GPS Stock Project 2016

Technical Specification
and

Scope of Supply

MTU 12V2000 DS800
DG12V2000A3N

MTU Project: 390211083

Selection Criteria for the Scope of Supply

Criteria	Selection	for Product No.
Frequency	60 Hz	1,
Voltage for starters	480 V	1,
Phase	3 Phase	1,
Unit Specification	UL2200	1,
Temp Rise	130°	1,
Power Output	800 kW	1,
Exhaust Emissions (EPA)	EPA Tier 2	1,
Radiator Design Temperature	$50^{\circ} \mathrm{C}$	1,
Circuit Breaker Options	Single Circuit Breaker	1,
Breaker Wire Color Scheme	Standard Breaker Wire Color Scheme	1,
Control Panel	With Control Panel	1,
Paralleling	No Paralleling Operation	1,
OPU/HSD	Weatherproof Enclosure	1,
Fuel Tank	with tank	1,
Acceptance testing	Factory Acceptance Testing	1,
Publications	Standard Publications (English)	1,
Country of operation / Flag state	USA / Canada	1,

Scope of Supply

valid for product no.
1 ,
1 SYSTEM CONFIGURATION
1.1 System Description
Model: DG12V2000A3N
Application 60 Hz Standby
1.2 Cooling Package
50 Deg C Cooling System
1,

- Closed loop, liquid cooled, with radiator factory mounted on engine-generator set mounting frame and integral engine-driven coolant pump
1.3 Circuit Breaker
1,
Single Circuit Breaker
Standard Circuit Breaker
1,
1200 Amp 3 Pole 100\% CB Powerbreak SSF16G216
Circuit Breaker Accessories
ENTELLIGUARD TRIP UNIT: GB216L5XXXFXXXX - GROUND FAULT INDICATION ONLY
CB Auxiliary Switch 1200-4000A 100\% Powerbreak
1,
CB Shunt Trip 1200-4000A 24V 100\% Powerbreak 1,
Circuit Breaker Factory Mounted 1,
Circuit Breaker Mounted Right Side 1,
Standard breaker wire scheme: 1,
- Phase 1 (A) is Black label "L1"
- Phase $2(B)$ is Red label "L2"
- Phase 3 (C) is Blue label "L3"
- Neutral is White label "NEU"
1.4 Starting Aids 1,
Battery Rack Only 1,- Shipped with Battery Rack only (no battery included)
Battery Charger: NRG 22-20-RCLS 1 ,
Battery Charger Mounted \& DC Wired 1,
Block Heater 1,
20 Deg F Block Heater (208V 1PH - 6000W)
valid for product no.
Model: CSM10608-000
1.5 Genset Enclosure 1 ,
Weather Proof EnclosureSteel with Internal ExhaustWeather Proof Sound AttenuationAC Interior Lights
1.6 Vibration Isolation1,
Pad Isolators 1 ,
2 ENGINE CONFIGURATION
2.1 Engine System
EPA Certification Tier Level: Tier 2
Engine Model: MTU 12V2000 1 ,
Note Emission Compliance 1,- Please note that the engines and systems (only) comply with the country or region specificemission requirements and have appropriate emission certification(s) which are explicitlystated in respective RRPS/MTU defined technical specifications. Any Export / Import /Operation of the engine in countries or regions with different applicable emission lawrequirements is therefore at your own responsibility
2.2 Exhaust System 1,
Internal Critical Grade Silencer 1,
2.3 FUEL SYSTEM 1 ,
24 Hr/1390 Gallon Extended Fuel Tank W Stub-Up 1,
Fuel Water Separator Single (Wire-Braid Reinforced Hose) 1,
2.4 Air Intake System 1 ,
Air Filter (Standard)
3 GENERATOR CONFIGURATION1 ,
3.1 Generator Specification 1,
4 Wire 1,
Generator Model Number: 574/4038
3.2 Generator accessories 1,
PMG Standard 1,
valid for product no.
4 CONTROL PANEL CONFIGURATION 1 ,
4.1 Control panel 1,
MGC-2020 Control Panel 1 ,
Control Panel Mounted Left Side 1,
Control Panel Mounted Left Side 1 ,
High Fuel Level Pre-Alarm 1 ,
Critical Low Fuel Level Alarm 1,
(4) Relay Option 1 ,- The 4-relay board includes (4) 10 amp form C relays customizable for user definedfunctionality requirements. Standard outputs as follows:

1. Engine Run
2. Engine Fail3. Minor Alarm4. Spare
Modbus RTU-TCP Gateway1 ,
5 SERVICES AND AFTER SALES SUPPLY 1,
5.1 Warranty 1 ,
2 Year/3000 Hour Basic Standby Limited Warranty (Standard) 1,
6 PAINTING 1 ,
6.1 Painting 1 ,
Paint Color: ANSI 61 Gray 1 ,
7 MISCELLANEOUS 1,
7.1 Documentation 1,
English 1,
1 CD Format 1 ,
English 1,
2 Flash Drive 1 ,
8 FUNCTIONAL TESTING 1 ,
8.1 Acceptance Testing 1,
Standard Commercial Test 1,

DIESEL GENERATOR SET MTU 12V2000 DS800

$800 \mathrm{kWe} / 60 \mathrm{~Hz}$ / Standby 208-4160V

Reference MTU 12V2000 DS800 (725 kWe) for Prime Rating Technical Data

SYSTEM RATINGS
Standby

Voltage (L-L)	208V**	240V**	380 V	480V**	600V**	4160V
Phase	3	3	3	3	3	3
PF	0.8	0.8	0.8	0.8	0.8	0.8
Hz	60	60	60	60	60	60
kW	800	800	800	800	800	800
kVA	1000	1000	1000	1000	1000	1000
Amps	2779	2408	1521	1204	963	138
skVA@30\%						
Voltage Dip	1800	1800	1850	2500	2825	2600
Generator Model*	741 RSL4045	741 RSL4045	575RSL4044	574RSL4038	574RSS4280	742FSM4364
Temp Rise	$130{ }^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C} / 40{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C} / 40{ }^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$	$130{ }^{\circ} \mathrm{C} / 40^{\circ} \mathrm{C}$
Connection	12 LEAD LOW WYE	12 LEAD HI DELTA	4 BAR WYE	4 LEAD WYE	4 LEAD WYE	6 LEAD WYE

* Consult the factory for alternate configuration.
** UL 2200 Offered

CERTIFICATIONS AND STANDARDS

// Emissions - EPA Tier 2 Certified	// Performance Assurance Certification (PAC)
	- Generator Set Tested to ISO 8528-5 for Transient Response
// Generator set is designed and manufactured	- Verified product design, quality and performance integrity
in facilities certified to standards ISO 9001:2008 and	- All engine systems are prototype and factory tested
ISO 14001:2004	// Power Rating
	- Accepts Rated Load in One Step Per NFPA 110
// UL 2200 / CSA - Optional	- Permissible average power output during 24 hours of
- UL 2200 Listed	operation is approved up to 85\%.
- CSA Certified	

STANDARD FEATURES*

// MTU Onsite Energy is a single source supplier
// Global Product Support
// 2 Year Standard Warranty
// 12V 2000 Diesel Engine
- 23.9 Liter Displacement
- Electronic Unit Pump Injection
- 4-Cycle
// Complete Range of Accessories

// Generator
- Brushless, Rotating Field Generator
- 2/3 Pitch Windings
- PMG (Permanent Magnet Generator) supply to regulator
- 300\% Short Circuit Capability
// Digital Control Panel(s)
- UL Recognized, CSA Certified, NFPA 110
- Complete System Metering
- LCD Display
// Cooling System
- Integral Set-Mounted
- Engine Driven Fan

STANDARD EQUIPMENT*

```
// Engine
```

Air Cleaners
Oil Pump
Oil Drain Extension \& S/O Valve
Full Flow Oil Filter
Closed Crankcase Ventilation
Jacket Water Pump
Inter Cooler Water Pump
Thermostats
Blower Fan \& Fan Drive
Radiator - Unit Mounted
Electric Starting Motor - 24V
Governor - Electronic Isochronous
Base - Structural Steel
SAE Flywheel \& Bell Housing
Charging Alternator - 24V
Battery Box \& Cables
Flexible Fuel Connectors
Flexible Exhaust Connection
EPA Certified Engine

// Generator

NEMA MG 1, IEEE and ANSI standards compliance for temperature rise and motor starting
Sustained short circuit current of up to 300% of the rated current for up to 10 seconds
Self-Ventilated and Drip-Proof
Superior Voltage Waveform
Digital, Solid State, Volts-per-Hertz Regulator

No Load to Full Load Regulation
Brushless Alternator with Brushless Pilot Exciter
4 Pole, Rotating Field
$130^{\circ} \mathrm{C}$ Maximum Standby Temperature Rise
1 Bearing, Sealed
Flexible Coupling
Full Amortisseur Windings
125% Rotor Balancing
3-Phase Voltage Sensing
$\pm 0.25 \%$ Voltage Regulation
100% of Rated Load - One Step
5\% Maximum Total Harmonic Distortion

// Digital Control Panel(s)

Digital Metering
Engine Parameters
Generator Protection Functions
Engine Protection
CANBus ECU Communications
Windows ${ }^{\circledR}$-Based Software
Multilingual Capability
Remote Communications to RDP-110 Remote Annunciator
Programmable Input and Output Contacts
UL Recognized, CSA Certified, CE Approved
Event Recording
IP 54 Front Panel Rating with Integrated Gasket
NFPA110 Compatible

[^0]APPLICATION DATA

// Engine

Manufacturer	MTU
Model	12V 2000 G85 TB
Type	4-Cycle
Arrangement	12-V
Displacement: L (in^{3})	$23.9(1,457)$
Bore: cm (in)	13 (5.1)
Stroke: cm (in)	15 (5.9)
Compression Ratio	16:1
Rated RPM	1,800
Engine Governor	Electronic Isochronous (ADEC)
Maximum Power: kWm (bhp)	$890(1,193)$
Speed Regulation	$\pm 0.25 \%$
Air Cleaner	Dry

// Liquid Capacity (Lubrication)

Total Oil System: L (gal)	77 (20.3)
Engine Jacket Water Capacity: L (gal)	$110(29.1)$
After Cooler Water Capacity: L (gal)	$20(5.3)$
System Coolant Capacity: L (gal)	
// Electrical	
Electric Volts DC	$24.5)$
Cold Cranking Amps Under $-17.8^{\circ} \mathrm{C}\left(0^{\circ} \mathrm{F}\right)$	2,800

// Fuel System

Fuel Supply Connection Size	\#12 JIC 37° Female 3/4" NPT Adapter Provided
Fuel Return Connection Size	\#4 JIC 37° Female
	1/4" NPT Adapter Provided
Maximum Fuel Lift: m (ft)	3 (10)
Recommended Fuel	Diesel \#2
Total Fuel Flow: L/hr (gal/hr)	480.7 (127)

// Fuel Consumption

At 100\% of Power Rating: L/hr (gal/hr)	218.8 (57.8)
At 75\% of Power Rating: L/hr (gal/hr)	164.6 (43.5)
At 50% of Power Rating: L / hr (gal/hr)	111.3 (29.4)
// Cooling - Radiator System	
Ambient Capacity of Radiator: ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$	50 (122)
Maximum Restriction of Cooling Air, Intake, and Discharge Side of Rad.: kPa (in. $\mathrm{H}_{2} \mathrm{O}$)	0.12 (0.5)
Water Pump Capacity: L/min (gpm)	833 (220)
After Cooler Pump Capacity: L/min (gpm)	257 (68)
Heat Rejection to Coolant: kW (BTUM)	$315(17,913)$
Heat Rejection to After Cooler: kW (BTUM)	$270(15,354)$
Heat Radiated to Ambient: kW (BTUM)	$84.5(4,805)$
Fan Power: kW (hp)	38 (51)

// Air Requirements	
Aspirating: *m ${ }^{3} / \mathrm{min}$ (SCFM)	$66(2,331)$
Air Flow Required for Rad.	
Cooled Unit: *m³/min (SCFM)	1,164 (41,090)
Remote Cooled Applications;	
Air Flow Required for Dissipation	
Max of $25^{\circ} \mathrm{F}$ Rise: ${ }^{*} \mathrm{~m}^{3} / \mathrm{min}$ (SCFM)	307 (10,840)

* Air density $=1.184 \mathrm{~kg} / \mathrm{m}^{3}\left(0.0739 \mathrm{lbm} / \mathrm{ft}^{3}\right)$

// Exhaust System

Gas Temp. (Stack): ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right) \quad 580(1,076)$
Gas Volume at Stack
Temp: $\mathrm{m}^{3} / \mathrm{min}$ (CFM) $174(6,145)$
Maximum Allowable
Back Pressure: $\mathrm{kPa}\left(\right.$ in. $\left.\mathrm{H}_{2} \mathrm{O}\right) \quad 8.5$ (34.1)

WEIGHTS AND DIMENSIONS

Drawing above for illustration purposes only, based on standard open power 480 volt generator set. Lengths may vary with other voltages. Do not use for installation design. See website for unit specific template drawings.
System
Open Power Unit (OPU)

```
Dimensions (LxW xH)
4,375 \times 1,905 \times 2,623 mm (172.25 x 75 x 103.25 in)
```

```
Weight (less tank)
5,737 kg (12,648 lb)
```

Weights and dimensions are based on open power units and are estimates only. Consult the factory for accurate weights and dimensions for your specific generator set.

SOUND DATA

Unit Type	Standlby Full Load
Level 0: Open Power Unit dB(A)	88.9

Sound data is provided at $7 \mathrm{~m}(23 \mathrm{ft})$. Generator set tested in accordance with ISO $8528-10$ and with infinite exhaust.

EMISSIONS DATA

$\mathrm{NO}_{\mathrm{x}}+\mathrm{NMHC}$	CO	PM
4.66	0.45	0.01

All units are in g/hp-hr and shown at 100\% load (not comparable to EPA weighted cycle values). Emission levels of the engine may vary with ambient temperature, barometric pressure, humidity, fuel type and quality, installation parameters, measuring instrumentation, etc. The data was obtained in compliance with US EPA regulations. The weighted cycle value (not shown) from each engine is guaranteed to be within the US EPA Standards.

RATING DEFINITIONS AND CONDITIONS

// Standby ratings apply to installations served by a reliable utility source. The standby rating is applicable to varying loads for the duration of a power outage. No overload capability for this rating. Ratings are in accordance with ISO 8528-1, ISO 3046-1, BS 5514, and AS 2789. Average load factor: $\leq 85 \%$.
// Deration Factor:
Altitude: Consult your local MTU Onsite Energy Power Generation Distributor for altitude derations.
Temperature: Consult your local MTU Onsite Energy Power Generation Distributor for temperature derations.

C/F = Consult Factory/MTU Onsite Energy Distributor N/A $=$ Not Available

MTU Onsite Energy

A Rolls-Royce Power Systems Brand

1.3 ADEC - Functions

Control functions

Following engine functions are controlled:

- Engine start
- Engine stop
- Sequences when "Override" feature is activated (safety system override), engine start with start interlock interrogation deactivated ("emergency start").
- Nominal speed switching between two set values (optional operation as 50 Hz or 60 Hz genset).
- Injection quantity as a function of engine loading and speed.
- Torque regulation

Engine start

The starting sequence is controlled by the software integrated in the engine governor as follows.

Starting sequence activation

The SAM takes a few seconds to boot up. It signals operational availability on the CAN bus by an appropriate PV. Only then may starting be initialized. Under normal operating conditions bothe the SAM and the engine governor are constantly switched on (standby mode).

Start request

The engine is started by a so-called "non-stored start", i.e. the start signal must be applied until the engine has reached idling speed. The actual starting sequence itself is executed automatically.
Furthermore, starting can be requested via the CAN bus. There are correspondingly three CAN receive variables. The start requests are OR operations.

Stop request

Starting is terminated if an external (manual) or internal (automatic) stop request from another part of the software is received. A stop request resets the start interlock time thus allowing immediate restarting in case of internal start termination providing that the engine is at a standstill and no other start request was active.

Coolant temperature monitoring - Start termination

The engine may suffer mechanical damage if started at too low a temperature. The coolant temperature is used to determine the engine temperature.
Excessively low coolant temperature is indicated by a lamp. Indication by the lamp is independent of any alarm signal. Usually the alarms "LO T-Preheat" (for the first limit value) or "SS T-Preheat" (for the second limit value) are tripped when the corresponding limits are violated; even when the engine is at a standstill.
When the second limit value is violated the internal "Stop starting sequence" signal is set providing that Override is not active. This trips a stop and the engine does not start.
The alarm is reset again when the coolant limit value is reached (plus hysteresis).

