Exhibit **B**

070007-EI

REDACTED DOCUMENTS

REDACTED

CMP _____

1

÷ `

.

COM _____

CTR _____

GCL _____ OPC _____

RCA _____

SCR _____

SGA _____

SEC _____

OTH _____

000004 HT NEMBER-DATE 09620 OCT 22 5 FPSC-COMMISSION CLERK

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Question No. 36 Page 1 of 3 ١

Q.

For each of the CAIR and CAMR controls included in the March 30, 2007 FPL Supplemental CAIR/CAMR Filing:

- A. Compare the total costs of the control, stated in terms of net present value, including a breakout of capital costs and O&M, versus the next most cost-effective, viable alternative.
- B. Provide a timeline for the completion of each project.
- C. Provide the annual reductions in emissions expected to be achieved by each project versus the current emissions.

A.

A. The CAIR and CAMR controls included in the March 30, 2007 FPL Supplemental CAIR/CAMR Filing are:

SJRPP – SCR with ammonia injection SJRPP – Mercury CEMS Scherer 4- Wet FGD Scrubber Scherer 4- SCR with ammonia injection Scherer 4- Mercury CEMS Scherer 4- Fabric filter baghouse and mercury sorbant injection 800 MW cycling projects

Many of these CAIR and CAMR control projects have no viable alternatives. These projects are listed below:

- The mercury CEMS at SJRPP and Scherer 4 do not have alternatives as they are required to monitor the output level of mercury.
- The SCR controls at both Scherer 4 and SJRPP had no viable alternatives at the time the decision was made to install these controls. The installation of SCR controls on base load coal-fired steam boilers are considered by EPA as the most cost effective controls for the reduction of NOx emissions. The rules requiring the installation and operation of an SCR for NOx controls and an FGD for SO2 controls on Scherer Unit 4 were approved on June 27, 2007 by the Georgia DNR Board as an amendment to GA-391-3.
- The fabric filter baghouse and mercury sorbant injection at Scherer 4 was the technology specified for Scherer Unit 4 in the Amendments to the rules of the Georgia EPD relating to air quality, Chapter 391-3-01 and 391-3-02. The rules requiring the installation and operation of a baghouse for mercury

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Question No. 36 Page 2 of 3 ١

control on Scherer Unit 4 were also approved in the June 27, 2007 amendment of GA-391-3 by the Georgia DNR Board.

- The following project did have viable alternatives. See discussion below:
- The wet FGD scrubber at Scherer 4 did have a viable alternative: dry FGD scrubber technology. A consultant of Southern Company completed a study which showed that, based on lifecycle costs, the wet FGD scrubber was the more economic choice at Scherer 4. This study is included as Attachment I.
- And finally, for the 800 MW Cycling Project, FPL did not identify a viable alternative (other than a "do not implement" or "do nothing" alternative). The 800 MW project, in addition to substantial emission savings, produces large fuel savings which would make it more cost effective than any other control technology under consideration for FPL's CAIR compliance strategy. The economics of this project vs. the "do nothing alternative" are shown in response to Staff POD No. 11.
- B. FPL's estimates for the completion of each project are as follows:
 - Installation of an SCR and Ammonia Injection System on SJRPP Unit 1 Currently scheduled for an in-service date of May 01, 2009.
 - Installation of an SCR and Ammonia Injection System on SJRPP Unit 2 -Currently scheduled for an in-service date of May 01, 2008.
 - Installation of a FGD (Flue Gas Desulfurization) on Scherer Unit 4 Currently scheduled for an in-service date of April 08, 2012.
 - Installation of an SCR and Ammonia Injection System on Scherer Unit 4 - Currently scheduled for an in-service date of April 08, 2012.
 - Installation of a Fabric Filter Bag House and Mercury Sorbent Injection System on Scherer Unit 4 - Currently scheduled for an in-service date of April 04, 2012.
 - Installation of a Mercury CEMS on Scherer Unit 4 Currently scheduled for an in-service date of March 01, 2008.
 - Installation of a Mercury CEMS on SJRPP Unit 1 Currently scheduled for an in-service date of December 01, 2007.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Question No. 36 Page 3 of 3

- Installation of a Mercury CEMS on SJRPP Unit 2 Currently scheduled for an in-service date of December 01, 2007.
- 800 MW Cycling Project This is being completed in numerous stages as scheduled unit outages on the four effected units are completed. The project consists of numerous small items that can be completed separately in an efficient and cost effective measure, which minimizes system impact. At the current time, the estimated completion time of all aspects of the project is the summer of 2010.
- C. Attachment II shows the annual reductions in emissions expected to be achieved by each project versus the current emissions.

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 1 of 131

Energy to Serve Your World*

Southern Company Services, Inc. Plant Scherer FGD Project

FGD Process Selection Study Comparative Evaluation of Wet and Dry Scrubbing

SCHR-1-LI-021-0001 Rev. B

Nov. 2006

WorleyParsons

resources & energy

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 3 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Appendices

- A. Basic Design Basis Wet FGD
- B. Basic Design Basis Dry FGD
- C. Flue Gas Flow Diagrams
- D. Conceptual Process Design Wet FGD
- E. Conceptual Process Design Dry FGD
- F General Arrangements Wet FGD
- G. General Arrangements Dry FGD
- H. Life Cycle Cost Spreadsheets Wet FGD
- I. Life Cycle Cost Spreadsheets Dry FGD
- J. Basis of the Capital Cost Estimates
- K. Project Capital Cost Estimates Wet & Dry FGD
- L. Major Equipment Lists Wet & Dry FGD
- M. Project Milestone Schedules Wet & Dry FGD
- N. Electrical Single-Line Diagrams Wet & Dry FGD

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I. Page 4 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

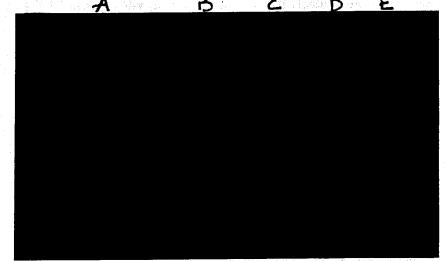
CONFIDENTIAL

Southern Company Services Plant Scherer FGD Project

EXECUTIVE SUMMARY

Approach

1.


Plant Scherer is a four-unit, coal-fired electric generating facility that currently fires a low-sulfur Powder River Basin (PRB) coal. The units are not presently equipped with flue gas desulfurization (FGD) facilities. By the years 2010 and 2015, the Clean Air Interstate Rule (CAIR) requires system-wide reductions in sulfur dioxide emissions. At Plant Scherer, it is planned to install FGD facilities that will achieve a minimum 95% reduction in SO₂ emissions.

An initial screening study by Southern Company Generation identified two candidate FGD technologies that held the highest potential for successful application to Plant Scherer. The FGD processes so identified, and evaluated further in the present study, were the following:

- Limestone Forced Oxidation (LSFO), i.e., wet FGD, and
- Lime Spray Drying (LSD), i.e., dry FGD.

The current evaluation includes an increased level of engineering detail to support the capital cost estimates and to provide a more comprehensive, quantitative comparison of the two alternative FGD technologies being considered. Two coals were specified for the design basis: the present PRB coa with a 0.3%-S contentl, and a Central Appalachian (CAPP) bituminous coal with a 1.5%-S content. The CAPP coal was specified as the basis of the facility design and study evaluation, and the PRB coal was evaluated as an alternative case.

The primary tool for quantitative evaluation of the alternative technologies was the calculation of net present values (NPV's) for each alternative's life cycle costs. These costs included capital, for project design/construction, and operating & maintenance for 20 years of FGD facility operations. The results, for the two study coals, are as follows.

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 5 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Recommendation

The comparison of the net present value costs of the two FGD technologies considered in this study shows that the LSFO, or wet, technology has a significantly lower life cycle cost than the lime spray drying, or dry, technology for Scherer. Therefore it is recommended that Southern Company proceed with the installation of a wet type process to meet the SO₂ emission limits for Plant Scherer.

WorleyParsons resources & energy

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 6 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

2. INTRODUCTION

Plant Scherer is a four-unit, coal-fired electric generating facility that currently fires a low-sulfur Powder River Basin (PRB) coal. The units are not presently equipped with flue gas desulfurization (FGD) facilities. By the years 2010 and 2015, the Clean Air Interstate Rule (CAIR) requires system-wide reductions in sulfur dioxide emissions. At Plant Scherer, it is planned to install FGD facilities that will achieve a minimum 95% reduction in SO₂ emissions.

An initial screening study was performed by Southern Company of means to meet this SO₂ emission reduction target. The study identified two candidate FGD technologies for application at Scherer: a wet scrubbing process (limestone forced oxidation) using limestone reagent, and producing gypsum byproduct; and a dry scrubbing process (lime spray drying) using a lime-based reagent, and producing a dry by-product.

In the present study, WorleyParsons was commissioned to perform a more detailed evaluation of these two alternative flue gas desulfurization technologies for Plant Scherer, to develop a recommendation for implementation and to document the work process and results.

The primary tool for evaluation of the alternative technologies was the calculation of net present values (NPV's) of the life cycle costs for each of the two alternatives. The development of the components of the life cycle costs were based on

- Project-specific conceptual engineering,
- Site-specific operating & maintenance costs, and
- Financial parameters specific to Southern Company for Scherer.

The process evaluation also addressed consideration of qualitative and quantitative issues, such as:

- facility layout and maintenance access,
- space and constructability considerations,
- reagent receiving, handling & storage,
- FGD byproduct handling and storage/disposal, and
- process wastewater generation.

3. STUDY BASIS

3.1 Plant Description

Plant Scherer is located near Juliette, GA. The plant generating facilities consist of 4 near-identical coal-fired, steam-electric units, each with a nameplate rating of 818 MW. The units were placed in commercial service in succeeding years during the period 1982-1989. The steam generators are sub-critical, tangentially-fired, units that operate in balanced draft with a set of 2 FD fans, a set of 4 ID fans and cold-side electrostatic precipitators, each.

Worley Parsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 7 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

> All four units currently fire a sub-bituminous Powder River Basin (PRB) coal, although Units 3 & 4 were originally designed for low-sulfur Central Appalachian coal. It is desired to maintain as much of this fuel flexibility as possible for future operations.

3.2 Conceptual Engineering Basis

3.2.1 Design Criteria

The key design criteria for the FGD facilities are tabulated in the Basic Design Basis documents in Appendices A (wet FGD) and B (dry FGD).

Of particular note in these criteria is the specification of two design coals: the current low-sulfur PRB coal (about 0.7 lb SO₂/MMBtu, 0.3% S) and a future Central Appalachian (CAPP) bituminous coal (about 2.3 lb SO₂/MMBtu, 1.5% S). The FGD facility, using either the wet or the dry process, is to be capable of operating with either coal while maintaining specified performance. Consequently, the sizing of gas-side components is dictated by the larger gas flow rate associated with the PRB coal, whereas sizing of the solid/liquid systems (i.e., reagent handling, reagent prep, slurry handling, process water, etc.) is dictated by the larger sulfur content of the CAPP coal.

3.2.2 Air Quality Control Project Integration

In addition to these quantitative design criteria, a critical consideration in the planning and evaluation of the FGD project is the recognition of the sequence of air quality control (AQC) projects that is to be implemented at Scherer. These projects are depicted functionally in the flow diagrams in Appendix C (sketches SCHR-0-SK-253-305-001 through -005).

The current 'back-end' configuration is shown in the first sketch (-001). Flue gas exits the boiler casing at the economizer hopper and then passes successively through the air heaters, the electrostatic precipitators, the ID fans and is discharged to the stack. The flyash collected in the precipitator is recovered (by a third party contractor) for commercial sale.

The first AQC projects to be implemented will be the addition of facilities to each unit for removal of mercury from the flue gas (sketch -002). Here, the existing ductwork train will be broken between the discharge of the ESP's and the suction of the ID fans and the gas flow processed through new baghouses (or pulse jet fabric filters, PJFF's) following the injection of the active media, carbon. At this time, it is also planned to upgrade the ID fans by increasing their head capability to overcome the additional draft loss created by the new flue gas train components. After addition of the baghouses, it is planned to continue operation of the precipitators to support flyash sales commitments. (Note that collecting the flyash in the baghouses would result in flyash contamination with carbon.)

The next series of AQC projects will be the addition of selective catalytic reduction (SCR) systems to each unit for the removal of nitrogen oxides (sketch -003). For installation of this facility, the existing flue gas train will be broken between the economizer discharges and the air heater inlets, and the flue gas processed through SCR reactors following the injection of ammonia for NOx reduction. It is anticipated that the

WorleyParsons

Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 8 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

upgrade of the ID fans, implemented during the mercury baghouse projects, will also provide sufficient head capability to operate the new SCR gas-side components.

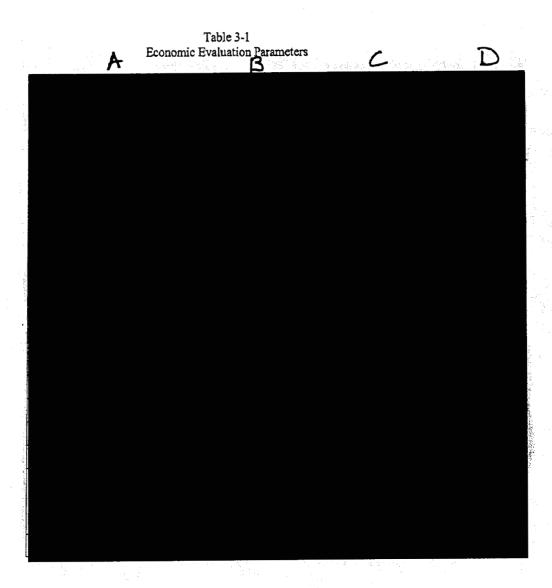
The third and final phase of the AQC projects will be the addition of the FGD facility; the two alternatives are depicted in sketches -004 (wet FGD) and -005 (dry FGD).

- To install the wet FGD facility, the existing flue gas train on each unit will be broken at the discharge of the ID fans and new ductwork will feed the flue gas to a pair of booster fans, a single absorber vessel and exhaust through a new 'wet' dual-flue stack (common stack for each pair of units: 1&2, 3&4). A gas bypass path around each absorber is not included, but rather the existing stacks will be maintained for FGD system bypass operation via the indicated gas-side dampers.
- To install the dry FGD facility, a significant reconfiguration of the ductwork is required to achieve functional integration of the ID fans into the FGD facility. The baghouse supply and return ductwork (installed with the mercury control project) must be removed from tie-in points between the precipitators and ID fans, and reconstructed to originate from the discharge of the ID fans and to return to the existing stack. In addition, the supply ductwork must be reconstructed to incorporate the lime spray dryers. As with the wet system, a gas bypass path around the SO2-removal vessels (the spray dryers) is not included, but rather the ductwork incorporates a FGD system bypass.

