William P. Cox
Senior Counsel
Florida Power \& Light Company
700 Universe Boulevard
Juno Beach, FL 33408-0420
(561) 304-5662
(561) 691-7135 (Facsimile)

May 1, 2024

-VIA ELECTRONIC FILING-

Adam Teitzman
Commission Clerk
Florida Public Service Commission
2540 Shumard Oak Blvd.
Tallahassee, FL 32399-0850

RE: Docket No. 20240000-OT
Florida Power \& Light Company’s 2024-2033 Ten Year Power Plant Site Plan

Dear Mr. Teitzman:

Please find attached Florida Power \& Light Company's responses to Staff's First Data Request (Nos. 3-100). FPL's response to Staffs First Data Request No. 73 is confidential and is being filed separately along with a Request for Confidential Classification. FPL is providing the non-confidential version of Staffs First Data Request No. 73 with the attached responses.

If there are any questions regarding this transmittal, please contact me at (561) 304-5662.
Sincerely,
/s/ William P. Cox
William P. Cox
Senior Counsel
Fla. Bar No. 00093531
WPC:ec
Enclosures
cc: Philip Ellis, Division of Engineering (via electronic mail pellis@psc.state.fl.us)
Greg Davis, Division of Engineering (via electronic mail gdavis@psc.state.fl.us)

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 3
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Financial Assumptions, Financial Escalation). Complete the tables by providing information on the financial assumptions and financial escalation assumptions used in developing the Company's TYSP. If any of the requested data is already included in the Company's current planning period TYSP, state so on the appropriate form.

RESPONSE:

Please see responsive document provided. The financial assumptions used in FPL's 2024 resource planning work are also available in Chapter 5 of FPL's 2024 TYSP.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 4
Page 1 of 1

QUESTION:

[Investor-Owned Utilities Only] Please refer to the Excel Tables File (Hourly System Load). Complete the table by providing, on a system-wide basis, the hourly system load in megawatts (MW) for the period January 1 through December 31 of the year prior to the current planning period. For leap years, please include load values for February 29. Otherwise, leave that row blank.
a. Please also describe how loads are calculated for those hours just prior to and following Daylight Savings Time (March 12, 2023, to November 5, 2023).

RESPONSE:

Please see responsive document provided. In general, for Daylight Savings Time, hour two is reported as zero, and for Standard Time (i.e., Winter Time), hour one is divided by 2.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 5
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Historic Peak Demand). Complete the table by providing information on the monthly peak demand experienced during the three-year period prior to the current planning period, including the actual peak demand experienced, the amount of demand response activated during the peak, and the estimated total peak if demand response had not been activated. Please also provide the day, hour, and system-average temperature at the time of each monthly peak.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 6
 Page 1 of 1

QUESTION:

Please identify the weather station(s) used for calculation of the system-wide temperature for the Company's service territory. If more than one weather station is utilized, please describe how a system-wide average is calculated.

RESPONSE:

The system-wide hourly temperature is calculated using the weighted average of regional retail energy sales and temperature data from regional weather stations in the FPL area. The regional weather stations are Miami, Ft. Myers, Daytona Beach, West Palm Beach, and Pensacola.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 7
 Page 1 of 4

QUESTION:

Please explain, to the extent not addressed in the Company's current planning period TYSP, how the reported forecasts of the number of customers, demand, and total retail energy sales were developed. In your response, please include the following information:

- Methodology.
- Assumptions.
- Data sources.
- Third-party consultant(s) involved.
- Anticipated forecast accuracy.
- Any difference/improvement(s) made compared with those forecasts used in the Company's most recent prior TYSP.

RESPONSE:

Customer Forecast

The FPL legacy area forecasts of customers by revenue class for residential, commercial, industrial, other public authority, and railroads \& railways are based on a combination of regression models and exponential smoothing models. The forecast for the number of lighting customers is based on inputs from FPL's lighting team, while the forecast for the number of wholesale customers is based on known wholesale contracts. The total customer forecast is the sum of the revenue class forecasts. Economic variables, such as numbers of households and employment, are from S\&P Global (formally IHS Markit). Except for routine updates to incorporate more recent information and minor changes to model specifications, the current customer forecast methodology is consistent with the prior forecast methodology.

The FPL NWFL forecasts of customers by revenue class for residential, commercial, and industrial are based on a combination of regression models and exponential smoothing models. The forecast for the number of lighting customers is based on inputs from FPL's lighting team, while the forecast for the number of wholesale customers is based on known wholesale contracts. Economic variables, such as numbers of households and retail activity, are from S\&P Global (formally IHS Markit). Except for routine updates to incorporate more recent information and minor changes to model specifications, the current customer forecast methodology is consistent with the prior forecast methodology.

The customer forecasts for the FPL combined system are derived by summing the FPL Legacy and FPL NWFL revenue class customer forecasts. The accuracy of the current customer forecast is expected to be consistent with prior forecasts, which was -0.2% for the 2023 TYSP customer forecast.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan Staff's First Data Request Request No. 7
 Page 2 of 4

Peak Demand

FPL Legacy's summer peak demand forecast was developed using a regression model and the model included variables for peak day maximum temperature, employment, an energy efficiency variable, and cooling degree hours from the prior two days. Except for routine updates to incorporate more recent information and minor changes to model specifications, FPL's summer peak demand forecasting methodology is consistent with that used for prior summer peak demand forecasts.

FPL Legacy's winter peak demand forecast was developed using a regression model and the model included variables for peak day minimum temperature, prior days heating degree hours, employment, and binary variables for 1984, 2008, and a binary for dates post 2011. Except for routine updates to incorporate more recent information and minor changes to model specifications, FPL's winter peak demand forecasting methodology is consistent with that used for prior winter peak demand forecasts.

FPL NWFL's summer peak demand forecast was developed using a regression model and the model included variables for peak day temperature, employment, and an efficiency variable. Except for routine updates to incorporate more recent information and minor changes to model specifications, FPL NWFL's summer peak demand forecasting methodology is generally consistent with that used for prior summer peak demand forecasts.

FPL NWFL's winter peak demand forecast was developed using a regression model, and the model included variables for peak day minimum temperature, population, and an efficiency variable. Except for routine updates to incorporate more recent information and minor changes to model specifications, FPL NWFL's winter peak demand forecasting methodology is generally consistent with that used for prior winter peak demand forecasts.

The peak demand forecast for the planned combined system is derived by summing the forecasted hourly load shapes for FPL Legacy and FPL NWFL. The accuracies of the current summer peak demand and winter peak demand forecasts are expected to be consistent with prior forecasts, which were -0.2% and -7.7%, respectively, for the 2023 TYSP forecast.

Total Retail Energy Sales

FPL Legacy's total retail energy sales forecast is the sum of the revenue class energy sales forecasts. The residential, commercial, and industrial class energy sales forecasts are based on projected use per customer per billing day multiplied by the projected number of customers and billing days. Additional details for the individual models are provided below. Except for routine updates to incorporate more recent information and minor changes to model specifications, FPL's retail energy sales methodology is consistent with that used for the prior energy sales forecast.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 7
Page 3 of 4

FPL Legacy's residential use per customer forecast is based on a regression model which includes normal weather, a price term to reflect increases in the real price of electricity, real wages per household, an energy efficiency variable, an autoregressive term, and a monthly binary variable for November 2005.

FPL Legacy's commercial use per customer forecasts are based on two regression models, one for commercial customers on demand rates 500 kW and above (large commercial) and one for commercial on energy only rates and demand rates less than 500 kW (small/medium commercial). The large commercial model includes normal weather, a price term to reflect increases in the real price of electricity, employment, an autoregressive term, binary variable for March-May 2020, a binary for November 2004, and monthly binary variables. The small/medium commercial model includes normal weather, a price term to reflect increases in the real price of electricity, real gross state product, an energy efficiency variable, binary variables for April-May 2020, a monthly binary variable for November 2005, and a moving average.

FPL Legacy's industrial use per customer forecasts are based on an exponential smoothing models for large ($>=500 \mathrm{~kW}$) industrial customers and one econometric model for small and medium ($<=499 \mathrm{~kW}$) industrial customers. The small and medium industrial use per customer model includes normal weather, monthly binaries, and a lagged dependent variable.

FPL Legacy's railroads \& railways energy sales forecast is based on a regression model which includes monthly binary variables and a lag dependent variable.

FPL Legacy's energy sales forecast for the other public authority class is based on an exponential smoothing model.

FPL NWFL's total retail energy sales forecast is the sum of the revenue class energy sales forecasts. The residential and commercial class energy sales forecasts are based on projected use per customer per billing day multiplied by the projected number of customers and billing days; additional details for the individual models are provided below. The industrial sales forecast is based on projected use per customer multiplied by the number of customers. The street \& highway energy sales forecast is based on inputs from FPL's lighting team. Except for routine updates to incorporate more recent information and minor changes to model specifications, FPL NWFL's residential and commercial energy sales forecasting methodology is consistent with that used for prior forecasts.

FPL NWFL's residential use per customer forecast is based on a regression model which includes normal weather, a price term to reflect increases in the real price of electricity, an energy efficiency variable, monthly binary variables, and an autoregressive term.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 7
Page 4 of 4

FPL NWFL's commercial use per customer forecasts are based on two regression models, one for small commercial customers ($<=24 \mathrm{~kW}$) and one for large commercial customers ($>=25 \mathrm{~kW}$). The regression model for small commercial use per customer includes normal weather, a price term to reflect the real price of electricity, an energy efficiency variable, historical binary variables, monthly binary variables, and a moving average term. The regression model used for large commercial use per customer includes normal weather, a price term to reflect increases in the real price of electricity, an energy efficiency variable, historical binary variables, monthly binary variables, and an auto regressive term.

FPL NWFL's industrial use per customer forecast is based on an exponential smoothing model.
FPL NWFL's street \& highway forecast is based on inputs from FPL's lighting team.
The total retail energy sales forecast for the combined system is derived by summing the forecasted energy sales for FPL Legacy and FPL NWFL. The accuracy of the current retail energy sales forecast is expected to be consistent with prior forecasts, which was -0.1% for the 2023 TYSP energy sales forecast.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 8
Page 1 of 1

QUESTION:

Please identify all closed and open Florida Public Service Commission (FPSC) dockets and all non-docketed FPSC matters which were/are based on the same load forecast used in the Company's current planning period TYSP.

RESPONSE:

The following open FPSC dockets are currently based on FPL's load forecast from the 2024 TYSP:

- Docket No. 20240001-EI - FPL's Petition for Approval of Solar Base Rate Adjustment to Be Effective 2025,
- Docket No. 20240010-EI - FPL's Petition for Approval of the Actual/Estimated 2024 Storm Protection Plan Cost Recovery Clause True-Up and the Projected 2025 Storm Protection Plan Cost Recovery Clause Factors,
- Docket No. 20240012-EG - Commission Review of Numeric Conservation Goals (Florida Power \& Light Company), and
- Docket No. 20240055-EQ - Petition for approval of renewable energy tariff and standard offer contract, by Florida Power \& Light Company.

There are no closed FPSC dockets or non-docketed FPSC matters that used the same load forecast.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 9
 Page 1 of 1

QUESTION:

Please explain if your Company evaluates the accuracy of its forecasts of customer growth and annual retail energy sales presented in its past TYSPs by comparing the actual data for a given year to the data forecasted one, two, three, four, five, or six years prior.
a. If your response is affirmative, please explain the method used in your evaluation, and provide the corresponding results, including work papers, in Excel format for the analysis of each forecast presented in the TYSPs filed with the Commission during the 20-year period prior to the current planning period. If your Company limits its analysis to a period shorter than 20 years prior to the current planning period, please provide what analysis you have and a narrative explaining why your Company limits its analysis period.
b. If your response is negative, please explain.

RESPONSE:

a. Yes, forecast accuracy is evaluated for the FPL system. The formula used to calculate the forecast accuracy of customer and retail energy forecasts is shown below. The forecast variance is calculated as the weather normalized actual value divided by the forecast value minus 1. For customers, actuals are used as there are no weather normalized actuals. Variances are calculated over a one-to-ten-year forecast horizon for FPL.

$$
\text { Forecast Variance }(\%)=\left\lfloor\left(\frac{\text { Weather Normalized Actual }}{\text { Forecast }}\right)-1\right\rfloor
$$

Please see responsive document for the customer and retail energy forecast variances for FPL.
b. Not applicable.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 10
 Page 1 of 1

QUESTION:

Please explain if your Company evaluates the accuracy of its forecasts of Summer/Winter Peak Energy Demand presented in its past TYSPs by comparing the actual data for a given year to the data forecasted one, two, three, four, five, or six years prior.
a. If your response is affirmative, please explain the method used in your evaluation, and provide the corresponding results, including work papers, in Excel format for the analysis of each forecast presented in the TYSPs filed with the Commission during the 20-year period prior to the current planning period. If your Company limits its analysis to a period shorter than 20 years prior to the current planning period, please provide what analysis you have and a narrative explaining why your Company limits its analysis period.
b. If your response is negative, please explain why.

RESPONSE:

a. Yes, accuracy of forecasts is evaluated for the FPL system. The formula used to calculate the forecast accuracy of the respective Summer/Winter Peak Energy Demand forecasts is shown below. The forecast variance is calculated as the weather normalized actual value divided by the forecast value minus 1. Variances are calculated over a one-to-ten-year forecast horizon.

$$
\text { Forecast Variance }(\%)=\left\lfloor\left(\frac{\text { Weather Normalized Actual }}{\text { Forecast }}\right)-1\right\rfloor
$$

A positive forecast variance represents an under-forecast, while a negative forecast variance represents an over-forecast.

Please see responsive document for the Summer/Winter Peak Energy Demand forecast variances for FPL.
b. Not applicable.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 11
Page 1 of 2

QUESTION:

Please explain any historic and forecasted trends or other information as requested below in each of the following:
a. Growth of customers, by customer type (residential, commercial, industrial) as well as Total Customers, and identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline of the trends.
b. Average KWh consumption per customer, by customer type (residential, commercial, industrial), and identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline of the trends.
c. Total Sales (GWh) to Ultimate Customers, identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline of the trends.
d. Provide a detailed discussion of how the Company's demand-side management program(s) for each customer type (residential, commercial, industrial) impact the observed trends in gigawatt hour sales (Schedule 3.3).

RESPONSE:

a. Growth of customers

FPL's total customers grew 1.2% in 2023 and 1.5% in 2022. These growth rates are in line with normal growth rates. The total customer growth was driven by customer growth in all classes except industrial. In 2023, Residential customers grew by 1.3%, commercial customers grew by 0.2%, and industrial customers had an increase of 10.9%.

Customers for the FPL system are forecasted to grow by 1.2 to 1.3% per year over the TYSP forecast horizon, with total customer growth being driven primarily by residential customer growth.
b. Average $\mathbf{k W h}$ consumption per customer

FPL's weather-normalized use per customer for residential and commercial customers reflect the impacts of the pandemic and the resulting return to more normal conditions. 2023 residential usage saw a decrease of 0.1% as a strong economy led to customers remaining in their homes less; conversely, commercial usage saw an increase of 0.4% due to rebounding commercial activity. FPL's industrial use per customer declined -11.6%, but this decline was attributable to strong growth in the number of small industrial customers with low average usage.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 11
Page 2 of 2

Over the TYSP forecast horizon, residential use per customer is forecasted to be flat or slightly grow up to 0.6% due to continued economic growth as well as increased adoptions of electric vehicles. Commercial usage is forecast to decline between 0.1% to 0.7% per year over the forecast horizon due to continued improvements to equipment efficiencies. As previously discussed, industrial use per customer is not as reliable a measure of overall classlevel trends.

c. Total retail energy sales

FPL's weather-normalized retail energy sales increased 0.8% in 2023, driven by growth in the residential class. Residential energy sales increased by 1.1% due to continued customer growth. Commercial energy sales increased due to both customer and usage growth. Industrial energy sales decreased but had a negligible impact on total retail sales because industrial class sales are a small proportion of total retail sales.

Over the TYSP forecast horizon, FPL's retail sales are forecast to grow by 0.8% to 1.3% per year. The retail sales growth is driven by growth in residential and commercial class sales, and these class-level energy sales are driven by customer growth.
d. DSM, Conservation, and Energy Efficiency Programs

In 2023, FPL's retail sales were lower by 5.8%, or $7,394 \mathrm{GWh}$ due to DSM, conservation, and energy efficiency programs. Residential programs lowered sales by 3.2% or $4,091 \mathrm{GWh}$ and Commercial and Industrial programs lowered sales by 2.6% or $3,303 \mathrm{GWh}$.

Over the TYSP forecast horizon, Residential programs are expected to reduce sales by 50 GWh incrementally each year, while Commercial and Industrial conservation programs are expected to reduce sales by 59 GWh incrementally each year.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 12
 Page 1 of 1

QUESTION:

Please explain any historic and forecasted trends in each of the following components of Summer/Winter Peak Demand:
a. Demand Reduction due to the Company's demand-side management program(s) and Self Service, by customer type (residential, commercial, industrial) as well as Total Customers, and identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline in the trends.
b. Demand Reduction due to Demand Response, by customer type (residential, commercial, industrial), and identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline of the trends.
c. Total Demand, and identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline in the trends.
d. Net Firm Demand, by the sources of peak demand appearing in Schedule 3.1 and Schedule 3.2 of the current planning period TYSP, and identify the major factors (historically, currently, and in the forecasted period) that contribute to the growth/decline in the trends.

RESPONSE:

a. Demand Reduction due to Conservation and Self Service

For the FPL system, the residential and commercial/industrial conservation at the time of the summer and winter peaks has increased over the last 10 years and is forecast to continue to increase through 2025.
b. Demand Reduction due to Demand Response

FPL has not implemented demand response at its winter or summer peak since at least 2014. No demand response is incorporated in the peak demand forecasts.
c. Total Demand

FPL's weather-normalized summer peak demand has trended upward over the past 10 years primarily due to growth in the number of customers along with the addition of new wholesale requirements sales. The summer peak demand is forecasted to grow over the TYSP forecast horizon primarily driven by customer growth, partially offset by efficiency improvements.
d. Net Firm Demand

Net Firm Demand follows the same pattern as Total Demand and is influenced by the same factors driving Total Demand. Net Firm Demand is simply Total Demand after adjusting for Demand Response and Conservation.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 13
Page 1 of 1

QUESTION:

[FEECA Utilities Only] Do the Company's energy and demand savings amounts reflected on the DSM and Conservation-related portions of Schedules 3.1, 3.2, and 3.3 reflect the Company's proposed goals in the 2024 FEECA Goalsetting dockets? If not, please explain what assumptions are incorporated within those amounts, and why.

RESPONSE:

The energy and demand savings in FPL's Schedules 3.1, 3.2, and 3.3 are not based on FPL's proposed goals in the 2024 FEECA docket, as these goals were not finalized when the Schedules were developed. FPL's Schedules 3.1, 3.2, and 3.3 include DSM additions through the end of the current Goals period in 2024, and do not incorporate DSM additions beyond 2024.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 14
 Page 1 of 1

QUESTION:

Please explain any anomalies caused by non-weather events with regard to annual historical data points for the period 10 years prior to the current planning period that have contributed to the following, respectively:
a. Summer Peak Demand.
b. Winter Peak Demand.
c. Annual Retail Energy Sales.

RESPONSE:

The Company is not aware of any non-weather anomalies that have contributed to the historical Summer and Winter Peak Energy Demands beyond those factors already identified as drivers of peak demand, such as customer growth, economic conditions, wholesale requirements sales, private solar, plug-in electric vehicles, Company-sponsored demand-side management (DSM) programs, and demand response.

Additionally, the Company is not aware of any non-weather anomalies that have contributed to the historical Annual Retail Energy Sales beyond those factors already identified as drivers of energy sales, such as codes and standards, economic conditions, retail price of electricity, wholesale requirements sales, private solar, plug-in electric vehicles, and Company-sponsored DSM programs.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 15
 Page 1 of 3

QUESTION:

Please provide responses to the following questions regarding the weather factors considered in the Company's retail energy sales and peak demand forecasts:
a. Please identify, with corresponding explanations, all the weather-related input variables that were used in the respective Retail Energy Sales, Winter Peak Demand, and Summer Peak Demand models.
b. Please specify the source(s) of the weather data used in the aforementioned forecasting models.
c. Please explain in detail the process/procedure/method, if any, the Company utilized to convert the raw weather data into the values of the model input variables.
d. Please specify with corresponding explanations:
i. How many years' historical weather data was used in developing each retail energy sales and peak demand model.
ii. How many years' historical weather data was used in the process of these models' calibration and/or validation.
e. Please explain how the projected values of the input weather variables (that were used to forecast the future sales or demand outputs for each planning years 2024 - 2033) were derived/obtained for the respective retail sales and peak demand models.

RESPONSE:

For this response, "FPL" refers to models for the FPL Legacy area and "FPL NWFL" refers to models for the Gulf Power Legacy area.
a. The degree hours used in all energy sales models are an average for the monthly billing cycle.

FPL Residential energy sales

HDH56: heating degree hours less than or equal to 56 degrees
CDH7280: cooling degree hours greater than or equal to 72 and less than 80 degrees
CDH80: cooling degree hours greater than or equal to 80 degrees
FPL NWFL Residential energy sales
CDH67R1: cooling degree hours greater than or equal to 67 and less than 75 degrees
CDH67R2: cooling degree hours greater than or equal to 75 and less than 85 degrees

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 15
Page 2 of 3

CDH67R3: cooling degree hours greater than or equal to 85 degrees
HDH59R1: heating degree hours less than or equal to 59 and greater than 50
HDH59H2: heating degree hours less than or equal to 50
FPL Small Medium Commercial energy sales
CDH66: cooling degree hours greater than or equal to 66 degrees
FPL NWFL Small Commercial energy sales
CDH67C1: cooling degree hours greater than or equal to 67 and less than 75 degrees
CDH67C2: cooling degree hours greater than or equal to 75 degrees
HDH59C1: heating degree hours less than or equal to 59 degrees
FPL Large Commercial energy sales
CDH66: cooling degree hours greater than or equal to 66 degrees

FPL NWFL Large Commercial energy sales

CDH60C1: cooling degree hours greater than or equal to 60 and less than 73 degrees
CDH60C2: cooling degree hours greater than or equal to 73 degrees
HDH50C1: heating degree hours less than or equal to 50 degrees

FPL Winter Peak

PeakMinTemp: minimum peak day temperature
PriorAM: heating degree hours less than 66 degrees for the prior day of the peak through 8 am of the peak day

FPL NWFL Winter Peak

PeakMinTemp: minimum peak day temperature
FPL Summer Peak
MxTmpDay: max peak day temperature
CDHprior2: cooling degree hours greater than or equal to 72 degrees for the day two days before the peak day

FPL NWFL Summer Peak
MxTmpDay: max peak day temperature
b. WSI, an industry vendor for weather data, is the source of the weather data used in the input variables for both retail energy sales and peak demand forecasts.
c. The weather variables for each model were developed as follows:

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 15
Page 3 of 3

CDH and HDH Variables for Energy Sales Models:

First, the hourly weather data for PNS, MIA, FMY, and DAB from WSI is downloaded. Next, a system weighted temperature for FPL is calculated (please see FPL's response to Staff's First Data Request, No. 6). Lastly, the, cooling, and, heating degree, hours, are calculated using each of the specified thresholds using that data for each hour and summed for each day. The CDH and HDH for each day is added together to get the monthly CDH or HDH value for the specified threshold.

CDHprior2 for Peak Models:

The steps for the CDH and HDH variables in the energy sales models are used. However, after the summer peak is verified, cooling degree hours greater than 72 degrees for the day two days before the peak day.

CDHPkDay for Peak Models:

The steps for the CDH and HDH variables in the energy sales models are used. However, after the summer peak is verified, cooling degree hours greater than 72 degrees for the peak day are calculated.

PriorAM for Peak Models:

The steps for the CDH and HDH variables in the energy sales models are used. However, after the winter peak is verified, the heating degree hours less than 66 degrees for the prior day of the peak through 8 am of the peak day are calculated.

Minimum and Maximum Peak Day Temperatures for Peak Models:
First, the winter and summer peaks are validated for both FPL and Gulf. Next, using the system weighted hourly temperature (please see FPL's response to Staff's First Data Request, No. 6), the maximum or minimum temperature at the time of the summer or winter peak is recorded for the variable.
d. See responses to subparts (i) and (ii) below.
i. Twenty years of historical data was used to develop each energy sales and peak demand model.
ii. No additional calibration or validation steps are performed for the various models because none are required beyond those used during the model development process.
e. The projected values for the planning years of $2024-2033$ for each weather variable used in the energy sales models and peak demand models were derived by taking the historical average value over the past 20 years and applying that value for each planning year.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 16
 Page 1 of 1

QUESTION:

If not included in the Company's current planning period TYSP, please provide load forecast sensitivities (high band, low band) to account for the uncertainty inherent in the base case forecasts in the following TYSP schedules, as well as the methodology used to prepare each forecast:
a. Schedule 2.1 - History and Forecast of Energy Consumption and Number of Customers by Customer Class.
b. Schedule 2.2 - History and Forecast of Energy Consumption and Number of Customers by Customer Class.
c. Schedule 2.3 - History and Forecast of Energy Consumption and Number of Customers by Customer Class.
d. Schedule 3.1 - History and Forecast of Summer Peak Demand.
e. Schedule 3.2 - History and Forecast of Winter Peak Demand.
f. Schedule 3.3 - History and Forecast of Annual Net Energy for Load.
g. Schedule 4 - Previous Year and 2-Year Forecast of Peak Demand and Net Energy for Load by Month.

RESPONSE:

The Company developed a forecast sensitivity for the Summer Peak forecasts shown on Schedule 3.1 column (2) and Schedule 4 columns (4) and (6) for the month of August. Please see the responsive document provided for the Summer Peak sensitivity.

Sensitivities are not developed for the other Schedules or for other columns of the Schedules listed above.

The Summer Peak sensitivity was developed using Monte Carlo simulations of the weather variables, which drive the Summer Peak. Separate models were developed for the FPL Legacy and FPL NWFL divisional areas. The percentage changes from the Monte Carlo simulations were then applied to the base Summer Peak demand forecasts to arrive at the high and low forecast sensitivities for the FPL Legacy and FPL NWFL areas. The FPL Legacy and FPL NWFL sensitivities were combined to arrive at the integrated FPL system sensitivity.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 17
Page 1 of 2

QUESTION:

Please address the following questions regarding the impact of all customer-owned/leased renewable generation (solar and otherwise) and/or energy storage devices on the Utility's forecasts.
a. Please explain in detail how the Utility's load forecast accounts for the impact of customer's renewables and/or storage.
b. Please provide the annual impact, if any, of customer's renewables and/or storage on the Utility's retail demand and energy forecasts, by class and in total, for 2024 through 2033.
c. If the Utility maintains a forecast for the planning horizon (2024-2033) of the number of customers with renewables and/or storage, by customer class, please provide.

RESPONSE:

a. To account for the impact of customer-owned/leased renewable generation, FPL develops an internal forecast of private solar growth in its service area and reduces its baseline load forecasts for net energy for load (MWh) and summer/winter peak (MW) by the incremental amount of customer-owned/leased generation expected from this growth.

To do this, FPL relies on Wood Mackenzie's US Solar Market Insight reports, published both quarterly and annually, in a larger "Year in Review" report. These third-party reports include supporting Excel tables that contain Wood Mackenzie's estimates for historical and projected installed nameplate capacity (MWdc) of residential and commercial distributed generation in the state of Florida. Because Wood Mackenzie typically provides five-year forecasts in its quarterly reports and ten-year forecasts in its annual report, FPL will use (at the time the load forecast is developed) the most recent quarterly report for the first five years of projections and the most recent Year in Review report for the remaining five years. FPL then estimates the cumulative installed capacity in the utility's service territory by adjusting these state-level forecasts by the recent actual in-territory percentage.

A forecast of the number of customers to adopt owned/leased solar generation is then inferred by dividing forecasted additions to capacity by the estimated average system size.

To estimate the impact to the load forecast, FPL uses sample results from the PVWatts Calculator, made publicly available on-line by the National Renewable Energy Laboratory (NREL) at https://pvwatts.nrel.gov/. The impact of customer-owned/leased solar on monthly net energy for load is estimated by multiplying a monthly interpolation of the installed capacity forecast by the solar output ($\mathrm{kWh} / \mathrm{kWdc} \mathrm{)} \mathrm{for} \mathrm{the} \mathrm{corresponding} \mathrm{month}$, by PVWatts, less an annual panel degradation rate of 0.5%. The impact on summer/winter peak is estimated by multiplying the interpolated installed capacity forecast by the average

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 17
Page 2 of 2

PVWatts hourly solar output $(\mathrm{kWh} / \mathrm{kWdc})$ at the assumed month and hour of the summer/winter peak (e.g., August 4:00-5:00 PM / January 7:00-8:00 AM), less an annual panel degradation rate of 0.5%.
b. Please see responsive document provided.
c. Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 18
Page 1 of 2

QUESTION:

Please discuss whether the Company included plug-in electric vehicle (PEV) loads in its demand and energy forecasts for its current planning period TYSP. If so, how were these impacts accounted for in the modeling and forecasting process?
a. Has the Company also included the impact of demand response and time of use rates for the PEV loads? If so, please provide the impact of these measures. If not, please explain why not.

RESPONSE:

Yes, the contribution of EVs to the Company's peak demands and energy forecasts are included in the 2024 Ten-Year Site Plan. The impact of EVs is accounted for in the forecasting process as line-item adjustments to FPL's net energy for load ("NEL"), summer and winter coincident peak demands for the 2024 through 2033 planning period. These contributions are incremental to totals for each line item for each year from the end of 2023.

The contribution to net energy for load from EVs was derived from the Company's light duty vehicle (passenger car or "LDV"), truck, and bus forecasts using estimates of vehicle efficiency (in miles per kWh) and the expected average annual driving distance per vehicle. Vehicle efficiency data is sourced from Fueleconomy.gov. The Company then sources average annual miles driven by vehicle type (e.g., passenger, medium commercial, heavy commercial, and buses) from the U.S. Department of Energy Alternative Fuels Data Center and the U.S. Department of Transportation Federal Highway Administration. For each vehicle type, annual driving distance (mi.) is divided by vehicle efficiency (mi./kWh) to determine the average annual kWh usage per vehicle. These values are then multiplied by the forecasted number of vehicles to determine aggregate energy load.

For summer and winter peak demand, the Company uses the Electric Vehicle Infrastructure Projection Tool (EVI Pro) Lite Load Profile tool developed by National Renewable Energy Laboratory and supported by the U.S. Department of Energy's Vehicle Technologies Office. The load profile tool provides an output of expected hourly load shapes. The Company then derives a peak per vehicle percentage for the summer and winter peak demand. The peak per vehicle percentage is then extrapolated by vehicle segment (e.g., passenger, medium commercial, heavy commercial, and buses) based on estimated number of kWh per vehicle segment per year. The estimated impact to summer and winter peak demand is then derived by multiplying the peak per vehicle percentage by vehicle segment by the forecasted number of vehicles in that segment.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 18
Page 2 of 2

a. No, the Company has not included the impact of demand response and time of use rates for EV loads. Time of use rates for EVs are new and limited, so the Company does not have extensive or significant amount of data to assess the impacts of time of use rates on EV load. Therefore, the forecasted impacts are based on currently available EV load profiles identified by the EVI Pro tool.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 19
 Page 1 of 2

QUESTION:

Please discuss with detail any changes or modifications from the Company's previous TYSP report regarding the following PEV related topics:
a. The major drivers of the Company's PEV growth.
b. The methodology and the assumptions (or, if applicable, the source(s) of the data) used to estimate the number of PEVs operating in the Company's service territory and the methodology used to estimate the cumulative impact on system demand and energy consumption.
c. The Company's process for monitoring the installation of PEV public charging stations in its service area.
d. The processes or technologies, if any, that are in place to allow the Company to be notified when a customer has installed a PEV charging station in their home.
e. Any instances since January 1 of the year prior to the current planning period in which upgrades to the distribution system were made where PEVs were a contributing factor.

RESPONSE:

a. The major drivers of the Company's electric vehicle (EV) growth directly correlate to the forecasted increase from our third-party sources (i.e., Bloomberg New Energy Finance, Wood Mackenzie). These third-party sources cited a combination of increased commitments from automobile manufacturers and government policy support as the primary drivers for the increase in EV growth.
b. No changes to methodology or assumptions used to estimate the number of EVs operating in the Company's service territory or to the methodology used to estimate the cumulative impact on system demand and energy consumption from the prior year site plan occurred. Source data was rolled forward one year to reflect the latest assumptions in the market.
c. No changes in the Company's process for monitoring the installation of EV public charging stations in its service areas. The Company continues to monitor installation of EV public charging stations in its service territory by running ad hoc reporting of the public charging station data reported on the U.S. Department of Energy's Alternative Fuel Station Locator. Additionally, the Company continues to monitor installations of EV public fast charging stations through the identification of accounts enrolled in the EV rider rates developed for publicly accessible EV charging stations with a dedicated meter.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 19
Page 2 of 2

d. For customers enrolled in the RS-1EV rate schedule, the charging equipment is enrolled in the Company's EVolution ${ }^{\circledR}$ network at the time of installation. Alternatively, customers not enrolled in RS-1EV can self-report by responding to EV related questions as part of our Energy Analyzer survey.
e. FPL does not track home and/or business locations associated with ownership of electric vehicles outside of customers who sign up from FPL's pilot residential and commercial electric vehicle charging tariffs. At this time, FPL is not aware of any specific upgrades to the distribution system where electric vehicles were a contributing factor.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 20
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Electric Vehicle Charging). Complete the table by providing estimates of the requested information within the Company's service territory for the current planning period. Direct current fast charger (DCFC) PEV charging stations are those that require a service drop greater than 240 volts and/or use three-phase power.
a. Please describe all significant technological, market, regulatory, or other events or announcements since the filing of the Company's 2023 TYSP which have impacted the metrics reported.
b. Please explain if and how the tax incentives and grants for transportation electrification associated with the IRA, adopted in August 2022, has impacted the Company's PEV and PEV charging station adoption/installation, as well as the PEV energy/demand forecast(s). If the provisions of the IRA are not reflected in such forecasts, please explain why.

RESPONSE:

Please see responsive document provided.
a. Please refer to FPL's response to Staff's First Set of Data Requests, No. 19, subpart (a), for the significant drivers impacting the metrics reported.
b. As described in FPL's response to Staff's First Set of Data Requests, Nos. 19 and 23, the Company uses third-party sources (Bloomberg New Energy Finance, Wood Mackenzie) as the basis for its electric vehicles (EV) growth and for charging station adoptions. These third-party sources cited government policy including impacts from the IRA as one of the drivers in EV growth. Please refer to FPL's response to Staff's First Set of Data Requests, No. 18 for impacts related to EV energy/demand.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 21
Page 1 of 2

QUESTION:

Please describe any Company programs or tariffs currently offered to customers relating to PEVs, and describe whether any new or additional programs or tariffs relating to PEVs will be offered to customers within the current planning period.
a. Of these programs or tariffs, are any designed for or do they include educating customers on electricity as a transportation fuel?
b. Does the Company have any programs where customers can express their interest or expectations for electric vehicle infrastructure as provided for by the Utility, and if so, please describe in detail.

RESPONSE:

Information on the Company programs or tariffs currently offered to customers relating to PEVs are outlined in Florida Power \& Light Company’s 2023 Public Electric Vehicle (EV) Optional Pilot Tariffs Report and EVolution Pilot Program Summary ("Annual Report") filed on January 30, 2024, in Docket No. 20200170-EI (Document 00390-2024). In addition to the programs and tariffs outlined in the Annual Report, as part of FPL's 2021 Settlement Agreement approved by the Commission in Order No. PSC-2021-0446-S-EI, the Company is investing in education and awareness and emerging technologies relating to PEVs.
a. Yes. In 2022, the Company developed a strategy to educate and inform customers that have been less exposed to electric vehicles to include educating customers on electricity as a transportation fuel.

The Company's EV resources website (www.FPL.com/EV) provides information on electric vehicles and FPL's charging offerings and will expand to offer a total cost of ownership calculator, including information on electricity as a transportation fuel, within the current planning period. Since 2022, the Company has promoted a unique way to showcase everyday life driving electric through an 'EV Expressway' Campaign. Additionally, the company is building educational videos focused on the benefits of driving electric to be released in the current planning period.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 21
Page 2 of 2

As part of the Company's EV education and awareness strategy, the Company procured EVs across a variety of manufacturers and categories to build a diverse and representative fleet. These vehicles were then branded to demonstrate FPL's commitment to drive electric on the road and direct onlookers to the Company's EV resources website. This fleet also serves as event showcase vehicles utilized in "ride-alongs" that invite attendees to experience EVs first-hand. In addition, FPL conducted surveys to measure the ongoing shift in sentiment as it pertains to interest in electric vehicle ownership. By showcasing FPL's comprehensive charging solutions, the Company is addressing traditional barriers to adoption. The Company has also been supporting the Electrathon America program throughout the FPL territory which provides EV education to high school students. This initiative enables hands-on STEM education through the design, building, and racing of fully electric go-carts. To date, 10 public high schools have received support through the end of 2023 , and another 10 will receive support through the end of 2024. The Company has placed emphasis on attending events where EVs are not normally present. This includes a focus on diverse communities and rural areas. By strategically establishing a presence in these spaces, the Company has introduced electric vehicles to new audiences and engaged over 300,000 participants to date.
b. Yes. Through the Company's EV resources website (www.FPL.com/EV), customers can send questions or suggestions specific to EVs or electric vehicle charging infrastructure. Customers may also provide suggestions on electric vehicle infrastructure by calling 833-919-0939.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 22
Page 1 of 1

QUESTION:

Has the Company conducted or contracted any research to determine demographic and regional factors that influence the adoption of PEVs applicable to its service territory? If so, please describe in detail the methodology and findings.

RESPONSE:

No, the Company has not conducted or contracted any research to determine demographic and regional factors that influence the adoption of EVs applicable to its service territory.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 23
 Page 1 of 1

QUESTION:
Please describe if and how Section 339.287, Florida Statutes, (Electric Vehicle Charging Stations; Infrastructure Plan Development) has impacted the Company's projection of PEV growth and related demand and energy growth.

RESPONSE:

As indicated in the Company's response to Staff's First Data Request, No. 19, the Company has not made any changes to the methodology used to estimate the number of electric vehicles ("EV") operating in the Company's service territory. Section 339.287, Florida Statutes, (Electric Vehicle Charging Stations) has not directly impacted the Company's projection of EV growth and related demand and energy growth. However, EV growth correlates to the assumptions reported by the third-party sources, Bloomberg New Energy Finance and Wood Mackenzie, which reported government policy (federal and state) as one of the primary drivers of EV growth, including assumptions from the enacted federal Bipartisan Infrastructure Law (Public Law 117-58, Infrastructure Investment and Jobs Act), which allocates funding for EV infrastructure deployment to the states.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 24
 Page 1 of 1

QUESTION:

What has the Company learned about the impact of PEV ownership on the Company's actual and forecasted peak demand?

RESPONSE:

At the current level of electric vehicle (EV) ownership, the impact on the Company's actual demand is minimal, estimated to be less than 0.6%, given the limited vehicles on the road. However, EV ownership is estimated to increase significantly, resulting in an estimated 9.2% of peak demand by 2034. As referenced in FPL's response to Staff's First Data Request, No. 18, the Company uses the Electric Vehicle Infrastructure Projection Tool (EVI Pro) Lite Load Profile tool developed by National Renewable Energy Laboratory and supported by the U.S. Department of Energy's Vehicle Technologies Office to estimate impacts to forecasted peak demand. Additionally, through the implementation of the FPL EVolution programs approved as part of FPL's 2021 Settlement Agreement in Order No. PSC-2021-0446-S-EI, the Company expects to gain learnings on impacts to energy and demand from the public fast charging, home, and fleet EV programs.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 25
Page 1 of 1

QUESTION:

If applicable, please list and briefly describe all PEV pilot programs the Company is currently implementing and the status of each program.

RESPONSE:

The pilot programs and status of each program the Company is currently implementing relating to PEVs, approved as part of FPL's 2021 Settlement Agreement in Order No. PSC-2021-0446-SEI and by Order No. PSC-2020-0512-TRF-EI, are outlined in Florida Power \& Light Company’s 2023 Public Electric Vehicle (EV) Optional Pilot Tariffs Report and EVolution Pilot Program Summary ("Annual Report") filed on January 30, 2024, in Docket No. 20200170-EI (Document 00390-2024).

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 26
Page 1 of 1

QUESTION:

If applicable, please describe any key findings and metrics of the Company's PEV pilot program(s) which reveal the PEV impact to the demand and energy requirements of the Company.

RESPONSE:

Please refer to FPL's 2023 Public Electric Vehicle (EV) Optional Pilot Tariffs Report and EVolution Pilot Program Summary, filed on January 30, 2024, in Docket No. 20200170-EI (Document 00390-2024), for the key findings and metrics of the Company's EV pilot programs.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 27
Page 1 of 1

QUESTION:

[FEECA Utilities Only] Please refer to the Excel Tables File ((DR Participation). Complete the table by providing for each source of demand response annual usage information for 10 years prior to the current planning period. Please also provide a summary of all demand response using the table.

RESPONSE:
Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 28
Page 1 of 1

QUESTION:

[FEECA Utilities Only] Please refer to the Excel Tables File (DR Annual Use). Complete the table by providing for each source of demand response annual usage information for 10 years prior to the current planning period. Please also provide a summary of all demand response using the table.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 29
Page 1 of 1

QUESTION:

[FEECA Utilities Only] Please refer to the Excel Tables File (DR Peak Activation). Complete the table by providing for each source of demand response annual seasonal peak activation information for 10 years prior to the current planning period. Please also provide a summary of all demand response using the table.

RESPONSE:
Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 30
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (LOLP). Complete the table by providing the loss of load probability, reserve margin, and expected unserved energy for each year of the planning period.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 31
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Unit Performance). Complete the table by providing information on each utility-owned generating resources' outage factors, availability factors, and average net operating heat rate (if applicable). For historical averages, use the past three years and for projected factors, use an average of the next ten-year period.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 32
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Utility Existing Traditional). Complete the table by providing information on each utility-owned traditional generation resource in service as of December 31 of the year prior to the current planning period. For multiple small ($<250 \mathrm{~kW}$ per installation) distributed resources of the same type and fuel source, please include a single combined entry. For capacity factor, use the net capacity as a basis.

RESPONSE:

Please see the attached responsive document.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 33
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Utility Planned Traditional). Complete the table by providing information on each utility-owned traditional generation resource planned for inservice within the current planning period. For multiple small ($<250 \mathrm{~kW}$ per installation) distributed resources of the same type and fuel source, please include a single combined entry. For projected capacity factor, use the net capacity as a basis.
a. For each planned utility-owned traditional generation resource in the table, provide a narrative response discussing the current status of the project.

RESPONSE:

Please see responsive document provided. FPL does not have any utility-owned traditional generation planned for in-service within the current 10-year planning period.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 34
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Utility Existing Renewable). Complete the table by providing information on each utility-owned renewable generation resource in service as of December 31 of the year prior to the current planning period. For multiple small ($<250 \mathrm{~kW}$ per installation) distributed resources of the same type and fuel source, please include a single combined entry. For capacity factor, use the net capacity as a basis.