Starting

The starter is activated via engine governor binary output TOP 4. The engine runs up to starting speed on the starter within a configurable period. If this is not the case starting is terminated and the "SS Starter Speed Not Reached" alarm is output. The starter disengages and a new starting sequence is automatically attempted after a configurable pause.
The starter disengages when the disengagement speed (300 rpm) is reached. The start button may be released once the disengagement speed has been reached. Pressing the start button has no effect from this point on and only takes effect again when the engine has come to a standstill. The "SS Starter Speed Not Reached" alarm is set if the disengagement speed is not reached within a set time and "terminate start" is activated. Starting is also terminated if the starting signal is no longer received.

Engine start with Override ("emergency start")

Various configurable start interlock criteria are bypassed when override is active on starting the engine:

Engine stop

An engine stop is tripped by interrupting the 24 V supply at the binary input of the engine governor or by the engine protection system. Fuel is no longer injected as injector activation is disrupted.
Any starting procedure which has been initiated is interrupted.

Override (safety system bypass)

The "Override" feature is used to bypass safety functions tripped by limit value violations or sensor faults and to bypass start interlocks (see above).
Operating states which would normally lead to engine shutdown are ignored when the "Override" function is activated. The following operational data can be configured to trip engine shutdown in case of limit value violation even in Override mode:

- Coolant level
- Coolant temperature
- Coolant pressure
- Charge air coolant level
- Lube oil pressure
- Lube oil temperature

$50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ switching on bifrequency engines

To increase the genset application scope the network frequency can be adjusted prior to
engine start. The nominal speed is set as follows:

- Network frequency 50 Hz : Nominal speed 1500 rpm
- Network frequency 60 Hz : Nominal speed 1800 rpm

Caution!

Switching is only possible when the engine is at a standstill! Switching requires programming of corresponding performance maps and parameters in the governor and appropriate engine hardware.

Monitoring functions

The engine management system fulfils the following monitoring tasks:

- Control of analog instruments;
- Engine lube oil pressure
- Engine coolant temperature
- Transmission of all measurands, warnings and alarms to monitoring system via CAN bus.
- Automatic shutdown in case of limit value violations.

Refer to the measuring-point list for order-specific configuration data.
Engine monitoring can basically be divided into two different areas:

- Engine protection system, monitors the engine during operation,
- Safety system, generates automatic engine shutdown in case of limit value violation.

These two functional areas are constantly monitored by the internal "Integral Test System (ITS)" to ensure operational availability.

Oil priming pump option

An optional oil priming pump may be integrated in the system. The pump is activated manually via a binary input on the SAM.

Closed-loop control functions

Closed-loop engine control functions:

- Speed regulation
- Injection control with mapped commencement of injection.
- Two adjustable speed droops.
- Setpoint speed regulation
- Analog or binary speed demand on CAN bus, CANopen and SDE J1939
- Analog speed setting 0 V to $10 \mathrm{VDC} / 0 \mathrm{~V}$ to $5 \mathrm{VDC} / 4 \mathrm{~mA}$ to 20 mA .
- Binary speed demand via Up/Down signal
- Frequency speed setting.
- HP fuel governor.
- Torque control

Speed - injection control

Functions of the closed-loop engine speed control integrated in the engine governor:

- Maintaining the desired engine speed under changing load conditions.
- Adjusting the engine speed when the setting is changed by the operator.

Fuel quantity control during engine start

The quantity of fuel injected during engine start increases along a time ramp from a set initial value to a specified value. This ensures that the engine starts reliably. This fuel quantity control is effective until idling speed has been reached.

Desired speed handling

The desired speed is the command variable for the engine speed control loop.
Providing that speed demand is set by Up/Down signals, the engine runs up to an internally programmed nominal speed when started (for 50 Hz network frequency: 1500 rpm , for 60 Hz network frequency: 1800 rpm). The engine runs up to the set value in case of analog speed demand.
The starting sequence is completed when idling speed has been reached ("open-loop control" mode) and switching over to "closed-loop control" mode is effected.
The following speed setting variants are possible:

- Desired speed setting via an analog input:

The setpoint speed may be adjusted within a (configurable) range around the preset synchronous speed (depending on the set network frequency) (relative speed control, the voltage/current or frequency controls the speed window only).
Absolute speed control is also possible (the voltage/current or frequency can cover the entire speed range).
The internal setpoint speed follows the applied speed setting value along a configurable acceleration/deceleration curve (speed ramp). The setting value last applied is maintained or the engine is set to a default speed should the applied signal fail.
The response can be configured as desired:

- Speed setting via CAN bus.
- Speed setting via an analog speed setting input (0 V to 10 V).
- Speed setting via an analog speed setting input (4 mA to 20 mA).
- Frequency input.
- Setpoint processing via binary inputs "Setpoint speed up"/"Setpoint speed down":

The setpoint speed can be adjusted within a (configurable) range around the preset synchronous speed (depending on the set network frequency). Briefly actuating the appropriate optocoupler input for less than 0.3 s increases or decreases the setpoint speed by 1 rpm .
The setpoint speed is automatically adjusted at a configurable rate if the input is activated for longer than 0.3 seconds.

Speed droop

Speed droop calculation

Speed droop influences the effective setpoint speed depending on engine power. Maximum, speed-dependent engine power is limited by the MCR curve. The setpoint speed is not influenced by speed droop at 100% power. The effective setpoint speed increases at lower power. This allows power to be balanced when operating a number of engines in a network.

Switchable speed droop

Two different speed droop settings can be selected at the engine governor.
The speed droop is selected by a binary input at the engine governor.
Speed droop is required to balance the load of coupled prime movers. Speed droop can be adjusted to meet plant requirements via the dialog unit.

Quantity limitations
 Dynamic quantity limitation

Dynamic quantity limits protect the engine against overloading and optimize exhaust emission values. The engine governor determines the maximum injection quantity based on preset and stored engine performance maps.
Fuel quantity is limited as a function of speed (DBR).

Fixed quantity limitation

Fixed quantity limitations are used for power limitation and power reduction to protect the engine from sustained overload sustained overload.

MARATHON ELECTRIC
 GENERATORS
 TYPICAL SUBMITTAL DATA

MODEL : 574RSL4038
BASE MODEL: 574RSL4038
Winding H-SG570069

Submittal Data: 480 Volts*, 920 kW, 1150 kVA, 0.8 P.F., 1800 RPM, 60 Hz, 3 Phase
8/22/2011

Kilowatt ratings atkW (kVA)		$1800 \text { RPM }$ 3 Phase	60 Hertz 0.8 Power Factor			LEADS	Standard 3 phase Dripproof or Open Enclosure		
	Class B							Class H	
Voltage*	$80^{\circ} \mathrm{C}$ (1) Continuous	$90^{\circ} \mathrm{C}$ (1) Lloyds	$\begin{gathered} 95^{\circ} \mathrm{C} \text { (1) } \\ \text { ABS } \end{gathered}$	$105^{\circ} \mathrm{C} \text { (2) }$ British Standard	$\begin{aligned} & 105^{\circ} \mathrm{C} \text { (1) } \\ & \text { Continuous } \end{aligned}$	$\begin{aligned} & 130^{\circ} \mathrm{C} \text { © } \\ & \text { Standby } \end{aligned}$	$125^{\circ} \mathrm{C} \text { (2) }$ British Standard	$\begin{aligned} & 125^{\circ} \mathrm{C} \text { © } \\ & \text { Continuous } \end{aligned}$	$\begin{aligned} & 150^{\circ} \mathrm{C} \text { (1) } \\ & \text { Standby } \end{aligned}$
480	720 (900)	790 (988)	750 (938)	860 (1075)	860 (1075)	920 (1150)	885 (1106)	915 (1144)	970 (1213)
460	730 (913)	775 (969)	735 (919)	840 (1050)	840 (1050)	910 (1138)	895 (1119)	895 (1119)	970 (1213)
440	705 (881)	750 (938)	710 (888)	810 (1013)	810 (1013)	875 (1094)	860 (1075)	860 (1075)	930 (1163)
416	675 (844)	715 (894)	670 (838)	770 (963)	770 (963)	835 (1044)	820 (1025)	820 (1025)	885 (1106)
380	620 (775)	655 (819)	625 (781)	705 (881)	705 (881)	705 (881)	705 (881)	705 (881)	705 (881)

(1) Rise by resistance method, Mil-Std-705, Method 680.1b.
(2) British Standard Rating per BS 5000

Submittal Data: 480 Volts*, $920 \mathrm{~kW}, 1150 \mathrm{kVA}, 0.8$ P.F., $1800 \mathrm{RPM}, 60 \mathrm{~Hz}, 3$ Phase STD. CONNECTION					
Mil-Std-705B			Mil-Std-705B		
Method	Description	Value	Method	Description	Value
301.1b	Insulation Resistance	>1.5 Meg	505.3b	Overspeed	2250 RPM
302.1a	High Potential Test		507.1c	Phase Sequence CCW-ODE	ABC
	Main Stator	2000 Volts	508.1c	Voltage Balance, L-L or L-N	0.20\%
	Main Rotor	1500 Volts	601.4a	L-L Harmonic Maximum - Total	5.0\%
	Exciter Stator	1500 Volts		(Distortion Factor)	
	Exciter Rotor	1500 Volts	601.4a	L-L Harmonic Maximum - Single	3.0\%
	PMG Stator	1500 Volts	601.1 c	Deviation Factor	5.0\%
401.1a	Stator Resistance, Line to Line		---	TIF (1960 Weightings)	< 50
	High Wye Connection	0.0048 Ohms	---	THF (IEC, BS \& NEMA Weightings)	<2\%
	Rotor Resistance	0.601 Ohms	652.1a	Shaft Current	<0.1 ma
	Exciter Stator	23 Ohms			
	Exciter Rotor	0.045 Ohms	---	Main Stator Capacitance to ground	0.04 mfd
	PMG Stator	2.1 Ohms			
410.1a	No Load Exciter Field Amps at 480 Volts Line to Line	0.65 A DC		Additional Prototype Mil-Std Methods are Available on Request.	
420.1a	Short Circuit Ratio	0.516			
421.1a	Xd Synchronous Reactance	2.68 pu	--	Generator Frame	574
		0.537 ohms	--	Type	MAGNAMAXDVR
422.1a	X2 Negative Sequence React.	0.207 pu	--	Insulation	Class H
		0.041 ohms	--	Coupling - Single Bearing	Flexible
423.1a	X0 Zero Sequence Reactance	0.052 pu	--	Amortisseur Windings	Full
		0.01 ohms	--	Excitation Ext. Voltage R	egulated, Brushless
425.1a	X'd Transient Reactance	0.157 pu	--	Voltage Regulator	DVR2000E+
		0.031 ohms	--	Voltage Regulation	0.25\%
426.1a	X"d Subtransient Reactance	0.122 pu			
		0.024 ohms			
--	Xq Quadrature Synchronous	1.21 pu	--	Cooling Air Volume	1190 CFM
		0.242 ohms			
427.1a	T'd Transient Short Circuit		--	Heat rejection rate	2741 Btu's/min
	Time Constant	0.132 sec .			
428.1a	T"d Subtransient Short Circuit		--	Full load current	1383 amps
	Time Constant	0.01 sec .			
430.1a	T'do Transient Open Circuit		--	Minimum Input hp required	1297.8
	Time Constant	2.4 sec .		Efficiency at rated load :	95.0\%
432.1a	Ta Short Circuit Time				
	Constant of Armature Winding	0.023 sec .	--	Full load torque	3785 Lb-ft

MARATHON ELECTRIC
 GENERATORS

TYPICAL DYNAMIC CHARACTERISTICS
MODEL : 574RSL4038
BASE MODEL: 574RSL4038
Winding H-SG570069
Submittal Data: 480 Volts*, 920 kW, 1150 kVA, 0.8 P.F., 1800 RPM, 60 Hz, 3 Phase

Efficiency at rated voltage and frequency vs. load kW

PERMANENT MAGNET GENERATOR (PMG) Data Sheet

DESCRIPTION

A permanent magnet generator (PMG) is standard on 450 kW and larger units and is available as an optional accessory on most units smaller than 450 kW . The PMG is an improved method of supplying power to the voltage regulator and adds distinct advantages over the alternative shunt type power supply.

FEATURES

Improved Transient Response

When a generator is subject to a large step load, the generator's terminal
 voltage experiences a sudden voltage dip. With a shunt style regulator, reduced voltage means the regulator's ability to increase excitation is reduced and voltage recovery will take longer. Power from a PMG is only dependent on the speed of rotation so voltage regulator power, and therefore excitation power, is not compromised during a load step.

300\% Short Circuit Capability

The PMG enables the generator to provide up to 300% short circuit current for 10 seconds. This is important when a fault occurs to ensure current continues to flow long enough for downstream breakers to trip and clear the fault. When a fault occurs with a shunt type regulator, the sudden drop in voltage indicates the regulator has no power to increase excitation to keep current flowing. Without current flow, the downstream breakers may not trip.

Resistant to the Effects of Harmonics

A PMG is also beneficial in applications with harmonic producing loads. When rectifier-type loads are present and cause voltage wave form notching, the disrupted voltage wave form can affect voltage regulator operation on shunt powered regulators. Unlike a shunt regulator, the PMG supplies the regulator with a power source which is isolated from the electrical system.

Generator Equipped with PMG

Circuit Breakers, Insulated Case Circuit Breakers

Product \#: SSF16G216
Short Description: PBII STD BREAK 1600A

SPECIFICATIONS

Category	Power Break TM II
Frame Type	Power Break TM II
Amperage	$1000 \mathrm{~A}, 1100 \mathrm{~A}, 1200 \mathrm{~A}, 1600 \mathrm{~A}, 800 \mathrm{~A}$
System Voltage	$240 \mathrm{Vac}, 277 \mathrm{Vac}, 480 \mathrm{Vac}, 600 \mathrm{Vac}$
Poles	3
Trip Indication Target	Optional
Continuous Current Rated	100%
240 Vac Interrupting Rating	85 KAIC
277 Vac Interrupting Rating	65 KAIC
480 Vac Interrupting Rating	65 KAIC
600 Vac Interrupting Rating	50 KAIC
Suitable for Reverse Feed	Yes
Product Line	Power Break II
Lugs	TPLUG408
UL File \#	E11592
CSA File\#	LR10263
Long Time	Adjustable
Short Time	Adjustable
Instantaneous	Adjustable
Ground Fault	Optional
GSA Compliance	No

MULTIPLE OF LONG-TIME PICKUP

	Low-Voltage Circuit Breakers	DES-095A
Frames 800-5000A AKR \& WavePro	EntelliGuard TU Trip Unit for PowerBreak,	Pickup Range
Frames $800-4000 \mathrm{~A}$ $\begin{array}{l}\text { PowerBreak \& } \\ \text { PowerBreak II }\end{array}$	PowerBreak II, AKR and WavePro Circuit Breakers	0.5X-1.0X Trip Rating Plug
	UL489 and UL1066 Stored Energy Mechanism Circuit Breakers	
All Voltages: 600 Vac and below	Long-Time CB Characteristics	
	Curves apply at 60 Hertz and from $-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ circuit breaker ambient temperature.	

MULTIPLE OF LONG-TIME PICKUP

Frames	$800-5000 \mathrm{~A}$	AKR \& WavePro
Frames	$800-4000 \mathrm{~A}$	 PowerBreak II

Low-Voltage Circuit Breakers
EntelliGuard TU Trip Unit for PowerBreak, PowerBreak II, AKR \& Wavepro Circuit Breakers UL489 and UL1066 Stored Energy Mechanism Circuit Breakers

Short-Time Pickup and Delay Bands

DES-097A

Pickup Range

1.5X - 9X up to 4000A Frames
1.5X-7X 5000A AKR and WavePro
Curves apply at 60 Hertz
and from $-20^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$ circuit breaker ambient temperature
MULTIPLE OF TRIP RATING PLUG

Low-Voltage Circuit Breakers
EntelliGuard TU Trip Unit
for PowerBreak Circuit Breaker UL 489 Stored Energy
Mechanism Circuit Breakers
Instantaneous trip

Minimum Pickup 1.5X
Maximum per frame

Physical Data

Power Break ${ }^{\circledR}$ II 1600-2000-Amp Stationary

1. $1 / 4-20$ mounting bolts to be furnished by customer.
2. To prevent heating, do not mount breaker to magnetic steel back support.
3. All outline dimensions are the same for manually and electrically operated devices.
4. Dimensions in brackets are in [millimeters].
5. 4.50 [114.3] minimum distance above breaker to metal in an area 5.31×16.00 [134.9×406.4] due to arc chamber venting.