3.2.3 Other

The retrofit of an FGD system to the Scherer boilers should also meet the following objectives.

- Comply with the emission requirements established by the state of Georgia for compliance with the Clean Air Interstate Rule (CAIR)
- Have minimal impact on other plant emissions
- Exhibit the lowest evaluated cost (net present value of 20-yr life cycle cost) of available alternatives
- Minimize plant impacts, such as unit capacity, efficiency, availability, and ramp rate, due to the operation of the FGD system


3.3 Economic Evaluation Criteria

The following parameters were used in the economic evaluation of the two alternative scrubbing technologies. All values were specified by Southern Company Generation, except as noted.

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 9 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Note 1: Forecasted unit costs (\$/T) for rail-delivered lime and limestone were provided year-by-year (by SoCo) for the time period 2011-2024. Extrapolated values (by WorleyParsons) were used for the time period 2025-2034. Specific values are listed in the spreadsheets contained in Appendices H and I.

Note 2: The present study is based on a gypsum handling process in which the absorber bleed slurry is pumped directly to a new, on-site gypsum pond, where the gypsum is allowed to settle out and the water recycled to the scrubbing operation. The cost of constructing the pond is included in the project capital cost. A cost of \$100,000/yr has been assessed (by WorleyParsons) for (drag-line) stacking of the gypsum at the pond area and is included in annual O&M charges for the wet FGD facility.

Worley Parsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 10 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Note 3: The present study is based on (on-site) landfill of the dry FGD byproduct. The cost of constructing the landfill is included in the project capital cost. Costs for both labor and mobile equipment to haul the material to the landfill from the process area and to stack/compact it in the landfill are included in the annual O&M costs for the dry FGD facility as described in Section 5.2.

Note 4: Forecasted unit costs (\$/T SO2) for SO2 credits were provided year-by-year (by SoCo) for the time period 2011-2024. Extrapolated values (by WorleyParsons) were used for the time period 2025-2034. Specific values are listed in the spreadsheets contained in Appendices H and I.

Note 5: The unit costs listed are an 'all-in' annual costs, that were derived (by WorleyParsons) from hourly salary rates (provided by SoCo), as described in Section 5.2.

Note 6: The values listed in the table were taken from year-by-year, unit-specific data provided by SoCo, and are the forecasted daily cost for the FGD tie-in year for each unit.

FGD SYSTEMS CHARACTERIZATION

4.1 Process Descriptions

The following section contains process descriptions of the two technologies chosen by Southern Company for potential retrofit on Plant Scherer to reduce SO_2 emissions. These technologies were chosen on the basis of SO_2 removal capability, commercial experience, current availability, compatibility with projected fuels, affect on current emission limits, byproduct management and reagent availability.

4.1.1 Limestone Forced Oxidation (LSFO) - Wet FGD Process

Refer to the process flow diagrams (SCHR-0-SK-021-305-001, SCHR-0-SK-021-305-002 & SCHR-0-SK-569-304-001) for the wet FGD process in Appendix D.

In the past 20 years, the LSFO process has evolved as the preferred wet FGD technology worldwide. LSFO offers the advantage of controlled oxidation of reaction products and potentially scale-free operation of the wet scrubber. Depending on process-specific conditions, LSFO may produce a salable byproduct in the form of commercial-grade synthetic gypsum that can be used for wallboard manufacturing or other industrial applications. A list of major equipment included in the LSFO facility is included in Appendix L.

Gas Scrubbing

In the LSFO process, hot flue gas exiting the ESP and ID/booster fans enters an absorber vessel where it is contacted with a dilute calcium carbonate and calcium sulfate slurry. The SO₂ reacts with the calcium carbonate in the limestone particles and the slurry drains into the reaction tank at the base of the vessel, where the neutralizing reactions are completed. After contact with the reagent spray, the flue gas continues an upward

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 11 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

vertical flow to multiple stages of mist elimination to remove the mist droplets from the gas stream. Then the flue gas exits the absorber through the outlet duct and discharges through the stack.

Within the reaction tank/absorber vessel, the calcium-bearing solids are suspended with agitators to facilitate the neutralization reactions. Fresh reagent and make-up water are periodically added as needed to keep the recirculation tank at optimum conditions for reactions to occur. Large slurry recirculation pumps are used to continually transport the slurry into the absorber vessel for reintroduction into the flue gas. Recirculation piping and spray nozzles provide fine slurry droplets within the flue gas stream to provide a large slurry droplet surface area to enhance the gas to liquid contact in the spray zone. As solids build-up in the reaction tank, bleed pumps maintain tank density to optimum conditions by transporting the solids to the dewatering process.

Generally, additives are not required in the LSFO process since the gypsum crystals resulting from this process tend to be relatively large, dense crystals that do not retain water. The solids coming from the dewatering process are typically 90%+ gypsum and inerts. This material is self-supporting and can be trucked, conveyed and moved using a front-end loader, or other conventional earth-moving equipment.

The LSFO process requires makeup water to replace the losses that occur through evaporation and the liquor entrained in the byproduct solids. Some of this makeup water can be supplied from any source that is not saturated with respect to any dissolved solids and contains a relatively low concentration of suspended solids. When producing a wallboard-grade gypsum product, the quality of the makeup water to the FGD system may have more restrictions than if the product solids were being sent to a landfill. For example, only low TDS/TSS water should be used for washing the gypsum cake to reduce chloride content and eliminate contamination of the gypsum byproduct. Chlorides must be maintained below a specified maximum concentration (as determined by material selection) to prevent excessive corrosion of wetted components.

The mist eliminator wash stream must be higher quality water to maintain scale-free operation. This intermittent wash water stream serves as a portion of the scrubber makeup water. If poor quality wash water is used for makeup, or if scrubber liquor is utilized, this typically will lead to heavy scale formation that can not be removed without taking the unit off-line for manual cleaning. In some cases, the use of saturated wastewater has led to the complete blockage of the mist eliminators.

The chemistry for this process begins with limestone (CaCO₃), the absorbing reagent, fed to the absorber reaction tank in an aqueous slurry at a molar feed rate of 1.03-1.05 moles of CaCO₃/mole of SO₂ removed. The major product of SO₂ reaction with limestone is the formation of hydrated calcium sulfite (CaSO₃ • $\frac{1}{2}$ H₂O(s)) according to the following reaction:

• $CaCO_3(s) + SO_2(g) + \frac{1}{2}H_2O \rightarrow CaSO_3 \cdot \frac{1}{2}H_2O(s) + CO_2$.

The sulfite is oxidized to sulfate by the injection of air into the bottom of the absorber sump, and then hydrated to form gypsum (CaSO₄ \bullet 2H₂O) through the following reaction:

WorleyParsons

8

resources & energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 12 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

• CaSO₃ • $\frac{1}{2}H_2O(s) + \frac{1}{2}O_2 + \frac{3}{2}H_2O \rightarrow CaSO_4 \cdot 2H_2O$.

In addition to the LSFO chemistry occurring in the absorber vessel and reaction tank, two other process steps are needed – reagent preparation and solids dewatering.

Reagent Preparation

As configured for the Scherer project, limestone is delivered by rail and discharged into a under-track hopper. From this hopper the limestone is conveyed and deposited on the storage pile by a radial stacker. A plant dozer will be used to move the limestone into a storage pile, and also to reclaim the limestone into the below-grade reclaim hopper. The reclaim system includes a vibrating feeder and conveyor system to transfer limestone to the day bins. Limestone day bins and feeders supply limestone to the horizontal ball mills, which wet-grind the limestone to produce a slurry for use in the wet scrubber. The small limestone slurry particle size produces a large surface area for gas contact without excessive power consumption by the ball mill. The limestone slurry product is discharged to a limestone slurry storage tank, and then transferred to smaller feed tanks at the scrubber islands (a common tank for each unit pair) via slurry pumps.

Solids Dewatering

The solids dewatering process proceeds after the solids are precipitated in the absorber tower. The SO_2 reaction with calcium carbonate initially forms calcium sulfite, which is subsequently oxidized to calcium sulfate (gypsum) in the absorber reaction tank. This oxidation process is accomplished by forcing air through spargers that are immersed in the reaction tank slurry inventory. The formation of gypsum crystals in the slurry helps to reduce scaling potential by providing suspended crystal surface for crystal growth and reducing the calcium sulfate saturation level in the slurry. A minimum level of calcium sulfate super-saturation is required to initiate gypsum crystal formation.

A balance between product gypsum and fresh limestone feed in the absorber reaction tank is maintained by removing a 'bleed' stream of slurry from the reaction tank inventory. In the Advatech absorber design, the absorber slurry inventory is operated at a concentration of 30 wt% solids. For the application at Scherer, this bleed stream from each of the four unit absorbers will be pumped to a new settling pond, where the slurry will be allowed to separate into its solid (gypsum) and liquid components. The sludge that settles is typically a 70/30 solids/liquid mixture, and the balance of the water will be reclaimed for re-use in the process.

Of the reclaimed water, a modest portion must typically be discharged, i.e., blown down, to maintain chloride concentration in the absorber below a maximum allowable value (normally 5,000-20,000 ppmw, depending on material selection). The balance of the reclaimed water is used for water supply to the limestone grinding operation and for makeup into the absorber reaction tank.

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 13 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

4.1.2 Lime Spray Drying (LSD) - Dry FGD Process

Refer to the process flow diagrams (SCHR-0-SK-021-305-201, SCHR-0-SK-021-305-202 & SCHR-0-SK-569-304-002) for the dry FGD process in Appendix E. A list of major equipment included in the LSD facility is included in Appendix L.

Overview

The lime spray drying process is a semi-dry FGD process that produces a dry mixture of fly ash and reaction products. The application of the lime spray dryer FGD process to coal-fired boilers is limited to medium and low sulfur fuels, in most cases where a SO2 removal efficiency of 95% or less is required. The sulfur content of the coals specified for the FGD project at Scherer and the SO2 removal efficiency required make the LSD process a candidate for the present application.

In the spray drving absorption process, flue gas enters the spray dryer absorption (SDA) module via the gas distribution system which spreads the incoming flue gas symmetrically around the atomizer. The atomizer, which is used to atomize the feed slurry (i.e. a mixture of hydrated lime slurry and recycle solids slurry) into a fine spray and inject it into the flue gas, can be either a rotary design or an air-atomized, two-fluid nozzle design. The finely atomized feed shurry mixes with the flue gas, resulting in the evaporation of water and the removal of the SO₂ via chemical reaction with the slurry.

The quantity of water contained in the atomized spray is precisely controlled so that it completely evaporates in suspension. Absorption of SO2 takes place primarily as the flue gas is cooled adiabatically by the evaporation of the water contained in the atomized spray. The difference between the temperature of flue gas leaving the SDA and the adiabatic saturation temperature is known as the approach temperature. Reagent stoichiometry, residence time and approach temperature are the primary variables that control the SO₂ removal efficiency in the SDA module.

The primary product of the reaction between the hydrated lime, Ca(OH)₂, component of the feed slurry and the SO_2 is hydrated calcium sulfite, according to the following relationship.

• $SO_2 + Ca(OH)_2 \rightarrow CaSO_3 * \frac{1}{2}H_2O + \frac{1}{2}H_2O$

A smaller portion of the sulfur dioxide may also react with oxygen in the flue gas to produce the secondary product of calcium sulfate dihydrate by the following reaction.

 $Ca(OH)_2 + SO_2 + H_2O + \frac{1}{2}O_2 \rightarrow CaSO_4 * 2H_2O$

Sulfur trioxide is also found in the flue gas in small amounts. The sulfur trioxide reaction produces additional calcium sulfate dihydrate by the following.

 $SO_1 + C_2(OH)_2 + H_2O \rightarrow C_2SO_4 * 2H_2O$

The majority of the water added to the lime in the initial hydration process is evaporated in the absorber. There are no wastewater streams exiting the absorber. The degree of

WorleyParsons rasources & energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 14 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

reaction depends on the amount of liquid present, the approach to the adiabatic saturation temperature and the residence time for drying.

As the flue gas and feed slurry mixture passes through the SDA module, the spray drying and initial SO_2 removal processes are completed. The SDA module is designed to insure that most of the particulate that can be entrained in the flue gas is carried to the fabric filter dust collector, which is usually of the pulse-jet fabric filter (PJFF) type. The larger, coarser particulate that is not entrained in the flue gas is discharged from the bottom of the SDA module hopper for disposal.

The flue gas and entrained reaction products, un-reacted reagent, and flyash exit the SDA module and then flow into the PJFF, wherein additional SO_2 as well as particulate removal takes place. The reaction products, un-reacted reagent, and flyash collected in the PJFF hoppers is then conveyed by the ash handling system to either the recycle ash storage silo for reuse or the waste ash storage silo for disposal. Upon exiting the PJFF, cleaned flue gas is directed to the booster fans which discharge to the stack.

Spray Dryer Absorber (SDA)

Flue gas is introduced into each SDA module by means of a gas disperser and a roof gas distributor. The purpose of the gas dispersers is to distribute the incoming flue gas symmetrically around the atomizer unit at a velocity and direction appropriate to assure optimum absorption of the acids contained in the flue gas. In the rotary atomizer design, the roof gas disperser has a scroll inlet, which delivers the flue gas to the tapered, annular discharge nozzle positioned around the atomizer. Guide vanes are constructed of abrasion-resistant material and are mounted in the disperser discharge outlet. The purpose of the vanes is to distribute the flow of flue gas uniformly around the atomizer. Careful control of the gas distribution, slurry flow rate and droplet size assures that the droplets are evaporated to dryness prior to contacting the internal walls of the SDA module.

Rotary Atomizer

The rotary atomizer converts the feed slurry to a uniform, finely divided spray of droplets. The rotary atomizer is a precision-made machine designed for high-speed operation and is driven by a vertical, flange-mounted motor specifically designed for the atomizer.

The rotary atomizers are withdrawn from the top of the SDA module for periodic servicing. Gas flow through the SDA module may be maintained when the atomizer is removed for service. A hoist and trolley is typically used to facilitate the change out of the rotary atomizer.

Pulse Jet Fabric Filter

Flue gas with SDA reactant products and boiler fly ash enters the fabric filter inlet plenum and is distributed to each of the individual compartments. The inlet baffle distributes gas and particulate evenly to the filter bags. A portion of the gas is directed downward from the top of the bags minimizing upward velocity and enhancing on-line cleaning. Each filter bag is supported on a wire cage. The bags and cages are

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 15 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

independently suspended from the PJFF tubesheet at the top of each compartment.

