PER KWH (BTU/KWH)							
48.	HEAVY OIL	0	0	0	0	0	0	0
49.	LIGHT OIL	10,727	10,571	11,091	10,571	10,111	10,857	10,733
50.	COAL	10,364	10,367	10,400	10,400	10,349	10,301	10,350
51. 52	NATURAL GAS	7,398 0	7,540 0	7,505 0	7,612 0	7,702 0	7,228 0	7,400 0
52. 53.	NUCLEAR OTHER	0	0	0	0	0	0	0
54.	TOTAL (BTU/KWH)	8,137	8,156	7,962	8,143	8,529	8,031	8,150
	ERATED FUEL COST PER KWH (
GEN 55.	HEAVY OIL	0.00	0.00	0.00	0.00	0.00	0.00	0.00
56.	LIGHT OIL	23.18	22.77	24.34	23.68	22.66	23.68	23.58
57.	COAL	3.21	3.18	3.17	3.21	3.15	3.12	3.13
58.	NATURAL GAS	2.86	2.91	2.89	2.96	3.18	3.01	3.01
59. 60	NUCLEAR	0.00	0.00	0.00	0.00	0.00	0.00	0.00
60. 61.	OTHER TOTAL (CENTS/KWH)	0.00 2.95	0.00 2.97	0.00 2.90	0.00 2.97	0.00 3.11	0.00	0.00
U 1.		2.35	2.31	2.50	2.31	5.11	5.00	5.52

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JANUARY 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(L)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	230	19.3	-	19.3	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5		16.1	-	16.1	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4	2,620	18.2	-	18.2	-	SOLAR	-	-	-	-	-	-
4. FUTURE SOLAR	-		-		-	-	SOLAR	-		-	-	-	-
5. TOTAL SOLAR	(3) 22.5	3,030	18.1	-	18.1	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	0	0.0	-	-	-	NG CO-FIRE	0	0	0.0	0	0.00	0.00
7. B.B.#1 COAL	395	0	0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	395	0	0.0	43.2	0.0	0		-	-	0.0	0	0.00	-
 B.B.#2 NAT GAS CO-FIRE B.B.#2 COAL 	185 395	0	0.0 0.0	-	-	-	NG CO-FIRE	0	0	0.0 0.0	0	0.00 0.00	0.00
11. TOTAL BIG BEND #2	395	0	0.0	56.7	- 0.0	0	COAL			0.0	0	0.00	0.00
12. B.B.#3 NAT GAS CO-FIRE	185	10,010	7.3		- 0.0	- 0	NG CO-FIRE	100,290	1,028,019	103,100.0	495,912	4.95	- 4.94
13. B.B.#3 COAL	400	190,280	63.9	-	-	-	COAL	85,020	23,040,108	1,958,870.0	5,483,654	2.88	64.50
14. TOTAL BIG BEND #3	400	200,290	67.3	67.7	86.0	10,295		-	-	2,061,970.0	5,979,566	2.99	-
15. B.B.#4 NAT GAS CO-FIRE	175	11,250	8.6	_	-	-	NG CO-FIRE	113,360	1,028,052	116,540.0	560,540	4.98	4.94
16. B.B.#4 COAL	442	213,790	65.0		-	-	COAL	96,100	23,041,103	2,214,250.0	6,198,297	2.90	64.50
17. TOTAL BIG BEND #4	442	225,040	68.4	68.8	85.7	10,357		-	-	2,330,790.0	6,758,837	3.00	-
18. B.B. 1-4 IGNITION	-		-	-	-	-	GAS	9,600	-	9,870.0	47,470	-	4.94
19. BIG BEND 1-4 COAL TOTAL	1,632	404,070	33.3	59.4	81.6	10,328	COAL	181,120	23,040,636	4,173,120.0	11,681,951	2.89	64.50
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0		0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	61	260	0.6		85.2	12,269	GAS	3,110	1,025,723	3,190.0	15,378	5.91	4.94
22. B.B.C.T.#4 TOTAL	61	260	0.6	98.3	85.2	12,269	-	-	-	3,190.0	15,378	5.91	-
23. BIG BEND STATION TOTAL	1,693	425,590	33.8	60.8	85.9	10,329	-	-	-	4,395,950.0	12,801,251	3.01	-
24. POLK #1 GASIFIER	220	133,230	81.4	-	97.0	10,223	COAL	47,610	28,608,696	1,362,060.0	3,925,983	2.95	82.46
25. POLK #1 CT GAS	205	0	0.0		0.0	0	GAS	2,630	0	0.0	0	0.00	0.00
26. POLK #1 TOTAL	220	133,230	81.4	72.7	97.0	10,223	-	-	-	1,362,060.0	3,925,983	2.95	-
27. POLK #2 CT (GAS)	180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
28. POLK #2 CT (OIL)	187	140	0.1		15.0	10,643	LGT OIL	260	5,730,769	1,490.0	33,146	23.68	127.48
29. POLK #2 TOTAL	(4) 180	140	0.1	-	15.0	10,643	-	-	-	1,490.0	33,146	23.68	-
30. POLK #3 CT GAS	180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
31. POLK #3 CT OIL	187	140	0.1	-	15.0	10,643	LGT OIL	260	5,730,769	1,490.0	33,145	23.68	127.48
32. POLK #3 TOTAL	(4) 180	140	0.1	-	15.0	10,643	-	-	-	1,490.0	33,145	23.68	-
33. POLK #4 CT GAS	(4) 180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
34. POLK #5 CT GAS	(4) 180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	880	1.0	-	81.5	8,182	GAS	7,000	1,028,571	7,200.0	34,613	3.93	4.94
36. POLK #2 ST W/O DUCT FIRING		617,090	-		-		GAS	4,055,120	1,028,002	4,168,670.0	20,051,670	3.25	4.94
37. POLK #2 CC TOTAL	1,200	617,970	69.2	97.3	69.3	6,757	GAS	•	-	4,175,870.0	20,086,283	3.25	-
38. POLK STATION TOTAL	1,420	751,480	71.1	93.5	81.5	7,373	-	-	-	5,540,910.0	24,078,557	3.20	-
39. BAYSIDE #1	792	221,240	37.5	96.5	43.0	7,502	GAS	1,614,440	1,027,997	1,659,640.0	7,983,048	3.61	4.94
40. BAYSIDE #2	1,047	81,160	10.4	96.2	27.1	8,064	GAS	636,630	1,027,991	654,450.0	3,147,994	3.88	4.94
41. BAYSIDE #3	61	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
42. BAYSIDE #4	61	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
43. BAYSIDE #5	61	50	0.1	98.6	82.0	13,000	GAS	630	1,031,746	650.0	3,115	6.23	4.94
44. BAYSIDE #6	61	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
45. BAYSIDE TOTAL	2,083	302,450	19.5	87.9	37.1	7,653	GAS	2,251,700	1,027,997	2,314,740.0	11,134,157	3.68	4.94
46. SYSTEM	5,218	1,482,550	38.2	80.3	86.5	8,264	<u> </u>	-	<u> </u>	12,251,600.0	48,013,965	3.24	-
LEGEND:						⁽¹⁾ As burned fu	el cost system to	otal includes in	nition	(4) In Simple Cycle Mo	de		
B.B. = BIG BEND		TURAL GAS	CC = COMBINED			⁽²⁾ Fuel burned (AND DTU)		Innition	·			

20

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 10 OF 30

B.B. = BIG BEND CT = COMBUSTION TURBINE

NG = NATURAL GAS

ST = STEAM

CC = COMBINED CYCLE

⁽¹⁾ As burned fuel cost system total includes ignition
⁽²⁾ Fuel burned (MM BTU) system total excludes ignition
⁽³⁾ AC rating

(3)

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: FEBRUARY 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	230	21.4	-	21.4	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5	170	16.9	-	16.9	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4	2,800	21.5	-	21.5	-	SOLAR	-	-	-	-	-	-
4. FUTURE SOLAR	-	-	-		-	-	SOLAR	-	<u> </u>	-	-	-	-
5. TOTAL SOLAR	(3) 22.5	3,200	21.2	-	21.2	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	0	0.0	-	-	-	NG CO-FIRE	0	0	0.0	0	0.00	0.00
7. B.B.#1 COAL	395	0	0.0	-	-		COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	395	0	0.0	40.1	0.0	0		-	-	0.0	0	0.00	-
9. B.B.#2 NAT GAS CO-FIRE	185	0	0.0	-	-	-	NG CO-FIRE	0	0	0.0	0	0.00	0.00
10. B.B.#2 COAL	395 395	0	0.0	- 52.7	- 0.0	- 0	COAL	0	0	0.0	0	0.00	0.00
11. TOTAL BIG BEND #2 12. B.B.#3 NAT GAS CO-FIRE	395 185	9,060	U.U 7.3	52.7	0.0	U	NG CO-FIRE	- 90,760	- 1,027,986	0.0 93,300.0	446,097	4.92	- 4.92
13. B.B.#3 COAL	400	172.220	64.1	-	-	-	COAL	90,780 76,940	23,039,771	1.772.680.0	5.109.184	4.92	4.92 66.40
14. TOTAL BIG BEND #3	400	181,280	67.4	67.7	- 86.2	10,293	COAL	70,940	23,039,771	1,865,980.0	5,555,281	3.06	- 00.40
15. B.B.#4 NAT GAS CO-FIRE	175	10,020	8.5			-	NG CO-FIRE		- 1,028,011	103,860.0	496,575	4.96	- 4.92
16. B.B.#4 COAL	442	190,440	64.1	_	_	_	COAL	85,650	23,038,996	1,973,290.0	5,687,572	2.99	66.40
17. TOTAL BIG BEND #4	442	200,460	67.5	68.8	85.6	10,362	00/12	-	-	2,077,150.0	6,184,147	3.08	-
18. B.B. 1-4 IGNITION	-	-	-	-	-	-	GAS	9.600	-	9.870.0	47.185	-	4.92
19. BIG BEND 1-4 COAL TOTAL	1,632	362,660	33.1	57.7	81.6	10,329	COAL	162,590	23,039,363	3,745,970.0	10,796,756	2.98	66.40
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	61	540	1.3	-	88.5	11,778	GAS	6,190	1,027,464	6,360.0	30,425	5.63	4.92
22. B.B.C.T.#4 TOTAL	61	540	1.3	98.3	88.5	11,778		-	-	6,360.0	30,425	5.63	-
23. BIG BEND STATION TOTAL	1,693	382,280	33.6	59.2	85.9	10,331	-	-	-	3,949,490.0	11,817,038	3.09	-
24. POLK #1 GASIFIER	220	90,250	61.0	-	97.0	10,275	COAL	32,260	28,746,125	927,350.0	2,763,330	3.06	85.66
25. POLK #1 CT GAS	205	4,730	3.4		82.4	8,165	GAS	43,710	883,551	38,620.0	184,711	3.91	4.23
26. POLK #1 TOTAL	220	94,980	64.2	54.5	96.1	10,170	-	-	-	965,970.0	2,948,041	3.10	-
27. POLK #2 CT (GAS)	180	1,130	0.9	_	69.8	12,027	GAS	13,220	1.027.988	13,590.0	64.977	5.75	4.92
28. POLK #2 CT (OIL)	187	120	0.1		16.0	10,750	LGT OIL	220	5,863,636	1,290.0	28,046	23.37	127.48
	(4) 180	1,250	1.0	-	52.8	11,904	-	-	-	14,880.0	93,023	7.44	-
30. POLK #3 CT GAS	180	0	0.0		0.0	0	GAS	0	0	0.0	0	0.00	0.00
31. POLK #3 CT OIL	187	120	0.0		16.0	10,750	LGT OIL	220	5,863,636	1.290.0	28,047	23.37	127.49
	(4) 180	120	0.1	-	16.0	10,750	-	-	-	1,290.0	28,047	23.37	-
33. POLK #4 CT GAS	(4) 180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
34. POLK #5 CT GAS	(4) 180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	1.960	2.4	_	65.3	8.168	GAS	15,580	1.027.599	16.010.0	76.578	3.91	4.92
 POLK #2 ST DUCT FIRING POLK #2 ST W/O DUCT FIRING 		567,040	2.4	-	00.3	0,100	GAS	3,728,500	1,027,599	3,832,900.0	18,326,056	3.23	4.92
37. POLK #2 CC TOTAL	1,200	569,000	70.6	97.3	68.9	6,764	GAS	-	-	3,848,910.0	18,402,634	3.23	-
38. POLK STATION TOTAL	1,420	665,350	69.7	90.7	79.2	7,261	-	-	-	4,831,050.0	21,471,745	3.23	-
39. BAYSIDE #1	792	255,270	48.0	96.5	49.4	7.420	GAS	1,842,440	1,028,001	1 904 020 0	0.055.000	3.55	4.00
40. BAYSIDE #1	792 1.047	255,270	48.0 0.0	96.5	49.4 0.0	7,420	GAS GAS	1,842,440 0	1,028,001	1,894,030.0 0.0	9,055,829 0	3.55	4.92 0.00
40. BAYSIDE #2 41. BAYSIDE #3	1,047	170	0.0	98.6	0.0 92.9	11,647	GAS GAS	1,930	1,025,907	1,980.0	9,486	5.58	4.92
41. BAYSIDE #3 42. BAYSIDE #4	61	170	0.4	98.6	92.9	11,047	GAS	1,930	1.031.008	1,980.0	9,400 6.341	5.28	4.92
42. BAYSIDE #4 43. BAYSIDE #5	61	430	1.0	98.6	88.1	12,070	GAS	5,050	1,027,723	5,190.0	24,821	5.77	4.92
43. BAYSIDE #5 44. BAYSIDE #6	61	430 280	0.7	98.6	91.8	12,070	GAS	3,220	1,031,056	3.320.0	15.827	5.65	4.92
44. BAYSIDE TOTAL	2,083	256,270	18.3	48.2	49.4	7,437	GAS	1,853,930	1,028,005	1,905,850.0	9,112,304	3.56	4.92
	5,218	1,307,100	37.3	63.1	100.0	8,176	_		_	10,686,390.0	42,401,087	3.24	
46. SYSTEM													

CC = COMBINED CYCLE

As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

⁽⁴⁾ In Simple Cycle Mode

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 11 OF 30

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: MARCH 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
()	NET					. ,			FUEL				COST OF
PLANT/UNIT	NEI CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	280	23.5	-	23.5	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5	230	20.6	-	20.6	-	SOLAR	-	-	-	-	-	-
 BIG BEND SOLAR FUTURE SOLAR 	19.4	3,860	26.8	-	26.8	-	SOLAR SOLAR	-	-	-	-	-	-
 FUTURE SOLAR TOTAL SOLAR 	(3) 22.5	4,370	- 26.2	<u> </u>	26.2		SOLAR	-		-			-
6. B.B.#1 NAT GAS CO-FIRE	185	15,440	11.2	-	-	-	NG CO-FIRE	183,240	1,027,996	188,370.0	868,156	5.62	4.74
7. B.B.#1 COAL	395	0	0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	395	15,440	5.3	26.5	46.5	12,200		-	-	188,370.0	868,156	5.62	-
9. B.B.#2 NAT GAS CO-FIRE	185	49,300	35.8	-	-	-	NG CO-FIRE		1,027,989	557,540.0	2,569,599	5.21	4.74
10. B.B.#2 COAL	395	0	0.0				COAL	0	0	0.0	0	0.00	0.00
11. TOTAL BIG BEND #2 12. B.B.#3 NAT GAS CO-FIRE	395 185	49,300 10,000	16.8 7.3	34.8	52.7	11,309	NG CO-FIRE	- 100.160	- 1,027,955	557,540.0 102,960.0	2,569,599 474,539	5.21 4.75	- 4.74
13. B.B.#3 COAL	400	190,000	63.8	-	-	-	COAL	84,910	23,038,982	1,956,240.0	5,782,856	3.04	68.11
14. TOTAL BIG BEND #3	400	200,010	67.2	67.7	85.9	10,295	COAL	-	-	2,059,200.0	6,257,395	3.13	-
15. B.B.#4 NAT GAS CO-FIRE	175	5,870	4.5	-		-	NG CO-FIRE	59,070	1,027,933	60,720.0	279,862	4.77	4.74
16. B.B.#4 COAL	442	111,590	33.9	-	-	-	COAL	50,080	23,037,740	1,153,730.0	3,410,736	3.06	68.11
17. TOTAL BIG BEND #4	442	117,460	35.7	37.7	86.6	10,339		-	-	1,214,450.0	3,690,598	3.14	-
18. B.B. 1-4 IGNITION		-			-		GAS	43,000		44,200.0	203,726		4.74
19. BIG BEND 1-4 COAL TOTAL	1,632	301,600	24.8	41.6	60.9	10,312	COAL	134,990	23,038,521	3,109,970.0	9,193,592	3.05	68.11
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	61	3,590	7.9		84.1	11,735	GAS	40,980	1,028,062	42,130.0	194,155	5.41	4.74
22. B.B.C.T.#4 TOTAL	61	3,590	7.9	98.3	84.1	11,735	-	-	-	42,130.0	194,155	5.41	-
23. BIG BEND STATION TOTAL	1,693	385,800	30.6	43.7	77.2	10,528	-	-		4,061,690.0	13,783,630	3.57	-
24. POLK #1 GASIFIER	220	133,230	81.4	-	97.0	10,244	COAL	47,610	28,665,406	1,364,760.0	4,089,512	3.07	85.90
25. POLK #1 CT GAS	205	11,570	7.6		99.0	8,174	GAS	97,250	972,442	94,570.0	435,879	3.77	4.48
26. POLK #1 TOTAL	220	144,800	88.5	72.7	97.2	10,078	-	-	-	1,459,330.0	4,525,391	3.13	-
27. POLK #2 CT (GAS)	180	1,720	1.3	-	95.6	10,919	GAS	18,270	1,027,915	18,780.0	86,558	5.03	4.74
28. POLK #2 CT (OIL)	187	110	0.1		14.7	10,727	LGT OIL	200	5,900,000	1,180.0	25,497	23.18	127.49
29. POLK #2 TOTAL	(4) 180	1,830	1.4	-	71.8	10,907	-	-	-	19,960.0	112,055	6.12	-
30. POLK #3 CT GAS	180	1,720	1.3	-	95.6	10,901	GAS	18,250	1,027,397	18,750.0	86,465	5.03	4.74
31. POLK #3 CT OIL	187	110	0.1	-	14.7	10,727	LGT OIL	200	5,900,000	1,180.0	25,496	23.18	127.48
32. POLK #3 TOTAL	(4) 180	1,830	1.4	-	71.8	10,891	-	-	-	19,930.0	111,961	6.12	-
33. POLK #4 CT GAS	(4) 180	1,380	1.0	-	95.8	10,884	GAS	14,620	1,027,360	15,020.0	69,267	5.02	4.74
34. POLK #5 CT GAS	(4) 180	1,030	0.8	-	95.4	10,951	GAS	10,970	1,028,259	11,280.0	51,974	5.05	4.74
35. POLK #2 ST DUCT FIRING	120	11,670	13.1	-	84.6	8,175	GAS	92,800	1,028,017	95,400.0	439,669	3.77	4.74
36. POLK #2 ST W/O DUCT FIRING		614,980					GAS	4,048,100	1,027,998	4,161,440.0	19,179,128	3.12	4.74
37. POLK #2 CC TOTAL	1,200	626,650	70.2	97.3	61.5	6,793	GAS	-	-	4,256,840.0	19,618,797	3.13	-
38. POLK STATION TOTAL	1,420	777,520	73.6	93.5	77.5	7,437	-	-		5,782,360.0	24,489,445	3.15	
39. BAYSIDE #1	792	270,830	46.0	96.5	52.4	7,396	GAS	1,948,400	1,027,997	2,002,950.0	9,231,148	3.41	4.74
40. BAYSIDE #2	1,047	0	0.0	0.0	0.0	0	GAS	0	0	0.0	1	0.00	0.00
41. BAYSIDE #3	61	1,150	2.5	98.6	89.8	11,600	GAS	12,990	1,026,944	13,340.0	61,544	5.35	4.74
42. BAYSIDE #4	61	640	1.4	98.6	95.4	11,578	GAS	7,200	1,029,167	7,410.0	34,112	5.33	4.74
43. BAYSIDE #5	61	2,270	5.0	98.6	80.9	11,925	GAS	26,320	1,028,495	27,070.0	124,699	5.49	4.74
44. BAYSIDE #6	61	1,090	2.4	98.6	85.1	11,872	GAS	12,590	1,027,800	12,940.0	59,649	5.47	4.74
45. BAYSIDE TOTAL	2,083	275,980	17.8	48.2	52.8	7,478	GAS	2,007,500	1,028,000	2,063,710.0	9,511,153	3.45	4.74
46. SYSTEM	5,218	1,443,670	37.2	58.9	99.1	8,248	<u> </u>		<u> </u>	11,907,760.0	47,784,228	3.31	-
LEGEND: B.B. = BIG BEND CT = COMBUSTION TURBINE		URAL GAS ST = STEAM	CC = COMBINED	CYCLE		 ⁽¹⁾ As burned fue ⁽²⁾ Fuel burned (⁽³⁾ AC rating 	el cost system to MM BTU) system	tal includes ign I total excludes	nition (⁴⁾ In Simple Cycle Mod	de		

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 12 OF 30

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: APRIL 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	270	23.4	-	23.4	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5	280	25.9	-	25.9	-	SOLAR	-	-	-	-	-	-
3. BIG BEND SOLAR	19.4	4,320	31.0	-	31.0	-	SOLAR	-	-	-	-	-	-
 FUTURE SOLAR TOTAL SOLAR 	(3) - 22.5	4,870	- 30.1		- 30.1		SOLAR SOLAR	-		-			
6. B.B.#1 NAT GAS CO-FIRE	185	15,050	11.3	-	-	-	NG CO-FIRE	180,730	1,027,998	185,790.0	740,185	4.92	4.10
7. B.B.#1 COAL	385	0	0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	385	15,050	5.4	43.2	48.3	12,345		-	-	185,790.0	740,185	4.92	-
9. B.B.#2 NAT GAS CO-FIRE	185	16,840	12.6	-	-	-	NG CO-FIRE	185,460	1,027,984	190,650.0	759,557	4.51	4.10
10. B.B.#2 COAL 11. TOTAL BIG BEND #2	385 385	0 16,840	0.0 6.1	- 56.7	- 54.7	- 11,321	COAL	0	0	0.0 190,650.0	759,557	0.00 4.51	0.00
12. B.B.#3 NAT GAS CO-FIRE	185	5,790	4.3	50.7	54.7	-	NG CO-FIRE	- 58,860	1,028,033	60,510.0	241,063	4.16	- 4.10
13. B.B.#3 COAL	395	110,080	38.7	_	-	-	COAL	49,900	23,040,681	1,149,730.0	3,436,449	3.12	68.87
14. TOTAL BIG BEND #3	395	115,870	40.7	45.2	78.0	10,445		-	-	1,210,240.0	3,677,512	3.17	-
15. B.B.#4 NAT GAS CO-FIRE	175	7,670	6.1	-	-	-	NG CO-FIRE	78,010	1,028,073	80,200.0	319,492	4.17	4.10
16. B.B.#4 COAL	437	145,750	46.3		-	-	COAL	66,140	23,038,555	1,523,770.0	4,554,847	3.13	68.87
17. TOTAL BIG BEND #4	437	153,420	48.8	68.8	82.2	10,455		-	-	1,603,970.0	4,874,339	3.18	-
18. B.B. 1-4 IGNITION	-	-		-	-	-	GAS COAL	20,040		20,600.0	82,074		4.10
19. BIG BEND 1-4 COAL TOTAL	1,602	255,830	22.2	53.9	64.4	10,450		116,040	23,039,469	2,673,500.0	7,991,296	3.12	68.87
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	1,340	3.3	<u> </u>	99.7	11,784	GAS	15,360	1,027,995	15,790.0	62,907	4.69	4.10
22. B.B.C.T.#4 TOTAL	56	1,340	3.3	98.3	99.7	11,784	-	-	-	15,790.0	62,907	4.69	-
23. BIG BEND STATION TOTAL	1,658	302,520	25.3	55.4	75.9	10,599	-	-	-	3,206,440.0	10,196,575	3.37	-
24. POLK #1 GASIFIER	220	128,930	81.4	-	97.0	10,225	COAL	46,080	28,609,158	1,318,310.0	3,992,562	3.10	86.64
25. POLK #1 CT GAS	195	12,400	8.8		89.6	8,116	GAS	100,530	1,001,094	100,640.0	400,952	3.23	3.99
26. POLK #1 TOTAL	220	141,330	89.2	72.7	96.3	10,040	-	-	-	1,418,950.0	4,393,514	3.11	-
27. POLK #2 CT (GAS)	150	0	0.0	-	0.0	0	GAS	0	0	0.0	1	0.00	0.00
28. POLK #2 CT (OIL)	159	110	0.1		17.3	11,091	LGT OIL	210	5,809,524	1,220.0	26,771	24.34	127.48
29. POLK #2 TOTAL	(4) 150	110	0.1	-	17.3	11,091	-	-	-	1,220.0	26,772	24.34	-
30. POLK #3 CT GAS	150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
31. POLK #3 CT OIL	159	110	0.1		17.3	11,091	LGT OIL	210	5,809,524	1,220.0	26,772	24.34	127.49
32. POLK #3 TOTAL	(4) 150	110	0.1	-	17.3	11,091	-	-	-	1,220.0	26,772	24.34	-
33. POLK #4 CT GAS	(4) 150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
34. POLK #5 CT GAS	(4) 150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	7,620	8.8	-	71.3	8,269	GAS	61,300	1,027,896	63,010.0	251,056	3.29	4.10
36. POLK #2 ST W/O DUCT FIRING		627,200				-	GAS	4,120,910	1,027,999	4,236,290.0	16,877,310	2.69	4.10
37. POLK #2 CC TOTAL	1,061	634,820	83.1	97.3	74.8	6,772	GAS	-	-	4,299,300.0	17,128,366	2.70	-
38. POLK STATION TOTAL	1,281	776,370	84.2	93.1	84.3	7,369	-	-		5,720,690.0	21,575,424	2.78	-
39. BAYSIDE #1	701	152,920	30.3	57.9	60.3	7,478	GAS	1,112,380	1,027,994	1,143,520.0	4,555,786	2.98	4.10
40. BAYSIDE #2	929	301,710	45.1	96.2	47.9	7,703	GAS	2,260,690	1,028,000	2,323,990.0	9,258,723	3.07	4.10
41. BAYSIDE #3	56	770	1.9	82.2	98.2	11,727	GAS	8,790	1,027,304	9,030.0	36,000	4.68	4.10
42. BAYSIDE #4	56	0	0.0	0.0	0.0	0	GAS	0	0	0.0	0	0.00	0.00
43. BAYSIDE #5	56	980	2.4	92.0	97.2	11,745	GAS	11,200	1,027,679	11,510.0	45,870	4.68	4.10
44. BAYSIDE #6	56	820	2.0	98.6	97.6	11,829	GAS	9,430	1,028,632	9,700.0	38,621	4.71	4.10
45. BAYSIDE TOTAL	1,854	457,200	34.3	78.3	51.6	7,650	GAS	3,402,490	1,027,997	3,497,750.0	13,935,000	3.05	4.10
46. SYSTEM	4,815	1,540,960	44.4	74.0	91.3	8,063	<u> </u>	-	<u> </u>	12,424,880.0	45,706,999	2.97	-
LEGEND: B.B. = BIG BEND CT = COMBUSTION TURBIN		URAL GAS ST = STEAM	CC = COMBINED	CYCLE		 ⁽¹⁾ As burned fue ⁽²⁾ Fuel burned (⁽³⁾ AC rating 	el cost system to MM BTU) system	tal includes igr I total excludes	ition (⁴⁾ In Simple Cycle Moo	le		

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 13 OF 30

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: MAY 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	290	24.4	-	24.4	-	SOLAR	-	-	-	-		-
2. LEGOLAND SOLAR	1.5	290	26.0	-	26.0	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4	4,570	31.7	-	31.7	-	SOLAR	-	-	-	-	-	-
4. FUTURE SOLAR	-	-	-		-	-	SOLAR	-	<u> </u>	-	-	-	-
5. TOTAL SOLAR	(3) 22.5	5,150	30.8	-	30.8	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	0	0.0	-	-	-	NG CO-FIRE		0	0.0	0	0.00	0.00
7. B.B.#1 COAL	385	0	0.0	-	-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	385	0	0.0	43.2	0.0	0		-	-	0.0	0	0.00	-
9. B.B.#2 NAT GAS CO-FIRE	185	17,380	12.6	-	-	-	NG CO-FIRE		1,028,023	197,000.0	759,939	4.37	3.97
10. B.B.#2 COAL 11. TOTAL BIG BEND #2	385 385	17.380	0.0 6.1	- 56.7	- 54.4	- 11,335	COAL	0	0	0.0	759.939	<u>0.00</u> 4.37	0.00
12. B.B.#3 NAT GAS CO-FIRE	305 185	7,720	5.6	50.7	54.4	11,335	NG CO-FIRE		- 1,028,022	80,710.0	311,344	4.03	- 3.97
13. B.B.#3 COAL	395	146,640	49.9	-	-	-	COAL	66,550	23,041,473	1,533,410.0	4,624,124	3.15	69.48
14. TOTAL BIG BEND #3	395	140,040	52.5	59.0	- 77.1	10,457	JUAL	66,550	23,041,473	1,614,120.0	4,024,124	3.15	09.40
15. B.B.#4 NAT GAS CO-FIRE	175	8,910	6.8		- ''.'	-	NG CO-FIRE		1,028,018	92,830.0	358,099	4.02	- 3.97
16. B.B.#4 COAL	437	169,290	52.1	_	_	_	COAL	76,550	23.039.713	1.763.690.0	5,318,956	3.14	69.48
17. TOTAL BIG BEND #4	437	178,200	54.8	68.8	83.1	10,418		-	-	1,856,520.0	5,677,055	3.19	-
18. B.B. 1-4 IGNITION	-	-	-	-	-	-	GAS	24,210	-	24,890.0	96,009	-	3.97
19. BIG BEND 1-4 COAL TOTAL	1,602	315,930	26.5	57.3	70.7	10,436	COAL	143,100	23,040,531	3,297,100.0	9,943,080	3.15	69.48
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	1,230	3.0	-	99.8	11,691	GAS	13,990	1,027,877	14,380.0	55,480	4.51	3.97
22. B.B.C.T.#4 TOTAL	56	1,230	3.0	82.4	99.8	11,691	•	-	-	14,380.0	55,480	4.51	-
23. BIG BEND STATION TOTAL	1,658	351,170	28.5	58.2	78.4	10,485				3,682,020.0	11,523,951	3.28	
24. POLK #1 GASIFIER	220	133,230	81.4	-	97.0	10,223	COAL	47,610	28,608,696	1,362,060.0	4,156,066	3.12	87.29
25. POLK #1 CT GAS	195	8,090	5.6		90.2	8,156	GAS	66,810	987,577	65,980.0	254,516	3.15	3.81
26. POLK #1 TOTAL	220	141,320	86.3	72.7	96.6	10,105	-	-	-	1,428,040.0	4,410,582	3.12	-
27. POLK #2 CT (GAS)	150	1,500	1.3	-	100.0	11,227	GAS	16,390	1,027,456	16,840.0	64,997	4.33	3.97
28. POLK #2 CT (OIL)	159	140	0.1		17.6	10,571	LGT OIL	260	5,692,308	1,480.0	33,146	23.68	127.48
29. POLK #2 TOTAL	(4) 150	1,640	1.5	-	71.5	11,171	-	-	-	18,320.0	98,143	5.98	-
30. POLK #3 CT GAS	150	1.500	1.3	-	100.0	11.227	GAS	16.390	1.027.456	16.840.0	64.997	4.33	3.97
31. POLK #3 CT OIL	159	140	0.1	-	17.6	10,571	LGT OIL	260	5,692,308	1,480.0	33,145	23.68	127.48
32. POLK #3 TOTAL	(4) 150	1,640	1.5	-	71.5	11,171	-	-	-	18,320.0	98,142	5.98	-
33. POLK #4 CT GAS	(4) 150	600	0.5	-	100.0	11,333	GAS	6,610	1,028,744	6,800.0	26,213	4.37	3.97
34. POLK #5 CT GAS	(4) 150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	5,210	5.8		68.9	8,278	GAS	41,950	1,028,129	43,130.0	166,359	3.19	3.97
36. POLK #2 ST DOCT FIRING		659,780	-	-	-	5,270	GAS	4,336,040	1.028.000	4.457.450.0	17.195.260	2.61	3.97
37. POLK #2 CC TOTAL	1,061	664,990	84.2	97.3	78.6	6,768	GAS	-	-	4,500,580.0	17,361,619	2.61	
38. POLK STATION TOTAL	1,281	810,190	85.0	93.1	86.6	7,371		-		5,972,060.0	21,994,699	2.71	-
39. BAYSIDE #1	701	313,520	60.1	96.5	62.3	7,453	GAS	2,273,050	1,028,002	2,336,700.0	9,014,143	2.88	3.97
40. BAYSIDE #1	929	313,520	46.0	96.5 96.2	47.4	7,453	GAS	2,273,050	1,028,002	2,336,700.0	9,014,143	2.00	3.97
40. BAYSIDE #2	56	590	40.0	98.6	95.8	11,932	GAS	6,850	1,027,737	7,040.0	27,165	4.60	3.97
42. BAYSIDE #4	56	380	0.9	98.6	96.9	11,947	GAS	4,410	1,029,478	4,540.0	17,489	4.60	3.97
43. BAYSIDE #5	56	940	2.3	89.1	93.3	11,915	GAS	10,900	1,027,523	11,200.0	43,226	4.60	3.97
44. BAYSIDE #6	56	740	1.8	82.7	94.4	11,824	GAS	8,520	1,026,995	8,750.0	33,787	4.57	3.97
45. BAYSIDE TOTAL	1,854	633,810	45.9	95.8	53.9	7,598	GAS	4,684,260	1,027,998	4,815,410.0	18,576,181	2.93	3.97
46. SYSTEM	4,815	1,800,320	50.3	81.7	88.5	8,037	<u> </u>		<u> </u>	14,469,490.0	52,094,831	2.89	<u> </u>
LEGEND:						⁽¹⁾ A - b -	el cost system to			4) In Simple Cycle Mod			