RESPONSE:
Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 35
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Utility Planned Renewable). Complete the table by providing information on each utility-owned renewable generation resource planned for inservice within the current planning period. For multiple small ($<250 \mathrm{~kW}$ per installation) distributed resources of the same type and fuel source, please include a single combined entry. For projected capacity factor, use the net capacity as a basis.
a. For each planned utility-owned renewable resource in the table, provide a narrative response discussing the current status of the project.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 36
 Page 1 of 2

QUESTION:

Please list and discuss any planned utility-owned renewable resources that have, within the past year, been cancelled, delayed, or reduced in scope. What was the primary reason for the changes? What, if any, were the secondary reasons?

RESPONSE:

No renewable resources were cancelled or reduced in scope within the past year. Since FPL filed its 2023 Ten-Year Site Plan and response to Staff's 2023 First Set of Data Requests, No. 37, the projected in-service date has changed for the following 23 solar energy centers:

| Site | County | $\underline{\text { Planned In-Service }}$ | $\underline{\text { Revised In-Service }}$ | $\underline{(2024 \text { TYSP }}$ |
| :---: | :---: | :---: | :---: | :---: | Rationale

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 36
Page 2 of 2

Hardwood Hammock Solar	Walton County	Q1 2026	July 2026	Moved to later construction tranche
Cardinal Solar	Brevard County	Q1 2026	October 2026	Moved to later construction tranche
Maple Trail Solar	Baker County	Q1 2026	October 2026	Moved to later construction tranche
Joshua Creek Solar	DeSoto County	Q1 2026	October 2026	Moved to later construction tranche
Myakka Solar	Manatee County	Q1 2026	October 2026	Moved to later construction tranche
Waveland Solar	St. Lucie County	Q1 2026	October 2026	Moved to later construction tranche
Inlet Solar	Indian River County	Q1 2026	October 2026	Moved to later construction tranche
Wabasso Solar	Indian River County	Q1 2026	October 2026	Moved to later construction tranche

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 37
Page 1 of 1

QUESTION:

[Investor-Owned Utilities Only] Please refer to the Excel Tables File (As-Available Energy Rate). Complete the table by providing, on a system-wide basis, the historical annual average asavailable energy rate in the Company's service territory for the 10 -year period prior to the current planning period. Also, provide the projected annual average as-available energy rate in the Company's service territory for the current planning period. If the Company uses multiple areas for as-available energy rates, please provide a system-average rate as well.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 38
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Planned PPSA Units). Complete the table by providing information on all planned traditional units with an in-service date within the current planning period. For each planned unit, provide the date of the Commission's Determination of Need and Power Plant Siting Act certification, if applicable.

RESPONSE:

FPL does not have any traditional PPSA units planned for in-service within the current 10-year planning period.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Page 1 of 1

QUESTION:

For each of the planned generating units, both traditional and renewable, contained in the Company's current planning period TYSP, please discuss the "drop dead" date for a decision on whether or not to construct each unit. Provide a timeline for the construction of each unit, including regulatory approval, and final decision point.

RESPONSE:

FPL is interpreting this question to refer to planned generation units that have not yet begun construction. New generation units presented in the FPL 2024 Ten-Year Site Plan that are not yet under construction include the 2025 through 2033 PV additions and the energy storage additions in 2025 through 2033. Please see responsive document provided for the timelines for these generation additions. FPL currently has no future specific date or milestone that would constitute a "drop dead" date related to a decision to proceed with construction of these projects.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 40
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Capacity Factors). Complete the table by providing the actual and projected capacity factors for each existing and planned unit on the Company's system for the 11-year period beginning one year prior to the current planning period.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 41
 Page 1 of 1

QUESTION:

[Investor-Owned Utilities Only] For each existing unit on the Company's system, please provide the planned retirement date. If the Company does not have a planned retirement date for a unit, please provide an estimated lifespan for units of that type and a non-binding estimate of the retirement date for the unit.

RESPONSE:

In regard to new non-nuclear units presented in the 2024 Ten-Year Site Plan, the estimated economic life is generally assumed to be 35 years for PV facilities, 20 years for battery storage, 50 years for new combined cycle units, and 40 years for CT facilities. These assumptions were used in the economic analyses that were performed that led to the 2024 Ten-Year Site Plan filing. For new nuclear units, FPL assumes a minimum operating life of 40 years and a more realistic 60-year operating life.

For FPL's existing nuclear units, the current dates for the end of the operating licenses for each unit are as follows: July 19, 2032 for Turkey Point 3; April 10, 2033 for Turkey Point 4; March 1, 2036 for St. Lucie 1; and April 6, 2043 for St. Lucie 2. As discussed in the 2024 Ten-Year Site Plan, the Nuclear Regulatory Commission (NRC) reversed a previous decision in FPL's Turkey Point subsequent license renewal (SLR) case and concluded that its generic environmental impact statement (EIS) for license renewal does not apply to SLR applications. While the NRC left Turkey Point's renewed operating licenses in effect, it directed the NRC staff to amend those licenses by removing the 20 -year term of licensed operation added by the SLR, thereby restoring the previous operating license expiration dates of 2032 and 2033 for Turkey Point Units Nos. 3 \& 4, respectively. FPL has filed its site-specific EIS, which is pending before the NRC. For purposes of the 2024 Ten-Year Site Plan, FPL's resource planning analyses have assumed the continued operation of Turkey Point Units $3 \& 4$ through the new license termination dates of 2052 and 2053, respectively. FPL also filed a SLR for St. Lucie Unit Nos. 1 \& 2 to 2056 and 2063, respectively. The SLR is also pending before the NRC, but FPL has assumed the new license termination dates for purposes of the 2024 Ten-Year Site Plan.

FPL does not have specific firm retirement dates for all its units; however, the following units have an estimated retirement date as they are within the period of the 2024 Ten-Year Site Plan:

- Gulf Clean Energy Center 4
- Gulf Clean Energy Center 5
- Lansing Smith 3A
- Pea Ridge 1, 2 and 3
- Perdido 1 and 2
- Scherer 3

Fourth quarter 2024
Fourth quarter 2026
Fourth quarter 2027
Fourth quarter 2024
Fourth quarter 2029
Fourth quarter 2028

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 42
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Steam Unit CC Conversion). Complete the table by providing information on all of the Company's steam units that are potential candidates for repowering to operation as Combined Cycle units.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 43
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Steam Unit Fuel Switching). Complete the table by providing information on all of the Company's steam units that are potential candidates for fuelswitching.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 44
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Transmission Lines). Complete the table by providing a list of all proposed transmission lines for the current planning period that require certification under the Transmission Line Siting Act. Please also include in the table transmission lines that have already been approved, but are not yet in-service.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 45
Page 1 of 1

QUESTION:
Please refer to the Excel Tables File (Firm Purchases). Complete the table by providing information on the Utility's firm capacity and energy purchases.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 46
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (PPA Existing Traditional). Complete the table by providing information on each purchased power agreement with a traditional generator still in effect by December 31 of the year prior to the current planning period pursuant to which energy was delivered to the Company during said year.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 47
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (PPA Planned Traditional). Complete the table by providing information on each purchased power agreement with a traditional generator pursuant to which energy will begin to be delivered to the Company during the current planning period.
a. For each purchased power agreement in the table, provide a narrative response discussing the current status of the project.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 48
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (PPA Existing Renewable). Complete the table by providing information on each purchased power agreement with a renewable generator still in effect by December 31 of the year prior to the current planning period pursuant to which energy was delivered to the Company during said year.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 49
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (PPA Planned Renewable). Complete the table by providing information on each purchased power agreement with a renewable generator pursuant to which energy will begin to be delivered to the Company during the current planning period.
a. For each purchased power agreement in the table, provide a narrative response discussing the current status of the project.

RESPONSE:
Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 50
Page 1 of 1

QUESTION:

Please list and discuss any purchased power agreements with a renewable generator that have, within the past year, been cancelled, delayed, or reduced in scope. What was the primary reason for the change? What, if any, were the secondary reasons?

RESPONSE:

FPL has no purchased power agreements with a renewable generator that have been cancelled, delayed, or reduced in scope within the last year.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 51
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (PSA Existing). Complete the table by providing information on each power sale agreement still in effect by December 31 of the year prior to the current planning period pursuant to which energy was delivered from the Company to a thirdparty during said year.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 52
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (PSA Planned). Complete the table by providing information on each power sale agreement pursuant to which energy will begin to be delivered from the Company to a third-party during the current planning period.
a. For each power sale agreement in the table, provide a narrative response discussing the current status of the agreement.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 53
Page 1 of 1

QUESTION:

Please list and discuss any long-term power sale agreements within the past year that were cancelled, expired, or modified. What was the primary reason for the change? What, if any, were the secondary reasons

RESPONSE:

The power sale agreement with the City of Wauchula started on January 2017, and ended on December 31, 2023, because the contract reached the end of its term.

The power sale agreement with the City of New Smyrna Beach was modified. The City at its own request extended its contract with FPL to December 2030.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 54
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Annual Renewable Generation). Complete the table by providing the actual and projected annual energy output of all renewable resources on the Company's system, by source, for the 11-year period beginning one year prior to the current planning period.

RESPONSE:
Please see responsive document provided.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 55
 Page 1 of 3

QUESTION:

Please describe any actions the Company engages in to encourage production of renewable energy within its service territory.

RESPONSE:

FPL's long history of evaluating and supporting the production of renewable energy is discussed comprehensively in Section III.F. of FPL's 2024-2033 Ten-Year Site Plan. A summary of FPL's recent actions to encourage use of renewable energy is provided below.

Overview:

FPL began implementation of two distributed generation solar photovoltaic ("DG PV") pilot programs in 2015. The first DG PV program is a voluntary, community-based, solar partnership pilot, SolarNow, to install new solar powered generating facilities. The program is funded by contributions from customers who volunteer to participate in the pilot and does not rely on subsidies from non-participating customers. The second program, C\&I Solar Partnership Pilot Program ("CISPP"), resulted in approximately 3 MW of DG PV and expired at the end of 2020. The objective of this second program was to collect grid integration data for DG PV and develop operational best practices for addressing potential problems that may be identified. The PV installed under this pilot program will continue to be evaluated for these purposes.

In addition, on March 3, 2020, the FPSC approved FPL's SolarTogether program and tariff, which will add a significant amount of new PV facilities under that new program. Lastly, Gulf has been actively involved in renewable energy resource research and development.

A brief description of these programs follows:
a. Voluntary, Community-Based Solar Partnership Pilot Program ("SolarNow"):

The Voluntary Solar Pilot Program, named FPL SolarNow, provides FPL customers with an additional and flexible opportunity to support development of solar power in Florida. The FPSC approved FPL's request for this three-year pilot program in Order No. PSC-14-0468-TRF-EI on August 29, 2014. The pilot program's tariff became effective in January 2015.

In December 2020, FPL received approval from the FPSC in Order No. PSC-2020-0508-TRF-EI to extend the program until December 31, 2025, while ceasing construction of additional assets after 2021. As the construction of new assets ends, the program will continue to focus on the maintenance and enhancement of the solar facilities and educational and community activities.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 55
Page 2 of 3

This pilot program provides all customers the opportunity to support the use of solar energy at a community scale and is designed to be especially attractive for customers who do not wish, or are not able, to place solar equipment on their roof. Customers can participate in the program through voluntary contributions of $\$ 9 /$ month.

At the end of 2023, there were 37,949 participants enrolled in the Voluntary Solar Pilot Program. This program has installed 84 projects located in 36 communities within the FPL service territory. These projects represent approximately $2,535 \mathrm{~kW}-\mathrm{DC}$ of PV generation.

In addition to the SolarNow program, FPL has also installed $121.5 \mathrm{~kW}-\mathrm{DC}$ of distributed solar generators at 8 different locations and 7.2 kW -DC of non-grid tied solar and battery assets throughout FPL's Northwest Florida region (FPL NWFL).
b. C\&I Solar Partnership Pilot Program:

This pilot program was conducted in partnership with interested commercial and industrial ("C\&I") customers over an approximate 5-year period and expired in 2020. Limited investments were made in PV facilities located at customer sites on selected distribution circuits within FPL's service territory.
c. SolarTogether - An FPL Shared Solar Program ("FPL SolarTogether"):

On March 3, 2020, the FPSC approved the FPL SolarTogether program and tariff, which approval includes the installation of 1,490 MW of new solar generation between 2020 and 2021 (FPSC Docket No. 20190061-EI). FPL has developed FPL SolarTogether as a cost-effective opportunity for customers to directly support the expansion of solar power without the need to install solar on their rooftop. Through FPL SolarTogether, customers have the option to subscribe to kilowatts ("kW") of solar capacity from dedicated FPL cost-effective 74.5 MW solar power plants built for this program. Participating customers' monthly bills will include the cost of their subscribed capacity and credits that reflect the system savings generated by their subscribed capacity. As of June 2021, all twenty approved sites under this program were complete and operational. The commercial, industrial, and government ("C\&I-G") portion of the program has been sold out because of the 2018-2019 pre-registration efforts, and the waitlisted subscriptions for this segment total over 1,700 MW. The residential and small business subscriptions have also been fully subscribed with a smaller waitlist, and the low-income portion of SolarTogether, marketed as FPL SunAssist, opened for enrollment on January 14, 2021, and was fully subscribed as of February 2022.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 55
Page 3 of 3

As part of FPL's 2021 Rate Case Settlement, FPL received approval to extend the FPL SolarTogether program through the construction of an additional 1,788 MW of cost effective solar through 2025. This incremental capacity will be allocated 40% to residential and small business customers with a carve out of 45 MW for low-income participants. The remaining 60% is allocated to C\&I customers.
d. Solar Power Facilities Pilot Program:

As part of FPL’s 2021 Rate Case Settlement, FPL received approval to offer a four-year voluntary pilot program to commercial and industrial customers that may elect to have FPL install and maintain a solar facility on their site for a monthly tariff charge. The program will be marketed under the name FPL SolarVantage. The output of these solar facilities would be used solely by the participating customer. The tariff is for a fixed term, and the monthly fixed charge will recover the project capital costs and ongoing operating expenses from the program participants, such that the general body of customers will not be impacted.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 56
Page 1 of 1

QUESTION:

[Investor-Owned Utilities Only] Please discuss whether the Company has been approached by renewable energy generators during the year prior to the current planning period regarding constructing new renewable energy resources. If so, please provide the number and a description of the type of renewable generation represented.

RESPONSE:

FPL was approached multiple times during 2023 by renewable energy developers with a wide range of potential projects in various stages of research or development. While most of these projects were solar photovoltaic, developers have also suggested possible landfill gas generation and small waste-to-energy facilities. However, none of these projects proceeded beyond an initial inquiry, and to FPL's knowledge, none have proceeded to construction.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 57
 Page 1 of 1

QUESTION:

Does the Company consider solar PV to contribute to one or both seasonal peaks for reliability purposes? If so, please provide the percentage contribution and explain how the Company developed the value.

RESPONSE:

Yes. FPL considers universal (utility-scale) solar PV to contribute firm capacity towards both FPL's Summer peak (which typically occurs at/near the 4 to $5 \mathrm{p} . \mathrm{m}$. hour in the Summer) and Winter peak (which typically occurs at/near the 7 to 8 a.m. hour in the Winter). In FPL's resource planning work, the firm capacity value of solar is typically discussed as a percentage of the MW nameplate-AC rating of the solar facility.

The percentage of a universal solar PV facility's nameplate rating that is assumed to be firm capacity can vary from one PV facility to the next due to various factors including, but not limited to, the following: the facility's geographic location, orientation of the PV panels, whether the PV panels are fixed tilt or tracking, the DC/AC ratio of solar equipment, the PV equipment used at the facility, and the amount of total solar installed on the system.

FPL develops the projected Summer and Winter firm capacity values for a new universal solar PV facility based, in part, on calculations that account for forecasts of the hourly solar insolation at the site and the resulting hourly output of the universal solar PV facility. The firm capacity value for new solar facilities is also dependent on the "net firm peak demand", which is the hourly demand forecast on the peak day minus the hourly contributions from existing solar. Projections for similar future solar facilities decrease in the latter years of the 10-year reporting period due to previous solar additions shifting the hour of the peak load that remains after accounting for the impacts of installed solar facilities.

The firm capacity contribution (in MW) from each existing solar site is available in Schedule 1 of the Ten-Year Site Plan, while the firm capacity contribution from planned solar sites is available in Schedule 8 of the Ten-Year Site Plan.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 58
 Page 1 of 1

QUESTION:

Please identify and describe any programs the Company offers that allows its customers to contribute towards the funding of specific renewable projects, such as community solar programs.
a. Please describe any such programs in development with an anticipated launch date within the current planning period.

RESPONSE:

FPL has three customer-focused solar programs - FPL SolarNow, FPL SolarTogether, and the Solar Power Facilities Pilot Program.
i. FPL SolarNow - A voluntary solar pilot program, which launched in 2015 and will sunset on December 31, 2025;
ii. FPL SolarTogether - A voluntary shared solar program, which the FPSC approved on March 3, 2020 (Order PSC-2020-0084-S-EI). As part of FPL's 2021 Rate Case Settlement, FPL received approval to extend the FPL SolarTogether program through the construction of an additional $1,788 \mathrm{MW}$ of cost effective solar through 2025. Future phases of the SolarTogether program may be evaluated for development and launch within the current planning period.
iii. Solar Power Facilities Pilot Program (FPL SolarVantage) - A four-year voluntary pilot program running through December 31, 2025 that allows commercial and industrial customers on a metered rate to elect to have FPL install and maintain a solar facility on their site for a monthly tariff charge.

For a detailed description of the programs, please see Section III.F. of FPL's 2024 Ten-Year Site Plan, as well as FPL's response to Staff's First Data Request, No. 55.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 59
Page 1 of 1

QUESTION:

Briefly discuss any progress in the development and commercialization of non-lithium-ion based battery storage technology the Company has observed in recent years.

RESPONSE:

Several alternatives to lithium batteries have emerged and are being developed and tested. Lithium battery storage technology has proven to be the most cost-effective and technically feasible solution for utility battery storage applications to date. FPL continues to monitor and request data for solutions such as Zinc Hybrid, Flow batteries, Sodium Ion, and others to understand technical offerings, potential for scaling to serve as a utility application, and possible impacts to project economics. The Company is currently deploying a zinc bromide battery pilot to better understand safety, quality, and performance characteristics of a non-lithium ion product.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 60
Page 1 of 1

QUESTION:

If applicable, please describe the strategy of how the Company charges and discharges its energy storage facilities. As part of the response discuss if any recent legislation, including the IRA has changed how the Company dispatches its energy storage facilities.

RESPONSE:

FPL discharges its storage resources to meet requirements at higher load levels, for operating reserves, mitigation of transmission system constraints, and for frequency response.

FPL charges its storage resources during off peak load periods if charged from the system and during solar output periods if charged directly from solar.

As of the time of this response, FPL has not changed how it dispatches its energy storage facilities as a result of recent legislation, including the IRA.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 61
 Page 1 of 1

QUESTION:

Briefly discuss any considerations reviewed in determining the optimal positioning of energy storage technology in the Company's system (e.g., Closer to/further from sources of load, generation, or transmission/distribution capabilities).

RESPONSE:

FPL currently has three battery storage sites that are in-service. One is an approximate 409 MW battery storage facility that is in Manatee County near the existing Manatee Plant site. This battery and its location were selected based on a need for capacity in the Manatee area to account for potential high Winter peak loads. The 409 MW storage facility will utilize the existing transmission infrastructure at the Manatee Plant site. In addition, the battery will be located close to FPL's existing 74.5 MW solar facility at the Manatee Plant site. This helps enable the battery storage to be charged by solar resources. FPL's current plan is to charge the new battery storage facility solely by solar for at least the first 5 years of the life of the battery storage, thus enabling the battery storage facility to qualify for the renewable investment tax credit ("ITC"). This helps lower the cost of the battery for the benefit of FPL's customers.

Two other 30 MW battery storage facilities went online in late 2021. One of these storage facilities is the Sunshine Gateway Energy Storage Center in Columbia County. The other storage facility is the Echo River Energy Storage Center in Suwanee County. The locations for these two storage facilities were selected for two primary reasons. First, universal solar facilities at/near the storage site will allow the storage facility to be fully charged by solar energy, thus enabling the storage facility to qualify for the renewable ITC. Second, the location of the quick start battery capacity will provide support for the FPL transmission system in regard to potential Winter peak load conditions.

Should future provisions allow the charging of existing batteries from the grid and still enable those batteries to qualify for the ITC, FPL will adjust its charging procedures accordingly to maximize both the economic and reliability benefits of batteries for its customers.

For future battery storage additions, FPL's resource plan adds 4,022 MW of batteries from 2025 through 2033. Sites for all these batteries have not been selected yet; however, the 522 MW of batteries scheduled to come online in December 2025 will be sited in NWFL to add capacity in that region. As with FPL's batteries that have been installed, considerations will be made to site projected batteries in locations that support FPL's transmission system if possible. These considerations include siting batteries at existing or proposed solar facilities when possible.

In addition, FPL is evaluating battery storage in both Small Scale and Large Scale (50 MW) pilot projects to analyze a variety of potential battery applications. Please see pages 146 through 149 of the 2024 FPL Ten-Year Site Plan for a discussion of these pilot projects.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 62
Page 1 of 1

QUESTION:

Please explain whether customers have expressed interest in energy storage technologies. If so, describe the type of customer (residential, commercial industrial) and how have their interests been addressed.

RESPONSE:

FPL continues to receive occasional inquiries about energy storage technologies. These inquiries are infrequent but include all customer classes - residential, commercial, and industrial. Generally, the interest is rooted in a desire for additional resiliency. To the extent requested by customers, FPL has provided technical and interconnection support. As of March 31, 2024, FPL is aware of 5,524 net-metering accounts that have installed battery storage systems.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 63
Page 1 of 1

QUESTION:
Please refer to the Excel Tables File (Existing Energy Storage). Complete the table by providing information on all energy storage technologies that are currently either part of the Company's system portfolio or are part of a pilot program sponsored by the Company.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan Staff's First Data Request
 Request No. 64
 Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Planned Energy Storage). Complete the table by providing information on all energy storage technologies planned for in-service during the current planning period either as part of the Company's system portfolio or as part of a pilot program sponsored by the Company.

RESPONSE:

Please see the attached responsive document.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 65
Page 1 of 3

QUESTION:

Please identify and describe the objectives and methodologies of all energy storage pilot programs currently running or in development with an anticipated launch date within the current planning period. If the Company is not currently participating in or developing energy storage pilot programs, has it considered doing so? If not, please explain.
a. Please discuss any pilot program results, addressing all anticipated benefits, risks, and operational limitations when such energy storage technology is applied on a utility scale (>2 MW) to provide for either firm or non-firm capacity and energy.
b. Please provide a brief assessment of how these benefits, risks, and operational limitations may change over the current planning period.
c. Please identify and describe any plans to periodically update the Commission on the status of your energy storage pilot programs.

RESPONSE:

As described in Section III.F. of FPL's 2024 Ten-Year Site Plan, FPL has deployed energy storage pilot projects under two distinct pilot programs to date: 1) Small Scale Storage Pilot Projects; and 2) Large Scale (50 MW) Storage Pilot Project. The objectives of the two pilot projects are to identify the most promising applications for batteries on FPL's system and to gain experience with battery installation and operation.

1) Small Scale Storage Pilot Projects: In 2016 and early 2017, FPL installed approximately 4 MW of battery storage systems, spread across six sites, with the general objective of demonstrating the operational capabilities of batteries and learning how to integrate them into FPL's system. These small storage projects were designed with a distinct set of high-priority battery storage grid applications in mind. These applications include peak shaving, frequency response, and backup power. In addition, these initial projects were designed to provide FPL with an opportunity to determine how to best integrate storage into FPL's operational software systems and how best to dispatch and/or control the storage systems. To this end, FPL installed multiple projects that have been in service for more than seven years and have yielded valuable information regarding the applications listed above. These projects and learnings from them include: (i) a 1.5 MW battery in Miami-Dade County using second life automotive batteries for peak shaving and frequency response (found that high in-house integration costs coupled with low remaining capacity in second-life batteries do not support the business case), (ii) a 1.5 MW battery in Monroe County for backup power and voltage support (showcased the complexity of working with customer's equipment), (iii) a relocatable 0.75 MW uninterruptible power supply (UPS) battery at Trividia Health, Inc. in Broward County

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 65
Page 2 of 3

(provides consistent support to mitigate customer's momentary disruptions and reliability issues, but relocation is costly and requires high technical expertise), and (iv) smaller kilowatt scale systems in several communities for distributed storage reliability (applications successfully provide reliability support for residential customers during grid events, but FPL found front-of-the-meter deployment is more expensive than behind-themeter installations). FPL decommissioned the 1.5 MW battery in in Miami-Dade County, the 0.75 MW UPS and the small kilo-watt scale systems in several communities at the end of 2022 .
2) Large Scale (50 MW) Storage Pilot Project: The small-scale battery storage pilot projects described above are complemented by up to 50 MW of additional battery projects. These pilot projects were authorized under the Settlement Agreement in FPL's 2016 base rate case. The 50 MW of batteries that have been, and will continue, to be deployed in this larger pilot project have expanded the number of storage applications and configurations that FPL will be able to test and have made the scale of deployment more meaningful given the large size of FPL's system.

The first two storage projects under this pilot, placed in-service in the 1st Quarter of 2018, involve pairing battery storage with existing universal PV facilities. One of the projects is a 4 MW battery sited at FPL's Citrus Solar Energy Center. This project captures clipped (curtailed) solar energy from the solar panels during high solar insolation hours, then releases this energy in other hours. The second project is a 10 MW battery at FPL's Babcock Ranch Solar Energy Center. This project is designed to shift PV output from non-peak times to peak times and to provide "smoothing" of solar output and regulation services. These two projects are designed to enhance the operations of existing solar facilities that were installed in 2016. The data and lessons gathered from these two projects enable more optimized design configurations for solar-paired battery projects as well as improved operational parameters for economic dispatch. In 2021, FPL added an additional 1 MW to the existing Babcock Ranch Battery Storage System to test the design and performance of various battery augmentation solutions to mitigate degradation. In the 4th Quarter of 2019, a 10 MW battery in Wynwood, a dense urban area close to downtown Miami, went into service. The project is designed to examine the use of batteries to support the distribution system with a focus on addressing grid, system, and customer challenges. Key learnings relate to the challenges of installing a battery in a dense urban area, including the decision to install in a building to allow for increased energy density, and integration into the distribution control system to allow for seamless integration into the Automated Feeder Switching system. Two additional projects placed in-service in 2020 are designed to enhance reliability for FPL customers and the grid. One is an 11.5 MW battery that will augment the Dania Beach Clean Energy Center Unit 7. This project evaluates using battery storage to black start large generating units. The

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 65
Page 3 of 3

other is a 3 MW battery alongside an existing solar PV system to create a microgrid. The microgrid will be used for local resiliency and to provide additional grid services, including mitigation of disruptions potentially caused by solar in the distribution system. The projects have thus far yielded valuable learnings about interconnection approach and properly sizing the battery to account for the inrush current needed to energize the load for these applications. The last three projects explore battery storage opportunities associated with electric vehicles (EVs) and EV infrastructure. The first explores the potential for utilizing EVs as grid resources on FPL's system for the first time ever; the 1.25 MW of Electric-Vehicle-to-Grid (EV2G) batteries using electric school buses will be able to discharge electricity to the grid when needed. The first two buses were delivered in the 3rd Quarter of 2020 and 1st Quarter of 2021; the remaining three buses are delayed due to supply chain constraints. The second EV plus storage pilot adds 0.35 MW of battery storage to two FPL EVolution® pilot sites in Columbia County and Nassau County (0.7 MW total) to provide grid benefits in the form of peak shaving and a reduction in distribution upgrades. The third and final pilot project, the "FPL EVolution ${ }^{\circledR}$ Hub", has two parts: (i) 7.25 MW of storage paired with 5 MW solar PV to create a renewable microgrid, and (ii) two trailers each fitted with 0.65 MW (total 1.3 MW) of storage and 6 EV (12 total) fast chargers. The microgrid will be used to charge the trailers that will be deployed throughout FPL service area during grid events to increase resiliency for EV charging. The microgrid will also be used to provide electricity to a nearby administrative building, warehouse, and several biodiesel tanks when not being used to charge the battery trailers. The first and third pilot projects have completed construction and are operational as of 2022. The EV + Storage project in Columbia and Nassau counties is expected to be placed into service by 1st Quarter in 2024.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 66
 Page 1 of 2

QUESTION:

If the Company utilizes non-firm generation sources in its system portfolio, please detail whether it currently utilizes or has considered utilizing energy storage technologies to provide firm capacity from such generation sources. If not, please explain.
a. Based on the Company's operational experience, please discuss to what extent energy storage technologies can be used to provide firm capacity from non-firm generation sources. As part of your response, please discuss any operational challenges faced and potential solutions to these challenges.

RESPONSE:

FPL does attribute a percentage of the nameplate rating of each of its solar facilities as firm Summer and Winter capacity in its resource planning work, without the addition of energy storage technologies.

In addition, FPL is attributing firm capacity value to battery storage facilities that are planned to be in service by the end of 2033. The firm capacity attributed to battery storage facilities is dependent upon the duration of the battery as well as the amount of battery storage already on the system. As more battery storage is added to the system, the shape of the system peak after batteries are used "flattens," and therefore, incremental batteries will require additional duration to receive 100% firm capacity value. If the incremental batteries' duration is not increased, those incremental batteries will have declining firm capacity value.

For FPL's planning purposes, all incremental batteries are assumed to have a 4-hour duration. Therefore, incremental batteries added later will have lower firm capacity values in the Summer, as shown in Schedule 8 and Schedule 9 of FPL's 2024 Ten-Year Site Plan (FPL's Winter peak is generally a shorter duration than 4 hours, so batteries receive their full nameplate rating in the Winter). The firm capacity assigned to each battery is accounted for in FPL's reserve margin and Loss of Load Probability ("LOLP") analyses. This firm capacity is projected to last through the duration of the life of the battery.

In evaluating the firm capacity values of both solar and storage facilities, FPL currently looks at the system-wide capacity benefits of both as opposed to using battery storage to provide firm capacity to specific non-firm generation sources. As FPL begins siting batteries close to existing solar sites in 2025 and beyond, it will examine any additional benefits of those batteries in providing direct firm capacity for those solar sites, including the capturing of "clipped" energy from the solar site.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 66
Page 2 of 2

FPL has built several energy storage pilot projects on the system that are currently operational. The operational lessons learned from those projects have been integrated into FPL's Manatee Battery design. In addition to providing firm capacity, we continue to analyze customer benefits from the significant operational flexibility that batteries provide to the electrical grid.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 67
 Page 1 of 2

QUESTION:

Please identify and discuss the Company's role in the research and development of utility power technologies, including, but not limited to research programs that are funded through the Energy Conservation Cost Recovery Clause. As part of this response, please describe any plans to implement the results of research and development into the Company's system portfolio and discuss how any anticipated benefits will affect your customers.

RESPONSE:

FPL understands the term "utility power technologies" to broadly mean the hardware, software, and communication technologies that either directly form part of generation and transmission systems or are used to operate them.

FPL stays abreast of developments in those technologies in a variety of ways, including:

- Monitoring industry publications and journals, as well as news in the sector;
- Participating in industry trade groups and conferences;
- Communicating regularly with vendors on new offerings or system needs; and
- Where appropriate, testing out equipment on a limited basis to determine its capabilities and risks.

Pilot projects represent one of the ways to test out equipment under real operating conditions, while only committing limited resources to a particular technology path. As described in Section III.F. of FPL's 2024 Ten-Year Site Plan, several generation-related pilot programs have been implemented over the years to learn about various technologies and potential program structures, including the Living Lab, the Voluntary Solar Pilot Program, the Commercial \& Industrial Solar Partnership Program, the Small Scale Storage Pilot Projects, and the Large Scale (50 MW) Storage Pilot.

As part of the approved 2021 Rate Case Settlement, FPL received approval to proceed with a green hydrogen electrolysis pilot project currently being developed at FPL's Okeechobee combined cycle unit. This pilot will allow FPL to assess how the combustion turbine units in a combined cycle operate with a hydrogen and natural gas fuel mix and will also provide insight into how a hydrogen fuel production and storage facility can be effectively used on site with combustion turbine units. Construction was successfully completed and went commercial on December 31, 2023. The information and real-world data obtained from hydrogen pilot will help the Company evaluate the benefits and feasibility of future deployment of green hydrogen as a fuel in combined cycle units.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 67
Page 2 of 2

FPL also started construction of its Clean Water Recovery Center (CWRC), in partnership with Miami-Dade County. In June 2020, the Miami-Dade County Commission approved FPL's proposed development of a reclaimed water project that will reuse treated wastewater from the county at FPL's Turkey Point Clean Energy Center. The FPL Miami-Dade Clean Water Recovery Center is expected to be operational in 2025 and treat up to 15.0 million gallons of wastewater per day for cooling of Turkey Point Unit 5. The CWRC will provide cooling water resilience for FPL's Turkey Point Unit 5 and provide an economical way for Miami-Dade County to achieve its water reuse targets. This innovative project is a first-of-its-kind for FPL but paves the way for future beneficial reuse projects that also provide resiliency benefits to FPL's generating fleet.

In addition to new projects, FPL is also constantly evaluating the viability of existing projects to ensure FPL makes the best decision for its customers. One such example is the recent approval to decommission the Martin Thermal Solar Facility that was placed in service in 2012 along with several other photovoltaic (PV) solar pilot projects. FPL learned a great deal about the viability of various solar technologies (both thermal and PV) as a result of the pilots and determined that thermal solar was not economical in Florida, and that the early retirement of the Martin Solar Thermal Facility was in the best interest of FPL customers. Removal of ancillary heat transfer infrastructure is already complete and decommissioning of the primary thermal solar arrays is scheduled to begin in April 2024.

Once a technology reaches the point of being commercially viable and potentially economic for customers, FPL will consider it in its resource planning activities.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 68
 Page 1 of 1

QUESTION:

Please explain if the Company assumes carbon dioxide $\left(\mathrm{CO}_{2}\right)$ compliance costs in the resource planning process used to generate the resource plan presented in the Company's current planning period TYSP. If the response is affirmative, answer the following questions:
a. Please identify the year during the current planning period in which CO 2 compliance costs are first assumed to have a non-zero value.
b. [Investor-Owned Utilities Only] Please explain if the exclusion of CO2 compliance costs would result in a different resource plan than that presented in the Company's current planning period TYSP.
c. [Investor-Owned Utilities Only] Please provide a revised resource plan assuming no CO 2 compliance costs.

RESPONSE:

Yes. Projected CO_{2} compliance costs were utilized in the analyses that led to the resource plan presented in the 2024 FPL Ten-Year Site Plan. FPL believes utilizing CO_{2} compliance costs is the correct method of analyzing future resource options.
a. The first year in which there is a projected non-zero compliance cost value is 2036.
b. If projected CO_{2} compliance costs had been excluded from the analyses that led to the resource plan presented in the 2024 FPL Ten-Year Site Plan, then the resource plan would be different.
c. Please see responsive document provided for a resource plan sensitivity without CO_{2} compliance costs.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 69
 Page 1 of 6

QUESTION:

Provide a narrative explaining the impact of any existing environmental regulations relating to air emissions and water quality or waste issues on the Company's system during the previous year. As part of your narrative, please discuss the potential for existing environmental regulations to impact unit dispatch, curtailments, or retirements during the current planning period.

RESPONSE:

FPL operates its Electric Generating Units in compliance with all applicable federal, state, and local regulations that limit impacts to air and water quality. Compliance with permit requirements requires FPL to monitor, and operate, facilities within specific allowable limits at all times. Environmental restrictions relating to air or water quality and emissions from facility operations are incorporated within those permits, and operating procedures are implemented at FPL's facilities to ensure compliance. Regulatory changes, which impose environmental restrictions, are ultimately incorporated within the operating permits as changes to existing limits or new requirements. Compliance with existing permits and new requirements is continuous, on a unit and fleet-wide basis. Changes to operations of facilities to comply with existing and new requirements are included in both existing and planned operating costs and are reflected as unit generating performance impacts that are used for unit dispatch and production costing modeling. Impacts to operation of facilities include, but are not limited to, the installation of new pollution controls (which may impact unit efficiency and generation output), purchase of emission allowances, changes to fuels that can be combusted, restrictions on water use and discharge, minimizing impacts on protected species, and use of alternative products where applicable.

FPL has evaluated the impact of all existing regulations on the operation of its generating units and has developed compliance plans to limit, or avoid, impacts to generating unit operation. During the 2023 period, impacts from air and water environmental restrictions to generating units included the following environmental requirements: 1) use of natural gas during startup of FPL's oil/gas steam units when possible; 2) compliance with Cross State Air Pollution Rule ("CSAPR") through the use of emission allowances and the operation of the Selective Catalytic Reduction ("SCR") and Flue Gas Desulphurization ("FGD") on controlled units; 3) compliance with the Mercury and Air Toxics Standards ("MATS") rule and the Georgia Multi-Pollutant Rule requirements at Plant Scherer, and Plant Daniel through operation of sorbent injection/bag-house control for mercury and operation of SCR and FGD ("Scrubber"); 4) compliance with the Combustion Turbine National Emission Standard for Hazardous Air Pollutants ("NESHAP") for gas-fired CTs; and 5) operation of temporary heaters at Cape Canaveral plant, Lauderdale plant, and Fort Myers plant when needed to provide warm water for manatees in compliance with an agency-approved manatee protection plan.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 69
Page 2 of 6

During the 2024 through 2033 period, FPL is aware of several regulations which could potentially affect generating unit dispatch or retirement including: 1) the EPA rulemaking for Greenhouse Gas emissions from stationary combustion turbines; 2) EPA's review of the Coal Ash Rule; 3) the EPA promulgation of the Steam Effluent Limitation Guidelines rule; 4) Promulgation of EPA's Good Neighbor plan to reduce transport of Ozone through CSAPR Group 3 states; and 5) EPA's proposed revision to the National Ambient Air Quality Standard (NAAQS) for ground level Ozone. Some of these rules have been challenged and are currently in litigation. The D.C. Circuit vacated the ACE rule and Clean Power Plan repeal in 2021. The EPA final rule for Clean Air Act Section 111(b) is expected in 2024, but future rulemakings under the Clean Air Act Section 111(d) are still uncertain.

On April 29, 2014, the U.S. Supreme Court reversed the DC Circuit Court of Appeals decision on CSAPR and remanded the rule back to the lower court. In accordance with the December 23, 2008, Court decision, CAIR remained in effect until a replacement rule was finalized by the EPA. On November 21, 2014, EPA issued a ministerial rule that aligns the dates in the CSAPR rule text with the revised court-ordered schedule, including 2015 Phase 1 implementation and 2017 Phase 2 implementation. In a separate ministerial action, EPA issued a NODA, as required by CSAPR, which aligns the final CSAPR default allowance allocation years with the revised court-ordered schedule implementing revisions to CSAPR and tolling the compliance deadlines by three years. The annual allowance programs for CSAPR Phase 1 implementation began January 1, 2015, with Phase 2 beginning January 1, 2017. To comply with the previous and current Transport Rules, FPL implemented several projects as the most cost effective compliance strategy, which included: 1) the 800 MW Cycling Project at the Manatee $1 \& 2$ units to improve the ability of the units to be economically dispatched to meet system demand and allow the removal of "must run" status; 2) installation of SCR and Scrubber on Plant Scherer Unit 3 and Unit 4 (also required by the Georgia Multi-pollutant rule); 3) Installation of pollution controls on Gulf Clean Energy Center (formerly Plant Crist) Units $4,5,6 \& 7 ; 4)$ Upgrades to transmission lines to allow for the early retirement of Plant Smith Units $1 \& 2$; and 5) Installation of pollution controls on plant Daniel Units $1 \& 2$. FPL's construction of the West County Energy Center, Cape Canaveral Energy Center, Riviera Beach Energy Center, Port Everglades Energy Center, and the Okeechobee Clean Energy Center, and Dania Beach Energy Center and the upgrades of FPL's existing combined cycle fleet have reduced FPL system emissions. On November 16, 2015, EPA proposed the CSAPR - Update Rule to implement reductions that it deemed necessary to address the 2008 Ozone standard. In its evaluation of Florida's impacts on downwind ozone nonattainment and maintenance areas, EPA determined that Florida electric generating units no longer have a significant impact to air quality in those areas and has removed Florida from the CSAPR program in 2017. FPL's ownership share of Plant Scherer Unit 3 in the State of Georgia and Plant Daniel Units $1 \& 2$, however, will remain affected under CSAPR for the annual and ozone season programs as applicable. FPL retired Scherer Unit 4 in 2021, removing it from the rule's applicability. On March 15, 2023, EPA issued its final Good Neighbor Plan to address nonattainment areas under

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 69
Page 3 of 6

the 2015 ozone NAAQS. The only FPL fossil generating units affected by the revised rule are Plant Daniel Units $1 \& 2$. While the units will be subject to reductions in allocations of NOx ozone season allowances beginning in 2023, FPL had previously committed to retirement of its ownership share of plant Daniel in 2024 and has planned only limited operation of those units to meet system load requirements.

FPL also has compliance obligations under the MATS rule at Plant Daniel and Plant Scherer. The rule finalizes the coal and oil-fired Maximum Achievable Control Technology ("MACT") standards that the EPA had proposed to reduce emissions of Hazardous Air Pollutants ("HAPs"). On April 15, 2014, the DC Circuit Court of Appeals upheld the final MATS rule denying petitioners challenges that EPA improperly promulgated the rule. FPL does not anticipate any adverse impacts to operation of its generating units to comply with the MATS rule at this time. Installation of ESPs on the Manatee Units 1 and 2 and Martin Units 1 and 2, along with all associated acceptance tests, were completed by February 2015. FPL's installation of controls at Plant Scherer on Units $3 \& 4$ for compliance with the Georgia Multi-Pollutant rule provided the necessary emission reductions that are needed for MATS compliance. Similarly, installation of controls on Gulf Clean Energy Center Units 4,5,6 \& 7 and Plant Daniel Units $1 \& 2$ provided co-benefits removal of air toxics targeted by the rule. In addition to Continuous Mercury Emission Monitoring systems that have been installed for compliance with MATS at Plant Scherer, Gulf Clean Energy Center and Daniel, remaining affected units will require quarterly particulate matter emission tests instead of the previous annual requirement. As of April 16, 2016, Plant Scherer and Daniel coal-fired generating units were subject to the rule's emissions standards and are currently demonstrating compliance.