Flue gas flow is primarily horizontal and downward through the bags. This flow pattern enhances even gas distribution and minimizes reintrainment when pulsing on line. Collected particulate is cleaned from the bags by pulsing with dried, intermediate pressure compressed air (35 psig) while the compartment remains on line filtering flue gas. The pulse of air dislodges the collected particulate from the bags causing it to fall into the hopper. This material is then conveyed to storage for recycle or disposal. Clean gas exits upward from the filter bags, through the tubesheet and out to the outlet or clean air plenum.

A louver type damper is used to provide inlet isolation for each compartment. The inlet dampers are closed only when a compartment must be isolated for personnel entry when other compartments remain on line. Each compartment also includes poppet type outlet dampers. The outlet dampers must be closed to isolate a compartment for personnel entry, or they can be used for off-line cleaning.

The same type of poppet type damper is also used for system bypass. The poppet design creates a gas and dust tight seal at the common wall between the inlet and outlet plenums. These dampers provide a very reliable metal-to-metal seal without the use of wiper seals or air purge systems. The sealing plate is comprised of several metal discs that provide full contact with a machined metal seat when the damper is closed.

The PJFF control system can be set to operate automatically or manually. The filter bags in each jet assembly are cleaned two rows at a time. Each row of bags has a double diaphragm valve and solenoid which directs a controlled pulse of dry compressed air from the air header to the manifold located above the row of bags.

Lime Preparation

Pebble lime is delivered by rail car, and discharged into an under-track hopper. From the hopper it is transferred by conveyor directly to one of six covered lime storage silos.

The lime preparation system performs the hydration of pebble lime with process water to prepare hydrated lime slurry at approximately 20-25 wt% suspended solids concentration, for spraying into the SDA module. Lime is discharged from each storage silo through a weigh feeder and is fed to an individual lime slaking system, where it is wet-ground and hydrated in a vertical ball mill (or vertimill). The lime slurry product that is discharged from each slaker train is pumped to a common lime slurry storage tank. From this main slurry storage tank, the slurry is transferred to smaller feed tanks at the scrubber areas (a common tank for each unit pair) via slurry pumps.

Lime slurry feed pumps draw suction from the slurry feed tanks and discharge into the lime slurry feed loops. The lime slurry feed loops supply lime slurry to the SDA's for the spray drying process. Constant pump speeds and pipeline velocities are maintained to eliminate settling or caking within the lime slurry feed loop.

WorleyParsons resources 2 energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 16 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Recycle Slurry Preparation

The recycle slurry preparation system provides for mixing of solids collected from the SDA's and PJFF's with process water to prepare recycle slurry at up to 45 w% suspended solids concentration for spraying into the SDA module. The recycle slurry enhances utilization of the lime reagent as well as promoting droplet drying in the SDA modules.

FGD by-product solids being returned to the process are conveyed pneumatically by a (new) ash handling system to the recycle solids silo (one per unit). A bin vent filter captures dust released during silo filling. Recycle material is discharged from the recycle solids silo through a fluidized outlet cone and flows to one of two (2) 100%-capacity recycle slurry preparation trains.

The recycle solids discharged from the storage silo are combined initially with process water in a wetting box. The recycle solids/water mixture that is discharged from the wetting box flows by gravity into the recycle mix tanks where additional water is added. The recycle slurry that is discharged from the recycle mix tank flows via gravity through a vibrating grit screen to remove oversized particles larger than 8 mesh from the recycle slurry. The grit discharged from the grit screen flows via gravity to a disposal bin. Recycle slurry underflow from the vibrating grit screen flows via gravity to the recycle slurry storage tank.

Two, 100%-capacity centrifugal pumps are used for the recycle slurry feed service. Constant pump speeds and pipe line velocities are maintained to eliminate settling or caking within the dedicated recycle slurry supply line to the atomizer head tank.

Waste Solids

Excess solids from the scrubbing process, not used for recycle, are pneumatically conveyed to the by-product storage silos (one each for each pair of units). This material is discharged from each silo through a pin mixer, where it is wetted to control dusting, and is dropped into a dump truck. Large, 100-T trucks are used to haul the material to the on-site landfill.

4.2 Process Operating Characteristics

To quantify the operation of the processes, project-specific combustion calculations, process flow diagrams and mass balances were developed for each of the two alternative FGD processes for each of the two project coals. This information is contained in Appendices D (wet FGD) and E (dry FGD).

At the present conceptual level of engineering, the operation of all four of the Scherer units was treated as identical (as reflected in the Basic Design Basis documents).

The tables in this section were derived from the calculational results in Appendices D & E, and provide the rates of commodity usage/production that enter into the calculation of variable O&M costs.

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 17 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Process	Coal		Removed.	Diacharged 7Unit	¢ %SO2 Removal
Wet	CAPP	79,090	75,920	3,170	96.0
Dry	CAPP	79,090	75,130	3,960	95.0
Wet	PRB	23,570	23,100	470	98.0
Dry	PRB	23,570	21,870	1,700	92.8

Table 4-1 Annual SO₂ Mass Balances @ 85% Capacity Factor (tons/yr)

The sulfur dioxide removal rates for the wet FGD process are those quoted by Advatech for the specified coals, and represent operation of a single-pass Advatech scrubber vessel.

The sulfur dioxide removal rates for the dry FGD process were estimated by WorleyParsons based on in-house process design experience. For both coals, these dry FGD performance values represent the upper limit of the capabilities of this technology. In the case of operation with PRB coal, the removal rate is limited by the concentration of SO₂ in the outlet flue gas (about 17 ppmv, see the material balance in App. E); that is, the process is not capable of removing SO₂ below this concentration.

FGD Process	Coal	SO2 Removal (Ib/br)	FGD Reagent Feed (lb/hr)	FGD Byproduct Production (lb/hr)	FGD Makeup Water Usage (gpm)
Wet	CAPP	19,990	41,310	74,850*	1,285
Dry	CAPP	20,150	40,680	78,420	997
Wet	PRB	6,210	12,050	23,570*	1,110
Dry	PRB	5,870	11,500	23,510	1,022

Table 4-2 FGD Facility Operating Characteristics at Full Load – Per Unit

(*) dry basis

The mass feed rates of the two reagents, limestone and lime, are very nearly numerically equal for a given coal, reflecting a much higher calcium usage for the dry process as compared to the wet process (limestone, i.e., calcium carbonate, weighs 2.50 lb per lb of contained calcium, whereas lime, i.e., calcium oxide, weighs 1.40 lb per lb of contained calcium; hence equal mass feed rates of limestone and lime implies a significantly higher

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 18 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

calcium feed rate for the lime case). The wet process is designed with a Ca/S stoichiometric ratio of 1.03, whereas the dry process requires a ratio of about 2.0. This high Ca usage for the dry process is a result of operating this technology at the limit of its capability.

The approximately equal mass rates of byproduct production for both processes, given the differences in Ca feed rates, is a result of differences in the chemical composition of compounds formed in the scrubbing process (i.e., calcium sulfate di-hydrate vs. calcium sulfite), as well as the excess, unreacted lime in the case of dry scrubbing. The chemical composition of the byproducts is described in Section 7.6.

The makeup water requirements, for a given coal, differ between the two processes due to the differences in the flue gas conditions exiting the FGD absorber vessels. The dry technology only requires that the flue gas temperature be reduced to within 35F of the saturation point, whereas the wet technology produces a saturated gas; thus there is less water lost to evaporation in the dry process.

Table 4-3	
FGD System Power Consumption	at Full Load

FGD Process	Aux. Power / Unit (kW)
Wet	45,000
Dry	27,000

The auxiliary power consumption values listed in Table 4-3 represent order-of -magnitude estimates of time-averaged FGD-based load. The values include, in addition to operation of unit-specific process facilities, power consumption by the booster fans as well as a proportioned share of FGD common facilities. At the present conceptual level, differences in auxiliary power consumption due to operation with the two different design coals were not considered.

4.3 Facility Arrangements

Conceptual-level arrangement drawings were developed for both the wet FGD and dry FGD facilities, including the gas flow train components, the reagent handling and preparation facilities and the by-product storage/disposal areas. These drawings are presented in Appendices F (wet FGD) and G (dry FGD).

These drawings serve to assess overall technical feasibility, to identify key constructability and tie-in issues, and to provide a basis for developing much of the engineering data required for the capital cost estimates.

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 19 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

4.3.1 Wet FGD

The arrangement of the wet FGD facilities reflects on-going work within SoCo Generation, and also incorporates the physical arrangement of the Advatech 'scrubber island'. The Unit 1 & 2 scrubber islands are grouped around a (new) common, two-flue stack to the south of the power block, with the new booster fans directly behind (to the east) of the existing stack. Adjacent to the new stack is a Unit1&2-common electrical building that houses electrical distribution equipment, the new DCS cabinetry and miscellaneous other facilities.

The Unit 3 & 4 scrubber facilities are arranged similarly, to the north of the power block, but reflect the fact that the larger precipitators on these two units has restricted available space directly behind the boilers and has required that the new booster fans be located adjacent to the scrubber islands.

Four-unit common limestone receiving, storage and preparation facilities are located on the north side of the coal pile area. New rail spurs are provided for limestone delivery, and a radial-stacker conveyor system is used to transfer the limestone to the storage area from the car unloading area. A new access road around the limestone pile is included for emergency delivery of limestone by truck. Limestone is reclaimed from the pile and transferred via conveyor to the limestone preparation area.

The limestone preparation facilities are housed in a building, located adjacent to the limestone storage area. Limestone is received in two day silos, each feeding an individual, horizontal ball mill grinding operation. Limestone shurry product is discharged to an outside storage tank, prior to transfer to (smaller) feed tanks at the scrubber islands.

The new gypsum pond has been located about ½-mile to the north, adjacent to the existing ash pond, and makes use of a naturally-occurring valley. Slurry bleed is pumped out to this pond area, and reclaimed water is pumped back to a storage tank in the limestone preparation area for re-use in the process (primarily limestone grinding).

4.3.2 Dry FGD

In developing conceptual arrangements for the dry FGD facilities, the approach used was to consolidate the locations of the various gas-side components to the maximum extent deemed feasible, because of the need to demolish/reconstruct ductwork during FGD system installation (as described in Section 3.2.2). Although SoCo has subsequently decided not to pursue this arrangement, should a dry FGD system be implemented, it serves as the basis for the current evaluation. The alternative approach of using more spread-out locations for the baghouses, as is currently planned for the mercury control projects, will result in dry FGD project costs that are increased over those estimated in the current study.

The process of developing these arrangements for the dry FGD facility has also resulted in the recognition that implementation of a cost-effective dry semibber project requires that the mercury control project and a dry FGD project should be designed as integrated

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 20 of 131 Selection Study

Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

projects and constructed in a sequential manner that minimizes reconstruction requirements and tie-in outage durations.

The arrangement developed for the present study 'stacks' the baghouses, that is, the Unit 2 baghouse is stacked on top of the Unit 1 baghouse, and also uses a comparable under/over arrangement for the ductwork. A similar arrangement is used for Units 3 & 4. For Units 1 & 2, all of the major gas-side components (booster fans, spray dryers and baghouses) are located in the open area behind the units, between the stack and the existing access road. To the south are common facilities for these two units: an 'ash' silo, for storage of dry FGD by-product, and a building that houses the ash recycle facilities as well as electrical/DCS equipment.

The Unit 3 & 4 facilities follow a similar grouping, but must be located to the north of the existing stack, again due to the size of the Unit 3 & 4 precipitators, thus requiring more extensive ductwork runs.

Four-unit common lime receiving, storage and preparation facilities are located on the north side of the coal pile area. New rail spurs are provided for pebble lime delivery, and lime is transferred via conveyor from the below-grade unloading hopper to a set of 6 concrete storage silos. Individual lime slaking trains are housed in the bottom of each silo and are fed directly from the silo discharge hoppers. Lime slurry product is discharged to a common storage tank in the silo area, prior to transfer to (smaller) feed tanks in the absorber areas.

The landfill area, for disposal of the dry FGD by-product, has been located about ¼-mile to the north, adjacent to the existing ash pond, and makes use of a naturally-occurring valley. A new access road runs out to this disposal area, connecting to existing plant roads, that is used to haul the FGD by-product from the two silos in the scrubber area to the landfill via 100-T trucks.

5. ECONOMIC ANALYSIS

5.1 Approach

The economic performance of each of the two alternative scrubbing technologies was evaluated using a life cycle cost methodology. This type of analysis calculates the net present value of the cash flow associated with a given scenario, or alternative.

For the present study, year-by-year cash flows were developed, covering the period of project construction followed by 20 years of operation for each unit. Costs were developed to describe the two major phases of the commercial life of the FGD facilities.

- Capital costs, for design, construction and commissioning of the facilities.
- Operating & maintenance costs, for materials and labor to operate and maintain the facilities.

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 21 of 131

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

The net present value (NPV) calculations were evaluated per the following relationship.

Life Cycle Cost (\$) = Sum of Discounted Annual Cash Flow = Net Present Value [(yr-by-yr capital cash flow) + (20 yrs of yr-by-yr O&M costs)]

A levelized unit cost was also calculated, which is defined as

Levelized Unit Cost (\$/T SO2 Removed) = NPV (\$) / (Tons of SO2 Removed in 20-yr Life),

where the denominator is calculated at the target removal efficiency of 95%.

5.2 O&M Costs

Operating and maintenance (O&M) cost estimates, specific to each technology, were developed on an annual basis. Specific costs were estimated for the following categories of O&M requirements.

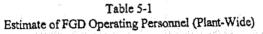
- Fixed O&M Costs
 - FGD operating labor (additional new employees)
 - FGD facility maintenance (both labor and material)
 - FGD Administrative and Support Costs
 - Landfill operations
 - Fabric filter bag replacement (dry FGD only)
- Variable O&M Costs
 - FGD reagent supply
 - FGD auxiliary power consumption
 - FGD water consumption
 - SO2 credits

The unit costs used to estimate these components of annual O&M costs were presented in Sec. 3.3.

5.2.1 Fixed

Fixed O&M costs refer to those costs that are independent of the number of hours of plant operation and type of coal fired.

Operating Labor


The number of new plant employees, required to support FGD facility operations, was estimated as shown in the following table for both the wet and dry FGD facilities.