LEGEND:

CC = COMBINED CYCLE

As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

(4) In Simple Cycle Mode

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 14 OF 30

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JUNE 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA BILIT		NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW		(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	, 1		21.7	-	21.7	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1		25.0	-	25.0	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19	4 4,010	28.8	-	28.8	-	SOLAR	-	-	-	-	-	-
FUTURE SOLAR	-	-	-			-	SOLAR	-	-	-	-	-	-
5. TOTAL SOLAR	(3) 22	5 4,530	28.0	-	28.0	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	18		20.2	-	-	-	NG CO-FIRE		1,027,987	322,500.0	1,239,728	4.61	3.95
7. B.B.#1 COAL	38		0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	38		9.7	43.2	53.0	11,980		-	-	322,500.0	1,239,728	4.61	-
9. B.B.#2 NAT GAS CO-FIRE	18		26.9	-	-	-	NG CO-FIRE	400,930	1,028,010	412,160.0	1,584,356	4.43	3.95
10. B.B.#2 COAL	38		0.0	- 56.7	- 51.1	- 11,516	COAL	0	0	<u>0.0</u> 412,160.0	1,584,356	0.00 4.43	0.00
11. TOTAL BIG BEND #2 12. B.B.#3 NAT GAS CO-FIRE	30 18		6.7	50.7	51.1	11,516	NG CO-FIRE	- 90,830	- 1,027,964	93,370.0	358,933	4.43	- 3.95
13. B.B.#3 COAL	39		59.9	-	-	-	COAL	77,000	23,039,740	1,774,060.0	5,406,972	3.17	70.22
14. TOTAL BIG BEND #3	39		63.1	67.7	80.7	10,408	JUAL	-	20,000,140	1,867,430.0	5,765,905	3.17	-
15. B.B.#4 NAT GAS CO-FIRE	17		8.2	-		-	NG CO-FIRE	105,210	1,028,039	108,160.0	415,759	4.02	3.95
16. B.B.#4 COAL	43		62.5	-	-	-	COAL	89,190	23,040,251	2,054,960.0	6,262,964	3.18	70.22
17. TOTAL BIG BEND #4	43		65.8	68.8	82.1	10,448		-	-	2,163,120.0	6,678,723	3.23	•
18. B.B. 1-4 IGNITION	-	-	-	-	-	- '	GAS	34,650	-	35,620.0	136,926	-	3.95
19. BIG BEND 1-4 COAL TOTAL	1,60	2 367,140	31.8	59.5	61.7	10,429	COAL	166,190	23,040,014	3,829,020.0	11,669,936	3.18	70.22
20. B.B.C.T.#4 OIL			0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	5		7.7		96.1	11,814	GAS	35,860	1,027,886	36,860.0	141,708	4.54	3.95
22. B.B.C.T.#4 TOTAL	5	3,120	7.7	98.3	96.1	11,814	-	-	-	36,860.0	141,708	4.54	-
23. BIG BEND STATION TOTAL	1,65	8 452,290	37.9	60.8	75.5	10,617	-	-	-	4,802,070.0	15,547,345	3.44	-
24. POLK #1 GASIFIER	22		81.4	-	97.0	10,225	COAL	46,080	28,609,158	1,318,310.0	4,047,621	3.14	87.84
25. POLK #1 CT GAS	19		6.0		93.9	8,118	GAS	69,120	988,860	68,350.0	262,749	3.12	3.80
26. POLK #1 TOTAL	22	137,350	86.7	72.7	96.8	10,096	-	-	-	1,386,660.0	4,310,370	3.14	-
27. POLK #2 CT (GAS)	15		1.0	-	100.0	11,257	GAS	11,500	1,027,826	11,820.0	45,444	4.33	3.95
28. POLK #2 CT (OIL)	(4) 15		0.1	<u> </u>	17.3 68.8	11,091	LGT OIL	210	5,809,524	1,220.0	26,771	24.34 6.23	127.48
29. POLK #2 TOTAL	(4) 15	1,160	1.1	-	68.8	11,241	•	-	-	13,040.0	72,215	6.23	-
30. POLK #3 CT GAS	15		0.8	-	100.0	11,278	GAS	9,870	1,028,369	10,150.0	39,003	4.33	3.95
31. POLK #3 CT OIL	15		0.1		17.3	11,091	LGT OIL	210	5,809,524	1,220.0	26,772	24.34	127.49
32. POLK #3 TOTAL	(4) 15) 1,010	0.9	-	65.8	11,257	-	-	-	11,370.0	65,775	6.51	-
33. POLK #4 CT GAS	(4) 15	600	0.6	-	100.0	11,333	GAS	6,610	1,028,744	6,800.0	26,121	4.35	3.95
34. POLK #5 CT GAS	(4) 15) 0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	12		16.5	-	81.9	8,274	GAS	114,700	1,027,986	117,910.0	453,260	3.18	3.95
36. POLK #2 ST W/O DUCT FIRIN					-		GAS	4,271,390	1,028,000	4,390,990.0	16,879,258	2.60	3.95
37. POLK #2 CC TOTAL	1,06	664,010	86.9	97.3	73.1	6,790	GAS	-	-	4,508,900.0	17,332,518	2.61	-
38. POLK STATION TOTAL	1,28	804,130	87.2	93.1	83.2	7,370	-	-	-	5,926,770.0	21,806,999	2.71	-
39. BAYSIDE #1	70		66.6	96.5	68.9	7,404	GAS	2,419,160	1,028,001	2,486,900.0	9,559,798	2.85	3.95
40. BAYSIDE #2	92		52.7	96.2	54.3	7,614	GAS	2,609,150	1,028,001	2,682,210.0	10,310,581	2.93	3.95
41. BAYSIDE #3	5		3.1	98.6	93.0	11,960	GAS	14,540	1,028,198	14,950.0	57,458	4.60	3.95
42. BAYSIDE #4	5		1.4	98.6	94.2	12,276	GAS	6,930	1,027,417	7,120.0	27,385	4.72	3.95
43. BAYSIDE #5	5		5.2	98.6	91.0	11,995	GAS	24,390	1,027,880	25,070.0	96,382	4.61	3.95
44. BAYSIDE #6	5		4.0	98.6 96.6	92.2	11,988 7,547	GAS GAS	18,660	1,027,867	19,180.0	73,739	4.61	3.95 3.95
45. BAYSIDE TOTAL	1,85	н b93,710	52.0	96.6	60.7	7,547	GAS	5,092,830	1,028,000	5,235,430.0	20,125,343		3.95
46. SYSTEM	4,81	5 1,954,660	56.4	82.9	91.0	8,167	<u> </u>			15,964,270.0	57,479,687	2.94	-
LEGEND: B.B. = BIG BEND		ATURAL GAS	CC = COMBINED			(1) As burned fu	el cost system to MM BTU) system	otal includes igr	nition	(4) In Simple Cycle Mo	de		

B.B. = BIG BEND CT = COMBUSTION TURBINE

NG = NATURAL GAS

ST = STEAM

As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 15 OF 30

CC = COMBINED CYCLE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: JULY 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	250	21.0	-	21.0	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5		24.2	-	24.2	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4	3,900	27.1	-	27.1	-	SOLAR	-	-	-	-	-	-
4. FUTURE SOLAR	-		-		-	-	SOLAR	-	-		-	-	-
5. TOTAL SOLAR	(3) 22.5	4,420	26.5	-	26.5	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	24,280	17.6	-	-	-	NG CO-FIRE		1,028,002	298,100.0	1,153,380	4.75	3.98
7. B.B.#1 COAL	385	0	0.0	-	-	-	COAL	0	0	0.0	0	0.00	0.00
 TOTAL BIG BEND #1 B.B.#2 NAT GAS CO-FIRE 	385 185	24,280	8.5	43.2	48.9	12,278	NG CO-FIRE	-	- 1,027,989	298,100.0 292,360.0	1,153,380 1,131,186	4.75	- 3.98
9. B.B.#2 NAT GAS CO-FIRE 10. B.B.#2 COAL	385	25,530 0	18.5 0.0	-	-	-	COAL	284,400 0	1,027,989	292,360.0	1,131,100	4.43 0.00	0.00
11. TOTAL BIG BEND #2	385	25.530	8.9	56.7	- 52.2	- 11,452	COAL			292.360.0	1,131,186	4.43	0.00
12. B.B.#3 NAT GAS CO-FIRE	185	9,550	6.9	-		-	NG CO-FIRE	96,400	1,028,008	99,100.0	383,426	4.01	3.98
13. B.B.#3 COAL	395	181,500	61.8	-	-	-	COAL	81,720	23,040,749	1.882.890.0	5,721,786	3.15	70.02
14. TOTAL BIG BEND #3	395	191,050	65.0	67.7	83.1	10,374		-	-	1,981,990.0	6,105,212	3.20	-
15. B.B.#4 NAT GAS CO-FIRE	175	10,450	8.0		-	-	NG CO-FIRE	106,270	1,027,948	109,240.0	422,683	4.04	3.98
16. B.B.#4 COAL	437	198,620	61.1	-	-	-	COAL	90,090	23,038,850	2,075,570.0	6,307,832	3.18	70.02
17. TOTAL BIG BEND #4	437	209,070	64.3	68.8	82.3	10,450		-	-	2,184,810.0	6,730,515	3.22	-
18. B.B. 1-4 IGNITION	-				-	-	GAS	42,580		43,770.0	169,360		3.98
19. BIG BEND 1-4 COAL TOTAL	1,602	380,120	31.9	59.5	65.3	10,414	COAL	171,810	23,039,753	3,958,460.0	12,029,618	3.16	70.02
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	4,320	10.4		98.9	11,713	GAS	49,210	1,028,246	50,600.0	195,730	4.53	3.98
22. B.B.C.T.#4 TOTAL	56	4,320	10.4	98.3	98.9	11,713	-	-	-	50,600.0	195,730	4.53	-
23. BIG BEND STATION TOTAL	1,658	454,250	36.8	60.8	77.4	10,584	-	-	-	4,807,860.0	15,485,383	3.41	-
24. POLK #1 GASIFIER	220	133,230	81.4	-	97.0	10,223	COAL	47,610	28,608,696	1,362,060.0	4,275,544	3.21	89.80
25. POLK #1 CT GAS	195	2,740	1.9		87.8	8,234	GAS	24,580	917,819	22,560.0	87,305	3.19	3.55
26. POLK #1 TOTAL	220	135,970	83.1	72.7	96.8	10,183	-	-	-	1,384,620.0	4,362,849	3.21	-
27. POLK #2 CT (GAS)	150	0	0.0	-	0.0	0	GAS	0	0	0.0	(1)	0.00	0.00
28. POLK #2 CT (OIL)	159	110	0.1		17.3	10,727	LGT OIL	200	5,900,000	1,180.0	25,497	23.18	127.49
29. POLK #2 TOTAL	(4) 150	110	0.1	-	17.3	10,727	-	-	-	1,180.0	25,496	23.18	-
30. POLK #3 CT GAS	150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
31. POLK #3 CT OIL	159	110	0.1	-	17.3	10,727	LGT OIL	200	5,900,000	1,180.0	25,496	23.18	127.48
32. POLK #3 TOTAL	(4) 150	110	0.1	-	17.3	10,727	-	-	-	1,180.0	25,496	23.18	-
33. POLK #4 CT GAS	(4) 150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
34. POLK #5 CT GAS	(4) 150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	17,520	19.6	-	82.5	8,272	GAS	140,970	1,028,020	144,920.0	560,701	3.20	3.98
36. POLK #2 ST W/O DUCT FIRING		668,330					GAS	4,392,990	1,027,999	4,515,990.0	17,472,886	2.61	3.98
37. POLK #2 CC TOTAL	1,061	685,850	86.9	97.3	71.0	6,796	GAS	-	-	4,660,910.0	18,033,587	2.63	-
38. POLK STATION TOTAL	1,281	822,040	86.3	93.1	81.3	7,357	-	-	-	6,047,890.0	22,447,428	2.73	-
39. BAYSIDE #1	701	356,420	68.3	96.5	70.3	7,395	GAS	2,563,860	1,028,001	2,635,650.0	10,197,618	2.86	3.98
40. BAYSIDE #2	929	372,540	53.9	96.2	55.6	7,598	GAS	2,753,560	1,028,000	2,830,660.0	10,952,139	2.94	3.98
41. BAYSIDE #3	56	1,750	4.2	98.6	94.7	11,891	GAS	20,240	1,028,162	20,810.0	80,504	4.60	3.98
42. BAYSIDE #4	56	1,090	2.6	98.6	97.3	11,817	GAS	12,530	1,027,933	12,880.0	49,837	4.57	3.98
43. BAYSIDE #5	56	2,990	7.2	98.6	93.7	11,833	GAS	34,410	1,028,189	35,380.0	136,864	4.58	3.98
44. BAYSIDE #6	56	2,420	5.8	98.6	93.9	11,855	GAS	27,910	1,027,947	28,690.0	111,011	4.59	3.98
45. BAYSIDE TOTAL	1,854	737,210	53.4	96.6	62.2	7,547	GAS	5,412,510	1,028,002	5,564,070.0	21,527,973	2.92	3.98
46. SYSTEM	4,815	2,017,920	56.3	82.9	92.3	8,137	<u> </u>	-		16,419,820.0	59,460,784	2.95	-
LEGEND:						⁽¹⁾ As burned fu	el cost system to	otal includes ig	nition	(4) In Simple Cycle Mo	de		
B.B. = BIG BEND	NG = NA	TURAL GAS	CC = COMBINED			⁽²⁾ Fuel burned (۔ ماہیںامیرم امامیر	ignition				

B.B. = BIG BEND CT = COMBUSTION TURBINE

NG = NATURAL GAS

ST = STEAM

As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

CC = COMBINED CYCLE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: AUGUST 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6		21.0	-	21.0	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5		22.4	-	22.4	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4	3,760	26.1	-	26.1	-	SOLAR	-	-	-	-	-	-
4. FUTURE SOLAR	-		-		-	-	SOLAR	-	-	-			-
5. TOTAL SOLAR	(3) 22.5	4,260	25.5	-	25.5	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	28,220	20.5	-	-	-	NG CO-FIRE	322,370	1,028,011	331,400.0	1,278,587	4.53	3.97
7. B.B.#1 COAL	385	0	0.0		-		COAL	0	0	0.0	0	0.00	0.00
B. TOTAL BIG BEND #1	385	28,220	9.9	43.2	56.8	11,743			-	331,400.0	1,278,587	4.53	-
9. B.B.#2 NAT GAS CO-FIRE	185	85,850 0	62.4	-	-	-	NG CO-FIRE		1,028,005	964,330.0	3,720,542	4.33	3.97
10. B.B.#2 COAL 11. TOTAL BIG BEND #2	385	85,850	0.0	- 56.7	- 56.6	- 11,233	COAL	0	0	0.0 964,330.0	3,720,542	4.33	0.00
12. B.B.#3 NAT GAS CO-FIRE	185	9,910	7.2	56.7	50.0	-	NG CO-FIRE		- 1,027,992	102,460.0	395,312	3.99	- 3.97
13. B.B.#3 COAL	395	188,360	64.1	-	-	-	COAL	84,500	23,039,290	1.946.820.0	5.891.049	3.13	69.72
I4. TOTAL BIG BEND #3	395	198,270	67.5	67.7	86.2	10,336	COAL	-	-	2,049,280.0	6,286,361	3.17	- 03.72
15. B.B.#4 NAT GAS CO-FIRE	175	10,790	8.3	-		-	NG CO-FIRE	109,560	1,028,021	112,630.0	434,538	4.03	3.97
16. B.B.#4 COAL	437	205,080	63.1	-	-	-	COAL	92,880	23,039,298	2,139,890.0	6,475,271	3.16	69.72
17. TOTAL BIG BEND #4	437	215,870	66.4	68.8	83.2	10,435		-	-	2,252,520.0	6,909,809	3.20	-
18. B.B. 1-4 IGNITION	-						GAS	22,960		23,600.0	91,064		3.97
19. BIG BEND 1-4 COAL TOTAL	1,602	393,440	33.0	59.5	57.0	10,387	COAL	177,380	23,039,294	4,086,710.0	12,366,320	3.14	69.72
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	3,410	8.2	-	98.2	11,698	GAS	38,810	1,027,828	39,890.0	153,929	4.51	3.97
22. B.B.C.T.#4 TOTAL	56	3,410	8.2	98.3	98.2	11,698	-	-	-	39,890.0	153,929	4.51	-
23. BIG BEND STATION TOTAL	1,658	531,620	43.1	60.8	76.6	10,604	-	-	-	5,637,420.0	18,440,291	3.47	-
24. POLK #1 GASIFIER	220	64,470	39.4	-	97.0	10,245	COAL	23,040	28,666,667	660,480.0	2,115,272	3.28	91.81
25. POLK #1 CT GAS	195	3,960	2.7		92.3	8,162	GAS	34,070	948,635	32,320.0	124,698	3.15	3.66
26. POLK #1 TOTAL	220	68,430	41.8	35.2	96.7	10,124	•	-	-	692,800.0	2,239,970	3.27	-
27. POLK #2 CT (GAS)	150	1,050	0.9	-	100.0	11,257	GAS	11,500	1,027,826	11,820.0	45,612	4.34	3.97
28. POLK #2 CT (OIL)	159	140	0.1		17.6	10,571	LGT OIL	250	5,920,000	1,480.0	31,871	22.77	127.48
29. POLK #2 TOTAL	(4) 150	1,190	1.1	-	64.5	11,176	-	-	-	13,300.0	77,483	6.51	-
30. POLK #3 CT GAS	150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
31. POLK #3 CT OIL	159	140	0.1	-	17.6	10,571	LGT OIL	250	5,920,000	1,480.0	31,871	22.77	127.48
32. POLK #3 TOTAL	(4) 150	140	0.1	-	17.6	10,571	-	-	-	1,480.0	31,871	22.77	-
33. POLK #4 CT GAS	(4) 150	900	0.8	-	100.0	11,178	GAS	9,780	1,028,630	10,060.0	38,790	4.31	3.97
34. POLK #5 CT GAS	(4) 150	900	0.8	-	100.0	11,278	GAS	9,870	1,028,369	10,150.0	39,146	4.35	3.97
35. POLK #2 ST DUCT FIRING	120	17,040	19.1	-	88.8	8,276	GAS	137,180	1,027,992	141,020.0	544,084	3.19	3.97
POLK #2 ST W/O DUCT FIRING		674,320					GAS	4,433,280	1,027,997	4,557,400.0	17,583,313	2.61	3.97
37. POLK #2 CC TOTAL	1,061	691,360	87.6	97.3	72.9	6,796	GAS	-	-	4,698,420.0	18,127,397	2.62	-
38. POLK STATION TOTAL	1,281	762,920	80.0	86.7	79.0	7,112	-	-	-	5,426,210.0	20,554,657	2.69	-
39. BAYSIDE #1	701	363,550	69.7	96.5	72.2	7,382	GAS	2,610,460	1,027,999	2,683,550.0	10,353,629	2.85	3.97
40. BAYSIDE #2	929	378,470	54.8	96.2	56.6	7,585	GAS	2,792,640	1,027,995	2,870,820.0	11,076,192	2.93	3.97
41. BAYSIDE #3	56	1,720	4.1	98.6	96.0	11,750	GAS	19,660	1,027,976	20,210.0	77,976	4.53	3.97
42. BAYSIDE #4	56	1,310	3.1	98.6	97.5	11,695	GAS	14,900	1,028,188	15,320.0	59,097	4.51	3.97
43. BAYSIDE #5	56	2,660	6.4	98.6	95.0	11,767	GAS	30,450	1,027,915	31,300.0	120,771	4.54	3.97
44. BAYSIDE #6	56	1,980	4.8	98.6	95.6	11,753	GAS	22,640	1,027,827	23,270.0	89,795	4.54	3.97
15. BAYSIDE TOTAL	1,854	749,690	54.3	96.6	63.5	7,529	GAS	5,490,750	1,027,996	5,644,470.0	21,777,460	2.90	3.97
46. SYSTEM	4,815	2,048,490	57.2	81.2	92.3	8,156		-		16,708,100.0	60,772,408	2.97	-
LEGEND:						⁽¹⁾ As burned fue	el cost system to	otal includes ion	nition	(4) In Simple Cycle Mo	de		
B.B. = BIG BEND		TURAL GAS	CC = COMBINED			(2) Fuel burned (

B.B. = BIG BEND

CT = COMBUSTION TURBINE

NG = NATURAL GAS

ST = STEAM

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 17 OF 30

CC = COMBINED CYCLE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: SEPTEMBER 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(К)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA-	NET GENERATION		EQUIV. AVAIL.	NET OUTPUT	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	BILITY (MW)	(MWH)	FACTOR (%)	FACTOR (%)	FACTOR (%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) ⁽²⁾	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6		19.1	-	19.1	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5		19.4	-	19.4	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4		22.3	-	22.3	-	SOLAR	-	-	-	-	-	-
 FUTURE SOLAR TOTAL SOLAR 	(3) 77.6		46.4	<u> </u>	46.4	<u> </u>	SOLAR SOLAR	-		-	<u> </u>		
5. TOTAL SOLAR		29,420	40.9	-	40.9	-	JULAR	-	•	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	24,950	18.7	-	-	-	NG CO-FIRE	291,100	1,028,032	299,260.0	1,152,487	4.62	3.96
7. B.B.#1 COAL	385	0	0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
 TOTAL BIG BEND #1 B.B.#2 NAT GAS CO-FIRE 	385 185	24,950 66,040	9.0	43.2	52.7	11,994	NG CO-FIRE	-	-	299,260.0	1,152,487	4.62 4.35	- 3.96
 B.B.#2 NAT GAS CO-FIRE B.B.#2 COAL 	385	00,040	49.6 0.0	-	-	-	COAL	724,810 0	1,027,994 0	745,100.0 0.0	2,869,577 0	4.35	0.00
11. TOTAL BIG BEND #2	385	66,040	23.8	56.7	55.5	11,283	COAL	-		745,100.0	2,869,577	4.35	- 0.00
12. B.B.#3 NAT GAS CO-FIRE	185	9,420	7.1		- 55.5	-	NG CO-FIRE	94.890	1.028.032	97,550.0	375,677	3.99	- 3.96
13. B.B.#3 COAL	395	179,000	62.9	-	-	-	COAL	80,450	23,038,906	1,853,480.0	5,594,622	3.13	69.54
14. TOTAL BIG BEND #3	395	188,420	66.3	67.7	84.7	10,355		-	-	1,951,030.0	5,970,299	3.17	-
15. B.B.#4 NAT GAS CO-FIRE	175	10,390	8.2	_	-	-	NG CO-FIRE	105,520	1,027,957	108,470.0	417,762	4.02	3.96
16. B.B.#4 COAL	437	197,400	62.7	-	-	-	COAL	89,450	23,039,911	2,060,920.0	6,220,497	3.15	69.54
17. TOTAL BIG BEND #4	437	207,790	66.0	68.8	82.4	10,440		-	· ·	2,169,390.0	6,638,259	3.19	-
18. B.B. 1-4 IGNITION	-				-	-	GAS	27,970		28,750.0	110,735		3.96
19. BIG BEND 1-4 COAL TOTAL	1,602	376,400	32.6	59.5	58.7	10,400	COAL	169,900	23,039,435	3,914,400.0	11,815,119	3.14	69.54
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	3,840	9.5		99.4	11,656	GAS	43,540	1,028,020	44,760.0	172,378	4.49	3.96
22. B.B.C.T.#4 TOTAL	56	3,840	9.5	98.3	99.4	11,656	-	-	-	44,760.0	172,378	4.49	-
23. BIG BEND STATION TOTAL	1,658	491,040	41.1	60.8	76.2	10,609	-	-	-	5,209,540.0	16,913,734	3.44	-
24. POLK #1 GASIFIER	220	0	0.0	-	0.0	0	COAL	0	0	0.0	0	0.00	0.00
25. POLK #1 CT GAS	195	0	0.0		0.0	0	GAS	0	0	0.0	0	0.00	0.00
26. POLK #1 TOTAL	220	0	0.0	0.0	0.0	0	-	-	-	0.0	0	0.00	-
27. POLK #2 CT (GAS)	150	1,350	1.3	-	100.0	11,237	GAS	14,760	1,027,778	15,170.0	58,436	4.33	3.96
28. POLK #2 CT (OIL)	159	110	0.1		17.3	11,091	LGT OIL	210	5,809,524	1,220.0	26,771	24.34	127.48
29. POLK #2 TOTAL	(4) 150	1,460	1.4	-	73.5	11,226	-	-	-	16,390.0	85,207	5.84	-
30. POLK #3 CT GAS	150	1,350	1.3	-	100.0	11,237	GAS	14,760	1,027,778	15,170.0	58,436	4.33	3.96
31. POLK #3 CT OIL	159	110	0.1	-	17.3	11,091	LGT OIL	210	5,809,524	1,220.0	26,772	24.34	127.49
32. POLK #3 TOTAL	(4) 150	1,460	1.4	-	73.5	11,226	-	-	-	16,390.0	85,208	5.84	-
33. POLK #4 CT GAS	(4) 150	1,350	1.3	-	100.0	11,237	GAS	14,760	1,027,778	15,170.0	58,436	4.33	3.96
34. POLK #5 CT GAS	(4) 150	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	13,790	16.0	-	90.5	8,273	GAS	110,980	1,028,023	114,090.0	439,378	3.19	3.96
36. POLK #2 ST DOCT FIRING		656,470		-	-		GAS	4,316,450	1,027,998	4,437,300.0	17,089,146	2.60	3.96
37. POLK #2 CC TOTAL	1,061	670,260	87.7	97.3	75.4	6,790	GAS	-	-	4,551,390.0	17,528,524	2.62	-
38. POLK STATION TOTAL	1,281	674,530	73.1	80.6	75.6	6,819	-	-	-	4,599,340.0	17,757,375	2.63	-
39. BAYSIDE #1	701	346,290	68.6	96.5	70.6	7,389	GAS	2,488,980	1,027,999	2,558,670.0	9,854,057	2.85	3.96
40. BAYSIDE #2	929	353,860	52.9	96.2	54.5	7,605	GAS	2,617,700	1,027,998	2,690,990.0	10,363,667	2.93	3.96
41. BAYSIDE #3	56	1,700	4.2	98.6	94.9	11,900	GAS	19,680	1,027,947	20,230.0	77,915	4.58	3.96
42. BAYSIDE #4	56	1,040	2.6	98.6	97.7	11,798	GAS	11,930	1,028,500	12,270.0	47,232	4.54	3.96
43. BAYSIDE #5	56	2,690	6.7	98.6	94.2	11,822	GAS	30,940	1,027,796	31,800.0	122,494	4.55	3.96
44. BAYSIDE #6	56	2,330	5.8	98.6	94.6	11,785	GAS	26,710	1,028,079	27,460.0	105,747	4.54	3.96
45. BAYSIDE TOTAL	1,854	707,910	53.0	96.6	61.7	7,545	GAS	5,195,940	1,027,999	5,341,420.0	20,571,112	2.91	3.96
46. SYSTEM	4,893	1,902,900	54.0	78.3	92.6	7,962	<u> </u>	-	<u> </u>	15,150,300.0	55,242,221	2.90	
LEGEND: B.B. = BIG BEND CT = COMBUSTION TURBIN		TURAL GAS ST = STEAM	CC = COMBINED	CYCLE		 ⁽¹⁾ As burned fue ⁽²⁾ Fuel burned (⁽³⁾ AC rating 	el cost system to MM BTU) system	tal includes igr total excludes	nition s ignition	⁴⁾ In Simple Cycle Mo	de		