On August 21, 2018, the Affordable Clean Energy ("ACE") rule was proposed to replace the 2015 Clean Power Plan. The ACE rule applied only to coal fired electric generating units and does not include gas fired combustion units. FPL is currently following EPA discussions regarding changes that will be needed to comply with the DC Circuit's vacatur and remand of the ACE rule following its January 19, 2021, decision on that rule. Following its decision to regulate GHG's from new fossil-fuel fired power plants under EPAs new source performance standards, EPA is obligated to promulgate GHG standards for existing fossil-fuel fired generating units. Under the Clean Air Act EPA is required to promulgate a rule which requires sources to implement the best system of emission reduction ("BSER"). FPL anticipates that the majority of its coal units that were subject to the ACE rule will be retired prior to implementation of the replacement rule.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 69
Page 4 of 6

The final 316(b) rule for Cooling Water Intake Structures at Existing Facilities (316(b) Rule) was published August 15, 2014, and became effective October 14, 2014. The final 316(b) Rule requires each affected facility to develop comprehensive studies and compliance plans to determine the appropriate compliance measures to achieve the Best Technology Available ("BTA") to minimize adverse environmental impacts and meet entrainment and impingement mortality reduction requirements. The timeline to complete these studies and plans, along with ultimate agency review and approvals, is being completed during each facility's NPDES permit renewal process. The 316(b) studies required for permit renewal process for applicable FPL facilities were completed and submitted between 2018-2023. Generally, the implementation of the 316(b) Rule must consider the site-specific characteristics of each generating facility, the water body types that supply the intake structure, and the types of aquatic organisms in the vicinity.

The final 316(b) Rule states that a variety of technological and operational measures, including cooling towers, may qualify as BTA to reduce the adverse environmental impacts of cooling water intake structures. Although the addition of cooling towers could be considered as BTA at some facilities, they may not be feasible at many locations due to spatial limitations and disproportionate costs versus benefits; therefore, cooling towers were not declared BTA by EPA for all facilities. FPL operates eleven (11) power plants in Florida to which the 316(b) Rule is applicable. Six (6) plants utilize once-through cooling water systems, four (4) utilize closedcycle recirculating systems (e.g., cooling towers or cooling ponds), and the Gulf Clean Energy Center utilizes both. For the plants utilizing once-through cooling water systems, the 316(b) Rule requires comprehensive studies to determine the appropriate BTA to meet the 316(b) Rule requirements. FDEP has determined that modified traveling water screens with fish return systems is BTA for five of the six once-through cooling plants. These five plants are required to complete a two-year Impingement Technology Performance Optimization Study. The estimated cost to complete these studies is $\$ 4.1 \mathrm{MM}$ (total for all 5 plants). If the other oncethrough cooling water system plants are required to meet the BTA requirements by installing cooling towers, the cost would be very high (hundreds of millions of dollars per site). However, based on FPL's review of the 316(b) Rule and data that has been collected, we anticipate that those FPL facilities will not be required to retrofit their once-through cooling systems with cooling towers and will be able to meet the determinations of BTA by alternative controls (e.g., unit retirement or velocity caps).

For the plants utilizing closed-cycle cooling, FPL does not anticipate that additional technologies or operational changes to minimize impingement mortality or entrainment will be required. Some studies are required for these facilities, but they are relatively inexpensive, and any capital improvements required at these facilities would be minimal. FPL is also a co-owner of Scherer Units $3 \& 4$ and Plant Daniel Units $1 \& 2$. Both facilities use cooling towers to reduce the impacts of impingement mortality and entrainment as required under the 316(b) Rule. Here, just as with the FPL operated plants that utilize closed-cycle cooling, we anticipate the impacts to be relatively small.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 69
Page 5 of 6

EPA published the final Coal Combustion Residuals ("CCR") rule on April 17, 2015. This rule regulates the disposal of combustion byproducts. The WIIN Act that passed in 2016 provided for approval of State CCR regulatory programs. USEPA then issued revised regulations during the 2018-2020 timeframe which ultimately extended the deadline to initiate closure of certain CCR units to April 11, 2021. FPL's CCR units at Gulf Clean Energy Center, Plant Smith, SJRPP, Daniel, and Scherer are affected by this rule and now have disposal and closure requirement(s) for bottom ash, fly ash, and gypsum, while FPL's Plant Scholz and Indiantown Cogeneration coal-fired unit was not affected by the rule. FPL and the co-owners of its coal-fired generating units affected by this rule are conducting the required engineering evaluations, inspections, and monitoring and have developed closure and corrective action plans as required. FPL does not anticipate any adverse impacts to operation of its generating units to comply with the CCR rule at this time. On May 18, 2023, the EPA proposed a revised rule that broadened the scope of the CCR rule to include ponds and landfills not included in the 2015 rule. The EPA is under a court order to finalize the rule by May 9, 2024.

The 2020 Steam Electric Effluent Limitation Guidelines ("ELG") reconsideration rule was promulgated and became effective on December 14, 2020. Title 40 Code of Federal Regulations Part 423, which was promulgated under the authority of the Federal Clean Water Act, limits the discharge of pollutants into navigable waters and into publicly owned treatment works by existing and new sources of steam electric power plants. The ELG rule, while it is applicable to all facilities that utilize steam for electrical generation (i.e., have a steam turbine) regardless of fuel type, mainly focuses on wastewater generated by coal-fired power plants. The ELG Rule sets limits on the amount of metals and other harmful pollutants that steam electric power plants are allowed to discharge in several of their more significant sources of wastewater.

The ELG rule is applicable to FPL owned or partially owned steam generation facilities. It is not applicable to any of the combustion turbine-only powered facilities. The 2020 rule update has virtually no impact on the steam generation facilities which are fueled by natural gas/light oil or nuclear. Manatee Plant Units 1 and 2 can burn heavy (\#6) oil and are subject to the rule for combustion of \#6 oil. FPL's Martin Plant Units 1 and 2 were retired in late 2018 and removed from applicability of the ELG rule.

The 2020 ELG Rule updates are applicable to Plant Scherer Units 3 \& 4. The 2020 ELG rule requires compliance to occur as soon as possible on or before December 31, 2025, or December 31, 2028, if the Voluntary Incentives Program is selected. Plant Scherer Units $3 \& 4$ will comply with the ELG rule by permanently ceasing coal combustion by December 31, 2028. FPL has permanently retired Scherer Unit 4 in January 2022 and has announced retirement of Scherer Unit 3 by the end of 2028. On March 29, 2023, the EPA proposed a revised ELG rule with more stringent limitations for constituents of FGD scrubber wastewater and bottom ash transport water. The EPA's proposed revisions include consideration of lower limits for specific constituents or the requirement of zero liquid discharge of FGD and ash transport water. The EPA is accepting comments on the proposed rule, and FPL anticipates that the EPA will likely

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 69
Page 6 of 6

issue a final rule in the third quarter of 2023.
The several environmental regulations which FPL anticipates becoming final in the 2024 through 2033 period include: 1) Revisions to Greenhouse Gas Performance Standards for Combustion Turbine Electric Generating Units; 2) Greenhouse Gas Performance Standards for Existing Sources in response to the DC Circuit's remand of the Affordable Clean Energy rule; 3) Regional Haze Reasonable Further Progress requirements for visibility improvement; 4) SIP revisions for Startup/Shutdown/Malfunction ("SSM") excess emissions; and 5) new and future revisions to the National Ambient Air Quality Standard ("NAAQS") for the criteria pollutants. While FPL does not yet know what requirements would be included in each final rule, it has made a preliminary determination using publicly available information that the anticipated compliance requirements for FPL would not impact any of the company's generating unit capability or reliability to meet projected system demand. However, the impact of the Greenhouse Gas Performance Standards for Existing Sources on the operation and dispatch of FPL's fossil fuel fired electric generating units is uncertain until a final rule is published.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 70
 Page 1 of 2

QUESTION:
For the U.S. EPA's Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units Rule:
a. Will your Company be materially affected by the rule?
b. What compliance strategy does the Company anticipate employing for the rule?
c. If the strategy has not been completed, what is the Company's timeline for completing the compliance strategy?
d. Will there be any regulatory approvals needed for implementing this compliance strategy? How will this affect the timeline?
e. Does the Company anticipate asking for cost recovery for any expenses related to this rule? Refer to the Excel Tables File (Emissions Cost). Complete the table by providing information on the costs for the current planning period.
f. If the answer to any of the above questions is not available, please explain why.

RESPONSE:

a. In October 2015, the EPA's final rule for New Source Performance Standards ("NSPS") governing carbon dioxide (" CO_{2} ") emissions from new fossil fuel-fired electric generating units became effective. This rule will have no impact on FPL facilities since (i) FPL's new combined-cycle gas facilities routinely have GHG emission rates below the NSPS limits; (ii) FPL's new simple-cycle gas-fired peakers will meet the NSPS limits for non-baseload generating units by using designated clean fuels; (iii) FPL's solar generating facilities do not emit GHGs and are unaffected by the rule; and (iv) FPL has no current plans to build new coal-fired facilities. On April 5, 2021, the D.C. Circuit vacated and remanded the significant contribution finding rule issued in January 2021. FPL will follow EPA discussions for any changes for new units.

In regard to existing units, on June 19, 2019, the Affordable Clean Energy ("ACE") rule was issued to replace the 2015 Clean Power Plan. The ACE rule applied only to coal fired electric generating units and did not include gas fired combustion units. On January 19, 2021, the D.C. Circuit Court vacated the ACE rule and remanded it to EPA to promulgate a replacement rule that addresses the flaws outlined in the decision. The Court's decision also vacated the amendments to the implementing regulations that extended the compliance timeline, finding that "the ACE Rule's amendment of the regulatory framework to slow the process for reduction of emissions is arbitrary and capricious." On February 28, 2022, oral arguments were held before the Supreme Court in West Virginia v. EPA (Case No. 20-1530),

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 70
Page 2 of 2

which was initiated by questions about the scope of EPA's authority to regulate greenhouse gases from existing power plants. On October 22, 2022, the D.C. Circuit issued an order that withdrew the mandate from the West Virginia v. EPA case, thereby reinstating the ACE rule. Since EPA is working on a replacement rule, the Court placed the case in abeyance pending completion of the new rulemaking. EPA issued a proposed rule in May 2023 for a new NSPS regulating CO_{2} from new and existing fossil fuel-fired electric generating units. EPA is expected to issue a final rule in April or May 2024. The final rule is expected to remove existing fossil fuel-fired stationary combustion turbines and only regulate new fossil fuelfired stationary combustion turbines. Final determination on impacts to the business cannot be determined until the final rule is published.
b. - d. N/A
e. No. Please see responsive document provided.
f. FPL does not have sufficient information on the contents of the final GHG NSPS, which could cause adverse impacts to its generating fleet.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 71
 Page 1 of 4

QUESTION:

Explain any expected reliability impacts resulting from each of the EPA rules listed below. As part of your explanation, please discuss the impacts of transmission constraints and changes to units not modified by the rule that may be required to maintain reliability.
a. Mercury and Air Toxics Standards (MATS) Rule.
b. Cross-State Air Pollution Rule (CSAPR).
c. Cooling Water Intake Structures (CWIS) Rule.
d. Coal Combustion Residuals (CCR) Rule.
e. Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units.
f. Affordable Clean Energy Rule or its replacement.
g. Effluent Limitations Guidelines and Standards (ELGS) from the Steam Electric Power Generating Point Source Category.

RESPONSE:

FPL does not anticipate any system reliability impacts associated with the compliance requirements of the MATS Rule, CSAPR Rule, CWIS Rule, CCR Rule, EPA's Standards of Performance for Greenhouse Gas Emissions for New Stationary Sources: Electric Utility Generating Units, ACE Rule (or its replacement), or the ELGs, including generating unit reliability, transmission system constraints, and installation of controls on units not regulated by these rules, nor does FPL anticipate early retirement of units in response to these regulations. FPL evaluates the potential impacts to unit operation based on proposed and draft rule language that identifies compliance requirements for environmental regulations.
a. For compliance with the MATS rule, FPL installed ESPs on the Martin and Manatee oilfired steam 800 MW units, Sorbent Injection, and baghouse on Scherer Unit 4, and used existing controls to comply with emission standards for the coal fired Indiantown Cogeneration facility. FPL retired the Cedar Bay coal fired generating unit in 2016 and has completed demolition of the unit. Additionally, SJRPP Units $1 \& 2$ and Martin Units $1 \& 2$ were retired in 2018, and Indiantown Cogeneration was retired in 2020, effectively removing them from the MATS compliance requirements at this time as these units have been decommissioned and demolished. In its 2021 Ten-Year Site Plan filing, FPL provided notice of its intent to retire Scherer Unit 4, which occurred on December 31, 2021. In its 2023 Ten-Year Site Plan filing, FPL provided notice of its intent to retire

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 71
Page 2 of 4

FPL's ownership portion of Daniel Units 1 and 2 in 2024 and retire Scherer Unit 3 in 2028. In 2020, FPL pursued the modernization of Gulf Clean Energy Center (formerly Crist) Units 6\&7 and in 2020 retired coal combustion capability for Units 4-7. FPL has not identified any potential impacts to the reliability or capability of its units, or transmission system, as a result of the MATS compliance plan.
b. FPL's CSAPR compliance plan has not, and will not, impact generating unit or system reliability or capability. With EPA's promulgation of the CSAPR update rule, the FPL Florida-based generating units are no longer subject to the rule requirements. FPL's ownership share of Scherer Units 3 and Daniel Units 1 and 2 will remain subject to the rule, but sufficient allowances to comply with the rule requirements are on hand or readily available. In addition, as mentioned previously, FPL retired Scherer Unit 4 and announced plans to retire FPL's ownership portion of the Scherer 3 unit by 2028 and to retire FPL's ownership portion of the Daniels Units $1 \& 2$ in January 2024. However, should future actual conditions vary significantly from projection assumptions, unit reliability impacts could occur though no transmission system impacts are projected to occur as a result.
c. FPL has evaluated the requirements for the CWIS Rule (Section 316(b) of the Clean Water Act) and developed anticipated costs associated with the various compliance requirements. Impacts for the CWIS Rule, which became final on October 14, 2014, will vary based on the level of modifications required by the Florida Department of Environmental Protection ("FDEP"), based on consultation with the U.S. Fish and Wildlife Service, National Marine Fisheries Service (Services), and EPA. The impacts of any required systems installed during scheduled maintenance outages are expected to be minimal. FPL has identified no system reliability impacts that would be anticipated to occur as a result of the expected rule requirements for CWIS.
d. For the CCR rule, FPL has evaluated anticipated compliance requirements based on EPA and industry comments for the April 17, 2015 final rule. The rule did continue the regulation of CCRs as non-hazardous waste. However, the CCR rule established new location restrictions, disposal unit design standards, and numerous compliance plans, inspections, and certifications phased in over three years applicable to FPL's co-owned coal units. As a result of the new location and groundwater standards, FPL, and their coowners initiated preparations in 2018 for closure of the Scherer unlined Surface Impoundment (ash pond) and construction of a new landfill meeting the new design standards. FPL and its co-owners will initiate closure of the SJRPP landfill following removal of all CCR from impacted components during demolition, which began in the summer of 2019. The Indiantown Cogeneration facility, which was retired in 2020, managed CCR offsite and is therefore not subject to the rule. FPL is currently in the process of closing the ash ponds at Smith and Scholz and closure of FPL's co-owned ash

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 71
Page 3 of 4

pond at Daniel began in the fall of 2020. In May 2023, EPA released a proposed legacy rule that will encompass more CCR units. EPA is required to finalize the rule by May 7 , 2024. Actions for compliance with these changes in the regulatory standards for management of CCRs for FPL's co-owned coal units are not anticipated to create impacts to the reliability of any generating unit or FPL's system.
e. FPL submitted and received final Air Construction Permits for the construction of the Okeechobee Energy Center and Dania Beach Energy Center combined cycle units, which contain GHG limits of $850 \mathrm{lb} . \mathrm{CO}_{2}$ equivalent/MWh (net) that FPL will be able to comply with during normal operation of the units in addition to the EPA $1000 \mathrm{lb} . / \mathrm{MWh}$ federal limit. Accordingly, FPL does not anticipate any unit reliability impacts or system transmission impacts associated with the GHG rule. In addition, FPL also does not anticipate any additional capital or O\&M expenditures will be needed to comply with the GHG performance standard for future units. On March 26, 2024, EPA opened a nonrulemaking regulatory docket seeking input on the Agency's efforts to reduce GHG emissions from existing fossil fuel-fired stationary combustion turbines.

The former Gulf Power (now, the FPL Northwest Florida region or "FPL NWFL") submitted and received final Air Construction permits for the construction of the Gulf Clean Energy Center four simple cycle combustion turbines. The permit contain GHG limits that FPL NWFL will be able to comply with during normal operation of the units.
f. On January 19, 2021, the D.C. Circuit vacated the Affordable Clean Energy ("ACE") rule and Clean Power Plan Repeal rule. The rule is currently in abeyance pending completion of the new rule to replace ACE. FPL is currently following EPA discussions regarding changes. Following its decision to regulate GHG's from new fossil-fuel fired power plants under EPAs new source performance standards, EPA is obligated to promulgate GHG standards for existing fossil-fuel fired generating units. Under the Clean Air Act, EPA is required to promulgate a rule which requires sources to implement the best system of emission reduction ("BSER"). FPL anticipates that the majority of its coal units that were subject to the ACE rule will be retired prior to implementation of the replacement rule. EPA is planning to propose new regulation for existing fossil fuel fired combustion turbines in the near future. On March 26, 2024, EPA published a nonregulatory docket seeking input on how they should regulate existing units in preparation for a new proposed rule.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 71
Page 4 of 4

g. For compliance with the ELGS, Scherer Unit 3 has already installed dry ash handling systems for fly ash and bottom ash, so no further action is required. Initially a treatment system for the discharge of FGD (scrubber) wastewater from Scherer Unit 3, which is partially owned by FPL, was the compliance strategy. However, in the 2023 Ten-Year Site Plan, FPL provided notice of its intent to retire its partial ownership of Scherer Unit 3 by 2028, so there will be no impact to FPL system reliability or capability. FPL does not anticipate the need to install additional controls for ELG compliance for bottom ash transport water at Gulf Clean Energy Center (GCEC) due to the conversion of the units to gas. However, due to the 2023 proposed ELG Rule that is expected to be finalized in May 2024, leachate treatment may be required at GCEC, Smith, and Scholtz. Likewise, Plant Daniel completed ash conversion projects for ELG and CCR compliance in 2020, but may also need leachate treatment to comply with the proposed ELG Rule. None of these requirements will impact generating unit or system reliability or capability.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 72
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (EPA Operational Effects). Complete the table by identifying, for each unit affected by one or more of EPA's rules, what the impact is for each rule, including; unit retirement, curtailment, installation of additional emissions controls, fuel switching, or other impacts identified by the Company.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 73
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (EPA Cost Effects). Complete the table by identifying, for each unit impacted by one or more of the EPA's rules, what the estimated cost is for implementing each rule over the course of the planning period.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request Request No. 74
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (EPA Unit Availability). Complete the table by identifying, for each unit impacted by one or more of EPA's rules, when and for what duration units would be required to be offline due to retirements, curtailments, installation of additional controls, or additional maintenance related to emission controls. Include important dates relating to each rule.

RESPONSE:
Please see responsive document provided.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 75
Page 1 of 2

QUESTION:

If applicable, identify any currently approved costs for environmental compliance investments made by your Company, including but not limited to renewable energy or energy efficiency measures, which would mitigate the need for future investments to comply with recently finalized or proposed EPA regulations. Briefly describe the nature of these investments and identify which rule(s) they are intended to address.

RESPONSE:

- Compliance plans implemented for Clean Air Interstate Rule (CAIR) and approved for recovery are sufficient to meet Cross-State Air Pollution Rule (CSAPR) requirements. FPL believes their previous CAIR, and Clean Air Mercury Rules (CAMR) \& Mercury and Air Toxics Standards (MATS) projects, and present CSAPR compliance plan, will meet the current $\mathrm{SO}_{2}, \mathrm{NO}_{2}$, fine particle, and ozone National Ambient Air Quality Standards (NAAQS) requirements.
- Installation of Sorbent Injection / Baghouse, Selective Catalytic Reduction (SCR), and Scrubber on Scherer Units 3 \& 4 for compliance with the Georgia Multi-Pollutant Rule mitigated most of the potential costs for compliance with MATS and with requirements associated with both the Clean Air Interstate Rule and the Cross State Air Pollution Rule. Similarly, installation of SNCR, SCR, and Scrubber on the Gulf Clean Energy Center (formerly Crist) Units 4-7 for compliance with CAIR and CSAPR provided co-benefit removal of mercury and other air toxics for compliance with MATS requirements. In 2020, FPL eliminated coal combustion at the Gulf Clean Energy Center reducing emissions and removing those units from applicability to MATS compliance requirements while reducing its CO_{2} emission rate by approximately half. Finally, installation of SCR and Scrubbers on Plant Daniel Units $1 \& 2$ for compliance with CAIR and CSAPR compliance also provided co-benefit removal of mercury, and with the addition of bromine and activated carbon injection, compliance with MATS requirements was achieved.
- Modified traveling screens with fish return systems have been installed as part of the modernizations of Cape Canaveral Energy Center, Riviera Beach Energy Center, Port Everglades Energy Center, and Dania Beach Energy Center to avoid retrofit costs that would be required to comply with the Cooling Water Intake Structure (CWIS) Rule (Section 316(b) of the Clean Water Act) in the future.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 75
Page 2 of 2

- Consolidated closure in-place of coal combustion residual ash ponds at Smith and Scholtz will mitigate the potential for the future construction of costly ash landfill handling and disposal systems to receive the existing CCR. The closure by removal of the gypsum storage pond at Gulf Clean Energy Center will mitigate potential future groundwater corrective actions.
- Scherer has installed dry fly ash and bottom ash handling systems that will ensure compliance with the portion of the ELG Rule that addresses the handling of fly ash and bottom ash transport water as transport water is no longer required. Additional wastewater treatment is expected to be required for the Scherer flue gas desulfurization (scrubber) in the future.
- Installation of PV solar projects totaling more than 6400 MW capacity help lower FPL's fleet-wide greenhouse gas (GHG) emissions further reducing exposure to future GHG rules. FPL has initiated a robust plan to install 30 million solar panels by 2030. These projects will further reduce FPL's fleet-wide GHG emissions. In addition, FPL's current and planned expansion of the implementation of battery storage projects allows the storage of renewable generation to displace higher emitting peaking generation during system peak demand periods. Development of renewable energy and storage systems along with FPL's conversion of the Gulf Clean Energy Center to natural gas operation and the planned retirement of the majority of its coal generating units has significantly reduced FPL's exposure to existing and future environmental regulations.
- Establishing Combustion Turbine (CT) model specific emission factors for formaldehyde emissions allowed FPL to report emissions more accurately from its combustion turbines demonstrating that several of its sites are no longer major sources of Hazardous Air Pollutants (HAPs). FPL re-permitted several sites as area sources of HAPs, which removed those turbines from applicability of the CT Gas-Fired HAP rule and avoiding annual emission testing for formaldehyde at those plants.

Many of FPL's approved costs for environmental compliance investments can be found in the filings made in the FPL's annual Environmental Cost Recovery Clause docket with the Florida Public Service Commission.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 76
Page 1 of 1

QUESTION:

Please refer to the Excel Tables File (Fuel Usage \& Price). Complete the table by providing, on a system-wide basis, the actual annual fuel usage (in GWh) and average fuel price (in nominal $\$ / \mathrm{MMBTU})$ for each fuel type utilized by the Company in the 10 -year period prior to the current planning period. Also, provide the forecasted annual fuel usage (in GWh) and forecasted annual average fuel price (in nominal $\$ / \mathrm{MMBTU}$) for each fuel type forecasted to be used by the Company in the current planning period.

RESPONSE:

Please see responsive document provided.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 77
 Page 1 of 1

QUESTION:

Please discuss how the Company compares its fuel price forecasts to recognized, authoritative independent forecasts.

RESPONSE:

The medium fossil fuel price forecast methodology for FPL utilizes projections from The PIRA Energy Group (now known as S\&P Global), rates of escalation from the U.S. Energy Information Administration (EIA), forward commodity price curves for fuel oil and natural gas, and coal projections compiled by FPL. S\&P Global, a world-recognized consulting firm with expertise in all aspects of the fuel oil and natural gas industry, supplies FPL with an extensive database to support its short and long-term projections of future fuel oil and natural gas prices. FPL utilizes forward commodity price curves for fuel oil and natural gas to project the short-term forecast (current year, current year plus 1, and current year plus 2), creates a blend of forward curves and S\&P Global curves for the medium term (current year plus 3 and current year plus 4), and finally, applies escalation rates provided by the EIA to the long-term fuel oil and natural gas projections provided by S\&P Global.

For coal price projections, FPL now uses a combination of actual coal purchases, current market quotes provided to FPL, long-term Powder River Basin (PRB) coal price forecasts through 2050 from S\&P Global, and rail rate growth from historical data to build a coal price forecast for Plant Daniel and Plant Scherer. FPL's forecasts reflect data from these authoritative and independent sources. Consequently, FPL believes the Company's projections are reasonable, and comparisons to other forecasts are not necessary.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 78
Page 1 of 6

QUESTION:

Please identify and discuss expected industry trends and factors for each fuel type listed below that may affect the Company during the current planning period.
a. Coal
b. Natural Gas
c. Nuclear
d. Fuel Oil
e. Other (please specify each, if any)

RESPONSE:

a. In its most recent Short Term Energy Outlook (STEO), the Energy Information Administration (EIA) states that the growth in electricity generation from renewable sources and low natural gas prices, can lead to a decline in coal-fired generation, resulting in the electric power sector's coal consumption to decline in 2024 and 2025.

In the most recently published Annual Energy Outlook (AEO), the EIA predicts U.S. coalfired generation capacity will decline sharply by 2030 to about 200 GW with a more gradual decline thereafter. Furthermore, the EIA believes there will be between 23 GW and 103 GW of coal-fired capacity operating in 2050 . Incentives provided by the federal Inflation Reduction Act (IRA) to wind and solar power generation are expected to accelerate the nearterm decline of electric power sector coal-fired generating capacity and hasten the timeline for retirement in the U.S. coal fleet. Coal consumption in the U.S. electric power sector, in the most recent AEO Annual Outlook Reference Case, drops to 189 million short tons (MMst) and to 131MMst in 2030 and 2050, respectively, from 458 MMst in 2022.
b. In its most recent Short Term Energy Outlook (STEO), the EIA forecasts that from April through October of 2024, less natural gas will be injected into storage than is typical, largely because the United States will produce less natural gas on average in 2Q24 and 3Q24 compared with 1Q24. The EIA expects natural gas prices to be low due to excess inventory. If dry natural gas production declines substantially more than forecast or natural gas consumed for electricity generation increases more than forecast due to hotter summer temperatures, then inventories could fall below forecast, potentially resulting in higher prices.

In the most recently published Annual Energy Outlook, the Energy Information Administration (EIA) has published its outlook for natural gas trends out to 2050. The EIA projects that consumption of natural gas will decrease by 2050 relative to 2022, even though the growth of domestic natural gas has remained stable over the past decade. This is due to electricity generation shifting to use more renewable and battery sources.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 78
Page 2 of 6

In the AEO Reference Case, industrial and electrical power sectors have the largest share of natural gas consumption in the U.S. economy. Projected consumption in both sectors is very sensitive to changes in the Oil and Gas Supply case assumptions. By 2050, EIA projects that natural gas consumption, generally, will fall, but range widely.

Under favorable economic, supply, and oil price assumptions, U.S. natural gas production continues to grow. In the Reference Case, it shows that domestic production outpaces domestic consumption with U.S. natural gas production increasing by 15% from 2022 to 2050, and consumption decreasing by 6% from its peak in 2022.

The prices for international natural gas and oil are highly correlated. Historically, most liquefied natural gas (LNG) was traded under long-term contracts linked to oil prices. This is because a global LNG price did not exist, and oil can substitute natural gas for power generation, which was especially common in Asia. Due to the growth of more market-based LNG, the correlation between international natural gas prices and oil prices has begun to weaken. However, the EIA still expects future oil prices will have an effect on additional LNG export capacity and overall export levels.

With increasing international demand for LNG exports, natural gas production will rise. The AEO shows dry natural gas productions grows in the Southwest region, which has efficient pipeline transports to the Gulf Coast, where LNG is largely exported. Due to the Gulf Coast's proximity to LNG export terminals, it is expected that production will also generally increase in the region during the projection period.

Shale gas and associated natural gas from oil formations are the primary contributors to the long-term growth of U.S. natural gas production through 2050. In the Permian Basin (Southwest region), the main driver behind the increase in production wells is caused by the growth in associated dissolved natural gas. As for the production increase in shale gas, the primary players are from the Texas-Louisiana Salt Basin (Gulf Coast Region) and the Appalachian Basin (East Region).
c. This section discusses the various steps needed to fabricate nuclear fuel for delivery to nuclear power plants, the method used to forecast the price for each step, and other comments regarding FPL's nuclear fuel cost forecast.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 78
 Page 3 of 6

Steps Required for Nuclear Fuel to be delivered to FPL's Plants

Four separate steps are required before nuclear fuel can be used in a commercial nuclear power reactor. These steps are summarized below.
(1) Mining: Uranium is produced in many countries such as Canada, Australia, Kazakhstan, and the United States. During the first step, uranium is mined from the ground using techniques such as open pit mining, underground mining, in-situ leaching operations, or production as a by-product from other mining operations, such as gold, copper, or phosphate rocks. The product from this first step is the raw uranium delivered as an oxide, U3O8 (sometimes referred to as yellowcake).
(2) Conversion: During the second step, the U3O8 is chemically converted into UF6 which, when heated, changes into a gaseous state. This second step further removes any chemical impurities and serves as preparation for the third step, which requires uranium to be in a gaseous state.
(3) Enrichment: Natural uranium contains 0.711% of uranium at an atomic mass of 235 (U-235) and 99.289% of uranium at an atomic mass of 238 (U-238). FPL's nuclear reactors use uranium with a higher percentage of up to almost five percent (5\%) of U235 atoms. Because natural uranium does not contain a sufficient amount of U-235, the third step increases the percentage amount of U-235 from 0.711% to a level specified when designing the reactor core (typically in a range from approximately 2.0% to as high as 4.95%). The output of this enrichment process is enriched uranium in the form of UF6.
(4) Fabrication: During the last step, fuel fabrication, the enriched UF6 is changed to a UO2 powder, pressed into pellets, and fed into tubes, which are sealed and bundled together into fuel assemblies. These fuel assemblies are then delivered to the plant site for insertion in a reactor.

Like other utilities, FPL has purchased raw uranium and the other components of the nuclear fuel cycle separately from numerous suppliers from different countries.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 78
 Page 4 of 6

Price Forecasts for Each Step

(1) Mining: The market has changed significantly since late 2021, with prices higher than the previous decade. Factors of importance are:

- The excess uranium that had been available for the last decade has been bought by the SPROTT fund.
- The Russian invasion of Ukraine has had a significant impact on the uranium market, as various countries have enacted or are considering sanctions on nuclear fuel imports from Russia.
- Although only two new nuclear units have started production in the U.S. in the short-term, other countries have announced an increase in construction of new units.

Over a 10-year horizon, FPL expects uranium prices to stay constant at 2023 levels or slightly increase for a year or two, then decrease and settle at a lower level. New and current uranium production facilities are providing enough supply to meet world demands. Actual demand tends to grow over time because of the long lead time to build nuclear units. However, FPL cannot discount the possibility of future periodic sharp increases in prices but believes such occurrences will likely be temporary in nature.
(2) Conversion: The conversion market is also in a state of flux due to the Russian invasion of Ukraine. Supply from the western converters is currently at maximum capacity, with minimal availability. As with additional raw uranium production, supply will expand beyond the current level if more firm commitments are made. FPL expects long-term price stability for conversion services to support world demand. Converdyn, the only domestic conversion facility which was temporarily closed in 2017 due to low conversion demand, re-opened in 2023 as conversion prices have seen an up surge in the last couple of years. This will result in further stabilization of conversion prices. As a result of the potential of sanctions against Russia due to the Ukraine invasion and utilities seeking alternative backup supply for material, the near term conversion pricing has spiked, and is expected to stay high for a few years while supply is limited. FPL expects prices to eventually drop and settle at a lower level after a few years.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 78
Page 5 of 6

(3) Enrichment: Since the Russian invasion of Ukraine in early 2022, the near-term price of enrichment services has drastically increased. Enacted or potential sanctions on nuclear fuel imports from Russia has brought uncertainty into the enrichment market which is highly dependent on Russian supply. Western enrichers are considering expansions of their facilities which will alleviate the impact of eliminating the Russian supply. The current supply/demand profile will likely result in the price of enrichment services increasing over the next few years, then starting to decrease and stabilize.
(4) Fabrication: Because the nuclear fuel fabrication process is highly regulated by the Nuclear Regulatory Commission (NRC), not all production facilities can qualify as suppliers to nuclear reactors in the U.S. Although world supply and demand is expected to show significant excess capacity for the foreseeable future, the gap is not as wide for U.S. supply and demand. The supply for the U.S. market is expected to be sufficient to meet U.S. demand for the foreseeable future. Fabrication prices are not subject to market fluctuations since these are fixed, with escalation, for the life of the contracts.

Other Comments Regarding FPL's Nuclear Fuel Cost Forecast

FPL's nuclear fuel price forecasts are the result of FPL's analysis based on inputs from various nuclear fuel market expert reports and studies. There is adequate projected supply, including planned and prospective mine expansions, to meet FPL demands, including operation of the Turkey Point Units through the recently approved second life extension through the early 2050's. The calculations for the nuclear fuel cost forecasts used in FPL's resource planning work were performed consistent with the method then used for FPL's Fuel Clause filings, including the assumption of refueling outages every 18 months and plant operation at current (i.e., power uprated) levels. The costs for each step to fabricate the nuclear fuel were added to calculate the total costs of the fresh fuel to be loaded at each refueling (acquisition costs). The acquisition cost for each group of fresh fuel assemblies were then amortized over the energy produced by each group of fuel assemblies. DOE notified FPL that, effective May 2014, all high-level waste payments would be suspended until further notice. Therefore, FPL is no longer including in its nuclear fuel cost forecast a 1 mill per kilowatt hour net to reflect payment to DOE for spent fuel disposal.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 78
Page 6 of 6

d. In its most recent Short Term Energy Outlook (STEO), the EIA states that Oil prices continued to increase in March 2024 as a result of heightened geopolitical risk related to the attacks targeting commercial ships transiting the Red Sea shipping channel and general elevated tensions around the region. In addition, the recent extension of OPEC+ voluntary production cuts add to upward price pressure right at a time of the year when oil demand typically increases because of the spring and summer driving seasons in the Northern Hemisphere.

The combination of flat production and rising consumption causes our forecast of global oil inventories to fall in 2Q24, which is expected to add upward pressure to oil prices.

The EIA forecasts oil inventories will begin increasing in 2025 because OPEC+ production will increase when OPEC+ supply cuts expire. Global oil inventories are expected to increase in 2025, which will put downward pressure on prices.

In the most recently published Annual Energy Outlook, crude oil imports remain relatively flat through 2050. The Reference Case projects that domestic crude oil production will rapidly increase due to high prices in the early years. However, production will begin to fall after 2030, as wells are being drilled increasingly closer together, which causes a decline in productivity. The EIA projects that as wells are drilled closer together, they produce less crude oil and become unprofitable, which eventually causes new drilling to stop.

Exports remain high due to international demand for finished refined products. The U.S. refinery sector remains strong as it continues to be competitive in the global market through 2050. Refinery capacity remains relatively constant, and utilization remains high, at approximately 90% or higher, under favorable economic conditions through 2050.

The AEO projections include the U.S. ban on petroleum imports from Russia, due to Russia's full-scale invasion of Ukraine in early 2022. Despite this policy change, the EIA projects that the effects on the domestic markets will be minimal, as equivalent imports from other countries will cover the U.S. crude oil imports from Russia.
e. None.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 79
Page 1 of 1

QUESTION:

Please provide a comparison of the Utility's 2023 actual fuel price forecast and the actual 2023 delivered fuel prices.

RESPONSE:

In FPL's 2023 Ten-Year Site Plan, the projected Henry Hub price for 2023 was \$6.69/MMBtu. The filed A-schedules for 2023 show FPL's total cost of Natural Gas for power generation was $\$ 4.32 / \mathrm{MMB}$ tu (this value includes pipeline transportation costs).

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 80
Page 1 of 1

QUESTION:

Please explain any notable changes in the Utility's forecast of fuel prices used to prepare the Utility's current TYSP compared to the fuel process used to prepare the Utility's prior TYSP.

RESPONSE:

The natural gas fuel forecasting process for the 2024 TYSP was consistent with the process used to prepare the 2023 TYSP. Changes were made to the fuel forecasting process for both coal and heavy oil. The changes are outlined below:

- JD Energy no longer provides consulting services or long-term coal forecasts. FPL now uses a combination of actual coal purchases, current market quotes provided to FPL, long-term Powder River Basin (PRB) coal price forecasts through 2050 from S\&P Global, and rail rate growth from historical data to build a coal price forecast for Plant Daniel and Plant Scherer.
- S\&P Global no longer publishes a long-term forecast for 0.7% sulfur heavy oil. FPL now forecasts a 0.5% sulfur heavy oil price using a combination of market quotes and 1.0% sulfur heavy oil price forecasts.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 81
Page 1 of 1

QUESTION:

Please identify and discuss steps that the Company has taken to ensure natural gas supply availability and transportation over the current planning period.

RESPONSE:

FPL continues to evaluate strategies that will increase the reliability and supply diversity of its natural gas transportation portfolio to ensure adequate gas availability for future generation growth in FPL's service area, which now includes Northwest Florida (former Gulf assets). The current gas transportation portfolio provides FPL access to a diverse range of natural gas supply alternatives, which helps mitigate FPL's exposure to supply disruptions. FPL has secured natural gas transportation on several upstream pipelines with access to onshore natural gas supplies, which has significantly reduced dependence on Gulf of Mexico supplies, thereby decreasing the exposure to tropical events. In addition, FPL has contracted for natural gas storage to provide access to natural gas in the event of a loss of supply.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 82
 Page 1 of 1

QUESTION:

Please identify and discuss any existing or planned natural gas pipeline expansion project(s), including new pipelines and those occurring or planned to occur outside of Florida that would affect the Company during the current planning period.

RESPONSE:

Pipelines are continuing to add capacity to deliver gas from the prolific Marcellus and Utica shale regions of Pennsylvania and Ohio to the Southeast. There are also several new projects that will bring gas from the Waha area in West Texas to the Texas Gulf Coast. In addition, several projects have been announced to bring gas to the Southeast from the Scoop/Stack and Haynesville production areas. FPL will continue to evaluate opportunities to access growing supply sources to help increase supply diversity and strengthen the reliability of its natural gas portfolio.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 83
Page 1 of 1

QUESTION:

Please identify and discuss expected liquefied natural gas (LNG) industry factors and trends that will impact the Company, including the potential impact on the price and availability of natural gas, during the current planning period.

RESPONSE:

In its latest Short Term Energy Outlook (STEO), the EIA expects 2024 LNG exports to be 2% higher than 2023. Utilization rates of the export facilities in 2024 should be similar to 2023 rates. The EIA anticipates some new LNG export facilities to be placed into service later in 2024/2025.

In the most recently published Annual Energy Outlook (AEO), U.S. natural gas production increases through 2050, and more than 35% of gross additions are exported. Projected U.S. natural gas exports rise through 2050, primarily driven by increased LNG capacity and growing global natural gas consumption. Increases in pipeline exports to Mexico and Canada also contribute to the increase in U.S. natural gas exports.

In 2022, U.S. natural gas exports reached a record high. The Energy Information Administration (EIA) projects continued growth in natural gas exports through 2025 because of increases in LNG capacity from facilities currently under construction. LNG export facilities at Sabine Pass, Calcasieu Pass, and Golden Pass will likely enter service much earlier than EIA had anticipated in the previous versions of the AEO, increasing the amount of infrastructure available for converting natural gas to LNG for export.

Beyond 2025, the EIA projects that natural gas production will ramp up to meet growing export demand, the majority of which will be LNG. The EIA projects global demand for U.S. natural gas to exceed current and announced LNG export capacity. Therefore, additional LNG export facilities will be economical to build. These LNG capacity expansions, coupled with high demand for natural gas abroad, result in the EIA's projection of an increase in LNG exports to 5.86 trillion cubic feet ($16.1 \mathrm{Bcf} / \mathrm{d}$) by 2033 in the Reference Case, prompting natural gas production growth in the medium and long term.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 84
Page 1 of 1

QUESTION:
Please identify and discuss the Company's plans for the use of firm natural gas storage during the current planning period.

RESPONSE:

FPL has 4.0 billion cubic feet (Bcf) of firm natural gas storage capacity under contract in the Bay Gas storage facility located in Alabama. The Bay Gas storage facility is interconnected to the Florida Gas Transmission ("FGT") pipeline, the Transcontinental Pipeline ("Transco") 4A Lateral, and the Gulf South Pipeline Company, LP ("Gulf South") facilities. FPL also has 1.0 Bcf of firm natural gas storage at Southern Pines Storage (SG Resources Mississippi, LLC). Southern Pines is interconnected to FGT, Transco, and Southeast Supply Header Pipeline. FPL has predominately utilized natural gas storage to help mitigate gas supply interruptions caused by severe weather and/or infrastructure problems. Over the past several years, FPL has acquired upstream transportation capacity on several pipelines to help mitigate the risk of offshore supply problems caused by severe weather in the Gulf of Mexico. Natural gas storage capacity also remains an important part of FPL's gas portfolio from an operational perspective, by helping FPL balance consumption swings due to weather and unit availability. From a balancing perspective, injection and withdrawal rights associated with storage have become an increasingly important part of the evaluation of overall storage requirements. FPL continues to evaluate its future natural gas storage needs.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 85
Page 1 of 1

QUESTION:

Please identify and discuss expected coal transportation industry trends and factors, for transportation by both rail and water that will impact the Company during the current planning period. Please include a discussion of actions taken by the Company to promote competition among coal transportation modes, as well as expected changes to terminals and port facilities that could affect coal transportation.

RESPONSE:

With respect to rail transportation issues during the period from 2024 through 2033, there is an adequate labor force to deliver forecasted coal demand to the plants. The decrease in natural gas prices have resulted in a decreased demand for coal burn and rail services, this trend is projected to persist into 2025. The railroads appear to have more than adequate locomotive power. FPL has a sufficient number of coal cars under long-term lease to haul the projected coal requirements expected during the planning period.

Scherer No. 3 is served by a single railroad. However, the rail movement of the coal from the Powder River Basin is a two-line haul that enables competition from the mine origin to an interchange point. The Plant Scherer co-owners, including FPL, utilize that circumstance to seek the least cost transportation through bidding and negotiation that has resulted in the current longterm rail contracts.

FPL does not receive coal transportation by water and does not anticipate any impacts from water transportation during the current planning period.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 86
Page 1 of 1

QUESTION:

Please identify and discuss any expected changes in coal handling, blending, unloading, and storage at coal generating units during the current planning period. Please discuss any planned construction projects that may be related to these changes.