Physical Data

Power Break ${ }^{\circledR}$ II 1600-2000-Amp Stationary

1. $1 / 4-20$ mounting bolts to be furnished by customer.
2. To prevent heating, do not mount breaker to magnetic steel back support.
3. All outline dimensions are the same for manually and electrically operated devices
4. Dimensions in brackets are in [millimeters]
5. 4.50 [114.3] minimum distance above breaker to metal in an area $5.31 \times 16.00[134.9 \times 406.4]$ due to arc chamber venting.

DESCRIPTION

The table below contains lug information for GE circuit breakers represented in the circuit breaker cross reference tables on the MTU Business Portal.

Lugs Data for GE Circuit Breakers

Lug Product Number	Max Rating (Amperes)	Max Cables Per Pole	Wire Range (kcmil Cu/AI)	Notes
TCAL 12	$15-60$	1	$14-3 \mathrm{Cu}, 12-1 \mathrm{Al}$	-
TCAL 12A	$70-90$	1	$6-2 / 0 \mathrm{Cu}, 4-2 / 0 \mathrm{Al}$	-
TCAL 14	$15-30$	1	$14-8$	-
TCAL 15	$100-150$	1	$3-3 / 0 \mathrm{Cu}, 1-3 / 0 \mathrm{Al}$	-
TCAL 29	$70-250$	1	$8-350$	-
TCAL 43	$125-400$	1 or 2	$(1) 6-600,(2) 2 / 0-250$	-
TCAL 47	$125-400$	1	750	-
TCAL 63	$450-600$	2	$250-350 \mathrm{Cu}, 300-500 \mathrm{Al}$	-
TCAL 81	$300-800$	3	$3 / 0-500$	Not suitable for 100A AI conductor
TCAL125	$600-1200$	4	$250-500$	-
TCLK365	$125-600$	1	$8-600 \mathrm{Cu}, 6-600 \mathrm{Al}$	-
TPLUG 108	2000	6	$3 / 0-800$	Requires adapter kit SPLUGA20
TPLUG408	1600	4	$500-800$	-
TSLUG25	2500	7	$3 / 0-800$	-
TSLUG30	3000	9	$3 / 0-800$	-

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

MTU Onsite Energy Generator Set Controllers (MGC Series) are highly advanced integrated digital generator set control systems. The MGC-2000 Series is perfectly focused, combining rugged construction and microprocessor technology to offer a product that will hold up to almost any environment and is flexible enough to meet your application's needs. The MGC-2000 Series provides generator set control, transfer switch control, metering, protection, and programmable logic in a simple, easy-to-use, reliable, rugged, and cost effective package.

PRODUCT HIGHLIGHTS

- Engine metering
- Generator set control
- Engine protection
- Generator protection
- Var sharing over Ethernet
- BESTCOMSPlus ${ }^{\circledR}$
- Windows ${ }^{\circledR}$-based software for optional remote operation (Software can be downloaded at www.mtuonsiteenergy.com)
- Programming and setup software
- Intuitive and powerful
- Remote control and monitoring
- Programmable logic
- USB communications
- Automatic transfer switch compatible
- Exercise timer
- Suitable for use on rental generator sets with high/low line sensing, single or three phase sensing override, and wye/delta/grounded delta
- SAE J1939 Engine Control Unit (ECU) communications
- Automatic generator configuration detection
- Selection of integrating reset of instantaneous reset characteristics for overcurrent protection
- Multilingual capability
- Remote annunciation to RDP-110
- Extremely rugged, fully potted design
- 16 programmable contact inputs, 12 programmable contact outputs
- ModBus ${ }^{\text {TM }}$ communications with RS-485 (optional)
- UL recognized, CSA certified, CE approved
- Highly Accelerated Life Tests (HALT) tested
- IP 54 front panel rating with integrated gasket
- NFPA-110 compatible
- Microprocessor based
- Complete system metering
- Expandable to meet customer needs

[^1]DIAGRAM

Front Panel Descriptions

- Liquid Crystal Display (A)
- Not in Auto Indicator (B)
- Alarm Indicator (C)
- Supplying Load Indicator (D)
- Alarm Silence Pushbutton (E)
- Lamp Test Pushbutton (F)
- Auto Pushbutton and Mode Indicator (G)
- Off Pushbutton and Mode Indicator (H)
- Run Pushbutton and Mode Indicator (I)
- Reset Pushbutton (J)
- Arrow Pushbuttons (K)
- Edit Pushbutton (L)

FUNCTIONS

Generator Set Protection

Generator ANSI Codes

- Overvoltage (59)
- Overfrequency (810)
- Reverse Power (32)
- Undervoltage (27)
- Underfrequency (81U)
- Loss of Excitation (400)
- Phase Imbalance (47)
- Overcurrent (51) (optional)
- Vector Shift (78) (optional)
- Rate of Change of Frequency (ROCOF) (81R) (optional)

All generator set protection features are programmable as alarms, pre-alarms, status, or not used.
Alarms (Shutdowns)

- Low Oil Pressure
- High Coolant Temperature
- Low Coolant Level
- Overspeed
- Overcrank
- Coolant Temp Sender Fail (non-ECU engines)
- Oil Pressure Sender Fail (non-ECU engines)
- Emergency Stop
- Critical Low Fuel Level (optional)

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

FUNCTIONS, Generator Set Protection, continued:

Pre-Alarms (Warnings)

- Low Oil Pressure
- Engine kW Overload (three levels)
- High Coolant Temperature
- Low Coolant Temperature
- Battery Overvoltage
- Weak Battery Voltage
- AEM Comms Failure
- Breaker Open Failure
- Loss of Sensing
- Checksum Failure
- ECU Comms Fail
- Low Fuel Level
- High Fuel Level
- CEM Comms Failure
- Active Diagnostic Trouble Codes (DTC)
- Generator Reverse Rotation
- Breaker Close Failure
- Low Battery Voltage

All alarms and pre-alarms can be enabled or disabled via the BESTCOMSPlus ${ }^{\oplus}$ PC software or the front panel. Additional custom alarms and pre-alarms are available upon request.

Generator Set Metering

- Generator parameters include voltage, current, real power (watts), apparent power (VA), and power factor (PF).
- Engine parameters include oil pressure, coolant temperature, battery voltage, speed, fuel level, engine load, coolant level (from ECU), ECU specific parameters, and run-time statistics.

Engine Control

- Cranking Control: Cycle or Continuous (Quantity and Duration fully programmable)
- Engine Cooldown: Smart Cooldown function saves fuel and engine life
- Successful Start Counter: Counts and records successful engine starts
- Timers:
- Engine Cooldown Timer
- Engine Maintenance Timer
- Pre-Alarm Time Delays for Weak/Low Battery Voltage
- Alarm Time Delay for Overspeed
- Alarm Time Delay for Sender Failure
- Arming Time Delays after Crank Disconnect:
- Low Oil Pressure
- High Coolant Temperature
- Pre-Crank Delay
- Continuous or Cycle Cranking Time Delay
- Programmable Logic Timers

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

FUNCTIONS, continued:

Event Recording

The MGC-2000 Series has an event recorder that provides a record of alarms, pre-alarms, engine starts, engine runtime loaded, engine runtime unloaded, last run date, and many other events that are all date and time stamped to help the user determine the cause and effect of issues related to the generator set. Contains 30 event records each retaining up to 99 occurrences in memory. Time, date, and engine hour detail is available for the most current 30 occurrences within each event record.

Transfer Switch Control (Mains Failure)

The MGC-2000 Series has the ability to detect a mains failure via a single- or three-phase bus input. A mains failure is established when any one of the following conditions are met:

- Any phase of bus voltage falls below the dead bus threshold
- Any phase of bus voltage is unstable due to overvoltage or undervoltage
- Any phase of bus voltage is unstable due to overfrequency or underfrequency

When conditions are met, the MGC-2000 Series will start the generator set and, when ready, will send generator and mains breaker commands to apply power to the load from the generator set. The MGC-2000 Series implements open or closed breaker transitions to and from the mains. When the mains returns and is considered stable, the MGC-2000 Series will transfer the load back to the mains and stop the engine.

ModBus ${ }^{\text {TM }}$ RTU

When utilized, the user can send and receive information from the MGC-2000 Series via the RS-485 communications port and ModBus ${ }^{\text {TM }}$ RTU protocol. This feature allows the MGC-2000 Series controlled generator set to be fully integrated into the building management system. Please see the MGC-2000 Series Controller Manual for the ModBus ${ }^{\text {TM }}$ register list.

Programmable Logic

The MGC-2000 Series offers a very powerful, yet easy-to-use, programmable logic scheme, BESTlogic ${ }^{\text {M }}$ Plus, for custom programming of the various inputs, outputs, alarms, and pre-alarms. It allows these elements to be integrated into a complete logic scheme so that the user can meet even the most complex specification. The programmable logic control includes the selection of logic gates and timers, with drag-and-drop technology to make it fast and simple.

Remote Display Panel Annunciation

The MGC-2000 Series can communicate to a remote display panel, Model RDP-110. This requires only two wires to annunciate all of the alarms and pre-alarms required by NFPA-110 Level I and II. External power is required.

External Modem Interface

The MGC-2020 and MGC-2050 controllers include an external modem interface permitting an external modem to be connected to the MGC controller via RS-232. A dial-out modem enables remote control, monitoring, and setting of the MGC-2000 Series. When an alarm or pre-alarm condition occurs, the MGC-2000 Series can dial up to four telephone numbers in sequence until an answer is received and the condition is annunciated.

Note: Only an external modem interface is provided. The external modem must be provided by a third party. The external modem is only available on the MGC-2020 and MGC-2050 controller configurations of the MGC-2000 Series.

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

FUNCTIONS, continued:

SAE J1939 Communications

SAE J1939 CANBus communications allows the MGC-2000 Series to communicate with the ECU to gather critical engine information like oil pressure, engine coolant temperature, RPM, battery voltage, and much more. By utilizing the ECU, the addition of analog engine senders is no longer required. This can save substantial money for the installer. It also eliminates any errors or discrepancies between the ECU data and the data displayed on the MGC-2000 Series that may be present due to analog sender inaccuracies or incompatibility. An additional benefit is access to the ECU's diagnostic troubleshooting codes (DTCs). The DTCs provide information about the engine's operating conditions and communicates these, via SAE J1939, to the MGC-2000 Series, eliminating the need for hand-held service tools to diagnose simple engine issues.

SPECIFICATIONS

Operating Power

- Nominal: 12 or 24 VDC
- Range: 6 to 32 VDC
- Power Consumption:
- Sleep Mode: 5W with all relays non-energized
- Normal Operational Mode: 7.9W - Run mode, LCD heater off, six relays energized
- Battery Ride-Through: Withstands cranking ride-through down to 0 V for 50 ms , starting at 10 VDC.

Current Sensing (5 A CT Inputs)

- Continuous Rating: 0.1 to 5.0 Aac
- One Second Rating: 10 Aac
- Burden: 1 VA

Voltage Sensing

- Range: 12 to 576 V rms, line-to-line
- Frequency Range: 10 to 72 Hz
- Burden: 1 VA
- One Second Rating: 720 V rms

Input Contacts

Contact sensing inputs include one emergency stop input and 16 programmable inputs. The emergency stop input accepts normally closed, dry contacts. The remote emergency stop is limited to 75 ft . standard. Extended runs are available with optional relay. All programmable inputs accept normally open, dry contacts. The factory utilizes up to three of these inputs.

Engine System Inputs

- Fuel Level Sensing Resistance Range: 0 to 250Ω nominal
- Coolant Temperature Sensing Resistance Range: 10 to $2,750 \Omega$ nominal
- Oil Pressure Sensing Resistance Range: 0 to 250Ω nominal
- Engine Speed Sensing:
- Magnetic Pickup or CANBus
- Magnetic Pickup Voltage Range: 3 to 35 V peak (6 to 70 V peak to peak)
- Magnetic Pickup Frequency Range: 32 to $10,000 \mathrm{~Hz}$
- Generator Frequency (alternate or redundant)
- Voltage Range: 12 to 576 V rms

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

SPECIFICATIONS, continued:

Output Contacts

- (15) Total Programmable Outputs: (3) 30 A @ 28 VDC and (12) 2 A @ 30 VDC
- The factory utilizes the following on each generator set which can be reprogrammed as needed:
- (3) 30 A @ 28 VDC for Pre-start, Start, and Run
- (12) 2 A @ 30 VDC for General Purpose

Metering

- Generator and Bus Voltage (rms)
- Metering Range: 0 to 576 VAC (direct measurement); up to 9,999 VAC (with appropriate voltage transformer)
- Accuracy: $\pm 1 \%$ of programmed rated voltage of ± 2 VAC (subject to accuracy of voltage transformer when used)
- Generator Current (rms)
- Generator current is measured at the secondary windings of 5 A CTs.
- Metering Range: 0 to 5,000 Aac
- CT Primary Range: 1 to 5,000 Aac, in primary increments of 1 Aac
- Accuracy: $\pm 1 \%$ of programmed rated current or ± 2 Aac (subject to accuracy of CTs)
- Generator and Bus Frequency
- Metering Range: 10 to 72 Hz
- Accuracy: $\pm 0.25 \%$ or 0.05 Hz
- Apparent Power
- Indicates total kVA and individual line kVA (four-wire, line-to-neutral or three-wire, line-to-line).
- Accuracy: $\pm 3 \%$ or the full-scale indication or $\pm 2 \mathrm{kVA}$
- Power Factor
- Metering Range: 0.2 leading to 0.2 lagging
- Accuracy: ± 0.02
- Real Power
- Indicates total kW and individual line kW (four-wire, line-to-neutral or three-wire, line-to-line)
- Accuracy: $\pm 3 \%$ of the full-scale indication or $\pm 2 \mathrm{~kW}$
- Oil Pressure
- Metering Range: 0 to 150 psi or 0 to $1,034 \mathrm{kPa}$
- Accuracy: $\pm 3 \%$ of actual indication or ± 2 psi or $\pm 12 \mathrm{kPa}$ (subject to accuracy of sender)
- Coolant Temperature
- Metering Range: $0^{\circ} \mathrm{C}$ to $204^{\circ} \mathrm{C}\left(32^{\circ} \mathrm{F}\right.$ to $\left.410^{\circ} \mathrm{F}\right)$
- Accuracy: $\pm 3 \%$ of actual indication or $\pm 2^{\circ}$ (subject to accuracy of sender)
- Fuel Level
- Metering Range: 0 to 100\%
- Accuracy: $\pm 2 \%$ (subject to accuracy of sender)
- Battery Voltage
- Metering Range: 6 to 32 VDC
- Accuracy: $\pm 3 \%$ of actual indication or ± 0.2 VDC
- Engine RPM
- Metering Range: 0 to 4,500 rpm
- Accuracy: $\pm 2 \%$ of actual indication or $\pm 2 \mathrm{rpm}$

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

SPECIFICATIONS, Metering, continued:

- Engine Run Time
- Engine run time is retained in non-volatile memory.
- Metering Range: 0 to 99,999 h; Update Interval: 6 min
- Accuracy: $\pm 1 \%$ of actual indication or $\pm 12 \mathrm{~min}$
- Maintenance Timer
- Maintenance timer indicates the time remaining until generator set service is due. Value is retained in non-volatile memory.
- Metering Range: 0 to 5,000 h; Update Interval: 6 min
- Accuracy: $\pm 1 \%$ of actual indication or $\pm 12 \mathrm{~min}$

Generator Protection Functions

- Overvoltage (59) and Undervoltage (27)
- Pickup Range: 70 to 576 VAC
- Activation Delay Range: 0 to 30 s
- Overfrequency (810) and Underfrequency (81U)
- Pickup Range: 45 to 66 Hz
- Pickup Increment: 0.1 Hz
- Activation Delay Range: 0 to 30 s
- Reverse Power (32)
- Pickup Range: -50 to 5\%
- Pickup Increment: 0.1\%
- Hysteresis Range: 1 to 10\%
- Hysteresis Increment: 0.1\%
- Activation Delay Range: 0 to 30 s
- Activation Delay Increment: 0.1 s
- Loss of Excitation (400)
- Pickup Range: - 150 to 0\%
- Pickup Increment: 0.1\%
- Hysteresis Range: 1 to 10%
- Hysteresis Increment: 0.1\%
- Activation Delay Range: 0 to 30 s
- Activation Delay Increment: 0.1 s
- Overcurrent (51)
- Pickup Range: 0.18 to 1.18 Aac (1 A current sensing)
- Time Dial Range: 0
- Phase Imbalance (47)
- Pickup Range: 5 to 100 VAC
- Pickup Increment: 1 VAC
- Activation Delay Range: 0 to 30 s
- Activation Delay Increment: 0.1 s
- ROCOF (81R) (optional)
- Pickup Range: 0.2 to $10 \mathrm{~Hz} / \mathrm{s}$
- Pickup Increment: $0.1 \mathrm{~Hz} / \mathrm{s}$
- Activation Delay Range: 0 to $10,000 \mathrm{~ms}$
- Activation Delay Increment: 1 ms
- Accuracy: $0.2 \mathrm{~Hz} / \mathrm{s}$

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

SPECIFICATIONS, Generator Protection Functions, continued:

- Vector Shift (78) (optional)
- Pickup Range: 2 to 90°
- Pickup Increment: 1°
- Accuracy: $\pm 1^{\circ}$

Environmental

- Temperature
- Operating: $-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$
- Storage: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.185^{\circ} \mathrm{F}\right)$
- Humidity: IEC 68-2-38
- Salt Fog: ASTM B 17-73, IEC 68-2-11 (tested while operational)
- Ingress Protection: IEC IP54 for front panel
- Shock: 15 G in three perpendicular planes
- Vibration: 5 to 29 to 5 Hz at 1.5 G peak for 5 min .