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 18 OF 30

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: OCTOBER 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	250	21.0	-	21.0	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5	210	18.8	-	18.8	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4		22.2	-	22.2	-	SOLAR	-	-	-	-	-	-
FUTURE SOLAR	77.6		46.2		46.2	-	SOLAR	-	-	-	-	-	-
5. TOTAL SOLAR	(3) 100.0	30,310	40.7	•	40.7	-	SOLAR	-	-	-	-		-
6. B.B.#1 NAT GAS CO-FIRE	185	27,400	19.9	-	-	-	NG CO-FIRE	318,460	1,028,010	327,380.0	1,271,505	4.64	3.99
 B.B.#1 COAL 	385	0	0.0	-	-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	385	27,400	9.6	43.2	53.5	11,948		-	-	327,380.0	1,271,505	4.64	-
B.B.#2 NAT GAS CO-FIRE	185	36,260	26.3	-	-	-	NG CO-FIRE	400,670	1,028,003	411,890.0	1,599,742	4.41	3.99
10. B.B.#2 COAL	385	0	0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
11. TOTAL BIG BEND #2	385	36,260	12.7	56.7	53.8	11,359		-	-	411,890.0	1,599,742	4.41	-
12. B.B.#3 NAT GAS CO-FIRE	185	6,030	4.4	-	-	-	NG CO-FIRE		1,027,873	63,060.0	244,950	4.06	3.99
13. B.B.#3 COAL	395	114,650	39.0			-	COAL	52,010	23,037,877	1,198,200.0	3,616,757	3.15	69.54
14. TOTAL BIG BEND #3	395	120,680	41.1	45.9	77.5	10,451		-	-	1,261,260.0	3,861,707	3.20	-
15. B.B.#4 NAT GAS CO-FIRE	175	10,530	8.1	-	-	-	NG CO-FIRE		1,028,001	109,770.0	426,337	4.05	3.99
16. B.B.#4 COAL	437	200,000	61.5		-	-	COAL	90,520	23,039,549	2,085,540.0	6,294,731	3.15	69.54
17. TOTAL BIG BEND #4	437	210,530	64.8	68.8	83.3	10,428		-	-	2,195,310.0	6,721,068	3.19	-
18. B.B. 1-4 IGNITION	-		-		-	-	GAS	38,410	-	39,480.0	153,358	-	3.99
19. BIG BEND 1-4 COAL TOTAL	1,602	314,650	26.4	54.1	59.7	10,436	COAL	142,530	23,038,939	3,283,740.0	9,911,488	3.15	69.54
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	4,690	11.3	-	89.1	12,028	GAS	54,880	1,027,879	56,410.0	219,118	4.67	3.99
22. B.B.C.T.#4 TOTAL	56	4,690	11.3	98.3	89.1	12,028	-	-	-	56,410.0	219,118	4.67	-
23. BIG BEND STATION TOTAL	1,658	399,560	32.4	55.6	75.1	10,642	-	-		4,252,250.0	13,826,499	3.46	-
24. POLK #1 GASIFIER	220	90,250	55.1	-	97.0	10,275	COAL	32,260	28,746,125	927,350.0	2,948,431	3.27	91.40
25. POLK #1 CT GAS	195	14,420	9.9	-	96.0	8,021	GAS	118,650	974,884	115,670.0	449,255	3.12	3.79
26. POLK #1 TOTAL	220	104,670	63.9	49.2	96.8	9,965	-	-	-	1,043,020.0	3,397,686	3.25	-
27. POLK #2 CT (GAS)	150	14.160	12.7	-	96.3	11.328	GAS	156.040	1.028.006	160.410.0	623.017	4.40	3.99
28. POLK #2 CT (OIL)	159	140	0.1	-	17.6	10,571	LGT OIL	260	5,692,308	1,480.0	33,146	23.68	127.48
29. POLK #2 TOTAL	(4) 150	14,300	12.8	-	92.3	11,321	•	-	-	161,890.0	656,163	4.59	-
30. POLK #3 CT GAS	150	11,430	10.2	_	99.0	11,241	GAS	124,980	1,028,004	128,480.0	499,004	4.37	3.99
31. POLK #3 CT OIL	159	140	0.1	_	17.6	10,571	LGT OIL	260	5,692,308	1.480.0	33,145	23.68	127.48
	(4) 150	11,570	10.4	-	93.7	11,232	-	-	-	129,960.0	532,149	4.60	-
33. POLK #4 CT GAS	(4) 150	8,000	7.2	-	98.8	11,261	GAS	87,640	1,027,955	90,090.0	349,917	4.37	3.99
34. POLK #5 CT GAS	(4) 150	6,560	5.9	-	99.4	11,235	GAS	71,700	1,027,894	73,700.0	286,274	4.36	3.99
	100	7 000			70 7	0.077	C46	60.070	1 007 050	64 700 0	051 440	2.00	2.00
35. POLK #2 ST DUCT FIRING	120	7,820	8.8	-	76.7	8,277	GAS	62,970 3,459,490	1,027,950	64,730.0	251,418 13,812,595	3.22 2.62	3.99
36. POLK #2 ST W/O DUCT FIRING		526,410	67.7	- 78.5	- 74.4	6,778	GAS GAS	3,459,490	1,028,001	3,556,360.0	13,812,595	2.62	3.99
37. POLK #2 CC TOTAL	1,061	534,230	67.7	/0.5	74.4	6,776	GAS	-	-	3,621,090.0	14,064,013	2.63	-
38. POLK STATION TOTAL	1,281	679,330	71.3	73.5	86.1	7,536	-	-	-	5,119,750.0	19,286,202	2.84	-
39. BAYSIDE #1	701	185,200	35.5	52.9	66.5	7,418		1,336,480	1,027,991	1,373,890.0	5,336,121	2.88	3.99
40. BAYSIDE #2	929	393,330	56.9	96.2	58.6	7,562	GAS	2,893,330	1,027,995	2,974,330.0	11,552,107	2.94	3.99
41. BAYSIDE #3	56	920	2.2	98.6	96.6	11,826	GAS	10,580	1,028,355	10,880.0	42,242	4.59	3.99
42. BAYSIDE #4	56	880	2.1	98.6	98.2	11,716	GAS	10,040	1,026,892	10,310.0	40,086	4.56	3.99
43. BAYSIDE #5	56	2,460	5.9	98.6	89.7	12,077	GAS	28,900	1,028,028	29,710.0	115,388	4.69	3.99
44. BAYSIDE #6	56	1,690	4.1	98.6	94.3	11,876	GAS	19,530	1,027,650	20,070.0	77,977	4.61	3.99
45. BAYSIDE TOTAL	1,854	584,480	42.4	80.1	61.2	7,561	GAS	4,298,860	1,027,991	4,419,190.0	17,163,921	2.94	3.99
46. SYSTEM	4,893	1,693,680	46.5	68.4	91.5	8,143		-	<u> </u>	13,791,190.0	50,276,622	2.97	-
LEGEND:						⁽¹⁾ As burned for	el cost system te	tal includos is	nition	(4) In Simple Cycle Mo	do		
B.B. = BIG BEND		TURAL GAS	CC = COMBINED			⁽²⁾ Fuel burned (or cost system to	- total analysis		in Simple Cycle MO			

B.B. = BIG BEND CT = COMBUSTION TURBINE NG = NATURAL GAS

ST = STEAM

As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 19 OF 30

CC = COMBINED CYCLE

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: NOVEMBER 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	230	20.0	-	20.0	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5	170	15.7	-	15.7	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4	2,710	19.4	-	19.4	-	SOLAR	-	-	-	-	-	-
FUTURE SOLAR	77.6	22,550	40.4	-	40.4	-	SOLAR	-	-	-	-	-	-
5. TOTAL SOLAR	(3) 100.0	25,660	35.6	-	35.6	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	9,350	7.0	-	-	-	NG CO-FIRE	111,930	1,027,964	115,060.0	475,043	5.08	4.24
7. B.B.#1 COAL	385	0	0.0	-	-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	385	9,350	3.4	28.8	48.6	12,306		-	-	115,060.0	475,043	5.08	-
B.B.#2 NAT GAS CO-FIRE	185	47,340	35.5	-	-	-	NG CO-FIRE	506,470	1,027,998	520,650.0	2,149,515	4.54	4.24
10. B.B.#2 COAL	385	0	0.0		-	-	COAL	0	0	0.0	0	0.00	0.00
11. TOTAL BIG BEND #2	385	47,340	17.1	37.8	61.8	10,998		-	-	520,650.0	2,149,515	4.54	-
12. B.B.#3 NAT GAS CO-FIRE	185	9,480	7.1	-	-	-	NG CO-FIRE		1,027,993	98,050.0	404,803	4.27	4.24
13. B.B.#3 COAL	395	180,040	63.3		-	-	COAL	80,860	23,040,317	1,863,040.0	5,582,735	3.10	69.04
14. TOTAL BIG BEND #3	395	189,520	66.6	67.7	85.2	10,348		-	-	1,961,090.0	5,987,538	3.16	-
15. B.B.#4 NAT GAS CO-FIRE	175	10,240	8.1	-	-	-	NG CO-FIRE		1,028,093	106,860.0	441,133	4.31	4.24
16. B.B.#4 COAL	437	194,640	61.9			-	COAL	88,120	23,039,832	2,030,270.0	6,083,982	3.13	69.04
17. TOTAL BIG BEND #4	437	204,880	65.1	68.8	83.7	10,431		-	-	2,137,130.0	6,525,115	3.18	-
18. B.B. 1-4 IGNITION	-	-	-	-	-	-	GAS	17,950	-	18,450.0	76,182	-	4.24
19. BIG BEND 1-4 COAL TOTAL	1,602	374,680	32.5	51.5	66.6	10,391	COAL	168,980	23,040,064	3,893,310.0	11,666,717	3.11	69.04
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0	LGT OIL	0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	56	4,230	10.5	0.0	92.1	11,991	GAS	49,330	1,028,178	50,720.0	209,362	4.95	4.24
22. B.B.C.T.#4 TOTAL	56	4,230	10.5	98.3	92.1	11,991	-	-	-	50,720.0	209,362	4.95	-
23. BIG BEND STATION TOTAL	1,658	455,320	38.1	53.1	80.2	10,508	-	-	-	4,784,650.0	15,422,755	3.39	-
24. POLK #1 GASIFIER	220	128,930	81.4	-	97.0	10,225	COAL	46.080	28,609,158	1,318,310.0	4.106.659	3.19	89.12
25. POLK #1 CT GAS	195	11,960	8.5	-	98.9	8,180	GAS	97,790	1,000,409	97,830.0	403,870	3.38	4.13
26. POLK #1 TOTAL	220	140,890	88.9	72.7	97.2	10,051	-	-	-	1,416,140.0	4,510,529	3.20	-
27. POLK #2 CT (GAS)	150	12,130	11.2	-	96.3	11,345	GAS	133,870	1,027,938	137,610.0	568,159	4.68	4.24
28. POLK #2 CT (OIL)	159	90	0.1	-	18.9	10,111	LGT OIL	160	5,687,500	910.0	20,397	22.66	127.48
29. POLK #2 TOTAL	(4) 150	12,220	11.3	-	93.4	11,336	-	-	-	138,520.0	588,556	4.82	-
30. POLK #3 CT GAS	150	6,180	5.7	-	98.1	11,301	GAS	67,930	1,028,117	69,840.0	288,302	4.67	4.24
31. POLK #3 CT OIL	159	90	0.1	-	18.9	10,111	LGT OIL	160	5,687,500	910.0	20,398	22.66	127.49
32. POLK #3 TOTAL	(4) 150	6,270	5.8		92.5	11,284	•	-	-	70,750.0	308,700	4.92	-
33. POLK #4 CT GAS	(4) 150	2,830	2.6	-	99.3	11,237	GAS	30,930	1,028,128	31,800.0	131,270	4.64	4.24
AL DOLK #5 OT OAD		4 700											
34. POLK #5 CT GAS	(4) 150	1,790	1.7	-	99.4	11,291	GAS	19,650	1,028,499	20,210.0	83,397	4.66	4.24
35. POLK #2 ST DUCT FIRING	120	1,140	1.3	-	63.3	8,281	GAS	9,180	1,028,322	9,440.0	38,961	3.42	4.24
36. POLK #2 ST W/O DUCT FIRING		311,080	-	-	-	-	GAS	2,044,310	1,028,000	2,101,550.0	8,676,277	2.79	4.24
37. POLK #2 CC TOTAL	1,061	312,220	40.9	48.7	79.3	6,761	GAS	-	-	2,110,990.0	8,715,238	2.79	-
38. POLK STATION TOTAL	1,281	476,220	51.6	52.8	91.3	7,955	-	-	-	3,788,410.0	14,337,690	3.01	-
39. BAYSIDE #1	701	13,110	2.6	6.4	51.9	7,616	GAS	97,130	1,028,004	99,850.0	412,230	3.14	4.24
40. BAYSIDE #2	929	401,470	60.0	96.2	62.8	7,516	GAS	2,935,210	1,028,001	3,017,400.0	12,457,356	3.10	4.24
41. BAYSIDE #3	56	360	0.9	98.6	91.8	12,139	GAS	4,240	1,030,660	4,370.0	17,995	5.00	4.24
42. BAYSIDE #4	56	110	0.3	98.6	98.2	12,182	GAS	1,310	1,022,901	1,340.0	5,560	5.05	4.24
43. BAYSIDE #5	56	1,400	3.5	98.6	89.3	12,221	GAS	16,650	1,027,628	17,110.0	70,664	5.05	4.24
44. BAYSIDE #6	56	560	1.4	98.6	90.9	12,339	GAS	6,720	1.028.274	6.910.0	28,520	5.09	4.24
45. BAYSIDE TOTAL	1,854	417,010	31.2	62.6	62.5	7,547	GAS	3,061,260	1,028,002	3,146,980.0	12,992,325	3.12	4.24
46. SYSTEM	4,893	1,374,210	39.0	55.5	89.9	8,529				11,720,040.0	42,752,770	3.11	-
LEGEND:						⁽¹⁾ As humod for	el cost system to	tal includos is:	nition	(4) In Simple Cycle Mo	do		
D D - DIO DEND			~~ ~~~~~~			(2)	ei cosi system to	vai includes ig		in Simple Cycle No	ue		

B.B. = BIG BEND

CT = COMBUSTION TURBINE

CC = COMBINED CYCLE

As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

TAMPA ELECTRIC COMPANY SYSTEM NET GENERATION AND FUEL COST ESTIMATED FOR THE PERIOD: DECEMBER 2018

(A)	(B)	(C)	(D)	(E)	(F)	(G)	(H)	(I)	(J)	(K)	(L)	(M)	(N)
PLANT/UNIT	NET CAPA- BILITY	NET GENERATION	NET CAPACITY FACTOR	EQUIV. AVAIL. FACTOR	NET OUTPUT FACTOR	AVG. NET HEAT RATE	FUEL TYPE	FUEL BURNED	FUEL HEAT VALUE	FUEL BURNED	AS BURNED FUEL COST	FUEL COST PER KWH	COST OF FUEL
	(MW)	(MWH)	(%)	(%)	(%)	(BTU/KWH)		(UNITS)	(BTU/UNIT)	(MM BTU) (2)	(\$) ⁽¹⁾	(cents/KWH)	(\$/UNIT)
1. TIA SOLAR	1.6	220	18.5	-	18.5	-	SOLAR	-	-	-	-	-	-
2. LEGOLAND SOLAR	1.5	150	13.4	-	13.4	-	SOLAR	-	-	-	-	-	-
BIG BEND SOLAR	19.4		16.7	-	16.7	-	SOLAR	-	-	-	-	-	-
FUTURE SOLAR	77.6		34.9		34.9	-	SOLAR	-		-	-		-
5. TOTAL SOLAR	(3) 100.0	22,890	30.8	-	30.8	-	SOLAR	-	-	-	-	-	-
6. B.B.#1 NAT GAS CO-FIRE	185	0	0.0	-	-	-	NG CO-FIRE	0	0	0.0	0	0.00	0.00
7. B.B.#1 COAL	395	0	0.0	-	-	-	COAL	0	0	0.0	0	0.00	0.00
8. TOTAL BIG BEND #1	395	0	0.0	43.2	0.0	0		-	-	0.0	0	0.00	-
B.B.#2 NAT GAS CO-FIRE	185	24,730	18.0	-	-	-	NG CO-FIRE	275,630	1,028,009	283,350.0	1,179,260	4.77	4.28
10. B.B.#2 COAL	395	0	0.0	-	-	-	COAL	0	0	0.0	0	0.00	0.00
11. TOTAL BIG BEND #2	395	24,730	8.4	56.7	50.1	11,458		-	-	283,350.0	1,179,260	4.77	-
12. B.B.#3 NAT GAS CO-FIRE	185	9,990	7.3	-	-	-	NG CO-FIRE		1,027,978	102,880.0	428,184	4.29	4.28
13. B.B.#3 COAL	400	189,850	63.8	-	-	-	COAL	84,840	23,041,018	1,954,800.0	5,802,496	3.06	68.39
14. TOTAL BIG BEND #3	400	199,840	67.2	67.7	85.8	10,297				2,057,680.0	6,230,680	3.12	•
15. B.B.#4 NAT GAS CO-FIRE	175	6,460	5.0	-	-	-	NG CO-FIRE		1,028,037	67,100.0	279,252	4.32	4.28
16. B.B.#4 COAL	442	122,690	37.3		- 01.0	-	COAL	55,330	23,041,388	1,274,880.0	3,784,205	3.08	68.39
17. TOTAL BIG BEND #4 18. B.B. 1-4 IGNITION	442	129,150	39.3	46.6	81.6	10,391	C 4 6	- 20.040	-	1,341,980.0	4,063,457	3.15	-
19. BIG BEND 1-4 COAL TOTAL	1,632	312,540	25.7	53.4	- 71.0	10,334	GAS	140.170	23,041,164	20,600.0 3.229.680.0	85,739 9,586,701	3.07	4.28
										., .,			
20. B.B.C.T.#4 OIL	0	0	0.0	0.0	0.0	0		0	0	0.0	0	0.00	0.00
21. B.B.C.T.#4 GAS	61	870	1.9		83.9	12,379	GAS	10,480	1,027,672	10,770.0	44,838	5.15	4.28
22. B.B.C.T.#4 TOTAL	61	870	1.9	98.3	83.9	12,379	-	-	-	10,770.0	44,838	5.15	-
23. BIG BEND STATION TOTAL	1,693	354,590	28.2	55.0	80.3	10,417	-	-	-	3,693,780.0	11,603,975	3.27	-
24. POLK #1 GASIFIER	220	133,230	81.4	-	97.0	10,223	COAL	47,610	28,608,696	1,362,060.0	4,233,478	3.18	88.92
25. POLK #1 CT GAS	205	0	0.0		0.0	0	GAS	2,630	0	0.0	0	0.00	0.00
26. POLK #1 TOTAL	220	133,230	81.4	72.7	97.0	10,223	-	-	-	1,362,060.0	4,233,478	3.18	-
27. POLK #2 CT (GAS)	180	690	0.5	-	95.8	10,942	GAS	7,340	1,028,610	7,550.0	31,404	4.55	4.28
28. POLK #2 CT (OIL)	187	140	0.1	-	12.5	10,857	LGT OIL	260	5,846,154	1,520.0	33,146	23.68	127.48
	(4) 180	830	0.6	-	45.1	10,928	-	-	-	9,070.0	64,550	7.78	-
30. POLK #3 CT GAS	180	0	0.0	_	0.0	0	GAS	0	0	0.0	0	0.00	0.00
31. POLK #3 CT OIL	187	140	0.1	_	12.5	10,857	LGT OIL	260	5,846,154	1,520.0	33,145	23.68	127.48
	(4) 180	140	0.1	<u> </u>	12.5	10,857	-	-	-	1,520.0	33,145	23.68	-
33. POLK #4 CT GAS	(4) 180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
34. POLK #5 CT GAS	(4) 180	0	0.0	-	0.0	0	GAS	0	0	0.0	0	0.00	0.00
35. POLK #2 ST DUCT FIRING	120	5,060	5.7	c.	79.6	8,180	GAS	40.250	1,028,323	41,390.0	172.206	3.40	4.28
36. POLK #2 ST W/O DUCT FIRING		623,020	-	_	10.0	0,100	GAS	4,099,820	1,028,001	4,214,620.0	17,540,744	2.82	4.28
37. POLK #2 CC TOTAL	1,200	628,080	70.3	97.3	66.5	6,776	GAS	-	-	4,256,010.0	17,712,950	2.82	-
38. POLK STATION TOTAL	1,420	762,280	72.2	93.5	79.5	7,384	-	-		5,628,660.0	22,044,123	2.89	-
	700	076 650	40.0	96.5	48.8	7 404	GAS	1 000 000	1 007 000	0.04E 040.0	0 514 407	2.00	4.00
39. BAYSIDE #1 40. BAYSIDE #2	792 1,047	275,550 84,560	46.8 10.9	96.5 59.0	48.8 29.7	7,424 7,963	GAS GAS	1,990,090 655,030	1,027,999 1,028,014	2,045,810.0 673,380.0	8,514,437 2,802,493	3.09 3.31	4.28 4.28
40. BAYSIDE #2 41. BAYSIDE #3	1,047	84,560 100	0.2	98.6	29.7	13,000	GAS	1,270	1,023,622	1,300.0	2,802,493	5.43	4.28
42. BAYSIDE #4	61	50	0.2	98.6	82.0	13,000	GAS	630	1,023,022	650.0	2,695	5.39	4.28
43. BAYSIDE #5	61	420	0.9	98.6	86.1	12.333	GAS	5,040	1,027,778	5,180.0	2,095	5.13	4.28
44. BAYSIDE #6	61	260	0.9	98.6	85.2	12,333	GAS	3,100	1,029,032	3,190.0	13,263	5.10	4.28
45. BAYSIDE TOTAL	2,083	360.940	23.3	77.9	42.4	7,562	GAS	2,655,160	1,028,002	2,729,510.0	11,359,885	3.15	4.28
								_,000,100	1,020,002				4.20
46. SYSTEM	5,296	1,500,700	38.1	73.3	88.1	8,031	<u> </u>	-	-	12,051,950.0	45,007,983	3.00	
LEGEND: B.B. = BIG BEND		TURAL GAS	CC = COMBINED			(1) As burned fue	el cost system to MM BTU) system	otal includes igni	ition	⁽⁴⁾ In Simple Cycle Mod	de		

B.B. = BIG BEND

- NG = NATURAL GAS CT = COMBUSTION TURBINE ST = STEAM
- CC = COMBINED CYCLE
- As burned fuel cost system total includes ignition
 Fuel burned (MM BTU) system total excludes ignition
 AC rating

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE PAGE 21 OF 30

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 22 OF 30

TAMPA ELECTRIC COMPANY SYSTEM GENERATED FUEL COST INVENTORY ANALYSIS ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH JUNE 2018

SCHEDULE E5

ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH JUNE 2018											
	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18					
HEAVY OIL 1. PURCHASES:											
2. UNITS (BBL)	0	0	0	0	0	0					
 UNIT COST (\$/BBL) AMOUNT (\$) 	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0					
5. BURNED: 6. UNITS (BBL)	0	0	0	0	0	0					
7. UNIT COST (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00					
 AMOUNT (\$) ENDING INVENTORY: 	0	0	0	0	0	0					
10. UNITS (BBL) 11. UNIT COST (\$/BBL)	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00					
12. AMOUNT (\$)	0.00	0	0	0	0	0.00					
13. DAYS SUPPLY:	0	0	0	0	0	0					
LIGHT OIL 14. PURCHASES:											
15. UNITS (BBL)	0	0	0	0	0	0					
16. UNIT COST (\$/BBL) 17. AMOUNT (\$)	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0	0.00 0					
18. BURNED: 19. UNITS (BBL)	520	440	400	420	520	420					
20. UNIT COST (\$/BBL)	127.48	127.48	127.48	127.48	127.48	127.48					
21. AMOUNT (\$) 22. ENDING INVENTORY:	66,291	56,093	50,993	53,543	66,291	53,543					
23. UNITS (BBL) 24. UNIT COST (\$/BBL)	41,288 127.48	40,848 127.48	40,448 127.48	40,028 127.48	39,508 127.48	39,088 127.48					
25. AMOUNT (\$)	5,263,517	5,207,425	5,156,432	5,102,889	5,036,597	4,983,055					
26. DAYS SUPPLY: NORMAL 27. DAYS SUPPLY: EMERGENCY	2,791 6	3,055 6	3,325 6	3,616 6	3,984 6	4,602 6					
COAL											
28. PURCHASES: 29. UNITS (TONS)	217,010	217,000	157,000	167,000	162,000	237,000					
30. UNIT COST (\$/TON)	74.31	73.31	73.41 11,525,353	74.03	73.62	74.48					
31. AMOUNT (\$) 32. BURNED:	16,126,287	15,908,963		12,363,466	11,926,807	17,651,878					
33. UNITS (TONS) 34. UNIT COST (\$/TON)	228,730 68.44	194,850 69.83	182,600 73.86	162,120 74.43	190,710 74.43	212,270 74.69					
35. AMOUNT (\$) 36. ENDING INVENTORY:	15,655,404	13,607,271	13,486,830	12,065,932	14,195,155	15,854,483					
37. UNITS (TONS)	602,978	625,128	599,528	604,408	575,698	600,428					
38. UNIT COST (\$/TON) 39. AMOUNT (\$)	66.90 40,337,134	68.47 42,802,936	68.72 41,201,064	68.95 41,674,448	68.78 39,598,544	69.41 41,675,053					
40. DAYS SUPPLY:	90	103	103	97	85	87					
NATURAL GAS 41. PURCHASES:											
42. UNITS (MCF)	6,542,810	5,862,520	7,276,570	8,369,605	9,858,919	10,557,220					
43. UNIT COST (\$/MCF) 44. AMOUNT (\$)	4.95 32,408,245	4.91 28,786,538	4.73 34,402,705	4.03 33,690,689	3.93 38,745,564	3.95 41,746,580					
45. BURNED: 46. UNITS (MCF)	6,542,810	5.862.520	7,276,570	8,223,690	9,567,090	10,557,220					
47. UNIT COST (\$/MCF) 48. AMOUNT (\$)	4.94	4.90	4.71	4.08 33,587,524	3.95	3.94 41,571,661					
49. ENDING INVENTORY:	32,292,270	28,737,723	34,246,405		37,833,385						
50. UNITS (MCF) 51. UNIT COST (\$/MCF)	729,572 3.78	729,572 3.74	729,572 3.64	875,486 3.05	1,167,315 2.98	1,167,315 3.00					
52. AMOUNT (\$)	2,759,700	2,731,200	2,658,900	2,669,220	3,474,960	3,502,560					
53. DAYS SUPPLY:	3	3	3	4	6	6					
NUCLEAR 54. BURNED:											
55. UNITS (MMBTU) 56. UNIT COST (\$/MMBTU)	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00					
57. AMOUNT (\$)	0	0	0	0	0	0					
OTHER 58. PURCHASES:											
59. UNITS (MMBTU)	0 0.00	0	0	0 0.00	0 0.00	0					
60. UNIT COST (\$/MMBTU) 61. AMOUNT (\$)	0.00	0.00 0	0.00 0	0.00	0.00	0.00 0					
62. BURNED: 63. UNITS (MMBTU)	0	0	0	0	0	0					
64. UNIT COST (\$/MMBTU) 65. AMOUNT (\$)	0.00	0.00	0.00	0.00	0.00	0.00					
66. ENDING INVENTORY:											
67. UNITS (MMBTU) 68. UNIT COST (\$/MMBTU)	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00	0 0.00					
69. AMOUNT (\$)	0 0	0 0	0 0	0 0	0 0	0 0					
70. DAYS SUPPLY:	U	U	U	U	U	0					

NOTE: BEGINNING & ENDING INVENTORIES MAY NOT BALANCE BECAUSE OF THE FOLLOWING (1) LIGHT OIL-IGNITION AND ANALYSIS (2) COAL-IGNITION, ADDITIVES, ANALYSIS, AND INVENTORY ADJUSTMENTS (3) GAS-IGNITION

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 23 OF 30

TAMPA ELECTRIC COMPANY SYSTEM GENERATED FUEL COST INVENTORY ANALYSIS ESTIMATED FOR THE PERIOD: JULY 2018 THROUGH DECEMBER 2018

SCHEDULE E5

		Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	TOTAL		
	HEAVY OIL									
1. 2.	PURCHASES: UNITS (BBL)	0	0	0	0	0	0	0		
2. 3.	UNIT COST (\$/BBL)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
4.	AMOUNT (\$)	0	0	0	0	0	0	0		
5.	BURNED:	<u>^</u>	0	•	â	2	â			
6. 7.	UNITS (BBL) UNIT COST (\$/BBL)	0 0.00								
8.	AMOUNT (\$)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
9.	ENDING INVENTORY:									
10.	UNITS (BBL)	0	0	0	0	0	0	0		
11. 12.	UNIT COST (\$/BBL) AMOUNT (\$)	0.00 0								
	()							0		
13.	DAYS SUPPLY:	0	0	0	0	0	0	-		
	LIGHT OIL									
14. 15.	PURCHASES:	0	0	0	0	0	0	0		
15. 16.	UNITS (BBL) UNIT COST (\$/BBL)	0.00	0 0.00	0 0.00	0 0.00	0 0.00	0.00	0 0.00		
	AMOUNT (\$)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
	BURNED:									
19.	UNITS (BBL)	400	500	420	520	320	520	5,400		
	UNIT COST (\$/BBL)	127.48	127.48	127.48	127.48	127.48	127.48	127.48		
21. 22.		50,993	63,742	53,543	66,291	40,795	66,291	688,409		
22.	UNITS (BBL)	38,688	38,188	37,768	37,248	36,928	36,408	36,408		
24.	UNIT COST (\$/BBL)	127.48	127.48	127.48	127.48	127.48	127.48	127.48		
25.	AMOUNT (\$)	4,932,061	4,868,320	4,814,777	4,748,486	4,707,691	4,641,400	4,641,400		
26.		5,269	6,113	7,745	9,997	16,046	25,556	-		
27.	DAYS SUPPLY: EMERGENCY	6	5	5	5	5	5	-		
	COAL									
	PURCHASES:									
29.	UNITS (TONS)	212,000	192,000	162,000	152,000	157,000	168,000	2,200,010		
30. 31.	UNIT COST (\$/TON) AMOUNT (\$)	73.23 15,524,095	69.89 13,418,196	68.06 11,025,344	69.33 10,538,691	69.64 10,934,049	70.21 11,795,311	72.15 158,738,440		
32.	BURNED:	15,524,095	13,410,190	11,025,544	10,556,091	10,934,049	11,795,511	156,756,440		
33.	UNITS (TONS)	219,420	200,420	169,900	174,790	215,060	187,780	2,338,650		
34.	UNIT COST (\$/TON)	75.08	72.71	70.19	74.45	73.70	74.05	72.95		
35.	AMOUNT (\$)	16,474,522	14,572,656	11,925,854	13,013,277	15,849,558	13,905,918	170,606,860		
	ENDING INVENTORY: UNITS (TONS)	593,008	584,588	576,688	553,898	495,838	476,058	476,058		
38.	UNIT COST (\$/TON)	69.14	68.51	68.15	67.07	65.45	64.12	64.12		
39.	AMOUNT (\$)	41,000,452	40,048,641	39,298,574	37,151,765	32,454,605	30,523,994	30,523,994		
40.	DAYS SUPPLY:	93	99	94	88	113	228	-		
	NATURAL GAS			01	00		220			
41.	PURCHASES:									
42.	UNITS (MCF)	10,839,890	11,657,860	10,955,480	9,360,880	6,058,091	7,276,700	104,616,545		
43.	UNIT COST (\$/MCF)	3.98	3.97	3.96	3.99	4.31	4.29	4.18		
44.	AMOUNT (\$)	43,143,170	46,244,465	43,344,759	37,394,807	26,111,141	31,252,465	437,271,128		
45. 46.	BURNED: UNITS (MCF)	10,839,890	11,657,860	10,955,480	9,360,880	6,349,920	7,276,700	104,470,630		
47.	UNIT COST (\$/MCF)	3.96	3.96	3.95	3,000,000	4.23	4.27	4.17		
48.	AMOUNT (\$)	42,935,269	46,136,010	43,262,824	37,197,054	26,862,417	31,035,774	435,698,316		
49.	ENDING INVENTORY:	4 407 045	4 407 045	4 407 045	4 407 045	075 105	075 400	075 465		
50. 51.	UNITS (MCF) UNIT COST (\$/MCF)	1,167,315 3.02	1,167,315	1,167,315 3.01	1,167,315 3.02	875,486 3.07	875,486	875,486		
51. 52.	AMOUNT (\$)	3.02 3,530,640	3.03 3,537,600	3,508,800	3.02 3,528,720	2,690,100	3.21 2,809,800	3.21 2,809,800		
	DAYS SUPPLY:	8	9		19	23	44	_,,		
53.		0	9	13	19	23	44	-		
54.	NUCLEAR BURNED:									
54. 55.	UNITS (MMBTU)	0	0	0	0	0	0	0		
56.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
57.		0	0	0	0	0	0	0		
	OTHER									
58.	PURCHASES:									
59.		0	0	0	0	0	0	0		
60. 61	UNIT COST (\$/MMBTU) AMOUNT (\$)	0.00 0								
62.		U	U	0	0	0	0	0		
	UNITS (MMBTU)	0	0	0	0	0	0	0		
64.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
65.	AMOUNT (\$)	0	0	0	0	0	0	0		
66. 67	ENDING INVENTORY: UNITS (MMBTU)	0	0	0	0	0	0	0		
67. 68.	UNIT COST (\$/MMBTU)	0.00	0.00	0.00	0.00	0.00	0.00	0.00		
69.		0.00	0.00	0.00	0.00	0.00	0.00	0.00		
70.	()	0	0	0	0	0	0	-		
		v	v	5	5	0	5			