RESPONSE:

A variety of changes to coal handling, blending, unloading, and storage are currently projected at the coal generating units during the planning period 2024-2033. There will be notable power purchase agreement ("PPA") terminations, unit conversions, and unit retirements which will impact the coal fleet. In 2022, the Plant Scherer co-owners were able to negotiate more favorable contract terms with Rail Connection, Inc., resulting in more efficient and cost-effective coal handling for Scherer 3 through 2025.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 87
 Page 1 of 2

QUESTION:
Please identify and discuss the Company's plans for the storage and disposal of spent nuclear fuel during the current planning period. As part of this discussion, please include the Company's expectation regarding short-term and long-term storage, dry cask storage, litigation involving spent nuclear fuel, and any relevant legislation.

RESPONSE:

All FPL nuclear units have constructed dry cask storage facilities at their sites, which will allow for the safe, long-term on-site storage of spent nuclear fuel ("SNF") until a final repository is built. Congress has yet to pass legislation to fund a long-term storage solution.

On March 31, 2009, NextEra Energy Inc. ("NextEra") reached a settlement with the U.S. Department of Energy ("DOE") that reimbursed certain costs incurred by NextEra, for on-site storage of SNF due to DOE's failures to dispose of SNF. The settlement allowed NextEra to recover past SNF management costs incurred up to December 31, 2007. The settlement also permits an annual filing to recover spent fuel storage costs incurred by NextEra, payable by the Government on an annual basis.

On March 3, 2010, the DOE filed a motion with the Nuclear Regulatory Commission to withdraw the license application for a high-level nuclear waste repository at Yucca Mountain with prejudice. In light of the decision not to proceed with the Yucca Mountain nuclear waste repository, the President of the United States directed the Secretary of Energy to establish a Blue Ribbon Commission ("BRC") on America's Nuclear Future to conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle and to provide recommendations for developing a safe, long-term solution to managing SNF and nuclear waste.

In 2012, the BRC issued its report and recommendations which includes a consent-based approach to site future nuclear waste management facilities; creation of a new organization, independent of the DOE, dedicated solely to assuring the safe storage and ultimate disposal of spent nuclear fuel and high-level radioactive waste; providing access to the U.S. government's nuclear waste fund for the purpose of nuclear waste storage and disposal; and initiating prompt efforts to develop geologic disposal facilities, consolidated interim storage facilities and transportation to those facilities.

In January 2013, the DOE issued a strategy document for implementing the BRC recommendations, outlining among other things, long-term plans for a new management organization to handle spent fuel storage and disposal activities, development of new interim storage facilities and several possible funding reforms, including accessing the nuclear waste fund for funding these activities. A DOE team began crafting strategies for reaching out to communities that might accept and store nuclear waste.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request Request No. 87
Page 2 of 2

In February 2018, the President's administration requested $\$ 120 \mathrm{MM}$ to restart licensing activities for the Yucca Mountain nuclear waste repository and initiate a robust interim storage program. However, the approved budget allocated no money to the project.

In May 2018, the House passed, by a 340-72 vote, the Nuclear Waste Policy Amendments Act of 2018, a bill that addresses a major condition for licensing the Yucca Mountain repository by withdrawing the repository site from use under public land laws and placing it solely under DOE control. The bill also authorizes the DOE to store spent fuel at interim NRC-licensed storage facilities, which would be owned by a non-federal entity. It also increases Yucca Mountain's capacity limit from 70,000 to 110,000 metric tons. The Senate received the bill on May 14, and it was read twice and referred to the Committee on Environment and Public Works, but no action has been taken since.

The House also passed another bill, Energy and Water Development Appropriations, 2019, which sought to provide FY2019 funding for nuclear energy programs and would give the DOE $\$ 100$ million more than the $\$ 120$ million requested for Yucca Mountain, but the Senate approved no Yucca Mountain funding. Instead, the Senate passed a bill that included authorization for a pilot program in FY2019 to develop an interim nuclear waste storage facility at a voluntary site. However, the FY2019 appropriations measure, which was enacted in September 2018, included neither the House-passed funding for Yucca Mountain nor the Senate interim storage authorization.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 88
 Page 1 of 1

QUESTION:

Please identify and discuss expected uranium production industry trends and factors that will affect the Company during the current planning period.

RESPONSE:

The uranium market is going through a volatile, high price period due to various factors. In 2021 and early 2022, there was an increase in pricing as a result of financial institutions purchasing large quantities of physical inventory and the political unrest in Kazakhstan causing supply chain issues. Another significant factor in the uranium pricing increase was the Russian invasion of Ukraine with the threat of potential sanctions. The invasion had a direct impact on enrichment services as $\sim 20 \%$ of the US enrichment market comes directly from Russia, but that impact trickled down to the uranium and conversion markets as enrichers significantly increased tails, which results in an increase in feed (uranium and conversion) demand. The price of uranium is currently at a ten-year high. FPL expects uranium prices to remain at the new 2024 level for another year, then decrease over the next few years as supply increases from re-opening/new mines, as well as returning enrichment tails to normal levels, reducing feed demand.

As noted, the events in Ukraine have had a significant impact on the enrichment services market. That market has increased significantly and is at an all-time high. The timing of the return of the nuclear reactors in Japan and the quantity will play an important role in the future enrichment price. Also, enrichment demand was already positioned to increase as replacement or extension of existing contracts in the industry were set to expire in the near term. However, concerns over security of supply and geopolitical risk from the potential of sanctions against Russia has brought much of this demand forward. FPL expects prices to remain at the current high over the next couple of years, then start decreasing once sanctions settle in and the market re-stabilizes.

Conversion prices have also recently seen a surge due to the threat of potential sanctions against Russia and the higher feed demands. That market is also at an all-time high. The higher feed demands have led to all three western suppliers (Cameco, Converdyn, Orano) to have no available conversion services for the next two to three years. FPL expects prices to remain high for a couple of years while there is limited supply, then decrease as demand eases.

As for the fabrication services step, geopolitical impacts are not significant, and thus prices are expected to remain rather stable.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 89
Page 1 of 1

QUESTION:

[FPL Only] Please refer to FPL's Response to Staff's First Data Request (No. 90) for the 2023 Ten-Year Site Plan, received on May 1, 2023. Have FPL's plans to only self-consume the hydrogen produced at the Okeechobee Clean Energy Center changed? Please explain.

RESPONSE:

Currently, FPL intends to only self-consume the hydrogen it produces at the Okeechobee Clean Energy Center for its own generation fleet. FPL does not have any pending plans or external negotiations relating to the potential future sale of hydrogen produced.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 90
 Page 1 of 2

QUESTION:

Please identify and discuss steps, if any, that the Company has taken to ensure continued energy generation in case of a severe cold weather event.

RESPONSE:

As noted in the Executive Summary of the 2024 Ten-Year Site Plan, while FPL does not plan its system around extreme events, it continues to believe it is prudent to consider and prepare for the possibility of extreme weather events and the ability to reliably serve customers under those circumstances (such as the cold weather experienced near the end of 2022 in FPL's NWFL division, which set a record peak for that region). To that end, FPL has reviewed the lessons learned from the outages and service disruptions experienced in other jurisdictions and enhanced its own system to ensure it is adequately prepared. This includes winterizing FPL's nuclear and fossil-fueled generation units, enhancing cooperation and preparation between FPL and suppliers of natural gas and fuel oil, and utilizing Manatee Units $1 \& 2$ and Gulf Clean Energy Center Units $4 \& 5$ as "extreme winter only" units that will provide the lowest cost backup capacity in the event of extreme winter weather in FPL's service area. In addition, FPL is also siting 522 MW of battery storage in the NWFL region that will provide additional capacity to serve peak loads, including those in the early morning hours of a winter peak similar to the aforementioned 2022 event.

From the fossil generation perspective, the Company has implemented the following actions:

- Designed protection for reliable operation of all FPL fossil plants for 8 degrees below the historic low temperature at each location. (In winter storm Uri, Texas experienced temperatures 8 degrees lower than the historic low.)
- Assumed low temperature conditions exist for a duration of up to 96 hours (four days) (In winter storm Uri, Texas experienced these extreme low temperatures for four consecutive days.)
- All fluid, control, fuel, and other systems susceptible to cold temperatures were evaluated and mitigated with protection as needed.
- Determined and implemented lowest-cost approach for each system (e.g., heat trace, insulation, recirculation, enclosures, heaters, and wind breaks).
- Maintained similarity in design and materials across all fossil generation to drive down cost (short and long term).
- Expanded the preventive maintenance program to check / repair systems on an annual basis.
- Communicate annually with fuel suppliers for delivery of fuel during extreme cold weather.
- Enhanced a process for communicating relevant information to the Balancing Authority (BA), which will communicate with the Reliability Coordinator (RC).

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 90
Page 2 of 2

- Conducted dual fuel assessments to ensure resources can switch to the alternate fuel and monitor how much alternate fuel is on site.
- Coordinated with the appropriate entities to identify applicable natural gas system supply chain facilities' (i.e., facilities used for production, treating, processing, pressurizing, storing, or transporting natural gas) vulnerabilities, such as wellhead freezing history/projections, compressor loss history/projections, back-up options if electric service is dropped (e.g., propane heaters, battery/electric storage), and processing plant and gas treatment facility performance history/projections.
- Continuous training implemented for operating staff on winterization procedures and readiness.

Regarding nuclear generation, FPL has completed the following items in preparation for severe cold weather events:

- St. Lucie and Turkey Point nuclear sites performed an extensive engineering evaluation to identify any vulnerabilities based on the 2021 Texas severe cold weather event and accordingly updated their Season Readiness Procedures. Additionally, the sites added heaters to rooms and around components that may be vulnerable to extreme cold temperatures.
- Summarized below are the actions taken based on the engineering evaluation.

The St. Lucie evaluation identified and completed the following:

- $\sim 15,000$ linear feet of heat trace and insulation on various instrument and process lines.
The Turkey Point evaluation identified and completed the following:
- $\sim 10,000$ linear feet of heat trace and insulation on various instrument and process lines.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 91
 Page 1 of 1

QUESTION:
Please identify any future winterization plans, if any, the Company intends to implement over the current planning period.

RESPONSE:

Please see the response to Staff's First Set of Data Requests, No. 90, which details actions that FPL has already undertaken to ensure continued generation in a cold weather event. As noted in that response, FPL will continue to keep the Manatee $1 \& 2$ units available as "extreme winter only" units that will provide the lowest cost backup capacity in the event of extreme winter weather in FPL's territory. FPL is also currently planning to use GCEC Units $4 \& 5$ as extreme winter only units after each unit reaches its current projected retirement date (12/31/2024 and $12 / 31 / 2026$, respectively). This will allow for low cost backup generation in extreme winter conditions sited in FPL's NWFL region. In addition, FPL is also siting 522 MW of battery storage in the NWFL region that will provide additional capacity to serve peak loads, including those in the early morning hours of a winter peak similar to the conditions experienced in the NWFL region in December of 2022.

FPL will continue to assess the need for future winterization plans and, if appropriate and necessary, may need to implement additional extreme weather measures or initiatives in the future to comply with applicable regulatory requirements, guidance, and industry best practices.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 92
 Page 1 of 1

QUESTION:

Please explain the Company's planning process for flood mitigation for current and proposed power plant sites and transmission/distribution substations.

RESPONSE:

FPL designs and constructs new infrastructure to comply with applicable codes, including flood protection requirements. The Company continuously monitors existing infrastructure - which was previously built to applicable codes - and makes necessary adjustments to ensure reliable generation and delivery of electricity to its customers.

Additionally, with respect to transmission and distribution substations, FPL's Commissionapproved Storm Protection Plan includes a Substation Storm Surge/Flood Mitigation Program. See Commission Order Nos. PSC-2020-0293-AS-EI and PSC-2022-0389-FOF-EI. To prevent/mitigate future substation equipment damage and customer outages due to storm surge and flooding, FPL's Substation Storm Surge/Flood Mitigation Program has identified certain substations located in areas throughout FPL's service area that are susceptible to storm surge or flooding during extreme weather events. Specifically, FPL plans to raise the equipment at certain substations above the flood level and construct flood protection walls around other substations to prevent/mitigate future damage due to storm surges and flooding. FPL also continues to monitor storm surge and flooding at all its substations and, where appropriate and necessary, identify additional substations that require storm surge/flood mitigation measures in the future.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 93
Page 1 of 1

QUESTION:

Please address the following questions regarding the impact of all major storm events, such as Hurricane Ian, with associated flooding, destruction of utility facilities and customer buildings, and forced customer permanent migration.
a. Based on actual data, please briefly summarize the impact that major storms have had on your utility's customer number, retail sales and peak load.
b. Please explain whether the above discussed impact is include in your company's customer/retail energy sales/demand forecasts.
c. If your response to subpart (b) is affirmative, please explain how this impact is modeled.

RESPONSE:

a. Hurricanes Ian and Nicole resulted in lower retail energy sales and a temporary loss of customers. The Company has estimated that retail energy sales were reduced by approximately 400 GWh due to Hurricane Ian and 5 GWh due to Hurricane Nicole. Company records indicate an initial loss of approximately 21,000 customers due to Hurricane Ian, however the expectation for impacted communities is for them to rebuild which is factored into our customer growth forecast for the 10 -year planning period. The impact to the overall peak load from Hurricanes Ian and Nicole is negligible.
b. These impacts are included as part of the historical data used in developing the Company's 2024 TYSP forecasts for customer, retail energy sales, and peak demand forecasts. No specific variables or adjustments were needed to specifically account for the storm events in the forecast as we do not expect a permanent loss of customers.
c. Not applicable.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 94
Page 1 of 1

QUESTION:

Has the Company had to make any upgrades to any generating units or changes to operations practices as a result of any FERC Orders addressing extreme weather planning within the last two years? If so, please describe.

RESPONSE:

No. As noted in the response to Staff's First Set of Data Requests, No. 90, FPL has implemented actions to prepare its fossil and nuclear fleets for extreme weather. Although these actions were not in response to a specific regulatory action, as stated in the Executive Summary of the 2024 Ten-Year Site Plan, FPL will continue to work with regulatory authorities, such as the Federal Energy Regulatory Commission ("FERC") and the North American Electric Reliability Corporation ("NERC"), to follow their guidance regarding proper planning procedures for extreme weather events, if and when such guidance is issued.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 95
Page 1 of 1

QUESTION:

[FEECA Utilities Only] Please refer to the Excel Tables File (Data Centers). As of today, there are 125 or more data centers located in the state of Florida. For the purpose of better understanding this recent load growth, please complete Tables I and II.

RESPONSE:

FPL does not forecast energy sales at the end use, market segment, or NAICS code levels. Therefore, the Company does not have estimates of the potential impacts of energy consumption and demand associated with a specific end use or market segment, such as data centers, within its service territory.

FPL also does not currently have a rate class or rate schedule unique to data center customers. As a result, any existing data center customers on FPL's system would be on the applicable commercial and industrial (C\&I) tariffed rate schedule unless otherwise agreed as permitted under FPL's Commission-approved tariff. Further, absent a separate request for standalone service, FPL is generally unable to determine if data centers are co-located and subsumed within a C\&I customer's operations, such as a data center operating within a larger enterprise under one customer bill.

Subject to the foregoing, see Tables I and II, attached to this response for information on the data centers that FPL is currently aware of on its system today.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 96
 Page 1 of 2

QUESTION:

[FEECA Utilities Only] With respect to the load forecast included in the Utility's 2024 TenYear Site Plan to be filed in April of this year, does the load forecast include projections of annual energy consumption and demand associated with data centers within your service area during the forecasting time horizon (2024-2033)?
a. If any such projections have been made, please provide details of the projections including the type of data centers expected to contribute to such energy/demand, and what factors are driving such energy consumption and demand.
b. If no specific projections have been made, what does the Utility believe is the likely pattern of load growth associated with this industry within its service territory.

RESPONSE:

FPL does not forecast energy sales at the end use, market segment, or NAICS code level, including projected energy sales to data centers. Please see FPL's response to Staff's First Data Request, No. 95. Therefore, FPL's load forecast used for its 2024 Ten-Year Site Plan does not include specific projections of annual energy consumption and demand for future data centers within the FPL service area. FPL does not include uncertain or speculative future load in its load forecast. For potential new customers with significant or unique load requirements, FPL's current practice is to include the associated load in the forecast once FPL and the customer have reached a definitive agreement or other binding commitment to extend service to the customer. Currently, all existing data centers or customers with operations that include data centers, which are generally small data centers less than approximately 20 MW , are included in FPL's load forecast used for the 2024 Ten-Year Site Plan.
a. See FPL's response to Staff Data Request, No. 95 and the response to Staff Data Request, No. 96 above.
b. See FPL's response to Staff Data Request, No. 95 and the response to Staff Data Request, No. 96 above. Given that existing data centers served by the FPL system are all relatively small, FPL believes the historic load growth associated with data centers in FPL's service area has been relatively modest.

Based on discussions with potential data center market participants, FPL believes there is a potential for future new data centers to have significant load requirements (well in excess of 100 MW) at a single site. There are many factors that a potential customer will consider and weigh in determining where to locate a data center, including utility pricing, availability of sufficient utility generation, proximity to available transmission and capacity, site feasibility, associated costs for the facility and necessary upgrades,

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 96
Page 2 of 2

permitting required, availability of cooling water and other required features, and availability of fiber. FPL cannot, at this time, reasonably predict whether or when data centers will be sited within its service area, and, therefore, FPL cannot forecast the associated load growth specific to data centers. FPL's standard practice is to not include speculative future load in the load forecast unless and until there is an enforceable contract or other binding commitment to provide service to the customer.

Florida Power \& Light Company
 Docket No. 20240000-OT
 2024 Ten-Year Site Plan
 Staff's First Data Request
 Request No. 97
 Page 1 of 1

QUESTION:

[FEECA Utilities Only] Please identify the Utility's issues and/or concerns, if any, that are expected to result from the growth in data centers in the Utility's service territory.
a. Please specify how the Utility anticipates responding to such issues or concerns.
b. Please specify how the Utility responded to such issues or concerns in the past.

RESPONSE:

FPL is actively engaged with various potential data center market participants to better understand their needs and concerns, considerations in selecting potential sites, and potential impacts to FPL's system. Currently, all existing data centers or C\&I customers with operations that include data centers are generally small data centers with less than approximately 20 MW of load. However, based on discussions with potential data center market participants, FPL believes there is a potential for future new data centers to have significant load requirements (well in excess of 100 MW) at a single site. FPL's analysis of the potential growth with these large data centers is preliminary, and, as such, FPL cannot predict with any certainty all of the potential issues or concerns that could arise. Many of the potential issues will be directly related to size and scope of a particular data center project, long-lead equipment required to serve the project, system upgrades necessary for the incremental load, and deployment of generation to safely and reliably serve the existing and new incremental load.
a. As stated above, FPL believes there is a potential for future new data centers to have significant load requirements at a single site. In anticipation of future requests for service from these data centers, FPL is currently working to determine how it can provide safe, reliable, and cost-effective service to both existing and new customer load. Similar to other potential new customers with significant or unique load requirements, FPL will engage the potential data center customer and undertake all necessary system studies, design and engineering, and evaluations of costs necessary to extend service and serve these potential customers. At this time, FPL continues to evaluate these issues and has not developed a formal process or solution, beyond its existing process for extending service to new C\&I customers.
b. Historically, for other large C\&I customers with significant or unique load requirements similar to data centers, FPL has engaged the potential customer and undertaken all necessary system studies, design and engineering, and evaluations of costs necessary to extend service and serve the customer. Data centers are unique given their significant and constant load requirements and potential high costs necessary to extend service to them. However, FPL will apply lessons learned from serving other large C\&I customers, as well as industry best practices, in developing appropriate solutions to serve data centers.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 98
Page 1 of 1

QUESTION:

[Non-FEECA Utilities Only] For any data centers operating in the Utility's service territory and receiving electric service from the Utility, please describe the current number of the data centers, by type (e.g., colocation, enterprise, cloud, edge, and micro data, etc.) and, for each data center, the customer class served as well as the estimated load served (summer/winter demand and energy).

RESPONSE:
Not applicable.

Florida Power \& Light Company
Docket No. 20240000-OT
2024 Ten-Year Site Plan
Staff's First Data Request
Request No. 99
Page 1 of 1

QUESTION:

[Non-FEECA Utilities Only] With respect to the load forecast included in the Utility's 2024 Ten-Year Site Plan to be filed in respect to April this year, does the load forecast include projections of annual energy consumption and demand associated with data centers within your service area during the forecasting time horizon (2024-2033).
a. If any such projections have been made, please provide details of the projections including the type of data centers expected to contribute to such energy/demand, and what factors are driving such energy consumption and demand.
b. If no specific projections have been made, what does the Utility believe is the likely pattern of load growth associated with this industry within its service territory?

RESPONSE:

Not applicable.

Florida Power \& Light Company Docket No. 20240000-OT
2024 Ten-Year Site Plan Staff's First Data Request
Request No. 100
Page 1 of 1

QUESTION:

[Non-FEECA Utilities Only] Please identify the Utility's issues and/or concerns, if any, that are expected to result from the growth in data centers in your utility's service territory. Please also specify how has, and how does, your utility anticipate responding to such issues or concerns.

RESPONSE:

Not applicable.

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 3
Attachment No. 1 of 1
Tab 1 of 2

TYSP Year 2024
Staff's Data Request \# 1
Question No. 3

Financial Assumptions

Base Case
AFUDC RATE $\quad 6.37 \quad \%$
CAPITALIZATION RATIOS:

DEBT	40.40
PREFERRED	N/A
EQUITY	59.60

RATE OF RETURN

DEBT	5.66
PREFERRED	N/A
EQUITY	10.80

INCOME TAX RATE:

OTHER TAX RATE:
DISCOUNT RATE:

STATE	5.50
FEDERAL	21.00
EFFECTIVE	25.35
	1.67
	8.14

TAX
DEPRECIATION RATE:
(assuming a 20-year life)
$\frac{3.75}{7.22} \%$

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 3
Attachment No. 1 of 1
Tab 2 of 2

TYSP Year 2024
Staff's Data Request \# 1
Question No.
Financial Escalation Assumptions

		General Inflation $\%$	Plant Construction Cost \%	Fixed O\&M Cost $\%$	Variable O\&M Cost $\%$
	2024	2.5	2	2.5	2.5
	2025	2.5	2	2.5	2.5
	2026	2.5	2	2.5	2.5
	2027	2.5	2	2.5	2.5
	2028	2.5	2	2.5	2.5
	2029	2.5	2	2.5	2.5
	2030	2.5	2	2.5	2.5
	2031	2.5	2	2.5	2.5
	2032	2.5	2	2.5	2.5
	2033	2.5	2	2.5	2.5

3/3/2023	12725	11727	11112	10763	10822	11712	12787	13880	15405	16837	18041	18896	19607	20207	20636	21018	20961	20685	19774	19390	18329	17294	16094	15100
$34 / 2023$	13502	12671	12085	11707	11508	11539	11858	12663	14503	16189	17549	18588	19354	19956	20282	20575	20643	20135	19145	18419	17291	16189	15042	13800
$3 / 5 / 2023$	12613	11648	10976	10566	10315	10278	10492	11266	13106	15023	16556	17897	18978	19877	20343	20663	20648	20122	19351	18982	17958	16842	15497	13997
3/62023	12738	11831	11239	10894	10866	11380	12393	13311	14626	16880	17546	18904	19926	20542	21143	21495	21402	20893	20312	19875	18894	17650	16159	14586
3/72023	13158	12167	11493	11121	11018	11428	12490	13347	14543	15890	17474	18854	20120	20677	20942	21264	21228	20761	20150	19853	18660	17492	16053	14495
3/8/2023	13149	12167	11502	11109	11006	11450	12455	13280	14436	15639	16884	18177	19204	19904	20236	20348	19915	19230	19029	18818	17758	16660	15361	13755
3992023	12606	11699	11097	10735	10622	11080	12092	12921	14145	15117	15947	16503	17142	17522	17609	17898	17929	17587	17154	17042	16207	15092	1394	1239
3/1020223	11283	10431	9877	9583	9636	10174	11248	12176	13358	14461	15427	16292	17151	17787	18317	18561	18538	18128	17408	16943	16028	15350	1424	1302
3/112023	11655	10800	10247	9894	9799	9928	10390	11245	12950	14495	15638	16741	17238	17741	18166	18265	18181	17716	16996	16607	15701	14786	13646	12789
3/122023	11677	0	10795	10254	9911	9824	9970	10305	11264	12871	14390	15588	16633	17558	18342	18932	19404	19495	19008	18288	17905	17063	15573	13821
3/132023	12699	11698	11105	10777	10780	11271	12154	12865	13687	15137	16515	17606	18447	18846	19273	19696	19901	19783	19175	18528	18174	17306	15940	14408
3/1420223	12978	12009	11373	10916	10804	11199	12130	12843	13286	14157	15029	15623	16046	16297	16628	16947	17198	17318	16951	16502	16380	15468	14293	12783
3/152023	11545	10678	10175	9926	9954	10504	11603	12446	13072	13780	14300	14462	14496	14313	14002	13771	13772	13839	14000	14171	14356	${ }^{13745}$	12803	11600
3/162023	10562	9924	9608	9497	9640	10307	11519	12526	13144	13473	13665	13710	13822	14220	14294	14612	15085	15405	15317	15093	15017	14235	13215	11897
3/172023	10747	9968	9520	9337	9367	9869	10803	11676	12499	13460	14189	14759	15265	15785	16340	16873	17298	17396	16924	16209	15862	15005	14071	12875
3/182023	11692	10771	10155	9799	9642	9740	10138	10705	11962	13658	15032	16042	16925	17531	18109	18605	18927	18730	18027	17317	16986	15947	14977	13810
3/1920223	12620	11657	11022	10599	10380	10402	10664	11175	12306	13709	14559	15001	15251	15311	15187	14897	14694	14481	14297	14364	14341	13702	12848	11667
3/202023	10762	10083	9748	9633	9848	10554	11651	12818	13607	14029	14107	14002	13915	13810	13744	13831	14026	14102	14239	14302	14880	13834	12861	11718
3/21/2023	10731	10106	9806	9714	9916	10641	11898	12947	13580	13837	13949	14005	14087	14246	14575	14948	15358	15664	15574	15223	15248	14386	13231	11918
3/2220203	10659	9925	9479	9296	9393	9978	11061	12087	12844	13597	14266	14796	15325	15807	16343	16855	17295	17425	17105	16581	16396	15469	14322	12605
3/232023	11497	10571	10027	9782	9776	10247	11203	12044	12918	14012	14879	15675	16417	17886	17690	18360	18827	18913	18406	17513	17083	16049	14933	${ }^{13354}$
3/242023	11885	10787	10274	9914	9857	10248	11188	12044	13025	14284	15389	16429	17274	18070	18868	19504	19897	19903	19257	18179	17631	16709	15692	14460
3/25/2023	13252	12188	11546	11147	10932	10967	11272	11785	13145	15042	16593	17809	18791	19650	20335	20902	21225	21159	20397	19153	18536	17623	16459	15161
3/262023	13980	12974	12164	11604	11267	11195	11412	11771	13140	15196	16960	18266	19476	20342	21054	21539	21886	21918	21227	20148	19536	18260	16936	15186
3/272023	13815	12787	12092	11696	11605	12013	12910	13501	14485	16020	17467	18729	19858	20863	21621	22220	22477	22651	21972	20972	20367	18932	17414	15696
3/282023	14079	13016	12239	11770	11684	12191	13167	13779	14591	15801	17077	18308	19484	20414	21146	21408	21761	21528	20886	19942	19417	18241	16657	14963
3/292023	13482	12356	11654	11196	11066	11499	12475	13115	13961	15143	16219	17219	18063	18665	19996	19014	19290	19008	18629	18018	17601	16551	15381	13842
3/302023	12484	11564	11009	10662	10609	11121	12202	12915	13619	14597	15328	15913	16402	16826	17280	17797	18445	18374	18026	17563	17279	16405	15176	13673
3/312023	12313	11412	10818	10475	10438	10896	11936	12626	13616	14767	15783	16653	17416	18165	18750	19348	19706	19657	19056	18010	17633	16734	15736	14468
$41 / 12023$	13191	12229	11446	11021	10803	10869	11240	11856	13243	15122	16796	18008	19042	19922	20572	20959	21164	20958	20097	19197	18630	17705	165516	1524
$42 / 22023$	13849	12721	11918	11306	10927	10843	11051	11474	12895	14753	16234	17498	18704	19627	20405	20929	21288	21365	20763	19676	19255	18246	16829	15195
$4{ }^{4 / 2023}$	13714	12628	11914	11464	11444	11925	12852	13531	14551	16091	17440	18636	19700	20653	21353	21964	22355	22352	21954	20951	20454	19285	17657	15842
4442023	14390	13284	12382	11843	11772	12171	13191	13796	14873	16346	17681	18846	19887	20890	21671	22391	22895	22982	22392	21160	20480	20489	18728	16435
$45 / 2023$	14560	13340	12504	12002	11853	12324	13377	14003	15130	16568	17881	18970	19950	20905	21618	22183	22480	22387	21615	20633	20161	20021	18167	15905
4662023	14255	13206	12530	12078	11929	12418	13402	13871	14957	16523	17846	19013	19943	20844	21528	22050	22402	22355	21725	20532	19890	19714	18019	16212
$47 / 2023$	14444	13328	12561	12076	11921	12196	12801	13390	14713	16344	17710	18621	19442	20307	21120	21584	21784	21681	20891	19524	18866	19180	17506	15917
$48 / 2023$	14065	12888	12085	11597	11616	11299	11543	12078	13708	15646	17134	18234	19144	19887	20480	20954	21124	20941	20255	19992	18696	17879	17419	15788
4992023	13964	12778	11967	11416	11091	10986	11121	11584	13052	14785	16185	17146	17855	18381	18820	18348	17634	16942	16433	16164	16960	16203	14805	${ }^{13532}$
$4 / 102023$	11814	10901	10369	10090	10175	10836	11826	12533	13401	14413	15229	15864	16152	16312	16341	16422	16330	16196	16017	15847	15811	15739	14509	12910
4/1112023	11347	10548	10067	9786	9817	10412	11589	12396	13145	13975	14757	15134	15389	15456	15542	15601	15761	15762	15774	15639	15728	15057	13964	12546
4/122023	11457	10636	10147	9944	10025	10736	11828	12596	13188	13886	14457	14769	14752	14797	14835	14848	14915	15003	15000	15057	15264	14749	13765	12543
4/132023	11504	10797	10303	10063	10137	10763	11867	12593	13630	15097	16283	17314	18261	18982	19552	19829	19585	18909	18206	17517	17311	16774	15264	13740
4/142023	12250	11354	10775	10426	10373	10812	11771	12491	13722	15236	16645	17918	19040	20101	20942	21473	21431	20934	20207	19094	18597	17602	16385	14876
4/15/2023	13620	12452	11672	11183	10988	10939	11256	11761	13375	15354	17098	18581	19853	20914	21724	22315	22423	21935	21147	19955	19288	18382	17279	15976
4/1620223	14540	13387	12567	11938	11566	11421	11519	11885	13417	15491	17332	18947	20270	21363	22011	22371	22351	21726	20800	19838	18931	17635	16150	14510
$4 / 172023$	12898	11931	11318	10926	10802	11244	12200	12867	13605	14614	15610	16193	16634	16886	16678	17288	17973	18238	18111	17413	17079	16132	14717	12890
$4 / 182023$	11479	10540	9932	9639	9516	9694	11252	11805	12500	13292	13919	14470	15163	15937	16569	17253	17890	18263	18120	17335	16938	15937	145516	12889
4/1920223	11309	10409	9816	9507	9509	10051	11162	11898	12650	13487	14240	14959	15589	16145	16628	17257	17916	18076	17769	17249	17107	16277	14939	13200
4202023	11721	10854	10329	10018	10034	10561	11787	12406	13379	14504	15548	16481	17254	18047	18721	19369	19890	20024	19607	18731	18361	17432	16050	14239
$4 / 212023$	12845	11818	11137	10724	10581	11001	11945	12751	13850	15205	16464	17523	18375	19023	19701	20141	20602	20678	19998	18693	18219	17336	16174	14686
$4 / 2222023$	13388	12372	11635	11100	10797	10757	11034	11513	13089	14943	16480	17788	18887	19738	20306	20729	20937	20742	19951	18844	18163	17247	16073	14796
42322023	13520	12479	11706	11088	10779	10711	10859	11298	12228	14620	15973	17143	18208	19239	20048	20653	21000	21044	20542	19539	19025	18006	16425	14737
$4 / 242023$	13396	12295	11606	11213	11210	11775	12851	13500	14407	15405	16163	16855	17271	17843	18216	18563	18846	18941	18634	18108	17847	16850	15332	13606
$4 / 25 / 2023$	12242	11373	10872	10587	10605	11191	12230	12890	13655	14723	15800	16681	17642	18592	19255	20003	20571	20782	20461	19571	19220	17655	16000	14154
42662023	12704	11706	11038	10617	10508	10960	11977	12707	13885	15260	16656	18045	19234	20307	21037	21491	21482	21138	20495	19584	19030	17993	16512	14648
41272023	13182	12111	11418	10979	10812	11211	12273	13130	14497	16056	17511	18743	19768	20705	21437	21943	22113	21878	21284	20359	19849	18950	17437	15587
$4 / 282023$	13935	12777	12035	11480	11253	11712	12681	13309	14388	15753	17070	18177	18918	19631	20340	21196	21899	21972	21229	20044	19547	18573	17287	15877
44292023	14458	13365	12679	12215	11970	11970	12217	12801	14445	16575	18388	19811	20867	21625	22005	21920	21483	20651	19731	18892	18666	17804	17669	16664
4/302023	14713	13738	13010	12595	12453	12580	12882	13347	14404	15728	16290	16745	17275	17727	17959	18361	18803	18951	18617	17642	17206	16413	15072	13358
$51 / 2023$	12139	11097	10408	10046	10118	10654	11705	12384	13317	14319	15074	16053	16939	17950	18910	19806	20477	20722	20350	19305	18671	17591	16072	14194
5/22023	12700	11531	10804	10356	10199	10600	11650	12415	13339	14688	15837	16898	17938	19048	20221	20992	21717	21987	21553	20385	19536	18309	16647	14759
5/32023	13192	11994	11191	10745	10637	11117	12162	12884	13336	15046	16025	16844	17666	18699	19624	20537	21307	21675	21318	20156	19368	18157	16415	14400
$54 / 2023$	12790	11614	10824	10353	10169	10747	11672	12243	13166	14200	15183	16149	17099	18212	19270	20161	20823	20958	20499	19338	18710	17695	16172	14422
5/5/2023	12808	11697	10989	10548	10418	10803	11794	12617	13841	15220	16539	17764	18729	19609	20318	20815	21030	20824	20063	18945	18331	17456	16430	15162
$5 / 612023$	13794	12756	11950	11368	11085	11086	11308	11897	13588	15474	16944	18187	19192	19930	20465	20732	20748	20393	19546	18548	18168	17367	16298	14925
5/72023	13710	12724	12024	11502	11221	11182	11300	11804	13388	15116	16373	17371	18163	18881	19419	19859	20071	20087	19550	18606	18180	17368	15899	14151
5/82023	12753	11683	11002	10584	10561	11013	11867	12620	13885	15146	16406	17516	18491	19453	20208	20891	21394	21505	21072	20035	19216	18155	16648	14937
5992023	13369	12231	11497	11013	10871	11281	12253	12998	14253	15792	17268	18596	19738	20826	21627	22304	22747	22805	22314	21146	20417	19371	17795	16011
5/102023	14367	13101	12378	11842	11658	12001	12898	13599	14922	16497	17976	19558	21138	22273	23085	23695	23957	23825	23169	21950	21164	20049	18500	16771
5/112023	15042	13967	13085	12565	12337	12755	13666	14310	15680	17232	18706	19994	21121	22028	22724	23322	23672	23629	23013	21815	21097	20022	18568	16919
5/122023	15256	14099	13377	12840	12601	12924	13737	14375	15555	17220	18644	19835	2093	21816	22500	22968	23247	23077	22347	21087	20354	19401	18163	16872
5/132023	15480	14312	13370	12669	12281	12170	12284	12904	14587	16312	17852	19138	20237	20999	21575	21901	21990	21733	21028	19798	19197	18341	16943	15647
$5 / 142023$	14617	13393	12482	11902	11556	11482	11540	12049	13623	15504	17788	18481	19606	20513	21154	21551	21621	21282	20638	19835	19461	18749	17438	15801
5/15/2023	14346	13206	12427	11946	11832	12239	13330	13812	15084	16614	18899	19392	20530	21614	22439	23038	23242	23069	22520	21386	20675	19575	17922	16032
5/162023	14484	13225	12389	11888	11678	12323	12860	13641	14973	16545	18022	19493	20780	21896	22733	23297	23642	23574	23088	21976	21282	20225	18618	16845
5/172023	15361	14162	13346	12832	12622	12952	13777	14476	15835	17485	19103	20606	21823	22787	23321	23031	22625	22427	22001	21052	20350	19372	17923	16138