29 to 52 to 29 Hz at 0.036 " DECS-A for 2.5 min .
52 to 500 to 52 Hz at 5 G peak for 7.5 min .

- Swept over the above ranges for 12 sweeps in each of three mutually perpendicular planes with each 15 minute sweep.

Agency Approvals

- UL/CSA Approvals: "cURus" approved to UL 6200 and CSA C22.2 No. 14
- NFPA Compliance: Complies with NFPA Standard 110, Standard for Emergency and Standby Power
- CE Marked: Complies with applicable EC Directives

ADDITIONAL SPECIFICATIONS

Battery Backup for Real Time Clock

The MGC-2000 Series provides a real-time clock with an internal backup battery. The battery will maintain timekeeping for approximately 10 years (depending on conditions) after power is removed from the controller. The clock is used by the event recorder and sequence of events functions to time-stamp events, and the exercise timer is used to start and stop the generator set when the exercise feature is utilized.

Breaker Management

The MGC-2000 Series is capable of controlling the generator breaker and the mains breaker. The status of the breakers is determined by using BESTIogic™Plus programmable logic to set up the GENBRK and MAINSBRK logic blocks. These logic blocks have outputs that can be configured to energize an output contact and control a breaker, as well as inputs for breaker control and status. The MGC-2000 Series will attempt to close a breaker only after verifying that it can be closed. If the breaker cannot be closed, the close request will be ignored. Only one breaker can be closed at a time. Synchronization is required before closing the breaker to a live bus. Closure to a dead bus can be performed after meeting dead bus threshold and timing requirements set by the user.

OPTIONAL_ACCESSORIES

Analog Extension Modure 2020 (AEM-2020)

The optional AEM-2020 is a remote auxiliary device that provides addional MGC-2000 Series analog inputs and outputs. Its features include:

- Eight Analog Inputs: The AEM-2020 provides eight analog inputs that are user-selectable for 4 to 20 mA or 0 to 10 VDC. Each analoginput has under/over thresholds that can be configured as status only, alarm, or pre-alarm. Whenabled, an out of range alarm alerts the user of an open or damaged analog inpure. The labext of each analog input is customizable.

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

OPTIONAL ACCESSORIES, AEM-2020, continued:

- Fight Resistance Temperature Detector (RTD) Inputs: The AEM-2020 provides eight user-configurable
inputs for monitoring generator set temperature. Each RTD input can be configured as status only, al2/m, or pre-alarm to protect against high or low temperature conditions. When enabled, an out-of-range alay alerts the user of an open or damaged RTD input wire. The label text of each RTD input is customizable.
- Two Thernocouple Inputs: The AEM-2020 provides two thermocouple inputs for monitoring generator set temperature. Each thermocouple input can be configured as status only, alarm, or pre-alarp/ to protect against high oNow temperature conditions. When enabled, an out-of-range alarm alerts the user of an open or damaged thennocouple input wire. The label text of each thermocouple input is customizable.
- Four Analog Outputs. The AEM-2020 provides four analog outputs that are user-se)ctable for 4 to 20 mA or 0 to 10 VDC. A wide selection of parameters including oil pressure, fuel level, enerator voltage, and bus voltage can be configured as analog outputs. Refer to Section 4, BESTCOMSPly ${ }^{-1}$ Software of the MGC-2000 Series Controller Manual, fo fa full list of parameter selections.
- Communications via CANBus: A Control Area Network (CAN) is a standa/d interface that enables communication between the AEM-2020 and the MGC-2000 Series.

The CEM-2020 is a remote device that provides additional MGC-2000 Series contact inputs and outputs, giving the user flexibility to use the same model MGC-2000 Series generator set controller for simple oncomplicated applications thatrequire contact functionality or duplication of contacts for remote annunciation. In features include:

- 10 Coplact Inputs: The CEM-2020 provides 10 programmable contact inputs with the same functionslity as the contact inputs on the MGC-2000 Series.
- 24 Output Contacts: The CEM-2020 provides 24 Form C programmable output contacts with the same functionality as the output contacts on the MGC-2000 Series. The output ratings of the Form C contacts are:

DIGITAL GENERATOR SET CONTROLLER MGC-2000 Series Data Sheet

OPTIONAL ACCESSORIES, CEM-2020, continued:

Output No.	Rating (Cont.)	Additional Information
$13-24$	1 A @ 30 VDC	This is a gold flash contact for low current circuits.
$25-36$	4 A @ 30 VDC	

- Communications via CANBus: The CEM-2020 communicates to the MGC-2000 Series yia SAE J1939 CANBus communications and allows the user to program the functionality of these ipputs and outputs in the BESTCOMSPlus ${ }^{\circledR}$ softwse.
- The user can add labels for the inputs and outputs that appear in BESTCOMSP/us ${ }^{\circledR}$, show up on the front panel, and in programmable logi. All the functionality can be assigned to these inputs and outputs as if they were an integrated part of the MG\&-2000 Series. The CEM-2020 mody has all of the environmental ratings of the MGC-2000 Series, including a nodel for UL Class 1 Div2 appliations. The CEM-2020 terminals accept a maximum wire size of 12 AWG, while the chassis ground requires 12 AWG wire. Flexibility is one of the benefits of the MGC-2000 Series, and this add-on module enhz/nces that benefit even further.

DVR ${ }^{\circ}$

Enhanced Digital Technology Voltage Regulator

Advanced Features:

True RMS Sensing - One or Three Phase
Connect the sensing mode you prefer. Senses 95 to 600 volts $\pm 10 \%$ at $50 / 60$ hertz. Patented circuitry senses true RMS voltage rather than average for superior load regulation.

Soft-Start Ramp on Initial Start-Up

Controlled increase to rated voltage. Limits overshoot of voltage during voltage build-up.

Engine Unloading

Monitors the rate of frequency change during transient conditions. Provides additional voltage dip during speed drop to allow engine to recover faster.

Overvoltage Shutdown

Provides generator protection during sustained overvoltage. The overvoltage default point is 120% of generator setpoint voltage (adjustable from 105% to 120\% via MARATHON-DVR2000E-32 soffware only) with a non-adjustable timeout of 0.75 seconds.

VAR/PF Controller (DVR2000EC Only)

Provides VAR or Power Factor control when paralleling to utility power.

Encapsulated Design

Maximum protection against moisture or abrasive contamination, which can lead to early regulator failure. Tested to MIL-STD-705, Method 711.1C. Salt fog tested to MIL-STD-810E.

Auto/Manual Mode

Exciter field current can be controlled by the regulator or manually set at a fixed value.

CSA Approved

Solid State Voltage Build-Up eliminates voltage build-up relays with contacts that arc and fail.

Regulator Specifications

Voltage Regulation. 0.25% for precise voltage control on most applications. Voltage drift less than 0.5% for $40^{\circ} \mathrm{C}$ ambient temperature change (15 to $70^{\circ} \mathrm{C}$ range).

Output Power. 3.0 ADC, 75 VDC, 225 watts, maximum continuous rating; 7.5 ADC, 150 VDC, 1125 watts forcing for one (1) minute.

Exciter Field DC Resistance. Nominal hot resistance 18 to 25 ohms.

Voltage Adjustment. Minimum of $\pm 10 \%$ of nominal voltage range. Remote adjustment can be made up to 150 feet from voltage regulator.

50 or 60 Hz Operation. No reconnection required for frequency change.

Power Input. 180-240 volts AC, 200-360 hertz PMG supply.

Wide Operating Temperature Range. $-40^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ covers all normal operating environments. Regulator "latches" off when $+70^{\circ} \mathrm{C}$ is exceeded.

Loss of Sensing Shutdown. Protects the generator against uncontrolled voltage output when the sensing circuit to the regulator is opened. Regulator shuts down when the sensing circuit to the regulator does not find continuity. Regulator also shuts down when voltage unbalance exeeds 20% for a specified duration, adjustable by the user.

Overexcitation Shutdown. Protects the generator against damage caused by prolonged field forcing.

Paralleling Mode. Paralleling for multiple generator setups is standard. Simply add 5 VA current transformers for parallel operation in "droop" or "cross current" compensation.

Shock. Withstands up to 20 Gs in each of three (3) perpendicular planes.

Vibration. Withstands 0.036 inch peak, $27-52 \mathrm{~Hz} ; 1 \mathrm{G}$ from $5-26 \mathrm{~Hz}$ and 5.0 Gs from $53-500 \mathrm{~Hz}$.

Multiple Use of Current Transformers. The same current transformers can be used for multiple functions. The voltage regulator does not require separate transformers for paralleling or metering.

Ease of Use. All regulator adjustments and LED indicators are located on one side for easy use and adjustment. Push button controls allow adjustment of the various regulator functions.

External Device Port. PC or Palm connectivity allows access to enhanced operational features using custom software available from our website or upon request.

Volts-per-Hertz Operation. Protects the generator during underspeed operation and aids the prime mover during 100% block load pickup. Adjustable transition between flat regulation and volts-per-hertz ramp adjustable from 40 to 65 Hz . Provides selectable slope of 1 to 3 times PU volts/hertz.

Accessory Input. ± 1 VDC creates a $\pm 10 \%$ adjustment for AVR, FCR, and VAR. ± 1 VDC creates a ± 0.1 PF adjustment in the PF mode (adjusts only the active regulation mode).

EMI Suppression. Internal electromagnetic interference filter meets MIL-STD-461C, Part 9 for radiated and conducted emissions susceptibility when mounted in the MAGNAMAX ${ }^{\text {DVR® }}$ generator connection box.

100 E. Randolph Street • P.O. Box 8003
Wausau, WI 54402-8003 USA
www.marathonelectric.com
Phone: 715-675-3359
Fax: 715-675-8026
GPNO23 6463J/100/07-09/NP/FORMS

WATER HEATER
 CSM Series Data Sheet

The CSM model is designed to preheat diesel and gas engines in generator set applications. The CSM heating system features a coolant preheater with thermostat, heating engines ranging in size from 15L to 100L displacement, pump, and all required controls. Forced circulation of the coolant delivers uniform heating throughout the entire engine, extends element life, and offers a significant reduction in electrical consumption.

Style A

Style A

Style B

Style B

CERTIFICATIONS AND STANDARDS

- c-UL-us Listed (60 Hz)
- CE Compliant (Style B)

SPECIFICATIONS

	Style A	Style B
Height:	383 mm (15 in)	434 mm (17 in)
Length:	493 mm (19.4 in)	493 mm (19.4 in)
Width:	242 mm (9.5 in)	242 mm (9.5 in)
Weight:	$16.8 \mathrm{~kg}(37 \mathrm{lb})$	$24.5 \mathrm{~kg}(54 \mathrm{lb})$
Heating Fluid:	Engine coolant (50\% glycol/50\% water)	
Power:	3, 6, 9, 10.5, and 12 kW	
Rated Voltage:	1 or 3 Phase, 120-690V (50 or 60 Hz)	
Fixed Thermostat:	$38-49^{\circ} \mathrm{C}\left(100-120{ }^{\circ} \mathrm{F}\right)$	
Flow:	$2.2 \mathrm{~m}^{3} / \mathrm{hr}(10 \mathrm{gpm})$ at $3 \mathrm{mWc}(10 \mathrm{ft} / \mathrm{head})$	
Max Pressure:	$860 \mathrm{kPa}(125 \mathrm{psi})$	
Pressure Loss:	1.5 kPa (0.2 psi)	
Inlet / Outlet:	1" NPT / 1" NPT	
Main Control Box		
Ingress Protection	on: NEMA 4 (IP66)	
Motor Ingress Protec	ection: IP44 (50 Hz), NEMA $2(60 \mathrm{~Hz})$	

Model Number	MTU Onsite Energy Part Number	Watts	Volts	Phase	Hz	Amps	Style
CSM10302-000	SUA95187	3,000	240	1	60	13.1	A
CSM10308-000	SUA85631	3,000	208	1	60	15.1	A
CSM1060C-000	SUA85778	6,000	220	1	50	26	A
CSM10602-000	SUA85269	6,000	240	1	60	25.6	A
CSM10604-000	SUA87941	6,000	480	1	60	12.8	B
CSM10608-000	SUA86669	6,000	208	1	60	29.6	A
CSM1090C-000	SUA101813	9,000	220	1	50	41.5	A
CSM10902-000	SUA86156	9,000	240	1	60	38.1	A
CSM10904-000	SUA85170	9,000	480	1	60	19.1	B
CSM10908-000	SUA86157	9,000	208	1	60	44	A
CSM11202-000	SUA86158	12,000	240	1	60	50.6	B
CSM11204-000	SUA87538	12,000	480	1	60	25.3	B
CSM11208-000	SUA84406	12,000	208	1	60	58.4	B
CSM3060A-000	SUA88779	6,000	400	3	50	8.9	B
CSM30604-000	SUA88350	6,000	480	3	60	7.4	B
CSM30608-000	SUA88168	6,000	208	3	60	17.1	B
CSM3090A-000	SUA106952	9,000	400	3	50	13.2	B
CSM30904-000	SUA85254	9,000	480	3	60	11	B
CSM30908-000	SUA87710	9,000	208	3	60	25.4	B
CSM31204-000	SUA90111	12,000	480	3	60	14.6	B
CSM31208-000	SUA88155	12,000	208	3	60	33.7	B

BATTERY CHARGER
 NRG Intelligent Engine Start Data Sheet

The Smart Choice for Mission-Critical Engine Starting:

- Fast, accurate, mission-critical charging gives best starting reliability
- 4-rate, temperature-compensated output offers longest battery life
- Replace nearly any charger without planning ahead
- Industry-first battery-fault alarm helps dispatch service early
- Lasting reliability - field MTBF > 1 million hours with industry-best warranty
- IBC seismic certification meets latest building codes, no installation delays

- Optional OSHPD pre-approval

BENEFITS AND FEATURES

Failure to start due to battery problems is the leading cause of inoperable engine generator sets.
The NRG battery charger maximizes starting system reliability while slashing generator set servicing costs:

- One NRG replaces almost any charger without extra site visits. Installers can select or change at any time 120,208 , or 240 volts AC input, 12 or 24 -volt battery and output settings optimized for nearly any lead-acid or nickel cadmium battery.
- Easy to understand user interface provides state-of-the-art system status including digital metering, NFPA 110 alarms, and a battery fault alarm that can send service personnel to the site before failure to start.
- Batteries charged by NRG give higher performance and last longer. In uncontrolled environments, precision charging increases battery life and watering intervals 400\% or more.
- NRG meets all relevant industry standards - including UL, NFPA 110, and CE. Seismic Certification per International Building Code (IBC) 2000, 2003, 2006. All units are C-UL listed. $50 / 60 \mathrm{~Hz}$ units add CE marking to UL agency marks.