NOTE: BEGINNING & ENDING INVENTORIES MAY NOT BALANCE BECAUSE OF THE FOLLOWING (1) LIGHT OIL-IGNITION AND ANALYSIS (2) COAL-IGNITION, ADDITIVES, ANALYSIS, AND INVENTORY ADJUSTMENTS (3) GAS-IGNITION

TAMPA ELECTRIC COMPANY POWER SOLD ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH JUNE 2018

(1)	(2)		(3)	(4)	(5)	(6)	(7	7)	(8)	(9)	(10)
					MWH WHEELED		CENTS	S/KWH			
			ТҮРЕ	TOTAL	FROM	MWH	(A)	(B)	TOTAL \$		
			&	MWH	OTHER	FROM OWN	FUEL	TOTAL	FOR FUEL	TOTAL COST	GAINS ON
MONTH	SOLD TO	SC	HEDULE	SOLD	SYSTEMS	GENERATION	COST	COST	ADJUSTMENT	\$	SALES
Jan-18	SEMINOLE	JURISD.	SCH D	820.0	0.0	820.0	2.854	3.048	23,400.00	24,991.00	1,591.00
	VARIOUS	JURISD.	MKT. BASE	1,140.0	0.0	1,140.0	2.819	3.102	32,142.24	35,360.00	3,217.76
	TOTAL		-	1,960.0	0.0	1,960.0	2.834	3.079	55,542.24	60,351.00	4,808.76
Fab 40	SEMINOLE		SCH D	660.0	0.0	CC0 0	0.047	2.044	40 700 00	20,000,00	4 070 00
Feb-18					0.0	660.0	2.847	3.041	18,790.00	20,068.00	1,278.00
	VARIOUS	JURISD.	MKT. BASE	960.0	0.0	960.0	3.253	3.579	31,233.24	34,360.00	3,126.76
	TOTAL			1,620.0	0.0	1,620.0	3.088	3.360	50,023.24	54,428.00	4,404.76
Mar-18	SEMINOLE	JURISD.	SCH D	880.0	0.0	880.0	2.899	3.096	25,510.00	27,244.00	1,734.00
	VARIOUS	JURISD.	MKT. BASE	930.0	0.0	930.0	4.174	4.591	38,814.30	42,700.00	3,885.70
	TOTAL			1,810.0	0.0	1,810.0	3.554	3.864	64,324.30	69,944.00	5,619.70
Apr-18	SEMINOLE	JURISD.	SCH D	1,080.0	0.0	1,080.0	2.501	2.671	27,010.00	28,846.00	1,836.00
	VARIOUS	JURISD.	MKT. BASE	990.0	0.0	990.0	2.705	2.976	26,779.14	29,460.00	2,680.86
	TOTAL		-	2,070.0	0.0	2,070.0	2.599	2.817	53,789.14	58,306.00	4,516.86
May-18	SEMINOLE	JURISD.	SCH D	930.0	0.0	930.0	2.377	2.539	22,110.00	23,613.00	1,503.00
-	VARIOUS	JURISD.	MKT. BASE	1,050.0	0.0	1,050.0	2.395	2.634	25,142.94	27,660.00	2,517.06
	TOTAL		-	1,980.0	0.0	1,980.0	2.387	2.590	47,252.94	51,273.00	4,020.06
Jun-18	SEMINOLE	JURISD.	SCH D	990.0	0.0	990.0	2.458	2.625	24,330.00	25,984.00	1,654.00
	VARIOUS	JURISD.	MKT. BASE	960.0	0.0	960.0	2.601	2.861	24,970.23	27,470.00	2,499.77
	TOTAL		-	1,950.0	0.0	1,950.0	2.528	2.741	49,300.23	53,454.00	4,153.77

TAMPA ELECTRIC COMPANY

POWER SOLD

ESTIMATED FOR THE PERIOD: JULY 2018 THROUGH DECEMBER 2018

(1)	(2)		(3)	(4)	(5) MWH	(6)	(7	7)	(8)	(9)	(10)
					WHEELED		CENTS	S/KWH			
			TYPE	TOTAL	FROM	MWH	(A)	(B)	TOTAL \$		
			&	MWH	OTHER	FROM OWN		TOTAL	FOR FUEL	TOTAL COST	GAINS ON
MONTH	SOLD TO	SC	HEDULE	SOLD	SYSTEMS	GENERATION	COST	COST	ADJUSTMENT	\$	SALES
Jul-18	SEMINOLE		SCH D	1,000.0	0.0	1,000.0	2.592	2.768	25,920.00	27,682.00	1,762.00
501-10	VARIOUS			900.0							
		JURISD.	MKT. BASE		0.0	900.0	3.622		32,596.74	35,860.00	3,263.26
	TOTAL			1,900.0	0.0	1,900.0	3.080	3.344	58,516.74	63,542.00	5,025.26
Aug-18	SEMINOLE	JURISD.	SCH D	1,010.0	0.0	1,010.0	2.661	2.842	26,880.00	28,708.00	1,828.00
	VARIOUS	JURISD.	MKT. BASE	1,130.0	0.0	1,130.0	3.417	3.759	38,614.32	42,480.00	3,865.68
	TOTAL			2,140.0	0.0	2,140.0	3.060	3.327	65,494.32	71,188.00	5,693.68
Sep-18	SEMINOLE	JURISD.	SCH D	1,010.0	0.0	1,010.0	2.540	2.712	25,650.00	27,394.00	1,744.00
	VARIOUS	JURISD.	MKT. BASE	930.0	0.0	930.0	2.502	2.753	23,270.40	25,600.00	2,329.60
	TOTAL		-	1,940.0	0.0	1,940.0	2.522	2.732	48,920.40	52,994.00	4,073.60
Oct-18	SEMINOLE	JURISD.	SCH D	720.0	0.0	720.0	2.646	2.826	19,050.00	20,345.00	1,295.00
	VARIOUS	JURISD.	MKT. BASE	1,130.0	0.0	1,130.0	3.540	3.895	40,005.09	44,010.00	4,004.91
	TOTAL		-	1,850.0	0.0	1,850.0	3.192	3.479	59,055.09	64,355.00	5,299.91
Nov-18	SEMINOLE	JURISD.	SCH D	650.0	0.0	650.0	2.566	2.741	16,680.00	17,814.00	1,134.00
	VARIOUS	JURISD.	MKT. BASE	700.0	0.0	700.0	2.714	2.986	18,998.10	20,900.00	1,901.90
	TOTAL		-	1,350.0	0.0	1,350.0	2.643	2.868	35,678.10	38,714.00	3,035.90
Dec-18	SEMINOLE	JURISD.	SCH D	590.0	0.0	590.0	2.512	2.683	14,820.00	15,828.00	1,008.00
	VARIOUS	JURISD.	MKT. BASE	1,170.0	0.0	1,170.0	2.501	2.751	29,260.71	32,190.00	2,929.29
	TOTAL			1,760.0	0.0	1,760.0	2.505		44,080.71	48,018.00	3,937.29
TOTAL	SEMINOLE	JURISD	SCH D	10,340.0	0.0	10,340.0	2.613	2.790	270,150.00	288,517.00	18,367.00
Jan-18	VARIOUS	JURISD.	MKT. BASE	11,990.0	0.0	11,990.0	3.018		361,827.45	398,050.00	36,222.55
THRU	TOTAL	001100.	MICL DI OL	22,330.0	0.0	22,330.0	2.830	3.075	631,977.45	686,567.00	54,589.55
Dec-18			-			•			*		

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 25 OF 30

TAMPA ELECTRIC COMPANY PURCHASED POWER EXCLUSIVE OF ECONOMY AND QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

(1) (2) (3) (4) (5) (6) (7) (8) (9) MWH MWH CENTS/KWH TYPE TOTAL FOR FOR MWH TOTAL \$ (A) (B) PURCHASED MWH OTHER INTERRUP-FOR FUEL TOTAL FOR FUEL & MONTH FROM SCHEDULE PURCHASED UTILITIES TIBLE FIRM ADJUSTMENT COST COST Jan-18 PASCO COGEN 4.908 35,830.00 SCH - D 730.0 0.0 0.0 730.0 4.908 TOTAL 730.0 0.0 0.0 730.0 4.908 4.908 35,830.00 Feb-18 PASCO COGEN SCH. - D 1,260.0 0.0 1,260.0 4.816 60,680.00 0.0 4 816 TOTAL 1,260.0 1,260.0 4.816 4.816 60,680.00 0.0 0.0 Mar-18 PASCO COGEN 3.640.0 3.640.0 4.452 162,060.00 SCH. - D 0.0 0.0 4.452 TOTAL 3,640.0 0.0 0.0 3,640.0 4.452 4.452 162,060.00 Apr-18 PASCO COGEN SCH. - D 2,650.0 0.0 0.0 2,650.0 4.062 4.062 107,650.00 TOTAL 2,650.0 0.0 4.062 107,650.00 0.0 2,650.0 4.062 May-18 PASCO COGEN SCH. - D 3,780.0 0.0 0.0 3,780.0 3.913 3.913 147,910.00 3,780.0 147,910.00 TOTAL 3,780.0 0.0 0.0 3.913 3.913 Jun-18 PASCO COGEN SCH - D 7,490.0 0.0 0.0 7,490.0 3.850 3.850 288,370.00 TOTAL 7,490.0 0.0 0.0 7,490.0 3.850 3.850 288,370.00 Jul-18 PASCO COGEN SCH. - D 10,130.0 0.0 0.0 10,130.0 3.860 3.860 391,020.00 10.130.0 391.020.00 TOTAL 0.0 0.0 10.130.0 3.860 3.860 Aug-18 PASCO COGEN SCH. - D 8,010.0 0.0 0.0 8,010.0 3.858 3.858 309,040.00 3.858 309,040.00 TOTAL 0.0 8,010.0 0.0 8,010.0 3.858 Sep-18 PASCO COGEN SCH. - D 6,670.0 6,670.0 3.819 3.819 254,740.00 0.0 0.0 254,740.00 TOTAL 0.0 6,670.0 3.819 3.819 6.670.0 0.0 Oct-18 PASCO COGEN SCH. - D 9,430.0 9,430.0 0.0 0.0 3.846 3.846 362,720.00 TOTAL 0.0 362,720.00 9,430.0 0.0 9,430.0 3.846 3.846 Nov-18 PASCO COGEN 10,470.0 10,470.0 4.047 423,770.00 SCH. - D 0.0 0.0 4.047 TOTAL 10.470.0 0.0 0.0 10.470.0 4.047 4.047 423,770.00 Dec-18 PASCO COGEN SCH. - D 3,190.0 0.0 0.0 3,190.0 4.313 4.313 137,590.00 TOTAL 3,190.0 0.0 0.0 3,190.0 4.313 4.313 137,590.00 TOTAL PASCO COGEN Jan-18 SCH. - D 67,450.0 0.0 0.0 67,450.0 3.975 3.975 2,681,380.00 THRU TOTAL 67,450.0 0.0 0.0 67,450.0 3.975 3.975 2,681,380.00

Dec-18

TAMPA ELECTRIC COMPANY ENERGY PAYMENT TO QUALIFYING FACILITIES ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

SCHEDULE E8

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
MONTH	PURCHASED FROM	TYPE & SCHEDULE	TOTAL MWH PURCHASED	MWH FOR OTHER UTILITIES	MWH FOR INTERRUP- TIBLE	MWH FOR FIRM	CENTS (A) FUEL COST	/KWH (B) TOTAL COST	TOTAL \$ FOR FUEL ADJUST- MENT
Jan-18	VARIOUS	CO-GEN.							
	TOTAL	AS AVAIL.	7,680.0 7,680.0	0.0 0.0	0.0	7,680.0 7,680.0	3.695 3.695	3.695 3.695	283,760. 283,760.
Feb-18	VARIOUS	CO-GEN. AS AVAIL.	7,280.0	0.0	0.0	7,280.0	3.168	3.168	230,640
	TOTAL	AU AVAIL.	7,280.0	0.0	0.0	7,280.0	3.168	3.168	230,640
Mar-18	VARIOUS	CO-GEN. AS AVAIL.	7,600.0	0.0	0.0	7,600.0	2.444	2.444	185,740
	TOTAL		7,600.0	0.0	0.0	7,600.0	2.444	2.444	185,740
Apr-18	VARIOUS	CO-GEN. AS AVAIL.	7,480.0	0.0	0.0	7,480.0	2.117	2.117	158,380
	TOTAL		7,480.0	0.0	0.0	7,480.0	2.117	2.117	158,380
May-18	VARIOUS	CO-GEN. AS AVAIL.	7,540.0	0.0	0.0	7,540.0	2.910	2.910	219,420
	TOTAL		7,540.0	0.0	0.0	7,540.0	2.910	2.910	219,420
Jun-18	VARIOUS	CO-GEN. AS AVAIL.	7,500.0	0.0	0.0	7,500.0	2.451	2.451	183,820
	TOTAL		7,500.0	0.0	0.0	7,500.0	2.451	2.451	183,820
Jul-18	VARIOUS	CO-GEN. AS AVAIL.	7,460.0	0.0	0.0	7,460.0	2.962	2.962	220,950
	TOTAL		7,460.0	0.0	0.0	7,460.0	2.962	2.962	220,950
Aug-18	VARIOUS	CO-GEN. AS AVAIL.	7,530.0	0.0	0.0	7,530.0	3.447	3.447	259,590
	TOTAL		7,530.0	0.0	0.0	7,530.0	3.447	3.447	259,590
Sep-18	VARIOUS	CO-GEN. AS AVAIL.	7,520.0	0.0	0.0	7,520.0	2.459	2.459	184,910
	TOTAL		7,520.0	0.0	0.0	7,520.0	2.459	2.459	184,910
Oct-18	VARIOUS	CO-GEN. AS AVAIL.	7,550.0	0.0	0.0	7,550.0	3.200	3.200	241,610
	TOTAL		7,550.0	0.0	0.0	7,550.0	3.200	3.200	241,610
Nov-18	VARIOUS	CO-GEN. AS AVAIL.	7,400.0	0.0	0.0	7,400.0	2.984	2.984	220,790
	TOTAL		7,400.0	0.0	0.0	7,400.0	2.984	2.984	220,790
Dec-18	VARIOUS	CO-GEN. AS AVAIL.	7,570.0	0.0	0.0	7,570.0	2.507	2.507	189,800
	TOTAL		7,570.0	0.0	0.0	7,570.0	2.507	2.507	189,800
DTAL an-18	VARIOUS	CO-GEN. AS AVAIL.	90,110.0	0.0	0.0	90,110.0	2.863	2.863	2,579,410
HRU ∋c-18	TOTAL		90,110.0	0.0	0.0	90,110.0	2.863	2.863	2,579,410

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)		(10)
	PURCHASED	TYPE &	TOTAL MWH	MWH FOR INTERRUP-	MWH FOR	TRANSACT. COST	TOTAL \$	COST IF GEN (A) CENTS	(B)	FUEL SAVINGS
MONTH	FROM	SCHEDULE	PURCHASED	TIBLE	FIRM	cents/KWH	ADJUSTMENT	PER KWH	(\$000)	(9B)-(8)
Jan-18	VARIOUS	ECONOMY	27,290.0	0.0	27,290.0	2.885	787,240.00	3.054	833,340.00	46,100.00
Feb-18	VARIOUS	ECONOMY	24,200.0	0.0	24,200.0	2.977	720,460.00	3.180	769,570.00	49,110.00
Mar-18	VARIOUS	ECONOMY	25,130.0	0.0	25,130.0	3.438	864,050.00	4.217	1,059,830.00	195,780.00
Apr-18	VARIOUS	ECONOMY	27,320.0	0.0	27,320.0	3.407	930,880.00	3.627	990,930.00	60,050.00
May-18	VARIOUS	ECONOMY	26,610.0	0.0	26,610.0	2.746	730,820.00	3.829	1,018,880.00	288,060.00
Jun-18	VARIOUS	ECONOMY	25,170.0	0.0	25,170.0	2.811	707,410.00	7.407	1,864,230.00	1,156,820.00
Jul-18	VARIOUS	ECONOMY	26,600.0	0.0	26,600.0	3.488	927,720.00	7.326	1,948,730.00	1,021,010.00
Aug-18	VARIOUS	ECONOMY	27,400.0	0.0	27,400.0	3.517	963,660.00	6.376	1,746,930.00	783,270.00
Sep-18	VARIOUS	ECONOMY	27,150.0	0.0	27,150.0	3.306	897,480.00	6.111	1,659,150.00	761,670.00
Oct-18	VARIOUS	ECONOMY	27,710.0	0.0	27,710.0	3.142	870,580.00	5.010	1,388,330.00	517,750.00
Nov-18	VARIOUS	ECONOMY	21,320.0	0.0	21,320.0	2.794	595,610.00	4.528	965,290.00	369,680.00
Dec-18	VARIOUS	ECONOMY	27,380.0	0.0	27,380.0	2.595	710,560.00	4.280	1,171,820.00	461,260.00
TOTAL	VARIOUS	ECONOMY	313,280.0	0.0	313,280.0	3.098	9,706,470.00	4.921	15,417,030.00	5,710,560.00

TAMPA ELECTRIC COMPANY ECONOMY ENERGY PURCHASES ESTIMATED FOR THE PERIOD: JANUARY 2018 THROUGH DECEMBER 2018

SCHEDULE E9

TAMPA ELECTRIC COMPANY RESIDENTIAL BILL COMPARISON FOR MONTHLY USAGE OF 1,000 KWH

	Current	Projected	Differer	
	Jan 17 - Dec 17	Jan 18 - Dec 18	\$	%
Base Rate Revenue	68.62	68.62	0.00	0.0%
Fuel Recovery Revenue	26.42	28.18	1.76	6.7%
Conservation Revenue	2.25	2.46	0.21	9.3%
Capacity Revenue	0.88	0.66	(0.22)	-25.0%
Environmental Revenue	3.89	3.43	(0.46)	-11.8%
Florida Gross Receipts Tax Revenue	2.62	2.65	0.03	1.1%
TOTAL REVENUE	\$104.68	\$106.00	\$1.32	1.3%

DOCKET NO. 20170001-EI EXHIBIT NO. PAR-3 DOCUMENT NO. 2, PAGE 30 OF 30

TAMPA ELECTRIC COMPANY GENERATING SYSTEM COMPARATIVE DATA BY FUEL TYPE PERIOD: JANUARY THROUGH DECEMBER

SCHEDULE H1

						DIFFERENCE (%)	
	ACTUAL 2015	ACTUAL 2016	ACT/EST 2017	EST 2018	2016-2015	2017-2016	2018-2017
FUEL COST OF SYSTEM N	T GENERATION (5)					
1 HEAVY OIL ^{1}	0	0	0	0	0.0%	0.0%	0.0%
2 LIGHT OIL ^{1}	100,149	1,889,022	341,655	688,409	1786.2%	-81.9%	101.5%
3 COAL	315,575,618	272,390,442	208,603,850	170,606,860	-13.7%		-18.2%
4 NATURAL GAS	331,614,300	302,563,572	421,089,560	435,698,316	-8.8%	39.2%	3.5%
5 NUCLEAR	0	0	0	0	0.0%		0.0%
6 OTHER	0	0	0	0	0.0%		0.0%
7 TOTAL (\$)	647,290,067	576,843,036	630,035,065	606,993,585	-10.9%	9.2%	-3.7%
SYSTEM NET GENERATION	I (MWH)						
8 HEAVY OIL ^{1}	0	0	0	0	0.0%	0.0%	0.0%
9 LIGHT OIL ^{1}	264	182	1,460	2,920	-31.1%	702.2%	100.0%
10 COAL	9,118,709	7,754,354	6,761,453	5,456,970	-15.0%	-12.8%	-19.3%
11 NATURAL GAS	9,919,007	9,865,453	13,164,823	14,465,160	-0.5%		9.9%
12 NUCLEAR	0	0	0	0	0.0%		0.0%
13 OTHER 14 TOTAL (MWH)	0 19,037,980	3,316 17,623,305	44,871 19,972,607	142,110 20,067,160	0.0% -7.4%		216.7% 0.5%
	13,037,300	17,020,000	13,372,007	20,007,100	-7.470	13.376	0.57
UNITS OF FUEL BURNED							
15 HEAVY OIL (BBL) ^{1}	0	0	0	0	0.0%		0.0%
16 LIGHT OIL (BBL) ^{1}	777	532	2,680	5,400	-31.5%		101.5%
17 COAL (TON)	4,016,804	3,397,515	2,934,516	2,338,650	-15.4%		-20.3%
18 NATURAL GAS (MCF) 19 NUCLEAR (MMBTU)	74,846,827 0	77,886,370 0	95,307,609 0	104,470,630 0	4.1% 0.0%		9.6% 0.0%
19 NUCLEAR (MMBTU) 20 OTHER	0	0	0	0	0.0%		0.0%
	0	5	Ū	Ŭ	0.070	0.070	0.070
BTUS BURNED (MMBTU)							
21 HEAVY OIL ^{1}	0	0	0	0	0.0%		0.0%
22 LIGHT OIL ^{1}	4,484	3,071	15,480	31,340	-31.5%		102.5%
23 COAL	96,061,582	82,203,563	71,335,834	56,478,090	-14.4%		-20.8%
24 NATURAL GAS	76,630,631	79,678,589	97,552,965	107,036,360	4.0%		9.7%
25 NUCLEAR 26 OTHER	0	0	0 0	0	0.0% 0.0%		0.0%
27 TOTAL (MMBTU)	172,696,697	161,885,222	168,904,278	163,545,790	-6.3%		-3.2%
GENERATION MIX (% MWH)							
28 HEAVY OIL ^{1}	0.00	0.00	0.00	0.00	0.0%		0.0%
29 LIGHT OIL ^{1}	0.00	0.00	0.01	0.01	0.0%		0.0%
30 COAL	47.90	44.00	33.86	27.20	-8.1%		-19.7%
31 NATURAL GAS 32 NUCLEAR	52.10 0.00	55.98 0.00	65.91 0.00	72.08 0.00	7.4% 0.0%		9.4% 0.0%
33 OTHER	0.00	0.00	0.00	0.00	0.0%		222.7%
34 TOTAL (%)	100.00	100.00	100.00	100.00	0.0%		0.0%
	0.00	0.00	0.00	0.00	0.0%	0.00/	0.00
35 HEAVY OIL (\$/BBL) ^{1}	0.00	0.00	0.00	0.00	0.0%		0.0%
36 LIGHT OIL (\$/BBL) ^{1}	128.89	3,550.79	127.48	127.48	2654.9%		0.0%
37 COAL (\$/TON) 38 NATURAL GAS (\$/MCF)	78.56 4.43	80.17 3.88	71.09 4.42	72.95 4.17	2.0% -12.4%		2.6% -5.7%
39 NUCLEAR (\$/MMBTU)	0.00	0.00	0.00	0.00	0.0%		-3.7 /0
40 OTHER	0.00	0.00	0.00	0.00	0.0%		0.0%
FUEL COST PER MMBTU (\$,	0.00		0.00	0.00	0.00/	0.00
41 HEAVY OIL ^{1} 42 LIGHT OIL ^{1}	0.00	0.00	0.00	0.00	0.0%		0.0%
42 LIGHTOIL ⁶⁹ 43 COAL	22.34	615.12 3 31	22.07	21.97 3.02	2653.4% 0.6%	-96.4%	-0.5% 3.4%
43 COAL 44 NATURAL GAS	3.29 4.33	3.31 3.80	2.92 4.32	3.02 4.07	-12.2%		-5.8%
45 NUCLEAR	0.00	0.00	0.00	0.00	0.0%		-5.876
46 OTHER	0.00	0.00	0.00	0.00	0.0%		0.0%
47 TOTAL (\$/MMBTU)	3.75	3.56	3.73	3.71	-5.1%	4.8%	-0.5%
BTU BURNED PER KWH (B							
48 HEAVY OIL ^{1}	IU/КWH) 0	0	0	0	0.00/	0.00/	0.0%
48 HEAVY OIL (7 49 LIGHT OIL ^{1}					0.0%		
49 LIGHT OIL ¹¹⁷ 50 COAL	16,984 10,535	16,874 10,601	10,603 10,550	10,733 10,350	-0.6% 0.6%		1.2% -1.9%
51 NATURAL GAS	7,726	8,077	7,410	7,400	4.5%		-0.1%
52 NUCLEAR	0	0,077	0	0	0.0%		0.0%
53 OTHER	0	0	0	0	0.0%	0.0%	0.0%
54 TOTAL (BTU/KWH)	9,071	9,186	8,457	8,150	1.3%	-7.9%	-3.6%
GENERATED FUEL COST P		VH)					
55 HEAVY OIL ^{1}	0.00	vп) 0.00	0.00	0.00	0.0%	0.0%	0.0%
56 LIGHT OIL ^{1}	37.94	1,037.92	23.40	23.58	2635.7%		0.8%
57 COAL	37.94	3.51	3.09	3.13	2035.7%		1.3%
58 NATURAL GAS	3.34	3.07	3.20	3.01	-8.1%		-5.9%
DO NATURAL GAS							
	0.00	0.00	0.00	0.00	0.0%	0.0%	0.0%
50 NUCLEAR 60 OTHER 61 TOTAL (cents/KWH)	0.00 0.00 3.40	0.00 0.00 3.27	0.00 0.00 3.15	0.00 0.00 3.02	0.0% 0.0% - 3.8%	0.0%	0.0% 0.0% -4.1%

(1) DISTILLATE (BBLS, MWH & \$) USED FOR FIRING, HOT STANDBY, ETC. IS INCLUDED IN FOSSIL STEAM PLANTS.

DOCKET NO. 20170001-EI FAC 2018 PROJECTION FILING EXHIBIT NO. PAR-3 DOCUMENT NO. 3

EXHIBIT TO THE TESTIMONY OF

PENELOPE A. RUSK

DOCUMENT NO. 3

LEVELIZED AND TIERED FUEL RATE

JANUARY 2018 - DECEMBER 2018

Tampa Electric Company Comparison of Levelized and Tiered Fuel Revenues For the Period Janury 2018 through December 2018

	Annual Units MWH	Levelized Fuel Rate Cents/kWh	Annual Fuel Revenues \$	Tiered Fuel Rates Cents/kWh	Annual Fuel Revenues \$
Residential Excluding TOU:					
TIER I (Up to 1,000) kWh	6,288,857	3.132	196,967,001	2.818	177,219,990
TIER II (Over 1,000) kWh	2,878,573	3.132	90,156,907	3.818	109,903,918
Total	9,167,430		287,123,908		287,123,908

DOCKET NO. 20170001-EI FAC 2018 PROJECTION FILING EXHIBIT NO. PAR-3 DOCUMENT NO. 4

EXHIBIT TO THE TESTIMONY OF

PENELOPE A. RUSK

DOCUMENT NO. 4

CAPITAL PROJECTS APPROVED FOR

FUEL CLAUSE RECOVERY

JANUARY 2018 - DECEMBER 2018

POLK UNIT 1 IGNITION CONVERSION SCHEDULE OF DEPRECIATION AND RETURN FOR THE PERIOD JANUARY 2018 THROUGH DECEMBER 2018

	PROJECTED JANUARY	PROJECTED FEBRUARY	PROJECTED MARCH	PROJECTED APRIL	PROJECTED MAY	PROJECTED JUNE	PROJECTED JULY	PROJECTED AUGUST	PROJECTED SEPTEMBER	PROJECTED OCTOBER	PROJECTED NOVEMBER	PROJECTED DECEMBER	TOTAL
1 BEGINNING BALANCE	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951
2 ADD INVESTMENT	-	-	-	-	-	-	-	-	-	-	-	-	-
3 LESS RETIREMENTS	-	-	-	-	-	-	-	-	-	-	-	-	-
4 ENDING BALANCE	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951
5													
7 AVERAGE BALANCE	\$16,143,951	\$16.143.951	\$16.143.951	\$16,143,951	\$16.143.951	\$16,143,951	\$16.143.951	\$16.143.951	\$16.143.951	\$16.143.951	\$16.143.951	\$16.143.951	
8 DEPRECIATION RATE	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	0.000000%	0.000000%	0.000000%	0.000000%	0.000000%	0.000000%	
9 DEPRECIATION EXPENSE	\$269,225	\$269,225	\$269,225	\$269,225	\$269,225	\$269,225	-	-	-	-	-	-	\$1,615,350
10 LESS RETIREMENTS	-	-	-	-	-	-	-	-	-	-	-	-	-
11 BEGINNING BALANCE DEPRECIATION	\$14,528,600	\$14,797,825	\$15,067,050	\$15,336,276	\$15,605,501	\$15,874,726	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$14,528,600
12 ENDING BALANCE DEPRECIATION 13	\$14,797,825	\$15,067,050	\$15,336,276	\$15,605,501	\$15,874,726	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951	\$16,143,951
13													
15 ENDING NET INVESTMENT	\$1,346,125	\$1,076,900	\$807,675	\$538,450	\$269,225	-	-	-	-	-	-	-	s -
16													
17													
18 AVERAGE INVESTMENT	\$1,480,738	\$1,211,513	\$942,288	\$673,063	\$403,838	\$134,613	-	-	-	-	-	-	
19 ALLOWED EQUITY RETURN	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.00000%	.00000%	.00000%	.00000%	.00000%	.00000%	A 17.000
20 EQUITY COMPONENT AFTER-TAX 21 CONVERSION TO PRE-TAX	\$5,295 1.63220	\$4,332 1,63220	\$3,370 1.63220	\$2,407 1.63220	\$1,444 1.63220	\$481 1.63220	0.00000	0.00000	0.00000	0.00000	- 0.00000	0.00000	\$17,329
22 EQUITY COMPONENT PRE-TAX	\$8.642	\$7.071	\$5.501	\$3,929	\$2,357	\$785	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	\$28,285
23	\$0,01 <u>2</u>	¢1,011	\$0,001	\$0,020	<i>\$2,001</i>	¢.00							\$20,200
24 ALLOWED DEBT RETURN	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.00000%	.00000%	.00000%	.00000%	.00000%	.00000%	
25 DEBT COMPONENT	\$2,216	\$1,813	\$1,410	\$1,007	\$604	\$201	-	-	-	-	-	-	\$7,251
	6 40.050			* 4 ***		* ***							* 05 500
27 TOTAL RETURN REQUIREMENTS	\$10,858	\$8,884	\$6,911	\$4,936	\$2,961	\$986	-	-					\$35,536
20 29 TOTAL DEPRECIATION & RETURN	\$280,083	\$278,109	\$276,136	\$274,161	\$272,186	\$270,211	-	-	-	-	-	-	\$1,650,886
30													
31 ESTIMATED FUEL SAVINGS	\$0	\$920,458	\$2,245,737	\$2,617,640	\$1,660,877	\$1,786,724	\$547,726	\$776,952	\$0	\$2,964,752	\$2,305,888	\$0	\$15,826,754
32 TOTAL DEPRECIATION & RETURN 33 NET BENEFIT (COST) TO RATEPAYER	\$280,083	\$278,109	\$276,136	\$274,161	\$272,186	\$270,211	-	-	-	-	-		\$1,650,886
	(\$280,083)	\$642,349	\$1,969,601	\$2,343,479	\$1,388,691	\$1,516,513	547,726	776,952		2,964,752	2,305,888	-	\$14,175,868
34													

35 DEPRECIATION EXPENSE IS CALCULATED BASED UPON A FIVE YEAR PERIOD. 36 RETURN ON AVERAGE INVESTMENT IS CALCULATED FOR JANUARY - JUNE USING AN ANNUAL RATE OF 8.7999% (EQUITY 7.0040%, DEBT 1.7959%). RATES ARE BASED ON THE MAY 2017 SURVEILLANCE REPORT

PER THE WACC STIPULATION & SETTLEMENT AGREEMENT (JULY 17, 2012).