WorleyParsons

Southern Company Services Plant Scherer FGD Project

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 22 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

WorleyParsons resources & energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 23 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services 2 Plant Scherer FGD Project

> The approach taken was to estimate separately, for the dry FGD facility, operating personnel requirements for the by-product landfill operation. Treatment of these costs is

described in (the following) Section 5.2.2. 5

← In this table, in addition to developing operating personnel requirements, the average

wage rate is developed as a function of the skills mix, using hourly wage rates provided

B by SoCo for Plant Scherer. The annual all-in cost, used in the O&M estimate, was calculated as follows:

Annual Avg. Cost (all-in) = Hrly Rate (\$/hr) * 1.6 * 2080 (hrs/yr), 10

st where the factor of 1.6 was applied to account for indirect costs (i.e., benefits, overhead, 12 G&A).

13 Operating labor costs were then calculated for each technology from the relationship

14

Annual Cost = No. of Operating Personnel * Annual Avg. Cost

15 Maintenance

Maintenance costs for each of the alternative facilities were assessed at 2.7% of the

17 respective FGD project capital costs. This factor of 2.7% is a typical allowance that has

18 evolved in DOE/EPRI technology assessment methodology, and includes labor and

19 material allowances (generally assumed to be a 60/40 split, respectively).

2 Administrative & Support

21 Administrative and support costs for each of the alternative facilities were assessed at 22 0.6% of the respective FGD project capital costs. Again, the 0.6% factor of is a typical 23 allowance that has evolved in DOE/EPRI technology assessment methodology.

24 Pond / Landfill Operations

as FGD by-product sales/disposal costs are traditionally treated as variable costs, since the 26 most common disposition of these materials is to sell the gypsum to a third-party manufacturer or to dispose of the dry by-product in an off-site landfill. In both cases, the 28 associated financial transactions are on a \$/T of material handled. However, in the 29 present study, annual costs were applied on a fixed basis per the following procedure.

30 In the case of the wet FGD facility, no operating personnel requirements were identified

31 for the gypsum pond operation, but an annual cost of was assessed for restacking of gypsum in the pond area (assumed to be an outside contractor).

For the dry FGD facility, operating personnel are required for hauling the dry by-product out to the landfill area, for stacking and compacting the material in the landfill, and for equipment maintenance and house-keeping. The estimated personnel needed to perform these functions were identified in Table 5-1, and costs were calculated as follows.

Annual Cost = No. of Operating Personnel * Annual Avg. Cost

WorleyParsons mounces 2 energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 24 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

I Southern Company Services 2 Plant Scherer FGD Project

34

In addition, costs for the mobile equipment and associated spare parts were assessed. The and to have a usable equipment (5 trucks, 1 dozer) were estimated to cost lifetime of 10 yrs. Annual cost for spare parts was estimated at 10% of the equipment cost.

PJFF Bag Replacement

The bags in the pulse jet fabric filters used in the dry FGD facility require regular replacement; a 3-year life is typical in this application. Since the same situation occurs with the bags in the mercury removal application, but with a longer bag life (estimated to be 5 years) due to the lower particulate loading, the dry scrubber facility was assessed the incremental bag replacement costs (differential between 3 and 5 years). These costs included material (new bags) and bag installation costs. The bag replacement costs were thus treated in a quasi-fixed manner, in that they were not made dependent on operating hours per year; such treatment was considered justified based on the high capacity factor (85%) for the units.

5.2.2 Variable

Variable O&M costs are those costs that are directly dependent on the number of hours of plant operation. The approach taken to estimate each variable facility cost was to develop a continuous annual rate (i.e., tons/yr, kWh/yr, etc.) based on full-load, continuous operation (8760 hr/yr), and to multiply this value by the annual unit capacity factor to arrive at an equivalent annual rate. The appropriate unit cost (Sec 3.3) was then applied to this rate to arrive at an annual cost. The rates characterizing each of the two FGD technologies were presented in Sec. 4.2.

Reagent

Annual Reagent Costs = 4*Consumption Rate (#/hr / unit) / 2000 (#/T) * Unit Cost (\$/T) * 8760*Capacity Factor (hr/yr)

Aux Power / Water Consumption

Here, the cost relationships are straight forward.

Annual Aux Power Costs = 4*Consumption Rate (kW/unit) / 1000 (kW/MW) * Unit Cost (\$/MWh) * 8760*Capacity Factor (hr/yr)

Annual Makeup Water Costs = 4*Consumption Rate (gpm/unit) / 60 (min/hr) / 10⁶ * Unit Cost (\$/Mingal) * 8760*Capacity Factor (hr/yr)

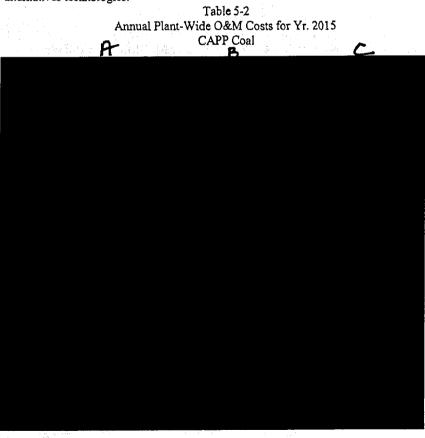
SO2 Credits

As identified in Table 4-1, the various technology/fuel combinations have different sulfur dioxide removal efficiencies. To evaluate each of these on an equivalent performance basis, costs/credits were assessed for each relative to the target removal efficiency of

WorleyParsons resources & energy

CONFIDENTIAL

Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 25 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

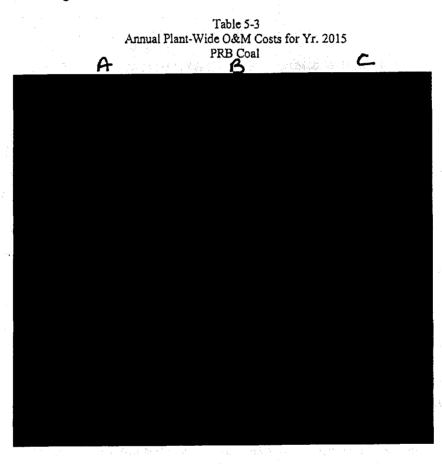

95%. That is, for alternatives where the removal efficiency is below 95%, costs for SO_2 allowances were assessed based on tons/yr of SO_2 emitted that exceed the 95% removal rate. In a similarly fashion, a credit was given to a particular alternative for tons/yr of SO_2 removed that exceed the 95% removal rate.

Annual SO₂ Allowance Cost = 4 * SO₂ Input/Unit (T/yr) * (0.95 - Removal Efficiency/100) * SO₂ Allowance Rate (\$/T)

5.2.3 O&M Results

The annual O&M costs vary from year to year, due to varying year-by-year unit costs and/or due to differing treatment. The complete build-up of these costs, through the full 20 years of operating life for each unit, is contained in the spreadsheets in Appendices H (wet FGD) and I (dry FGD).

Here, for illustrative purposes, the results of the analysis are described just for the year 2015, which is the first full year that the FGD facilities on all four units are in service. The following table summarizes the results for operation with bituminous (CAPP) coal, which was specified as the baseline fuel for the economic comparison of the two alternatives technologies.

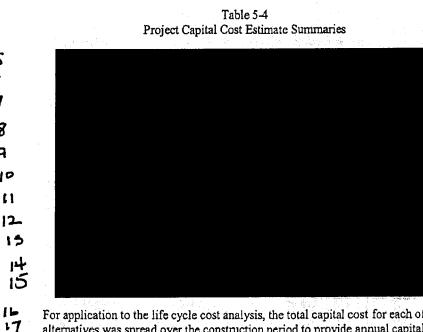

WorleyParsons

CONFIDENTIAL

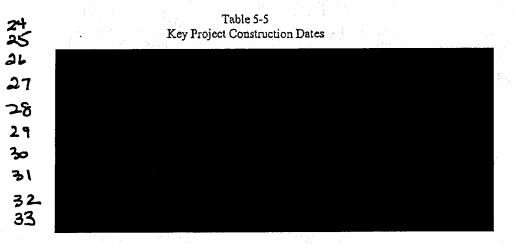
Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 26 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Although there are modest differences between the two technologies in most cost categories, the key result is the significantly greater cost of lime for the dry FGD technology than the limestone for the wet FGD technology. This difference results in an annual O&M cost for dry FGD that is about twice that for wet FGD.

Comparable results for PRB coal are presented in the following Table 5-3. Here, the incremental total O&M cost for dry FGD in comparison to wet FGD is less pronounced but still significant.


5.3 Capital Costs

See Appendix J for the basis of the capital cost estimates. See Appendix K for the capital cost estimates for both the wet and dry FGD systems. The associated major equipment lists for each technology are contained in Appendix L.



Worley Parsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 27 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

For application to the life cycle cost analysis, the total capital cost for each of the two alternatives was spread over the construction period to provide annual capital cost expenditures. The procedure was to first divide the project total into the sub-totals for units 0 through 4 (0 = common), and to then spread each unit sub-total into yearly expenditures; the distribution for these yr-by-yr spreads was based on WP's experience with another 4-unit FGD project. For each unit, the yearly cash flows were distributed over the unit-specific project dates identified in the preliminary project schedule (Section 6), and summarized in the following table.

Design and construction of both the wet and dry facilities were assumed to follow this same schedule.

ł

2

3

4

54

7

18

19

20

21

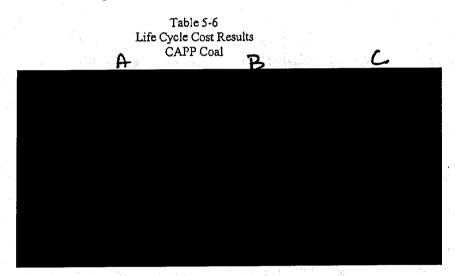
22 23

Southern Company Services

Plant Scherer FGD Project

WorleyParsons resources & energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 28 of 131


Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

In addition to the accounting for the project engineering and construction costs, as described above, both alternatives were assessed costs for lost generation during the tie-in outage for unit (using the daily costs listed in Table 3-1). Based on the constructability evaluation (Section 7.10), a tie-in outage duration of 2.5 weeks was used for each wet FGD unit, and 10 weeks for each dry FGD unit.

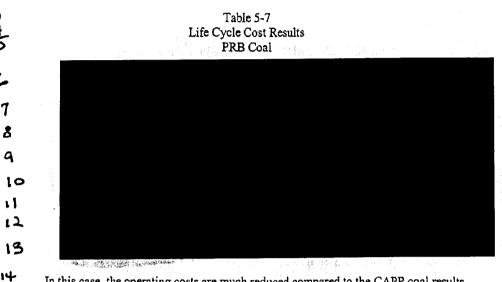
5.4 Life Cycle Cost Results

5.4.1 Baseline

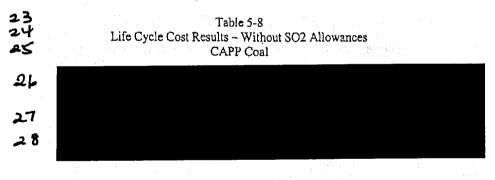
The complete buildup of year-by-year costs, over the period of evaluation, for the wet and dry FGD alternatives are contained in the spreadsheet printouts in Appendices H and I, respectively. The resulting net present value costs for the baseline CAPP coal are shown in the following table.

For the baseline CAPP fuel, the dry FGD facility is found to have a life cycle cost about 63 % greater than the comparable cost for a wet FGD system. The dry FGD technology is burdened by 25% higher capital costs, as well as 125% higher operating costs (primarily due to lime purchase). This difference in operating costs is the most significant differentiator.

5.4.2 Parametric Comparisons


The results of the corresponding life cycle cost analysis for the two technologies with the alternate project coal, PRB, are listed in Table 5-7.

Worley Parsons


Southern Company Services
 Plant Scherer FGD Project

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 29 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

In this case, the operating costs are much reduced compared to the CAPP coal results, and subsequently the difference in life cycle costs is much less pronounced, but still results in a dry FGD levelized unit cost that is 43% greater than for the wet FGD.

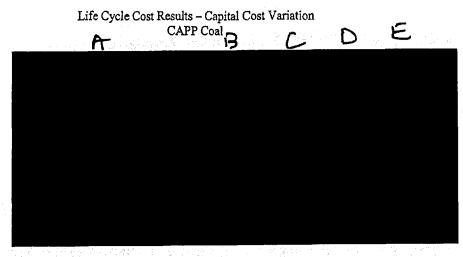
The effect of assessing costs/benefits for SO₂ allowances (as a method of compensating for differences in SO₂ removal efficiencies between the different coal/technology
combinations) was quantified by calculating the baseline life cycle cost with this cost account deleted. The comparison of this variation is shown in the following table, and demonstrates that the effect is minor and that it does not have a significant impact on the comparison of the two technologies.

The impact of uncertainty in the project capital costs was quantified by running the baseline life cycle analysis with the dry FGD capital costs varied by +/-20%, while holding the wet FGD capital costs constant. The results are listed in Table 5-9.

15

16

Table 5-9


WorleyParsons

26

resources 2 energy

Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I. Page 30 of 131

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

These results indicate that even a significant variation in capital cost does not change the primary conclusion that the wet FGD technology has a significantly lower life cycle cost than the corresponding dry technology.

MILESTONE PROJECT SCHEDULES

The conceptual Project Milestone Schedules are illustrated in Appendix M. One schedule is prepared for each of the following.

- Wet FGD, Units 3 and 4
- Wet FGD, Units 1 and 2
- Dry FGD, Units 3 and 4
- Dry FGD, Units 1 and 2

The schedules illustrate the flow of preliminary and detailed engineering, procurement activities, and construction activities for both the wet and dry scrubbers. The dates for outages and in-service dates that were provided by Southern Company were followed and are determined to allow a realistic construction schedule. WorleyParsons has compared the Southern Company draft schedule to our previous milestone schedules and find that the durations provided are consistent with our previous experience.

Generally, the level of effort for design, procurement and construction and nearly the same between the scope of the Wet and Dry FGD systems, so we have left the schedules very similar in overall duration. We have, however, reduced the overall construction schedule for Units 4 and 1 from 30 months to 27 months but kept the in-service dates for both the wet and dry scrubbers. This is primarily due to the first units carrying the responsibility of construction and preparing the Common equipment, such as the reagent unloading and preparation systems, and the new chimneys for the Wet FGD systems. For these reasons, Units 4 and 1 should have a slightly shorter construction schedule than Units 3 and 2.

M

6.

Worley Parsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 31 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Note that all procurement activities for all four units will begin with the first unit. This will allow continuity of equipment and spares by purchasing all equipment at one time for the four units. The vender engineering and drawing reviews will be completed for all four units, but shipment will be scheduled as appropriate for each unit.