EnerGenius reliability technology built into every charger includes:

- All-electronic operation with generous component de-rating
- Disconnected/reversed/incorrect voltage battery alarm and protection
- Protection of connected equipment against load dump transients
- Widest temperature rating and overtemperature protection
- Superior lightning and voltage transient protection
- Demonstrated field MTBF > 1 million hours
- MTU Onsite Energy standard warranty terms apply

SPECIFICATIONS

AC Input

Voltage
Input current
Frequency
Input protection

Charger Output

Nominal voltage rating
Battery settings

Regulation
Current
Electronic current limit
Charge characteristic
Temperature compensation
Output protection
$110-120 / 208-240$ VAC, $\pm 10 \%$, single phase, field selectable
10A charger: $6.6 / 3.3 \mathrm{amps}$ maximum
20A charger: 12.6/6.3 amps maximum
$60 \mathrm{~Hz} \pm 5 \%$ standard; $50 / 60 \mathrm{~Hz} \pm 5 \%$ optional
1-pole fuse, soft-start, transient suppression

12/24 volt, field selectable
Six discrete battery voltage programs

- Low or high S.G. flooded
- Low or high S.G. VRLA
- Nickel cadmium 9, 10, 18, 19 or 20 cells
$\pm 0.5 \%(1 / 2 \%)$ line and load regulation
10 or 20 amps nominal
105% rated output typical-no crank disconnect required
Constant voltage, current limited, 4-rate automatic equalization
Enable or disable anytime, remote sensor optional
Current limit, 1-pole fuse, transient suppression

[^2]
User Interface, Indication and Alarms

Digital meter
Accuracy
Alarms

Automatic meter alternately displays output volts, amps ${ }^{1}$
$\pm 2 \%$ volts, $\pm 5 \%$ amp
LED and Form C contact(s) per table:

	Alarm Code "C" (meets requirements of NFPA 110)	
AC good	LED	
Float mode	LED	
Fast charge	LED	
Temp comp active	LED	
AC fail	LED and Form C contact ${ }^{2}$	Front panel status display
Low battery volts	LED and Form C contact ${ }^{2}$	
High battery volts	LED and Form C contact ${ }^{2}$	
Charger fail	LED and Form C contact ${ }^{2}$	
Battery Fault ${ }^{3}$	LED and Form C contact ${ }^{2}$	

1. Three-position jumper allows user to select from three display settings: alternating volts / amps (normal), constant volts, or constant amps
2. Contacts rated 2 A at 30 VDC resistive
3. Battery fault alarm indicates these fault conditions:

- Battery disconnected - Battery polarity reversed - Mismatched charger battery voltage - Open or high resistance charger to battery connection
- Open battery cell or excessive internal resistance

Controls

AC input voltage select
$12 / 24$-volt output select
Battery program select
Meter display select
Fast charger enable/disable
Temp compensation enable
Remote temp comp enable

Environmental

Operating temperature
Over temperature protection
Humidity
Vibration (10A unit)
Transient immunity
Seismic Certification

Field-selectable switch
Field-selectable two-position jumper Field-selectable six-position jumper Field-selectable three-position jumper Field-selectable two-position jumper Standard. Can be disabled or re-enabled in the field
Connect optional remote sensor to temp comp port

Simple field adjustments
$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, meets full specification to $45^{\circ} \mathrm{C}$ Gradual current reduction to maintain safe power device temperature 5% to 95%, non-condensing UL 991 Class B (2G sinusoidal) ANSI/IEEE C62.41, Cat. B, EN50082-2 heavy industrial, EN 61000-6-2
IBC 2000, 2003, 2006, 2009; Maximum S_{ds} of 2.28 g ; Optional OSHPD pre-approval

Agency Standards
Safety

Agency marking

EMC

NFPA standards
Optional agency compliance

Construction

Material
Dimensions
Printed circuit card
Cooling
Protection degree
Damage prevention
Electrical connections

Warranty

Standard warranty

Optional Features

Input
Remote temp comp sensor
Drip shield meets s/b (IP21)
NEMA 3R housing
c-UL-us Listed to UL 1236 and CSA standard 22.2 no. 107.2.
UL file E109740
CE: 50/60 Hz units DOC to EN 60335
60 Hz : c-UL-us Listed
$50 / 60 \mathrm{~Hz}$: c-UL-us Listed plus CE marked
Emissions: FCC Part 15, Class B; EN 50081-2
Immunity: EN 61000-6-2
NFPA 70, NFPA 110. (NFPA 110 requires Alarms "C")
OSHPD pre-approval

Non-corroding aluminum enclosure
See Diagrams and Dimensions section of this document
Surface mount technology, conformal coated
Natural convection
Listed housing: NEMA-1 (IP20). Optional IP2 1 drip shield. Optional NEMA 3R enclosure
Fully recessed display and controls
Compression terminal blocks

MTU Onsite Energy standard warranty terms apply

Input frequency, $50 / 60 \mathrm{~Hz}$
Recommended where battery and charger are in different locations
Protects from dripping water
Enables outdoor installation (remote temp sensor recommended)

BATTERY CHARGER
 NRG Intelligent Engine Start Data Sheet

DIAGRAMS AND DIMENSIONS

20A Chargers

NRG Ordering Information

Output Volts	Output Amps	Frequency	Model	Available Configurations	NFPA 110 Alarms	Weight kg (lbs)
$12 / 24$	10	60 Hz	SUA83187	Enclosed	Yes	$10.4(23)$
$12 / 24$	20	60 Hz	SUA90170	Enclosed	Yes	$19.1(42)$
$12 / 24$	10	$50 / 60 \mathrm{~Hz}$	SUA89983	Enclosed	Yes	$10.4(23)$
$12 / 24$	20	$50 / 60 \mathrm{~Hz}$	SUA94705	Enclosed	Yes	$19.1(42)$

All models offer field-selectable input 120/208-240 volts.

C

PRE-APPROVED

Engine data

	Genset	Marine	O \& G	Rail
Application	\mathbf{x}			
Engine model	12V2000G85 TB			
Emission Stage	EPA2 (EPA2 parameter-setting/D2-Cycle)			
Optimisation				
Application group	$3 D$			
Date	07.03 .2012			
fuel sulphur content [ppm]	5			
$\mathrm{mg} / \mathrm{mN}^{3}$ values base on residual oxygen value of [\%]	measured			

Engine raw emissions*

Cycle point	[-]	n1	n2	n3	n4	n5	n6	n7	n8
Power (P/PN)	[-]	1	0,75	0,50	0,25	0,10			
Power	[kW]	890	668	445	223	89			
Speed (n / nN)	[-]	1	1	1	1	1			
Speed	[rpm]	1800	1800	1800	1800	1800			
Exhaust temperature after turbine	$\left[{ }^{\circ} \mathrm{C}\right]$	534	470	424	352	245			
Exhaust massflow	[kg/h]	4718	4238	3242	2134	1613			
Exhaust back pressure	[mbar]	32	23	13	5	2			
	[g/kWh]	6,2	5,1	5,0	5,9	13,5			
Nox	[$\mathrm{mg} / \mathrm{mNN}^{3}$]	1702	1110	964	868	1007			
CO*	[g/kWh]	0,6	0,5	0,6	1,2	3,4			
-	[$\mathrm{mg} / \mathrm{mNN}^{3}$]	159	103	119	175	256			
	[$\mathrm{g} / \mathrm{kWh}$]	0,04	0,09	0,20	0,45	1,29			
HC	[$\mathrm{mg} / \mathrm{mN}^{3}$]	11	19	38	65	97			
O 2	[\%]	8,2	10,2	11,5	13,2	15,6			
Particulate measured	[g/kWh]	0,02	0,03	0,07	0,17	0,20			
Particulate measured	[$\mathrm{mg} / \mathrm{mN}^{3}$]	6	7	13	24	15			
Particulate calculated	[g/kWh]	-	-	-	-	-			
Particulate calculated	[$\mathrm{mg} / \mathrm{mN}^{3}$]	-	-	-	-	-			
Dust (only TA-Luft)	[$\mathrm{mg} / \mathrm{mN}^{3}$]	-	-	-	-	-			
FSN	[-]	0,2	0,2	0,5	0,7	0,1			
NO/NO2**	[-]	-	-	-	-	-			
CO2	[g/kWh]	663,3	674,7	682,0	735,7	945,3			
co2	[$\mathrm{mg} / \mathrm{mNN}^{3}$]	178552	150249	130908	105958	71038			
SO2	[g/kWh]	0,002	0,002	0,002	0,002	0,003			
	[$\mathrm{mg} / \mathrm{mNN}^{3}$]	0,6	0,5	0,4	0,3	0,2			

* Emission data measurement procedures are consistent with the respective emission evaluation process. Noncertified
engines are measured to sales data (TVU/TEN) standard conditions
These boundary conditions might not be representative for detailed dimensioning of exhaust gas aftertreatment,
in this case it is recommended to contact the responsible department for more information.
Measurements are subject to variation. The nominal emission data shown is subject to instrumentation,
measurement, facility, and engine-to-engine variations.
All data applies to an engine in new condition. Over extended operating time deterioration may occur which might have an impact on emission
Exhaust temperature depends on engine ambient conditions.
** No standard test. To be measured on demand

							Benennung/Title Emissionsdatenblatt Emission Data Sheet
				MTU Friedrichshafen GmbH			
					Datum/Date	Name/Name	Zeichnungs-Nr./Drawing No.
				Bearbeiter/Drawn by	07.03.2012	Lenhof	
				Geprürt/Checked	07.09.2012	Peitz	EDS 20000136
Buchstabe/ Revision	$\begin{gathered} \begin{array}{c} \text { Änderung } \\ \text { Modifikation } \end{array} \end{gathered}$	$\begin{aligned} & \hline \text { Datum } \\ & \text { Date } \end{aligned}$	$\begin{aligned} & \text { Name } \\ & \text { Name } \end{aligned}$	Org.EEinheitDept.	TKV	Schmitz	

Vers. 1.0
Fuer diese technische Unterlage behalten wir uns alle Rechte vor. Sie darf ohne unsere Zustimmung weder vervielfaeltigt, noch Dritten zugaenglich gemacht, noch in anderer Weise missbraeuchlich verwertet werden
We reserve all rights to this technical document. Without our prior permission it shall not be reproduced, made available to any third party or otherwise misused in any way whatsoever.

CERTIFICATE OF CONFORMITY
WITH THE CLEAN AIR ACT

Certificate Issued To: MTU America, Inc. (U.S. Manufacturer or Importer) Certificate Number: GMDDL35.8GRR-003	$\begin{aligned} & \frac{\text { Effective Date: }}{11 / 03 / 2015} \\ & \frac{\text { Expiration Date: }}{12 / 31 / 2016} \end{aligned}$		$\begin{gathered} \frac{\text { Issue Date: }}{11 / 03 / 2015} \\ \frac{\text { Revision Date: }}{\text { N/A }} \end{gathered}$

Model Year: 2016
Manufacturer Type: Original Engine Manufacturer
Engine Family: GMDDL35.8GRR

Engine Family: GMDDL35.8GRR

Mobile/Stationary Indicator: Stationary

Emissions Power Category: $560<\mathrm{kW}<=2237$
Fuel Type: Diesel
After Treatment Devices: No After Treatment Devices Installed
Non-after Treatment Devices: Electronic Control

Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Part 60 , and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60 .
It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60 . It is also a term of this certificate that this certificate may be revoked or suspended or rendered void ab initio for other reasons specified in 40 CFR Part 60 .
This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

CERTIFICATE OF CONFORMITY
WITH THE CLEAN AIR ACT

Certificate Issued To: MTU America, Inc. (U.S. Manufacturer or Importer) Certificate Number: GMDDL35.8GRR-003	$\begin{aligned} & \frac{\text { Effective Date: }}{11 / 03 / 2015} \\ & \frac{\text { Expiration Date: }}{12 / 31 / 2016} \end{aligned}$		$\begin{gathered} \frac{\text { Issue Date: }}{11 / 03 / 2015} \\ \frac{\text { Revision Date: }}{\text { N/A }} \end{gathered}$

Model Year: 2016
Manufacturer Type: Original Engine Manufacturer
Engine Family: GMDDL35.8GRR

Engine Family: GMDDL35.8GRR

Mobile/Stationary Indicator: Stationary

Emissions Power Category: $560<\mathrm{kW}<=2237$
Fuel Type: Diesel
After Treatment Devices: No After Treatment Devices Installed
Non-after Treatment Devices: Electronic Control

Pursuant to Section 111 and Section 213 of the Clean Air Act (42 U.S.C. sections 7411 and 7547) and 40 CFR Part 60 , and subject to the terms and conditions prescribed in those provisions, this certificate of conformity is hereby issued with respect to the test engines which have been found to conform to applicable requirements and which represent the following engines, by engine family, more fully described in the documentation required by 40 CFR Part 60 and produced in the stated model year.

This certificate of conformity covers only those new compression-ignition engines which conform in all material respects to the design specifications that applied to those engines described in the documentation required by 40 CFR Part 60 and which are produced during the model year stated on this certificate of the said manufacturer, as defined in 40 CFR Part 60 .
It is a term of this certificate that the manufacturer shall consent to all inspections described in 40 CFR 1068 and authorized in a warrant or court order. Failure to comply with the requirements of such a warrant or court order may lead to revocation or suspension of this certificate for reasons specified in 40 CFR Part 60 . It is also a term of this certificate that this certificate may be revoked or suspended or rendered void ab initio for other reasons specified in 40 CFR Part 60 .
This certificate does not cover engines sold, offered for sale, or introduced, or delivered for introduction, into commerce in the U.S. prior to the effective date of the certificate.

South Coast Air Quality Management District
21865 Copley Drive, Diamond Bar, CA 91765-4178
(909) 396-2000 • www.aqmd.gov

December 16, 2015

Mr. Saeed Abolhasani
MTU America, Inc.
39525 MacKenzie Drive
Novi, MI 48377

Dear Mr. Abolhasani:
The South Coast Air Quality Management District (SCAQMD) has extended to December 31, 2016 the Certified Equipment Permits (CEPs) for the stationary emergency internal combustion (IC) engine models listed in the attached table. However, please be reminded that many of these certified diesel-fueled IC engines may not meet Rule 1470 requirements if installed near a sensitive receptor or near school grounds and, therefore, may require an aftertreatment system such as a diesel particulate filter in the exhaust stream.

Please note that the SCAQMD does not endorse or warrant any specific equipment or manufacturer. Modification of the equipment listed here will void this certification.

If you have additional questions or need further clarification on the CEP program, please feel free to contact Rizaldy Calungcagin at (909) 396-2315 or at rcalungcagin@aqmd.gov.

Sincerely,

Senior Manager/Web Deputy
Engineering and Compliance

SOUTH COAST AIR QUALITY MANAGEMENT DISTRICT Certified ICE-Emergency Generators

MTU AMERICA, INC.

Engine Mfr.	Model	Engine Rating	Application No.
MTU America	10V1600G80S	752 BHP	578846
MTU America	18 V 2000 G 76 S	1839 BHP	578847
Tognum America	10V1600G80S	752 BHP	551793
Tognum America	12V2000G45TB	1045 BHP	551794
Tognum America	12V2000G85TB	1193 BHP	551795
Tognum America	16V2000G45TB	1354 BHP	551796
Tognum America	16V2000G85TB	1495 BHP	551797
Tognum America	16V4000G83L	3674 BHP	551792

12/16/2015

CERTIFIED EQUIPMENT PERMIT (CEP)

 (NOT A PERMIT TO CONSTRUCT OR OPERATE)Granted on July 26, 2013

ID 174372

```
Legal Owner
or Operator: TOGNUM AMERICA, INC.
    39525 MACKENZIE DR
    NOVI, MI }4837
    ATTN: ALAN PITTEL
```

Equipment Location: SAME AS ABOVE

The equipment described below and as shown on the approved plans and specifications are subject to the special condition or conditions listed.

Equipment Description

INTERNAL COMBUSTION ENGINE, TOGNUM AMERICA MODEL NO. 12V2000G85TB, 1193 BHP (890 KWm), 12 CYLINDERS, TURBOCHARGED, DIESEL-FUELED, DRIVING AN EMERGENCY ELECTRICAL GENERATOR.

Manufacturer Condition

1. THIS CERTIFIED EQUIPMENT PERMIT (CEP) IS NOT A PERMIT TO CONSTRUCT OR OPERATE. THE PERSON CONSTRUCTING, INSTALLING OR OPERATING THE EQUIPMENT AT EACH SPECIFIC SITE SHALL OBTAIN ALL NECESSARY PERMIT(S) TO CONSTRUCT AND PERMIT(S) TO OPERATE AND COMPLY WITH ANY OTHER DISTRICT RULES AND REGULATIONS INCLUDING THE REQUIREMENTS OF REGULATION XIII.