5/182023	14540	13277	12389	11861	11661	12061	12917	13824	15251	16827	18402	19877	21134	22168	22617	22888	22923	22418	21491	20482	19845	18987	17574	15999
5/1920223	14574	13504	12754	12268	12122	12551	13365	14103	15581	17185	18796	20340	21554	22371	22412	22644	22996	22959	2232	21092	20266	19468	18226	16909
5/2012023	15362	14202	13395	12756	12399	12302	12416	13241	15171	17078	18934	20885	21982	22621	22852	22964	22774	22484	21802	20728	19968	19236	17905	16581
5/21/2023	15363	14166	13361	12777	12400	12242	12258	12942	14869	16941	18789	20285	21346	22179	22429	22335	22538	2293	21676	20920	20388	19477	18150	16551
5/222023	15040	14005	13240	12752	12651	13052	13777	14594	16031	17658	19260	20657	21649	22322	22646	23015	23355	23197	22487	21663	20988	19812	18124	16396
5/23/2023	14801	13690	12922	12437	12262	12639	13504	14257	15492	16905	18323	19573	20465	20987	21286	21208	21235	21096	20686	20009	19591	18585	17219	15370
$5 / 242023$	13867	12793	12014	11618	11557	10756	12979	13863	15097	16467	17886	19997	19941	20422	20457	19858	19439	19210	18423	17564	17143	16512	15372	14011
5/25/2023	12782	11920	11316	10953	10926	10384	12438	13226	14410	15766	17072	18308	19220	19373	19213	19151	19035	18946	18529	17798	17349	16672	15556	14173
$5 / 2612023$	12879	11882	11238	10856	10821	11347	12281	12971	14154	15507	16807	17859	18373	18487	18439	18533	18388	17965	17457	16777	16432	15912	14978	13826
5/272023	12602	11580	1029	10556	10311	10279	10454	11070	12545	14077	15416	16522	17522	18427	19171	19697	2012	2028	1992	18891	17935	17145	1602	1484
$5 / 282023$	13724	12568	11794	11244	10912	10806	10841	11537	13252	15066	16585	17934	19201	20271	2046	21472	21807	21825	21335	20356	19505	18614	17335	15806
5/2912023	14403	13182	12301	11711	11407	11365	11377	11852	13320	15211	16995	18475	19566	20366	21026	21550	21927	21921	21289	20546	19743	18933	17497	15974
5/3020223	14438	13238	12433	11946	11783	12212	13018	13690	14876	16342	17892	19295	20495	21467	22189	22745	22817	22498	21697	20810	19749	18490	17882	15599
5/312023	14276	13340	12657	12217	12127	12592	13352	13952	15005	16399	17743	18743	19889	20507	20812	20879	20593	20009	19180	18390	18040	17427	16339	14965
$61 / 2023$	13643	13053	12052	11692	11630	12145	12986	13850	15189	16619	18006	19289	20417	21442	21332	20973	20742	20797	20448	19581	18922	18041	16739	15230
$6{ }^{6 / 22023}$	13790	12710	11991	11630	11566	11986	12770	13590	14962	16413	17942	19360	20428	21117	21065	20437	20268	20282	19948	19200	18502	17784	16667	15338
$61 / 22023$	14051	12959	12165	11637	11431	11460	11688	12408	14192	16100	17738	19183	19901	19628	19384	19537	19958	19892	19309	18540	17956	17326	16332	15010
6442023	13950	12811	12005	11486	11239	11158	11243	11853	13328	14998	16745	18341	19608	20622	21397	21799	21858	21781	21304	20263	19473	18712	17331	15812
61512023	14239	12953	12216	11753	11683	12135	12851	13815	15156	16636	18001	19265	20273	2170	21796	22078	22233	22090	21507	20571	19750	18928	17471	15825
${ }^{66612023}$	14286	13122	12317	11810	11689	12101	12874	13676	14719	15800	16979	18111	19168	20065	20756	21248	21365	21207	20789	19997	19362	18620	17286	15741
$67 / 72023$	14348	13337	12694	12257	12091	12421	13084	13936	15420	17118	18704	20095	21026	21537	21938	21897	21473	21237	20804	19972	19344	18685	17402	15927
6812023	14567	13525	12799	12364	12192	12590	13249	14228	15833	17476	19109	20634	21672	21698	21391	22188	22319	22011	21542	20738	20071	19390	18880	16588
69912023	14619	14181	13463	13001	12773	13331	13452	14332	15978	17698	19362	20398	21574	22765	22883	23095	22850	22326	21930	21049	20057	19132	17863	16459
6 61020223	15108	14010	13167	12524	12148	12055	12178	13043	14926	16884	18711	20355	21774	22798	23402	23651	23713	23423	22479	21168	20122	19288	18131	16822
66112023	1.5516	14454	13597	12983	12578	12383	12410	13209	15181	17205	18719	20330	21592	22202	22862	23507	23892	23825	23281	22299	21437	20632	19252	17492
6/12/2023	16010	14889	14042	13339	13398	13762	14304	15213	16799	18627	20404	21749	22177	22549	23663	23590	23933	24046	23816	22760	21850	20765	19127	17519
6/132023	16091	14921	14127	13640	13432	13687	14188	15030	16788	18751	20615	22360	23792	24889	25297	25166	24879	24508	23564	22324	21295	20361	18935	17279
6 6142023	15855	14767	14019	13572	13424	13731	14222	15319	17103	19159	20940	22551	23829	24944	25843	26375	26467	25919	25127	24038	23119	22017	20273	18640
6 615/2023	17221	16045	15237	14657	14401	14488	14895	15490	16830	18606	20349	22241	23660	24840	25636	26052	26156	25931	25232	24010	22997	21937	20546	18838
6 61620223	17225	15934	15057	14410	14091	14259	14743	15519	16997	18822	20573	22005	22949	23683	24246	24650	24615	24538	24030	22869	21661	20608	19383	18038
661712023	16819	15822	15058	14418	14082	14002	13922	14754	16540	18491	20219	21547	22255	21619	21458	22284	22829	22540	21701	20540	19605	18900	17854	16582
61182023	15372	14415	13653	13068	12687	12566	12563	12709	13685	15287	17006	18619	20027	20875	21103	20634	20627	20767	20505	19808	19259	18708	17729	16422
66192023	15178	14198	13540	13151	13112	13429	13899	14709	16282	18183	20015	21751	23131	24044	24052	23526	22923	2294	21566	20508	19723	18785	17338	15869
66202023	14554	13572	12842	12356	12200	12529	13159	14113	15740	17417	19002	20535	21767	22651	23188	23459	23120	22134	21461	20572	19737	18603	17115	15530
66212023	14185	13195	12502	12040	12938	12282	12896	${ }^{13763}$	15074	16560	17900	19883	20869	22126	22828	23300	22816	22370	21804	20756	20000	19023	17724	16205
6/22/2023	14729	13610	12903	12477	12343	12713	13359	14317	15856	17427	19252	20591	21284	22083	22649	22942	22810	22458	22011	21279	20739	20078	18843	17356
623/2023	15971	14933	14218	13799	13745	14160	14618	15255	16735	18488	20204	21807	23034	23905	24469	24493	24419	24225	23303	22197	21369	20410	19156	17779
61242023	16513	15336	14449	13803	13442	13388	13407	14068	15497	17456	19678	21608	23111	23969	23962	23374	22770	22218	20911	19614	18848	18100	17885	15952
$6125 / 2023$	14793	13842	13146	12631	12305	12181	12172	12743	14401	16598	18695	20446	21753	22073	22034	22142	22034	21671	20977	20059	19432	18852	17650	16192
61262023	14877	13814	13165	12752	12657	13014	13524	14504	16185	17995	19775	21439	22431	22688	23190	23553	23872	24178	24105	23451	22525	21449	19816	18172
$6627 / 2023$	16644	15450	14641	14079	13808	14039	14530	15425	17159	18925	20663	22320	23767	25004	25720	26352	26675	26746	26221	25083	24093	23016	21453	19697
66282023	18997	16870	15947	15275	14948	15144	15196	16023	17605	19565	21446	23200	24621	25753	26523	26813	27018	26980	26349	25054	24025	22713	20721	18879
61292023	17307	16125	15346	14832	14451	14673	15053	15849	17505	19349	21331	23076	24114	25550	26065	25373	25188	24982	24410	23362	22400	21480	2005	18420
6,3022023	16805	15530	14677	14135	13847	14025	14453	15222	17004	19060	20871	22027	22918	23314	23654	24055	24294	24116	23460	22364	21444	20630	19454	18099
$71 / 12023$	16753	15607	14723	14049	13658	13343	13557	14141	16206	18385	20210	21750	22556	23110	23357	23741	23675	23557	22859	21835	21333	20507	19310	17949
7/212023	1663	15539	14686	14098	13690	13498	13386	${ }^{13846}$	15694	18046	20040	21812	23321	24328	24761	24557	24510	24233	23469	22407	21637	20988	19690	18217
77/2023	16816	15673	14883	14351	14162	14348	14658	15355	17348	19470	21481	23224	24560	25558	26039	26018	25682	25329	24850	23749	22876	21816	20523	19078
7742023	17671	16504	15595	14901	14459	14310	14276	14681	16438	19060	21342	23270	24698	25617	25890	25886	25673	25109	24276	23180	22350	21448	20836	19640
$7 / 512023$	18107	16811	15874	15260	14980	15262	15653	16317	18200	20242	22258	24077	25450	26189	26493	26312	25959	25397	24651	23536	22844	22220	20736	19989
$7 / 612023$	17842	16622	15820	15283	15035	15248	15621	16260	17954	20002	21881	23659	25106	26153	26630	26386	25666	25133	24205	22983	21937	21251	20009	18561
$77 / 2023$	17224	16191	15473	14899	14702	14737	15271	16069	17843	19916	21845	23665	24891	25769	25439	24745	24213	23533	22651	21582	20827	21208	1998	18799
78/2023	16403	15395	14710	14194	13906	13874	13995	14705	16627	18923	20859	22273	23398	23830	23743	23503	23227	22951	21989	20890	20181	19510	18435	17253
79912023	16125	15228	14573	14118	13857	13772	13786	14033	15618	17654	19813	21525	23017	24156	24951	25477	25705	25450	24675	23363	22464	21695	20380	18854
7/1020223	17223	16117	15290	14799	14645	14915	15343	15935	17627	19553	21584	23322	24596	25461	26017	26291	26407	26165	25091	23641	22656	21681	20355	18877
$7 / 112023$	17487	16394	15610	15055	14803	14980	15406	16049	17656	19559	21490	23268	24588	25526	26139	26497	26816	26801	26291	25233	24328	23361	21785	20170
$71 / 1212023$	18613	17445	16612	16023	15709	15814	16137	16732	18344	20189	22092	23870	25203	26118	26638	26887	26878	26543	25848	24788	23939	23047	21601	20025
71132023	18592	17429	16567	16011	15748	15931	16321	16955	18623	20474	22344	24063	25115	25442	25296	25292	25500	25451	24957	23652	22649	21669	2024	18693
7/142023	17318	16240	15480	14962	14735	14920	15358	16093	17836	19676	21188	22716	23856	24541	24571	24531	24705	24904	23268	21767	20974	20276	19154	17856
7/15/2023	16572	15514	14734	14169	13883	13843	13950	14550	16580	18916	20673	21801	22425	22933	23386	23983	24311	24092	23587	22665	21863	21110	19373	18496
$71 / 62023$	17273	1629	15394	14806	14453	14320	14307	14854	16851	19238	21262	22942	24271	25222	25744	25683	25208	23917	22160	21058	20419	19667	18828	17182
$71 / 72023$	16045	15152	14558	14179	14138	14487	15042	15661	17093	19109	21008	22411	23133	23426	23064	22514	21894	21196	20685	20023	19629	19045	17966	16669
$71 / 182023$	15493	14578	14018	13664	13603	13945	14519	15247	16872	18750	20523	21899	22639	23042	23370	23664	23650	23506	22933	22120	21608	20858	19559	18091
71192023	16696	15606	14824	14371	14192	14492	15016	15637	17110	18810	20614	22414	23728	24925	25684	26023	25965	25409	24627	23453	22777	21972	20599	19024
7202023	17672	16602	15882	15379	15146	15382	15882	16390	17785	19311	21005	22723	24308	25521	26460	27069	27483	27326	26502	2524	24311	23312	21828	20163
7 7212023	18667	17501	16655	16001	15676	15801	116165	16731	18353	20471	22520	24312	25773	26746	26879	26367	25907	25473	24806	23821	23008	22069	20720	19315
7 7222023	17959	16800	15974	15391	15052	14954	14980	15483	17446	19736	21882	23784	25160	26883	26715	26713	25529	24724	23969	22986	22297	21426	20146	18787
7232023	17520	16419	15590	14981	14616	14493	14391	14679	16660	18990	21102	22996	24545	25590	25868	25940	25814	25446	24823	23756	22973	22025	20603	19094
7242023	17735	16608	15814	15267	15060	15315	15676	16269	17862	19913	21979	23808	25315	26283	26771	26874	26699	26413	25752	24870	24078	22729	20999	19226
$725 / 2023$	17713	16527	15734	15186	14930	15146	15583	16096	17659	19654	21736	23551	24967	25865	26379	26599	26523	26123	25463	24517	23699	22754	21159	19419
72662023	17931	16596	15778	15256	15020	13520	15684	16079	17169	18475	19758	20906	22144	23364	24083	24114	24460	24190	23346	22107	21434	20515	19207	17654
772712023	16330	15273	14525	13919	13667	13969	14541	14977	15965	17368	19019	20680	21903	22773	22998	23008	22998	22557	21730	20825	20319	19642	18508	17220
72882023	15967	15010	14388	13957	13859	14197	14747	15379	16616	18117	19676	21007	21534	21578	21405	21635	21883	21983	21652	20955	20516	19940	18872	17651
71292023	16450	15427	14712	14164	13863	13832	${ }^{13941}$	14425	16184	18397	20465	22237	23598	24558	25121	25405	25457	25133	24578	23465	22674	21737	20502	19172
7 73020223	17914	16806	15880	15182	14715	14504	14417	14774	16381	18373	20506	22552	24290	25551	26269	26667	26767	26335	25797	24597	23723	22682	21169	19616
77312023	18111	16860	15908	15317	15079	15301	15731	16154	17630	19561	21566	23354	24834	26025	26463	26111	25585	24596	23642	22547	21616	2047	19011	17634
8 81/2023	16286	15109	14407	13946	13771	14093	14671	15367	17031	19009	20985	22618	23590	24086	24139	24069	23917	23296	22491	21666	21135	20360	19084	17574

8222023	16198	15157	14411	13886	13685	13958	14596	15241	16805	18753	2067	22542	24887	25183	25713	25604	25366	24883	24089	22981	22085	21027	19606	18056
$813 / 2023$	16685	15583	14820	14240	14079	14409	15060	15711	17157	18805	20428	22253	23859	24933	25559	25501	24945	24300	23398	22466	21952	21122	19901	18300
8442023	16658	15618	14872	14374	14158	14385	14926	15692	17314	19241	21145	22899	24071	24578	24633	24802	24996	24714	23767	22677	21874	20998	19741	18472
$8{ }^{8 / 2023}$	17219	16148	15354	14738	14444	14392	14530	15021	16895	18905	20762	22495	23517	24139	24482	24607	24476	23851	23116	22207	21695	20851	19723	18507
88612023	17298	16253	15488	14940	14619	14454	14511	14978	16904	19311	21435	23286	24678	25674	25961	25885	26232	26436	26109	24979	24097	23151	21686	20043
$87 / 2023$	18828	17488	16641	16207	16049	16250	16672	17159	18763	20948	23113	25075	26614	27743	28350	28318	27909	27473	26997	26151	25405	24405	22738	21074
88182023	19465	18221	17306	16638	16367	16575	17115	17633	19262	21337	23456	25209	26580	27537	28226	28430	28304	27691	26781	25547	24620	23658	2213	2037
89912023	19012	17846	17091	16555	16326	16504	16986	17534	19221	21284	23247	24844	26105	26857	27579	28099	27990	27339	26142	25161	24344	2326	224	2061
8/102023	18721	17662	16906	16398	16179	16439	17028	17510	19991	21114	22998	24757	26061	27166	27653	27886	28065	26955	25057	24130	23302	22232	20712	19209
8 8112023	17881	16755	16017	15531	15392	15692	16274	16802	18417	20555	22598	24221	25438	26315	26906	27390	27597	27729	27148	25998	24918	23779	22248	20862
8/12/2023	19464	18289	17382	16729	16252	16072	16099	16419	18216	20540	22685	24407	25613	26544	27349	27624	27694	27420	26358	24988	24315	2314	23508	20451
8/132023	19060	17868	17014	16393	15963	15729	15644	16057	17667	19980	22012	23658	24859	25591	26175	26355	26205	25582	24709	23588	23169	22108	20833	19296
8 8142023	17756	16717	16047	15613	15496	15893	16503	17011	18574	20597	22534	24149	25393	26050	26960	27134	27131	26871	26066	24888	24166	23053	21452	19888
815/2023	18503	17423	16615	16056	15797	16073	16625	17140	18318	20408	22536	24400	25868	26964	27333	26994	26393	25783	25002	24190	23531	22353	20726	19121
$81 / 612023$	17637	16621	15896	15424	15197	15440	15978	16346	17704	19545	21472	23164	24409	25153	25188	24597	24070	23593	22843	21984	21230	20172	1888	1748
8 8172023	16238	15205	14555	14148	14007	14475	15295	15612	16549	18182	20097	22083	23625	24764	24770	23833	22742	22048	21366	20594	20221	19404	18144	16814
81820223	15593	14705	14023	13382	13516	14071	14818	15153	16365	17984	19510	20691	21377	22280	23044	23369	23269	22752	22015	21089	20566	19749	18695	17548
81920223	16347	15280	14527	14011	13739	13703	13898	14219	15734	17859	20019	21729	22777	23826	24769	25224	25080	24452	23434	22413	21640	20492	19263	18016
82012023	16870	15876	15093	14578	14270	14195	14352	14606	15908	17777	19701	20965	21729	22460	22792	22658	22496	22309	21727	21129	20974	20228	19158	17832
$8821 / 2023$	16683	15779	15188	14850	14859	15329	16085	16356	17391	18978	20838	22041	23035	23903	24502	25073	25639	25667	25199	24012	23488	22298	20853	18781
82222023	17732	16652	15930	15427	15222	15256	16251	16502	17643	19392	21130	22694	23958	24998	25732	26308	26889	26569	26030	24867	24104	22767	20942	19230
823/2023	17758	16642	15796	15225	14984	15287	15968	16290	17419	19169	21061	22707	24092	25237	25985	26398	26758	26764	26259	25149	24415	23105	21425	19840
82242023	18208	17023	16228	15625	15301	15583	16219	16563	17716	19456	21225	22836	24076	24980	25361	25308	25102	24502	23694	22731	22225	21195	19636	18122
825/2023	1664	15560	14765	14140	13950	14356	15125	15504	16681	18476	20280	21859	23209	24417	25352	26057	26533	26489	25755	24442	23499	22221	20755	19230
82/262023	17749	16498	15573	${ }^{14841}$	14368	14181	14195	14429	1637	18194	20271	22071	23623	24689	25428	25832	26085	25991	25394	24132	23312	22103	20782	19315
82772023	17908	16729	15803	15111	14695	14488	14470	14644	16259	18473	20552	22380	23775	24800	25307	25684	25673	25229	24324	23315	22879	21760	20334	1877
82882023	17398	16418	15778	15348	15237	15689	16422	16769	18018	19717	21465	22669	23504	24117	24210	24238	24312	24234	23882	23114	22647	21443	20025	18499
829212023	17154	16176	15450	15023	14937	15398	16181	16770	18060	19822	21404	22817	23815	24286	24451	24430	24027	23013	21761	20972	20665	19835	18806	17846
88302023	16901	16248	15865	15673	15717	16187	16879	17273	18399	19929	21352	22523	23119	23478	24131	24422	24655	24740	24275	23373	22956	21879	20413	18957
88312023	17809	16708	16012	15560	15355	15745	16515	16781	17792	19516	21432	23096	24480	25395	25888	25905	25568	24632	23284	22461	21811	20686	19251	17829
$91 / 12023$	16549	15521	14773	14320	14182	14647	15414	15727	16986	19009	20954	22636	24004	24983	25410	25372	25273	25018	24286	23203	22470	21252	20002	18107
9122023	16393	15257	14439	13902	13883	13531	13687	14048	15564	17512	19073	19961	20761	21543	22333	22751	22951	22894	22287	21181	20569	19500	18357	17016
9/3/2023	15797	14811	14057	13466	13880	12921	12941	13204	14769	16727	18412	19788	20890	21794	22503	22969	23133	22945	22331	21212	20629	19622	18459	17208
9442023	15966	14877	14114	13612	13365	13395	13495	13626	15029	17092	19039	20641	21943	22865	23497	23968	24296	24424	23812	22569	21957	20655	19113	17493
9/5/2023	16011	14842	14048	13555	13350	13715	14473	14875	16111	17908	19716	21324	22675	23642	24646	25145	25362	25132	24503	23735	22807	21469	19758	18014
96612023	16573	15382	14426	13790	13573	13921	14669	14987	16240	17933	19528	21144	22590	23842	24741	25287	25641	25579	24774	23559	22780	21332	19628	17797
9772023	16449	15340	14533	13661	13739	14181	14922	15193	16220	17740	19552	21452	23062	24330	25133	25576	25814	25684	24926	23627	22895	21501	19872	18163
9882023	16687	15516	14635	14016	13723	14074	14777	15127	16327	17934	19612	21039	22085	22992	23447	23404	23424	23138	22226	21076	20305	19019	17845	16528
9992023	15264	14317	13586	13079	12817	12745	12969	13187	14788	16773	18489	20277	21570	22410	22623	22685	22505	22406	21988	20950	20355	19272	1812	16867
9/1020223	15651	14618	13804	13284	12969	12853	12948	13120	14760	16914	19027	21043	22666	23620	23762	23941	24303	24163	23603	22668	22184	20828	19298	17791
91112023	16352	15116	14336	13845	13743	14130	14910	15117	16438	18467	20399	22166	23664	24843	25512	25996	26219	26003	25336	24259	23460	21991	20426	18891
91/22023	17319	16083	15251	14681	14459	14800	15558	15895	17016	18784	20628	22297	23729	24755	25215	25497	25656	25429	24702	23833	23233	21790	20198	18571
91132023	17216	16033	15205	14670	14536	14887	15703	15934	1771	18975	20808	22492	23884	25061	25881	26186	26267	25761	24883	23907	23251	21932	20351	18703
9/142023	17219	15987	15155	14643	14468	14811	15565	15810	17057	18772	20611	22298	23676	24844	25610	26046	26181	25852	24937	23779	22978	21609	20100	18453
91/5/2023	17220	15871	15028	14445	14212	14555	15333	15711	1637	18774	20564	22066	23051	23699	24076	24273	24331	24027	23080	22073	21291	20118	18979	17712
91162023	16489	15496	14613	14071	13805	13757	13964	14303	15649	17742	19726	21459	22572	23055	23114	23220	23002	22292	21391	20502	19974	19048	18056	16945
91172023	15901	15026	14323	13797	13443	13296	13413	13647	15126	17469	19634	21482	22831	23476	23707	23799	23877	23650	22645	21770	21220	20015	18604	17155
91/82023	15755	14734	14096	13604	13533	13885	14796	15217	16431	18133	19671	21245	22591	23686	24456	24840	24860	24337	23425	22270	21218	19760	18337	16761
91192023	15307	14353	13702	13290	13158	13607	14480	14836	15737	17200	18802	20386	21502	2247	22524	22224	22329	21964	21181	20548	19574	18235	16978	15657
9/20/2023	14432	13550	13041	12704	12588	11759	13871	14303	15318	16981	18659	20179	21490	22674	23409	23090	22194	21411	20631	20189	19723	18628	17197	15667
9/21/2023	14272	13217	12697	12376	12310	12825	13804	14221	15347	17023	18670	20172	21295	21940	22382	22475	22327	21612	20432	19625	18949	17912	16615	15213
9,22/2023	13951	12259	12352	11982	11896	12384	13378	13871	14931	16427	17838	19175	20335	21413	22127	22537	22797	22554	21621	20649	19742	18438	17166	15789
923212023	14565	13491	12707	12141	11808	11724	11946	12295	13497	14960	16254	17457	18783	19868	20583	20919	20966	20632	19893	19086	18486	17412	16366	15212
9/242023	13996	13042	12357	11902	11650	11611	11783	12091	13268	15237	16913	18403	19850	21163	22213	22692	22672	22325	21470	20686	20149	18994	17654	16243
9/25/2023	14832	13275	12401	11933	11869	12294	13095	13648	14841	16617	18397	19952	21353	22638	23415	23749	23429	22461	21490	20863	20134	18993	17636	16222
9/26/2023	15040	14136	13475	13066	13011	13375	14581	15108	1622	17345	18732	20176	21099	21283	21262	21537	21794	21705	21201	20875	20172	18948	17451	16211
9,2712023	14620	13738	13194	12839	12880	13542	14633	15277	15772	16467	17410	18347	19141	20014	20589	20858	20882	20599	20033	19750	19302	18321	17884	15690
9/28/2023	14447	13486	12838	12466	12435	13137	14209	14708	15221	16287	17748	19133	20109	2096	21677	22067	22136	21852	21148	20886	20301	19258	18010	16577
9/29/2023	15067	14119	13634	13249	13153	13678	14613	15068	15948	17439	18851	20115	21141	21958	22275	21862	21380	20995	20247	19764	19165	18231	17173	16027
97302023	14894	14034	13487	13140	12979	13012	13247	13650	15889	17150	18843	20172	21325	22248	22639	22284	21491	20750	19875	19239	18602	17676	16760	15838
$100 / 12023$	14901	14150	13515	13107	12858	12788	13037	13301	14466	16037	17745	18979	20316	21304	21996	21951	21307	20555	19738	19377	18968	18003	16872	15581
$102 / 2023$	14461	13531	12967	12620	12637	13245	14246	14637	15471	16709	17713	18545	19338	19931	20522	21033	21289	21218	20608	20082	19467	18271	16915	15446
10/32023	14189	13297	12709	12368	12345	12910	13908	14332	15072	16365	17725	18784	19845	20759	21474	21984	22103	21932	21106	20533	19897	18744	17307	15813
10.42023	14526	13612	12922	12430	12387	12908	13834	14289	15263	16802	18246	19515	20636	21563	22340	22982	23252	23105	22183	21388	20724	19540	18021	16495
10/52023	15174	14178	13540	13139	13060	13333	14395	14816	15830	17525	19064	20474	21607	22630	23233	23709	23897	23615	22712	21999	21251	19987	18515	16894
106612023	15429	14343	13619	13132	12946	13330	14161	14637	15641	17155	18726	20080	21297	22360	23115	23582	23676	23262	22192	21238	20394	19238	18023	16757
10772023	15538	14571	13796	13276	12950	12892	13083	13405	14801	16736	18469	20075	21461	22503	23109	23355	23228	22652	21472	20677	19685	18494	17324	16062
10/82023	14782	13781	13026	12502	12138	11982	12075	12336	13650	15411	16827	18103	19127	19901	20269	20146	19911	19566	18884	18671	18026	16964	15749	14437
10992023	13296	12418	11771	11401	11389	11904	12805	13375	14078	15141	16107	16708	17245	17746	17941	18152	18330	18315	18107	18215	17682	16684	15465	14100
10/10/2023	12791	11953	11443	11164	11174	11758	12850	13283	13972	15172	16474	17758	18875	20003	20767	21347	21681	21422	20807	20673	19916	18792	17483	16036
10/11/2223	14824	13878	13236	12842	12770	13376	14352	14858	15676	16940	18122	18980	19851	20759	21095	21341	21317	20918	20363	20329	19731	18978	17972	16770
101/2/2023	15760	15027	14632	14486	14617	15368	16329	16852	17488	18881	20364	21499	22283	22988	23399	23648	23641	23151	22408	22077	21360	20316	19046	17711
10/13/2023	16566	15728	15130	14778	14748	15300	16072	16518	17397	18696	19934	21094	22092	22717	22868	22905	22756	22325	21573	21148	20439	19477	18470	17318
$10 / 14 / 2223$	16033	15017	14340	13870	13658	13719	14006	14353	15362	16620	17858	18988	19967	20123	20145	20820	21172	21098	20320	19703	18962	17957	16820	15594
101/1/2023	14425	13358	12531	11975	11610	11520	11640	11928	13221	14946	16475	17679	18760	19594	20186	20525	20580	20263	19379	18924	18143	16952	15583	13952
101/62023	12501	11452	10808	10412	10349	10808	11746	12303	13336	13910	14458	14836	15134	15545	1.5939	16110	16107	15954	15722	15858	15354	14377	13110	11713

10,172023	10457	9673	9193	8901	8959	9655	10771	11424	11941	12467	12798	13035	13345	13709	14156	14691	15224	15363	15065	15112	14548	13614	12423	1152
10118/2023	9946	9252	8892	8719	8804	9545	10766	11456	12032	12644	13109	13579	14152	14856	15563	16316	16936	17133	16743	16645	16033	15026	13782	12353
10/1920203	11182	10396	9908	9620	9631	10206	11390	12037	12804	13776	14712	15550	16377	17197	17807	18339	18481	18114	17632	17607	17001	16021	14821	13390
10202/2023	12151	11274	10749	10443	1044	10969	12081	12593	13119	13945	14708	15646	16821	17901	18523	18914	19210	19035	18205	17580	16754	15807	14712	13574
10/21/2023	12412	11448	10767	10319	10096	10121	10420	10906	12148	13692	15023	16282	17425	18497	19406	20080	20421	20067	18828	18099	17095	16074	14937	13835
$10222 / 2023$	12716	11761	${ }^{11051}$	10615	10318	10252	10414	10765	11890	13327	14452	15529	16634	17557	18458	19083	19338	19134	18293	17930	17031	15834	14418	12952
10232/223	11652	10697	10145	9826	9856	10415	11486	12054	12718	13803	15018	16228	17358	18488	19375	20143	20587	20364	19539	19193	18241	17105	15740	1428
$10 / 24 / 223$	12966	11985	11435	11087	11015	11565	12661	13353	14122	15337	16467	17313	18012	18882	18717	19044	19197	19057	18557	18513	17888	16842	15644	14293
1025/2023	13099	12073	11492	11136	11184	11865	12845	13380	14095	15236	16293	17205	18024	18815	19327	19550	19586	19335	18837	18758	18146	17208	16001	14743
1026612023	13508	12560	11983	11894	11940	12505	13499	14074	14621	15549	16498	17426	18141	18922	19541	20010	20193	19866	19145	18904	18273	17318	16128	14748
$1027 / 2023$	13507	12572	11907	11476	11355	11792	12738	13273	14173	15515	16843	17883	18639	19358	19875	20251	20386	19991	18996	18451	17709	16868	15887	14756
1012822023	13653	12661	11979	11554	11360	11426	11778	12236	13396	15164	16679	17853	18746	19442	19934	20258	20265	19743	18745	18141	17401	16488	15850	14539
10/29/2023	13482	12560	11886	11438	11210	11161	11349	11705	12907	14613	15939	17340	18517	19319	19789	20098	20284	20015	19297	19055	18285	17296	16068	14646
$10 / 302223$	13349	12367	11782	11422	11403	11921	12914	13344	14087	15480	16888	18109	19200	20163	20935	21498	21757	21454	20651	20405	19418	18238	16833	15283
10/31/2023	13894	12807	12118	11711	11624	12158	13208	13748	14426	15746	17839	18220	19285	20196	20850	21363	21630	21227	20226	19990	18317	17686	16514	14974
11/12023	13547	12510	11806	11367	11244	11685	12592	13077	13767	14782	15668	16442	17131	17558	17842	17987	18071	17774	17256	17197	16532	15524	14362	13089
$11 / 22023$	12023	11303	10883	10664	10734	11344	12426	13201	13754	14335	14799	15138	15451	15757	16008	16179	16300	16232	16086	16319	15919	15122	14085	12881
11/32023	11784	11036	10573	10243	10251	10944	12022	12845	13559	14532	15300	15903	16455	16832	17147	17521	17598	17328	16935	16748	16142	15738	14741	13764
$11 / 42023$	12394	11633	11015	10632	10466	10543	10979	11535	12445	13534	14493	15074	15624	16242	16843	17090	17092	16785	16345	16037	15423	14662	13866	12907
11/52023	11869	10993	10016	9789	9715	9847	10264	11214	12720	14229	14981	15856	16676	17204	17401	17403	17016	16585	16411	15624	14731	13670	12521	11334
11/62023	10285	9605	9223	9049	9179	9930	11223	12121	12982	13699	14379	15185	16078	16929	17621	17967	17881	17548	17594	16802	16001	15014	13780	12448
117/2023	11197	10471	10051	9837	9870	10558	11759	12703	13845	14894	15864	16903	17781	18514	19011	19181	18957	18415	18274	17530	16607	15526	14263	12850
$111 / 82023$	11558	10784	10346	10098	10139	9831	11942	12855	13977	15044	16032	17024	17845	18530	19022	19225	18889	18532	18463	17789	16824	15703	14567	13386
11192023	12066	11270	10789	10525	10543	11114	12336	13246	14313	15322	16334	17184	17815	18160	18356	18400	18410	18082	18165	17606	16904	16071	15121	13887
11/10/2023	12822	${ }^{12053}$	11547	11258	11203	11592	12342	13422	15315	16933	18341	19558	20536	21217	21655	21691	21172	20344	19706	18902	17966	17105	16196	15246
11/11/2023	14199	13415	12711	12225	12001	12051	12311	13282	15433	17259	18631	19887	20810	21169	21422	21266	20596	19701	19081	18262	17417	16880	15825	14847
11/12/2023	13633	12715	12088	11656	11419	11379	11580	12469	14351	16171	17441	18520	19392	19966	20245	20183	19755	19230	19068	18305	17469	16549	15317	13900
11/13/2023	12772	11980	11507	11257	11401	11942	12940	13666	14708	15791	16687	17498	18029	18371	18376	18089	17784	17947	18190	17760	16961	15954	14858	13598
11/14/223	12332	11636	11213	10975	11029	11775	12953	13743	14569	15376	16054	16541	16932	17054	16900	16667	16584	16946	17269	16916	16317	16102	15047	13876
11/15/2023	12348	11661	11251	11001	11056	11687	12795	13511	14196	14741	15181	15337	15238	15054	14856	14799	14935	15435	15753	15463	14876	14014	12973	11802
11/16/2023	11022	10318	9913	9714	9764	10510	11628	12589	13573	14996	15236	15706	15975	16098	16025	16155	16242	16455	16817	17003	16336	15593	14703	13185
111/7/2023	11727	10877	10405	10158	10265	10961	12069	12913	13884	14889	15764	16544	17445	18109	18527	18734	18430	17879	17582	16859	15970	15228	14325	13355
11/18/2023	12326	11434	10817	10473	10346	10524	10974	11585	12912	14023	14910	15529	15806	16003	16071	16175	16006	15743	15676	15023	14354	13689	12855	12020
11/19/2023	10982	10250	9743	9428	9293	9378	9696	10473	11915	13276	14466	15458	16371	16995	17409	17478	17227	16791	16690	15927	15211	14367	13261	12155
11120/223	11071	10297	9880	9674	9703	10288	11187	12141	13533	14759	15868	16827	17675	18168	18440	18383	18100	17774	17786	17211	16515	15901	15077	13869
11/21/2223	12428	11558	10999	10699	10712	11246	11984	12924	14326	15547	16594	17399	18131	18685	18964	19031	18676	18169	17996	17309	16563	15614	14678	13530
$11122 / 2223$	12416	11553	10991	10623	10624	11046	11670	12550	14168	15768	17728	18043	18813	19271	19435	19242	18796	18344	18159	17497	16667	15919	14990	13854
11/23/2023	12833	11959	11371	10975	10799	10883	11196	11812	13379	14939	16141	17239	18164	18568	18597	18250	17357	16391	15605	14659	14054	14011	13219	12545
$11 / 242023$	11308	9669	10128	9906	9933	10275	10726	11418	12662	13842	14629	15171	15333	15200	15048	14830	14738	14979	15029	14594	14175	13610	12946	12116
11/25/2023	11292	10637	10189	9973	9956	10143	10568	11201	12515	13769	14595	15264	15650	15805	15933	15871	15746	15833	15922	15393	14853	14313	13913	13221
11/2612023	11911	11163	10618	10292	10163	10236	10629	11276	12889	14547	15759	16715	17415	17594	17500	17288	17133	17317	17552	16970	16358	15545	14514	13247
$11 / 27 / 223$	12165	11379	10938	10731	10843	11541	12556	13270	14125	14772	15298	15664	15921	16196	16440	16632	16516	16470	16992	16158	15398	14397	13225	11973
$11 / 28 / 223$	10941	10260	9857	9666	9772	10434	11641	12555	13330	13802	14100	14278	14417	14526	14532	14441	14331	14891	15391	15159	14728	13667	13013	11985
11/29/2023	11167	10692	10477	10469	10684	11557	13057	14078	14430	14298	14055	13832	13660	13567	13537	13604	13768	14455	15150	14955	14543	13837	12896	11874
11/30/2223	11050	10586	10372	10359	10602	11444	12862	13739	14062	14167	14210	14219	14441	14745	14976	15118	15101	15401	15800	15503	15026	14258	13291	12188
$12 / 1 / 2023$	11176	10443	10057	9870	9954	10640	11817	12705	13748	14686	15530	16295	16994	17554	17942	18093	17858	17787	17388	16982	16337	15628	14820	${ }^{13822}$
12/22023	12811	11915	11320	10959	10842	11044	11579	12346	13924	15460	16808	17924	18651	19112	19375	19234	18786	18415	18142	17342	16597	15816	15018	13992
12/3/2023	12936	12008	11356	10951	10735	10797	11115	11799	13384	15197	16647	17796	18879	19614	19879	19930	19631	19235	19064	18307	17442	16400	15093	13677
$12 / 42023$	12511	11581	11028	10749	10779	11437	12552	13295	14313	15250	16203	17148	17746	18164	18314	18242	17921	18203	18467	17823	17056	15944	14774	13383
12/5/2023	12116	11209	10642	10290	10321	10887	11927	12700	13457	14120	14720	15246	15818	16195	16439	16413	16080	16199	16462	15911	15239	14326	13234	11984
12/62023	10888	10187	9774	9592	9724	10379	11666	12482	13062	13200	13147	13283	13297	13294	13249	13307	13504	14174	14834	14624	14208	13514	12594	11505
$127 / 12023$	10721	10255	10082	10088	10346	11233	12592	13711	13982	13925	13797	13610	13533	13482	13422	13458	13630	14279	14905	14656	14262	13628	12603	11552
12/82023	10629	10056	9743	9644	9893	10615	11921	12787	13471	13888	14210	14293	14410	14503	14516	14547	14663	15163	15400	14972	14521	13941	13232	12313
129/2023	11399	10658	10183	9933	9853	10104	10461	11272	12652	14027	14966	15598	16142	16487	16693	16729	16566	16388	16325	15643	15092	14487	13791	12851
12/10/2023	11902	11112	10537	10199	10033	10068	10357	11035	12744	14434	15635	16507	17167	17601	17720	17476	17230	17380	17539	16893	16307	15514	14470	12698
12/11/2023	11671	10795	10408	10198	10357	11012	12095	12978	13628	14044	14276	14406	14402	14334	14215	14117	14139	14856	15516	15246	14736	13960	12973	11842
12/12/2023	11006	10476	10221	10192	10415	11253	12706	13712	14136	14102	14053	13980	13921	13884	13849	13858	14059	14875	15616	15453	15100	14884	13344	12437
12/13/2023	11482	10864	10559	10437	10657	10256	12637	13479	14099	14567	14760	14747	14667	14568	14490	14473	14629	15337	15977	15813	15383	14689	13726	12477
12/14/2023	11472	10808	10432	10288	10433	11091	12287	13152	13814	14256	14456	14470	14292	14277	14155	14103	14274	14902	15328	15116	14692	14045	13182	12006
12/15/2023	11047	10329	9952	9801	9957	10681	11882	12792	13479	13970	14261	14286	14212	14177	14060	14229	14148	14655	14892	14535	14148	13652	12991	12146
12/16/2023	11253	10555	10140	9913	9904	10133	10706	11308	12560	13915	14654	15006	14980	14884	14742	14619	14571	15101	15219	14815	14430	13898	13187	12470
$12 / 17 / 2023$	11683	10945	10565	10322	10236	10358	10767	11381	12616	13852	14542	15120	15376	15265	15302	15142	14901	14945	15315	14891	14374	13696	12640	11559
12/18/2023	10484	9796	9469	9342	9571	10322	11587	12534	13231	13602	13723	13718	13745	13753	13838	13967	14127	14504	15205	14966	14491	${ }^{13745}$	12756	11352
12/19/2023	10717	10181	9984	9977	10270	11177	12738	13926	14456	14484	14239	13931	13739	13656	13676	13815	14007	14649	15514	15440	15240	14488	13460	12376
$12 / 201223$	11466	10945	10706	10660	10902	11737	13126	14110	14610	14709	14552	14274	14001	13791	13682	13664	13844	14609	15233	15063	14705	14039	13145	12045
12/21/2023	11045	${ }^{10465}$	10186	10102	10392	11136	12352	13287	13882	14141	14157	14045	13970	13950	13985	13999	14018	14497	15028	14781	14371	13788	12950	11923
$12 / 22 / 2023$	10959	10302	9948	9806	9932	10519	11516	12432	13346	13897	14140	14171	14113	14056	14002	13920	13957	14408	14767	14348	13954	13415	12730	11853
12/23/2023	10969	10313	9917	9695	9731	9976	10423	11291	12525	13430	13880	14051	14203	14264	14275	14339	14314	14439	14759	14340	13934	13474	12836	11959
$12 / 24 / 223$	11071	10333	9850	9558	9486	9644	10038	10822	12188	13390	14129	14522	14772	14916	15056	15074	14984	15144	15131	14220	13851	13302	12733	12018
12/25/2023	11312	10658	10159	9809	9694	9795	10076	10720	11997	13315	14191	14683	14883	14862	14702	14461	14332	14394	14473	14185	13899	14031	13394	12715
12/26/2023	11107	10381	9924	9671	9687	10146	10718	11514	12604	13861	14835	15451	15926	16306	16518	16658	16574	16445	16619	16037	15287	14338	13481	12695
$1227 / 2023$	11237	10409	9883	9652	9710	10177	10824	11614	12745	13640	14224	14519	14726	14974	15191	15287	15284	15430	15757	15212	14595	13867	12960	11881
12/28/2023	10784	10060	9633	9415	9549	10085	10833	11833	12852	13700	14224	14410	14326	14009	13563	13374	13469	14086	14835	14569	14077	13444	12721	12072
12/29/2223	10754	10165	9857	9767	9960	10667	11595	12604	13620	14170	14304	14196	13980	13713	13536	13550	13727	14360	14977	14701	14322	13739	13054	12290
12/30/2023	11548	11042	10775	10692	10794	11150	11787	12734	13877	14439	14532	14349	14071	13671	13378	13195	13282	13912	14703	14555	14362	13968	13421	12728
12/31/2023	11874	11414	11204	11157	11314	11737	12436	13768	14771	14898	14481	14003	13680	13400	13293	13386	13733	14311	14889	14316	13611	${ }^{12943}$	12386	11891

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 5
Attachment No. 1 of 1
Tab 1 of 2

TYSP Year
2024
Staff's Data Request \ddagger
Question No.