The major difference in the schedules is the outage duration for the wet versus the dry FGD systems. Due to the demolition work of PJFF ductwork and the complexity of the construction plan, the dry FGD System outage will require a minimum of 10 weeks. Note that the complexity of the dry FGD Construction Plan could require the outage schedule to grow to 12 to 14 weeks. The duration will be determined after careful evaluation of construction activities and sequence in the preliminary and detailed engineering phases. The wet FGD system outage will only require 2 weeks, due to the relatively straightforward nature of the construction plan.

Note that the major complicating factor for the dry FGD system is the reconfiguration and removal of PJFF ductwork that was originally installed for Mercury Control. With the installation of the dry FGD system, the PJFF ductwork must now be re-configured to position the PJFF downstream of the dry FGD system to catch the spray dryer reaction products for disposal. For the Mercury Removal system, the PJFF was directly downstream of the ESP to allow the flyash to be collected in the ESP rather than contaminated by mercury solids in the PJFF. This maximizes the amount of uncontaminated flyash that Southern Company can collect and sell. However, the ductwork reconfiguration will be a significant effort. A majority of the previous ductwork will be removed prior to installation of the ductwork to all spray dryers. The construction area will be very congested and will be a major reason for the 10 week minimum outage duration.

7. ENGINEERING EVALUATION OF BALANCE-OF-PLANT ISSUES

7.1 ID and Booster Fans

Both the dry and the wet FGD facilities will introduce substantial additional draft loss into the flue gas flow train, requiring upgrade of the static pressure (SP) capability of the flue gas draft system. Only minor changes, at most, to the gas flow *rate* will occur.

The present set of 4x25% centrifugal ID fans on each unit provide draft for the flue gas flow through the existing flow train, as depicted in the diagram SCHR-0-253-305 -001 (Appendix C). In the first phase of the up-coming AQC projects, i.e., the mercury removal project, it is planned that these existing ID fans will be upgraded to give them sufficient additional head capability to provide draft for both AQC phases that will precede the FGD facility installation (the mercury removal facility and the selective catalytic reduction (SCR) facility), while maintaining draft for the existing flow train. This flow configuration is depicted in the diagram SCHR-0-253-305 -003 (Appendix C).

Both the wet and dry FGD facilities will tie in their supply ductwork at the discharge of the existing ID fans. Since an (approximate) null draft will exist at this point, it will be necessary to provide additional draft capability for the FGD flow train; it is planned that

WorleyParsons resources 2 energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 32 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

> this requirement will be met by addition of a pair of axial flow booster fans for each unit as part of the FGD installation scope.

The functional flow arrangements for the booster fans are shown in diagrams SCHR -0-253-305 -004 and -005 (Appendix C) for the wet and dry technologies, respectively. The (assumed) null draft condition at the ID fans discharge establishes the starting point for estimating the head capability of the booster fans for the present study.

<u>Note:</u> The flow/SP values listed in this section for the booster fans were developed early in the study to serve as a basis for a vendor budgetary quotation. As such, there are modest differences in these values when compared to the corresponding values in the final process material balances (Appendices D & E).

7.1.1 Wet FGD

The booster fans for the wet FGD installation will operate in a configuration where the fans will have a slightly negative suction pressure (resulting from the draft loss between the tie-in point and the fan inlet), and discharge into a positive-pressure flow train through the scrubber island, connecting ductwork and stack.

The head requirements for the booster fans, operating to support this wet FGD configuration, were estimated as indicated in the following table. Here, the 1st component was estimated based on engineering experience, and the 2nd component is specified in the Basic Design Basis document.

Component	MCR Draft. Loss ("wg)
Booster Fans Supply & Discharge Ductwork Loss	3.0
Scrubber Island Inlet to Stack Discharge	12.0
Total	15.0

Table 7-1 Draft Loss for Booster Fans – Wet FGD

The gas flow rate was estimated at 5,820,000 lb/hr per fan, or 1,944,000 (A)CFM. The corresponding performance requirements for the booster fans were specified as follows.

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 33 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Booster	Fan Performanc	e Specifications -	Wet FGD	
Condition	Flow / Han (CFM)	Static F Préssure: SP (In wg)	Temperaturea (F)	Thier Density (b/tr)
Boiler MCR	1,944,000	15.0	345	0.0499
Test Block	2,236,000	19.8	345	0.0499

Table 7-2

A budgetary quotation from Howden/Buffalo for the fans specified the following design parameters.

Parameter	Value
Impeller Diameter	176.4"
Speed	720 грт
No. Stages / Blades	1 / 20
Motor Rating	12,000 hp
Brake hp (MCR)	8,234
Brake hp (Test Block)	10,911

Table 7-3	
Booster Fan Design Parameters - Wet FC	JD

7.1.2 Dry FGD

The booster fans for the dry FGD installation will operate in a configuration where the fans will pull flue gas, under negative pressure, from the ID fans discharge through the spray dryer modules, the baghouses and connecting ductwork to the fans suction; the fans will discharge at slightly positive pressure into connecting ductwork and the existing stack.

The head requirements for the booster fans in the dry FGD facility were estimated as follows.

WorleyParsons resources & energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 34 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Table 7-4 Draft Loss for Booster Fans – Dry FGD

Componen	MCR Draft Loss (* Wg)
ID Fans to LSD's Dkwk	1.0
Lime Spray Dryers (LSD's)	2.0
Baghouses	5.0
Booster Fan Supply/Discharge Dkwk	<u>3.0</u>
Total	10.0

The gas flow was estimated at 5,862,000 lb/hr per fan, or 1,702,000 (A)CFM. Thus fan performance criteria were established as follows.

Table 7-5
Booster Fan Performance Specifications - Dry FGD

Operating Condition	Flow / Fan (CFM)	Static Pressure, SP (in wg)	Temperature (F)	Inlet Density (lb/fr')
Boiler MCR	1,702,000	10.0	166	0.0574
Test Block	1,957,000	13.2	166	0.0574
		· · · · · · · · · · · · · · · · · · ·		

A budgetary quotation for fans meeting these specifications was solicited from Howden/Buffalo. Their response offered fans with the following characteristics.

Table 7-6	
Booster Fan Design Parameters – Dry FGD	

Parameter	Value
Impeller Diameter	196.9"
Speed	590 rpm
No. Stages / Blades	1/20
Motor Rating	6,500 hp
Brake hp (MCR)	4,716
Brake hp (Test Block)	5,842

Ŵ

Southern Company Services Plant Scherer FGD Project

7.2 Pulse Jet Fabric Filters

7.2.1 Wet FGD

An activated carbon injection system and PJFF for mercury control will be installed upstream of the limestone wet FGD system. In this configuration, there will be two (2) 12-compartment PJFF's installed on each unit. This equipment will be installed downstream of the existing ESPs which will stay in service. With the ESPs in service, the PJFFs will operate at higher air to cloth ratios in a TOXECONTM arrangement. Under the Basic Design Basis criteria, these PJFFs will operate at 5.48 fpm (gross) and 5.98 fpm (net-2) at maximum conditions. These are typical air to cloth ratios for a TOXECONTM installation. At higher air to cloth ratios, the PJFF becomes very sensitive to the particulate loadings from flyash carryover and from the particle size of the activated carbon.

The design parameters are shown in column A in the table below. One (1), two(2)casing, 24-compartment, Size 2830 Model 315 VIP Pulse Jet Type Fabric Filter from Wheelabrator (WAPC) will be supplied for each unit.

Item	A	B
	With Wet FGD	With Dry FGD
Casings per Unit	2	3
Number of Compartments in each Casing	2@12	2@12, 1@6
Bag Array (Per Compartment):		
Bag Quantity (Width Direction)	28	28
Bag Quantity (Depth Direction)	30	30
Bag Length (ft.)	26.25	26.25
Bag Diameter (in.)	5 (nominal)	5 (nominal)
Cloth Area per Compartment (ft ²)	28,698	28,698
Total Cloth Area (ft ²)	688,750	860,938
Volumetric Flow rate, acfm	3,774,160	3,372,974
Gas to Cloth Ratios (At Max. Conditions):		
All Compartments on-line	5.48	3.92
Two Compartments off-line	5.98	4.20

Table 7-7 Mercury Control PJFF Design Parameters

7.2.2 Dry FGD

An activated carbon injection system for mercury control will be installed upstream of a lime dry FGD system. In this configuration, the PJFF is installed downstream of the dry FGD system. The design parameters are shown in column B in the Table 7-7, above. With the addition of the dry FGD in front of the PJFFs, everything changes. With the current PJFF size, the air to cloth ratios would be 4.76 gross and 5.20 net-1. These are much too high for a dry FGD particulate removal application due to the high solids

WorleyParsons

resources & energy

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 36 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

loading generated by the DFGD. For conceptual design purposes, we have assumed the addition of a 5th row of six (6) PJFF modules in parallel with the existing casings for each unit. These compartments would be the same size (840 bags) as the current WAPC design. Under these conditions, the modified PJFF system with the additional 6 compartments will operate at air to cloth ratios of 3.92 fpm (gross) and 4.120 fpm (net-2). This configuration represents an acceptable design for a PJFF with dry FGD and activated carbon injection.

7.3 Flyash Handling

7.3.1 Wet FGD

The wet FGD facility is configured so that it will have no direct impact on the existing flyash handling operation, or material handling from the baghouse hoppers in the up-coming mercury removal project.

Following installation of a wet FGD facility, it is planned that the existing precipitators will remain in service, and that collection and sale of the flyash will continue.

7.3.2 Dry FGD

The dry FGD facility is configured so that it will have no direct impact on the existing flyash handling operation. Following installation of a dry FGD facility, it is planned that the existing precipitators will remain in service, and that collection and sale of the flyash will continue.

However, the dry FGD facility will require modification/replacement of the pneumatic ash handling system that serves the hoppers of the baghouses installed for the (prior) mercury removal project. Since the volume of material handled, in changing from mercury removal to dry FGD service, will increase by at least an order of magnitude, it was assumed that the pneumatic handling system would be replaced.

The baghouses, when functioning as components of the dry FGD facility, will collect a mixture of particulate composed of FGD byproduct waste (calcium/sulfur compounds), unreacted lime, reacted/unreacted carbon, inerts and (minor amounts of) fly ash.

Refer to diagram SCHR-0-021-305-201 (Appendix E). The waste solids collected in the spray dryer and baghouse hoppers will be pneumatically conveyed to either the solids recycle silos (one per unit, located in the recycle/electrical buildings) or to the ash storage silos (one for Units 1&2, one for Units 3&4). This new ash handling system will include hopper feeders, two pressure blower skids, two ash storage silos, truck loading mixers and feeders (one set per silo), and the necessary piping and valves to transport the ash to the desired locations.

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 37 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

7.4 Bulk Material Handling

7.4.1 Wet FGD

The limestone handling system will accept delivery of limestone primarily by rail. Limestone from the rail unloading hoppers will be transported to a storage pile formed by means of a radial stacker. The storage pile will be uncovered. Two hoppers with belt feeders in a tunnel below the limestone pile and associated conveyor system will gravity reclaim the limestone and transport it to two limestone silos.

As shown on Southern Company's own plant concept drawing for the wet FGD option, a radial stacker is provided for the stacking of the limestone storage pile. On a similar project, WorleyParsons has used a fixed stacking conveyor with a telescopic chute for this type of application. Given the capacity of the storage pile needed, the fixed stacking conveyor with telescopic chute offers advantages over the radial stacker. These include less capital, operating and maintenance costs. This issue can be discussed further in Phase I – Preliminary Engineering of the project.

Given the 30 day storage capacity of the storage pile, no equipment redundancy has been provided for the flow path from railcar unloading to storage pile. While the reliability of this equipment is high, any downtime must be minimized so as not delay the unloading of railcars and cause any possible demurrage.

One belt feeder, conveyor and radial stacker will be used to unload limestone railcars and transport the limestone to the top of the storage pile. Two belt feeders, each supplying one of two redundant reclaim conveyors that convey limestone to the top of the silos, will be provided. A dust suppression system will be provided at the unloading hoppers. Dust collectors will be provided to serve the two silos.

Size:	Χ" x 0
Moisture Content:	10 % Max.
Bulk Density Range:	80 – 120 lb/ft ³
Bulk Density for Volumetric Sizing of Conveyor Chutes, etc.:	80 lb/ft ³
Bulk Density for Volumetric Sizing of Silos:	85 lb/fl ³
Bulk Density for Volumetric Sizing of Storage Piles:	95 Ib/ft ³
Bulk Density for Structural Design:	120 lb/ft ³
Angle of Repose:	38°
Limesto	ne Use Requirement

Table 7-8 Limestone Material Handling Design Parameters

W

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 38 of 131 FGD Process Selection Study

SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

·	load (4 units operating)
Hourly Requirement:	81.8 tons/hr
Daily Requirement:	1,962± tons/day
Linesione Uni	oading Requirements
Primary method is rail receiving.	
Approximate Maximum Weekly Delivery Requirement:	13,750 tons
Train Sizes (Estimated):	120 car unit trains; will split into 30 car units for unloading
Rail Car Capacity:	100 tons
Weekly Rail Car Unloading Requirement:	138 cars (approximate)
Rail Car Maximum Length:	53' – 1" c. to c.
Rail Car Type:	Open, bottom dump cars with multiple discharge doors, manually operated from one or both sides of car
Unloading Pit Length:	One rail car length \geq 32' (based on maximum bottom opening of N.S.
Minimum Hopper Length:	
	limestone service rail cars)
Minimum Hopper Capacity:	125 tons (125% of one rail car)
Maximum (Design) Unloading Capacity:	20 cars/hr
Receiving a	nd Stacking System
an a	
	2,200 tph
Limestone Belt Feeder #1 and Limestone Conveyor #2 Capacity: Radial Stacker	2,200 tph Slewing, variable height style; 2200 tph
Conveyor #2 Capacity: Radial Stacker	
Conveyor #2 Capacity: Radial Stacker Limest	Slewing, variable height style; 2200 tph
Conveyor #2 Capacity: Radial Stacker	Slewing, variable height style; 2200 tph

Stockpile reclaim shall utilize live gravity reclaim with remotely controlled feeders and conveyors to the greatest extent possible without requiring mobile equipment support. System

Worley Parsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 39 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Ders OUS
Ders
4 hr

7.4.2 Dry FGD

The lime handling system will accept delivery of pebble lime primarily by rail from covered railcars. Lime from the two rail unloading hoppers will be transported by belt feeder and belt conveyor directly to six concrete silos. The lime will be distributed among the silos by a horizontal belt conveyor and traveling tripper atop the silos. Dust collectors will be provided to serve the six silos.

Given the 30 day storage capacity of the storage silos, no equipment redundancy has been provided for the flow path from railcar unloading to storage silo. While the reliability of this equipment is high, any downtime must be minimized so as not delay the unloading of railcars and cause any possible demurrage.