End User Conditions

1. OPERATION OF THIS EQUIPMENT SHALL BE CONDUCTED IN ACCORDANCE WITH ALL DATA AND SPECIFICATIONS SUBMITTED WITH THE APPLICATION UNDER WHICH THIS PERMIT IS ISSUED UNLESS OTHERWISE NOTED BELOW.
2. THIS EQUIPMENT SHALL BE PROPERLY MAINTAINED AND KEPT IN GOOD OPERATING CONDITION AT ALL TIMES.
3. A NON-RESETTABLE TOTALIZING TIMER SHALL BE INSTALLED AND MAINTAINED TO INDICATE THE ENGINE ELAPSED OPERATING TIME.
4. THIS ENGINE SHALL NOT OPERATE MORE THAN 200 HOURS IN ANY ONE YEAR, WHICH INCLUDES NO MORE THAN 50 HOURS IN ANY ONE YEAR FOR MAINTENANCE AND TESTING PURPOSES.
5. AN ENGINE OPERATING LOG OF ENGINE OPERATIONS SHALL BE KEPT AND MAINTAINED DOCUMENTING THE TOTAL TIME THE ENGINE IS OPERATED EACH MONTH AND THE SPECIFIC REASON FOR OPERATION SUCH AS:

CERTIFIED EQUIPMENT PERMIT (CEP) (NOT A PERMIT TO CONSTRUCT OR OPERATE)

A. EMERGENCY USE
 B. MAINTENANCE AND TESTING
 C. OTHER (BE SPECIFIC)

IN ADDITION, FOR EACH TIME THE ENGINE IS MANUALLY STARTED, THE LOG SHALL INCLUDE THE DATE OF ENGINE OPERATION, THE SPECIFIC REASON FOR OPERATION, AND THE TOTALIZING HOUR METER READING (IN HOURS AND TENTHS OF HOURS) AT THE BEGINNING AND THE END OF THE OPERATION.
6. ON OR BEFORE JANUARY $15^{\text {TH }}$ OF EACH YEAR, THE OPERATOR SHALL RECORD IN THE ENGINE OPERATING LOG:

A. THE TOTAL HOURS OF ENGINE OPERATION FOR THE PREVIOUS CALENDAR YEAR, AND
 B. THE TOTAL HOURS OF ENGINE OPERATION FOR MAINTENANCE AND TESTING FOR THE PREVIOUS CALENDAR YEAR.

7. ENGINE OPERATION LOG(S) SHALL BE RETAINED ON SITE FOR A MINIMUM OF THREE CALENDAR YEARS AND SHALL BE MADE AVAILABLE TO THE EXECUTIVE OFFICER OR REPRESENTATIVE UPON REQUEST.
8. OPERATION BEYOND THE 50 HOURS PER YEAR ALLOTTED FOR ENGINE MAINTENANCE AND TESTING SHALL BE ALLOWED ONLY IN THE EVENT OF A LOSS OF GRID POWER OR UP TO 30 MINUTES PRIOR TO A ROTATING OUTAGE, PROVIDED THAT: (A) THE UTILITY DISTRIBUTION COMPANY HAS ORDERED ROTATING OUTAGES IN THE CONTROL AREA WHERE THE ENGINE IS LOCATED OR HAS INDICATED THAT IT EXPECTS TO ISSUE SUCH AN ORDER AT A CERTAIN TIME; AND (B) THE ENGINE IS LOCATED IN A UTILITY SERVICE BLOCK THAT IS SUBJECT TO THE ROTATING OUTAGE. ENGINE OPERATION SHALL BE TERMINATED IMMEDIATELY AFTER THE UTILITY DISTRIBUTION COMPANY ADVISES THAT A ROTATING OUTAGE IS NO LONGER IMMINENT OR IN EFFECT.
9. THIS ENGINE SHALL COMPLY WITH ALL APPLICABLE REQUIREMENTS OF RULES 431.2, 1470 (AND 1472).

Please notify Rizaldy Calungcagin at (909) 396-2315 (rcalungcagin@aqmd.gov) when SCAQMD information packets are needed or if you have any questions concerning the Certification/Registration Program.

This Certified Equipment Permit is based on the plans, specifications, and data submitted as it pertains to the release of air contaminants and control measures to reduce air contaminants. No approval or opinion concerning safety and other factors in design, construction or operation of the equipment is expressed or implied.

This Certified Equipment Permit will become invalid if this application is canceled. THIS PERMIT SHALL EXPIRE ON December 31, 2013 unless an extension is granted by the Executive Officer.

DAVID DE BOER
Program Supervisor

P nnsite EMETV4

GENSET

Part list number

Genset Drawings

Wiring number

Description
Project template with IEC identifier structure

Table of contents

Page Structure			Page	Page description	Date	Edited by
	EAA		1	Cover sheet	9/22/2016	C. W. Sturm
	EAB		2	Table of contents	9/26/2016	kJ Black
	EAB		10	Table of contents	9/26/2016	KJ Black
	EDB		3	Document/Function/Location Table	9/23/2016	C. W. Sturm
	EDB		4	Drawing Line and Color Definition	9/23/2016	C. W. Sturm
	EDB		5	Wire Color Definition	9/23/2016	C. W. Sturm
CPL	EFA	CON	6	Power \& Ground	9/26/2016	KJ Black
CPL	EFA	CON	7	Back Panel Layout	9/26/2016	KJ Black
CPL	EFA	PLC	8	MGC Controller	9/26/2016	KJ Black
GEN	EFS	EkW	9	Generator	9/26/2016	KJ Black
GEN	EFS	EkW	10	Generator Accessories	9/26/2016	KJ Black
GCB	EFS	EkW	11	Breakers	9/26/2016	KJ Black
ENG	EFS	MkW	13	Engine ECU Plug -X1-X3	9/26/2016	KJ Black
ENG	EFS	MkW	14	Engine Accessories	9/26/2016	KJ Black
BSF	EFS	MkW	15	Jacket Water Heaters	9/26/2016	KJ Black
BSF	EFS	STR	16	Starter \& Battery	9/26/2016	KJ Black
CPL	EFS	CON	17	Door / Emergency stop	9/23/2016	C. W. Sturm
CPL	EFS	CON	18	Alarm/Pre-Alarm	9/26/2016	KJ Black
CPL	EFS	COM	24	Com. Bus-overview	9/26/2016	KJ Black
TNK	EFS	FUL	25	Fuel Tank	9/26/2016	KJ Black
GEN	ECL		1	Connection list : L0-ENG_HARN-9G	9/26/2016	KJ Black
ENG	ECL		1	Connection list : - -X3-(242)	9/26/2016	KJ Black
BSF	ECL		1	Connection list : JMP - ENG_HARN-48	9/26/2016	KJ Black
CPL	ECL		1	Connection list : (2) - (9F)	9/26/2016	KJ Black
GCB	ECL		1	Connection list : 1 -9	9/26/2016	KJ Black
TNK	ECL		1	Connection list : (98) - (57)	9/26/2016	KJ Black
	ECL		9	Connection list : 9-9	9/26/2016	KJ Black
отв	ECL		1	Connection list : (36) - ENG_HARN-48C	9/26/2016	KJ Black
DC_L	IECL		3	Connection list : 125C-9	9/26/2016	KJ Black
CPL	ETL		16	Legende	9/26/2016	KJ Black
GEN	EMA		11	Terminal diagram	9/26/2016	KJ Black
GEN	EMA		12	Terminal diagram	9/26/2016	KJ Black
GEN	EMA		13	Terminal diagram	9/26/2016	KJ Black
GEN	EMA		14	Terminal diagram	9/26/2016	KJ Black
GEN	EMA		15	Terminal diagram	9/26/2016	KJ Black
GEN	EMA		16	Terminal-overview	9/26/2016	KJ Black
GEN	EMA		17	Terminal-overview	9/26/2016	KJ Black
GEN	EMA		18	Terminal-overview	9/26/2016	KJ Black
GEN	EMA		19	Terminal-overview	9/26/2016	KJ Black

Table of contents
MTU_Global F06 V00

Description	Document types (\&)
Document	information content
\& EAA	Electrical cover sheet
\& EAB	Electrical table of contents
\& ECL	Electrical connection list
\& EDB	Description
\& EFF	Electrical function diagram
\& EFQ	Fuse rotation
\& EFS	Wiring diagram
\& EFA	Wiring diagram overview
\& ETL	Layout
\& ETC	Manufacturing Dokuments
\& EMA	Electrical terminal diagram
\& EMB	Electrical cable plan
\& EPC	Bill of material

Description	Higher level function (==)
Function	information content
$==$ CHPx	Used for when a system contains multiple engine units in one project

Description	Mounting locations (+)
Location	information content
+ BSF	Base frame
+ ENG	Engine
+ GEN	Generator incl. terminal box
+ OTB	Outlet box enclosure
+ CPL	Other control panel enclosure
+ MIP	Motor-interface panel
+ MMC	MTU Module control enclosure
+ GCB	Generator circuit breaker
+ CCB	CHP Coupupling breaker enclosure
+ MCB	Mains circuit breaker
+ ATS	Automatic transfer switch enclosure
+ AUX	Auxillary drives enclosure
+ MCS	MTU Control system enclosure
+ FAN	FAN control enclosure
+ ACB	Accessory box enclosure
+ DPL	Distribution panel enclosure
+ TNK	Tank
+ ENC	Enclosure/Container
+ GST	Gas train
+ HRM	Heat recovery module
+ HTB	Heat recovery module terminal box
+ PIP	Piping system
+ GBX	Gear box
+ EXT	Devices \& enclosures outside any other enclosure, not delivered by MTU
+ CUS	Customer page

TECHNICAL DATA AND CONSTUCTION DETAILS

Line and color definition for potential tracing (Colors are only visible if you use colored print out)		
Control voltage 24VAC 24VAC L		$2{ }^{24 V A C-L}$
Control voltage 24VAC 24VAC N		$24 \mathrm{VAC}-\mathrm{N}$
External source voltage	\ldots	+ Ext
Analog signals	QSOLL+, QSOLL-	Analog
Current transformer	L1-CT, L2-CT, L3-CT	$\stackrel{\mathrm{L} 1-\mathrm{CT}}{ }$
Emergency stop	L+	$N A$
All other connections EPLAN standard		

Wire colors within enclosure According IEC EN 60204-1		
Rated voltage	Above 48VAC	Black
Neutral wire	N	Light Blue
Protective earth	PE	Green/Yellow
Control voltage	24-240V AC	Red
	OV AC	Red/White
	24-110V DC	Dark Blue
	OV DC	Grey
PLC-Controller		White
Measuring technique		Grey
wires before		Orange

Main power before main switch Main power main switch on Neutral wire Protective conductor	$\begin{aligned} & L 1-L 2-L 3 \\ & 1 L 1-1 L 2-1 L 3 \\ & N \\ & \text { PE } \end{aligned}$
Power supply 400VAC	-XD01
Power supply 230VAC	-XD02
Auxiliary drives	-XD03
Emergency stop	-XD06
Module signals digital	-XD10
Module signals analog	-XD11
Supply DC 24VDC	-XDL+
Supply DC OVDC	-XDL-
Signals external DC	-XD100.x
Harness W010-ECU7 / W011-ECU9 Digital	-1XD01
Harness W010-ECU7 / W011-ECU9 Analog	-1XD02
Harness W020 Engine	-2XD01
Harness W030 Generator signal	-3XD01/-3XD02/-3XD03
Harness W031 Generator PT100	
Option	
Harness W050 Power panel	-5XD01
Control cable WD06.1 Generator circuit breaker	-6XD01
Control cable WD07.1 Mains circuit breaker	-7XD01
Control cable WD08.1 Fan control enclosure	-8XD01
Control cable WD09.1 Fuel control	-9XD01
CAN bus	-XF01
MOD bus	-XF02

	000000000
	2000000000
	0000000000000000
(o)	000000000000000

Cable harness $\quad \mathrm{X} 1 / \mathrm{X} 3 \quad$ Engine Control Unit (ECU)

$\begin{aligned} & \mathrm{X} 1-19 \\ & \mathrm{X} 1-35 \\ & \mathrm{X1}-20 \end{aligned}$	201 202 203	$\begin{aligned} & 0,5^{2} / 20 \\ & 0,5^{2} / 20 \\ & 0,5^{2} / 20 \end{aligned}$	CAN1_HI CAN1_LO CAN1_GND		(HIGH) (LOW) (GND)	MAU MAU MAU	11 12 13			
$\begin{aligned} & \text { X1-33 } \\ & \text { X1-18 } \\ & \text { X1-34 } \end{aligned}$	205 206 204	$0,52 / 20$ $0,52 / 20$ $0,52 / 20$	$\begin{aligned} & \text { CAN2_HI } \\ & \text { CAN2_LO } \\ & \text { CAN2_GND } \end{aligned}$		(HIGH) (LOW) (GND)	MAU MAU MAU	21 22 23			
X1-37	209	0,52/20	START_ENGINE			TB1 32				
X1-22	210	0,52/20				-"-	9			
X1-38	211	0,52/20	START_ENGINE SPEED - DOWN			-"-	167			
X1-23	212	0,52/20	-----------------				9168			
X1-39	213	0,52/20	SPEED - UP			-"-				
X1-24	214	0,52/20	----------------- IDLE - MODE			-"-				
X1-41	217	0,52/20				-"-	217			
X1-26	218	0,52/20	IDLE - MODE			-"-	9			
X1-42	219	0,52/20	SWITCH - DROOP			-"-	219			
X1-27	220	0,52/20	-----------------			-"-	9			
X1-43	221	0,52/20	Stop ENGINE			-"-	32			
X1-28	222	0,52/20	-----------------			-"-	9			
X1-31	239	0,52/20	SPEED DEMAND VOLTAGE			-"-	67			
X1-29	225	0,52/20	-----------------			-"-	68			
X1-10	233	0,52/20	Starter on			-"-	233			
X1-9	234	0,52/20	------------------			-"-	234			
$\begin{aligned} & \text { x1-2 } \\ & x_{1}-3 \end{aligned}$			$\begin{aligned} & \text { BRIDGE } \\ & \text { BRIDGE } \end{aligned} \quad \square$							
X1-5			Low ov OUTPUT $0 . .10 \mathrm{~V}$ OUTPUT 0..10V							
X1-6	P									
X1-7	T									
X3-13	242	0,52/20	EMERGENCY STOP		(IN)	TB1	242			
x3-16	241	0,52/20	EMERGENCY STOP		(+24V)	-"-	241			
x3-3	303	2,52/14	BATTERY		(+24V)	TB1	51			
x3-6	304	2,52/14	BATTERY		(+24V)	-"-	51			
х3-9	305	2,52/14	BATTERY		(+24V)	-"-	51			
X3-12	306	2,52/14	BATTERY		(+24V)	-"-	51			
x3-1	307	2,52/14	BATTERY		(-GND)	TB1	104			
x3-4	308	2,52/14	BATTERY		(-GND)	-"-	104			
х3-7	309	2,52/14	BATTERY		(-GND)	-"-	104			
X3-10	310	2,52/14	BATTERY		(-GND)	-"-	104			

ENCLOSURE AND SOUND DATA SHEET - DIESEL 60 Hz: 650-2,000 kW Standby / 615-1,800 kW Prime
 $m+\square$ חחGFte $60 \mathrm{~Hz}:$ 1,250-2,000 Data Center Continuous Power (DCCP)

Weatherproof Enclosure (pictured)*

ENCLOSURE LEVEL IDENTIFICATION

Weatherproof Enclosure (WPE)	Weatherproof enclosure constructed of heavy gauge steel or aluminum with fixed stormproof panels. Enclosure consists of a bolted and welded construction with factory-mounted external silencer or internal silencer where applicable. Hinged,
lockable double-door access on both sides of the enclosure.	

CERTIFICATIONS AND STANDARDS

- UL 2200
- CSA

STANDARD FEATURES FOR ALL LEVELS

- Heavy material construction
- Steel Enclosure: 1.9 mm (0.075 in) - 14 gauge or greater thickness
- Aluminum Enclosure: 2.3 mm (0.09 in) or greater thickness
- Service access
- Double door access gives ease of service to all components
- Rain shroud and rain cap
- Rodent barriers
- Scoop access panels
- Hardware
- Powder coated hinges with stainless steel pins
- Key-lockable and pad-lockable powder coated door handles
- Finish Paint: ANSI 61 Grey standard
- Custom colors available upon request
- External silencer (Industrial grade or better)
- Stainless steel flexible exhaust connections (where applicable)

ENCLOSURE AND SOUND DATA SHEET - DIESEL \square GEE 60 Hz : 650-2,000 kW Standby / 615-1,800 kW Prime mit ERE「प! $60 \mathrm{~Hz}:$ 1,250-2,000 Data Center Continuous Power (DCCP)

OPTIONAL FEATURES

- Door restraints
- AC or DC light package
- Motorized / gravity louvers (where available)
- Internal silencer (Critical grade or better)
- Insulated silencers
- Stainless steel flexible exhaust connections (where applicable)
- For other custom options, please consult factory.