37 RETURN ON AVERAGE INVESTMENT IS CALCULATED FOR JULY - DECEMBER USING AN ANNUAL RATE OF 8.7999% (EQUITY 7.0040%, DEBT 1.7959%). RATES ARE BASED ON THE MAY 2017 SURVEILLANCE REPORT

PER THE WACC STIPULATION & SETTLEMENT AGREEMENT (ULY 17, 2012). 38 RETURN REQUIREMENT IS CALCULATED BASED UPON A COMBINED STATUTORY RATE OF 38.575% 39 ZERO PROJECTED GENERATION RESULTS IN ZERO ESTIMATED FUEL SAVINGS FOR THAT MONTH.

BIG BEND UNITS 1-4 IGNITERS CONVERSION TO NATURAL GAS SCHEDULE OF DEPRECIATION AND RETURN FOR THE PERIOD JANUARY 2018 THROUGH DECEMBER 2018

	PROJECTED JANUARY	PROJECTED FEBRUARY	PROJECTED MARCH	PROJECTED APRIL	PROJECTED MAY	PROJECTED JUNE	PROJECTED JULY	PROJECTED AUGUST	PROJECTED SEPTEMBER	PROJECTED OCTOBER	PROJECTED NOVEMBER	PROJECTED DECEMBER	TOTAL
1 BEGINNING BALANCE	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348
2 ADD INVESTMENT: Big Bend Unit 3 (Jan 2015)	-	-	-	-	-	-	-	-	-	-	-	-	-
2a ADD INVESTMENT: Big Bend Unit 4 (May 2015)	-	-	-	-	-	-	-	-	-	-	-	-	-
2b ADD INVESTMENT: Big Bend Unit 2 (June 2015)	-	-	-	-	-	-	-	-	-	-	-	-	-
2c ADD INVESTMENT: Big Bend Unit 1 (November 2015)	-	-	-	-	-	-	-	-	-	-	-	-	-
3 LESS RETIREMENTS 4 ENDING BALANCE	\$20.910.348	- \$20,910,348	- \$20,910,348	- \$20,910,348	- \$20,910,348	- \$20,910,348	- \$20,910,348	\$20,910,348	- \$20,910,348	- \$20,910,348	- \$20,910,348	- \$20,910,348	\$20,910,348
4 ENDING BALANCE	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348
6													
7 AVERAGE BALANCE	\$20.910.348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	\$20,910,348	
8 DEPRECIATION RATE	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	1.666667%	
9 DEPRECIATION EXPENSE	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$348,506	\$4,182,070
10 LESS RETIREMENTS	-	-	-	-	-	-	-	-	-	-	-	-	-
11 BEGINNING BALANCE DEPRECIATION	\$10,913,710	\$11,262,216	\$11,610,722	\$11,959,228	\$12,307,734	\$12,656,239	\$13,004,745	\$13,353,251	\$13,701,757	\$14,050,263	\$14,398,768	\$14,747,274	\$10,913,710
12 ENDING BALANCE DEPRECIATION	\$11,262,216	\$11,610,722	\$11,959,228	\$12,307,734	\$12,656,239	\$13,004,745	\$13,353,251	\$13,701,757	\$14,050,263	\$14,398,768	\$14,747,274	\$15,095,780	\$15,095,780
13													
14 15 ENDING NET INVESTMENT		** *** ***	** *** ***	AD 000 015			A7 557 007		** *** ***		AA 400 074	AF 044 500	AF 044 500
	\$9,648,132	\$9,299,626	\$8,951,120	\$8,602,615	\$8,254,109	\$7,905,603	\$7,557,097	\$7,208,591	\$6,860,086	\$6,511,580	\$6,163,074	\$5,814,568	\$5,814,568
16													
17 18 AVERAGE INVESTMENT	\$9.822.385	\$9.473.879	\$9,125,373	\$8,776,867	\$8,428,362	\$8.079.856	\$7,731,350	\$7,382,844	\$7.034.338	\$6.685.833	\$6.337.327	\$5.988.821	
19 ALLOWED EQUITY RETURN	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	.35760%	
20 EQUITY COMPONENT AFTER-TAX	\$35,125	\$33,878	\$32,632	\$31,386	\$30,140	\$28,893	\$27,647	\$26,401	\$25,155	\$23,908	\$22,662	\$21,416	\$339,243
21 CONVERSION TO PRE-TAX	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	1.63220	
22 EQUITY COMPONENT PRE-TAX	\$57,331	\$55,296	\$53,262	\$51,228	\$49,195	\$47,159	\$45,125	\$43,092	\$41,058	\$39,023	\$36,989	\$34,955	\$553,713
23													
24 ALLOWED DEBT RETURN	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	.14966%	
25 DEBT COMPONENT	\$14,700	\$14,179	\$13,657	\$13,136	\$12,614	\$12,092	\$11,571	\$11,049	\$10,528	\$10,006	\$9,485	\$8,963	\$141,980
26													
27 TOTAL RETURN REQUIREMENTS	\$72,031	\$69.475	\$66,919	\$64,364	\$61,809	\$59,251	\$56,696	\$54,141	\$51,586	\$49,029	\$46,474	\$43,918	\$695,693
28 PRIOR MONTH TRUE-UP	\$72,031	\$69,475	\$66,919	\$04,304	\$01,809	\$09,20 I	\$20,090	\$54,141	\$21,280	\$49,029	\$40,474	\$43,918	\$095,693
29 TOTAL DEPRECIATION &													
RETURN	\$420,537	\$417.981	\$415,425	\$412,870	\$410,315	\$407,757	\$405,202	\$402,647	\$400,092	\$397,535	\$394,980	\$392.426	\$4,877,765
30	+ -= +,+ = +.	÷,••	ţ,	÷,	+,	÷,	+	+,	+,	+++++		+,	<i></i>
31 ESTIMATED FUEL SAVINGS 32 TOTAL DEPRECIATION &	\$172,646	\$167,237	\$752,510	\$369,412	\$460,850	\$643,236	\$775,888	\$416,697	\$520,110	\$730,802	\$339,766	\$364,317	\$5,713,468
RETURN 33 NET BENEFIT (COST) TO	\$420,537	\$417,981	\$415,425	\$412,870	\$410,315	\$407,757	\$405,202	\$402,647	\$400,092	\$397,535	\$394,980	\$392,426	\$4,877,765
RATEPAYER	(\$247.891)	(\$250,744)	\$337.085	(\$43,458)	\$50,535	\$235.479	\$370.686	\$14.050	\$120.019	\$333.267	(\$55.214)	(\$28,109)	\$835,703
	(+=,501)	(+===,: 11)	÷===,500	(+, .00)	÷==,000		÷:.:,500	÷,000	÷,510	+,=01	(++++,=++)	(+==, . 50)	÷===;. = 5

34 DEPRECIATION EXPENSE IS CALCULATED BASED UPON A FIVE YEAR PERIOD. 35 RETURN ON AVERAGE INVESTMENT IS CALCULATED FOR JANUARY - JUNE USING AN ANNUAL RATE OF 8.7999% (EQUITY 7.0040%, DEBT 1.7959%). RATES ARE BASED ON THE MAY 2017 SURVEILLANCE REPORT

SS RETURN ON AVERAGE INVESTIGENT SCALCULATED FOR JANDA'S JUNE OSING AN ANNUAL RATE OF 8.7999% (EQUITY 7.0040%, DEBT 1.7999%). RATES ARE BASED ON THE WAY 2017 SURVEILLANCE REPORT PER THE WACC STIPULATION & SETTLEMENT AGREEMENT (JULY 17, 2012). 36 RETURN ON AVERAGE INVESTMENT IS CALCULATED FOR JULY - DECEMBER USING AN ANNUAL RATE OF 8.7999% (EQUITY 7.0040%, DEBT 1.7959%). RATES ARE BASED ON THE MAY 2017 SURVEILLANCE REPORT PER THE WACC STIPULATION & SETTLEMENT AGREEMENT (JULY 17, 2012). 37 RETURN REQUIREMENT IS CALCULATED FOR JULY - DECEMBER USING AN ANNUAL RATE OF 8.759%

38 ZERO PROJECTED GENERATION RESULTS IN ZERO ESTIMATED FUEL SAVINGS FOR THAT MONTH.

Tampa Electric Company Calculation of Revenue Requirement Rate of Return For Cost Recovery Clauses January 2018 to December 2018

Janu	ary 20	18 to Decembe	er 2018			
		(1)	(2)	(3)	(4)	
	L.	· · /	(2)	(3)	(4)	
	Jurisdictional Rate Base Actual May 2017				Weighted	
				Cost	Cost	
			Datia	Rate		
	Сар	ital Structure	Ratio %	Kate %	Rate %	
Lang Taun Daht	¢	(\$000)	33.14%	5.12%	1.6968%	
Long Term Debt Short Term Debt	\$	1,611,554	33.14% 2.44%	5.12% 1.55%		
Preferred Stock	\$ \$	118,708 -	2.44%	0.00%	0.0378% 0.0000%	
Customer Deposits	ъ \$	_ 101,181	2.08%	2.55%	0.0531%	
Common Equity	\$	2,031,177	41.77%	10.25%	4.2815%	
Accum. Deferred Inc. Taxes & Zero Cost ITC's	φ \$	988,845	20.34%	0.00%	0.0000%	
Deferred ITC - Weighted Cost		11,216	<u>0.23%</u>	0.00 <i>%</i> 7.78%	0.0179%	
Deletted TIC - Weighted Cost	\$	11,210	0.2370	1.10%	0.017970	
Total	<u>\$</u>	4,862,681	<u>100.00%</u>		<u>6.09%</u>	
ITC split between Debt and Equity:						
Long Term Debt	\$	1,611,554	1	ong Term D	eht	42.84%
Short Term Debt	Ψ	118,708		Short Term D		3.16%
Equity - Preferred		0		Equity - Prefe		0.00%
Equity - Common		<u>2,031,177</u>		Equity - Com		<u>54.00%</u>
Equity Common		2,001,111	-	iquity - Oom	non	04.0070
Total	<u>\$</u>	3,761,439		Total		<u>100.00%</u>
Deferred ITC - Weighted Cost: Debt = 0.0179% * 46.00% Equity = 0.0179% * 54.00% Weighted Cost		0.0082% <u>0.0097%</u> <u>0.0179%</u>				
Total Equity Cost Rate:						
Preferred Stock		0.0000%				
Common Equity		4.2815%				
Deferred ITC - Weighted Cost		<u>0.0097%</u>				
		4.2912%				
Times Tax Multiplier		1.632200				
Total Equity Component		<u>7.0040%</u>				
Total Daht Cost Bata						
Total Debt Cost Rate:		1.6968%				
Long Term Debt						
Short Term Debt		0.0378%				
Customer Deposits		0.0531%				
Deferred ITC - Weighted Cost		0.0082%				
Total Debt Component		<u>1.7959%</u>				
		8.7999%				

Notes:

Column (1) - Per WACC Stipulation & Settlement Agreement Dated July 17, 2012 and 2013 Base Rates Settlement Agreement Dated September 6, 2013. Column (2) - Column (1) / Total Column (1)

Column (3) - Per WACC Stipulation & Settlement Agreement Dated July 17, 2012 and 2013 Base Rates Settlement Agreement Dated September 6, 2013. Column (4) - Column (2) x Column (3)

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 20170001-EI FUEL & PURCHASED POWER COST RECOVERY AND CAPACITY COST RECOVERY

GENERATING PERFORMANCE INCENTIVE FACTOR PROJECTIONS

JANUARY 2018 THROUGH DECEMBER 2018

TESTIMONY AND EXHIBIT

OF

BRIAN S. BUCKLEY

FILED: AUGUST 24, 2017

TAMPA ELECTRIC COMPANY DOCKET NO. 20170001-EI FILED: 08/24/2017

	I	
1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		BRIAN S. BUCKLEY
5		
6	Q.	Please state your name, address, occupation and employer.
7		
8	A.	My name is Brian S. Buckley. My business address is 702
9		N. Franklin Street, Tampa, Florida 33602. I am employed
10		by Tampa Electric Company ("Tampa Electric" or "company")
11		in the position of Manager, Unit Commitment.
12		
13	Q.	Have you previously filed testimony in Docket No.
14		20170001-EI?
15		
16	A.	Yes, I submitted direct testimony on March 15, 2017.
17		
18	Q.	Has your job description, education, or professional
19		experience changed since then?
20		
21	A.	No, it has not.
22		
23	Q.	What is the purpose of your testimony?
24		
25	A.	My testimony describes Tampa Electric's methodology for

determining the various factors required to compute the 1 Generating Performance Incentive Factor 2 ("GPIF") as 3 ordered by the Commission. 4 5 Q. Have you prepared an exhibit to support your direct testimony? 6 7 Yes. Exhibit BSB-2, consisting of two documents, was 8 Α. prepared under my direction and supervision. Document No. 9 1 contains the GPIF schedules. Document No. 2 is a summary 10 11 of the GPIF targets for the 2018 period. 12 Which generating units on Tampa Electric's system are 13 Q. included in the determination of the GPIF? 14 15 16 Α. Three of the company's coal-fired units, one integrated gasification combined cycle unit and three natural gas 17 combined cycle units are included. These are Big Bend 18 Units 2 through 4, Polk Units 1 and 2, and Bayside Units 19 1 and 2. 20 21 Do the exhibits you prepared comply with the Commission-22 Q. 23 approved GPIF methodology? 24 Yes. In accordance with the GPIF Manual, the GPIF units 25 Α.

selected represent no less than 80 percent of 1 the estimated system net generation. The units Tampa Electric 2 3 proposes to use for the period January 2018 through December 2018 represent the top 98 percent of the total 4 5 forecasted system net generation for this period. Polk Unit 2 combined cycle entered commercial service in 6 January 2017 and consists of 36 percent of the total 7 forecasted system net generation for 2018. It is included 8 in the GPIF calculation to meet the base load generation 9 minimum. The company used one year of Polk Unit 2 combined 10 11 cycle and three years of simple cycle historical operational data on which to base the unit targets. 12 13 14 To account for the concerns presented in the testimony of 15

Commission Staff witness Sidney W. Matlock during the 2005 fuel hearing, Tampa Electric removes outliers from the calculation of the GPIF targets. The methodology was approved by the Commission in Order No. PSC-2006-1057-FOF-EI issued in Docket No. 20060001-EI on December 22, 2006.

Q. Did Tampa Electric identify any outages as outliers?
A. Yes. A Big Bend Unit 4 forced outage was identified as an outlying outage; therefore, the associated forced outage

1		hours were removed from the study.
2		
3	Q.	Did Tampa Electric make any other adjustments?
4		
5	A.	Yes. As allowed per Section 4.3 of the GPIF Implementation
6		Manual, the Forced Outage and Maintenance Outage Factors
7		were adjusted to reflect recent unit performance and known
8		unit modifications or equipment changes. Big Bend Units
9		2 through 4 and Polk Unit 1 heat rates were adjusted to
10		reflect natural gas and coal co-firing operations.
11		
12	Q.	Please describe how Tampa Electric developed the various
13		factors associated with GPIF.
14		
15	A.	Targets were established for equivalent availability and
16		heat rate for each unit considered for the 2018 period.
17		A range of potential improvements and degradations were
18		determined for each of these metrics.
19		
20	Q.	How were the target values for unit availability
21		determined?
22		
23	A.	The Planned Outage Factor ("POF") and the Equivalent
24		Unplanned Outage Factor ("EUOF") were subtracted from 100
25		percent to determine the target Equivalent Availability
	l	4

Factor ("EAF"). The factors for each of the seven units 1 2 included within the GPIF are shown on page 5 of Document 3 No. 1. 4 5 To give an example for the 2018 period, the projected EUOF for Bayside Unit 1 is 2.7 percent, the POF is 14.8 6 percent. Therefore, the target EAF for Bayside Unit 1 7 equals 82.5 percent or: 8 9 100% - (2.7% + 14.8%) = 82.5%10 11 This is shown on Page 4, column 3 of Document No. 1. 12 13 Q. 14 How was the potential for unit availability improvement determined? 15 16 Maximum equivalent availability is derived using the 17 Α. following formula: 18 19 EAF $_{MAX} = 1 - [0.80 (EUOF_T) + 0.95 (POF_T)]$ 20 21 The factors included in the above equations are the same 22 23 factors that determine the target equivalent 24 availability. Calculating the maximum incentive points, a 20 percent reduction in EUOF, plus a five percent 25

reduction in the POF is necessary. Continuing with the 1 Bayside Unit 1 example: 2 3 EAF $_{MAX} = 1 - [0.80 (2.7\%) + 0.95 (14.8\%)] = 83.8\%$ 4 5 This is shown on page 4, column 4 of Document No. 1. 6 7 How was the potential for unit availability degradation 8 Q. determined? 9 10 potential for unit availability degradation 11 Α. The is significantly greater than the potential for unit 12 availability improvement. This concept was discussed 13 14 extensively during the development of the incentive. To incorporate this biased effect into the unit availability 15 16 tables, Tampa Electric uses a potential degradation range 17 equal to twice the potential improvement. Consequently, minimum equivalent availability is calculated using the 18 following formula: 19 20 EAF $_{MIN} = 1 - [1.40 (EUOF_T) + 1.10 (POF_T)]$ 21 22 Again, continuing using the Bayside Unit 1 example, 23 24 EAF MIN = 1 - [1.40 (2.7) + 1.10 (14.8)] = 80.0% 25

The equivalent availability maximum and minimum for the 1 other six units are computed in a similar manner. 2 3 How did Tampa Electric determine the Planned Outage, Q. 4 5 Maintenance Outage, and Forced Outage Factors? 6 The company's planned outages for January through 7 Α. December 2018 are shown on page 21 of Document No. 1. 8 Three GPIF units have a major outage of 28 days or greater 9 in 2018; therefore, three Critical Path Method diagrams 10 11 are provided. Planned Outage Factors are calculated for each unit. For example, Bayside Unit 1 is scheduled for 12 a planned outage from April 6, 2018 to April 17, 2018 and 13 14 October 18, 2018 to November 28, 2018. There are 1,297 planned outage hours scheduled for the 2018 period, with 15 a total of 8,760 hours during this 12-month period. 16 Consequently, the POF for Bayside Unit 1 is 14.8 percent 17 18 or: 19 20 1,297 x 100% = 14.8%8,760 21 22 23 The factor for each unit is shown on pages 5 and 14 through 20 of Document No. 1. Big Bend Unit 2 has a POF of 6.6 24 percent. Big Bend Unit 3 has a POF of 6.6 percent. Big 25

Bend Unit 4 has a POF of 6.6 percent. Polk Unit 1 has a 1 POF of 17.3 percent. Polk Unit 2 has a POF of 5.8 percent. 2 3 Bayside Unit 1 has a POF of 14.8 percent, and Bayside Unit 2 has a POF of 18.6 percent. 4 5 How did you determine the Forced Outage and Maintenance 6 0. Outage Factors for each unit? 7 8 factors based historical 9 Α. Projected are upon unit performance. For each unit, the three most recent July 10 11 through June annual periods formed the basis of the target development. Historical data and target values 12 are analyzed to assure applicability to current conditions of 13 14 operation. This provides assurance that any periods of 15 abnormal operations or recent trends having material 16 effect can be taken into consideration. These target factors are additive and result in a EUOF of 2.7 percent 17 for Bayside Unit 1. The EUOF of Bayside Unit 1 is verified 18 by the data shown on page 19, lines 3, 5, 10 and 11 of 19 Document No. 1 and calculated using the following formula: 20 21 $EUOF = (EFOH + EMOH) \times 100\%$ 22 23 ΡH Or 24 25 8

1	$EUOF = (99 + 135) \times 100\% = 2.7\%$
2	8,760
3	
4	Relative to Bayside Unit 1, the EUOF of 2.7 percent forms
5	the basis of the equivalent availability target
6	development as shown on pages 4 and 5 of Document No. 1.
7	
8	Big Bend Unit 2
9	The projected EUOF for this unit is 31.9 percent. The
10	unit will have two planned outages in 2018, and the POF
11	is 6.6 percent. Therefore, the target equivalent
12	availability for this unit is 61.5 percent.
13	
14	Big Bend Unit 3
15	The projected EUOF for this unit is 26.7 percent. The
16	unit will have two planned outages in 2018, and the POF
17	is 6.6 percent. Therefore, the target equivalent
18	availability for this unit is 66.7 percent.
19	
20	Big Bend Unit 4
21	The projected EUOF for this unit is 14.7 percent. The
22	unit will have two planned outages in 2018, and the POF
23	is 6.6 percent. Therefore, the target equivalent
24	availability for this unit is 78.7 percent.
25	
	9

1	Dolk	Unit 1							
	FOIR								
2		The projected EUOF for this unit is 8.3 percent. The unit							
3		will have two planned outages in 2018, and the POF is							
4		17.3 percent. Therefore, the target equivalent							
5		availability for this unit is 74.4 percent.							
6									
7	Polk	Unit 2							
8		The projected EUOF for this unit is 11.0 percent. The							
9		unit will have one planned outage in 2018, and the POF is							
10		5.8 percent. Therefore, the target equivalent							
11		availability for this unit is 83.2 percent.							
12									
13	Bays	ide Unit 1							
14		The projected EUOF for this unit is 2.7 percent. The unit							
15		will have two planned outages in 2018, and the POF is							
16		14.8 percent. Therefore, the target equivalent							
17		availability for this unit is 82.5 percent.							
18									
19	Bays	ide Unit 2							
20		The projected EUOF for this unit is 4.0 percent. The unit							
21		will have two planned outages in 2018, and the POF is							
22		18.6 percent. Therefore, the target equivalent							
23		availability for this unit is 77.3 percent.							
24									
25	Q.	Please summarize your testimony regarding EAF.							
		10							

1	A.	The GPIF system weighted EAF of 76.3 percent is shown on
2		page 5 of Document No. 1.
3		
4	Q.	Why are Forced and Maintenance Outage Factors adjusted
5		for planned outage hours?
6		
7	A.	The adjustment makes the factors more accurate and
8		comparable. A unit in a planned outage stage or reserve
9		shutdown stage cannot incur a forced or maintenance
10		outage. To demonstrate the effects of a planned outage,
11		note the Equivalent Unplanned Outage Rate and Equivalent
12		Unplanned Outage Factor for Bayside Unit 1 on page 19 of
13		Document No. 1. Except for the months of April, October
14		and November, the Equivalent Unplanned Outage Rate and
15		Equivalent Unplanned Outage Factor are equal. This is
16		because no planned outages are scheduled for these months.
17		During the months of April, October and November, the
18		Equivalent Unplanned Outage Rate exceeds the Equivalent
19		Unplanned Outage Factor due to the scheduled planned
20		outages. Therefore, the adjusted factors apply to the
21		period hours after the planned outage hours have been
22		extracted.
23		
24	Q.	Does this mean that both rate and factor data are used in

calculated data?

1	A.	Yes. Rates provide a proper and accurate method of								
2		determining unit metrics, which are subsequently								
3		converted to factors. Therefore,								
4										
5		EFOF + EMOF + POF + EAF = 100%								
6										
7		Since factors are additive, they are easier to work with								
8		and to understand.								
9										
10	Q.	Has Tampa Electric prepared the necessary heat rate data								
11		required for the determination of the GPIF?								
12										
13	A.	Yes. Target heat rates and ranges of potential operation								
14		have been developed as required and have been adjusted to								
15		reflect the aforementioned agreed upon GPIF methodology								
16		and co-firing.								
17										
18	Q.	How were the targets determined?								
19										
20	A.	Net heat rate data for the three most recent July through								
21		June annual periods formed the basis for the target								
22		development. The historical data and the target values								
23		are analyzed to assure applicability to current								
24		conditions of operation. This provides assurance that any								
25		period of abnormal operations or equipment modifications								
		12								

having material effect on heat rate can be taken into 1 consideration. 2 3 How were the ranges of heat rate improvement and heat Q. 4 rate degradation determined? 5 6 The ranges were determined through analysis or historical 7 Α. net heat rate and net output factor data. This is the 8 same data from which the net heat rate versus net output 9 factor curves have been developed for each unit. This 10 11 information is shown on pages 31 through 37 of Document No. 1. 12 13 14 Q. Please elaborate on the analysis used in the determination of the ranges. 15 16 Α. The net heat rate versus net output factor curves are the 17 result of a first order curve fit to historical data. The 18 standard error of the estimate of this data 19 was 20 determined, and a factor was applied to produce a band of potential improvement and degradation. Both the curve fit 21 and the standard error of the estimate were performed by 22 23 the computer program for each unit. These curves are also used in post-period adjustments to actual heat rates to 24 account for unanticipated changes in unit dispatch and 25

-	-	
1	2	
/	1	

fuel.

Q. Please summarize your heat rate projection (Btu/Net kWh)
 and the range about each target to allow for potential
 improvement or degradation for the 2018 period.

The heat rate target for Big Bend Unit 2 is 11,320 Btu/Net 7 Α. kWh. The range about this value, to allow for potential 8 improvement or degradation, is \pm 478 Btu/Net kWh. The 9 heat rate target for Big Bend Unit 3 is 10,619 Btu/Net 10 11 kWh with a range of \pm 367 Btu/Net kWh. The heat rate target for Big Bend Unit 4 is 10,448 Btu/Net kWh, with a 12 range of \pm 382 Btu/Net kWh. The heat rate target for Polk 13 14 Unit 1 is 9,978 Btu/Net kWh with a range of ± 334 Btu/Net kWh. The heat rate target for Polk Unit 2 is 7,382 Btu/Net 15 kWh with a range of \pm 555 Btu/Net kWh. The heat rate for 16 Bayside Unit 1 is 7,489 Btu/Net kWh with a range of ± 130 17 Btu/Net kWh. The heat rate target for Bayside Unit 2 is 18 7,676 Btu/Net kWh with a range of \pm 229 Btu/Net kWh. A 19 zone of tolerance of \pm 75 Btu/Net kWh is included within 20 a range for each target. This is shown on page 4, and 21 pages 7 through 13 of Document No. 1. 22

23

Q. Do the heat rate targets and ranges in Tampa Electric's
 projection meet the criteria of the GPIF philosophy of

1		the Commission?
2		
3	A.	Yes.
4		
5	Q.	After determining the target values and ranges for average
6		net operating heat rate and equivalent availability, what
7		is the next step in the GPIF?
8		
9	A.	The next step is to calculate the savings and weighting
10		factor to be used for both average net operating heat
11		rate and equivalent availability. This is shown on pages
12		7 through 13. The baseline production costing analysis
13		was performed to calculate the total system fuel cost if
14		all units operated at target heat rate and target
15		availability for the period. This total system fuel cost
16		of \$615,817,190 is shown on page 6, column 2. Multiple
17		production cost simulations were performed to calculate
18		total system fuel cost with each unit individually
19		operating at maximum improvement in equivalent
20		availability and each station operating at maximum
21		improvement in average net operating heat rate. The
22		respective savings are shown on page 6, column 4 of
23		Document No. 1.
24		
25		After all the individual savings are calculated, column

4 totals \$29,174,790 which reflects the savings if all of 1 the units operated at maximum improvement. A weighting 2 3 factor for each metric is then calculated by dividing individual savings by the total. For Bayside Unit 1, the 4 5 weighting factor for average net operating heat rate is 4.66 percent as shown in the right-hand column on page 6. 6 Pages 7 through 13 of Document No. 1 show the point table, 7 the Fuel Savings/(Loss) and the equivalent availability 8 or heat rate value. The individual weighting factor is 9 also shown. For example, on Bayside Unit 1, page 12, if 10 11 the unit operates at 7,360 average net operating heat rate, fuel savings would equal \$1,359,627 and +10 average 12 net operating heat rate points would be awarded. 13

The GPIF Reward/Penalty table on page 2 is a summary of 15 the tables on pages 7 through 13. The left-hand column of 16 this document shows the incentive points for Tampa 17 Electric. The center column shows the total fuel savings 18 and is the same amount as shown on page 6, column 4, or 19 20 \$29,174,790. The right-hand column of page 2 is the estimated reward or penalty based upon performance. 21 22 How was the maximum allowed incentive determined? 23 Q.

24

25

14

A. Referring to page 3, line 14, the estimated average common

equity for the period January through December 2018 is 1 \$2,508,779,992. the 2 This produces maximum allowed jurisdictional incentive of \$10,237,065 shown on line 21. 3 4 5 Q. Are there any constraints set forth by the Commission regarding the magnitude of incentive dollars? 6 7 Yes. As Order No. PSC-2013-0665-FOF-EI issued in Docket 8 Α. No. 20130001-EI on December 18, 2013 states, incentive 9 dollars are not to exceed 50 percent of fuel savings. 10 11 Page 2 of Document No. 1 demonstrates that this constraint is met, limiting total potential reward and penalty 12 incentive dollars to \$10,237,065. 13 14 Please summarize your direct testimony. Ο. 15 16 Tampa Electric has complied with the Commission's 17 Α. directions, philosophy, methodology in 18 and its determination of the GPIF. The GPIF is determined by the 19 following formula for calculating Generating Performance 20 Incentive Points (GPIP). 21 22 23 $GPIP = (0.0211 EAP_{BB2})$ + 0.0370 EAP_{BB3} + 0.0505 EAP_{BB4} + 0.007324 EAP_{pk1} + 0.0483 EAP_{PK2} + 0.0264 EAP_{BAY1} 25

1		+ 0.0516 EAP _{BAY2} + 0.0267 HRP _{BB2}
2		+ 0.0496 HRP _{BB3} + 0.0736 HRP _{BB4}
3		+ 0.0352 HRP _{PK1} + 0.4539 HRP _{PK2}
4		+ 0.0466 HRP _{BAY1} + 0.0722 HRP _{BAY2})
5		Where:
6		GPIP = Generating Performance Incentive Points
7		EAP = Equivalent Availability Points awarded/deducted
8		for Big Bend Units 2, 3, and 4, Polk Units 1, 2
9		and Bayside Units 1 and 2
10		HRP = Average Net Heat Rate Points awarded/deducted for
11		Big Bend Units 2, 3, and 4, Polk Units 1, 2 and
12		Bayside Units 1 and 2
13		
14	Q.	Have you prepared a document summarizing the GPIF targets
15		for the January through December 2018 period?
16		
17	A.	Yes. Document No. 2 entitled "Summary of GPIF Targets"
18		provides the availability and heat rate targets for each
19		unit.
20		
21	Q.	Does this conclude your direct testimony?
22		
23	A.	Yes, it does.
24		
25		
		18

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION FILING EXHIBIT NO. BSB-2 DOCUMENT NO. 1

EXHIBIT TO THE TESTIMONY

OF

BRIAN S. BUCKLEY

DOCUMENT NO. 1

GPIF SCHEDULES

JANUARY 2018 - DECEMBER 2018

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 PAGE 1 OF 40

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR JANUARY 2018 - DECEMBER 2018 TARGETS TABLE OF CONTENTS

SCHEDULE	PAGE
GPIF REWARD / PENALTY TABLE	2
GPIF CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS	3
GPIF TARGET AND RANGE SUMMARY	4
COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE	5
DERIVATION OF WEIGHTING FACTORS	6
GPIF TARGET AND RANGE SUMMARY	7 - 13
ESTIMATED UNIT PERFORMANCE DATA	14 - 20
ESTIMATED PLANNED OUTAGE SCHEDULE	21
CRITICAL PATH METHOD DIAGRAMS	22 - 23
FORCED & MAINTENANCE OUTAGE FACTOR GRAPHS	24 - 30
HEAT RATE VS NET OUTPUT FACTOR GRAPHS	31 - 37
GENERATING UNITS IN GPIF (TABLE 4.2 IN THE MANUAL)	38
UNIT RATINGS AS OF JULY 2017	39
PROJECTED PERCENT GENERATION BY UNIT	40

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 2 OF 40

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR REWARD / PENALTY TABLE JANUARY 2018 - DECEMBER 2018

GENERATING PERFORMANCE INCENTIVE POINTS (GPIP)	FUEL SAVINGS / (LOSS) (\$000)	GENERATING PERFORMANCE INCENTIVE FACTOR (\$000)
+10	29,174.8	10,237.1
+9	26,257.3	9,213.4
+8	23,339.8	8,189.7
+7	20,422.4	7,165.9
+6	17,504.9	6,142.2
+5	14,587.4	5,118.5
+4	11,669.9	4,094.8
+3	8,752.4	3,071.1
+2	5,835.0	2,047.4
+1	2,917.5	1,023.7
0	0.0	0.0
-1	(3,217.7)	(1,023.7)
-2	(6,435.4)	(2,047.4)
-3	(9,653.1)	(3,071.1)
-4	(12,870.8)	(4,094.8)
-5	(16,088.5)	(5,118.5)
-6	(19,306.2)	(6,142.2)
-7	(22,523.9)	(7,165.9)
-8	(25,741.6)	(8,189.7)
-9	(28,959.3)	(9,213.4)
-10	(32,177.0)	(10,237.1)

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 3 OF 40

TAMPA ELECTRIC COMPANY GENERATING PERFORMANCE INCENTIVE FACTOR CALCULATION OF MAXIMUM ALLOWED INCENTIVE DOLLARS JANUARY 2018 - DECEMBER 2018

Line 1	Beginning of period balance of common equity: End of month common equity:			2,478,918,000
Line 2	Month of January	2018	\$	2,416,168,000
Line 3	Month of February	2018	\$	2,436,806,102
Line 4	Month of March	2018	\$	2,457,620,487
Line 5	Month of April	2018	\$	2,499,910,175
Line 6	Month of May	2018	\$	2,521,263,574
Line 7	Month of June	2018	\$	2,542,799,367
Line 8	Month of July	2018	\$	2,479,340,232
Line 9	Month of August	2018	\$	2,500,517,930
Line 10	Month of September	2018	\$	2,521,876,520
Line 11	Month of October	2018	\$	2,564,340,396
Line 12	Month of November	2018	\$	2,586,244,137
Line 13	Month of December	2018	\$	2,608,334,972
Line 14	(Summation of line 1 throug	h line 13 divided by 13)	\$	2,508,779,992
Line 15	25 Basis points			0.0025
Line 16	Revenue Expansion Factor			61.27%
Line 17	Maximum Allowed Incentive (line 14 times line 15 divide		\$	10,237,065
Line 18	Jurisdictional Sales			19,544,119 MWH
Line 19	Total Sales			19,544,119 MWH
Line 20	Jurisdictional Separation Factor (line 18 divided by line 19)			100.00%
Line 21	Maximum Allowed Jurisdict (line 17 times line 20)	ional Incentive Dollars	\$	10,237,065
Line 22	Incentive Cap (50% of projected fuel savings at 10 GPIF-point level from Sheet No. 3.515)			14,587,395
Line 23	Maximum Allowed GPIF Reward (at 10 GPIF-point level) (the lesser of line 21 and line 22)			10,237,065

Note: Line 22 and 23 are as approved by Commission order PSC-13-0665-FOF-EI dated 12/18/13 effective 1/1/14.