A conventional sloped belt conveyor is provided from the railcar unloading to the top of the storage silos. Based on this estimated height of the storage silos, this conveyor elevates the lime over 265 ft. from underground feeder discharge to the top of the silos. A potential savings may be realized based on the use of a High Angle Conveyor (HAC) in place of this conventional belt conveyor. This issue can be discussed further in Phase I – Preliminary Engineering of the project.

WorleyParsons resources & energy

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 40 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

	Table 7	-9	
Lime Material	Handling	Design	Parameters

Туре:	Pebble
Size:	%" x 0
Bulk Density Range:	50 – 70 lb/ft ³
Bulk Density for Volumetric Sizing of Conveyor Chutes, etc.:	50 1b/ft ³
Bulk Density for Volumetric Sizing of Silos:	60 1b/ft ³
Bulk Density for Structural Design:	70 lb/ft ³
Angle of Repose:	38°
Design Basis:	1.5 % sulfur coal (Appalachian) at 100% plant load (4 units operating)
Hourly Requirement:	83.7 tons/hr
Daily Requirement:	2,009± tons/day
Primary method is rail receiving.	ading Requirements
Primary method is rail receiving. Approximate Maximum Weekly Delivery	14,060 tons
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated):	14,060 tons 120 car unit trains; will split into 30 car units for unloading
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity:	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity: Weekly Rail Car Unloading Requirement:	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate)
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity: Weekly Rail Car Unloading Requirement:	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate) 42' - 0" c. to c.
	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate)
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity: Weekly Rail Car Unloading Requirement: Rail Car Maximum Length: Rail Car Type:	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate) 42' - 0" c. to c. Covered, bottom dump cars with multiple discharge doors, manually operated from one or
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity: Weekly Rail Car Unloading Requirement: Rail Car Maximum Length: Rail Car Type: Lime	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate) 42' - 0" c. to c. Covered, bottom dump cars with multiple discharge doors, manually operated from one or both sides of car Unloading Pit One rail car length
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity: Weekly Rail Car Unloading Requirement: Rail Car Maximum Length: Rail Car Type: Lime Unloading Pit Length: Minimum Hopper Capacity:	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate) 42' - 0" c. to c. Covered, bottom dump cars with multiple discharge doors, manually operated from one or both sides of car Unloading Pit One rail car length 125 tons (125% of one rail car)
Primary method is rail receiving. Approximate Maximum Weekly Delivery Requirement: Train Sizes (Estimated): Rail Car Capacity: Weekly Rail Car Unloading Requirement: Rail Car Maximum Length: Rail Car Type: Lime	14,060 tons 120 car unit trains; will split into 30 car units for unloading 100 tons 141 cars (approximate) 42' - 0" c. to c. Covered, bottom dump cars with multiple discharge doors, manually operated from one or both sides of car Unloading Pit One rail car length

Worley Parsons

.

CONFIDENTIAL

Florida Power & Light Docket No. 070007-E1 Stall's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 41 of 131

t Southern Company Services

2 Plant Scherer FGD Project

3 4 5

حم

23

25

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Capacity:	
Silo Conveyor #3 and Tripper Capacity:	2,200 tph
LimeS	ilos Design Basis
Quantity:	Six (6)
· · · · · · · · · · · · · · · · · · ·	10,000 ton each for a total of 60,000 tons -
Consoltu	
Capacity:	Approx. 30 days storage
Dust and	Approx. 30 days storage Emission Control Dust collection system at hoppers and feeder
Dust and Unloading Pit:	Approx. 30 days storage Emission Control Dust collection system at hoppers and feeder discharge
Dust and	Approx. 30 days storage Emission Control Dust collection system at hoppers and feeder discharge One dust collector at top of each silo
Dust and Unloading Pit:	Approx. 30 days storage Emission Control Dust collection system at hoppers and feeder discharge

- 7.5 Wastewater Treatment 20
 - 7.5.1 Wet FGD

The wet FGD process is configured such that slurry bleed from the absorbers is pumped to a (new) settling pond where separation of the solid material (gypsum) from the water occurs. The water that is reclaimed from this process is recycled back into the scrubbing process.

26 This water recycle configuration concentrates dissolved solids, notably chlorides and 27 heavy metals, in the process water streams. The prelimary FGD water balance for the 28 CAPP coal indicates that it will be necessary to blow down a portion (~ 8%) of the recycle water to maintain the chloride concentration within the design value of 20,000 21 ppmw. 30

The estimate of blow-down quantity from the four units is on the order of 100 gpm 81 3a (~ 0.15 Mgd); this liquid is characterized as a flow containing high chloride and heavy metals concentrations. Discharge of this flow to one of the ponds or basins on site could 33 require a revision of NPDES permit to include new monitoring requirements and/or 34 effluent limits, depending on the quality and volume of the discharge and any additional 35 wastewater treatment systems the plant may install. 36

37 It is recommended that a comprehensive and thorough evaluation of the need for 38 treatment of this blowdown be conducted.

31 In the present study, no costs were included for wastewater treatment from the wet FGD facility. If a wastewater treatment facility were required, based on recent WorleyParsons 4 project experience the costs would likely be in the range of

WorleyParsons resources & energy

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 42 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

7.5.2 Dry FGD

Installation of a dry FGD facility will not require a wastewater treatment facility. However, it will be necessary to dispose of an estimated 25-30K gpd of sump discharge water (due to wash-downs). It is assumed that sump discharge water can be disposed of in the ash pond, but may require a revision to the NPDES permit.

Waste water generated by the proposed dry FGD facility is expected to amount to about 10-15K gpd in the lime slaking and recycle operations due to periodic wash-downs. Waste water that would be generated during periodic wash-downs at the ash storage silos is expected to be about another 15K gpd. Waste water would be collected in the floor sumps located in the various process areas, and discharged to the ash pond or other on-site wastewater basin

7.6 FGD By-Product Storage/Disposal

7.6.1 <u>Wet FGD</u>

The by-product resulting from the wet LSFO process is primarily gypsum ($CaSO_4-2H_20$), with minor components consisting of inerts, unreacted limestone and flyash.

MCR Rate	(T/hr)
Production (4 Units)	149.7 (dry basis)
Composition ?	(Wt %)
CaSO ₄ -2H ₂ 0	81
Moisture	
CaSO ₃ -1/2H ₂ 0	<1
CaCO3	2
MgCO ₃	<1
Alkali Inerts	13
Flyash	2

	Table 7-	10	
FGD By-product	Characteristics -	Limestone	Forced Oxidation
	CAPP C	oal	1 e

This material, commonly known as synthetic gypsum, has substantial commercial application for wallboard manufacture. In the present study, the wet FGD process has been configured to deposit the gypsum slurry (bled from the absorbers) in a new settling pond, as described in Section 7.9.1, and to then let the gypsum separate and accumulate in the pond. It is planned to then regularly use a drag-line excavator to stack the settled gypsum into a long term storage arrangement. This procedure thus permits the options of

Worley Parsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 43 of 131

Southern Company Services Plant Scherer FGD Project

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

either reclaiming the gypsum some time in the future for commercial sale, or ultimately closing the stack as a permanent land fill.

7.6.2 Dry FGD

The by-product produced by the dry LSD process consists of reaction products, excess hydrated lime, inerts, flyash, and moisture. The reaction products are calcium sulfite, gypsum, and calcium chloride. Based on using a lime reagent with 90% activity (CaO), the byproduct production rate and composition are as listed in the following table.

MCR Rate (4 Units)	(T/hr)
Recycle	220.8
Disposal	156.8
Total Production	377.6
Composition	(Wt %)
Ca(OH) ₂	15
CaSO3-1/2H20	80
CaSO ₄ -2H ₂ 0	incl. above
CaCl ₂ -2H ₂ 0	incl. above
CaCO ₃	incl. above
Inerts, Carbon	incl. above
Flyash	3
Moisture	2

Table 7-11
FGD By-product Characteristics - Lime Spray Drying
CAPP Coal

At present, there are only very limited commercial uses for this dry FGD by-product material. In almost all instances, the byproduct material from operating LSD facilities is disposed of in a landfill. In the present study, it is assumed that the material will be hauled to a new on-site landfill, as described in Section 7.9.2.

7.7 Control System

Plant Scherer requires an expansion, for each unit, of the existing Foxboro 1A Series Distributed Control System (DCS) for control of the new flue gas desulfurization (FGD) system. The expansion of the existing Foxboro 1A Series DCS will allow connection of the new controls for the FGD system.

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 44 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

The new DCS equipment must meet guidelines in response to the requirements of the North America Energy Reliability Council (NERC). Due to the criticality of the DCS to Unit Operation, means of digital and physical security will need to be provided. The use of wireless devices will not be permitted.

The design requirement is to expand the DCS for control of the new FGD system equipment. The existing DCS equipment will be retained and new FGD DCS equipment controls will be provided as a separate node on the existing data highway.

All control and monitoring functions for equipment and control devices associated with either the wet or dry FGD system will be controlled by the DCS. Selected equipment may be locally controlled. The limestone handling equipment and reagent preparation or dry FGD baghouses will each be controlled by a stand-alone Programmable Logic Controller (PLC). All interface signals required between the PLC's and the DCS will be hardwired.

All control and monitoring functions will be available from the main control room utilizing the existing operator work stations. No new operator work stations are required for the expansion. Signals required for interface between the expanded FGD DCS and the existing plant DCS will be hardwired. It is assumed that any new control cabinets will be located in the FGD electrical equipment buildings.

New graphics will be configured for the FGD equipment using the current plant convention for symbols, colors and initiating operation of equipment/devices. This approach will ensure common presentation of plant displays throughout the control system. The new graphics will provide all the functionality of the existing graphic design.

There are no control issues specific to either the wet or dry technology. It is recommended that the control logic for the booster fans be added to the existing Combustion Control process. The ID Fan logic should remain as is; however, the booster fan control and Main Fuel Trip (MFT) scenarios should be investigated in more detail.

7.8 Electrical Distribution

7.8.1 <u>Wet FGD</u>

The wet FGD system for Unit 1 will be fed from a 50/66/83 MVA, three winding transformer tapped off the generator ISO phase bus. See drawing SCHR-0-SK-625-206-001 (Appendix N). Each winding will feed a 13.8 KV switchgear. The 13.8 KV switchgear will provide power to the 12,000 hp booster fans. Another feed will supply power to a 13/17/25 MVA, two winding transformer for the FGD electrical distribution system.

The FGD electrical distribution system will use 4.16 KV switchgear as the source of power for large and medium voltage motors and the unit substations. The unit substations are the source of power for the motor control centers and the larger low voltage motors. The motor control centers supply power to the smaller low voltage motors, lighting, and other miscellaneous loads.

This same arrangement will be used for Unit 2.

WorleyParsons

41

resources & energy

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 45 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Start-up power for the FGD facilities and booster fans, for both Units 1 & 2, will come from the 115 KV switchyard. The 115 KV supply will be transformed to 13.8 KV through a three winding transformer rated 50/66/83 MVA. Each of the 13.8 KV windings will supply one of the 13.8 KV switchgear in Units 1 & 2.

Units 3 & 4 will have an electrical distribution arrangement similar to Units 1 & 2.

7.8.2 <u>Dry FGD</u>

The electrical distribution for the dry FGD facility is similar to that for the wet FGD facility. The primary source is from a three winding transformer rated 30/40/50 MVA. See drawing SCHR-0-SK-625-206-002 (Appendix N). Each winding supplies a 6.9 KV switchgear. This switchgear supplies power to the 6500 hp booster fans and, unlike the wet system, the medium voltage motor and unit substations are fed from this switchgear.

The remainder of the electrical distribution is similar to the wet system. Like the wet system, start-up power will come from the 115 KV switchgear through a three winding transformer. The transformer will be rated 30/40/50 MVA. As in the wet system, each winding will supply a 6.9 KV switchgear in Units 1 & 2.

Units 3 & 4 will have an electrical distribution arrangement similar to Units 1 & 2.

7.8.3 General

It is noted that confirmatory studies on these conceptual arrangements are needed to assure booster fan starting ability which will finalize transformer size rating, voltage level and transformer impedance. Along with motor starting, short circuit withstand must be investigated. These studies will be conducted when further data is available and preliminary design is underway.

7.9 Civil

7.9.1 <u>Wet FGD</u>

Gypsum slurry will be pumped to a proposed settling pond for storage or final disposal. The decanted water will be returned to the FGD process for reuse. The pond will be located east of the existing ash pond and will be formed by constructing an earthen embankment dam in a natural valley (see dwg. No. SCHR-0-111-002-101, App. F). The pond and its related facilities will cover approximately 185 acres. The area at the pond water line will be approximately 150 acres. The storage volume required for a 20-year life is approximately 12,000 to 14,000 acre-feet of gypsum.

The pond will have a maximum depth of about 60 feet and when the pond storage capacity is reached, the gypsum will be "stacked" on the previously deposited gypsum by a drag line excavator, as described in the EPRI report No. TR-104731. The drag line will construct a new pond embankment with gypsum. When the embankment is completed, the gypsum sluice discharge pipes will be relocated to the newly formed, elevated pond. Additional stacking operations will be used to accommodate the total gypsum volume. It has been assumed that the pond will require a liner to prevent infiltration of contaminants

WorleyParsons

42

resources & energy

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 46 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

> into the surrounding soil. A single layer of geosynthetic clay liner (GCL) was used for the cost estimate. Closure of the pond/stack was not included. Final closure, if implemented, may require a liner "cap" over the gypsum.

7.9.2 Dry FGD

The dry FGD by-product will be trucked to a proposed landfill site for final disposal. The landfill will be located east of the existing ash pond and will be formed by the valley-fill method in a natural valley (see dwg. No. SCHR-0-111-002-201, App. G). The solid waste material will be placed, spread and compacted with earthmoving equipment. The landfill and its related facilities will cover approximately 185 acres. The area at the waste material limits will be approximately 150 acres. The storage volume required for a 20-year life is approximately 12,000 to 14,000 acre-feet.

The landfill will have an average final depth of about 80 to 95 feet when the storage capacity is reached. It has been assumed that the landfill will require a liner to prevent infiltration of contaminants into the surrounding soil. A single layer of geosynthetic clay liner (GCL) was used for the cost estimate. Closure of the landfill was not included. Final closure may require a liner "cap" over the waste material.