ENCLOSURE AND SOUND DATA SHEET - DIESEL miv nasite 60 Hz: 650-2,000 kW Standby / 615-1,800 kW Prime 60 Hz: 1,250-2,000 Data Center Continuous Power (DCCP)

 SOUND RATINGS dB(A) AT 7 METERS| Application | Model | Power Node | Weatherproof Enclosure (WPE) | Weatherproof (WPE) with Sound Attenuation Kit | Ultra Quiet Enclosure (UOE) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standby | MTU 12V2000 DS650 | 650 kW | 89 | 86.4 | 71.9 |
| | MTU 12V2000 DS750 | 750 kW | 89 | 86.4 | 71.9 |
| | MTU 12V2000 DS800 | 800 kW | 86.1 | 82 | 76 |
| | MTU 16V2000 DS900 | 900 kW | 89.5 | 86.5 | 80.5 |
| | MTU 16V2000 DS 1000 | 1,000 kW | 93 | 91.7 | 81.5 |
| ** Includes
 Data Center Continuous Power (DCCP) ratings | MTU 12V4000 DS 1250** | 1,250 kW | C/F | 88 | 75.9 |
| | MTU 12V4000 DS 1500** | 1,500 kW | C/F | 89.2 | 76.2 |
| | MTU 12V4000 DS 1750** | 1,750 kW | C/F | 90.2 | 77.2 |
| | MTU 16V4000 DS2000** | 2,000 kW | C/F | 91.8 | 84 |
| Prime | MTU 12V2000 DS650 | 615 kW | C/F | C/F | C/F |
| | MTU 12V2000 DS750 | 680 kW | C/F | C/F | C/F |
| | MTU 12V2000 DS800 | 725 kW | 86 | 82.1 | C/F |
| | MTU 16V2000 DS900 | 800 kW | C/F | C/F | C/F |
| | MTU 16V2000 DS 1000 | 900 kW | C/F | C/F | C/F |
| | MTU 12V4000 DS 1250 | 1,125 kW | C/F | C/F | C/F |
| | MTU 12V4000 DS 1500 | 1,400 kW | C/F | C/F | C/F |
| | MTU 12V4000 DS 1750 | 1,600 kW | C/F | C/F | C/F |
| | MTU 16V4000 DS2000 | 1,800 kW | C/F | C/F | C/F |

NOTE:

- Aluminum enclosure sound levels are approximately $2 \mathrm{~dB}(\mathrm{~A})$ higher than listed sound levels for steel enclosures
- Sound pressure levels subject to instrumentation, measurement, installation, and generator set variability
- Sound power levels per ISO 8528-10 and ANSI S1.13-2005
- Sound data measured with:
- Full-rated load
- Standard radiator package
- Infinite exhaust connection

Refer to the MTU Business Portal Acoustics Data for exhaust noise ratings.
C/F = Consult Factory

* Note: Visual appearance may differ between power nodes.

FUEL SYSTEM
 Sub-Base Tank Data Sheet

MTU Onsite Energy's sub-base fuel tanks are manufactured and listed per UL142 and ULC-S601 standards for steel above-ground tanks. These certifications assure that our tanks meet the structural and mechanical integrity requirements for mounting generator sets directly on top, providing our customers with a safe and efficient fuel storage system. These tanks are suitable for above-ground storage of non-corrosive, stable, flammable, or combustible liquids that have a specific gravity not exceeding that of water. They are intended for installation and use in accordance with the codes referenced in the Certifications and Standards section. The secondary containment construction consists of a steel tank within a closed steel containment dike that is capable of being monitored for leakage.

STANDARD FEATURES

- Fuel fill drop tube
- Normal vent
- Emergency vent
- Manual fill
- Lockable fill cap
- Level alarm
- Basin drain (plugged)
- Removable supply and return dip tubes
- Leak detection
- Black paint finish
- Secondary containment
- Electrical stub-up area: Provides space for generator set electrical connections and internal wiring capabilities
- Baffles: Separates cold engine supply fuel from hot returning fuel (additional baffling as required for structural integrity)
- Fuel level gauge: A direct-reading fuel level gauge with electric sender

OPTIONAL FEATURES

- High fuel pre-alarm and low fuel level shutdown
- Five-gallon spill/fill containment box with lockable hatch
- Fuel tanks to meet local jurisdictions/codes
- IBC Certification 2006, 2009, and 2012

FUEL SYSTEM

Sub-Base Tank Data Sheet

CERTIFICATIONS AND STANDARDS

United States Canada

- UL 142
- ULC-S601
- NFPA 30
- Part 4: National Fire Code of Canada
- NFPA 37
- CSA B139
- NFPA 110
- CSA C282
- International Fire Code
- CCME PN 1326

OPTIONAL REGIONAL CODE KITS

MTU Onsite Energy offers pre-engineered kits that can be added to sub-base fuel tanks on $30-600 \mathrm{~kW}$ generator sets. These kits meet the regional codes for listed counties and states. Reference the table on page 3 for the contents of each code kit.

FUEL SYSTEM
Sub-Base Tank Data Sheet

	Code Kit Contents																	
Code Jurisdiction		High Fuel (90\%)	Critical High Switch (95\%)	Fuel Alarm Panel	Fuel Fill Spill Containment (5 Gallon)	Overfill Prevention Valve (OFPV)	Fire Rated Fuel Lines	Camlock Fill	Hazmat Label	Vent Whistle	Regional Labeling	$\begin{aligned} & \text { Fuel } \\ & \text { Fill } \\ & \text { Drop } \\ & \text { Tube } \end{aligned}$	Fuel Supply Check Valve	Fuel Supply Ball Valve Valve	Tank Risers*	Extended Vents (12 ft above grade)	Fuel Leak Switch	IBC (Optional)
California	x	x		x	x	x		x	x			x	x			x	x	x
Colorado	x	x		x	x	x		x	x			x	x		x	x	x	x
Dallas, TX		x		x	x	x			x			x	x			x	x	X
Denver, CO	x	x		x	x	x		x	x			x	x			x	x	x
Florida (FDEP)		x		x	x	x		x	x		x	x	x		x		x	x
Georgia	x	x		x	x	x		x	x			X	x			x	x	X
Georgia (GEFA)	x	x		x	x	x		x	x			x	x			x	x	x
IFC 2003 / 2006 / 2009	x	x		x	x	x		x	x			x	x			x	x	x
lowa	x	x			x				x			x	x				X	x
King County, WA	X	X	X	X	X	X		X	X			X	X			X	X	X
Maryland	x	X		x	X	x		x	x			X	x				X	X
Massachusetts	x	x			X				X			X	x				X	X
Michigan		X		X	X	X	X	X	X		X	X	X		X	X	X	X
Montana		X		X	X	X			X			X	X		X		X	X
Nassau, NY	X	X		X	X	X		X	X			X	X		X	X	X	
Nebraska	X	X			X				X			X	X				X	X
New Hampshire			X	X	X	X			X			X	X	X			X	X
North Carolina	X	X				X		X	X			x	X				X	X
Ohio	X	X		X	X	X		X	X			X	X				X	x
Oklahoma	X	X	X	X	X	X		X	X			X	X		X	X	x	x
Ontario	X	X			X	X		X	X	X	X	X	X			X	X	X
Phoenix, AZ	X	X				X		X	X			X	X			X	x	X
San Francisco, CA	X	X		X	X	X		X	X			X	X			X	X	X
Suffolk, NY	X	X		X	X	X	X	X	X			X	X		X	X	x	
Washington	X	X		X	X	X		X	X			x	X			X	x	X
Wisconsin	\mathbf{x}	x		x	X	X		X	X			x	x				X	X
* Risers meet minimu Note: Verify regional	code re de requ	quirem uiremen	ents. ts prio	sp	cation.													

DIESEL FUEL WATER SEPARATOR 751000FHX Data Sheet

MTU Onsite Energy filter assemblies are designed of heavy duty construction and three-stage filtration using 10 or 30 Micron filter element(s). High capacity water separation (99% water removal efficiency) and fuel filtration process protects engine components from dirt, rust, algae, asphaltines, varnishes, and especially water, which is prevalent in engine fuels. These filters are easy to service with clear collection bowl(s) and self-venting water drain(s).

SPECIFICATIONS

Racor Model Number:
MTU Onsite Energy Part Number (10 Micron):
MTU Onsite Energy Part Number (30 Micron):
Generator Set Model Power Range (Standby):
Generator Set Model Power Range (Prime):
751000FHX
SUA 100602
SUA95297
350-1000 kWe
325-900 kWe
Height:
$55.9 \mathrm{~cm}(22 \mathrm{in})$
Depth:
27.9 cm (11 in)

Width:
47.8 cm (18.8 in)

Weight (dry):
$13.6 \mathrm{~kg}(30 \mathrm{lb})$

681 Iph (180 gph)
1,363 lph (360 gph)
$7 / 8$ in - 14 UNF (SAE J5 14 male threads)
Minimum Service Clearance:
(above assembly)
25.4 cm (10 in)
(below assembly)
5.1 cm (2 in)

Clean Pressure Drop:
Maximum Pressure:
Water In Bowl Capacity (per bowl):
Operating Temperature:
Maximum Flow Rate:
(one unit online)
(two units online)
Port Size:
25.5 kPa (3.7 psi)
$1.03 \mathrm{bar}(15 \mathrm{psi})$
$305 \mathrm{ml}(10.3 \mathrm{oz})$
$-40^{\circ} \mathrm{C}$ to $124^{\circ} \mathrm{C} /-40^{\circ} \mathrm{F}$ to $255^{\circ} \mathrm{F}$

SAE J905 Fuel Flow Restriction

Flow in Gallons Per Hour
Note: Controlled lab tests. Field results may vary.

"DCK2" DISK - CRITICAL GRADE SILENCER TYPICAL ATTENUATION - 22 TO 36 dB(A)

This disk silencer is designed for equipment operating in relatively quiet environments that require a high level of silencing. Its low profile lends itself towards projects with space limitations. Applications include stationary, marine, mobile, etc.

	Part Number	A (Size)	B (Dia.)	C	D	E	F	G	WT
훙0은0	DCK2-04-200751	4	27	8	11	16.5	30.5	1.00	147
	DCK2-05-200752	5	30	10	13	18.0	33.5	1.00	200
	DCK2-06-200753	6	33	12	15	19.5	36.5	1.00	252
	DCK2-08-200754	8	47	14	17	26.5	50.5	1.00	446
	DCK2-10-200755	10	53	16	19	29.5	56.5	1.00	687
	DCK2-12-200756	12	62	18	21	34.0	66.5	1.25	966
	DCK2-14-200757	14	66	24	27	36.0	70.5	1.25	1164
	DCK2-16-200758	16	74	26	29	40.0	78.5	1.25	1432
	DCK2-18-200759	18	85	28	31	45.5	89.5	1.25	1816

Dimensions are in inches. Weight is in pounds and is approximate.

STANDARD CONSTRUCTION

- Shell packed with 2" of fiberglass insulation to absorb high frequency sound waves and reduce outer surface temperature
- Constructed with carbon steel
- Coated with satin black paint rated to $1200^{\circ} \mathrm{F}$
- Connections: 125/150\# ANSI flanges
- Mounted with 4 bottom brackets
- Stainless steel available along with additional inlet/outlet and mounting options - Contact factory for details

CUSTOMIZATION

- Chart refers to standard product offering
- Custom configurations, materials, connections, overall dimensions, etc.
- Contact factory with your project's design requirements and specifications

PRODUCT HIGHLIGHTS

Protection for:

- Compressors
- Pumps
- Blowers
- Boilers
- Generators
- Air Handling Units
- Mills

DIMENSIONS							
Product Type	\mathbf{A} $\mathbf{m m}(\mathbf{i n})$	\mathbf{B} $\mathbf{m m}(\mathbf{i n})$	\mathbf{C} $\mathbf{m m}(\mathbf{i n})$	\mathbf{D} $\mathbf{m m}(\mathbf{i n})$	\mathbf{L} $\mathbf{m m}(\mathbf{i n})$	W $\mathbf{m m}(\mathbf{i n})$	
TJB	$136.53(5.375)$	$112.73(4.438)$	$14.3(0.563)$	$12.7(0.5)$	$168.28(6.625)$	$50.8(2)$	
TJC	$304.8(12)$	$117.8(7)$	$15.88(0.625)$	$15.88(0.625)$	$330.2(13)$	$60.33(2.375)$	
TJE	$304.8(12)$	$117.8(7)$	$17.48(0.688)$	$15.88(0.625)$	$330.2(13)$	$117.48(4.625)$	

TYPE TJB - 1 SPRING		
Max Load kg (lb)	Max. Defl. mm (in)	Spring Rate kg/mm (lb/in)
$9.53(21)$	$28.7(1.13)$	$0.321(18)$
$24.95(55)$	$28.7(1.13)$	$0.875(49)$
$35.83(79)$	$28.7(1.13)$	$1.25(70)$
$48.08(106)$	$28.7(1.13)$	$1.679(94)$
$54.43(120)$	$58.42(2.3)$	$0.929(52)$
$70.31(155)$	$55.88(2.2)$	$1.25(70)$
$84.82(187)$	$28.7(1.13)$	$2.947(165)$
$110.68(244)$	$28.7(1.13)$	$3.857(216)$
$144.242(318)$	$28.7(1.13)$	$5.018(281)$
$179.17(395)$	$45.72(1.8)$	$3.929(220)$
$231.786(511)$	$38.1(1.5)$	$6.090(341)$
$324.32(715)$	$33.02(1.3)$	$9.822(550)$
$480.81(1,060)$	$25.4(1)$	$18.929(1,060)$
$689.46(1,520)$	$19.81(0.78)$	$34.823(1,950)$
$889.04(1,960)$	$19.81(0.78)$	$44.913(2,515)$

TYPE TJC - 2 SPRINGS		
Max Load kg (lb)	Max. Defl. mm (in)	Spring Rate kg/mm (lb/in)
$19.05(42)$	$28.7(1.13)$	$0.643(36)$
$49.9(110)$	$28.7(1.13)$	$1.75(98)$
$71.67(158)$	$28.7(1.13)$	$2.5(140)$
$96.16(212)$	$28.7(1.13)$	$3.357(188)$
$108.86(240)$	$58.42(2.3)$	$1.857(104)$
$140.61(310)$	$55.88(2.2)$	$2.5(140)$
$169.64(374)$	$28.7(1.13)$	$5.893(330)$
$221.35(488)$	$28.7(1.13)$	$7.715(432)$
$288.49(636)$	$28.7(1.13)$	$10.036(562)$
$358.34(790)$	$45.72(1.8)$	$7.858(440)$
$463.57(1,022)$	$38.1(1.5)$	$12.179(682)$
$648.64(1,430)$	$33.02(1.3)$	$19.644(1,100)$
$961.62(2,120)$	$25.4(1)$	$20.001(1,120)$
$1,378.92(3,040)$	$19.81(0.78)$	$69.646(3,900)$
$1,778.08(3,920)$	$19.81(0.78)$	$89.826(5,030)$

TYPE TJE - 4 SPRINGS		
Max Load kg (lb)	Max. Defl. mm (in)	Spring Rate $\mathbf{k g} / \mathbf{m m}(\mathbf{l b} / \mathbf{i n})$
$38.1(84)$	$28.7(1.13)$	$1.286(72)$
$99.79(220)$	$28.7(1.13)$	$3.5(196)$
$143.34(316)$	$28.7(1.13)$	$5(280)$
$192.32(424)$	$28.7(1.13)$	$6.715(376)$
$217.72(480)$	$58.42(2.3)$	$3.714(208)$
$281.23(620)$	$55.88(2.2)$	$5.036(282)$
$339.29(748)$	$28.7(1.13)$	$11.822(662)$
$442.71(976)$	$28.7(1.13)$	$15.429(864)$
$576.97(1,272)$	$28.7(1.13)$	$20.072(1,124)$
$716.68(1,580)$	$45.72(1.8)$	$15.715(880)$
$927.14(2,044)$	$38.1(1.5)$	$24.358(1,364)$
$1,297.27(2,860)$	$33.02(1.3)$	$39.29(2,200)$
$1,923.23(4,240)$	$25.4(1)$	$75.718(4,240)$
$2,757.84(6,080)$	$19.81(0.78)$	$139.292(7,800)$
$3,556.16(7,840)$	$19.81(0.78)$	$179.651(10,060)$

TYPICAL CALLOUT		
Type	Max Load kg (lb)	Attaching
TJB	$110.68(244)$	T

PROTOTYPE TEST PROCEDURES AND METHODS

Abstract

MTU Onsite Energy has been producing superior engine-generator sets for more than six decades. We understand the importance of reliable costeffective products, and have developed industry-leading test procedures to ensure we exceed this criteria. Our testing program confirms that our customers will receive products of the highest quality.