Year	Month	Actual Peak Demand	Demand Response Activated	Estimated Peak Demand	Day	Hour	System- Average Temperature (Degrees F)
		(MW)	(MW)	(MW)			
ત̀	1	19271	0	19271	16	0900	54
	2	20489	0	20489	23	1700	82
	3	22599	0	22599	27	1700	85
	4	22935	0	22935	4	1800	83
	5	24063	0	24063	10	1700	87
	6	26988	0	26988	28	1700	91
	7	27504	0	27504	20	1700	91
	8	28461	0	28461	8	1600	94
	9	26250	0	26250	13	1700	89
	10	24554	0	24554	5	1700	86
	11	21176	0	21176	10	1600	84
	12	19977	0	19977	3	1600	83
ત్ત	1	21027	0	21027	30	0900	45
	2	19011	0	19011	18	1600	80
	3	20778	0	20778	19	1700	83
	4	22411	0	22411	6	1700	87
	5	24256	0	24256	19	1700	87
	6	26415	0	26415	16	1700	90
	7	26011	0	26011	28	1700	90
	8	26429	0	26429	1	1600	90
	9	26413	0	26413	6	1700	89
	10	23580	0	23580	11	1700	87
	11	22997	0	22997	1	1700	86
	12	20609	0	20609	26	1100	52
ત্તি	1	16284	0	16284	27	1600	83
	2	18503	0	18503	15	1600	83
	3	20031	0	20031	31	1700	84
	4	21074	0	21074	29	1700	86
	5	22962	0	22962	5	1700	89
	6	22373	0	22373	21	1700	89
	7	23845	0	23845	22	1700	89
	8	24042	0	24042	19	1700	91
	9	22350	0	22350	6	1700	87
	10	22485	0	22485	7	1700	86
	11	17062	0	17062	13	1600	80
	12	17848	0	17848	31	1600	80
Notes							
(Include Notes Here)							

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 5
Attachment No. 1 of 1
Tab 2 of 2

FPL NW							
Year	Month	Actual Peak Demand	Demand Response Activated	Estimated Peak Demand	Day	Hour	System- Average Temperature
		(MW)	(MW)	(MW)			(Degrees F)
	1	1958	0	1958	10	1000	37
	2	2233	0	2233	17	0900	32
	3	1618	0	1618	31	1800	78
	4	1712	0	1712	29	1800	78
	5	1950	0	1950	27	1800	78
	6	2225	0	2225	14	1700	91
ले	7	2441	0	2441	27	1700	93
	8	2390	0	2390	10	1700	93
	9	2206	0	2206	1	1700	87
	10	2022	0	2022	15	1700	85
	11	1534	0	1534	30	0900	51
	12	1542	0	1542	23	1000	48

FORECAST ERROR
(PERCENT)

Year	ACtual	2001	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	202
2001	3,935,281	1.0\%	0.5\%																						
2002	4,019,805	1.3\%	0.6\%	0.4\%																					
2003 2004	$4,117,221$ 4.224 .509	1.9\% 2.9\% 3	1.1\% 1.9%	0.9\%	0.5% 1.3%	1.3\%																			
2005	$4,321,895$	3.6\%	${ }^{1.5 \%}$	2.3\%	1.9\%	1.9\%	0.6\%																		
2006	4,409,563	4.1\%	2.9\%	2.6\%	2.2\%	2.2\%	0.9\%	-0.2\%																	
2007	$4,496,589$ 4.5909	4.5\%	3.4\%	3.0\%	2.5\%	2.5\%	1.0\%	-0.1\%	0.0\%																
2008	4,509,730	3.3\%	2.2\%	1.8\%	1.2\%	1.2\%	-0.5\%	-1.7\%	-1.8\%	-1.0\%															
2009	4,499,067	1.6\%	0.6\%	0.2\%	-0.5\%	-0.5\%	-2.4\%	-3.6%	${ }^{-3.9 \%}$	-2.8\%	${ }^{-0.5 \%}$														
2010	4,520,328		-0.3\%	-0.7\%	-1.5\%	-1.5\%	-3.6\%	-4.9\%	-5.3\%	-4.0\%	-0.6\%	0.4\%													
2011	4,547,051			-1.4\%	-2.3\%	-2.3\%	-4.6\%	-5.9\%	-6.5\%	-5.2\%	-1.3\%	0.4\%	-0.1\%												
2012	4,576,449				-3.0\%	-3.0\%	-5.5\%	-6.7\%	-7.6\%	-6.2\%	-2.8\%	0.1\%	-0.4\%	-0.1\%											
2013	4,626,934					-3.3\%	-5.9\%	-7.1\%	-8.1\%	-6.7\%	-3.7\%	-0.2\%	-0.8\%	0.0\%	0.2\%										
2014	4,708,829						-5.7\%	-6.9\%	-8.1\%	-6.6\%	-4.0\%	0.0\%	-0.7\%	0.5\%	0.1\%	0.6\%									
2015	4,775,382							-6.9\%	-8.2\%	-6.7\%	-4.6\%	-0.1\%	-1.0\%	0.3\%	0.1\%	-0.1\%	0.0\%								
2016	4,840,279								-8.4\%	-6.9\%	-5.1\%	-0.2\%	-1.2\%	0.1\%	0.0\%	-0.3\%	-0.2\%	-0.1\%							
2017	4,901,886									-7.2\%	-5.7\%	-0.3\%	-1.3\%	-0.2\%	-0.2\%	-0.4\%	-0.4\%	-0.3\%	-0.2\%						
2018	4,961,330										-6.4\%	-0.4\%	-1.4\%	-0.4\%	-0.5\%	-0.6\%	-0.6\%	-0.6\%	-0.4\%	-0.1\%					
2019	5,061,525											0.3\%	-0.7\%	0.3\%	0.1\%	0.1\%	0.1\%	0.0\%	0.3\%	0.6\%	0.2\%				
2020	5,136,995												-0.5\%	0.4\%	0.2\%	0.3\%	0.2\%	0.0\%	0.5\%	0.9\%	0.5\%	0.4\%			
2021	5,214,263													0.5\%	0.5\%	0.6\%	0.5\%	0.2\%	0.7\%	1.2\%	0.9\%	0.9\%	0.5\%		
2022	5,776,779																		0.9\%	1.4\%	1.0\%	1.3\%	1.0\%	0.1\%	
2023	5,845,147																			1.4\%	1.1\%	1.6\%	1.0\%	-0.1\%	-0.2\%
	1 yr	1.0\%	0.5\%	0.4\%	0.5\%	1.3\%	0.6\%	-0.2\%	0.0\%	-1.0\%	-0.5\%	0.4\%	-0.1\%	-0.1\%	0.2\%	0.6\%	0.0\%	-0.1\%	-0.2\%	-0.1\%	0.2\%	0.4\%	0.5\%	0.1\%	-0.2\%
	2 yr	1.3\%	0.6\%	0.9\%	1.3\%	1.9\%	0.9\%	-0.1\%	-1.8\%	-2.8\%	-0.6\%	0.4\%	-0.4\%	0.0\%	0.1\%	-0.1\%	-0.2\%	-0.3\%	-0.4\%	0.6\%	0.5\%	0.9\%	1.0\%	-0.1\%	
	3 yr	1.9\%	1.1\%	1.8\%	1.9\%	2.2\%	1.0\%	-1.7\%	-3.9\%	-4.0\%	-1.3\%	0.1\%	-0.8\%	0.5\%	0.1\%	-0.3\%	-0.4\%	-0.6\%	0.3\%	0.9\%	0.9\%	1.3\%	1.0\%		
	4 yr	2.9\%	1.9\%	2.3\%	2.2\%	2.5\%	-0.5\%	-3.6%	-5.3\%	-5.2\%	-2.8%	-0.2%	-0.7%	0.3\%	0.0\%	-0.4%	$-{ }^{-0.6 \%}$	0.0\%	0.5\%	1.2\%	1.0\%	1.6\%			
	5 yr	3.6\%	2.5\%	2.6\%	2.5\%	1.2\%	-2.4\%	-4.9\%	-6.5\%	-6.2\%	-3.7%	0.0\%	-1.0\%	0.1\%	-0.2\%	-0.6\%	0.1\%	0.0\%	0.7\%	1.4\%	1.1\%				
	6 yr	4.1\%	2.9\%	3.0\%	1.2\%	-0.5\%	-3.6\%	-5.9\%	-7.6\%	-6.7\%	-4.0\%	-0.1\%	-1.2\%	-0.2\%	-0.5\%	0.1\%	0.2\%	0.2\%	0.9\%	1.4\%					
	7 yr	4.5\%	3.4\%	1.8\%	-0.5\%	-1.5\%	-4.6\%	-6.7\%	-8.1\%	-6.6\%	-4.6\%	-0.2\%	-1.3\%	-0.4\%	0.1\%	0.3\%	0.5\%								
	8 yr	3.3\%	2.2\%	0.2\%	-1.5\%	-2.3\%	-5.5\%	-7.1\%	-8.1\%	-6.7\%	-5.1\%	-0.3\%	-1.4\%	0.3\%	0.2\%	0.6\%									
	9 yr	1.6\%	0.6\%	-0.7\%	-2.3\%	-3.0\%	-5.9\%	-6.9\%	-8.2\%	-6.9\%	-5.7\%	-0.4\%	-0.7\%	0.4\%	0.5\%										
	10 yr		-0.3\%	-1.4\%	-3.0\%	-3.3\%	-5.7\%	-6.9\%	-8.4\%	-7.2\%	-6.4\%	0.3\%	-0.5\%	0.5\%											

FORECAST ERROR
(PERCENT)

 4.8%
3.9%
4.9%
5.9%
10.4%
6.5%
4.8%
0.7%
0.1%
-0.8%

$$
\begin{array}{ll}
-3.6 \% \\
-4.1 \% & 2.9 \% \\
-5.7 \% & 4.5 \% \\
-10.0 \% & 1.5 \% \\
-10.5 \% & 1.0 \% \\
-12.7 \% & -. .5 \% \\
-10.9 \% & 0.3 \% \\
-12.5 \% & -1.5 \% \\
-12.7 \% & -1.7 \% \\
-16.6 \% & -6.10 \% \\
& -5.9 \%
\end{array}
$$

$$
\begin{aligned}
& -0.2 \% \\
& 1.4 \% \\
& 0.2 \% \\
& 1.2 \% \\
& -2.4 \% \\
& -0.5 \% \\
& -4.0 \% \\
& -1.0 \% \\
& -2.4 \% \\
& 3.9 \%
\end{aligned}
$$

$$
\begin{aligned}
& -0.4 \% \\
& -.4 \% \\
& -.4 .4 \% \\
& -.9 \% \\
& -.6 .6 \% \\
& -.4 \% \\
& -.4 .5 \% \\
& 2.4 \% \\
& 2.8 \%
\end{aligned}
$$

$$
\begin{aligned}
& -2.1 \% \\
& -.9 \% \\
& -.9 .9 \% \\
& -. .2 \% \\
& -.30 \% \\
& -.3 .9 \% \\
& .3 .4 \% \\
& 4.5 \%
\end{aligned}
$$

$$
\begin{aligned}
& -3.8 \% \\
& -1.9 \% \\
& -4.8 \% \\
& -.88 \% \\
& -1.8 \% \\
& -.38 \% \\
& -.3 .0 \%
\end{aligned}
$$

$$
\begin{array}{ll}
-0.8 \% \\
-4.8 \% & -4.3 \% \\
-.13 \% & -.7 \% \\
-.27 \% & -.2 \% \\
-.44 \% & -.3 \% \\
-.3 .5 \% & -.4 \% \\
\hline
\end{array}
$$

$$
\begin{aligned}
& -1.2 \% \\
& -.23 \% \\
& -.37 \% \\
& -2.8 \%
\end{aligned}
$$

0.1\%-2.0%-7	
	-6.8\%
	-7.9\%
	-8.7\%
	-12.5\%
	-12.7\%
	-13.2\%
	-11.3\%

-0.6\%		-0.2\%	
0.8\%	-0.4\%	1.4\%	-0.4\%
-0.5\%	0.3\%	0.2\%	-0.1\%
0.7\%	-1.2\%	1.2\%	-4.1\%
-1.4\%	-0.9\%	-2.4\%	-2.5\%
-0.6\%	-3.7\%	-0.5\%	-6.1\%
-4.1\%	-0.9\%	-4.0\%	-3.1\%
-1.6\%	-4.2\%	-1.0\%	-4.5\%
-5.2\%	-1.3\%	-2.4\%	1.8\%

-0.4\%	-2.1\%	-3.8\%	-0.8\%	-4.3\%	-1.2\%	-1.8\%	-4.0\%	-0.2\%
-0.3\%	-4.9\%	-1.9\%	-4.8\%	-0.7\%	-2.3\%	-3.9\%	-3.3\%	
-4.4\%	-2.9\%	-4.8\%	-1.3\%	-2.0\%	-3.7\%	-3.5\%		
-2.9\%	-6.2\%	-0.8\%	-2.7\%	-3.2\%	-2.8\%			
-6.6\%	-3.0\%	-1.8\%	-4.4\%	-2.4\%				
-3.4\%	-3.9\%	-3.8\%	-3.5\%					
-4.5\%	3.4\%	-3.0\%						
2.4\%	4.5\%							
2.8\%								

$$
\begin{aligned}
& \begin{array}{l}
1.6 \% \\
3.1 \% \\
4.0 \% \\
8.4 \% \\
4.7 \% \\
3.6 \% \\
-0.10 \% \\
-0.5 \% \\
-1.0 \% \\
-5.0 \%
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
3.1 \% \\
7.3 \% \\
7.3 \% \\
3.6 \% \\
-2.5 \% \\
-3.3 \% \\
-4.2 \% \\
-8.3 \% \\
-8.6 \% \\
-1.9 \%
\end{array}
\end{aligned}
$$

```
Florida Power \& Light Company
Docket No. 20240000-
Staff's First Data Request
Request No. 10
Attachment No. 1 of 1
Tab 2 of 2
```

TYSP																							
2001-2012	2002-2011	2003-2012	2004-2013	2005-2014	2006-2015	2007-2016	2008-2017	2009-2018	2010-2019	2011-2020	2012-2021	2013-2022	2014-2023	2015-2024	2016-2025	2017-2026	2018-2027	2019-2028	2020-2029	2021-2030	2022-2031	2023-2032	
19,226	18,968																						
19,982	19,451	20,190																					
20,382	19,842	19,986	20,081																				
20,780	20,252	20,447	20,447	20,081																			
21,173	20,653	20,922	20,922	21,241	21,792																		
21,568	20,970	21,385	21,385	21,777	22,216	22,247																	
21,881	21,272	21,784	21,784	22,221	22,640	22,592	22,332																
22,249	21,668	22,236	22,236	22,738	23,093	23,045	22,684	18,697															
22,613	22,039	22,685	22,685	23,258	23,532	23,478	23,345	18,676	20,439														
	22,458	23,181	23,181	23,795	23,941	23,900	23,824	18,962	20,514	21,107													
		23,683	23,683	24,336	24,351	24,310	24,299	19,505	20,702	21,380	20,871												
		24,194	24,194	24,892	24,783	24,722	24,746	19,846	20,948	21,490	20,993	20,230											
			24,716	25,460	25,250	25,142	26,016	20,852	21,927	22,292	21,757	21,504	19,856										
					25,902	25,729	26,660	21,530	22,484	22,657	22,110	22,012	20,903	21,118									
						26,327	27,325	21,993	22,822	22,821	22,273	22,235	21,421	21,333	20,228								
							28,011	22,459	23,158	22,985	22,401	22,414	21,661	21,437	21,103	20,347							
								22,966	23,527	23,171	22,550	22,597	21,897	21,537	21,307	20,647	19,592						
									23,905	23,365	22,702	22,771	22,107	21,717	21,537	20,788	19,962	19,515					
										23,582	22,891	22,960	22,309	21,876	21,701	20,925	20,141	19,873	19,946				
											23,112	23,167	22,508	21,992	21,898	21,103	20,374	20,233	20,225	20,054			Winter Peak
												23,199 23,528	22,523 22,811	21,905 22,065	21,870 22,069	22,979 23,138	22,399 22,666	${ }_{22,456}^{22,180}$	22,265 22,487	22,440 22,829	22,530 22,911	22,613	1.16\% 1.10%

orecast erro
(PERCENT)

YEAR	WN Actual	2001-2012	2002-2011	2003-2012	2004-2013	2005-2014	2006-2015	2007-2016	2008-2017	2009-2018	2010-2019	2011-2020	2012-2021	2013-2022	${ }_{\text {2014-2023 }}$	${ }_{\text {2015-2024 }}$	2016-2025	2017-2026	2018-2027	2019-2028	2020-2029	2021-2030	2022-2031 2023-2032
2002	17,979	-6.5\%	-5.2\%																				
2003	18,026	-9.8\%	-7.3\%	-10.7\%																			
2004	18,353	-10.0\%	-7.5\%	-8.2\%	-8.6\%																		
2005	19,349	-6.9\%	-4.5\%	-5.4\%	-5.4\%	-3.6\%																	
2006	19,334	-8.7\%	-6.4\%	-7.6\%	-7.6\%	-9.0\%	-11.3\%																
2007	18,525	-14.1\%	-11.7\%	-13.4\%	-13.4\%	-14.9\%	-16.6\%	-16.7\%															
2008	16,832	-23.1\%	-20.9\%	-22.7\%	-22.7\%	-24.2\%	-25.7\%	-25.5\%	-24.6\%														
2009	18,891	-15.1\%	-12.8\%	-15.0\%	-15.0\%	-16.9\%	-18.2\%	-18.0\%	-16.7\%	1.0\%													
2010	19,936	-11.8\%	-9.5\%	-12.1\%	-12.1\%	-14.3\%	-15.3\%	-15.1\%	-14.6\%	6.7\%	-2.5\%												
2011	18,647		-17.0\%	-19.6\%	-19.6\%	-21.6\%	-22.1\%	-22.0\%	-21.7\%	-1.7\%	-9.1\%	-11.7\%											
2012	17,941			-24.2\%	-24.2\%	-26.3%	-26.3%	-26.2%	-26.2%	-8.0\%	-13.3\%	-16.1\%	-14.0\%										
2013	17,720				-26.8\%	-28.8\%	-28.5\%	-28.3\%	-28.4\%	-10.7\%	-15.4\%	-17.5\%	-15.6\%	-12.4\%									
2014	19,737					-22.5\%	-21.8\%	-21.5\%	-24.1\%	-5.4\%	-10.0\%	-11.5\%	-9.3\%	-8.2\%	-0.6\%								
2015	19,809						-23.5\%	-23.0\%	-25.7%	-8.0%	-11.9\%	-12.6\%	-10.4\%	-10.0\%	-5.2\%	-6.2\%							
2016	20,656							-21.5\%	-24.4\%	-6.1\%	-9.5\%	-9.5\%	-7.3\%	-7.1\%	-3.6\%	-3.2\%	2.1\%						
2017	18,110								-35.3\%	-19.4\%	-21.8\%	-21.2%	-19.2\%	-19.2\%	-16.4\%	-15.5\%	-14.2\%	-11.0\%					
2018	19,339									-15.8\%	-17.8\%	-16.5\%	-14.2\%	-14.4\%	-11.7\%	-10.2\%	-9.2\%	-6.3\%	-1.3\%				
2019	18,831										-21.2\%	-19.4\%	-17.0\%	-17.3\%	-14.8\%	-13.3\%	-12.6\%	-9.4\%	-5.7\%	-3.5\%			
2020	17,703											-24.9\%	-22.7\%	-22.9\%	-20.6\%	-19.1\%	-18.4\%	-15.4\%	-12.1\%	-10.9\%	-11.2\%		
2021	19,947												-13.7\%	-13.9\%	-11.4\%	-9.3\%	-8.9\%	-5.5\%	-2.1\%	-1.4\%	-1.4\%	-0.5\%	
2022	20,950													-9.7\%	-7.0\%	-4.4\%	-4.2\%	-8.8\%	-6.5\%	-5.5\%	-5.9\%		
2023	20,883														-8.5\%	-5.4\%	-5.4\%	-9.7\%	-7.9\%	-7.0\%	-7.1\%	-8.5\%	-8.9\% -7.7\%
	1 yr	-6.5\%	-5.2\%	-10.7\%	-8.6\%	-3.6\%	-11.3\%	-16.7\%	-24.6\%	1.0\%	-2.5\%	-11.7\%	-14.0\%	-12.4\%	-0.6\%	-6.2\%	2.1\%	-11.0\%	-1.3\%	-3.5\%	-11.2\%	-0.5\%	-7.0\% -7.7\%
	2 yr	-9.8\%	-7.3\%	-8.2\%	-5.4\%	-9.0\%	-16.6\%	-25.5\%	-16.7\%	6.7\%	-9.1\%	-16.1\%	-15.6\%	-8.2\%	-5.2\%	-3.2\%	-14.2\%	-6.3\%	-5.7\%	-10.9\%	-1.4\%	-6.6\%	-8.9\%
	3 yr	-10.0\%	-7.5\%	-5.4\%	-7.6\%	-14.9\%	-25.7\%	-18.0\%	-14.6\%	-1.7\%	-13.3\%	-17.5\%	-9.3\%	-10.0\%	-3.6\%	-15.5\%	-9.2\%	-9.4%	-12.1\%	-1.4%	-5.9%	-8.5\%	
	4 yr	-6.9\%	-4.5\%	-7.6\%	-13.4\%	-24.2\%	-18.2\%	-15.1\%	-21.7\%	-8.0\%	-15.4\%	-11.5\%	-10.4\%	-7.1\%	-16.4\%	-10.2\%	-12.6\%	-15.4%	-2.1\%	-5.5%	-7.1\%		
	5 yr	-8.7\%	-6.4\%	-13.4\%	-22.7\%	-16.9\%	-15.3\%	-22.0\%	-26.2\%	-10.7\%	-10.0\%	-12.6\%	-7.3\%	-19.2\%	-11.7\%	-13.3\%	-18.4\%	-5.5\%	-6.5\%	-7.0\%			
	6 yr	-14.1\%	-11.7\%	-22.7%	-15.0\%	-14.3\%	-22.1\%	-26.2%	-28.4%	-5.4\%	-11.9\%	-9.5\%	-19.2\%	-14.4\%	-14.8\%	-19.1\%	-8.9\%	-8.8\%	-7.9\%				
	7 yr	-23.1\%	-20.9\%	-15.0\%	-12.1\%	-21.6\%	-26.3\%	-28.3\%	-24.1%	-8.0\%	-9.5\%	-21.2%	- 14.2%	-17.3\%	-20.6\%	-9.3%	-4.2%	-9.7\%					
	8 yr	- 15.1%	-12.8\%	-12.1\%	-19.6\%	-26.3%	-28.5\%	-21.5\%	-25.7%	-6.1\%	-21.8%	-16.5\%	-17.0\%	-22.9\%	-11.4\%	-4.4\%	-5.4\%						
	$9 \mathrm{yr}$	-11.8\%	-9.5%	-19.6\%	-24.2%	-28.8%	-21.8%	-23.0%	-24.4%	-19.4%	-17.8%	-19.4%	-22.7%	-13.9\%	-7.0%	-5.4\%							
	10 yr		-17.0\%	-24.2\%	-26.8\%	-22.5\%	-23.5\%	-21.5\%	-35.3\%	-15.8\%	-21.2\%	-24.9\%	-13.7\%	-9.7\%	-8.5\%								

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 16
Attachment No. 1 of 1
Tab 1 of 1

Summer Peak			
	Forecast	High Band	Low Band
2024	27,733	28,155	27,307
2025	27,987	28,414	27,555
2026	28,221	28,654	27,786
2027	28,425	28,864	27,987
2028	28,767	29,211	28,323
2029	29,108	29,557	28,661
2030	29,492	29,947	29,043
2031	29,946	30,406	29,494
2032	30,592	31,057	30,134
2033	31,226	31,697	30,763

Notes: Summer Peak Forecast is from Schedule 3.1, Column (2) and does not include incremental conservation, cummulative load management, or incremental load management

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 20
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year 2024
Staff's Data Request \# 1
Question No. 20

Year	Number of$\mathbf{E V s}^{(1)}$	Number of Public EV Charging Stations ${ }^{(2)}$	Number of Public DCFC EV Charging Stations. ${ }^{(3)}$	Cumulative Impact of EVs		
				Summer Demand	Winter Demand	Annual Energy
				(MW)	(MW)	(GWh)
2024	293,845	12,770	3,190	86	37	352
2025	428,132	20,601	4,944	200	87	816
2026	590,749	29,392	6,860	341	147	1,388
2027	787,129	38,516	8,993	514	222	2,093
2028	1,018,957	48,807	11,363	723	313	2,945
2029	1,287,414	60,490	13,951	972	420	3,957
2030	1,589,148	72,659	16,234	1,259	544	5,124
2031	1,929,264	86,389	18,780	1,602	693	6,524
2032	2,300,764	100,511	21,534	1,994	862	8,118
2033	2,695,021	118,956	24,927	2,382	1,030	9,696

Notes

1) Number of EVs includes plug-in hybrid electric vehicles and battery electric vehicles.
2) Charging Stations represent estimated number of ports in FPL service territory. Public DCFC EV Charging Station ports included in total Number of Public EV Charging Stations.
3) MW and GWh are incremental from the end of 2023.

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Reques
Request No. 27
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request $\# \quad 1$

TABLE 27A - FPL Total Demand Response									
Year	Beginning Year: Number of Customers	Available Capacity (MW)		New Customers Added	Added Capacity (MW)		Customers Lost	Lost Capacity (MW)	
		Sum	Win		Sum	Win		Sum	Win
2014	847,507	1,857	1,419	11,282	38	28	26,638	103	87
2015	832,151	1,703	1,371	4,901	21	15	12,574	33	30
2016	824,478	1,716	1,312	7,926	26	20	25,479	62	54
2017	806,925	1,737	1,337	7,547	40	30	41,865	62	50
2018	772,607	1,729	1,339	7,983	56	39	48,566	77	61
2019	732,024	1,730	1,312	8,739	33	26	16,314	35	25
2020	724,450	1,734	1,316	4,766	36	25	12,427	47	30
2021	716,787	1,712	1,308	3,049	37	28	9,348	30	24
2022	710,512	1,708	1,319	3,359	23	19	16,842	33	27
2023	697,029	1,767	1,336	3,562	39	27	29,399	60	45

TABLE 27B - FPL Residential On Call Program									
Year	Beginning Year: Number of Customers	Available Capacity (MW)		New Customers Added	Added Capacity (MW)		Customers Lost	Lost Capacity (MW)	
		Sum	Win		Sum	Win		Sum	Win
2014	824,883	1,010	828	10,395	22	21	25,204	54	51
2015	810,074	878	822	4,422	9	10	12,041	26	27
2016	802,455	882	742	7,302	15	15	24,689	52	51
2017	785,068	910	759	7,226	15	15	41,271	54	47
2018	751,023	866	750	7,771	16	14	48,151	68	55
2019	710,643	852	706	8,631	20	16	15,673	29	23
2020	703,601	845	702	4,674	10	9	11,758	21	20
2021	696,517	830	689	3,002	8	9	8,932	18	20
2022	690,587	827	681	3,300	8	10	16,062	22	22
2023	677,825	814	670	3,406	10	9	28,289	36	32

TABLE 27C - FPL Business On Call Program									
Year	Beginning Year: Number of Customers	Available Capacity (MW)		New Customers Added	Added Capacity (MW)		CustomersLost	Lost Capacity (MW)	
		Sum	Win		Sum	Win		Sum	Win
2014	21,623	103	0	871	5	0	1,332	6	0
2015	21,162	103	0	462	3	0	525	4	0
2016	21,099	103	0	606	3	0	781	6	0
2017	20,924	80	0	296	1	0	586	5	0
2018	20,634	80	0	163	1	0	400	1	0
2019	20,397	78	0	87	0	0	630	3	0
2020	19,854	75	0	50	1	0	651	4	0
2021	19,253	72	0	25	0	0	395	2	0
2022	18,883	71	0	39	1	0	760	3	0
2023	18,162	69	0	94	1	0	1,078	4	0

TABLE 27D - FPL Commercial/Industrial Load Control Program (CILC)									
Year	Beginning Year: Number of Customers	Available Capacity (MW)		New Customers Added	Added Capacity (MW)		Customers Lost	Lost Capacity (MW)	
		Sum	Win		Sum	Win		Sum	Win
2014	437	483	422	0	0	0	78	32	27
2015	359	459	379	0	0	0	2	1	1
2016	357	461	394	0	0	0	4	2	1
2017	353	462	392	0	0	0	1	1	1
2018	352	466	388	0	0	0	4	2	0
2019	348	465	389	0	0	0	5	1	1
2020	343	465	391	0	0	0	8	13	5
2021	335	459	387	0	0	0	7	5	2
2022	328	454	388	0	0	0	4	1	1
2023	324	455	386	0	0	0	7	5	3

Year	Beginning Year: Number of Customers	Available Capacity (MW)		New Customers Added	Added Capacity (MW)		CustomersLost	Lost Capacity (MW)	
		Sum	Win		Sum	Win		Sum	Win
2014	520	239	150	16	11	7	13	6	4
2015	523	243	153	17	8	5	4	2	1
2016	536	251	157	18	8	5	5	3	2
2017	549	265	166	25	23	15	5	2	1
2018	569	293	178	49	39	25	6	2	2
2019	612	320	202	21	13	10	6	2	1
2020	627	341	212	42	26	17	8	3	1
2021	661	342	224	22	29	18	13	4	2
2022	670	338	232	20	13	9	12	5	3
2023	678	410	263	62	28	18	5	8	5

Year	Beginning Year: Number of Customers	Available Capacity (MW)		New Customers Added	Added Capacity (MW)		Customers Lost	Lost Capacity (MW)	
		Sum	Win		Sum	Win		Sum	Win
2014	44	22	19	0	0	0	11	6	5
2015	33	19	18	0	0	0	2	1	1
2016	31	20	19	0	0	0	0	0	0
2017	31	21	20	0	0	0	2	1	1
2018	29	24	22	0	0	0	5	4	4
2019	24	15	16	0	0	0	0	0	0
2020	24	9	9	0	0	0	3	6	4
2021	21	9	8	0	0	0	1	0	0
2022	20	9	8	0	0	0	0	0	0
2023	20	12	12	0	0	0	0	0	0

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 28
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year 2024
Staff's Data Request $\# \quad 1$
Question No.
28

TABLE 28A - FPL Total Demand Response										
Year	Summer					Winter				
	Number of Events	Average Event Size		Maximum Event Size		Number of Events	Average Event Size		Maximum Event Size	
		MW	Number of Customers	MW	Number of Customers		MW	Number of Customers	MW	Number of Customers
2014	4	174	598,725	273	719,331	2	94	590,165	104	590,165
2015	4	132	305,059	310	549,041	0	0	0	0	0
2016	1	2	2,374	2	2,374	0	0	0	0	0
2017	3	67	560,173	80	559,579	2	65	531,063	80	531,063
2018	1	75	477,930	75	477,930	1	65	112,260	65	112,260
2019	1	138	466,099	138	466,099	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0	0	0
2022	0	0	0	0	0	0	0	0	0	0
2023	2	100	473,922	100	476,191	0	0	0	0	0

TABLE 28B - FPL Residential On Call \& Business On Call Programs										
Year	Summer					Winter				
	Number of Events	Average Event Size		Maximum Event Size		Number of Events	Average Event Size		Maximum Event Size	
		MW	Number of Customers	MW	Number of Customers		MW	Number of Customers	MW	Number of Customers
2014	4	174	598,725	273	719,331	2	94	590,165	104	590,165
2015	4	132	305,059	310	549,041	0	0	0	0	0
2016	1	2	2,374	2	2,374	0	0	0	0	0
2017	3	67	560,173	80	559,579	2	65	531,063	80	531,063
2018	1	75	477,930	75	477,930	1	65	112,260	65	112,260
2019	1	138	466,099	138	466,099	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0	0	0
2022	0	0	0	0	0	0	0	0	0	0
2023	2	100	473,922	100	476,191	0	0	0	0	0

TABLE 28C - FPL Commercial/Industrial Load Control (CILC),

TABLE 28C - FPL Commercial/Industrial Load Control (CILC), Commercial/Industrial Demand Reduction (CDR), Curtailable Service (CS) \& Curtailable Load (CL)										
			Summe					Winte		
			vent Size	Max	Event Size			vent Size		Event Size
		MW	Number of Customers	MW	Number of Customers	Events	MW	Number of Customers	MW	Number of Customers
2014	0	0	0	0	0	0	0	0	0	0
2015	0	0	0	0	0	0	0	0	0	0
2016	0	0	0	0	0	0	0	0	0	0
2017	0	0	0	0	0	0	0	0	0	0
2018	0	0	0	0	0	0	0	0	0	0
2019	0	0	0	0	0	0	0	0	0	0
2020	0	0	0	0	0	0	0	0	0	0
2021	0	0	0	0	0	0	0	0	0	0
2022	0	0	0	0	0	0	0	0	0	0
2023	0	0	0	0	0	0	0	0	0	0
Notes										
(Include Notes Here)										

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 29
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year
Staff's Data Request $\#$
Question No.

TABLE 29A - FPL Total Demand Response							
Year	Average Number of Customers	Summer Peak			Winter Peak		
		Activated During Peak?	Number of Customers Activated	Capacity Activated	Activated During Peak?	Number of Customers Activated	Capacity Activated
		(Y/N)		(MW)	(Y/N)		(MW)
2014	839,829	N	0	0	N	0	0
2015	828,315	N	0	0	N	0	0
2016	815,702	N	0	0	N	0	0
2017	789,766	N	0	0	N	0	0
2018	752,316	N	0	0	N	0	0
2019	728,238	N	0	0	N	0	0
2020	720,618	N	0	0	N	0	0
2021	713,638	N	0	0	N	0	0
2022	703,771	N	0	0	N	0	0
2023	684,113	N	0	0	N	0	0

TABLE 29B - FPL Residential On Call and FPL Business On Call Programs							
Year	Average Number of Customers	Summer Peak			Winter Peak		
		Activated During Peak?	Number of Customers Activated	Capacity Activated	Activated During Peak?	Number of Customers Activated	Capacity Activated
		(Y/N)		(MW)	(Y/N)		(MW)
2014	838,871	N	0	0	N	0	0
2015	827,395	N	0	0	N	0	0
2016	814,773	N	0	0	N	0	0
2017	788,825	N	0	0	N	0	0
2018	751,349	N	0	0	N	0	0
2019	727,248	N	0	0	N	0	0
2020	719,613	N	0	0	N	0	0
2021	712,620	N	0	0	N	0	0
2022	702,729	N	0	0	N	0	0
2023	683,054	N	0	0	N	0	0

TABLE 29C - FPL Commercial/Industrial Load Control (CILC), Commercial/Industrial Demand Reduction (CDR), Curtailable Service (CS) \& Curtailable Load (CL)							
			Summer Peal			Winter Peak	
Year	Average Number of Customers	Activated During Peak?	Number of Customers Activated	Capacity Activated	Activated During Peak?	Number of Customers Activated	Capacity Activated
		(Y/N)		(MW)	(Y/N)		(MW)
2014	958	N	0	0	N	0	0
2015	920	N	0	0	N	0	0
2016	929	N	0	0	N	0	0
2017	942	N	0	0	N	0	0
2018	968	N	0	0	N	0	0
2019	989	N	0	0	N	0	0
2020	1,006	N	0	0	N	0	0
2021	1,018	N	0	0	N	0	0
2022	1,042	N	0	0	N	0	0
2023	1,059	N	0	0	N	0	0
Notes							
(Include Notes Here)							

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 30
Attachment No. 1 of 1

Tab 1 of 1

TYSP Year 2024
Staff's Data Request \# 1
Question No. 30

Loss of Load Probability, Reserve Margin, and Expected Unserved Energy
Base Case Load Forecast

Year	Annual Isolated			Annual Assisted		
	Loss of Load Probability (Days/Yr)	Reserve Margin (\%) (Including Firm Purchases)	Expected Unserved Energy (MWh)	Loss of Load Probability (Days/Yr)	Reserve Margin (\%) (Including Firm Purchases)	Expected Unserved Energy (MWh)
2024	0.000061	22.7	0	0.000049	22.7	0
2025	0.000106	23.4	0	0.000065	23.4	0
2026	0.000363	25.2	0	0.000218	25.2	0
2027	0.004989	25.3	0	0.003470	25.3	0
2028	0.000058	24.8	0	0.000036	24.8	0
2029	0.073290	23.6	0	0.046601	23.6	0
2030	0.000010	23.0	0	0.000008	23.0	0
2031	0.000030	22.0	0	0.000023	22.0	0
2032	0.000128	20.0	0	0.000122	20.0	0
2033	0.000538	20.0	0	0.000344	20.0	0

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 31
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \# 1
Question No.
Existing Generating Unit Operating Performance

Plant Name	Unit No.	Planned Outage Factor (POF)		Forced Outage Factor (FOF)		Equivalent Availability Factor (EAF)		Average Net Operating Heat Rate (ANOHR)		
		Historical	Projected	Historical	Projected	Historical	Projected	Historical		Projected
Cape Canaveral Energy Center	3	7.0\%	6.1\%	1.6\%	1.4\%	85.1\%	87.0\%	6,726		6,742
Dania Beach Energy Center ${ }^{2}$	7	4.7\%	5.1\%	1.2\%	2.0\%	79.9\%	87.4\%	6,499		6,375
Fort Myers	2	4.2\%	5.5\%	0.7\%	0.9\%	89.8\%	88.0\%	7,165		7,341
Fort Myers	3	0.7\%	7.3\%	0.6\%	1.0\%	96.2\%	86.2\%	10,946		10,255
Fort Myers	GTs	0.0\%	0.0\%	1.5\%	1.0\%	97.3\%	93.5\%	16,608		14,762
GCEC ${ }^{4}$	4	2.2\%	4.1\%	0.1\%	1.0\%	91.3\%	92.2\%	13,043		12,753
GCEC 5	5	2.8\%	2.8\%	1.3\%	1.0\%	88.9\%	90.7\%	13,003		12,391
GCEC	6	15.9\%	5.3\%	1.4\%	1.2\%	67.3\%	88.0\%	12,020		10,955
GCEC	7	11.9\%	5.9\%	1.3\%	1.2\%	77.6\%	87.4\%	11,954		10,721
GCEC 9	8	1.1\%	6.6\%	0.4\%	0.9\%	97.1\%	87.0\%	10,946		10,811
Daniel ${ }^{3}$	1	0.1\%	0.0\%	2.1\%	1.1\%	89.4\%	93.4\%	9,311		N/A
Daniel ${ }^{3}$	2	13.4\%	0.0\%	16.5\%	1.1\%	64.6\%	93.4\%	11,748		N/A
Lansing Smith CC	3	2.1\%	6.4\%	1.1\%	0.8\%	90.3\%	87.3\%	7,016		7,146
Lansing Smith ${ }^{6}$ CT	3A	0.0\%	n/a	0.0\%	n/a	97.7\%	n/a	33,903		14,038
Lauderdale	6	1.4\%	8.9\%	0.9\%	1.0\%	95.3\%	84.6\%	10,835		10,272
Lauderdale	GTs	0.2\%	0.0\%	2.2\%	1.0\%	97.5\%	93.5\%	12,261		27,665
Manatee ${ }^{1}$	1	0.0\%	n/a	0.5\%	n/a	97.6\%	n/a	12,370	N/A	
Manatee ${ }^{1}$	2	0.0\%	n/a	0.3\%	n/a	97.1\%	n/a	12,096	N/A	
Manatee	3	7.2\%	4.8\%	0.5\%	0.8\%	87.9\%	88.9\%	6,912		6,891
Martin	3	6.1\%	5.2\%	0.7\%	0.8\%	87.8\%	88.6\%	7,521		7,275
Martin	4	6.0\%	4.7\%	1.0\%	0.8\%	87.1\%	89.0\%	7,567		7,277
Martin	8	3.8\%	5.2\%	0.7\%	1.3\%	90.7\%	88.0\%	6,982		6,843
Okeechobee Energy Center	1	5.9\%	6.2\%	0.6\%	2.0\%	82.1\%	86.3\%	6,350		6,355
Pea Ridge ${ }^{7}$	1-3	n/a		15,000						
Perdido ${ }^{8}$	1-2	n/a		9,900						
Port Everglades Energy Center	5	7.3\%	4.8\%	0.9\%	2.0\%	87.6\%	87.6\%	6,762		6,564
Riviera Beach Energy Center	5	6.3\%	5.2\%	0.7\%	1.4\%	89.3\%	87.9\%	6,645		6,772
Sanford	4	3.6\%	6.0\%	0.3\%	0.5\%	91.5\%	88.0\%	7,147		7,152
Sanford	5	3.8\%	3.9\%	0.4\%	0.5\%	92.3\%	90.0\%	7,215		7,030
Scherer	3	6.3\%	5.1\%	0.5\%	1.1\%	90.8\%	88.3\%	11,472		10,882
St Lucie	1	5.8\%	4.8\%	2.9\%	2.4\%	91.3\%	92.9\%	10,454		10,480
St Lucie	2	6.3\%	5.0\%	0.2\%	2.4\%	93.4\%	92.6\%	10,348		10,428
Turkey Point	3	6.3\%	5.5\%	0.7\%	2.4\%	93.0\%	92.1\%	10,354		10,691
Turkey Point	4	6.8\%	4.5\%	1.7\%	2.4\%	91.5\%	93.1\%	10,231		10,730
Turkey Point	5	6.3\%	5.5\%	0.4\%	0.7\%	88.1\%	88.2\%	7,098		6,838
West County Energy Center	1	6.5\%	4.9\%	0.5\%	1.0\%	85.5\%	88.5\%	6,975		6,719
West County Energy Center	2	10.5\%	5.4\%	0.3\%	1.0\%	85.4\%	88.1\%	6,938		6,729
West County Energy Center	3	10.9\%	6.3\%	0.5\%	1.0\%	83.9\%	87.2\%	7,022		6,720

NOTE: Historical - average of past three years
Projected - average of next ten years

[^0]Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 32
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \ddagger	1
Question No.	32

Facility Name	Unit No.	County Location	Unit Type	Primary Fuel	Commercial In-Service		Gross Capacity (MW)		Net Capacity (MW)		Firm Capacity (MW)		Capacity Factor $(\%)$
					Mo	Yr	Sum	Win	Sum	Win	Sum	Win	
Cape Canaveral	3	Brevard County	CC	NG	Apr	2013	1,307	1,435	1,290	1,418	1,290	1,418	63.49
Dania Beach Clean Energy Center	7	$\begin{gathered} \hline \text { Broward } \\ \text { County } \\ \hline \end{gathered}$	CC	NG	Jan	2022	1,268	1,256	1,246	1,234	1,246	1,234	58.55
Daniel	1	Jackson County	FS	Coal	Sep	1977	273	273	251	251	251	251	2.85
Daniel	2	Jackson County	FS	Coal	Jun	1981	273	273	251	251	251	251	2.85
Fort Myers	2	$\begin{gathered} \hline \text { Lee } \\ \text { County } \\ \hline \end{gathered}$	CC	NG	Jun	2002	1,844	1,869	1,808	1,869	1,808	1,869	69.97
Fort Myers	3	$\begin{gathered} \hline \text { Lee } \\ \text { County } \\ \hline \end{gathered}$	CT	NG	Jun	2003	854	880	852	868	852	868	23.60
Fort Myers	1, 9	Lee County	GT	FO2	May	1974	109	124	102	123	102	123	5.88
Fort Lauderdale	6	Broward County	CT	NG	Dec	2016	1,158	1,148	1,155	1,145	1,155	1,145	14.90
Fort Lauderdale	3, 5	Broward County	GT	NG	Aug	1970	70	74	69	73	69	73	0.34
Gulf Clean Energy Center	4	Escambia County	FS	Coal	Jul	1959	82	82	75	75	75	75	11.96
Gulf Clean Energy Center	5	Escambia County	FS	Coal	Jun	1961	82	82	75	75	75	75	11.81
Gulf Clean Energy Center	6	Escambia County	FS	Coal/NG	May	1970	330	330	315	315	315	315	17.72
Gulf Clean Energy Center	7	Escambia County	FS	Coal/NG	Aug	1973	520	520	496	496	496	496	27.97
Gulf Clean Energy Center	8	Escambia County	CT	NG	Dec	2021	928	926	926	924	926	924	19
Lansing Smith	3	Bay County	CC	NG	Apr	2019	651	675	641	665	641	665	78.05
Lansing Smith	A	$\begin{gathered} \text { Bay } \\ \text { County } \end{gathered}$	CT	LO	May	1971	33	41	32	40	32	40	0
Manatee*	1	Manatee County	ST	NG	Oct	1976	0	0	0	0	0	0	N/A

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 33
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \#	1
Question No.	33

Ten-Year Site Plan
Staff's First Data Request
Request No. 34
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024

Staff's Data Request $\# 1$
Question No.