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 4 OF 40

TAMPA ELECTRIC COMPANY GPIF TARGET AND RANGE SUMMARY JANUARY 2018 - DECEMBER 2018

EQUIVALENT AVAILABILITY

PLANT / UNIT	WEIGHTING FACTOR (%)	EAF TARGET (%)	EAF RA MAX. (%)	NGE MIN. (%)	MAX. FUEL SAVINGS (\$000)	MAX. FUEL LOSS (\$000)
BIG BEND 2	2.11%	61.5	68.2	48.1	615.6	(1,077.7)
BIG BEND 3	3.70%	66.7	72.4	55.4	1,079.4	(3,189.4)
BIG BEND 4	5.05%	78.7	82.0	72.1	1,473.1	(1,845.8)
POLK 1	0.73%	74.4	77.0	69.4	211.9	(380.9)
POLK 2	4.83%	83.2	85.7	78.2	1,408.9	(1,372.7)
BAYSIDE 1	2.64%	82.5	83.8	80.0	770.2	(385.1)
BAYSIDE 2	5.16%	77.3	79.1	73.9	1,505.7	(1,815.5)
GPIF SYSTEM	24.22%					

AVERAGE NET OPERATING HEAT RATE

PLANT / UNIT	WEIGHTING FACTOR (%)	ANOHR Btu/kwh	TARGET NOF	ANOHR I MIN.	RANGE MAX.	MAX. FUEL SAVINGS (\$000)	MAX. FUEL LOSS (\$000)
BIG BEND 2	2.67%	11,320	60.3	10,843	11,798	778.3	(778.3)
BIG BEND 3	4.96%	10,619	80.8	10,252	10,987	1,448.4	(1,448.4)
BIG BEND 4	7.36%	10,448	86.4	10,066	10,830	2,146.5	(2,146.5)
POLK 1	3.52%	9,978	99.1	9,644	10,312	1,028.0	(1,028.0)
POLK 2	45.39%	7,382	76.4	6,827	7,936	13,242.8	(13,242.8)
BAYSIDE 1	4.66%	7,489	62.8	7,360	7,619	1,359.6	(1,359.6)
BAYSIDE 2	7.22%	7,676	52.3	7,447	7,905	2,106.5	(2,106.5)
GPIF SYSTEM	75.78%						

TAMPA ELECTRIC COMPANY COMPARISON OF GPIF TARGETS VS PRIOR PERIOD ACTUAL PERFORMANCE

	WEIGHTING FACTOR	NORMALIZED WEIGHTING		RGET PERK N 18 - DEC			L PERFORM N 16 - DEC 1			PERFORM			L PERFOR N 14 - DEC	
PLANT / UNIT	(%)	FACTOR	POF	EUOF	EUOR	POF	EUOF	EUOR	POF	EUOF	EUOR	POF	EUOF	EUOR
BIG BEND 2	2.11%	8.7%	6.6	31.9	34.2	22.5	22.5	29.5	7.5	46.8	50.5	8.4	10.6	11.6
BIG BEND 3	3.70%	15.3%	6.6	26.7	28.6	12.6	33.6	39.7	3.7	24.1	25.0	5.1	15.8	16.7
BIG BEND 4	5.05%	20.9%	6.6	14.7	15.8	6.7	18.8	21.9	3.8	15.1	15.7	20.7	11.2	14.2
POLK 1	0.73%	3.0%	17.3	8.3	10.0	13.3	7.5	11.4	13.5	16.0	19.0	5.0	8.7	10.6
POLK 2	4.83%	19.9%	5.8	11.0	11.7	9.7	9.4	29.1	3.6	3.5	19.2	11.2	0.9	25.1
BAYSIDE 1	2.64%	10.9%	14.8	2.7	3.1	20.0	1.3	1.8	11.8	2.3	2.7	6.2	11.5	14.1
BAYSIDE 2	5.16%	21.3%	18.6	4.0	5.0	7.1	2.9	5.0	7.2	3.7	4.1	5.0	5.4	5.7
GPIF SYSTEM	24.22%	100.0%	10.2	13.5	14.7	11.3	13.9	20.6	6.0	13.1	17.1	10.0	8.5	14.6
GPIF SYSTEM WEIGHTED EQ	UIVALENT AVAILA	ABILITY (%)		<u>76.3</u>			<u>74.8</u>			<u>80.9</u>			<u>81.5</u>	

3 PE	ERIOD AVER	RAGE	3 PERIOD AVERAGE
POF	EUOF	EUOR	EAF
9.1	11.8	17.4	79.1

24

AVERAGE NET OPERATING HEAT RATE (Btu/kWh)

PLANT / UNIT	WEIGHTING FACTOR (%)	NORMALIZED WEIGHTING FACTOR	TARGET HEAT RATE JAN 18 - DEC 18	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 16 - DEC 16	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 15 - DEC 15	ADJUSTED ACTUAL PERFORMANCE HEAT RATE JAN 14 - DEC 14	_
BIG BEND 2	2.67%	3.5%	11,320	10,952	10,765	10,810	
BIG BEND 3	4.96%	6.6%	10,619	10,395	10,419	10,604	
BIG BEND 4	7.36%	9.7%	10,448	10,329	10,331	10,293	ORI PA(
POLK 1	3.52%	4.6%	9,978	9,944	10,351	10,207	
POLK 2	45.39%	59.9%	7,382	8,604	11,576	12,297	5 OF
BAYSIDE 1	4.66%	6.1%	7,489	7,521	7,443	7,347	Ϋ́ 4
BAYSIDE 2	7.22%	9.5%	7,676	7,723	7,610	7,488) EET
GPIF SYSTEM	75.78%	100.0%					NO.
GPIF SYSTEM WEIGHTE	D AVERAGE HEAT RAT	E (Btu/kWh)	8,185	8,883	10,662	11,079). 8.4

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 5 OF 40

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 6 OF 40

TAMPA ELECTRIC COMPANY DERIVATION OF WEIGHTING FACTORS JANUARY 2018 - DECEMBER 2018 PRODUCTION COSTING SIMULATION FUEL COST (\$000)

UNIT PERFORMANCE INDICATOR	AT TARGET (1)	AT MAXIMUM IMPROVEMENT (2)	SAVINGS (3)	WEIGHTING FACTOR (% OF SAVINGS)
EQUIVALENT AVAILABILITY				
EA ₁ BIG BEND 2	615,817.19	615,201.55	615.64	2.11%
EA ₂ BIG BEND 3	615,817.19	614,737.82	1,079.37	3.70%
EA ₃ BIG BEND 4	615,817.19	614,344.07	1,473.12	5.05%
EA ₄ POLK 1	615,817.19	615,605.25	211.94	0.73%
EA ₅ POLK 2	615,817.19	614,408.34	1,408.85	4.83%
EA ₆ BAYSIDE 1	615,817.19	615,046.99	770.20	2.64%
EA7 BAYSIDE 2	615,817.19	614,311.49	1,505.70	5.16%
AVERAGE HEAT RATE				
AHR ₁ BIG BEND 2	615,817.19	615,038.88	778.31	2.67%
AHR ₂ BIG BEND 3	615,817.19	614,368.81	1,448.38	4.96%
AHR ₃ BIG BEND 4	615,817.19	613,670.72	2,146.47	7.36%
AHR ₄ POLK 1	615,817.19	614,789.23	1,027.96	3.52%
AHR ₅ POLK 2	615,817.19	602,574.43	13,242.76	45.39%
AHR ₆ BAYSIDE 1	615,817.19	614,457.56	1,359.63	4.66%
AHR ₇ BAYSIDE 2	615,817.19	613,710.73	2,106.46	7.22%
TOTAL SAVINGS		-	29,174.79	100.00%

(1) Fuel Adjustment Base Case - All unit performance indicators at target.

(2) All other units performance indicators at target.

(3) Expressed in replacement energy cost.

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 7 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

BIG BEND 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	615.6	68.2	+10 778.3		10,843
+9	554.1	67.6	+9	700.5	10,883
+8	492.5	66.9	+8	622.6	10,923
+7	430.9	66.2	+7	544.8	10,963
+6	369.4	65.5	+6	467.0	11,004
+5	307.8	64.9	+5	389.2	11,044
+4	246.3	64.2	+4	311.3	11,084
+3	184.7	63.5	+3	233.5	11,124
+2	123.1	62.9	+2	155.7	11,165
+1	61.6	62.2	+1	77.8	11,205
					11,245
0	0.0	61.5	0	0.0	11,320
					11,395
-1	(107.8)	60.2	-1	(77.8)	11,436
-2	(215.5)	58.8	-2	(155.7)	11,476
-3	(323.3)	57.5	-3	(233.5)	11,516
-4	(431.1)	56.1	-4	(311.3)	11,556
-5	(538.9)	54.8	-5	(389.2)	11,597
-6	(646.6)	53.5	-6	(467.0)	11,637
-7	(754.4)	52.1	-7	(544.8)	11,677
-8	(862.2)	50.8	-8	(622.6)	11,717
-9	(970.0)	49.4	-9	(700.5)	11,758
-10	(1,077.7)	48.1	-10	(778.3)	11,798
	Weighting Factor =	2.11%		Weighting Factor =	2.67%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 8 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

BIG BEND 3

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,079.4	72.4	+10	1,448.4	10,252
+9	971.4	71.8	+9	1,303.5	10,281
+8	863.5	71.3	+8	1,158.7	10,310
+7	755.6	70.7	+7	1,013.9	10,339
+6	647.6	70.1	+6	869.0	10,369
+5	539.7	69.6	+5	724.2	10,398
+4	431.7	69.0	+4	579.4	10,427
+3	323.8	68.4	+3	434.5	10,456
+2	215.9	67.9	+2	289.7	10,486
+1	107.9	67.3	+1	144.8	10,515
					10,544
0	0.0	66.7	0	0.0	10,619
					10,694
-1	(318.9)	65.6	-1	(144.8)	10,723
-2	(637.9)	64.5	-2	(289.7)	10,753
-3	(956.8)	63.3	-3	(434.5)	10,782
-4	(1,275.8)	62.2	-4	(579.4)	10,811
-5	(1,594.7)	61.0	-5	(724.2)	10,840
-6	(1,913.6)	59.9	-6	(869.0)	10,870
-7	(2,232.6)	58.8	-7	(1,013.9)	10,899
-8	(2,551.5)	57.6	-8	(1,158.7)	10,928
-9	(2,870.5)	56.5	-9	(1,303.5)	10,957
-10	(3,189.4)	55.4	-10	(1,448.4)	10,987
	Weighting Factor =	3.70%		Weighting Factor =	4.96%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 9 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

BIG BEND 4

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,473.1	82.0	+10 2,146.5		10,066
+9	1,325.8	81.6	+9	1,931.8	10,097
+8	1,178.5	81.3	+8	1,717.2	10,128
+7	1,031.2	81.0	+7	1,502.5	10,159
+6	883.9	80.6	+6	1,287.9	10,189
+5	736.6	80.3	+5	1,073.2	10,220
+4	589.2	80.0	+4	858.6	10,251
+3	441.9	79.7	+3	643.9	10,281
+2	294.6	79.3	+2	429.3	10,312
+1	147.3	79.0	+1	214.6	10,343
					10,373
0	0.0	78.7	0	0.0	10,448
					10,523
-1	(184.6)	78.0	-1	(214.6)	10,554
-2	(369.2)	77.4	-2	(429.3)	10,585
-3	(553.7)	76.7	-3	(643.9)	10,615
-4	(738.3)	76.1	-4	(858.6)	10,646
-5	(922.9)	75.4	-5	(1,073.2)	10,677
-6	(1,107.5)	74.7	-6	(1,287.9)	10,708
-7	(1,292.0)	74.1	-7	(1,502.5)	10,738
-8	(1,476.6)	73.4	-8	(1,717.2)	10,769
-9	(1,661.2)	72.8	-9	(1,931.8)	10,800
-10	(1,845.8)	72.1	-10	(2,146.5)	10,830
	Weighting Factor =	5.05%		Weighting Factor =	7.36%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 10 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

POLK 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	211.9	77.0	+10 1,028.0		9,644
+9	190.7	76.7	+9	925.2	9,670
+8	169.6	76.4	+8	822.4	9,696
+7	148.4	76.2	+7	719.6	9,722
+6	127.2	75.9	+6	616.8	9,748
+5	106.0	75.7	+5	514.0	9,774
+4	84.8	75.4	+4	411.2	9,799
+3	63.6	75.2	+3	308.4	9,825
+2	42.4	74.9	+2	205.6	9,851
+1	21.2	74.7	+1	102.8	9,877
					9,903
0	0.0	74.4	0	0.0	9,978
					10,053
-1	(38.1)	73.9	-1	(102.8)	10,079
-2	(76.2)	73.4	-2	(205.6)	10,105
-3	(114.3)	72.9	-3	(308.4)	10,130
-4	(152.4)	72.4	-4	(411.2)	10,156
-5	(190.4)	71.9	-5	(514.0)	10,182
-6	(228.5)	71.4	-6	(616.8)	10,208
-7	(266.6)	70.9	-7	(719.6)	10,234
-8	(304.7)	70.4	-8	(822.4)	10,260
-9	(342.8)	69.9	-9	(925.2)	10,286
-10	(380.9)	69.4	-10	(1,028.0)	10,312
	Weighting Factor =	0.73%		Weighting Factor =	3.52%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 11 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

POLK 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,408.9	85.7	+10 13,242.8		6,827
+9	1,268.0	85.5	+9	11,918.5	6,875
+8	1,127.1	85.2	+8	10,594.2	6,923
+7	986.2	85.0	+7	9,269.9	6,971
+6	845.3	84.7	+6	7,945.7	7,019
+5	704.4	84.5	+5	6,621.4	7,067
+4	563.5	84.2	+4	5,297.1	7,115
+3	422.7	84.0	+3	3,972.8	7,163
+2	281.8	83.7	+2	2,648.6	7,211
+1	140.9	83.5	+1	1,324.3	7,259
					7,307
0	0.0	83.2	0	0.0	7,382
					7,457
-1	(137.3)	82.7	-1	(1,324.3)	7,505
-2	(274.5)	82.2	-2	(2,648.6)	7,553
-3	(411.8)	81.7	-3	(3,972.8)	7,601
-4	(549.1)	81.2	-4	(5,297.1)	7,648
-5	(686.3)	80.7	-5	(6,621.4)	7,696
-6	(823.6)	80.2	-6	(7,945.7)	7,744
-7	(960.9)	79.7	-7	(9,269.9)	7,792
-8	(1,098.2)	79.2	-8	(10,594.2)	7,840
-9	(1,235.4)	78.7	-9	(11,918.5)	7,888
-10	(1,372.7)	78.2	-10	(13,242.8)	7,936
	Weighting Factor =	4.83%		Weighting Factor =	45.39%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 12 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

BAYSIDE 1

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	770.2	83.8	+10	1,359.6	7,360
+9	693.2	83.7	+9	1,223.7	7,365
+8	616.2	83.5	+8	1,087.7	7,371
+7	539.1	83.4	+7	951.7	7,376
+6	462.1	83.3	+6	815.8	7,382
+5	385.1	83.2	+5	679.8	7,387
+4	308.1	83.0	+4	543.9	7,393
+3	231.1	82.9	+3	407.9	7,398
+2	154.0	82.8	+2	271.9	7,403
+1	77.0	82.7	+1	136.0	7,409
					7,414
0	0.0	82.5	0	0.0	7,489
					7,564
-1	(38.5)	82.3	-1	(136.0)	7,570
-2	(77.0)	82.0	-2	(271.9)	7,575
-3	(115.5)	81.8	-3	(407.9)	7,581
-4	(154.0)	81.5	-4	(543.9)	7,586
-5	(192.5)	81.3	-5	(679.8)	7,592
-6	(231.1)	81.0	-6	(815.8)	7,597
-7	(269.6)	80.7	-7	(951.7)	7,603
-8	(308.1)	80.5	-8	(1,087.7)	7,608
-9	(346.6)	80.2	-9	(1,223.7)	7,614
-10	(385.1)	80.0	-10	(1,359.6)	7,619
	Weighting Factor =	2.64%		Weighting Factor =	4.66%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 13 OF 40

TAMPA ELECTRIC COMPANY

GPIF TARGET AND RANGE SUMMARY

JANUARY 2018 - DECEMBER 2018

BAYSIDE 2

EQUIVALENT AVAILABILITY POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL EQUIVALENT AVAILABILITY	AVERAGE HEAT RATE POINTS	FUEL SAVINGS / (LOSS) (\$000)	ADJUSTED ACTUAL AVERAGE HEAT RATE
+10	1,505.7	79.1	+10	2,106.5	7,447
+9	1,355.1	78.9	+9	1,895.8	7,462
+8	1,204.6	78.7	+8	1,685.2	7,478
+7	1,054.0	78.6	+7	1,474.5	7,493
+6	903.4	78.4	+6	1,263.9	7,509
+5	752.9	78.2	+5	1,053.2	7,524
+4	602.3	78.0	+4	842.6	7,539
+3	451.7	77.9	+3	631.9	7,555
+2	301.1	77.7	+2	421.3	7,570
+1	150.6	77.5	+1	210.6	7,585
					7,601
0	0.0	77.3	0	0.0	7,676
					7,751
-1	(181.5)	77.0	-1	(210.6)	7,766
-2	(363.1)	76.6	-2	(421.3)	7,782
-3	(544.6)	76.3	-3	(631.9)	7,797
-4	(726.2)	75.9	-4	(842.6)	7,812
-5	(907.7)	75.6	-5	(1,053.2)	7,828
-6	(1,089.3)	75.3	-6	(1,263.9)	7,843
-7	(1,270.8)	74.9	-7	(1,474.5)	7,859
-8	(1,452.4)	74.6	-8	(1,685.2)	7,874
-9	(1,633.9)	74.2	-9	(1,895.8)	7,889
-10	(1,815.5)	73.9	-10	(2,106.5)	7,905
	Weighting Factor =	5.16%		Weighting Factor =	7.22%

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

	PLANT/UNIT	MONTH OF:	PERIOD												
	BIG BEND 2	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	65.8	58.8	42.5	65.8	65.8	65.8	65.8	65.8	65.8	65.8	43.9	65.8	61.5	
	2. POF	0.0	10.7	35.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	33.3	0.0	6.6	
	3. EUOF	34.2	30.5	22.1	34.2	34.2	34.2	34.2	34.2	34.2	34.2	22.8	34.2	31.9	
	4. EUOR	34.2	34.2	34.2	0.0	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	34.2	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
έ	6. SH	48	43	105	0	10	229	211	266	248	227	341	173	1,901	
ŝ	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8. UH	696	629	638	720	734	491	533	478	472	517	380	571	6,859	
	9. POH	0	72	263	0	0	0	0	0	0	0	240	0	575	
	10. EFOH	243	196	157	235	243	235	243	243	235	243	157	243	2,670	
	11. EMOH	12	9	7	11	12	11	12	12	11	12	7	12	127	
	12. OPER BTU (GBTU)	105	102	231	0	22	556	508	626	627	596	971	391	4,738	PAG
	13. NET GEN (MWH)	9,120	8,920	20,200	0	1,960	48,990	44,750	54,950	55,490	52,900	87,060	34,220	418,560	GINA
	14. ANOHR (Btu/kwh)	11,463	11,381	11,452	0	11,435	11,350	11,359	11,385	11,303	11,259	11,154	11,426	11,320	4 OF P
	15. NOF (%)	52.1	56.8	52.7	0.0	53.7	58.6	58.1	56.6	61.3	63.8	69.9	54.2	60.3	40 日 日
	16. NPC (MW)	365	365	365	365	365	365	365	365	365	365	365	365	365	ORIGINAL SHEET NO. 8.4 PAGE 14 OF 40
	17. ANOHR EQUATION	ANO	HR = NOF(-17.276) +	12,362									.8.4

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

	PLANT/UNIT	MONTH OF:	PERIOD												
	BIG BEND 3	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	71.4	71.4	71.4	47.6	62.2	71.4	71.4	71.4	71.4	48.4	71.4	71.4	66.7	
	2. POF	0.0	0.0	0.0	33.3	12.9	0.0	0.0	0.0	0.0	32.3	0.0	0.0	6.6	
	3. EUOF	28.6	28.6	28.6	19.1	24.9	28.6	28.6	28.6	28.6	19.4	28.6	28.6	26.7	
	4. EUOR	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	28.6	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
Ś		539	540	603	206	525	439	523	419	450	283	438	474	5,439	
4	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8. UH	205	132	140	514	219	281	221	325	270	461	283	270	3,321	
	9. POH	0	0	0	240	96	0	0	0	0	240	0	0	576	
	10. EFOH	201	181	200	129	175	194	201	201	194	136	194	201	2,206	
	11. EMOH	12	11	12	8	11	12	12	12	12	8	12	12	133	
	12. OPER BTU (GBTU)	1,981	1,870	2,168	653	1,723	1,454	1,610	1,362	1,574	954	1,427	1,731	18,515	
	13. NET GEN (MWH)	188,660	176,390	205,730	60,860	161,490	136,450	149,510	127,490	149,010	89,710	133,570	164,680	1,743,550	GIN
	14. ANOHR (Btu/kwh)	10,500	10,604	10,539	10,727	10,672	10,657	10,770	10,687	10,565	10,629	10,684	10,512	10,619	5 OF
	15. NOF (%)	87.5	81.7	85.3	74.8	77.9	78.7	72.4	77.0	83.8	80.3	77.2	86.9	80.8	PAGE 15 OF 40
	16. NPC (MW)	400	400	400	395	395	395	395	395	395	395	395	400	397	T NO.
	17. ANOHR EQUATION	ANOF	HR = NOF(-17.826) +	12,060									0.0

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

	PLANT/UNIT	MONTH OF:	PERIOD												
	BIG BEND 4	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	84.2	84.2	46.1	84.2	84.2	84.2	84.2	84.2	84.2	84.2	84.2	57.0	78.7	
	2. POF	0.0	0.0	45.2	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	32.3	6.6	
	3. EUOF	15.8	15.8	8.6	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	10.7	14.7	
	4. EUOR	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	15.8	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
έ	6. SH	522	672	362	546	624	584	622	608	672	666	522	257	6,657	
U T	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8. UH	222	0	381	174	120	136	122	136	48	78	199	487	2,103	
	9. POH	0	0	336	0	0	0	0	0	0	0	0	240	576	
	10. EFOH	89	81	49	86	89	86	89	89	86	89	86	60	981	
	11. EMOH	28	26	15	27	28	27	28	28	27	28	27	19	311	
	12. OPER BTU (GBTU)	2,178	2,721	1,586	2,122	2,366	2,230	2,514	2,389	2,654	2,548	2,050	1,012	26,375	DOC GPIF EXH PAG
	13. NET GEN (MWH)	209,530	260,830	153,470	202,780	225,390	212,640	241,270	228,520	254,010	243,020	196,120	96,750	2,524,330	:KET 201 IBIT 3INA E 16
	14. ANOHR (Btu/kwh)	10,394	10,431	10,331	10,466	10,495	10,487	10,420	10,454	10,448	10,485	10,454	10,464	10,448	NO NO NO NO
	15. NOF (%)	90.8	87.8	95.9	85.0	82.7	83.3	88.8	86.0	86.5	83.5	86.0	85.2	86.4	201 ROJE BSB HEET
	16. NPC (MW)	442	442	442	437	437	437	437	437	437	437	437	442	439	7000 ECTI0 -2, D
	17. ANOHR EQUATION	ANO	HR = NOF(-12.371) +	11,518									DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 16 OF 40
															MEN
															T T Z
). 1

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

	PLANT/UNIT	MONTH OF:	PERIOD												
	POLK 1	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	90.0	67.5	90.0	90.0	90.0	90.0	90.0	43.5	0.0	60.9	90.0	90.0	74.4	
	2. POF	0.0	25.0	0.0	0.0	0.0	0.0	0.0	51.6	100.0	32.3	0.0	0.0	17.3	
	3. EUOF	10.0	7.5	10.0	10.0	10.0	10.0	10.0	4.9	0.0	6.8	10.0	10.0	8.3	
	4. EUOR	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	0.0	10.0	10.0	10.0	10.0	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
3	6. SH	688	510	659	658	696	608	678	348	0	497	651	671	6,664	
6	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8. UH	56	162	84	62	48	112	66	396	720	247	70	73	2,096	
	9. POH	0	168	0	0	0	0	0	384	720	240	0	0	1,512	
	10. EFOH	64	44	64	62	64	62	64	31	0	44	62	64	627	
	11. EMOH	10	7	10	10	10	10	10	5	0	7	10	10	101	
	12. OPER BTU (GBTU)	1,504	1,100	1,436	1,433	1,504	1,321	1,476	760	0	1,080	1,422	1,462	14,498	PAGE 17 C
	13. NET GEN (MWH)	150,650	110,370	143,890	143,580	150,900	132,450	147,940	76,130	0	108,220	142,450	146,460	1,453,040	GIN/
	14. ANOHR (Btu/kwh)	9,985	9,966	9,980	9,979	9,969	9,976	9,979	9,983	0	9,976	9,984	9,980	9,978	
	15. NOF (%)	99.5	98.4	99.2	99.2	98.6	99.0	99.2	99.4	0.0	99.0	99.5	99.2	99.1	SHEE DF 40
	16. NPC (MW)	220	220	220	220	220	220	220	220	220	220	220	220	220	T NO.
	17. ANOHR EQUATION	ANO	HR = NOF(16.584) +	8,334									

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 17 OF 40

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

	PLANT/UNIT	MONTH OF:	PERIOD												
	POLK 2	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	88.3	88.3	88.3	88.3	88.3	88.3	88.3	88.3	88.3	71.2	44.1	88.3	83.2	
	2. POF	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.4	50.1	0.0	5.8	
	3. EUOF	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	9.4	5.8	11.7	11.0	
	4. EUOR	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	11.7	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
37	6. SH	744	672	743	720	744	720	744	744	720	744	453	744	8,492	
N	7. RSH	0	0	0	0	0	0	0	0	0	0	0	0	0	
	8. UH	0	0	0	0	0	0	0	0	0	0	268	0	268	
	9. POH	0	0	0	0	0	0	0	0	0	144	361	0	505	
	10. EFOH	47	42	47	46	47	46	47	47	46	38	23	47	522	
	11. EMOH	40	36	40	39	40	39	40	40	39	32	19	40	443	
	12. OPER BTU (GBTU)	4,787	3,952	4,703	4,752	4,594	4,768	4,874	5,087	4,385	4,117	2,489	4,707	53,287	ORIGINAL PAGE 18 C
	13. NET GEN (MWH)	642,410	523,710	629,610	654,830	625,340	657,390	670,600	705,820	595,590	550,740	332,710	630,080	7,218,830	
	14. ANOHR (Btu/kwh)	7,452	7,547	7,470	7,257	7,346	7,253	7,268	7,207	7,363	7,475	7,482	7,470	7,382	
	15. NOF (%)	71.2	64.3	69.9	85.5	79.0	85.8	84.7	89.2	77.7	69.6	69.0	69.9	76.4	SHEET DF 40
	16. NPC (MW)	1,212	1,212	1,212	1,064	1,064	1,064	1,064	1,064	1,064	1,064	1,064	1,212	1,113	۲ NO.
	17. ANOHR EQUATION	ANO	HR = NOF(-13.653) +	8,424									

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E

ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

F	LANT/UNIT	MONTH OF:	PERIOD												
E	AYSIDE 1	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	96.9	96.9	96.9	58.1	96.9	96.9	96.9	96.9	96.9	53.1	6.4	96.9	82.5	
	2. POF	0.0	0.0	0.0	40.0	0.0	0.0	0.0	0.0	0.0	45.2	93.3	0.0	14.8	
	3. EUOF	3.1	3.1	3.1	1.9	3.1	3.1	3.1	3.1	3.1	1.7	0.2	3.1	2.7	
	4. EUOR	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	3.1	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
38	6. SH	721	651	720	418	721	697	721	721	697	395	18	721	7,201	
00	7. RSH	0	0	0	0	0	0	0	0	0	0	28	0	29	
	8. UH	23	21	23	302	23	23	23	23	23	349	675	23	1,530	
	9. POH	0	0	0	288	0	0	0	0	0	336	673	0	1,297	
1	0. EFOH	10	9	10	6	10	10	10	10	10	5	1	10	99	
1	1. EMOH	13	12	13	8	13	13	13	13	13	7	1	13	135	
1	2. OPER BTU (GBTU)	2,160	1,879	2,182	1,323	2,469	2,665	2,645	2,795	2,779	1,384	55	2,354	24,760	DOCKI GPIF 2 EXHIB ORIGII PAGE
1	3. NET GEN (MWH)	281,570	244,000	284,750	175,770	331,350	363,440	358,430	382,030	381,610	186,230	7,300	309,540	3,306,020	F 20° F 20° GIN∕ GIN∕
1	4. ANOHR (Btu/kwh)	7,672	7,699	7,663	7,528	7,452	7,333	7,379	7,316	7,283	7,429	7,556	7,606	7,489	ET NO. 2018 PF 8IT NO. NAL SH 19 OF
1	5. NOF (%)	49.3	47.3	50.0	59.9	65.6	74.3	70.9	75.6	78.1	67.2	57.9	54.2	62.8	. 201 ROJE BSE HEET
1	6. NPC (MW)	792	792	792	701	701	701	701	701	701	701	701	792	731	7000 ECTI \$-2, E
1	7. ANOHR EQUATION	ANO	HR = NOF(-13.560) +	8,341									DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 19 OF 40