7.10 Constructability Evaluation

7.10.1 Wet FGD

Units 3 & 4

The wet FGD facility layout for these two units allows for sufficient construction access to both units. With the current pipe bridge location, the ideal layout for construction would be to place the Unit 3 scrubber island to the east. This would eliminate working around live utilities during construction of Unit 4 and create a safer working environment. The electrical building placement is critical to keep wire runs short, and at the same time not interfere with access to the construction site. The stack erection would be critical path due to an exclusion zone required to erect the stack prior to beginning scrubber island erection. If the schedule is critical and a 50' exclusion zone could be agreed upon with the stack erector, the scrubber islands could be arranged outside of this zone. This arrangement would allow for concurrent installation, but would increase the cost of the fiberglass duct from the scrubber outlet to the stack. The liner installation could continue concurrently with the scrubber island erection; for safety reasons both liners should be installed before operation of the first unit. Most if not all of this ductwork could be modularized or ground fabricated which would reduce cost and schedule. The PJFF ductwork for these units (associated with the mercury control project) will remain permanent and should not interfere with construction or the FGD tiein outage activities. The tie-in outage for each of these units would consist of a single point tie-in with an approximate duration of two to three weeks. These outages could be kept to a minimum if the FGD bypass dampers could be installed during outages associated with the earlier AQC projects.

WorleyParsons

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 47 of 131

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

Units 1 & 2

The wet FGD facility layout for Units 1 & 2 offers considerably better access for cranes and equipment than the dry FGD layout. The equipment is spread out and it is not entirely confined within the area bounded by the existing coal conveyors. The sequence of installation would still be critical but would be easier than for the dry FGD layout. The new stack would again be critical path for Units 1 & 2 due to the exclusion zone required during stack erection. As with Units 3 & 4, most of the ductwork could be modularized or ground fabricated. Unit 1 ductwork and booster fan installation will be more difficult due to limited access after Unit 2 is operating. The pipe bridge location and elevation is critical such that it does not block access for cranes and equipment to construct Unit 1. The permanent PJFF ductwork will not significantly interfere with installation of the booster fans or ductwork. The PJFF ductwork (for mercury removal) for these units will be considerably shorter than for Units 3 & 4, and again, remain permanent and should not interfere with construction or FGD tie-in outage activities. The tie-in outage duration for these units would be similar to Units 3 & 4, approximately two to three weeks each.

7.10.2 Dry FGD

Units 3 & 4

The majority of the dry FGD facility for Units 3 & 4 will be located north of the Unit 4 coal conveyor. This will ease the installation for Unit 3 by allowing greater accessibility for cranes and equipment. The majority of the Unit 3 supply duct and return duct to the existing stack could be modularized or ground fabricated modules, only limited by transporting them to the erection site and crane selection. Per the study layout, all of Unit 4 equipment is "inside" the construction area, which will limit access and productivity for this unit. The pipe bridge, depending on its location and elevation, and the temporary ductwork from the PJFF's may cut off access and ability to install large ductwork modules for Unit 4. The duration of a final outage for this system could be quite substantial depending on the location of the temporary ductwork and how much of it would need to be removed during the outage. Other outage activities would include coating the existing stack liners, coating the inlet ducts, tie-in of the new PJFF extensions, tie-in new ductwork to the PJFF inlet and outlet, and tie-in duct to the damper at the stack. Additional detailing is required to determine accurate outage durations, but anywhere from 10 to 14 weeks is highly possible.

Units I & 2

The entire dry FGD facility for Units 1 & 2 will be confined between existing coal conveyors. Construction of these units will be very challenging for a variety of reasons. The sequence of construction will be very critical due to the limited space and accessibility to the erection site for cranes and equipment. The ductwork will require long radius picks which will limit the size of ground fabricated duct modules, require larger cranes and increase field erection labor. It should be considered to make the tie-ins and install dampers, including some of the ductwork, during an earlier outage while there is greater access to the area. Appropriate measures must be taken to ensure the safety of all personnel and equipment if this is done. The PJFF is located where it makes sense for

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 48 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

> the final layout, but will require extensive "temporary ductwork" that not only increases cost to install and then remove, but also significantly adds to the congestion and safety during construction. The study arrangement of the dry scrubbers, duct work, PJFF's and booster fans aligns well with starting Unit 2 first. One of the difficulties will be the installation of the Unit 1 booster fans while Unit 2 is running, unless they could be installed and protected at the same time as Unit 2. The Unit 1 ductwork and scrubbers could be installed in sequence to back out of the corner, although this would add coordination and cost to the project. The same situation as Units 3 & 4 would apply for coating the stack liners, PJFF location and the substantial amount of "temporary" ductwork that would add to cost, congestion and outage duration. The outage activities would be the same as Units 3 & 4 and would require additional detailing to determine accurate outage durations.

8. **RECOMMENDATION**

The present study evaluated FGD operation with both a CAPP coal (future, FGD design coal) and a PRB coal (present operating coal). Based on a comparison of the net present value of the life-cycle costs of the two FGD technologies, the LSFO or wet system has a lower life-cycle cost than the dry or LSD system for both coals.

Therefore it is recommended that Southern Company proceed with the installation of a wet system to meet the SO₂ emission targets for Plant Scherer.

WorleyParsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 49 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

APPENDIX A

BASIC DESIGN BASIS - WET FGD

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 50 of 131

٦.

10/30/2005 Rev D

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

MET FGD		<u>Nama ang kana</u> na ang kana ang
Project Description		
Name of Client	Georgis Power and Southern Company Generation	
Project order number		
Name of project	Plant Scherer Units 1, 2, 3 & 4 Wet FGD System	
Plant location	Juliette, Georgia (near Macon)	
Elevation	465 t above sea level	142 m
Standards, Codes and Instructions		

		}		
L Site Conditions				
unbient temperature		Max	Minimum	Performance Design
	F	100 F	10 F	90 F
Barometric Pressure		Min	Max.	Performance Design
	inHg	29.07 in.Hg	31.07 In.Hg	29.43 in.Hg @ 465 it above MSL
.	[14.451 psia
Relative Humidity		Max	Minimun	Performance Design
	56	100 %	10 %	85 %
	· · ~			
Rainfall		Average	Daily max recorded	Design
	mm/d	5.24 mm/d	5.84 mm/d	5.6 mm/d
	inches	0.206 inches		
inowfall		Snow load shall be determined by ASCE	7-02	
	ps/	Design show load		5 pst
		Occupancy Importance Factor		1.20 -
		Snow Exposure Coefficient		0.9 -
		•		
Vind		Wind load shall be determined by ASCE 7-02	· · · · · · · · · · · · · · · · · · ·	· · · ·
		Direction		Velocity
Design wind valocity	mph	N/A		90 mph
•		Exposure Category :	С	
		Wind importance Factor =	1.15	
arthquake		Seismic Imponance factor determined by	ASCE 7-02	
	1	seismic importance factor #	1.50	

Scherer Design Basis - WFGD-RD.xls

example a subserver

CONFIDENTIAL

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 51 of 131

10/30/2008 Rev D

BASIC DESIGN BASIS

WET FGD

SCHERER UNITS 1 - 4

2

3 7 5

and the second second second second second second

3. General Process Information	<u> </u>							
Boller Combustion Data	Unit	ļ		Units 1, 2, 3	& 4 (identical units)			
Gross Generation	MW	1						
Heat Input	mmSturhr		9074.4			9074.4		
Hest Rate	Btu/kWh	1	9831.4			\$300		
Excess Combuston Air **) ×]	25			25		
in-Leakage*	×		25			25		
Load Case		L	PRB Coal			Appelachian Coal		
uel Data						Design		
Source	·	Р	RB Coal (Primary Fu	()	Appalac	hian Coal (Future Ba	ck-up Fuel)	
Proximate Analysis (As Received)	1	Minimum	Maximum	Design	Minimum	Maximum	Design	
lsh	×	2.6	7.2	5.2	4.0	19.00	10.14	
/olatile Matter	×							
Fixed Carbon	*							
Heat Content	Bulb	8,300	9,150	8,600	10,500	13,400	12,800	
Sulfur	*	0.1	0.90	. 0.3	0.50	1.50	1.50	
			· · · · ·				· · · ·	
Evaluation Coal Analysis			PRB Coal		Appalachian Coal			
	·	Minimum	Maximum	Design	Minimum	Maximum	Design	
foisture	*	24.6	29.5	27.23	5.25	7.89	6.35	
SH	*	2.60	7.20	5.20	13.00	4.50	9.24	
CARBON	*	48.2	54.60	51.21	70.83	73.21	71.30	
HYDROGEN	*	2.40	4.00	3.43	4.39	4.74	4,54	
NITROGEN	*	0.40	1.50	D.69	1.31	1.56	1.39	
SULFUR	*	0.10	0.90	0.30	0.64	1.50	1.50	
DXYGEN	*	9.60	13.00	11.93	4.53	6.43	5.49	
CHLORINE	ppm-w	30	150	100	68	2157	2167	
LUORINE	ppm-w	32	100	53	62	132	132	
otat	· %	n/a	n/a	100.0	100.0	100.0	100.0	
IEAT CONTENT	Выль	8.300	9,150	8.600	10,500	13,400	12,800	

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 52 of 131

10/30/2006 Rev D

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

Coal Trace Analysis - Statistics			PRB Coal			Appalachlan Coa	t :
		Minimum	Naximum	Meduim	Minimum	Maximum	Medium
As	mg/kg	0.3	3.5	0.8	3.8	9	5.3
Ba	mg/kg	190	340	240	30	320	100
Be	mg/kg	0.1	2.4	0.2	1.6	4.4	2.7
B	mg/kg	- NA	NA	NA	NA	NA	NA
C4	mg/kg	0.02	0.28	0.04	0.04	0.07	0.05
a	mg/kg	30	204	46	68	1757	1534
Ca	mg/kg	1.4	3.5	2,1	6.6	14.7	9.6
a	mg/kg	2	8	3	12	20	18
Ca	mg/kg	7	14	10	16	27	20
F	mg/kg	32	99	52	62	126	62
Hg	mg/kg	0.03	0.1	0.08	0.02	0.06	0.04
L.	mg/kg	NA	NA	NA	NA	NA	NA
Ng	% by Wt	0.09	0.2	0.15	0.05	0.14	0.06
Ma	mg/kg	0	36	8	4 7	76	21
Mo	mg/kg	NA	NA	NA	NA	NA	NA
Ne	mg/kg	0.04	0.08	0.06	0.02	0.09	0.04
Ni	mg/kg	2	10	3	12	24	16
Po	mg/kg	0.9	3.6	1.9	5.5	11	8.4
Sb	mg/kg	0	0.4	0.1	0.3	2.1	0.9
Se	mg/kg	0.25	2	· 0.5	2.3	4.17	2.5
Şr	mg/kg	٥	0	0	0	D	0
i	mg/kg	7	23	11	24	44	34
Zn	mg/kg	2	32	7	8	21	14

Case		Load and Fuel	Relevance
Cose 1: Max Load, Coal	PRB	923MW, 0.3%S <u>8.600</u> Bluad PRB	Primary fuel will be PRB. Primary scrubber design case with 96% SQ removal. The FGD system is to be robust and rigorou. for this case, with complete redundancy and equipment sizing margins.
Case 2: Max. Load, App:	lachian Coal	923MW, 1.5%S <u>12,800</u> Btu/b Appalachian	Appelachian coal may be used in future. Secondary scrubber design case with 96% SO ₂ removal. The FGD system is to be robust and rigorous for this case, with completo redundancy and equipment sizing margins.

Florida Power & Light Docket No. 070007-EI Staff's Fourth Sct of Interrogatories Interrogatory No. 36 Attachment I, Page 53 of 131

10/30/2008 Rev D

BASIC DESIGN BASIS

Station of the America

SCHERER UNITS 1 - 4

WET FGD

Raw flue gas condition It Absorber Inlet	Case # Case Description	1 0.3% Sulfur Max. 923MW PRB	2 1.5% Sulfur Max. 923MW Appalachian	یر ۱۹۹۹ میں ۱۹۹۹ میں			
Mass fow	lb/hr	11,636,000	11,034,000				
	· · ·		12				
Flue gas pressure	in, WG	12			•		
Volume flow	acfm	3,935,000	2,685,000				
al 68F	scin-w	2,583,000	2,419,000				
02	to/hr	800,900	782,600				
N2	, to/hr	7,830,700	7,654,500		4		
Ar	itu/rur	134,300	131,300				
CO2	ib/hr	1,976,800	1,840,800				
SO2	ib/hr	6,325	21,250				
S03	Rofter	127	425				
H2O	to/hr	885,500	601,600				· · · · · · ·
на	ib/hr	110.00	1,460.00				
HF	់ គេវារា	60.00	100.00		1		-
H2O	Volt	7.62	5.45	and a state of the	100 A.	1 See States and Section Annual Section 1.	
02	vol%	6.88	7.09				
CO2	vol%	17.00	16.68				· · ·
502	ppm-d	298	1,023		54 - S.		
			20		-		
503	ppm-d	B			-		· · · ·
HC	ppm-d	10	135				
HF	ppm-d	9	15				
Particulate matter	ib/hr	453.70	453.70		1		
	IbimmBau	0.05	0.05				
	gr/scf-d	0.044	0.044				
Temperatura	F .	355	355			-	f F
Pressure (assumed, dvatech to verify)	in wg	12	12		stan and		
							5 N
$O_2 \rightarrow SO_3$ conversion in boller		1	1				
,							
	× •	1	1	1			
0, - SO3 conversion in SCR			I		1	<u> </u>	
	<u>+</u>		r				
loan gas condition	1 _						
Gas temperature	F	135-145	130-140				
502	15/h	126.5	850.0				
	(b)mqq	5.9	41.0				
Particulate matter	Rothr	113.43	113.43	· ·		1	
	lb/mmBtu	0.012	0.012				
Mist	gpm/ft2	0.0005	0.0005				
Desulfurization efficiency	%	98.0	96.Q				
Particulate matter removal	×	75%	75%				
				•			
SD process		Wet Limestone-G	ypsum Forced Oxidat	ion Process			
	 	· · · · · · · · · · · · · · · · · · ·				- <u>r</u>	

| Scherer Design Basis - WFGD-RD.xls

.