The Performance Assurance Certification provided by MTU Onsite Energy certifies that every engine-generator set undergoes rigorous prototype testing including the following:

Prototype test procedures

// Rated Load (NFPA 110)
MTU Onsite Energy certifies that all engine-generator set models will produce the name-plated load within the design tolerance of the generator set.
// Extended-run Testing
MTU Onsite Energy certifies that all engine-generator set prototypes have been subjected to extended run-time testing.
// Transient Response Analysis (ISO 8528-5)
MTU Onsite Energy certifies that all new generator set models have undergone transient response analysis per ISO 8528-5.
// Torsional Analysis
MTU Onsite Energy certifies that all engine-generator-set models have undergone torsional stress analysis.
// Engine Cooling System
MTU Onsite Energy certifies that all generator set models will cool sufficiently within the ambient design conditions per each model.
// Anticipatory Alarms and Shutdowns
MTU Onsite Energy certifies that the pre-alarms and alarms function appropriately to protect the engine-generator set from any foreseen unnecessary failures.
// Vibrational Analysis (ISO 8528-9)
MTU Onsite Energy certifies that all new engine-generator-set models have undergone vibration analysis to ensure that each enginegenerator coupling is balanced and that there is no destructive resonant vibration.
// Noise Analysis (ISO 8528-10)
MTU Onsite Energy certifies that all engine-generator sets undergo airborne noise analysis using the enveloping surface method.

Test standards

MTU Onsite Energy engine-generator sets are compliant with many different codes and standards. MTU Onsite Energy's validation philosophy and performance are regularly reviewed to ensure continuity with these codes and standards: UL2200, CSA, EPA, NFPA 99-Health Care Facilities, NFPA 70-National Electrical Code, NFPA 110-Standard for Emergency and Standby Power Systems, Department of Labor and Industry, NEMA MG 1-Motors and Generators, and MIL-STD-705-c.

FACTORY ACCEPTANCE TESTING PROCEDURES

Abstract

MTU Onsite Energy's factory testing is performed with the same extreme diligence and attention to detail that is given to the prototype testing process. Every engine-generator set receives a complete factory acceptance test that certifies and ensures that the set will function in accordance to every specific application.

Test metering will have an accuracy of 1.3% or better. This metering is calibrated a minimum of once per year and is directly traceable to the Bureau of Standards.

Factory acceptance testing procedures:
// Insulation Resistance Inspection (301.1c)*
// High Potential Test (302.1b)*
// Alternator Overspeed (1 min.)*
// Engine Inspection
// Generator Inspection
// Resistances Inspection (401.1b)

- Exciter Field Stator
- Alternator Armatures
// Mounting and Coupling Inspection
// Engine Fuel Oil System Inspection
// Engine Lube Oil System Inspection
// Engine Cooling System Inspection
// DC Charging System Inspection
// Circuit Breaker Inspection
// Anticipatory Alarms and Shutdowns Inspection (505.2b, 515.1b, 515.2b)
// Optional Equipment Inspection (513.2a)
// Load Test Inspection
- Full Name-plate Rated Load
- Regulator Range Test (511.1d)
- No Load Inspection
- MAX Load @ 1.0 P.F. (640.1d)
- MAX Load @ 0.8 P.F.
- Block Loads @ 0-25\%, 0-50\%, 0-75\%, 0-100\%
// Phase Balance and Sequence Inspection (507.1d, 508.1d, 516.1a)

[^3]Rating Tolerance
MTU Onsite Energy certifies that all generator set models will produce the name-plated load at the standard conditions within the design tolerance (see table below) of the generator set.

Diesel Genset Product Family	Rating Tolerance
MTU 3R0096 DS30 to MTU 6R0120 DS200	$+/-5 \%$
MTU 6R1600 DS230 to MTU 12V 1600 DS600	$+/-2 \%$
MTU 12V2000 DS650 to MTU 20V4000 DS3250	$+/-2 \%$
Gas Genset Product Family	Rating Tolerance
MTU 4R0075 GS30 to MTU 8V0071 GS60	$+/-5 \%$
MTU 10V0068 GS75 to MTU 10V0068 GS 125	$+/-3 \%$
MTU 6R0135 GS 150 to MTU 12V0183 GS400	$+/-5 \%$

OPTIONAL TEST PROCEDURES

Extended-run factory acceptance testing:

In some cases, extended-run testing may be requested. Unless specified otherwise, extended-run testing will be performed in the following manner.
// Full name-plate rated load
// Standard readings taken every 15 minutes

STANDARD READINGS RECORDED DURING LOAD TEST INSPECTION

// Run Time
\|/ AC Voltage
\|/ AC Amperage
\|/ kVA
\|/ kWe
\|/ Power Factor

// Frequency
// Exciter Field Voltage
// Exciter Field Current
// Lube Oil Pressure
// Engine Coolant Temperature
// Ambient Temperature

Witnessed factory acceptance testing

Witnessed factory tests must be scheduled and approved at least four weeks prior to the engine-generator set's scheduled shipping date. Any requests for witnessed factory testing after this four-week period must be approved by the Regional Sales Manager and are subject to additional fees.

Witnessed extended-run factory acceptance testing
Witnessed extended-run tests must be scheduled and approved at least four weeks prior to the engine-generator set's scheduled ship date. Any requests for witnessed extended-run testing after this four-week period must be approved by the Regional Sales Manager and are subject to additional fees.

Additional factory acceptance testing

Additional testing is available upon request. The following is a list of supplementary tests which can be performed on MTU Onsite Energy engine-generator sets. Non-standard testing is subject to additional charges.

Additional test methods:
// Start and Stop Test (MIL-STD-705c 503.1c)
// Remote Start and Stop Test (MIL-STD-705c 503.2c)
// Overspeed Protective Device Test (MIL-STD-705c 505.2b)
// Circulating Current Test (MIL-STD-705c 505.2b)
// Insulation Resistance Test (MIL-STD-705c 301.1c)*
// Open Circuit Saturation Curve Test (MIL-STD-705c 410.1b)
// Temperature Rise Test (MIL-STD-705c 680.1c)
// Frequency Range Adjust Test (MIL-STD-705c 511.2c)
// Low Oil Pressure Protective Device Test (MIL-STD-705c 515.1b)
// Over-temperature Protective Device Test (MIL-STD-705c 515.2b)
// Controls, Direction, and Rotation Test (MIL-STD-705c 516.1a)
// Frequency and Voltage Regulation, Stability, and Transient Response (MIL-STD-705c 608.1b)
// Voltage and Frequency Regulation (MIL-STD-705c 614.1b)
// Voltage Dip and Rise for Rated Load Test (MIL-STD-705c 619.2c)
// Maximum Power Test (MIL-STD-705c 640.1d)
// Fuel Consumption Test
// Vibration and Mechanical Balance Test (ISO 8528-9)
// Sound Test (ISO 8528-10)

* Testing conducted by generator OEM

International Organization for Standardization

A Rolls-Royce Power Systems Company
MTU Onsite Energy Corporation / 100 Power Drive / Mankato / Minnesota 56001 Phone 5076257973 / Fax 5076252968 / Toll Free 8003255450
 www.mtuonsiteenergy.com

CERTIFICATE OF COMPLIANCE

$$
\begin{aligned}
\text { Certificate Number } & 20140815-A U 3559 \\
\text { Report Reference } & \text { AU3559-20020923 } \\
\text { Issue Date } & 2014-A U G U S T-15
\end{aligned}
$$

Issued to: MTU ONSITE ENERGY CORP 100 POWER DR
MANKATO MN 56001

This is to certify that ENGINE GENERATORS representative samples of See Addendum Page

Have been investigated by UL in accordance with the Standard(s) indicated on this Certificate.

Standard(s) for Safety: UL 2200, Stationary Engine Generator Assemblies
Additional Information: See the UL Online Certifications Directory at www.ul.com/database for additional information

Only those products bearing the UL Listing Mark should be considered as being covered by UL's Listing and Follow-Up Service.
The UL Listing Mark generally includes the following elements: the symbol UL in a circle: ©L) with the word "LISTED"; a control number (may be alphanumeric) assigned by UL; and the product category name (product identifier) as indicated in the appropriate UL Directory.

Look for the UL Listing Mark on the product.

William R. Carney, Director, North American Certification Programs
UL LLC
Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please contact a local UL Customer Service Representative at www.ul.com/contactus

CERTIFICATE OF COMPLIANCE

Certificate Number	20140815-AU3559
Report Reference	AU3559-20020923
Issue Date	2014-AUGUST-15

This is to certify that representative samples of the product as specified on this certificate were tested according to the current UL requirements.

Stationary engine generator assemblies (diesel fueled) for Outdoor Use and Indoor Use, models as follows:

Model Series D followed by a number ranging from 250 to 3250, followed by F, followed by R,P,J,N or G, followed by X, followed by 4. May be followed by additional prefix or suffix letters or numbers.

Model Series D followed by a number ranging from 250 to 3250 , followed by R,P,J,N or G, followed by X, followed by 6, Followed by T, followed by 2 or 3. May have additional prefix or suffix letters or numbers.

Model Series 220-3250, followed by R,P,J, N or G, followed by X, followed by C or S, followed by 6 , followed by D, followed by T, followed by 2 or 3 . May have additional prefix or suffix letters or numbers.

Model Series D, followed by S or P, may be followed by one or two zeroes, followed by a number ranging from 220 to 3250 , followed by D, followed by 6, followed by C or S, followed by R, P, J, N or G, followed by A or W, followed by H, followed by 2,4 or 5 , followed by 48 or 57, followed by 3 or 4 . May have additional prefix or suffix letters or numbers.

Models D, followed by G, followed by 12, 16, or 20, followed by V, followed by 2000 or 4000. May have additional prefix or suffix letters or numbers.

Models 12, 16, or 20, followed by V, followed by 2000 or 4000 , followed by D, followed by S, followed by a number ranging from 650 to 3250 . May have additional prefix or suffix letters or numbers.

UL LLD
Any information and documentation involving UL Mark services are provided on behalf of UL LLC (UL) or any authorized licensee of UL. For questions, please contact a local UL Customer Service Representative at www.ul.com/contactus

LIMITED WARRANTY

Your MTU Onsite Energy product has been manufactured and inspected with care by experienced craftspeople. If you are the original consumer, MTU Onsite Energy warrants, for the limited warranty period indicated below, each product will be free from defects in materials and workmanship, and will perform under normal use and service from valid start-up performed by MTU Onsite Energy. This Limited Warranty shall apply only when the product has been properly installed, serviced, and operated in accordance with the applicable MTU Onsite Energy instruction manuals. If this Limited Warranty applies, the liability of MTU Onsite Energy shall be limited to the replacement, repair, or appropriate adjustment of the product, at MTU Onsite Energy's option. This Limited Warranty does not apply to malfunctions caused by normal wear and tear, or by damage, unreasonable use, misuse, repair, or service by unauthorized persons.

LIMITED WARRANTY PERIOD

Engine Generator Set: Parts and labor for twenty-four (24) months will begin with the first commissioning of the product(s). In all cases, the warranty period will expire not later than thirty-six (36) months from the date of shipment ex-works MTU Onsite Energy or after 3,000 operation hours, whichever occurs first. Accessories: Parts and labor for one (1) year from date of shipment. For a description of accessories and items excluded from this Limited Warranty, review the listings below.

LIMITED WARRANTY CONDITIONS

Before there is any protection under this Limited Warranty, the distributor must: (1) complete the MTU Onsite Energy Warranty and the Start-Up Validation and Pre-Inspection form, and return them to MTU Onsite Energy within 60 days of the start-up date, and (2) complete the engine registration form and return it to the manufacturer as stated in the instructions with engine registration form (when applicable). In addition, this Limited Warranty is not valid or enforceable unless: (1) all supporting maintenance records are kept on file with the end user and made available upon request from factory, (2) the generator set is routinely exercised in accordance with operating instructions, and (3) the installation meets the general guidelines, standards, recommendations (as laid out in the Installation Guide provided with the product), and all local standards and codes applicable in the location of installation.

Engine generator sets that are stored by Owner / Buyer longer than 180 days from date of shipment are subject to special requirements. Contact MTU Onsite Energy's Service Center for instructions.

TO OBTAIN WARRANTY SERVICE

Warranty service may only be performed by MTU Onsite Energy authorized service providers. Service provided by unauthorized persons will void this Limited Warranty. Non-MTU Onsite Energy replacement part(s) will void this Limited Warranty. Contact your nearest MTU Onsite Energy Service Representative to obtain warranty service. For assistance in locating your nearest authorized service representative, see contact information at the bottom of this page.

THIS WARRANTY IS IN LIEU OF ALL OTHER WARRANTIES EXPRESS OR IMPLIED. NO WARRANTIES SHALL BE IMPLIED OR OTHERWISE CREATED UNDER THE UNIFORM COMMERCIAL CODE, INCLUDING BUT NOT LIMITED TO A WARRANTY OF MERCHANTABILITY OR A WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE.
MTU ONSITE ENERGY SHALL NOT BE LIABLE FOR ANY CLAIM GREATER IN AMOUNT THAN THE PURCHASE PRICE OF THE PRODUCT AT ISSUE, AND IN NO EVENT SHALL MTU ONSITE ENERGY BE LIABLE

FOR ANY SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES. STATE LAWS REGARDING THE RIGHTS OF CONSUMERS MAY VARY FROM STATE TO STATE.

1. The following items are not considered nor will they be covered under this Limited Warranty. If there are questions as to coverage under this Limited Warranty, it is advisable to contact the factory in advance of filing a claim.
a. Battery or batteries of any type or kind. The battery manufacturer's warranty, if any, is the only warranty that applies to batteries. Any warranty claim should be handled with the manufacturer according to its policies.
b. Adjustments to fuel systems or governor system at time of start-up or any time after. A warranty claim for such adjustments is acceptable only when a defective part has been replaced, returned to the factory, and approved as defective.
c. Normal maintenance costs, including but not limited to adjustments, loose and/or leaking fittings or clamps, and tune-ups performed during start-up or anytime thereafter.
d. Due to shipping, manufacturer is not responsible for loose connections. All connections must be checked at time of start-up.
e. Non-MTU Onsite Energy replacement part(s) will void this Limited Warranty.
f. Products that are modified in any form without the written consent of MTU Onsite Energy will void this Limited Warranty.
g. Shipping damage of any type.
h. Any installation errors or damage of the equipment when shipped as ordered.
i. Any overtime travel or labor to make repairs under warranty.
j. Any special access fees required to gain access to MTU Onsite Energy equipment, including but not limited to any training or safety policy requirements to gain access.
k. Additional costs associated with inaccessible installations, including but not limited to removal and reinstallation of the generator set.
I. Rental equipment used during warranty work including but not limited to generators, rigging equipment such as a crane or boom truck, load banks, and special test equipment above factory requirements.
m . Excess mileage charges. Any authorized service provider may perform warranty service anywhere, but will only be paid for mileage expenses from the nearest service center and limited to 400 miles / 644 Kilometers round-trip.
n. Any equipment not factory approved and engineered for use on MTU Onsite Energy products. This includes but is not limited to aftermarket items such as special fuel systems, enclosures, exhaust systems, or switch gear that had been sought out and quoted by a third party to be included in billing of the MTU Onsite Energy equipment.
o. Misuse or abuse during installation and thereafter.
p. Normal wear and tear, maintenance, and consumable items that are not required as part of a warranty repair. Consumable items include but are not limited to belts, hoses, coolant, oil, filters, and fuses.
q. Acts of nature or acts of God such as lightning, wind, flood, tornado, hurricane, or earthquake.
r. Any damage due to situations beyond the control of the manufacturing of the product or workmanship of the product.
s. Installation or operation outside the guidelines as stated in the Installation Guide and Owner's Manual.
t. Diesel engine "Wet Stacking" due to lightly loaded diesel engines.
u. Misapplication of the equipment such as usage outside the original design parameters as stated on the nameplate of the equipment.
v. Travel expense on portable equipment.
w. Trailer lights, wiring, and brakes.

STANDBY LIMITED WARRANTY
 Two（2）Year／3，000 Hour Basic

x．More than one trip to the job site because a service vehicle was not stocked with normal service parts．
y．Lodging expense of person（s）performing service，unless approved in advance by factory．
z．Engine fluids．
aa．Units purchased at the standby power rating that are being used in a prime power application．
ab．Any repair labor time that is determined to be excessive，e．g．，two or more people performing a one－ person job．
ac．Any expenses associated with investigating performance complaints in which no defect is found．
ad．Any associated costs for replacing components that are found not to be defective．
ae．Any adjustments covered in the start－up and inspection forms that are to be completed during start－up．
2．The accessories that are limited to one（1）year parts and labor from date of shipment include but are not limited to：
a．Cords，receptacles，and cord reels
b．Gas flex pipes
c．Housing lights，space heaters，and associated equipment

[^0]: * Represents standard product only. Consult Factory/MTU Onsite Energy Distributor for additional configurations.

[^1]: *Please refer to the MGC Series Controller Comparison Data Sheet for available configured options.

[^2]: Standard Four (4) Rate Charging

[^3]: * Performed by Alternator OEM