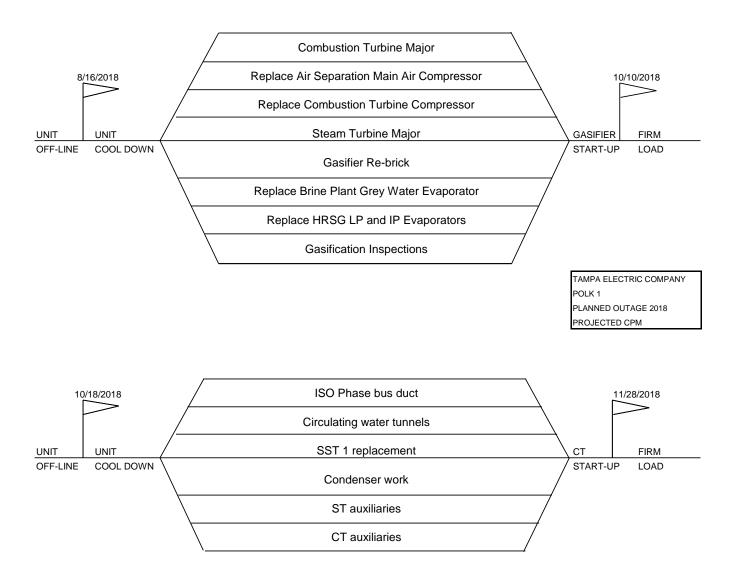
ESTIMATED UNIT PERFORMANCE DATA

JANUARY 2018 - DECEMBER 2018

	PLANT/UNIT	MONTH OF:	PERIOD												
	BAYSIDE 2	Jan-18	Feb-18	Mar-18	Apr-18	May-18	Jun-18	Jul-18	Aug-18	Sep-18	Oct-18	Nov-18	Dec-18	2018	
	1. EAF (%)	95.0	10.2	0.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	95.0	58.2	77.3	
	2. POF	0.0	89.3	100.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	38.7	18.6	
	3. EUOF	5.0	0.5	0.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	3.0	4.0	
	4. EUOR	5.0	0.0	0.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	
	5. PH	744	672	743	720	744	720	744	744	720	744	721	744	8,760	
ŝ		96	0	0	680	707	684	707	707	684	707	685	303	5,961	
G	7. RSH	611	68	0	4	0	0	0	0	0	0	0	130	814	
	8. UH	37	604	743	36	37	36	37	37	36	37	36	311	1,985	
	9. POH	0	600	743	0	0	0	0	0	0	0	0	288	1,631	
	10. EFOH	19	2	0	18	19	18	19	19	18	19	18	11	180	
	11. EMOH	18	2	0	18	18	18	18	18	18	18	18	11	175	
	12. OPER BTU (GBTU)	169	0	0	2,425	2,521	2,871	2,666	2,871	2,822	2,802	3,156	741	23,158	exhib Origii Page
	13. NET GEN (MWH)	21,050	0	0	314,770	327,250	378,150	347,710	376,920	371,070	367,050	419,740	93,310	3,017,020	HIBIT
	14. ANOHR (Btu/kwh)	8,034	0	0	7,704	7,704	7,593	7,668	7,618	7,606	7,635	7,520	7,937	7,676	IT NO. NAL SH 20 OF
	15. NOF (%)	20.9	0.0	0.0	49.8	49.8	59.5	52.9	57.4	58.4	55.9	65.9	29.4	52.3	HEE
	16. NPC (MW)	1,047	1,047	1,047	929	929	929	929	929	929	929	929	1,047	968	EXHIBIT NO. BSB-2, DOC ORIGINAL SHEET NO. 8. PAGE 20 OF 40
	17. ANOHR EQUATION	ANOI	HR = NOF(-11.437)) +	8,274									DOC

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 3.401.18E

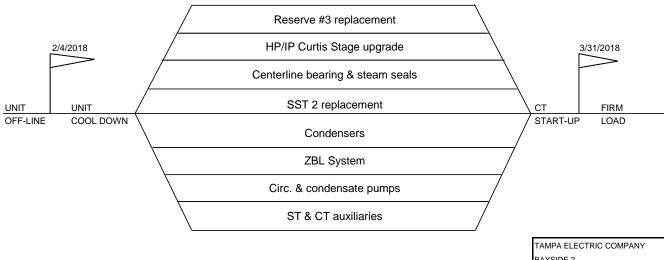
DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 21 OF 40


TAMPA ELECTRIC COMPANY ESTIMATED PLANNED OUTAGE SCHEDULE GPIF UNITS JANUARY 2018 - DECEMBER 2018

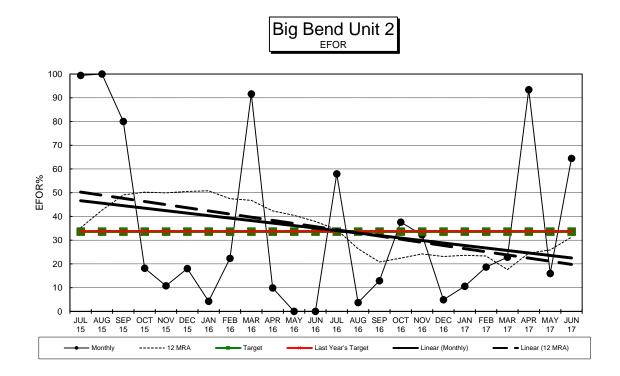
PLANT / UNIT	PLANNED OUTAGE DATES	OUTAGE DESCRIPTION					
BIG BEND 2	Feb 26 - Mar 11 Nov 19 - Nov 28	Fuel System Cleanup and FGD/SCR work Fuel System Cleanup and FGD/SCR work					
BIG BEND 3	Apr 21 - May 04 Oct 06 - Oct 15	Fuel System Cleanup and FGD/SCR work Fuel System Cleanup and FGD/SCR work					
BIG BEND 4	Mar 13 - Mar 26 Dec 04 - Dec 13	Fuel System Cleanup and FGD/SCR work Fuel System Cleanup and FGD/SCR work					
+ POLK 1	Feb 17 - Feb 23 Aug 16 - Oct 10	Gasifier Outage Combustion Turbine Major, Steam Turbine Major, Replace Combustion Turbine Compressor, Replace Air Separation Main Air Compressor Bull Gear, pinions, and impellers, Gasifier Re-brick, Replace Brine Plant Grey Water Evaporator, Replace HRSG LP and IP Evaporators, Gasification Inspections					
POLK 2	Oct 19 - Nov 15	Fuel System Cleanup					
+ BAYSIDE 1	Apr 06 - Apr 17 Oct 18 - Nov 28	Fuel System Cleanup SST 1 replacement, ISO Phase bus duct, Condenser work, Circulating water tunnels, ST auxiliaries, CT auxiliaries					
+ BAYSIDE 2	Feb 04 - Mar 31	HP/IP Curtis Stage upgrade, Centerline bearing & steam seals, SST 2 replacement, Reserve #3 replacement, Condensers, ZBL System, Circ. & condensate pumps, ST & CT auxiliaries					
	Dec 09 - Dec 20	Fuel System Cleanup					

+ These units have CPM included. CPM for units with less than or equal to 4 weeks are not included.

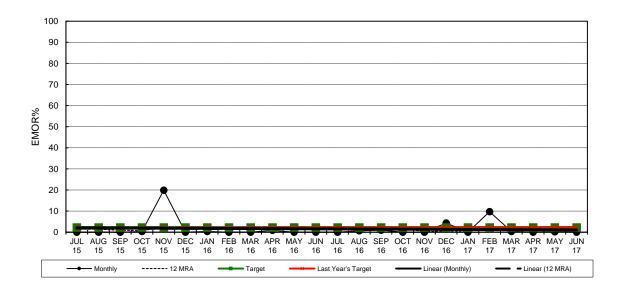
DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 22 OF 40


TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2018 - DECEMBER 2018

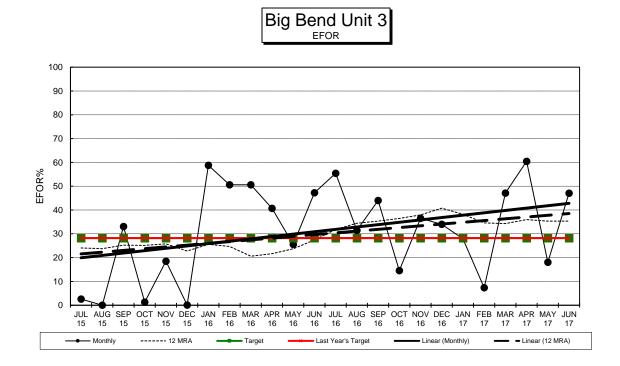
TAMPA ELECTRIC COMPANY BAYSIDE 1 PLANNED OUTAGE 2018 PROJECTED CPM

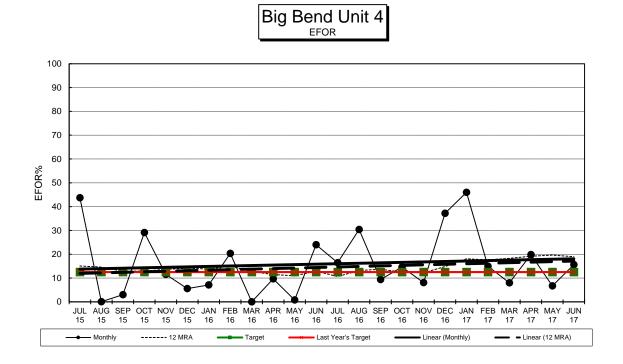

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 23 OF 40

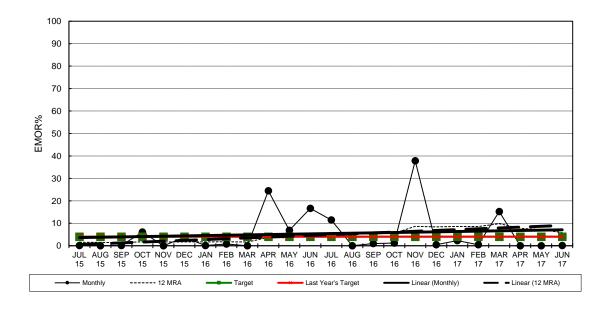
TAMPA ELECTRIC COMPANY CRITICAL PATH METHOD DIAGRAMS GPIF UNITS > FOUR WEEKS JANUARY 2018 - DECEMBER 2018

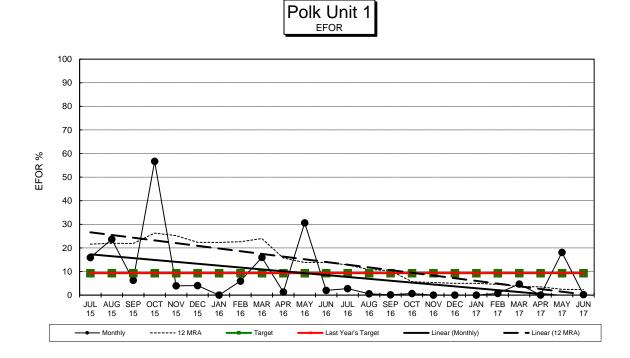


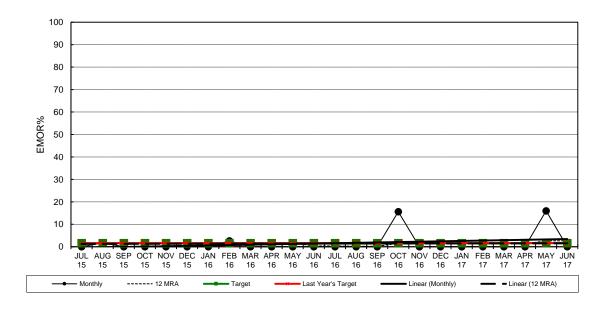
TAMPA ELECTRIC COMPAN BAYSIDE 2 PLANNED OUTAGE 2018 PROJECTED CPM

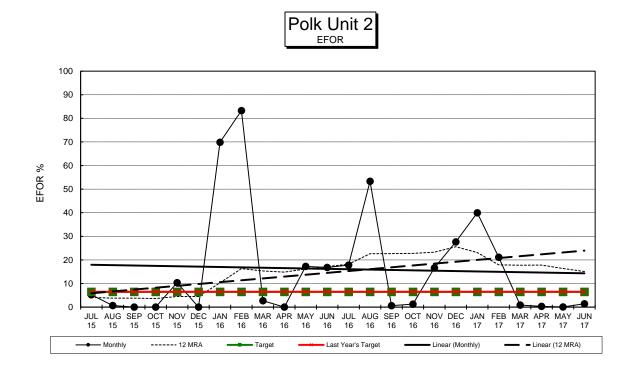

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 24 OF 40

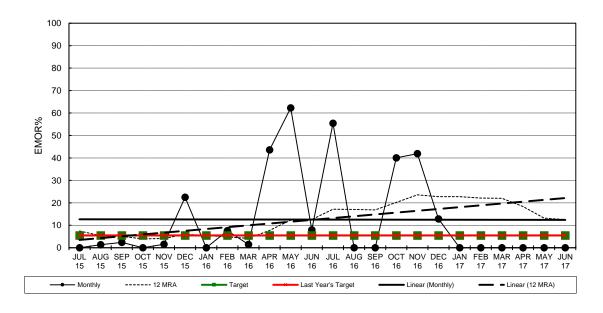

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 25 OF 40

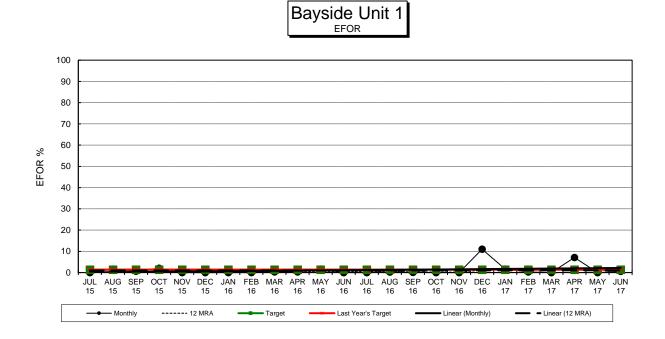

Big Bend Unit 3

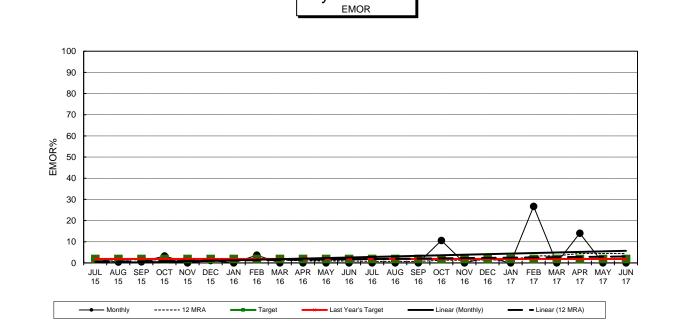

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 26 OF 40

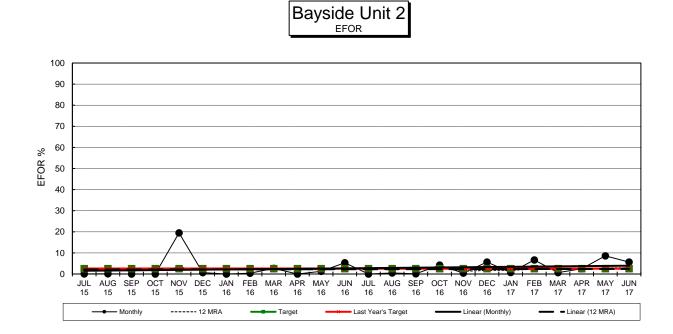


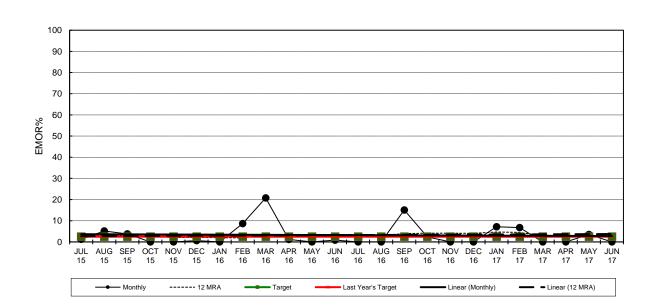

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 27 OF 40

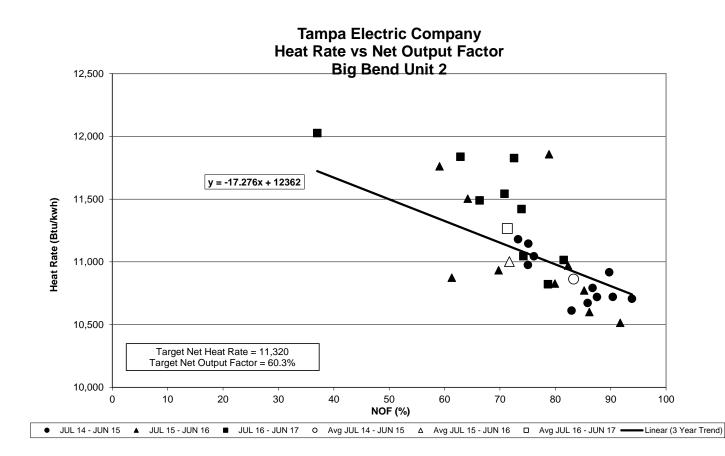



DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 28 OF 40

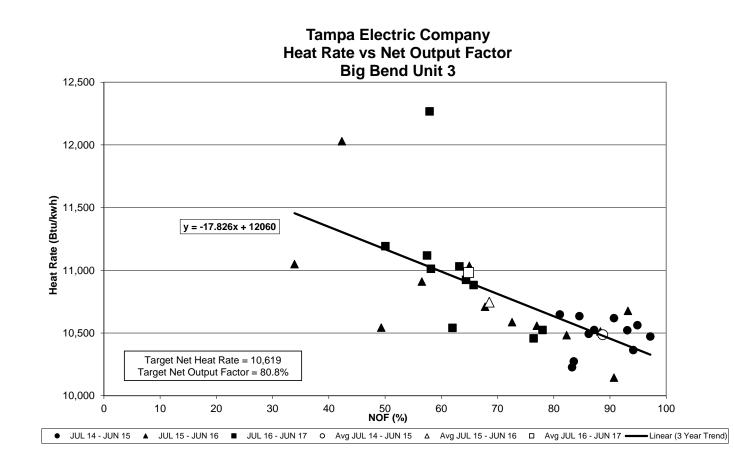


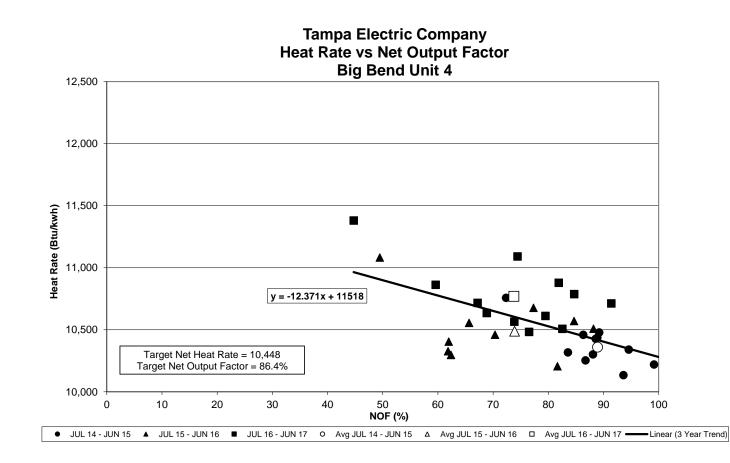

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 29 OF 40



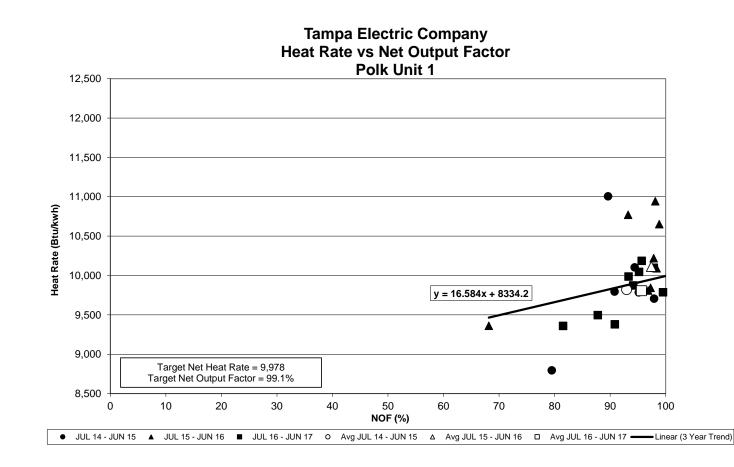

Bayside Unit 1

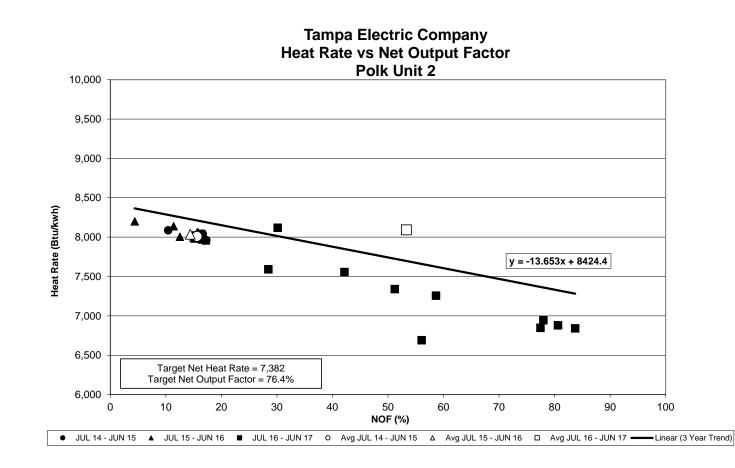
DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 30 OF 40

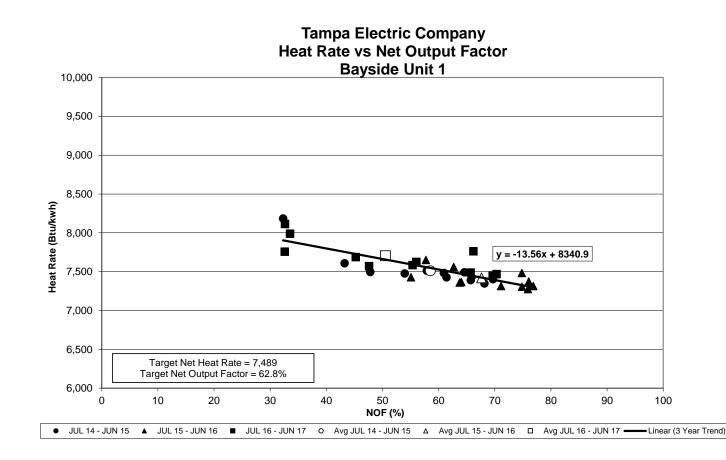


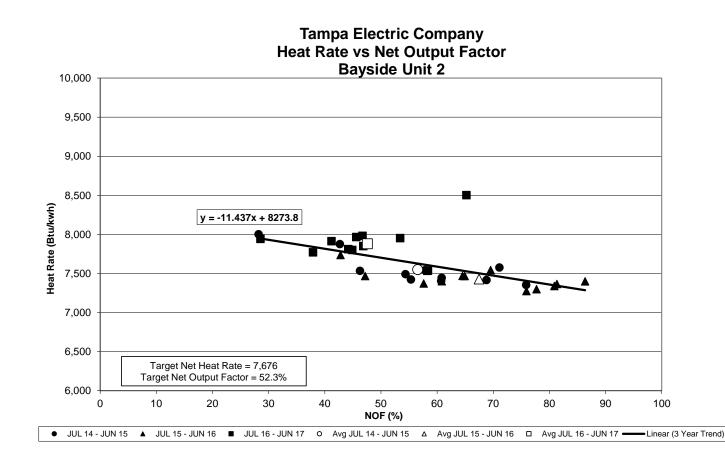


Bayside Unit 2




DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 31 OF 40




DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 33 OF 40

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 36 OF 40

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 37 OF 40

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 38 OF 40

TAMPA ELECTRIC COMPANY GENERATING UNITS IN GPIF TABLE 4.2 JANUARY 2018 - DECEMBER 2018

PLANT / UNIT		ANNUAL GROSS MDC (MW)	ANNUAL NET NDC (MW)
BIG BEND 2		380	365
BIG BEND 3		422	397
BIG BEND 4		472	439
POLK 1		290	220
POLK 2		1,137	1,113
BAYSIDE 1		740	731
BAYSIDE 2		979	968
	GPIF TOTAL	<u>4,420</u>	<u>4,233</u>
	SYSTEM TOTAL	5,065	4,858
	% OF SYSTEM TOTAL	87.3%	87.1%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 39 OF 40

TAMPA ELECTRIC COMPANY UNIT RATINGS JANUARY 2018 - DECEMBER 2018

PLANT / UNIT		ANNUAL GROSS MDC (MW)	ANNUAL NET NDC (MW)
BAYSIDE 1		740	731
BAYSIDE 2		979	968
BAYSIDE 3		59	58
BAYSIDE 4		59	58
BAYSIDE 5		59	58
BAYSIDE 6		59	58
	BAYSIDE TOTAL	<u>1,954</u>	<u>1,930</u>
BIG BEND 1		330	315
BIG BEND 2		380	365
BIG BEND 3		422	397
BIG BEND 4		472	439
BIG BEND CT4		59	58
	BIG BEND TOTAL	<u>1,662</u>	<u>1,573</u>
POLK 1		290	220
POLK 2		1,137	1,113
	POLK TOTAL	<u>1,427</u>	<u>1,333</u>
SOLAR		21	21
	SOLAR TOTAL	<u>21</u>	<u>21</u>

SYSTEM TOTAL	5,065	4,858

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 1 ORIGINAL SHEET NO. 8.401.18E PAGE 40 OF 40

TAMPA ELECTRIC COMPANY PERCENT GENERATION BY UNIT JANUARY 2018 - DECEMBER 2018

PLANT	UNIT	NET OUTPUT MWH	PERCENT OF PROJECTED OUTPUT	PERCENT CUMULATIVE PROJECTED OUTPUT
POLK	2	7,218,830	35.92%	35.92%
BAYSIDE	1	3,306,020	16.45%	52.37%
BAYSIDE	2	3,017,020	15.01%	67.39%
BIG BEND	4	2,524,330	12.56%	79.95%
BIG BEND	3	1,743,550	8.68%	88.62%
POLK	1	1,453,040	7.23%	95.85%
BIG BEND	2	418,560	2.08%	97.94%
BIG BEND	1	290,910	1.45%	99.38%
SOLAR		46,920	0.23%	99.62%
BIG BEND CT	4	28,380	0.14%	99.76%
BAYSIDE	5	18,540	0.09%	99.85%
BAYSIDE	6	14,140	0.07%	99.92%
BAYSIDE	3	9,470	0.05%	99.97%
BAYSIDE	4	6,430	0.03%	100.00%

		_
TOTAL GENERATION	20,096,140 100.009	6
GENERATION BY COAL UNITS:6,430,390_MWH	GENERATION BY NATURAL GAS UNITS:	<u>13,618,830</u> MWH
% GENERATION BY COAL UNITS 32.00%	% GENERATION BY NATURAL GAS UNITS:	67.77%
GENERATION BY SOLAR UNITS: 46,920 MWH	GENERATION BY GPIF UNITS:	<u>19,681,350</u> MWH
% GENERATION BY SOLAR UNIT 0.23%	% GENERATION BY GPIF UNITS:	97.94%

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION FILING EXHIBIT NO. BSB-2 DOCUMENT NO. 2

EXHIBIT TO THE TESTIMONY

OF

BRIAN S. BUCKLEY

DOCUMENT NO. 2

SUMMARY OF GPIF TARGETS

JANUARY 2018 - DECEMBER 2018

DOCKET NO. 20170001-EI GPIF 2018 PROJECTION EXHIBIT NO. BSB-2, DOCUMENT NO. 2 PAGE 1 OF 1

TAMPA ELECTRIC COMPANY SUMMARY OF GPIF TARGETS JANUARY 2018 - DECEMBER 2018

	Availability			Net
Unit	EAF	POF	EUOF	Heat Rate
Big Bend 2 ¹	61.5	6.6	31.9	11,320
Big Bend 3 ²	66.7	6.6	26.7	10,619
Big Bend 4 ³	78.7	6.6	14.7	10,448
Polk 1 ⁴	74.4	17.3	8.3	9,978
Polk 2 ⁵	83.2	5.8	11.0	7,382
Bayside 1 ⁶	82.5	14.8	2.7	7,489
Bayside 2 ⁷	77.3	18.6	4.0	7,676

1 Original Sheet 8.401.18E, Page 14

2 Original Sheet 8.401.18E, Page 15

3 Original Sheet 8.401.18E, Page 16

4 Original Sheet 8.401.18E, Page 17

5 Original Sheet 8.401.18E, Page 18

6 Original Sheet 8.401.18E, Page 19

7 Original Sheet 8.401.18E, Page 20

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 20170001-EI FUEL & PURCHASED POWER COST RECOVERY AND CAPACITY COST RECOVERY

PROJECTIONS

JANUARY 2018 THROUGH DECEMBER 2018

TESTIMONY

OF

J. BRENT CALDWELL

FILED: AUGUST 24, 2017

TAMPA ELECTRIC COMPANY DOCKET NO. 20170001-EI FILED: 08/24/2017

	I	FILED: 08/24/201/
1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		J. BRENT CALDWELL
5		
6	Q.	Please state your name, address, occupation and employer.
7		
8	A.	My name is J. Brent Caldwell. My business address is 702
9		N. Franklin Street, Tampa, Florida 33602. I am employed
10		by Tampa Electric Company ("Tampa Electric" or "company")
11		as Director, Portfolio Optimization.
12		
13	Q.	Have you previously filed testimony in Docket No.
14		20170001-EI?
15		
16	A.	Yes, I submitted direct testimony on April 3, 2017 and
17		August 18, 2017.
18		
19	Q.	Has your job description, education, or professional
20		experience changed since your most recent testimony?
21		
22	A.	No, it has not.
23		
24	Q.	Have you previously testified before this Commission?
25		
	1	

	I	
1	A.	Yes. I have submitted written testimony in the annual
2		fuel docket since 2001. In 2015, I testified in docket
3		No. 20150001-EI on the subject of natural gas hedging. I
4		have also testified before the Commission in Docket No.
5		20120234-EI regarding the company's fuel procurement for
6		the Polk 2-5 Combined Cycle ("CC") Conversion project.
7		Most recently, I submitted written testimony in Docket
8		No. 201700057-EI regarding natural gas financial hedging.
9		
10	Q.	What is the purpose of your testimony?
11		
12	A.	The purpose of my testimony is to discuss Tampa Electric's
13		fuel mix, fuel price forecasts, potential impacts to fuel
14		prices, and the company's fuel procurement strategies. I
15		will address steps Tampa Electric takes to manage fuel
16		supply reliability and price volatility.
17		
18	Fuel	Mix and Procurement Strategies
19	Q.	What fuels do Tampa Electric's generating stations use?
20		
21	A.	Tampa Electric's fuel mix includes coal, natural gas, and
22		oil. Coal is the primary fuel for Big Bend Station, and
23		natural gas is a secondary fuel. The Polk Unit 1
24		integrated combined cycle unit utilizes coal as the
25		primary fuel and natural gas as a secondary fuel; Polk
		2

Unit 2 CC uses natural gas as a primary fuel and oil as 1 a secondary fuel; and Bayside Station combined cycle units 2 3 and the company's collection of peakers (i.e., aeroderivative combustion turbines) utilize natural gas. 4 5 Since it serves as a backup fuel, oil consumption as a percentage of system generation is minute (i.e., less than 6 one percent). During 2017, continued low natural gas 7 prices haves resulted in greater use of natural gas, 8 compared to the original projection. Based upon the 2017 9 actual-estimate projections, the company expects 2017 10 11 total system generation to be 34 percent coal and 66 percent natural gas, with oil making up a fraction of a 12 percentage point. 13

In 2018, coal-fired and natural gas-fired generation are expected to be approximately 27 percent and 72 percent of total generation, respectively. Generation from other fuel sources is expected to remain less than one percent of the total generation.