Facility Name	Unit No.	County Location	Unit Type	Primary Fuel	Commercial In-Service		Gross Capacity (MW)		Net Capacity (MW)		Firm Capacity (MW)		Capacity Factor (\%)
					Mo	Yr	Sum	Win	Sum	Win	Sum	Win	
DeSoto Solar	1	DeSoto County	PV	Solar	Oct	2009	25.0	25.0	25.0	25.0	10.2	0.7	15.3
Space Coast Solar	1	Brevard County	PV	Solar	Apr	2010	10	10	10	10	3.7	0.1	14.6
Babcock Ranch Solar	1	Charlotte County	PV	Solar	Dec	2016	74.5	74.5	74.5	74.5	37.4	0.0	22.4
Citrus Solar	1	DeSoto County	PV	Solar	Dec	2016	74.5	74.5	74.5	74.5	38.8	0.0	22.8
Manatee Solar	1	Manatee County	PV	Solar	Dec	2016	74.5	74.5	74.5	74.5	38.7	0.0	18.2
Coral Farms Solar	1	Putnam County	PV	Solar	Jan	2018	74.5	74.5	74.5	74.5	34.8	0.0	20.6
Horizon Solar	1	Alachua / Putnam County	PV	Solar	Jan	2018	74.5	74.5	74.5	74.5	39.3	1.1	21.6
Indian River Solar	1	Indian River County	PV	Solar	Jan	2018	74.5	74.5	74.5	74.5	39.5	0.0	23.4
Wildflower Solar	1	DeSoto County	PV	Solar	Jan	2018	74.5	74.5	74.5	74.5	38.7	0.0	24.2
Barefoot Bay Solar	1	Brevard County	PV	Solar	Mar	2018	74.5	74.5	74.5	74.5	41.4	0.0	23.9
Blue Cypress Solar	1	Indian River County	PV	Solar	Mar	2018	74.5	74.5	74.5	74.5	39.8	0.0	22.9
Hammock Solar	1	Hendry County	PV	Solar	Mar	2018	74.5	74.5	74.5	74.5	38.9	0.0	23.2
Loggerhead Solar	1	St. Lucie County	PV	Solar	Mar	2018	74.5	74.5	74.5	74.5	38.2	0.0	22.2
Miami Dade Solar	1	Miami-Dade County	PV	Solar	Jan	2019	74.5	74.5	74.5	74.5	36.1	0.0	21.2
Pioneer Trail Solar	1	Volusia County	PV	Solar	Jan	2019	74.5	74.5	74.5	74.5	35.6	0.0	20.1
Interstate Solar	1	St. Lucie County	PV	Solar	Jan	2019	74.5	74.5	74.5	74.5	37.9	0.0	22.5
Sunshine Gateway Solar	1	Columbia County	PV	Solar	Jan	2019	74.5	74.5	74.5	74.5	40.3	0.0	21.5
Sweetbay Solar	1	Martin County	PV	Solar	January	2020	74.5	74.5	74.5	74.5	31.2	0.0	19.4
Northern Preserve Solar	1	Baker County	PV	Solar	January	2020	74.5	74.5	74.5	74.5	33.6	0.0	19.3
Cattle Ranch Solar	1	Desoto County	PV	Solar	January	2020	74.5	74.5	74.5	74.5	36.1	0.0	22.7

Twin Lakes Solar	1	Putnam County	PV	Solar	January	2020	74.5	74.5	74.5	74.5	38.3	1.0	19.7
Blue Heron Solar	1	Hendry County	PV	Solar	January	2020	74.5	74.5	74.5	74.5	37.6	0.0	23.8
Babcock Preserve Solar	1	Charlotte County	PV	Solar	January	2020	74.5	74.5	74.5	74.5	37.2	0.0	24.7
Hibiscus Solar	1	Palm Beach County	PV	Solar	April	2020	74.5	74.5	74.5	74.5	36.7	0.0	23.9
Okeechobee Solar	1	Okeechobee County	PV	Solar	April	2020	74.5	74.5	74.5	74.5	36.2	0.0	23.8
Southfork Solar	1	Manatee County	PV	Solar	April	2020	74.5	74.5	74.5	74.5	43.2	0.0	27.7
Echo River Solar	1	Suwannee County	PV	Solar	April	2020	74.5	74.5	74.5	74.5	41.9	0.0	25.2
Blue Indigo Solar	1	Jackson County	PV	Solar	April	2020	74.5	74.5	74.5	74.5	50.0	0.0	21.5
Lakeside Solar	1	Okeechobee County	PV	Solar	December	2020	74.5	74.5	74.5	74.5	36.1	1.2	23.0
Trailside Solar	1	St. Johns County	PV	Solar	December	2020	74.5	74.5	74.5	74.5	39.6	1.0	22.2
Union Springs Solar	1	Union County	PV	Solar	December	2020	74.5	74.5	74.5	74.5	38.9	0.8	23.4
Egret Solar	1	Baker County	PV	Solar	December	2020	74.5	74.5	74.5	74.5	38.9	0.8	21.7
Nassau Solar	1	Nassau County	PV	Solar	December	2020	74.5	74.5	74.5	74.5	37.0	1.0	21.7
Magnolia Springs Solar	1	Clay County	PV	Solar	March	2021	74.5	74.5	74.5	74.5	38.1	1.1	23.2
Pelican Solar	1	St. Lucie County	PV	Solar	February	2021	74.5	74.5	74.5	74.5	37.9	1.2	24.3
Palm Bay Solar	1	Brevard County	PV	Solar	March	2021	74.5	74.5	74.5	74.5	39.8	0.8	25.0
Rodeo Solar	1	DeSoto County	PV	Solar	March	2021	74.5	74.5	74.5	74.5	36.7	1.5	24.3
Sabal Palm Solar	1	Palm Beach County	PV	Solar	April	2021	74.5	74.5	74.5	74.5	38.2	1.5	24.7
Willow Solar	1	Manatee County	PV	Solar	May	2021	74.5	74.5	74.5	74.5	35.8	1.3	25.4
Discovery Solar	1	Brevard County	PV	Solar	May	2021	74.5	74.5	74.5	74.5	36.9	1.0	22.8
Orange Blossom Solar	1	Indian River County	PV	Solar	May	2021	74.5	74.5	74.5	74.5	37.8	1.2	24.3
Fort Drum Solar	1	Okeechobee County	PV	Solar	June	2021	74.5	74.5	74.5	74.5	34.8	1.0	23.2
Blue Springs Solar	1	Jackson County	PV	Solar	December	2021	74.5	74.5	74.5	74.5	41.0	0.0	21.6
Cotton Creek Solar	1	Escambia County	PV	Solar	December	2021	74.5	74.5	74.5	74.5	40.9	0.0	22.2
Ghost Orchid Solar	1	Hendry County	PV	Solar	January	2022	74.5	74.5	74.5	74.5	33.3	2.0	22.3
Sawgrass Solar	1	Hendry County	PV	Solar	January	2022	74.5	74.5	74.5	74.5	33.0	1.9	22.5
Sundew Solar	1	St. Lucie County	PV	Solar	January	2022	74.5	74.5	74.5	74.5	35.2	1.9	23.7
Elder Branch Solar	1	Manatee County	PV	Solar	January	2022	74.5	74.5	74.5	74.5	30.7	2.4	27.8
Grove Solar	1	Indian River County	PV	Solar	January	2022	74.5	74.5	74.5	74.5	24.2	1.9	24.1
Immokalee Solar	1	Collier County	PV	Solar	January	2022	74.5	74.5	74.5	74.5	32.6	2.5	24.5

Everglades Solar	1	Miami-Dade County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	23.9	3.1	20.8
Pink Trail Solar	1	St. Lucie County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	21.8	2.6	23.6
Bluefield Preserve Solar	1	St. Lucie County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	21.9	1.9	23.1
Cavendish Solar	1	Okeechobee County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	29.7	4.3	19.1
Anhinga Solar	1	Clay County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	28.4	1.9	20.3
Blackwater River Solar	1	$\begin{gathered} \hline \text { Santa Rosa } \\ \text { County } \\ \hline \end{gathered}$	PV	Solar	January	2023	74.5	74.5	74.5	74.5	28.1	0.0	17.6
Chipola River Solar	1	Calhoun County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	34.3	0.0	18.6
Flowers Creek Solar	1	Calhoun County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	32.4	0.0	18.7
First City Solar	1	Escambia County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	28.6	0.0	17.2
Apalachee Solar	1	Jackson County	PV	Solar	January	2023	74.5	74.5	74.5	74.5	36.8	0.1	22.7
Wild Azalea Solar	1	Gadsden County	PV	Solar	February	2023	74.5	74.5	74.5	74.5	39.6	0.3	20.7
Chautauqua Solar	1	Walton County	PV	Solar	February	2023	74.5	74.5	74.5	74.5	40.3	0.1	22.2
Shirer Branch Solar	1	Calhoun County	PV	Solar	February	2023	74.5	74.5	74.5	74.5	38.2	0.2	20.8
Saw Palmetto Solar	1	Bay County	PV	Solar	April	2023	74.5	74.5	74.5	74.5	38.4	0.2	18.0
Cypress Pond Solar	1	Washington County	PV	Solar	April	2023	74.5	74.5	74.5	74.5	37.7	0.2	16.0
Etonia Creek Solar***	1	Putnam County	PV	Solar	June	2023	74.5	74.5	74.5	74.5	34.2	1.4	12.6
FPL Juno Beach Living Lab**	1	Various	PV	Solar	Various	Various	0.3	0.3	0.3	0.3	0.1	0.0	2.0
SolarNow(1)**	1	Various	PV	Solar	Various	$\begin{gathered} \hline 2016-2021 \\ \text { Various } \\ \hline \end{gathered}$	2.2	2.2	2.2	2.2	1.1	0.0	9.5
C\&I Solar Partnership**	1	Various	PV	Solar	Various	2016 Various	3	3	3	3	1.5	0.0	5.5
Gulf Small Solar**	1	Various	PV	Solar	Various	2021	0.1	0.1	0.1	0.1	0.0	0.0	8.2
Manatee Battery Storage*	1	Manatee County	BS	N/A	4th Q	2021	409	409	409	409	409	409	N/A
Sunshine Gateway Battery Storage*	1	Columbia County	BS	N/A	4th Q	2021	30	30	30	30	30	30	N/A
Echo River Battery Storage*	1	Suwannee County	BS	N/A	4th Q	2021	30	30	30	30	30	30	N/A
Notes													
Capacity factors are actuals for 2023 (1) The SolarNow Assets include addition of new FIU MAST campus solar canopy. *Battery Storage units do not have a traditional capacity factor and therefore are listed as N/A in the capacity factor column. **For small scale solar assets, CISPP, SolarNow, Living Lab, and Gulf Solar values are reported in AC Power, for consistency with Universal Solar reporting method. DC power was converted using an average DC/AC ratio of 1.14. Decrease in 2023 NCF for Living Lab primarily driven by underwater wiring issue at Blue Lagoon Floating Solar pilot (issue now corrected and site fully returned to service). CISSP NCF reflects loss of main step up transformer at Daytona Lot 10 and continued inverter reliabilty issues. ***Etonia Creek NCF reflects partial year operation due to June 2023 commissioning; calculated for full year basis for consistency with other sites' reporting.													

Ten-Year Site Plan
Staff's First Data Request
Request No. 35
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
$\begin{array}{lr}\text { Staff's Data Request } \neq & 1 \\ \text { Question No. } & 35\end{array}$

Facility Name	Unit No.	County Location	Unit Type	PrimaryFuel	Commercial In-Service		Gross Capacity (MW)		Net Capacity (MW)		Firm Capacity (MW)		Projected Capacity Factor (\%)
					Mo	Yr	Sum	Win	Sum	Win	Sum	Win	
Terrill Creek Solar	1	$\begin{gathered} \text { Clay } \\ \text { County } \\ \hline \end{gathered}$	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	35.8	1.4	27.6
Silver Palm Solar	1	$\begin{gathered} \text { Palm Beach } \\ \text { County } \end{gathered}$	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	32.3	3.5	26.9
Ibis Solar	1	$\begin{aligned} & \hline \text { Brevard } \\ & \text { County } \\ & \hline \end{aligned}$	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	35.6	3.0	28.4
Orchard Solar	1	St. Lucie / Indian River Counties	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	37.1	4.3	30.1
Beautyberry Solar	1	Hendry County	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	31.3	3.3	28.8
Turnpike Solar	1	$\begin{array}{\|c} \hline \text { Indian River } \\ \text { County } \\ \hline \end{array}$	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	35.2	3.2	28.7
Monarch Solar	1	Martin County	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	29.3	2.9	25.6
Caloosahatchee Solar	1	$\begin{aligned} & \hline \text { Hendry } \\ & \text { County } \\ & \hline \end{aligned}$	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	30.3	3.1	27.8
White Tail Solar	1	Martin County	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	38.1	3.7	29.4
Prairie Creek Solar	1	DeSoto County	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	32.5	2.3	29.0
Pineapple Solar	1	St. Lucie County	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	33.7	3.2	27.7
Canoe Solar	1	Okaloosa County	PV	Solar	Jan	2024	74.5	74.5	74.5	74.5	37.4	0.1	26.5
Sparkleberry Solar	1	Escambia County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	38.3	0.2	27.1
Sambucus Solar	1	Manatee County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	31.9	1.9	28.4
Three Creeks Solar	1	Manatee County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	33.5	2.1	29.1
Fourmile Creek	1	Calhoun County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	39.5	0.2	29.2
Big Juniper Creek Solar	1	Santa Rosa County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	36.5	0.0	26.2
Pecan Tree Solar	1	$\begin{aligned} & \hline \text { Walton } \\ & \text { County } \\ & \hline \end{aligned}$	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	40.9	0.1	28.7
Wild Quail Solar	1	Walton County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	43.2	0.1	30.2
Hawthorne Creek	1	$\begin{aligned} & \text { DeSoto } \\ & \text { County } \end{aligned}$	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	32.1	2.1	28.7
Nature Trail	1	Baker County	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	38.7	1.3	29.4
Woodyard Solar	1	$\begin{aligned} & \text { Hendry } \\ & \text { County } \end{aligned}$	PV	Solar	Mar	2024	74.5	74.5	74.5	74.5	30.4	3.2	28.1
Honeybell Solar	1	$\begin{gathered} \text { Okeechobee } \\ \text { County } \end{gathered}$	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	32.6	2.2	28.5
Buttonwood Solar	1	St. Lucie County	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	33.5	2.2	28.4
Mitchell Creek Solar	1	Escambia County	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	28.7	0.0	27.5
Hendry Isles Solar	1	$\begin{aligned} & \text { Hendry } \\ & \text { County } \\ & \hline \end{aligned}$	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	17.9	1.9	27.3
Norton Creek Solar	1	Madison County	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	25.9	0.0	27.9
Kayak Solar	1	Okaloosa County	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	29.0	0.0	27.6
Georges Lake Solar	1	$\begin{aligned} & \text { Putnam } \\ & \text { County } \end{aligned}$	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	22.2	0.7	27.4
Cedar Trail Solar	1	Baker County	PV	Solar	Dec	2024	74.5	74.5	74.5	74.5	23.1	0.3	27.6
Holopaw Solar	1	$\begin{array}{\|c\|} \hline \text { Palm Beach } \\ \text { County } \end{array}$	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	34.1	3.0	29.1
Speckled Perch Solar	1	Okeechobee County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	19.5	2.1	27.9
Big Water Solar	1	$\begin{gathered} \text { Okeechobee } \\ \text { County } \end{gathered}$	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	20.2	2.0	28.0
Fawn Solar	1	$\begin{aligned} & \text { Martin } \\ & \text { County } \\ & \hline \end{aligned}$	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	34.1	2.8	28.3
Hog Bay Solar	1	$\begin{aligned} & \text { DeSoto } \\ & \text { County } \\ & \hline \end{aligned}$	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	31.3	1.3	28.5
Green Pasture Solar	1	Charlotte County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	32.1	1.3	29.1
Thomas Creek Solar	1	Nassau County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	31.5	0.5	24.3
Fox Trail Solar	1	Brevard County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	35.5	2.0	28.6
Long Creek Solar	1	Manatee County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	32.2	1.3	29.1
Swallowtail Solar	1	Walton County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	30.3	0.0	28.2

Tenmil Creek Solar	1	Calhoun County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	29.4	0.0	28.7
Redlands Solar	1	Miami-Dade County	PV	Solar	Jan	2025	74.5	74.5	74.5	74.5	20.9	0.5	24.3
2025 Battery Storage**	1	TBD	BS	N/A	Dec	2025	522	522	522	522	349.4	522	N/A
Flatford Solar	1	Manatee County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Mare Branch Solar	1	DeSoto County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Price Creek Solar	1	Columbia County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Swamp Cabbage Solar	1	Hendry County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Big Brook Solar	1	Calhoun County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Mallard Solar	1	Brevard County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Boardwalk Solar	1	Collier County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Goldenrod Solar	1	Collier County	PV	Solar	Jan	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Hendry Solar	1	Hendry County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Tangelo Solar	1	Okeechobee County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
North Orange Solar	1	St. Lucie County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Wood Stork Solar	1	St. Lucie County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Sea Grape Solar	1	St. Lucie County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Clover Solar	1	St. Lucie County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Indrio Solar	1	St. Lucie County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Sand Pine Solar	1	Calhoun County	PV	Solar	April	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Middle Lake Solar	1	Madison County	PV	Solar	July	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
Ambersweet Solar	1	Indian River County	PV	Solar	July	2026	74.5	74.5	74.5	74.5	20.7	2.3	28.5
County Line Solar	1	$\begin{array}{\|c\|} \hline \text { Charlotte and } \\ \text { Desoto } \\ \text { Counties } \\ \hline \end{array}$	PV	Solar	July	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Sadele Solar	1	DeSoto County	PV	Solar	July	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Cocoplum Solar	1	Hendry County	PV	Solar	July	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Catfish Solar	1	Okeechobee County	PV	Solar	July	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Hardwood Hammock Solar	1	Walton County	PV	Solar	July	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Cardinal Solar	1	Brevard County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Maple Trail Solar	1	Baker County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Joshua Creek Solar	1	DeSoto County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Myakka Solar	1	Manatee County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Waveland Solar	1	St. Lucie County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Inlet Solar	1	Indian River County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Wabasso Solar	1	Indian River County	PV	Solar	October	2026	74.5	74.5	74.5	74.5	4.7	2.3	28.5
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2027	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2027	300	300	300	300	219	300	N/A
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2028	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2028	300	300	300	300	213	300	N/A
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2029	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2029	300	300	300	300	201	300	N/A
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2030	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2030	300	300	300	300	191	300	N/A
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2031	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2031	300	300	300	300	186	300	N/A
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2032	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2032	300	300	300	300	150	300	N/A
Unsited Solar PV	1	Unknown	PV	Solar	1st Q	2033	2,235	2,235	2,235	2,235	140	69	28.5
Unsited Battery Storage**	1	Unknown	BS	N/A	1st Q	2033	1700	1700	1700	1700	650	1700	N/A
Notes													

 these projections.
Capacity factors for PV solar units vary based on a variety of factors, including location, technology type (fixed or tracking), DC/AC ratio, and account for annual degradation.
**Battery Storage units do not have a traditional capacity factor and therefore are listed as N/A in the capacity factor column.

Florida Power \& Light Company Docket No. 20240000-OT																						
Ten-Year Site Plan																						
Staff's First Data Request																						
Request No. 37																						
Attachment No. 1 of 1																						
Tab 1 of 1																						
TYSP Year Staff's Data Request \# Question No.	2024																					
	37																					
Question No.					Zonal As-Available Pricing																	
					NORTHEAST ${ }^{(1)}$			NE-SOUTH ${ }^{\text {(1) }}$			SOUTHEAST			SOUTH			WEST			NORTHWEST ${ }^{(2)}$		
Year		$\begin{array}{\|c\|} \hline \text { As-Available } \\ \text { Energy } \end{array}$	On-Peak Average	Off-Peak Average	As-Available Energy	On-Peak Average	Off-Peak Average	As-Available Energy	On-Peak Average	Off-Peak Average	As-Available Energy	On-Peak Average	Off-Peak Average	$\begin{array}{\|c\|} \hline \text { As-Available } \\ \text { Energy } \end{array}$	On-Peak Average	Off-Peak Average	As-Available	On-Peak Average	Off-Peak Average	As-Available Energy	On-Peak Average	Off-Peak
		(SMWh)	(SMWh)	(SMWh)	(S/MWh)	(S/MWh)	(S/MWh)	(\$/MWh)	(S/MWh)	(S/MWh)	(S/MWh)	(S/MWh)	(S/MWh)	(\$/MWh)	(S/MWh)	(S/MWh)	(SMWh)	(S/MWh)	(S/MWh)	(S/MWh)	(S/MWh)	Average
砍	2014	27.19	30.64	25.99	26.75	30.00	25.60	27.55	31.09	26.31	27.24	30.69	26.03	27.52	31.23	26.25	26.91	30.21	25.75	35.78	44.36	32.91
	2015	17.47	20.06	16.54	17.21	19.64	16.33	17.65	20.32	16.69	17.52	20.10	16.60	17.69	20.50	16.69	17.26	19.75	16.37	25.24	31.67	23.09
	2016	16.70	19.70	15.65	15.57	18.20	14.64	17.18	20.33	16.08	16.97	20.03	15.90	17.00	20.18	15.88	16.79	19.78	15.75	24.39	30.40	22.39
	2017	18.93	21.32	18.07	18.23	20.12	17.56	19.27	21.83	18.37	19.08	21.55	18.21	19.17	21.78	18.17	18.90	21.32	18.05	26.69	31.52	25.08
	2018	21.85	25.73	20.50	21.56	25.31	20.25	22.10	26.11	20.71	21.85	25.71	20.50	21.98	25.95	20.60	21.76	25.57	20.42	32.93	40.04	30.55
	2019	18.64	22.05	17.47	18.72	22.16	17.54	18.74	22.15	17.57	18.57	21.95	17.41	18.65	22.09	17.47	18.52	21.88	17.36	25.65	31.06	23.84
	2020	14.50	16.89	13.65	14.56	16.94	13.71	(1)	(1)	(1)	14.45	16.81	13.61	14.56	17.02	13.68	14.45	16.80	13.60	20.68	24.52	19.36
	2021	25.42	29.13	24.26	25.62	29.37	24.26	(1)	(1)	(1)	25.34	29.02	24.21	25.35	29.16	24.17	25.41	28,99	24.22	36.53	44.87	33.58
	2022	47.74	55.37	45.13	45.87	52.56	43.57	(1)	(1)	(1)	45.20	51.73	42.95	45.02	51.69	42.72	45.29	51.88	43.03	57.33	68.97	53.37
	2023	19.40	23.09	18.10	19.52	23.25	18.21	(1)	(1)	(1)	19.33	22.99	18.04	19.23	22.93	17.93	19.38	23.07	18.08	19.52	23.22	18.21
	2024	27.45	28.96	26.38																		
	2025	29.98	33.25	27.64																		
	2026	35.42	34.42	36.14																		
	2027	37.14	53.49	25.46																		
	2028	36.47	38.48	35.04																		
	2029	43.09	43.15	43.05																		
	2030	38.40	39.77	37.42																		
	2031	32.10	31.64	32.42																		
	2032	31.79	24.81	36.78																		
	2033	35.96	35.45	36.33																		
Notes																						
1) In 2020, FPL consolidated its NE North and NE South zones into a single Northeast zone as a result of the elimination of a point of system export at New Smyrna Beach 2) The acquired Gulf Power area is shown as the FPL Northwest zone. The system-wide average prices do not nclude the Gulf Power / Northwest Zone prices prior to 2022. 3) FPL historically keeps track of avoided costs on a regional basis but forecasts avoided costs on a system-wide average basis.																						

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 1 of 18

Solar (PV) - 2025

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 2 of 18

Solar (PV)-2025 SolarTogether

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 3 of 18

Battery Storage - 2025

(Dates shown are approximate and are subject to change)

Months	1	2	3	4	5	67	8	9	10	1112		2	2	3	4	5	67	8	91	101112
						2024											2025			
Permitting/Engineering/Fabrication																				
Construction																				
Unit In-Service																				

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1
Tab 4 of 18

Solar (PV) - 2026

(Dates shown are approximate and are subject to change)

Months	1	2		3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112
	2024										2025									2026								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1
Tab 5 of 18

Solar (PV) - 2027

(Dates shown are approximate and are subject to change)

Months	1	2		3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	91	101112
	2025										2026									2027								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 6 of 18

Battery Storage - 2027

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1
Tab 7 of 18

Solar (PV) - 2028

(Dates shown are approximate and are subject to change)

Months	1	2		3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112
	2026										2027									2028								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 8 of 18

Battery Storage - 2028

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1
Tab 9 of 18

Solar (PV) - 2029

(Dates shown are approximate and are subject to change)

Months	1	2		3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	91	101112
	2027										2028									2029								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 10 of 18

Battery Storage - 2029
(Dates shown are approximate and are subject to change)

Months	1	2	3	4	5	67	8	9	101	1112	1	2	3	4	5	6	7	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67
	2026																2027									2028				2029					
Permitting/Engineering/Fabrication																																			
Construction																																			
Unit In-Service																																			

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1

Tab 11 of 18

Solar (PV) - 2030

(Dates shown are approximate and are subject to change)

Months	1	2	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	910	101112
	2028										2029									2030								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 12 of 18

Battery Storage - 2030

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1
Tab 13 of 18

Solar (PV) - 2031

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 14 of 18

Battery Storage - 2031

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1
Tab 15 of 18

Solar (PV) - 2032

(Dates shown are approximate and are subject to change)

Months	1	2		3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112
	2030										2031									2032								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 16 of 18

Battery Storage - 2032
(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 39
Attachment No. 1 of 1

Tab 17 of 18

Solar (PV) - 2033

(Dates shown are approximate and are subject to change)

Months	1	2		3	4	5	67	8	9	101112	1	2	3	4	5	67	8	9	101112	1	2	3	4	5	67	8	910	101112
	2031										2032									2033								
Permitting/Engineering/Fabrication - Tranche 1																												
Permitting/Engineering/Fabrication - Tranche 2																												
Permitting/Engineering/Fabrication - Tranche 3																												
Permitting/Engineering/Fabrication - Tranche 4																												
Construction - Tranche 1																												
Construction - Tranche 2																												
Construction - Tranche 3																												
Construction - Tranche 4																												
Unit In-Service - Tranche 1																												
Unit In-Service - Tranche 2																												
Unit In-Service - Tranche 3																												
Unit In-Service - Tranche 4																												

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 39
Attachment No. 1 of 1
Tab 18 of 18

Battery Storage - 2033

(Dates shown are approximate and are subject to change)

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 40
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request $\ddagger \quad 1$
Question No.
40

Plant	$\begin{gathered} \text { Unit } \\ \text { No. } \end{gathered}$	$\begin{aligned} & \text { Unit } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Fuel } \\ & \text { Type } \end{aligned}$	Capacity Factor (\%)										
				$\begin{gathered} \hline \text { Actual } \\ \hline 2023 \end{gathered}$	2024	2025	2026	2027	Projected		2030	2031	2032	2033
									2028	2029				
Cape Canaveral	1	CC	NG	63.49\%	36.48\%	44.40\%	46.92\%	47.11\%	41.60\%	42.11\%	35.24\%	29.87\%	33.84\%	37.97\%
Gulf Clean Energy Center	4	ST	NG	11.96\%	3.66\%	**	**	**	**	**	**	**	**	**
Gulf Clean Energy Center	5	ST	NG	11.81\%	8.00\%	4.90\%	4.38\%	**	**	**	**	**	**	**
Gulf Clean Energy Center	6	ST	NG	17.72\%	6.02\%	8.32\%	5.94\%	6.06\%	5.56\%	7.67\%	7.55\%	6.34\%	8.93\%	5.67\%
Gulf Clean Energy Center	7	ST	NG	27.97\%	8.91\%	7.28\%	3.69\%	7.40\%	4.64\%	7.48\%	6.17\%	6.22\%	6.27\%	5.08\%
Gulf Clean Energy Center	8	CT	NG	18.99\%	0.63\%	1.17\%	2.64\%	2.44\%	1.16\%	1.81\%	1.34\%	0.89\%	1.02\%	1.01\%
Dania Beach Energy Center	7	CC	NG	58.55\%	70.17\%	75.43\%	83.58\%	75.21\%	77.81\%	73.59\%	70.43\%	67.76\%	55.08\%	64.85\%
Daniel	1	ST	Coal	2.85\%	**	**	**	**	**	**	**	**	**	**
Daniel	2	ST	Coal	2.85\%	**	**	**	**	**	**	**	**	**	**
Fort Myers	2	CC	NG	69.97\%	68.72\%	76.50\%	72.45\%	69.35\%	67.33\%	58.09\%	68.61\%	69.37\%	69.21\%	69.97\%
Fort Myers	3	CT	NG	23.58\%	0.34\%	0.44\%	1.13\%	1.69\%	0.22\%	0.77\%	0.18\%	0.15\%	0.13\%	0.18\%
Fort Myers	1,9	GT	NG	5.88\%	0.03\%	0.18\%	0.29\%	0.87\%	0.59\%	0.85\%	0.71\%	0.63\%	0.50\%	0.49\%
Lansing Smith	3	CC	NG	78.05\%	32.56\%	25.19\%	19.29\%	18.44\%	18.30\%	23.86\%	21.94\%	20.00\%	21.99\%	23.31\%
Lansing Smith	3A	CT	LO	0.00\%	0.00\%	0.10\%	0.54\%	0.67\%	**	**	**	**	**	**
Lauderdale	6	CT	NG	14.79\%	0.00\%	0.00\%	1.12\%	1.06\%	0.11\%	0.14\%	0.08\%	0.03\%	0.06\%	0.08\%
Lauderdale	3,5	GT	NG	0.34\%	0.09\%	0.13\%	0.19\%	0.24\%	0.28\%	0.30\%	0.24\%	0.23\%	0.22\%	0.14\%
Manatee	1	ST	NG	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Manatee	2	ST	NG	-0.11\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
Manatee	3	CC	NG	62.25\%	88.54\%	83.42\%	54.77\%	55.17\%	43.55\%	53.07\%	49.90\%	48.17\%	46.41\%	48.28\%
Martin	3	CC	NG	36.87\%	3.63\%	3.01\%	3.11\%	3.26\%	1.29\%	3.57\%	1.20\%	0.72\%	0.55\%	0.27\%
Martin	4	CC	NG	38.03\%	6.10\%	4.48\%	4.28\%	2.51\%	2.87\%	4.43\%	2.40\%	1.63\%	2.10\%	1.74\%
Martin	8	CC	NG	51.35\%	78.86\%	76.59\%	66.45\%	36.35\%	46.25\%	50.36\%	46.38\%	46.73\%	47.55\%	44.22\%
Okeechobee Energy Center	1	CC	NG	84.29\%	79.03\%	80.97\%	67.19\%	77.05\%	80.07\%	61.74\%	69.62\%	66.32\%	65.12\%	64.12\%
Pea Ridge	1	CT	NG	0.00\%	1.01\%	1.17\%	**	**	**	**	**	**	**	**
Perdido	1	IC	LFG	0.00\%	98.30\%	98.30\%	98.18\%	98.23\%	97.63\%	97.07\%	**	**	**	**
Port Everglades	5	CC	NG	54.58\%	78.79\%	68.98\%	82.35\%	66.84\%	75.75\%	75.69\%	62.20\%	65.14\%	62.24\%	56.97\%
Riveria Beach	5	CC	NG	65.03\%	59.19\%	78.87\%	58.54\%	76.21\%	62.37\%	57.88\%	61.04\%	53.23\%	54.79\%	49.98\%
Sanford	4	CC	NG	41.90\%	9.00\%	10.47\%	9.79\%	12.21\%	7.45\%	9.16\%	6.21\%	6.39\%	7.90\%	4.72\%
Sanford	5	CC	NG	38.46\%	13.71\%	18.42\%	22.31\%	24.37\%	18.04\%	13.73\%	15.07\%	13.25\%	13.91\%	11.78\%
Scherer	3	ST	Coal	21.89\%	17.42\%	20.78\%	26.74\%	20.77\%	22.37\%	**	**	**	**	**
St. Lucie	1	ST	NUC	100.59\%	87.34\%	86.66\%	97.50\%	89.03\%	97.48\%	89.04\%	97.50\%	89.01\%	97.49\%	89.03\%

St. Lucie	2	ST	NUC	90.50\%	86.15\%	97.50\%	89.32\%	97.50\%	89.01\%	97.50\%	88.98\%	97.50\%	88.99\%	97.51\%
Turkey Point	3	ST	NUC	92.88\%	88.11\%	97.48\%	81.84\%	97.52\%	91.53\%	97.51\%	88.84\%	97.50\%	88.85\%	97.48\%
Turkey Point	4	ST	NUC	89.98\%	97.48\%	88.06\%	97.51\%	81.85\%	97.51\%	88.81\%	97.49\%	88.83\%	97.52\%	88.82\%
Turkey Point	5	CC	NG	59.36\%	27.20\%	23.16\%	26.53\%	25.53\%	18.48\%	21.33\%	19.42\%	24.09\%	24.11\%	22.97\%
West County Energy Center	1	CC	NG	68.18\%	61.59\%	43.45\%	46.36\%	42.34\%	34.94\%	39.77\%	26.44\%	23.25\%	23.11\%	13.85\%
West County Energy Center	2	CC	NG	68.61\%	68.71\%	49.60\%	55.20\%	48.92\%	44.67\%	40.86\%	36.38\%	31.08\%	22.34\%	23.07\%
West County Energy Center	3	CC	NG	53.76\%	52.33\%	37.71\%	43.59\%	37.16\%	27.85\%	25.50\%	20.83\%	17.21\%	15.08\%	8.42\%
Desoto Solar	1	PV	SUN	15.28\%	21.18\%	21.18\%	21.18\%	21.18\%	21.16\%	21.12\%	21.00\%	19.67\%	17.42\%	17.25\%
Space Coast Solar	1	PV	SUN	14.63\%	19.48\%	19.48\%	19.48\%	19.48\%	19.45\%	19.41\%	19.27\%	17.86\%	15.69\%	15.63\%
Citrus Solar	1	PV	SUN	22.84\%	24.40\%	24.40\%	24.40\%	24.40\%	24.39\%	24.33\%	23.76\%	21.55\%	18.28\%	18.22\%
Babcock Ranch Solar	1	PV	SUN	22.40\%	24.44\%	24.44\%	24.44\%	24.44\%	24.41\%	24.36\%	23.71\%	21.13\%	17.62\%	17.91\%
Manatee Solar	1	PV	SUN	18.19\%	24.94\%	24.94\%	24.94\%	24.94\%	24.83\%	24.79\%	24.08\%	21.37\%	17.92\%	18.23\%
Coral Farms Solar	1	PV	SUN	20.63\%	22.78\%	22.78\%	22.78\%	22.78\%	22.77\%	22.76\%	22.21\%	20.00\%	16.88\%	16.93\%
Horizon Solar	1	PV	SUN	21.63\%	24.57\%	24.57\%	24.57\%	24.57\%	24.56\%	24.53\%	23.71\%	21.14\%	17.75\%	17.88\%
Wildflower Solar	1	PV	SUN	24.17\%	24.31\%	24.32\%	24.31\%	24.32\%	24.28\%	24.26\%	23.57\%	20.77\%	17.49\%	17.63\%
Indian River Solar	1	PV	SUN	23.40\%	24.22\%	24.22\%	24.22\%	24.22\%	24.21\%	24.20\%	23.37\%	20.81\%	17.68\%	17.71\%
Loggerhead Solar	1	PV	SUN	22.24\%	24.15\%	24.16\%	24.15\%	24.15\%	24.15\%	24.13\%	23.35\%	20.66\%	17.53\%	17.69\%
Barefoot Bay Solar	1	PV	SUN	23.92\%	25.09\%	25.10\%	25.09\%	25.10\%	25.08\%	25.01\%	24.03\%	21.24\%	17.67\%	18.19\%
Hammock Solar	1	PV	SUN	23.18\%	24.65\%	24.65\%	24.65\%	24.65\%	24.63\%	24.53\%	23.70\%	21.02\%	17.62\%	17.85\%
Blue Cypress Solar	1	PV	SUN	22.87\%	24.16\%	24.16\%	24.16\%	24.16\%	24.15\%	24.11\%	23.49\%	20.81\%	17.60\%	17.65\%
Interstate Solar	1	PV	SUN	22.51\%	23.13\%	23.14\%	23.14\%	23.14\%	23.13\%	23.11\%	22.52\%	20.05\%	17.27\%	17.04\%
Miami Dade Solar	1	PV	SUN	21.16\%	22.98\%	22.98\%	22.97\%	22.98\%	22.98\%	22.92\%	22.46\%	20.15\%	17.08\%	17.30\%
Pioneer Trail Solar	1	PV	SUN	20.05\%	22.33\%	22.33\%	22.33\%	22.33\%	22.32\%	22.28\%	21.72\%	19.53\%	16.83\%	16.55\%
Sunshine Gateway Solar	1	PV	SUN	21.51\%	22.74\%	22.74\%	22.74\%	22.72\%	22.52\%	22.52\%	21.40\%	18.38\%	15.14\%	15.73\%
Sweetbay Solar	1	PV	SUN	19.37\%	21.55\%	21.55\%	21.55\%	21.55\%	21.54\%	21.53\%	21.10\%	19.00\%	16.42\%	16.22\%
Cattle Ranch Solar	1	PV	SUN	22.68\%	23.74\%	23.75\%	23.74\%	23.73\%	23.74\%	23.70\%	23.23\%	21.15\%	18.01\%	17.86\%
Northern Preserve Solar	1	PV	SUN	19.30\%	20.34\%	20.35\%	20.35\%	20.35\%	20.34\%	20.34\%	20.01\%	18.36\%	15.92\%	15.64\%
Twin Lakes Solar	1	PV	SUN	19.71\%	24.64\%	24.65\%	24.63\%	24.63\%	24.64\%	24.59\%	24.07\%	21.69\%	18.59\%	18.48\%
Babcock Preserve Solar	1	PV	SUN	24.65\%	25.31\%	25.31\%	25.31\%	25.30\%	25.20\%	25.16\%	24.22\%	21.20\%	17.61\%	18.16\%
Blue Heron Solar	1	PV	SUN	23.84\%	24.83\%	24.83\%	24.83\%	24.82\%	24.79\%	24.76\%	23.79\%	20.97\%	17.42\%	17.86\%
Blue Indigo Solar	1	PV	SUN	21.48\%	26.42\%	26.43\%	26.42\%	26.42\%	26.42\%	26.38\%	25.79\%	23.62\%	20.44\%	20.55\%
Southfork Solar	1	PV	SUN	27.68\%	27.47\%	27.48\%	27.47\%	27.46\%	27.46\%	27.39\%	26.54\%	23.68\%	19.80\%	20.09\%
Echo River Solar	1	PV	SUN	25.23\%	25.30\%	25.31\%	25.31\%	25.28\%	25.11\%	25.09\%	23.89\%	20.87\%	17.27\%	17.89\%
Hibiscus Solar	1	PV	SUN	23.91\%	24.20\%	24.20\%	24.20\%	24.19\%	24.18\%	24.16\%	23.42\%	20.85\%	17.64\%	17.84\%
Okeechobee Solar	1	PV	SUN	23.79\%	25.94\%	25.94\%	25.94\%	25.93\%	25.83\%	25.77\%	24.87\%	21.96\%	18.19\%	18.76\%
Magnolia Springs Solar	1	PV	SUN	23.19\%	23.45\%	23.46\%	23.45\%	23.44\%	23.45\%	23.39\%	22.97\%	21.09\%	18.18\%	17.97\%
Egret Solar	1	PV	SUN	21.70\%	23.32\%	23.33\%	23.32\%	23.31\%	23.32\%	23.29\%	22.82\%	21.14\%	18.20\%	18.04\%
Lakeside Solar	1	PV	SUN	22.95\%	23.44\%	23.44\%	23.43\%	23.44\%	23.42\%	23.35\%	22.55\%	19.99\%	16.81\%	17.11\%
Trailside Solar	1	PV	SUN	22.17\%	23.77\%	23.78\%	23.77\%	23.77\%	23.77\%	23.73\%	23.25\%	21.20\%	18.18\%	17.90\%
Nassau Solar	1	PV	SUN	21.71\%	22.42\%	22.43\%	22.43\%	22.42\%	22.41\%	22.39\%	21.99\%	20.46\%	17.72\%	17.54\%
Union Springs Solar	1	PV	SUN	23.38\%	23.44\%	23.45\%	23.44\%	23.44\%	23.44\%	23.41\%	22.93\%	21.26\%	18.21\%	18.03\%
Pelican Solar	1	PV	SUN	24.26\%	23.42\%	23.42\%	23.42\%	23.42\%	23.42\%	23.37\%	22.57\%	20.02\%	16.92\%	16.88\%
Rodeo Solar	1	PV	SUN	24.26\%	24.50\%	24.50\%	24.49\%	24.49\%	24.50\%	24.46\%	23.83\%	21.64\%	18.35\%	18.24\%

Palm Bay Solar	1	PV	SUN	24.95\%	23.55\%	23.55\%	23.55\%	23.55\%	23.54\%	23.47\%	22.69\%	20.01\%	16.99\%	17.08\%
Sabal Palm Solar	1	PV	SUN	24.65\%	23.48\%	23.48\%	23.48\%	23.48\%	23.47\%	23.42\%	22.55\%	19.99\%	16.79\%	16.89\%
Orange Blossom	1	PV	SUN	24.32\%	23.39\%	23.40\%	23.39\%	23.39\%	23.39\%	23.34\%	22.60\%	19.98\%	17.00\%	17.06\%
Discovery Solar	1	PV	SUN	22.76\%	21.39\%	21.40\%	21.40\%	21.40\%	21.39\%	21.37\%	20.97\%	18.74\%	16.05\%	15.82\%
Willow Solar	1	PV	SUN	25.38\%	24.20\%	24.21\%	24.19\%	24.20\%	24.20\%	24.15\%	23.61\%	21.36\%	18.14\%	17.96\%
Fort Drum Solar	1	PV	SUN	23.22\%	22.24\%	22.24\%	22.24\%	22.24\%	22.23\%	22.20\%	21.66\%	19.26\%	16.52\%	16.34\%
Blue Springs Solar	1	PV	SUN	21.63\%	23.63\%	23.64\%	23.63\%	23.64\%	23.63\%	23.62\%	23.30\%	21.70\%	18.92\%	18.72\%
Cotton Creek Solar	1	PV	SUN	22.19\%	22.77\%	22.78\%	22.77\%	22.78\%	22.77\%	22.75\%	22.42\%	20.40\%	17.62\%	17.41\%
Sundew Solar	1	PV	SUN	23.73\%	22.65\%	22.65\%	22.64\%	22.65\%	22.63\%	22.57\%	21.83\%	19.45\%	16.50\%	16.54\%
Ghost Orchid Solar	1	PV	SUN	22.32\%	22.75\%	22.75\%	22.75\%	22.75\%	22.71\%	22.64\%	21.82\%	19.51\%	16.39\%	16.33\%
Sawgrass Solar	1	PV	SUN	22.47\%	22.52\%	22.52\%	22.51\%	22.52\%	22.51\%	22.44\%	21.73\%	19.36\%	16.27\%	16.32\%
Immokalee Solar	1	PV	SUN	24.52\%	23.50\%	23.50\%	23.49\%	23.49\%	23.47\%	23.37\%	22.64\%	20.19\%	16.81\%	16.95\%
Grove Solar	1	PV	SUN	24.09\%	22.55\%	22.55\%	22.54\%	22.55\%	22.55\%	22.50\%	21.88\%	19.71\%	16.78\%	16.44\%
Elder Branch Solar	1	PV	SUN	27.75\%	25.73\%	25.73\%	25.71\%	25.72\%	25.72\%	25.67\%	25.01\%	22.71\%	19.29\%	18.93\%
Wild Azalea Solar	1	PV	SUN	22.59\%	27.09\%	27.10\%	27.10\%	27.10\%	27.09\%	27.10\%	27.10\%	27.10\%	27.09\%	27.10\%
Chautauqua Solar	1	PV	SUN	22.15\%	26.99\%	27.00\%	27.00\%	27.00\%	26.99\%	27.00\%	27.00\%	27.00\%	26.99\%	27.00\%
Shirier Branch Solar	1	PV	SUN	20.84\%	27.04\%	27.05\%	27.05\%	27.05\%	27.04\%	27.05\%	27.05\%	27.00\%	26.88\%	27.05\%
Anhinga Solar	1	PV	SUN	22.10\%	21.04\%	21.05\%	21.05\%	21.05\%	21.04\%	21.05\%	21.05\%	21.05\%	20.93\%	16.70\%
Apalachee Solar	1	PV	SUN	24.77\%	24.87\%	24.88\%	24.88\%	24.88\%	24.87\%	24.88\%	24.88\%	24.88\%	24.87\%	19.32\%
Blackwater River Solar	1	PV	SUN	17.58\%	22.07\%	22.08\%	22.08\%	22.08\%	22.07\%	22.08\%	22.08\%	22.08\%	22.07\%	16.99\%
Bluefield Preserve Solar	1	PV	SUN	25.16\%	22.45\%	22.45\%	22.45\%	22.45\%	22.45\%	22.45\%	22.45\%	22.45\%	22.45\%	16.25\%
Cavendish Solar	1	PV	SUN	20.88\%	24.79\%	24.80\%	24.80\%	24.80\%	24.79\%	24.80\%	24.80\%	24.80\%	24.79\%	18.72\%
Chipola Solar	1	PV	SUN	18.64\%	24.55\%	24.57\%	24.57\%	24.57\%	24.55\%	24.57\%	24.57\%	24.57\%	24.55\%	19.25\%
Everglades Solar	1	PV	SUN	21.46\%	23.09\%	23.10\%	23.10\%	23.10\%	23.09\%	23.10\%	23.10\%	23.10\%	23.09\%	16.85\%
First City Solar	1	PV	SUN	17.22\%	21.74\%	21.75\%	21.75\%	21.75\%	21.74\%	21.75\%	21.75\%	21.75\%	21.74\%	17.00\%
Flowers Creek Solar	1	PV	SUN	19.23\%	22.28\%	22.29\%	22.29\%	22.29\%	22.28\%	22.29\%	22.29\%	22.29\%	22.28\%	18.17\%
Pink Trail Solar	1	PV	SUN	23.59\%	22.60\%	22.60\%	22.60\%	22.60\%	22.60\%	22.60\%	22.60\%	22.60\%	22.60\%	16.74\%
Cypress Pond Solar	1	PV	SUN	15.95\%	26.63\%	26.64\%	26.64\%	26.64\%	26.63\%	26.64\%	26.64\%	26.64\%	26.63\%	26.64\%
Etonia Creek Solar	1	PV	SUN	15.09\%	26.18\%	26.19\%	26.19\%	26.19\%	26.18\%	26.19\%	26.19\%	26.19\%	26.18\%	26.19\%
Saw Palmetto Solar	1	PV	SUN	17.98\%	27.06\%	27.07\%	27.07\%	27.07\%	27.06\%	27.07\%	27.07\%	27.07\%	27.06\%	27.07\%
Terrill Creek Solar	1	PV	SUN	*	27.56\%	26.97\%	26.97\%	26.97\%	26.96\%	26.97\%	26.97\%	26.97\%	26.96\%	26.97\%
Silver Palm Solar	1	PV	SUN	*	26.94\%	26.40\%	26.40\%	26.40\%	26.40\%	26.40\%	26.40\%	26.40\%	26.40\%	26.40\%
Ibis Solar	1	PV	SUN	*	28.40\%	27.85\%	27.85\%	27.85\%	27.84\%	27.85\%	27.85\%	27.85\%	27.84\%	27.85\%
Orchard Solar	1	PV	SUN	*	30.09\%	29.57\%	29.57\%	29.57\%	29.57\%	29.57\%	29.57\%	29.57\%	29.57\%	29.57\%
Beautyberry Solar	1	PV	SUN	*	28.75\%	28.24\%	28.24\%	28.24\%	28.24\%	28.24\%	28.24\%	28.24\%	28.24\%	28.24\%
Turnpike Solar	1	PV	SUN	*	28.70\%	28.17\%	28.17\%	28.17\%	28.16\%	28.17\%	28.17\%	28.11\%	27.94\%	27.72\%
Monarch Solar	1	PV	SUN	*	25.58\%	25.07\%	25.07\%	25.07\%	25.06\%	25.07\%	25.07\%	25.07\%	25.06\%	25.07\%
Caloosahatchee Solar	1	PV	SUN	*	26.12\%	25.82\%	25.82\%	25.82\%	25.82\%	25.82\%	25.82\%	25.14\%	22.76\%	22.77\%
White Tail Solar	1	PV	SUN	*	29.38\%	28.84\%	28.84\%	28.84\%	28.83\%	28.84\%	28.84\%	28.84\%	28.83\%	28.84\%
Prairie Creek Solar	1	PV	SUN	*	28.99\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%
Pineapple Solar	1	PV	SUN	*	27.72\%	27.17\%	27.17\%	27.17\%	27.17\%	27.17\%	27.17\%	26.49\%	24.25\%	24.24\%
Canoe Solar	1	PV	SUN	*	26.49\%	25.81\%	25.81\%	25.81\%	25.80\%	25.81\%	25.81\%	25.81\%	25.80\%	25.81\%
Sparkleberry Solar	1	PV	SUN	*	27.05\%	25.74\%	25.74\%	25.74\%	25.73\%	25.74\%	25.74\%	25.12\%	23.09\%	25.74\%
Sambucus Solar	1	PV	SUN	*	28.36\%	27.72\%	27.72\%	27.72\%	27.71\%	27.72\%	27.72\%	27.72\%	27.71\%	27.72\%
Three Creeks Solar	1	PV	SUN	*	29.08\%	28.49\%	28.49\%	28.49\%	28.48\%	28.49\%	28.49\%	28.49\%	28.48\%	28.49\%