14

20

23

Q. Please describe Tampa Electric's fuel supply procurement
 strategy.

A. Tampa Electric emphasizes flexibility and options in its
 fuel procurement strategy for all its fuel needs. The

	1	
1		company strives to maintain a large number of credit
2		worthy and viable suppliers. Similarly, the company
3		endeavors to maintain multiple delivery path options.
4		Tampa Electric also attempts to diversify the locations
5		from which its supply is sourced. Having a greater number
6		of fuel supply and delivery options provides increased
7		reliability and lower costs for Tampa Electric customers.
8		
9	Coal	Supply Strategy
10	Q.	Please describe Tampa Electric's solid fuel usage and
11		procurement strategy?
12		
13	A.	Solid fuel is the primary fuel for the four pulverized-
14		coal steam turbine units at Big Bend Station and the
15		integrated gasification combined cycle Polk Unit 1. The
16		coal-fired units at Big Bend Station are fully scrubbed
17		for sulfur dioxide and nitrogen oxides and are designed
17 18		
		for sulfur dioxide and nitrogen oxides and are designed
18		for sulfur dioxide and nitrogen oxides and are designed to burn high-sulfur Illinois Basin coal. Polk Unit 1
18 19		for sulfur dioxide and nitrogen oxides and are designed to burn high-sulfur Illinois Basin coal. Polk Unit 1 currently burns a mix of petroleum coke and low sulfur
18 19 20		for sulfur dioxide and nitrogen oxides and are designed to burn high-sulfur Illinois Basin coal. Polk Unit 1 currently burns a mix of petroleum coke and low sulfur coal. Each plant has varying operational and
18 19 20 21		for sulfur dioxide and nitrogen oxides and are designed to burn high-sulfur Illinois Basin coal. Polk Unit 1 currently burns a mix of petroleum coke and low sulfur coal. Each plant has varying operational and environmental restrictions and requires fuel with custom
18 19 20 21 22		for sulfur dioxide and nitrogen oxides and are designed to burn high-sulfur Illinois Basin coal. Polk Unit 1 currently burns a mix of petroleum coke and low sulfur coal. Each plant has varying operational and environmental restrictions and requires fuel with custom quality characteristics such as ash content, fusion

Coal is not a homogenous product. The fuel's chemistry and contents vary based on many factors, including geography. The variability of the product dictates Tampa Electric select its fuel based on multiple parameters. Those parameters include unique coal characteristics, price, availability, deliverability, and credit worthiness of the supplier.

To minimize costs, maintain operational flexibility, and 9 ensure reliable supply, Tampa Electric maintains 10 а 11 portfolio of bilateral coal supply contracts with varying term lengths. Tampa Electric monitors the market to obtain 12 the most favorable prices from sources that meet the needs 13 14 of the generation stations. The use of daily and weekly publications, independent research analyses from industry 15 16 experts, discussions with suppliers, and coal solicitations aid the company in monitoring the coal 17 market. This market intelligence also helps shape the 18 company's coal procurement strategy to reflect short and 19 20 long-term market conditions. Tampa Electric's strategy provides a stable supply of reliable fuel sources. 21 In addition, this strategy allows the 22 company the 23 flexibility to take advantage of favorable spot market opportunities and address operational needs. 24

5

25

1

2

3

4

5

6

7

1	Q.	Please summarize Tampa Electric's solid fuel, coal, and
2		petroleum coke supply through 2018.
3		
4	A.	In general, Tampa Electric supplies Big Bend's coal needs
5		through a combination of shorter-term contracts and spot
6		purchases. These shorter-term purchases allow the company
7		to adjust supply to reflect changing coal quality and
8		quantity needs, operational changes and pricing
9		opportunities.
10		
11	Q.	Has Tampa Electric entered into coal supply transactions
12		for 2018 delivery?
13		
14	A.	No, Tampa Electric is in a unique position with respect
15		to solid fuel supply. Tampa Electric has contracts with
16		call options for tonnage in 2018 and 2019, but the price
17		is higher than current market prices. Therefore, Tampa
18		Electric is in the process of securing a portion of its
19		projected need for solid fuel for 2018 through 2020 from
20		lower cost suppliers, and negotiations with suppliers are
21		expected to be complete before the end of the year. These
22		market purchases, combined with projected inventory
23		levels, will allow the company to cover its expected solid
24		fuel supply need for 2018.
25		

Tampa Electric expects to have contracted for, or will 1 have available from inventory, about 85 percent of its 2 3 2018 expected coal needs through agreements with coal suppliers. This not only ensures reliability of supply, 4 5 but also mitigates price volatility. Tampa Electric anticipates the remaining solid fuel consumption for Big 6 Bend Station and Polk Unit 1 will be procured through 7 spot market purchases in 2018. As I discuss later in my 8 testimony, the company will use less coal and more natural 9 gas in 2018, compared to previous years. 10 11 Coal Transportation 12 solid Q. Please describe Tampa Electric's fuel 13 14 transportation arrangements. 15 16 Tampa Electric can receive coal at its Big Bend Station Α. 17 via waterborne or rail delivery. Once delivered to Big Bend Station, Polk Unit 1 solid fuel is trucked to Polk 18 Station. 19 20 maintain multiple 21 Q. Why does the company coal transportation options in its portfolio? 22 23 24 Α. Transportation options provide benefits to customers. Bimodal solid fuel transportation to Big Bend Station 25

	1	
1		affords the company and its customers 1) access to more
2		potential coal suppliers providing a more competitively
3		priced and diverse, delivered coal portfolio, 2) the
4		opportunity to switch to either water or rail in the event
5		of transportation breakdown or interruption on the other
6		mode, and 3) competition for solid fuel transportation
7		contracts for future periods.
8		
9	Q.	Will Tampa Electric continue to receive coal deliveries
10		via rail in 2017 and 2018?
11		
12	A.	Yes. Tampa Electric expects to receive coal for use at
13		Big Bend Station through the Big Bend rail facility during
14		2017 and is evaluating how much coal to receive by rail
15		in 2018. The evaluation depends in part on the results of
16		the previously mentioned ongoing contract negotiations
17		for solid fuel supply.
18		
19	Q.	Please describe Tampa Electric's expectations regarding
20		waterborne coal deliveries.
21		
22	A.	Tampa Electric expects to receive solid fuel supply from
23		waterborne deliveries to its unloading facilities at Big
24		Bend Station. These deliveries come via the Mississippi
25		River System through United Bulk Terminal or from foreign
		8

	1	
1		sources. The ultimate source is dependent upon quality,
2		operational needs, and lowest overall delivered cost.
3		
4	Q.	Please describe the replacement for the Gulf of Mexico
5		("Gulf") transportation contract with a term ending in
6		2018.
7		
8	A.	Tampa Electric is in the process of securing waterborne
9		solid fuel transportation across the Gulf of Mexico from
10		the terminal to Big Bend Station through 2020. The company
11		is in negotiations with a short-list of potential
12		providers. A final contract will be in place by the end
13		of 2017.
14		
15	Q.	Please describe the events that led to the need for
16		execution of a new Gulf transportation agreement.
17		
18	A.	In 2014, Tampa Electric contracted with United Ocean
19		Services ("UOS") to provide Gulf transportation for the
20		following several years. Shortly thereafter,
21		International Shipholding acquired United Ocean Services
22		from United Maritime Group but Tampa Electric's
23		arrangement with UOS was unaffected. Then, on August 1,
24		2016, International Shipholding and UOS filed for Chapter
25		11 protection under the bankruptcy laws of the United
		9

States. In the bankruptcy process, UOS rejected Tampa 1 Electric's agreement. Tampa Electric and UOS agreed to an 2 3 amended agreement as part of the company's emergence from bankruptcy. The amended agreement includes an earlier 4 5 termination, leading to the need to seek a replacement transportation agreement in 2018. 6 7 8 Q. Do you have any other updates to provide with regard to Tampa Electric's solid fuel transportation portfolio? 9 10 Tampa Electric's "open" position for solid fuel and Gulf 11 Α. transportation, along with other operational and market 12 factors, allows the company to use more natural gas in 13 14 Big Bend Units 1 and 2. As a result, Tampa Electric will contract for fewer tons of solid fuel supply and Gulf 15 16 transportation in the remainder of 2017 and 2018, than it would have otherwise. This change will allow Tampa 17 Electric to utilize low-cost natural gas-fired generation 18 and provides projected fuel savings to Tampa Electric's 19 20 customers for the period July 2017 through December 2018. 21 Please describe any other significant factors that Tampa 22 Q. 23 Electric considered in developing its 2018 solid fuel supply portfolio. 24 25

Tampa Electric continues to place emphasis on flexibility 1 Α. in its solid fuel supply portfolio. The company recognizes 2 3 that several factors may impact the annual consumption of solid fuel. New or pending environmental regulations may 4 5 affect the types of coal, the quantities of coal that can be consumed at the stations or, most likely, both. Also, 6 the use of different types of fuel within the state 7 continue to evolve as generation assets are built, 8 upgraded or retired. For instance, Tampa Electric's Polk 9 Unit 2 CC entered service in January 2017. The Polk Unit 10 11 2 CC project converted the existing natural gas combustion turbines at Polk Power Station into a very efficient 12 natural gas combined cycle unit. Similarly, several new 13 14 natural gas combined cycle units have been built within the state during the past several years. Depending on the 15 relative price of delivered solid fuel, delivered natural 16 gas and the dynamics of the wholesale power market, the 17 quantity of solid fuel burned 18 actual may vary significantly each year. Tampa Electric strives to 19 20 balance the need to have reliable solid fuel commodity and transportation while mitigating the potential for 21 significant shortfall penalties if the commodity or 22 23 transportation is not needed.

24 25

19

Natural Gas Supply Strategy

2 How does Tampa Electric's natural gas procurement and Q. 3 transportation strategy achieve competitive natural gas purchase prices for long- and short-term deliveries? 4 5 Tampa Electric uses a Similar to its coal strategy, 6 Α. gas procurement. portfolio approach to natural 7 This approach consists of a blend of pre-arranged base, 8 intermediate, and swing natural gas supply contracts 9 complemented with shorter term spot purchases. The 10 11 contracts have various time lengths to help secure needed supply at competitive prices and maintain the ability to 12 take advantage of favorable natural gas price movements. 13 Tampa Electric purchases its physical natural gas supply 14 from approved counterparties, enhancing the liquidity and 15 diversification of its natural gas supply portfolio. The 16 natural gas prices are based on monthly and daily price 17 indices, further increasing pricing diversification. 18

20 Tampa Electric diversifies its pipeline transportation including receipt points. 21 assets, The company also utilizes pipeline and storage tools to enhance access to 22 23 natural gas supply during hurricanes or other events that constrain supply. Such actions improve the reliability 24 cost-effectiveness of the physical delivery 25 and of

natural gas to the company's power plants. Furthermore, 1 Tampa Electric strives daily to obtain reliable supplies 2 3 of natural gas at favorable prices in order to mitigate costs to its customers. Additionally, Tampa Electric risk 4 5 management activities reduce natural gas price volatility. 6

Q. Please describe Tampa Electric's diversified natural gas transportation agreements.

11 Α. Tampa Electric receives natural gas via the Florida Gas Transmission ("FGT") and Gulfstream Natural Gas System, 12 ("Gulfstream") pipelines. The ability to deliver 13 LLC 14 natural gas directly from two pipelines increases the fuel delivery reliability for Bayside Power Station, which is 15 composed of two large natural gas combined-cycle units 16 and four aero-derivative combustion turbines. Natural gas 17 can also be delivered to Big Bend Station from Gulfstream 18 to support the aero-derivative combustion turbines and 19 20 natural gas co-firing in the coal units. Polk Station receives natural gas from FGT to support Polk Unit 2 CC 21 and, as an alternate fuel, Polk Unit 1. 22

23

7

8

9

10

Q. Are there any significant changes to Tampa Electric's
expected natural gas usage?

1	A.	Tampa Electric's Big Bend Station coal-fired units can be
2		fueled with natural gas for ignition, reliability,
3		emissions control, and power generation. As such, Tampa
4		Electric is seeking to maximize its existing pipeline
5		capacity and burning natural gas to the extent that there
6		is available capacity. For the balance of 2017 and during
7		2018, Big Bend Units 1 and 2 are projected to be fueled
8		by natural gas only. This opportunity has emerged as the
9		result of continued low natural gas prices, the open coal
10		supply and transportation portfolio positions, and
11		available natural gas pipeline capacity to the station.
12		The company projects that this change will result in fuel
13		savings, as I stated earlier in my testimony.
14		
15	Q.	What actions does Tampa Electric take to enhance the
16		reliability of its natural gas supply.
17		
18	A.	Tampa Electric maintains natural gas storage capacity
19		with Bay Gas Storage near Mobile, Alabama to provide
20		operational flexibility and reliability of natural gas
21		supply. Currently, the company reserves 1,250,000 MMBtu
22		of long-term storage capacity and has 250,000 MMBtu of
23		shorter-term storage capacity.
24		
25		In addition to storage, Tampa Electric maintains
		1 4

diversified natural gas supply receipt points in FGT Zones 1, 2, and 3. Diverse receipt points reduce the company's vulnerability to hurricane impacts and provide access to potentially lower priced gas supply.

Tampa Electric also reserves capacity on the Southeast 6 Supply Header ("SESH") and the Transco lateral. SESH and 7 the Transco lateral connect the receipt points of FGT and 8 other Mobile Bay area pipelines with natural gas supply 9 in the mid-continent. Mid-continent natural 10 qas 11 production has grown and continues to increase. Thus, SESH and Transco lateral give Tampa Electric access to secure, 12 competitively priced on-shore gas supply for a portion of 13 14 its portfolio.

16 Q. Has Tampa Electric acquired additional natural gas
 17 transportation for 2017 and 2018 due to greater use of
 18 natural gas at Big Bend Station?

19 20

15

1

2

3

4

5

A. No. Tampa Electric has not acquired additional long-term
 firm pipeline capacity for 2017 and 2018 due to greater
 use of natural gas at Big Bend Station. The company
 continues to supplement its existing transportation
 portfolio with near-term daily transportation to support
 the incremental natural gas burn on its system, including

in Big Bend Units 1 and 2. Nonetheless, with its growing 1 2 dependence on natural gas, the company continues to 3 monitor the interstate pipeline market for attractive opportunities long-term, to secure firm pipeline 4 5 capacity. While there is daily transportation capacity to support operation of Big Bend Units 1 and 2 on natural 6 gas, there is not sufficient spare capacity to support 7 8 additional gas usage at Big Bend Station.

10 Q. Has Tampa Electric reasonably managed its fuel 11 procurement practices for the benefit of its retail 12 customers?

9

13

25

14 Α. Yes, Tampa Electric diligently manages its mix of long, intermediate, and short-term purchases of fuel in a manner 15 16 designed to reduce overall fuel costs while maintaining 17 electric service reliability. The company's fuel activities and transactions are reviewed and audited on 18 a recurring basis by the Commission. In addition, the 19 company monitors its rights under contracts with fuel 20 suppliers to detect and prevent any breach of those 21 rights. Tampa Electric continually strives to improve its 22 knowledge of fuel markets and to take advantage 23 of opportunities to minimize the costs of fuel. 24

Projected 2018 Fuel Prices 1 How does Tampa Electric project fuel prices? 2 Q. 3 Tampa Electric reviews fuel price forecasts from sources Α. 4 5 widely used in the industry, including the New York Mercantile Exchange ("NYMEX"), PIRA Energy, the Energy 6 Information Administration, and other energy 7 market information sources. Future prices for energy commodities 8 traded on NYMEX, averaged over five consecutive 9 as business days in May 2017, form the basis of the natural 10 11 gas and No. 2 oil market commodity price forecasts. The price projections for these two commodities are then 12 adjusted to incorporate expected transportation costs and 13 location differences. 14 15 Coal prices and coal transportation prices are projected 16 using contracted pricing and information from industry 17 recognized consultants and published indices. Also, the 18 price projections are specific to the particular quality 19 20 and mined location of coal utilized by Tampa Electric's Big Bend Station and Polk Unit 1. Final as-burned prices 21 derived using expected commodity prices 22 are and 23 associated transportation costs. 24 How do the 2018 projected fuel prices compare to the fuel 25 Q.

1	i	
1		prices projected for 2017?
2		
3	A.	The commodity price for natural gas during 2018 is
4		projected to be slightly lower (\$3.13 per MMBtu) than the
5		2017 projected price (\$3.17 per MMBtu). The market price
6		for natural gas in 2018 is expected to be similar to the
7		prices projected in 2017.
8		
9		The 2018 coal commodity price projection is slightly
10		higher (\$35.80 per ton) than the price projected for 2017
11		(\$30.88 per ton) during preparation of the 2017 fuel
12		clause factor. Production cuts and growing international
13		demand for coal have put some upward pressure on coal
14		prices.
15		
16	Risk	Management Activities
17	Q.	Please describe Tampa Electric's risk management
18		activities?
19		
20	A.	On October 24, 2016 electric investor-owned utilities
21		Duke Energy Florida, Gulf Power and Tampa Electric
22		(collectively the "IOUs"), Office of Public Counsel, the
23		Florida Industrial Power Users Group, and the Florida
24		Retail Federation jointly entered into a Stipulation and
25		Agreement ("Agreement"). Under the terms of the
	l	18

Agreement, the IOUs agreed to put in place a 100% 1 2 moratorium on any new hedges, effective immediately upon 3 the Commission's approval of the Agreement with that moratorium extending through calendar year 2017. The 4 5 Agreement further called for a workshop or workshops, as soon as practicable to consider all alternatives 6 to prospectively resolving the hedging issues, including but 7 not limited to the Gettings approach, a reduction in the 8 current levels of hedging and hedging durations, use of 9 different financial products, or the termination of 10 11 financial hedging altogether. The stated goal was either establishing a basis for the IOUs to present risk 12 management plans for 2018 that all stakeholders could 13 14 agree upon or not object to, or reaching some other mutually agreeable resolution of the hedging 15 issues identified in Docket No. 20160001-EI. The Agreement was 16 approved by the Commission on December 5, 2016, with the 17 issuance of Order No. PSC-2016-0547-FOF-EI. The 18 Commission, by Order No. PSC-2017-0134-PCO-EI, issued 19 20 April 13, 2017 in Docket No. 20170001-EI, subsequently determined the IOUs would not have to file a Risk 21 Management Plan for 2018 because an evidentiary hearing 22 23 on hedging will be held September 27-28, 2017 in Docket This order effectively extended the No. 20170057-EI. 24 hedging moratorium until a decision is reached in Docket 25

No. 20170057-EI. A low number of natural gas financial 1 hedges equating to a relatively small volume remain from 2 3 the hedging activities prior to the moratorium. Those financial hedges were placed in accordance with the 4 5 company's Commission-approved Risk Management Plan. 6 Were Tampa Electric's efforts through July 31, 2017 to 7 Q. mitigate price volatility through its non-speculative 8 hedging program prudent? 9 10 11 Α. Yes, Tampa Electric has executed hedges according to the Risk Management Plan approved by the company's Risk 12 Authorizing Committee and filed with the Commission. On 13 14 April 3, 2017, the company filed its 2016 Natural Gas Hedging Activities Report. Additionally, utilities must 15 submit a Natural Gas Hedging Activity Report showing the 16 results of hedging activities from January through July 17 Hedging Activity Report of the current year. The 18 facilitates prudence reviews through July 31st of the 19 20 current year and allows for the Commission's prudence determination at the annual fuel hearing. Tampa Electric 21 filed its Natural Gas Hedging Activities Report in this 22 23 docket on August 18, 2017. The report shows the results of the company's prudent hedging activities from January 24 through July 2017. The company executed hedges for a 25

1		smaller volume of expected usage than stated in its Risk
2		Management Plan for this period due to the 2016 agreement
3		for a hedging moratorium, as I discussed above.
4		
5	Q.	Does this conclude your direct testimony?
6		
7	A.	Yes, it does.
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		
	1	21

BEFORE THE

FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 20170001-EI FUEL & PURCHASED POWER COST RECOVERY AND

CAPACITY COST RECOVERY

PROJECTIONS

JANUARY 2018 THROUGH DECEMBER 2018

TESTIMONY

OF

BENJAMIN F. SMITH II

FILED: AUGUST 24, 2017

TAMPA ELECTRIC COMPANY DOCKET NO. 20170001-EI FILED: 08/24/2017

	1	
1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		PREPARED DIRECT TESTIMONY
3		OF
4		BENJAMIN F. SMITH II
5		
6	Q.	Please state your name, address, occupation and employer.
7		
8	A.	My name is Benjamin F. Smith II. My business address is
9		702 North Franklin Street, Tampa, Florida 33602. I am
10		employed by Tampa Electric Company ("Tampa Electric" or
11		"company") in Wholesale Marketing Group within the
12		Wholesale Marketing, Planning & Fuels Department.
13		
14	Q.	Please provide a brief outline of your educational
15		background and business experience.
16		
17	A.	I received a Bachelor of Science degree in Electric
18		Engineering in 1991 from the University of South Florida
19		in Tampa, Florida and a Master of Business Administration
20		degree in 2015 from Saint Leo University in Saint Leo,
21		Florida. I am also a registered Professional Engineer
22		within the State of Florida and a Certified Energy Manager
23		through the Association of Energy Engineers. I joined
24		Tampa Electric in 1990 as a cooperative education student.
25		During my years with the company, I have worked in the

of transmission engineering, distribution 1 areas 2 engineering, resource planning, retail marketing, and 3 wholesale power marketing. I am currently the Manager, Wholesale Origination Wholesale in the Marketing, 4 5 Planning and Fuels Department. My responsibilities are to long-term evaluate short and purchase 6 and sale opportunities within the wholesale power market 7 and assist in wholesale origination and contract structures. 8 In this capacity, I interact with wholesale power market 9 participants such as utilities, municipalities, electric 10 11 cooperatives, power marketers, and other wholesale developers and independent power producers. 12 13 14 Q. Have you previously testified before the Florida Public Service Commission ("Commission")? 15 16 Yes. I have submitted written testimony in the annual Α. 17 fuel docket since 2003, and I testified before this 18 Commission in Docket Nos. 20030001-EI, 20040001-EI, and 19 20 20080001-EI regarding the appropriateness and prudence of Tampa Electric's wholesale purchases and sales. 21 22 23 Q. What is the purpose of your testimony in this proceeding? 24 The purpose of my testimony is to provide a description 25 Α.

Tampa Electric's purchased power agreements 1 of the company has entered into and for which it is seeking cost 2 3 recovery through the Fuel and Purchased Power Cost Recovery Clause ("fuel clause") and the Capacity Cost 4 5 Recovery Clause. Ι also describe Tampa Electric's purchased power strategy for mitigating price and supply-6 side risk, while providing customers with a reliable 7 supply of economically priced purchased power. 8 9 Please describe the efforts Tampa Electric makes to ensure 10 Q. 11 that its wholesale purchases and sales activities are conducted in a reasonable and prudent manner. 12 13 14 Α. Tampa Electric evaluates potential purchase and sale opportunities by analyzing the expected available amounts 15 of generation and the power required to meet the projected 16 demand and energy of its customers. Purchases are made to 17 achieve reserve margin requirements, meet customers' 18 demand and energy needs, supplement generation during 19 20 unit outages, and for economical purposes. When Tampa Electric considers making a power purchase, the company 21 aggressively searches for available supplies of wholesale 22 23 capacity or energy from creditworthy counterparties. The objective is to secure reliable quantities of purchased 24 power for customers at the best possible price. 25

Conversely, when there is a sales opportunity, the company 1 offers profitable wholesale capacity or energy products 2 3 to creditworthy counterparties. The company has wholesale power purchase and sale transaction enabling agreements 4 5 with numerous counterparties. This process helps to ensure that the company's wholesale purchase and sale 6 activities are conducted in a reasonable and prudent 7 manner. 8 9 Has Tampa Electric reasonably managed its wholesale power 10 Q. 11 purchases and sales for the benefit of its retail customers? 12 13 14 Α. Yes, it has. Tampa Electric has fully complied with, and continues to fully comply with, the Commission's March 15 11, 1997 Order, No. PSC-1997-0262-FOF-EI, issued in 16 Docket No. 19970001-EI, which governs the treatment of 17 non-separated wholesale 18 separated and sales. The company's wholesale purchase and sale activities and 19 20 transactions are also reviewed and audited on a recurring basis by the Commission. 21 22 23 In addition, Tampa Electric actively manages its wholesale purchases and sales with the 24 qoal of capitalizing on opportunities to reduce customer costs 25

improve reliability. The company monitors its 1 and 2 contractual rights with purchased power suppliers as well as with entities to which wholesale power is sold to 3 detect and prevent any breach of the company's contractual 4 Tampa Electric continually strives 5 rights. Also, to improve its knowledge of wholesale power markets and 6 available opportunities within the marketplace. The 7 company uses this knowledge to minimize the costs of 8 purchased power and to maximize the savings the company 9 provides retail customers by making wholesale sales when 10 11 excess power is available on Tampa Electric's system and market conditions allow. 12

13 14

15

16

25

Q. Please describe Tampa Electric's 2017 wholesale power purchases.

Tampa Electric assessed the wholesale power market and 17 Α. entered into short and long-term purchases based on price 18 and availability of supply. Approximately 2.3 percent of 19 the company's expected needs for 2017 will be met using 20 purchased power. This includes economy energy purchases, 21 purchases from qualifying facilities, pre-existing firm 22 23 purchased power agreements with Pasco Cogen and Duke Energy Florida ("Duke"), and reliability purchases. 24

My testimony in previous years' dockets described the 1 2 agreement with Pasco Cogen and Duke. However, in summary, 3 the Pasco Cogen purchase is a call option with dual-fuel (i.e., natural gas or oil) capability. The Pasco Cogen 4 5 purchase began January 2009, is for 121 MW of combinedcycle capacity and continues through 2018. The Duke 6 purchase was for 250 MW of combined-cycle capacity with 7 a term of February 2016 through February 2017. In addition 8 to providing customers with efficient combined-cycle 9 energy, the company secured the Duke purchase to support 10 11 its reserve margin during the construction of Tampa Electric's Polk Unit 2-5 combined cycle conversion ("Polk 12 Unit 2 CC") project. Both the Pasco Cogen and Duke 13 14 purchases were previously approved by the Commission as being cost-effective for Tampa Electric customers. 15 16 Has Tampa Electric entered into any other wholesale power 17 Ο. purchases in 2017? 18 19 Other than the purchases previously described in my 20 Α. testimony, the company has not entered into any additional 21 power purchases in 2017. 22 23 0. Does Tampa Electric anticipate entering into 24 new wholesale power purchases for 2018 and beyond? 25

Tampa Electric does not anticipate entering into other 1 Α. 2 purchased power agreements at this time. However, the 3 company will continue to evaluate its options in light of changing circumstances and new opportunities. This 4 5 evaluation includes the review of short and long-term capacity and energy purchases to augment its 6 own generation for the year 2018 and beyond. The company 7 always assesses the merits of long-term purchase 8 opportunities and will consider securing additional long-9 term purchases that bring value to customers. Also, Tampa 10 11 Electric will continue to evaluate and utilize the shortterm purchased power market as part of its purchasing 12 strategy going forward. Currently, Tampa Electric expects 13 14 purchased power to meet approximately two percent of its 2018 energy needs. This energy includes contributions 15 from the previously mentioned Pasco Cogen firm purchase. 16 17 How does Tampa Electric mitigate the risk of disruptions 18 Q. to its purchase power supplies during major weather 19 20 related events, such as hurricanes? 21 During hurricane season, Tampa Electric continues 22 Α. to 23 utilize a purchased power risk management strategy to minimize potential power supply disruptions. The strategy 24 includes monitoring storm activity; evaluating the impact 25

of storms on the wholesale power market; purchasing power 1 the forward market for reliability and economics; 2 on 3 evaluating transmission availability and the geographic location of electric resources; reviewing sellers' fuel 4 5 sources and dual-fuel capabilities; and focusing on fueldiversified purchases. Notably, the company's Pasco Cogen 6 power agreement is from a dual-fuel resource. This allows 7 the resource to run on either natural gas or oil, which 8 enhances supply reliability during a potential hurricane-9 related disruption in natural gas supply. Absent the 10 11 threat of a hurricane, and for all other months of the year, the company evaluates economic combinations 12 of short- and long-term purchase opportunities in the market 13 14 place. 15 Please describe Tampa Electric's wholesale energy sales 16 Q. for 2017 and 2018. 17 18 Tampa Electric entered into various non-separated 19 Α. 20 wholesale sales in 2017, and the company anticipates making additional non-separated sales during the balance 21 2017 and 2018. The gains from these sales are 22 of 23 distributed amongst Tampa Electric and its customers in

8

24

25

accordance with the company's current incentive mechanism

established in Order No. PSC-2001-2371-FOF-EI, issued on

December 7, 2001 in Docket No. 20010283-EI. The current 1 incentive mechanism provides that all gains from non-2 3 separated sales be returned to customers through the fuel clause, up to the three-year rolling average threshold. 4 5 For all gains above the three-year rolling average threshold, customers receive 80 percent and the company 6 retains the remaining 20 percent. In 2017, Tampa Electric 7 projected the company's gains from non-separated sales to 8 be below the threshold, based on six months actual and 9 six months of projected data. However, due to favorable 10 11 market conditions and results from July, the company now expects to exceed the 2017 threshold of \$1,493,095. 12 Therefore, Tampa Electric expects customers to receive 13 14 100 percent of the 2017 non-separated sales gains up to \$1,493,095, and 80 percent of gains above the threshold. 15 16 Based on seven months of actual and five months of projected data, the company is projected to retain 17 approximately \$15,700 in gains for the year. In 2018, the 18 company projects gains to be \$54,590, of which customers 19 20 would receive 100 percent, since the amount is less than the 2018 projected three-year rolling average threshold 21 of \$881,855. 22

23

24 25 Q. Please summarize your direct testimony.

	1	
1	A.	Tampa Electric monitors and assesses the wholesale power
2		market to identify and take advantage of opportunities in
3		the marketplace, and these efforts benefit the company's
4		customers. Tampa Electric's energy supply strategy
5		includes self-generation and short and long-term power
6		purchases. The company purchases in both physical forward
7		and spot wholesale power markets to provide customers with
8		a reliable supply at the lowest possible cost. In addition
9		to the cost benefits, this purchased power approach
10		employs a diversified physical power supply strategy that
11		enhances reliability. The company also enters into
12		wholesale sales that benefit customers when market
13		conditions allow.
14		
15	Q.	Does this conclude your direct testimony?
16		
17	A.	Yes, it does.
18		
19		
20		
21		
22		
23		
24		
25		
	l	10