Fourmile Creek	1	PV	SUN	*	29.19\%	28.03\%	28.03\%	28.03\%	28.01\%	28.03\%	28.03\%	28.03\%	27.87\%	28.03\%
Big Juniper Creek Solar	1	PV	SUN	*	26.23\%	25.05\%	25.05\%	25.05\%	25.03\%	25.05\%	25.05\%	25.03\%	24.90\%	25.05\%
Pecan Tree Solar	1	PV	SUN	*	28.69\%	27.38\%	27.38\%	27.38\%	27.37\%	27.38\%	27.38\%	27.38\%	27.37\%	27.38\%
Wild Quail Solar	1	PV	SUN	*	30.15\%	28.80\%	28.80\%	28.80\%	28.78\%	28.80\%	28.80\%	28.80\%	28.78\%	28.80\%
Hawthorne Creek	1	PV	SUN	*	28.68\%	28.12\%	28.12\%	28.12\%	28.12\%	28.12\%	28.12\%	28.12\%	28.12\%	28.12\%
Nature Trail	1	PV	SUN	*	29.41\%	28.31\%	28.31\%	28.31\%	28.30\%	28.31\%	28.31\%	28.31\%	28.30\%	28.31\%
Woodyard Solar	1	PV	SUN	*	28.11\%	27.63\%	27.63\%	27.63\%	27.62\%	27.63\%	27.63\%	27.63\%	27.62\%	27.63\%
Honeybell Solar	1	PV	SUN	*	*	28.54\%	27.91\%	27.91\%	27.90\%	27.91\%	27.91\%	27.91\%	27.90\%	27.91\%
Buttonwood Solar	1	PV	SUN	*	*	28.38\%	27.75\%	27.75\%	27.74\%	27.75\%	27.75\%	27.75\%	27.74\%	27.75\%
Mitchell Creek Solar	1	PV	SUN	*	*	27.50\%	26.16\%	26.16\%	26.15\%	26.16\%	26.16\%	26.16\%	26.15\%	26.16\%
Hendry Isles Solar	1	PV	SUN	*	*	27.30\%	26.79\%	26.79\%	26.78\%	26.79\%	26.79\%	26.79\%	26.78\%	26.79\%
Norton Creek Solar	1	PV	SUN	*	*	27.93\%	26.74\%	26.74\%	26.72\%	26.74\%	26.74\%	26.74\%	26.72\%	26.74\%
Kayak Solar	1	PV	SUN	*	*	27.57\%	26.31\%	26.31\%	26.29\%	26.31\%	26.31\%	26.31\%	26.29\%	26.31\%
Georges Lake Solar	1	PV	SUN	*	*	27.38\%	26.43\%	26.43\%	26.42\%	26.43\%	26.43\%	26.43\%	26.42\%	26.43\%
Cedar Trail Solar	1	PV	SUN	*	*	27.60\%	26.52\%	26.52\%	26.51\%	26.52\%	26.52\%	26.52\%	26.51\%	26.52\%
Holopaw Solar	1	PV	SUN	*	*	29.15\%	28.59\%	28.59\%	28.58\%	28.59\%	28.59\%	28.59\%	28.58\%	28.59\%
Speckled Perch Solar	1	PV	SUN	*	*	27.92\%	27.38\%	27.38\%	27.38\%	27.38\%	27.38\%	27.38\%	27.38\%	27.38\%
Big Water Solar	1	PV	SUN	*	*	28.00\%	27.45\%	27.45\%	27.44\%	27.45\%	27.45\%	27.45\%	27.44\%	27.45\%
Fawn Solar	1	PV	SUN	*	*	28.35\%	27.80\%	27.80\%	27.79\%	27.80\%	27.80\%	27.21\%	24.88\%	24.91\%
Hog Bay Solar	1	PV	SUN	*	*	28.52\%	27.99\%	27.99\%	27.99\%	27.99\%	27.99\%	27.99\%	27.99\%	27.99\%
Green Pasture Solar	1	PV	SUN	*	*	29.06\%	28.54\%	28.54\%	28.53\%	28.54\%	28.54\%	28.54\%	28.53\%	28.54\%
Thomas Creek Solar	1	PV	SUN	*	*	24.28\%	23.68\%	23.68\%	23.67\%	23.68\%	23.68\%	23.68\%	23.67\%	23.68\%
Fox Trail Solar	1	PV	SUN	*	*	28.60\%	28.04\%	28.04\%	28.03\%	28.04\%	28.04\%	28.04\%	28.03\%	28.04\%
Long Creek Solar	1	PV	SUN	*	*	29.11\%	28.59\%	28.59\%	28.59\%	28.59\%	28.59\%	28.59\%	28.59\%	28.59\%
Swallowtail Solar	1	PV	SUN	*	*	28.22\%	27.50\%	27.50\%	27.49\%	27.50\%	27.50\%	27.50\%	27.49\%	27.50\%
Tenmil Creek Solar	1	PV	SUN	*	*	28.71\%	28.02\%	28.02\%	28.01\%	28.02\%	28.02\%	27.97\%	27.80\%	27.59\%
Redlands Solar	1	PV	SUN	*	*	24.28\%	23.68\%	23.68\%	23.67\%	23.68\%	23.68\%	23.68\%	23.67\%	23.68\%
2026 Solar	1	PV	SUN	*	*	*	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%
2027 Solar	1	PV	SUN	*	*	*	*	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%	28.47\%
2028 Solar	1	PV	SUN	*	*	*	*	*	28.47\%	28.47\%	28.47\%	28.47\%	28.45\%	28.47\%
2029 Solar	1	PV	SUN	*	*	*	*	*	*	28.47\%	28.47\%	28.25\%	27.25\%	27.06\%
2030 Solar	1	PV	SUN	*	*	*	*	*	*	*	28.47\%	28.47\%	28.47\%	28.47\%
2031 Solar	1	PV	SUN	*	*	*	*	*	*	*	*	28.47\%	28.47\%	28.47\%
2032 Solar	1	PV	SUN	*	*	*	*	*	*	*	*	*	28.47\%	28.47\%
2033 Solar	1	PV	SUN	*	*	*	*	*	*	*	*	*	*	28.27\%
Notes														
* Unit not yet in service. ** Unit has been or will be retired and is no longer in service. This table does not include proposed energy storage sites as they do not have a typical capacity factor. Actual capacity factors for PV solar units vary based on a variety of factors, including location, technology type (fixed or tracking), and DC/AC ratio. All capacity factors are based on FPL's TYSP Resource Plan with a NEL consistent with Schedule 6.														

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 42
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year 2024

Staff's Data Request \#
1
Question No.

Plant Name	Fuel Type	Summer Capacity (MW)	In-Service Date (MM/YYY)	Potential Conversion	Potential Issues
Manatee Unit 1	Gas/Oil	809	Oct-76	combined cycle	see notes
Manatee Unit 2	Gas/Oil	809	Dec-77	combined cycle	see notes
Gulf Clean Energy Center Unit 4	Gas	75	Jul-59	combined cycle	see notes
Gulf Clean Energy Center Unit 5	Gas	75	Jun-61	combined cycle	see notes
Gulf Clean Energy Center Unit 6	Gas	315	May-70	combined cycle	unit age is 54 years
Gulf Clean Energy Center Unit 7	Gas	496	Aug-73	combined cycle	unit age is over 50 years

Notes
All existing conventional steam generating units are capable of being converted to combined cycle operation. Of the potential units, Gulf Clean Energy Center Unit 4 and Gulf Clean Energy Center Unit 5 are planned to be retired by 2026, and they are no longer being considered for repowering.

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 43
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \# 1
Question No. 43

Plant Name	Fuel Type	Summer Capacity (MW)	In-Service Date (MM/YYY)	Potential Conversion	Potential Issues
N/A					
Notes					

Coal fired or oil fired conventional steam generating units are capable of being switched to burn natural gas. There are not any remaining units in the FPL system that are potential candidates for fuel switching as they have already been switched to burn natural gas.

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 44
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \# $\quad 1$
Question No. 44

Transmission Line	Line Length	Nominal Voltage	Date Need Approved	Date TLSA Certified	In-Service Date
	$($ Miles $)$	(kV)	May-2022	Sep-2022	Jun-2026
	79	230			
Notes					
(Include Notes Here)					

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 45
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year 2024
Staff's Data Request \# 1
Question No. 45

Nominal, Firm Purchases

Firm Purchases

	Firm Purchases		
	Year		S/MWh
HISTORY:			
	2021	41.54	
FOREalation			
	2022	52.10	
	2023	35.15	
	2024	49.95	NA $^{(1)}$
	2025	51.72	NA $^{(1)}$
	2026	51.74	NA $^{(1)}$
	2027	52.30	NA $^{(1)}$
	2028	53.81	$\mathrm{NA}^{(1)}$
	2029	55.85	$\mathrm{NA}^{(1)}$
	2030	56.29	$\mathrm{NA}^{(1)}$
	2031	61.54	$\mathrm{NA}^{(1)}$
	2032	63.10	$\mathrm{NA}^{(1)}$
	2033	64.91	$\mathrm{NA}^{(1)}$

Notes

No default escalation is assumed. Pricing forecast is the weighted average of contract pricing from existing firm energy PPAs.

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request
Request No. 46
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \#	1
Question No.	46

Seller Name	Facility Name	County Location	Unit Type	Primary Fuel	Net Capacity (MW)		Contracted Firm Capacity (MW)		Contract Term Dates (MM/YY)	
					Sum	Win	Sum	Win	Start	End
Southern Company Services, Inc	James H. Miller, Jr	Jefferson, Alabama	Steam	Coal	0	250	0	250	01/24	02/24
Mercuria Energy America, LLC	Tenaska's Lindsay Hill	Autauga, Alabama	CCGT	Gas	0	225	0	225	01/25	02/25
Notes										

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request

Request No. 47

Attachment No. 1 of 1
Tab 1 of 1
TYSP Year
Staff's Data Request \# 1
47

Seller Name	Facility Name	County Location	Unit Type	Primary Fuel	Net Capacity (MW)		Contracted Firm Capacity (MW)		Contract Term Dates (MM/YY)	
					Sum	Win	Sum	Win	Start	End
Southern Company Services, Inc	Santa Rosa	Pace, FL	CCGT	Gas	215	230	215	230	06/24	04/25
Notes										

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan
Staff's First Data Request

Request No. 48

Attachment No. 1 of
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \#	1

Question No.

Seller Name	Facility Name	County Location	Unit Type	Primary Fuel	Net Capacity (MW)		Contracted Firm Capacity (MW)		Contract Term Dates (MM/YY)	
					Sum	Win	Sum	Win	Start	End
Wheelabrator Technologies	Broward South	Broward	Steam	MSW	3.5	3.5	3.5	3.5	01/93	12/26
Solid Waste Authority of Palm Beach	SWA 1	Palm Beach	Steam	MSW	55	55	40	40	01/12	03/32
Solid Waste Authority of Palm Beach	SWA 2	Palm Beach	Steam	MSW	90	90	70	70	01/16	03/34
Morgan Stanley	Kingfisher I	Kingfisher	WT	Wind	178	178	N/A	N/A	01/16	12/35
Morgan Stanley	Kingfisher II	Kingfisher	WT	Wind	94	94	N/A	N/A	02/17	12/35
Gulf Coast Solar Center I	Eglin	Okaloosa	PV	Solar	30	30	N/A	N/A	06/17	12/42
Gulf Coast Solar Center II	Holley	Santa Rosa	PV	Solar	40	40	N/A	N/A	11/17	12/42
Gulf Coast Solar Center III	Saufley	Escambia	PV	Solar	50	50	N/A	N/A	11/17	12/42

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 49
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \#	1

$\begin{array}{lr}\text { Staff's Data Request \# } & 1 \\ \text { Question No. } & 49\end{array}$

Seller Name	Facility Name	County Location	Unit Type	Primary Fuel	Net Capacity (MW)		Contracted Firm Capacity (MW)		Contract Term Dates (MM/YY)	
					Sum	Win	Sum	Win	Start	End

[^1]Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 51
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \#
1
Question No.
51

Buyer Name	Facility Name	Unit No.	County Location	Unit Type	Primary Fuel	Gross Capacity (MW)		Net Capacity (MW)		Contracted Firm Capacity (MW)		Contract Term Dates (MM/YY)	
						Sum	Win	Sum	Win	Sum	Win	Start	End
Lee County Full Requirements Agreement ${ }^{1}$	FPL System	NA	Lee	Full Requirements	System Average	N/A	N/A	N/A	N/A	986	955	01/14	12/33
Florida Keys Long Term Agreement ${ }^{2}$	FPL System	NA	Monroe	Full Requirements	System Average	N/A	N/A	N/A	N/A	162	125	04/11	12/32
Moore Haven	FPL System	NA	Glades	Full Requirements	System Average	N/A	N/A	N/A	N/A	4	4	$07 / 16$	$12 / 25$
City of Homestead	FPL System	NA	Miami-Dade	Partial Requirements	Natural Gas	N/A	N/A	N/A	N/A	51	51	08/15	12/28
City of Homestead	FPL System	NA	Miami-Dade	Partial Requirements	System Average	N/A	N/A	N/A	N/A	35	35	01/20	12/28
Florida Public Utilities Company ${ }^{3}$	FPL System	NA	Nassau	Full Requirements	Natural Gas	N/A	N/A	N/A	N/A	63	53	01/18	12/26
Florida Public Utilities Company ${ }^{3}$	FPL System	NA	Jackson	Full Requirements	Natural Gas	N/A	N/A	N/A	N/A	64	70	01/20	12/26
City of Quincy	FPL System	NA	Gadsden	Partial Requirements	Natural Gas	N/A	N/A	N/A	N/A	19	19	01/16	$12 / 27$
City of Wauchula	FPL System	NA	Desoto	Full Requirements	System Average	N/A	N/A	N/A	N/A	14	10	01/17	12/30
City of New Smyrna Beach	FPL System	NA	Volusia	Partial Requirements	Natural Gas	N/A	N/A	N/A	N/A	100	100	02/14	12/33
JEA	FPL System	NA	Duval	Partial Requirements	Natural Gas	N/A	N/A	N/A	N/A	200	200	$01 / 22$	12/41
City of Blounstown	FPL System	NA	Calhoun	Full Requirements	System Average	N/A	N/A	N/A	N/A	7	8	05/22	$04 / 27$
City of Alachua	FPL System	NA	Alachua	Partial Requirements	Natural Gas	N/A	N/A	N/A	N/A	21	15	$04 / 22$	03/29
City of Bartow	FPL System	NA	Polk	Partial Requirements	Natural Gas	N/A	N/A	N/A	N/A	65	65	$01 / 24$	12/30

Notes

1) The contract includes an option to extend the agreement through December 31, 2053
(2) The contract includes an option to extend the agreement through December 31, 2052
(3) The contract includes an option to extend the agreement through December 31, 2030 .

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 52
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \#	1
Question No.	52

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 54
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year
Staff's Data Request \#
Question No

Renewable Source	Annual Renewable Generation (GWh)										
	Actual	Projected									
	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033
Utility - Firm	0	0	0	0	0	0	0	0	0	0	0
Utility - Non-Firm	9,254	13,732	17,335	23,704	29,696	35,797	41,628	47,291	52,338	57,093	64,268
Utility - Co-Firing	0	0	0	0	0	0	0	0	0	0	0
Purchase - Firm	2,190	2,100	2,100	2,100	2,070	2,070	2,070	2,070	2,070	2,070	2,070
Purchase - Non-Firm	362	450	450	450	480	480	480	480	480	480	480
Purchase - Co-Firing	0	0	0	0	0	0	0	0	0	0	0
Customer - Owned	532	1,856	2,372	3,020	3,774	4,392	5,064	5,976	6,991	8,038	9,154
Total	12,337	18,137	22,257	29,274	36,020	42,739	49,243	55,818	61,878	67,682	75,972
Notes											

Florida Power \& Light Company

Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 63
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year	2024
Staff's Data Request \#	1
Question No.	63

Project Name	Pilot Program (Y/N)	In-Service/ Pilot Start Date (MM/YY)	Max Capacity Output (MW)	Max Energy Stored (MWh)	Conversion Efficiency (\%)
Florida Bay	Y	12/16	1.5	1.5	94\%
Babcock Ranch	Y	03/18	10	40	81\%
Citrus	Y	03/18	4	16	91\%
Wynwood	Y	12/19	10	40	76\%
Dania Beach	Y	08/20	11.5	46	90\%
University Microgrid	Y	10/20	3	9	85\%
V2G Pilot	Y	12/21	1	1	n/a
Augmentation Pilot	Y	05/21	1	2	79\%
Manatee Energy Storage Center	N	12/21	409	900	84\%
Sunshine Gateway Energy Storage Center	N	12/21	30	75	88\%
Echo River Energy Storage Center	N	12/21	30	75	88\%
Resi. Living Lab (7 locations)	Y	5/21-8/21	0.04	0.08	90\%
Innovation Way (2 locations)	Y	02/22	0.02	0.05	90\%
Tyndall Microgrid	Y	03/22	0.75	1.575	88\%
EV + Storage (1 location)	Y	07/22	0.37	0.74	96\%
EVolution Hub	Y	11/22	8.8	17.6	91\%

Notes
(Include Notes Here)

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 64
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \# 1
Question No. 64

Project Name	Pilot Program (Y/N)	In-Service/ Pilot Start Date (MM/YY)	Projected Max Capacity Output (MW)	Projected Max Energy Stored (MWh)	Projected Conversion Efficiency (\%)
EV + Storage (2 locations)	Y	09/23	0.75	1.49	87
2025 Battery Storage	N	12/25	522	1566	TBD
2027 Battery Storage	N	01/27	300	1200	TBD
2028 Battery Storage	N	01/28	300	1200	TBD
2029 Battery Storage	N	01/29	300	1200	TBD
2030 Battery Storage	N	01/30	300	1200	TBD
2031 Battery Storage	N	01/31	300	1200	TBD
2032 Battery Storage	N	01/32	300	1200	TBD
2033 Battery Storage	N	01/33	1700	6800	TBD

Notes
(Include Notes Here)

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 68
Attachment No. 1 of 1
Tab 1 of 1

Year	Changes to Existing Generation	Subtractions	New Generation Additions	Summer RM\%
2024	+43 MW CC Upgrades	Daniel 1\&2 (502 MW)	894 MW SOBRA* 745 MW SolarTogether Extension*	22.7
2025	+26 MW CC Upgrades	Pea Ridge (12 MW)	894 MW SOBRA* 596 MW SolarTogether Extension*	23.4
2026	+29 MW CC Upgrades		522 MW Battery Storage**	23.6
2027	+137 MW CC Upgrades	Broward South (4 MW)	2,235 MW Solar 400 MW Battery Storage	24.4
2028	+20 MW CC Upgrades	Lansing Smith 3A (32 MW)	2,235 MW Solar	23.1
2029		Scherer 3 (215 MW)	2,235 MW Solar	21.1
2030		Perdido 1\&2 (3 MW)	2,235 MW Solar 100 MW Battery	20.0
2031			2,235 MW Solar 600 MW Battery	20.0
2032		Palm Beach SWA 1 (40 MW)	3×1 Martin CC, (1,991 MW) 2,235 MW Solar	24.4
2033			2,235 MW Solar 500 MW Battery	23.3
Nameplate Solar Additions (2024-2033): Nameplate Storage Additions (2024-2033):			18,774	
			3,722	

All solar and battery storage additions are in nameplate MW.

* These solar facilities were approved in FPL's 2021 Rate Case Settlement. All other solar additions will be presented to the FPSC for approval of cost recovery at a later date once the specific sites and costs for these additions are finalized.
** These battery storage units are projected to have an in-service date of December, 2025.

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 70
Attachment No. 1 of 1
Tab 1 of 1

TYSP Year 2024
Staff's Data Request \#
Question No.
(Referred to as No. 71 in original Staff attachment)

$\mathcal{*}$ Year	Estimated Cost of Standards of Performance for Greenhouse Gas Emissions Rule for New Sources Impacts (Present-Year \$ millions)				
	Capital Costs	O\&M Costs	Fuel Costs	Total Costs	
$\mathbf{2 0 2 1}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 2}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 3}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 4}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 5}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 6}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 7}$	N/A	N/A	N/A	N/A	
$\mathbf{2 0 2 8}$	N/A	N/A	N/A	N/A	
$\boldsymbol{2 0 2 9}$	N/A	N/A	N/A	N/A	
$\boldsymbol{2 0 3 0}$	N/A	N/A	N/A	N/A	
Notes					
(Include Notes Here)					

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 72
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request $\# \quad 1$
Question No.
72

Unit	$\begin{gathered} \hline \text { Unit } \\ \text { Type } \end{gathered}$	$\begin{aligned} & \hline \text { Fuel } \\ & \text { Type } \end{aligned}$	Net Summer Capacity (MW)	Estimated EPA Rule Impacts: Operational Effects						
				ELGS	ACE or replacement	MATS	CSAPR/CAIR	CWIS	CCR	
									Non-Hazardous Waste	Special Waste
Cape Canaveral 3	CC	NG, ULSD	1290	N/A	N/A	N/A	N/A	Additional controls not likely to be required	N/A	N/A
Fort Myers Gas Turbines $1 \& 9$	GT	DFO	108	N/A						
Fort Myers 2	CC	NG	1812	N/A	N/A	N/A	N/A	Installation of additional controls certain for Impingement Mortality Reduction	N/A	N/A
Fort Myers 3 A-D	GT	NG, ULSD	852	N/A						
Dania Beach 7	CC	NG, ULSD	1163	N/A	N/A	N/A	N/A	Adaminal controis	N/A	N/A
Lauderdale Gas Turbines $3 \& 5$	GT	NG, DFO	69	N/A						
Lauderdale 6 A-F	GT	NG, DFO	1155	N/A						
Port Everglades 5	CC	NG, ULSD	1237	N/A	N/A	N/A	N/A	Additional controls not likely to be required	N/A	N/A
Riviera 5	CC	NG, ULSD	1290	N/A	N/A	N/A	N/A	Additional controls not likely to be required	N/A	N/A
Sanford 4	CC	NG	1176	N/A	N/A	N/A	N/A	No additional controls required	N/A	N/A
Sanford 5	CC	NG, DFO	1176	N/A	N/A	N/A	N/A	No additional controls required	N/A	N/A
Turkey Point 3	PWR	NUC	837	N/A						
Turkey Point 4	PWR	NUC	841	N/A						
Turkey Point 5	CC	NG, ULSD	1270	N/A						
Manatee 1	ST	NG, RFO	813	N/A	N/A	ESP Installation Completed 2013	800 MW Cycling Project Complete	No additional controls required	N/A	N/A
Manatee 2	ST	NG, RFO	813	N/A	N/A	ESP Installation Completed 2012	800 MW Cycling Project Complete	No additional controls required	N/A	N/A
Manatee 3	CC	NG	1249	N/A	N/A	N/A	N/A	No additional controls required	N/A	N/A
Martin 3	CC	NG	487	N/A	N/A	N/A	N/A	No additional controls required	N/A	N/A
Martin 4	CC	NG	487	N/A	N/A	N/A	N/A	No additional controls required	N/A	N/A
Martin 8	CC	NG, ULSD	1235	N/A	N/A	N/A	N/A	No additional controls required	N/A	N/A
Martin SOLAR	ST	SUN	75^{2}	N/A						
St. Lucie 1	PWR	NUC	981	N/A	N/A	N/A	N/A	Installation of additional controls possible	N/A	N/A
St. Lucie 2	PWR	NUC	$840{ }^{1}$	N/A	N/A	N/A	N/A	Installation of additional controls possible	N/A	N/A
West County Energy Center 1	CC	NG, ULSD	1259	N/A						
West County Energy Center 2	CC	NG, ULSD	1259	N/A						
West County Energy Center 3	CC	NG, ULSD	1259	N/A						
Okeechobee Clean Energy Center 1	CC	NG, ULSD	1720	N/A						

Scherer 3	ST	SUB	$215{ }^{1}$	Dry ash handling systems previously installed. Scrubber wastewater treatment anticipated in the future	No impacts expected	Hg Control Installed 2010, FGD/SCR Installed 2011	SCR \& FGD Installed 2011	Additional controls not likely to be required	Closure of existing ash pond beginning in 2018 and construction of new CCR landfill	N/A
Gulf Clean Energy Center (formerly Crist)	ST	NG	967	Installation of additional controls possible for leachate treatment	No impacts expected	Coal operation was retired in 2020 and no longer subject to MATS	N/A	Units 6 \& 7 have existing closed cycle cooling system; Additional controls not likely to be required prior to Units 4 \& 5 retirement dates	Ongoing compliance activities	
Gulf Clean Energy Center Unit 8	CT	NG, ULSD	940	N/A						
Pea Ridge	ST	NG	12	N/A	No impacts expected	N/A	N/A	N/A	N/A	N/A
Perdidio	IC	LFG	3	N/A	No impacts expected	N/A	N/A	N/A	N/A	N/A
Smith	CC,CT	NG,ULSD	692	Installation of additional controls possible for leachate treatment	No impacts expected	N/A	N/A	Unit 3 has existing closed cycle cooling system; New lower capacity intake pumps installed; Additional controls not likely to be required	2017-2024 pond closure design and implementation; ongoing compliance activities after pond closure	N/A
Daniel	ST	Coal	502	Dry bottom ash handling installed with FGD wasterwater deep well injected	No impacts expected	Scrubber, ACI, and Bromine Injection added for MATS	No additional control required, allowances will be purchased as needed	Units have existing closed cycle cooling system; Additional controls not likely to be required	Pond closure completed with ongoing compliance activities	N/A
Notes										
(Include Notes Here)										
Units included above only reflect current operating units or projects that are under construction or expected to become operational this year										
Unit Type: ST = Steam Turbine, GT = Gas Turbine, CC = Combined Cycle, PV = Photovoltaic, IC= Internal Combustion, BS = Battery Storage Fuel Type: $\mathrm{NG}=$ Natural Gas, $\mathrm{DFO}=$ Distillate Fuel Oil, RFO $=$ Residual Fuel Oil, ULSD $=$ Ultra-Low Sulfur Distillate, BIT $=$ Bituminous Coal, SUB $=$ Sub-Bituminous Coal, SUN = Solar (PV \& thermal), NUC = Nuclear, No = None Notes: ${ }^{1}$ FPL Ownership Share only ${ }^{2}$ Unit capability also included in Martin Unit 8 Net Summer Capability. ${ }^{3}$ FPL's solar and battery storage sites have not been affected by any current federal or state environmental rules, and FPL is actively monitoring EPA and FDEP										

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 73

Attachment No. 1 of 1

Tab 1 of 1

TYSP Yea
Staff's Data Request \# 1
Question No. 73

Redacted

Unit	Unit Type	Fuel Type	Net Summer Capacity (MW)	Estimated EPA Rule Impacts: Cost Effects (CPVRR \$ millions)						
				ELGS	ACE or replacement	MATS	$\begin{gathered} \hline \text { CSAPR/ } \\ \text { CAIR } \end{gathered}$	CWIS	CCR	
									Non- Hazardous Waste	Special Waste
Cape Canaveral 3	CC	NG, ULSD	1290	N/A	N/A	N/A	N/A	0.83	N/A	N/A
rt Myers Gas Turbines 18	GT	DFO	108	N/A						
Fort Myers 2	CC	NG	1812	N/A	N/A	N/A	N/A	7.83	N/A	N/A
Fort Myers 3 A-D	GT	NG, ULSD	852	N/A						
Dania Beach 7	CC	NG, ULSD	1,163	N/A	N/A	N/A	N/A	7.83	N/A	N/A
uderdale Gas Turbines 38	GT	NG, DFO	69	N/A						
Lauderdale 6 A-F	GT	NG, ULSD	1155	N/A						
Port Everglades 5	CC	NG, ULSD	1237	N/A	N/A	N/A	N/A	0.83	N/A	N/A
Riviera 5	CC	NG, ULSD	1290	N/A	N/A	N/A	N/A	0.83	N/A	N/A
Sanford 4	CC	NG	1176	N/A	N/A	N/A	N/A	0	N/A	N/A
Sanford 5	CC	NG, ULSD	1176	N/A	N/A	N/A	N/A	0	N/A	N/A
Turkey Point 3	PWR	NUC	837	N/A						
Turkey Point 4	PWR	NUC	841	N/A						
Turkey Point 5	CC	NG, ULSD	1270	N/A						
Manatee 1	ST	NG, RFO	813	N/A	N/A	ESP Project Complete 2013	800 MW Cycling Project Complete	0	N/A	N/A
Manatee 2	ST	NG, RFO	813	N/A	N/A	ESP Project Complete 2012	800 MW Cycling Project Complete	0	N/A	N/A
Manatee 3	CC	NG	1249	N/A	N/A	N/A	N/A	0	N/A	N/A
Martin 3	CC	NG	487	N/A	N/A	N/A	N/A	0	N/A	N/A
Martin 4	CC	NG	487	N/A	N/A	N/A	N/A	0	N/A	N/A
Martin 8	CC	NG, ULSD	1235	N/A	N/A	N/A	N/A	0	N/A	N/A

Martin SOLAR	ST	SUN	75^{2}	N/A						
St. Lucie 1	PWR	NUC	981	N/A	N/A	N/A	N/A	0	N/A	N/A
St. Lucie 2	PWR	NUC	840^{1}	N/A	N/A	N/A	N/A	0	N/A	N/A
est County Energy Center	CC	NG, ULSD	1259	N/A						
est County Energy Center	CC	NG, ULSD	1259	N/A						
est County Energy Center	CC	NG, ULSD	1259	N/A						
chobee Clean Energy Cen	CC	NG, ULSD	1720	N/A						
Scherer 3	ST	SUB	215^{1}		No additional Heat Rate Impovements anticipated	$\begin{gathered} \text { Completed } \\ 2010 \end{gathered}$	$\begin{aligned} & \text { Completed } \\ & 2012 \end{aligned}$			N/A
Indiantown Cogeneration	Unit retired December 2020			N/A						
Gulf Clean Energy Center (formerly Plant	ST	NG	967	8	N/A	No Impacts Anticipated	No Impacts Anticipated	No Impacts Anticipated	12.5	N/A
Gulf Clean Energy Center Unit 8	CT	NG, ULSD	940	N/A						
Pea Ridge	ST	NG	12	N/A						
Perdidio	IC	LFG	3	N/A						
Smith	CC,CT	NG,ULSD	692	8	N/A	N/A	No Impacts Anticipated	No Impacts Anticipated	44.8	N/A
Scholz	Unit retired December 2020			8					7.8	
Daniel	ST	Coal	$502{ }^{1}$	8	None, Unit will be retired in 2024	No Impacts Anticipated	No Impacts Anticipated	No Impacts Anticipated	13.3	N/A
Notes										
(Include Notes Here)										
Units included above only reflect current operating units or projects that are under construction or expected to become operational this year.										
Unit Type: ST = Steam Turbine, GT = Gas Turbine, CC = Combined Cycle, PV = Photovoltaic, IC = Internal Combustion, BS = Battery Storage Fuel Type: $\mathrm{NG}=$ Natural Gas, DFO = Distillate Fuel Oil, RFO = Residual Fuel Oil, ULSD = Ultra-Low Sulfur Distillate, BIT = Bituminous Coal, SUB = Sub-Bituminous Coal, SUN = Solar (PV \& thermal), NUC = Nuclear, No = None Notes: ${ }^{1}$ FPL Ownership Share only ${ }^{2}$ Unit capability also included in Martin Unit 8 Net Summer Capability. ${ }^{3}$ If additional controls are required for CWIS, most work would be done without any unit impacts and tie-in to existing systems would occur. ${ }^{4}$ FPL's solar and battery storage sites have not been affected by any current federal or state environmental rules, and FPL is actively monitoring										

Florida Power \& Light Company

Docket No. 20240000-OT

Ten-Year Site Plan

Staff's First Data Request

Request No. 74
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \# 1
Question No. 74

Unit	Unit Type	Fuel Type	Net Summer Capacity (MW)	Estimated EPA Rule Impacts: Unit Availability (Month/Year - Duration)						
				ELGS	ACE or replacement	MATS	CSAPR/ CAIR	CWIS	CCR	
									Non- Hazardous Waste	Special Waste
Cape Canaveral 3	CC	NG, ULSD	1290	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Fort Myers Gas Turbines 1 \& 9	GT	DFO	108	N/A						
Fort Myers 2	CC	NG	1812	N/A	N/A	N/A	N/A	2029-2030 time frame for modified traveling water screens and fish return system 3	N/A	N/A
Fort Myers 3 A-D	GT	NG, ULSD	852	N/A						
Dania Beach 7	CC	NG, ULSD	1,163	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Lauderdale Gas Turbines 3 \& 5	GT	NG, DFO	69	N/A						
Lauderdale 6 A-F	GT	NG, ULSD	1155	N/A						
Port Everglades 5	CC	NG, ULSD	1237	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Riviera 5	CC	NG, ULSD	1290	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Sanford 4	CC	NG	1176	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Sanford 5	CC	NG, ULSD	1176	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Turkey Point 3	PWR	NUC	837	N/A						
Turkey Point 4	PWR	NUC	841	N/A						
Turkey Point 5	CC	NG, ULSD	1270	N/A						
Manatee 1	ST	NG, RFO	813	N/A	N/A	ESP Project Complete 2013	800 MW Cycling Project Complete	No impacts anticipated	N/A	N/A
Manatee 2	ST	NG, RFO	813	N/A	N/A	$\begin{gathered} \text { ESP Project } \\ \text { Complete } \\ 2012 \end{gathered}$	800 MW Cycling Project Complete	No impacts anticipated	N/A	N/A
Manatee 3	CC	NG	1249	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Martin 3	CC	NG	487	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Martin 4	CC	NG	487	N/A	N/A	N/A	N/A	No impacts anticipated	N/A	N/A
Martin 8	CC	NG, ULSD	1235	N/A						
Martin SOLAR	ST	SUN	75^{2}	N/A						
St. Lucie 1	PWR	NUC	981	N/A	N/A	N/A	N/A	$\begin{array}{\|c} \hline \text { 2025-2027 if } \\ \text { additional } \\ \text { controls } \\ \text { required. }^{3} \\ \hline \end{array}$	N/A	N/A

St. Lucie 2	PWR	NUC	840^{1}	N/A	N/A	N/A	N/A	$\begin{gathered} 2025-2027 \text { if } \\ \text { additional } \\ \text { controls } \\ \text { required. }^{3} \end{gathered}$	N/A	N/A
West County Energy Center 1	CC	NG, ULSD	1259	N/A						
West County Energy Center 2	CC	NG, ULSD	1259	N/A						
West County Energy Center 3	CC	NG, ULSD	1259	N/A						
Okeechobee Clean Energy Center 1	CC	NG, ULSD	1720	N/A						
Scherer 3	ST	SUB	215^{1}	Additional Impacts	No Impacts Anticipated	N/A				
Gulf Clean Energy Center (formerly Crist)	ST	Coal,NG	967	Additional controls possible for leachate treatment	N/A	No Impacts Anticipated	No Impacts Anticipated	No impacts anticipated	No Impacts Anticipated	N/A
Gulf Clean Energy Center (formerly Crist) Unit 8	CT	NG, ULSD	940	N/A						
Pea Ridge	ST	NG	12	N/A						
Perdidio	IC	LFG	3	N/A						
Smith	CC, CT	NG,ULSD	692	Additional controls possible for leachate treatment	N/A	N/A	No Impacts Anticipated	No impacts anticipated	No Impacts Anticipated	N/A
Daniel	ST	Coal	502	Additional controls possible for leachate treatment	None, Unit will be retired in 2024	No Impacts Anticipated	No Impacts Anticipated	No impacts anticipated	No Impacts Anticipated	N/A
Notes										
(Include Notes Here)										
Units included above only reflect current operating units or projects that are under construction or expected to become operational this year.										
Unit Type: ST = Steam Turbine, GT = Gas Turbine, CC = Combined Cycle, PV = Photovoltaic, IC = Internal Combustion, BS = Battery Storage Fuel Type: $\mathrm{NG}=$ Natural Gas, $\mathrm{DFO}=$ Distillate Fuel Oil, RFO = Residual Fuel Oil, ULSD = Ultra-Low Sulfur Distillate, BIT = Bituminous Coal, SUB = Sub-Bituminous Coal, SUN = Solar (PV \& thermal), NUC = Nuclear, No = None Notes: ${ }^{1}$ FPL Ownership Share only ${ }^{2}$ Unit capability also included in Martin Unit 8 Net Summer Capability. ${ }^{3}$ If additional controls are required for CWIS, most work would be done without any unit impacts and tie-in to existing systems would ${ }^{4}$ FPL's solar and battery storage sites have not been affected by any current federal or state environmental rules, and FPL is actively										

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 76
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024
Staff's Data Request \neq
Question No.

FPL System (including FPL NWFL)													
Year		Uranium		Coal		Natural Gas		Residual Oil		Distillate Oil		Hydrogen*	
		GWh	\$/MMBTU										
	2014											--	--
	2015											--	--
	2016											--	--
	2017											--	--
	2018											--	--
	2019											--	--
	2020											--	--
	2021											--	--
	2022	29,518	0.46	1,748	3.21	101,306	8.74	-20	13.22	258	15.42	--	--
	2023	28,767	0.48	472	3.75	104,508	4.22	-13	11.86	232	18.24	<1	--
$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	2024	27,870	0.479	300	3.409	96,055	3.813	0	15.502	0	21.257	--	--
	2025	28,567	0.490	385	3.487	93,020	4.304	0	14.821	1	19.877	--	--
	2026	28,447	0.512	511	3.762	88,312	5.062	0	13.914	2	19.482	--	--
	2027	28,312	0.544	413	3.920	84,153	4.975	9	13.238	6	19.267	--	--
	2028	29,220	0.598	418	3.931	78,761	5.368	0	12.819	3	18.920	--	--
	2029	28,831	0.616	---	---	75,674	5.542	4	12.894	4	19.088	--	--
	2030	28,938	0.634	---	---	72,122	5.326	0	12.982	3	19.331	--	--
	2031	28,830	0.653	---	---	68,933	5.324	0	13.117	3	19.575	--	--
	2032	29,021	0.673	---	---	67,016	5.377	0	13.271	3	19.883	--	--
	2033	28,830	0.693	---	---	64,551	5.586	0	13.388	2	20.086	--	--
Notes													
become available.													

Florida Power \& Light Company
Docket No. 20240000-OT
Ten-Year Site Plan
Staff's First Data Request
Request No. 95
Attachment No. 1 of 1
Tab 1 of 1
TYSP Year 2024

Staff's Data Reques $\quad 1$
Question No. 95

Data Centers Currently Located in Utility Service Area						
Total No. of Data Centers	Customer Class Served	Total Energy Usage in 2023	Impact to Summer Peak Demand	Impact to Winter Peak Demand	Seasonality Observed, if any	
		(MWHs)	(MWs)	(MWs)		
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Estimated 70	Commercial	~295,000	~ 36.7***	~ 36.7***	N/A	1
						2
						3
						4
* Examples of the data center types: colocation, enterprise, cloud, edge, and micro data. ** Based on military time 1-24. ***Demands are indicative and estimated based on average billing demands. ${ }^{* * * *}$ FPL does not track individual data center customers by type, hourly peak usage or impact to peak demand						5
						6
						7
						8

Table II: Planned Data Center Information						
Planned Data Centers in Your Service Area						
	Type of Data Center*	Customer Class Served	Expected InService Data	Expected Annual Energy Usage	Expected Impact to Summer Peak Demand	Expected Impact to Winter Peak Demand
				(MWHs)	(MWs)	(MWs)
	(1)	(2)	(3)	(4)	(5)	(6)
1	None					
2						
3						
...						

[^0]: Notes:
 ${ }^{1}$ Manatee Units $1 \& 2$ are winter peaking only units. They will only be manned and operated when additional capacity is needed to meet load.
 ${ }^{2}$ Historical average based on 5/31/22 commercial operation date (COD)
 ${ }^{3}$ Historical average based on FPL's ownership in Plant Daniel retired from service 1/15/24
 ${ }^{4}$ Gulf Clean Energy Center (formerly known as Crist Plant) Unit 4. Assumes retirement 4th quarter 2024
 ${ }^{5}$ Gulf Clean Energy Center (formerly known as Crist Plant) Unit 5. Assumes retirement 4th quarter 2026
 ${ }^{6}$ Assumes 4th quarter 2027 retirement
 ${ }^{7}$ Assumes 4th quarter 2024 retirement
 ${ }^{8}$ Assumes 4th quarter 2029 retirement
 ${ }^{9}$ Historical average based on 12/31/2021 COD

[^1]: There are no Planned New Renewable Generator PPAs in the current planning period.