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 54 of 131

10/30/2005 Rev D

BASIC DESIGN BASIS

ا بي در جديد

SCHERER UNITS 1-4

Base Case:		Disposable Grade (not dewatered)			
				····	
Altornate:		Wallboard Quality			
		CaSO4-2H2O	94% min	ASTM C471	The gypsum byproduct shall not be toxic or hazardous as defined under applicable
The properties specified to the right. These are required by contract with the		CaSO3-XH2O	1.0% max	TGA	federal or state laws. The gypsum byproduct
wallboard manufacturer. The gypsum		SIO2 .	1.0% max	**	shall also not contain and toxic or hazardous constituents in concentrations which would
dewatering system must be designed to include operating margin on these		Fe2O3	1.5% max	**	restrict its use in the manufacture of or its end
constraints.		R203	3.5% max	M	use as wallboard.
		a	120 ppm max	Sp. ion Elect.	
	-	Total soluble salts	600 ppm max	USGC method	
		pH	6-8	USGC method	
		Mean Particle Size	20 - 65 microns	Laser Diffract.	
		Moisture content	10% max	At 110 deg F	
		MUSULE CONTERN	TO PE LINK	ACTIO ONG P	
Bulk density	11.000			100 C	
•	lb/R3	62 lb/ft3 for gypsum storage sizing			
imestone			1		
		Design Basis	Ri	nge	
Туре					· · ·
Receiving particle size	inch	3/4 X 0			
Chemical composition CaCO3 Total	wt%-d	90.00			
	W()=-1	50.00			
MgCO3	wt%-d	0.75 Soluble			
		0.25 Inert			•
inerts	wi%-d	9.00			
Moisture	with	8.00 Max			I and a second
Limestone grindability	kW/ston	n/a	·		
Bulk density	ib/ft3	80 lb/ft3 for structural load	82 lb/83 for volume	ranarihi	
Reactivity	5	80		Capacity	1
i we carry					
Aakeup water name	•	Service water pond	1	•	· · · · · · · · · · · · · · · · · · ·
B.L		intake from pand			
Temperature at B.L	F	Ambient			
Pressure at B.L	psig	Atmospheric			
Composition*					
Magnestum	ppm	1.6			
Calcium	ppm				
Sodium			1		
	ppm				
Potasakum Chiorida	ppm			Б	
1	ppm				
Bicarbonate	ppm		1.00		
Sulfate	ppm	10			
hon	ppm	0.68			
Silica	ppm				
pH s.u.	•				}
Turbidity, NTU	ppm		}		
TOC	p pm	2			
COD	ppm	12			
TSS	ppm	12			
Total Hardness	pom us CaCOs]		
· •					

5/7

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 55 of 131

10/30/2006 Rev D

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

Cooling Water				ļ				
(Raw water, open loop)			Supply		Return			
Pressure	psi	Atmospheric	psi	40	psi			
		See Makeup Water Condition		103	ا معاد `	-		
Temperature (Max)	F		• 06g r	103	degi			
Air	1						······································	
Name			Instrument				Service	
Supply pressure	Pile	Max	Advatech Scepe (No axis	ting capacity)		Max	Advatech \$cope (No existing capacity)	
	ging	Min	Advatech Scope (No ada	ing capacity)		Min	Advalach Scope (He existing cashchy)	
Supply temperature	•	Max	Advalach Scope (No ada	ting capacity)		Max	Advalach Scope (No existing capacity)	
	7	Min	Advetech Scope (No exis	ing capacity)		Min	Advalech Scope (No axisting capacity)	
Dew point	<u>р</u>		Dry, Oil-Ires (-40F)				Dry, Oli-free (-40 [#])	
Steam								
Supply pressure	paig	Max	N/A					
	puig	Min	N/A					
Supply temperature		Max	NIA					
	j − 1 p	Min	N/A					
<u></u>							· .	
lectrical Power	V-F-Hz	>/= 250HP	4160	3φ		60Hz	Advatech Scope (as required)	
		< 250HP	480	Зф		60Hz	Advatech Scope (as required)	

4. System Design Requirement		
Gas Path System		
Duct	1 x 100 % Capacity	
Velocity	. 60 tis max	
By-pass	To existing stack	
Stack	1 x % Cepadiy	
type	Wel stack	
Gas Velocity	45 (/s maximum	
Helght	675 NH (preliminary) — same as Bowan	
ID Booster Fan	2 x 50 % Capacity Axial	
ID Booster Fan Test Block	15 % Flowrate mergin on Case 1 (923MW) gas flow	
ID Booster Fan Test Block	32 % Pressure margin on Case 1 (923MW) SPR	
Imestone Receiving System	(Limestone Bulk Storage)	
System capacity	1+0 x 100 % Capacity at 1.5% S Coal (future)***	
Storage Capacity	30 days at 1.5% S coal (fulure)***	
Feader capacity	1+1 x 100 % Capacity at 1.5% S Coat (http://www.	
Conveyor capacity	1+1 × 100 % Capacity at 1.5% S Coal (luture)***	
Operation time	24 hrs per day	
imestoria Supply System	Reed to Wet Bell Mill)	
System capaday	1+1 x 100 % Capacity at 1.5% S Coal (Atwa)***	
Storage Capacity	8 hrs at 1.5% S coal (Arture)***	
Feeder capadiy	1+1 x 100 % Capacity	
Conveyor capacity	1+1 x 100 % Capacity	
Operation lime	24 hrs per day	
· · ·	6/7 Scherer Design Basis - WFGD-RD.x	is

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 56 of 131

10/30/2006 Ray D

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

WET FOD	1
Limestone Supply System	(Stury lead)
System Capacity	1 x 100 % Capacity at 1.5% S Cost (tuture)***
Sturry Tenk Storage Capacity	2 tres at 1.5% S coal (future)***
Limestone stury feed pump	2 x 100 % Capacity at 1.5% S Coal (future)***
LS prop. area sump/pump/agitator	1 set of 1 + 1 pumps, 1 + 0 agitator
Operation time	24 hrs per day
Absorption System	
Operation time	24 hrs per day
Absorber rediculation pumps	As required +1 stand-by for 96% SO2 Removal (\$ 1.5% S coal (future)***
Jer Air Spangera	As required for 96% SO2 Removal @ 1.5% S coal (hture)***
Agitator/Oxidation device	As required
Blead pump	1+1 x 130% Capacity at 1.5% S coal (fulure)***
Absorber area sump/pump/agitator	1 set of 1 + 1 pumps, 1 + 0 agitator
Secondary Dewalering System	NA
Filter Feed Storage Tank	
Filtrate Tank	
Gypsiam Cyclone O/F lank	
Belt Filter Washing Tank	
Belt Filter	
Operation lime	
Gypsum Storage System	NA
Storage Capacity	
Front-end loader	
Operation time	
*** = 1.5% S coal may be used in the future and therefore is currently using 0.3% S coal.	used as the design coal. The plant is
Utility Systems	
Process Water Tank	NR
Process Water Intake Pumps	1+1 x 100 % Capacity (If Reg'd)
FGD Plant Air Compressor	1+1 x 100 % Capacity

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 57 of 131

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

APPENDIX B

BASIC DESIGN BASIS – DRY FGD

Worley Parsons

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 58 of 131

10/30/2006 Rev A

BASIC DESIGN BASIS

SCHERER UNITS 1-4

. Project Description	· · · · · · · · · · · · · · · · · · ·	
Name of Client	Georgia Power and Southern Company Generation	
Project order number		
Name of project	Plant Scherer Units 1, 2, 3 & 4 Dry FGD System	
Plant location	Juliette, Georgia (near Macon)	
Elevation	465 ft above sea level	142 m
Standards, Codes and Instructions		

unblant tomperature		Max	Mamum	Performance Design
a internet fan in fan in fan de fan de fan de fan in fan in fan in fan de fan in fan de fan de fan de fan de fa	F	100 F	10 F	90 F
	•		•••	
		:		
arometric Pressure		Min.	Max.	Performance Design
	InHg	29.07 in.Hg	31.07 in.Hg	29.43 in.Hg @ 465 ft above MSL
1				
				14.451 psia
lelative Humidity		Max	Minimun	Performance Design
	%	100 %	10 %	85 %
aintali		Average	Daily max recorded	Design
	mm/d	5.24 mm/d	5.84 mm/d	5.6 mm/d
ale The second se	inches	0.208 inches		
nowfali		Snow load shall be determined by ASCI	E 7-02	
	psf	Design snow load		5 psf
		Occupancy Importance Factor		1.20 -
		Snow Exposure Coefficient		0.9 -
··· : *		4	· · · · · · · · · · · · · · · · · · ·	·
find		Wind load shall be determined by ASCE 7-02		
·		Direction		Velocity
Design wind velocity	mph	N/A		90 mph
		Exposure Category :	С	
		Wind importance Factor =	1.15	
uthquake		Selsmic Importance factor determined b	YASCE 7-02	
		1		

CONFIDENTIAL

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 59 of 131

10/30/2006 Rev A

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

2 DRY FOD

Boiler Combustion Data	Unit			Linits 1, 2, 3	& 4 (Identical units)	the second second	
Gross Generation	MW				<u> </u>		
Heat loput	mmBtu/hr		9074.4			9074.4	
Heat Rate	BlukWh		9831.4			9300	
Excess Combustion Air **	*		25			25	
In-Leakage*	*		20			20	
Lord Case			PRB Coal			Appalachian Coal	
Fuel Data					.	Design	
Source		P	RB Coal (Primary FL	el)	Appala	chian Coal (Future Ba	ck-up Fuel)
Proximate Analysis (As Received)		Minimum	Maximum	Design	Minimum	Maximum	Design
Ash	^с Ж.	2.6	7.2	5.2	4.0	19,00	10.14
Volatile Matter	*						
Fixed Carbon	%			· .			
Heat Contant	Biu/b	8,300	9,150	8,500	10,500	13,400	12,800
Sulfur	%	0.1	0.90	0.3	0.50	1.60	1,50
	1				-		
Evaluation Coal Analysis			PR8 Coal			Appalachian Coa	İ
		Minimum	Maximum	Design	Minimum	Maximum	Desigr
Moisture	*	24.8	29.5	27.23	5.25	7.89	Б.35
ASH	*	2.60	7.20	5.20	13.00	4.50	9.24
CARBON	*	48.2	51.60	51.21	70.83	73.21	71.30
HYDROGEN	*	2.40	4.00	3.43	4.39	4.74	4.54
NITROGEN	%	0.40	1.50	0.69	1.31	1.56	1.39
SULFUR	*	0.10	0.90	0.30	0.64	1.50	1,50
OXYGEN	*	9.60	13.00	11.93	4.53	6.43	5.49
CHLORINE	ppm-w	30	150	100	68	2167	2167
FLUORINE	ppm-w	32	100	53	62	132	132
Total	*	'n/a	n/a	100.0	100.0	100.0	100.0
HEAT CONTENT	Btu/lb	8.300	9,150	8,600	10,500	13,400	12,800
Air in-leakage total for air heater(15%) &	ESP(5%)					,	

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 60 of 131

10/30/2005 Rev A

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

Coal Trace Analysis - Statistics			PRB Coal			Appalachian Cor	4
		Minimum	Maximum	Meduim	Minimum	Maximum	Medium
As	marka	0.3	3.5	0.6	3.8	9	5.3
Ba	mg/kg	190	340	240	30	320	100
Be	mg/kg	0.1	24	0.2	1.8	4.4	2.7
B (mg/kg	NA	NA	NA	NA .	NA	NA .
C4	mg/kg	0.02	0.28	0.04	0.04	0.07	0.05
a	mgAcg	30	204	46	63	1757	1534
Co	mg/kg	1.4	3.6	2.1	6.8	14.7	9.6
G	mg/kg	2	8	. 3	12	20	18
Cu	mg/kg	7	14	10	. 16	27	20
F	mg/kg	32	99	52	62	126	82
Hg	mg/kg	0.03	0.1	0.05	0.02	0.06	0.04
U	mg/kg	NA	NA	NA	NA	NA	NA
Mg	% by Wt	0.09	0.2	0.15	0.05	0.14	0.06
Ma	mg/kg	ö	38	8	7	76	21
No	mg/kg	NA	NA	NA	NA	NA -	NA
Na	mg/kg	0.04	0.08	0.05	0.02	0.09	0.04
Ni	mg/kg	2	10	3	12	24	18
Po	mg/kg	0.9	3.6	1.9	5.5	11	8.4
Sb	mg/kg	. 0	0.4	0.1	0.3	2.1	0.9
Sa	mg/kg	0.25	2	0.5	2.3	4.17	2.5
Sr .	mg/kg	0	O	0	0	G	0
V .	me/kg	· 7	23	11	24	44	34
Zn	mg/kg	2	32	7	8	21	14
				1 - 14 - 14 - 1			

Case	Load and Fuel	Relevance
Case 1: Max Load, PRB Coal	923MW, 0.3%S <u>6.600</u> Btulb PRB	Primary fuel will be PRB. Primary sorubber design case with 92.8% SQ removal. The FGD system is to be robust and rigorour for this case, with complete redundancy and equipment sizing margins.
Case 2: Max. Load, Appalachian Coal	923MW, 1.5%S <u>12.600</u> Btulib Appalachian	Appalachian coal may be used in future. Secondary scrubbar design case with 95% SO ₂ removal. The FGD system is to be robust and rigorous for this case, with complete redundancy and equipment sizing margins.

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 61 of 131

10/30/2008 Rev A

BASIC DESIGN BASIS

SCHERER UNITS 1 - 4

DRY FGD

Mass four (hcl. ACI) Bury 11.281.000 0.0 0.0 Plag grassen is, WG 0.0 0.0 0.0 vitama flow adm 3.801.000 2.811.000 0.0 attam bit /r 7.02.800 704.300 ////////////////////////////////////	Internation (inc. /ko/) Int. WG 0.0 0.0 Plas gas pressure in. WG 3.804.000 3.851.000 attem 2.603.000 2.341.000 O2 b.hr 720.800 704.300 N2 b.hr 7570.000 7,400.000 Ar b.hr 128,900 128,900 CO2 b.hr 19,77,000 1,841.000 SO2 b.hr 6,262 21,035 SO3 b.hr 6,262 21,035 SO3 b.hr 7,8 266 H2O b.hr 197,000 1,458.00 HF b.hr 12.50 9.03 H2O b.hr 592.800 1.458.00 HF b.hr 5.78 6.04 CO2 vol% 11.53 11.45 SO2 ppm-d 3 13 H2O vol% 1.57 1.45 SO2 ppm-d 9 15 Partisculate matter B.					
Phages pressure In. W0 0.0 0.0 Views for adm 3.004.000 3.851.000	False gas pressure In. W3 0.0 0.0 Volume flow actm 3,804,000 3,851,000 at 88F actm-w 2,503,000 2,341,000 C2 bithr 720,800 704,300 N2 bithr 7,570,000 7,400,000 Ar bithr 120,900 128,900 C02 bithr 1,841,000 S02 bithr 1,841,000 S02 bithr 877,300 562,800 HCI bithr 199,00 1,458,00 HF bitr 592,800 98,00 HCI bithr 125,0 9,03 C02 vol% 1,153 11,45 S02 ppm-d 120 990 S02 vol% 1,153 11,45 S02 vol% 1,20 990 S03 ppm-d 3 13 HCI ppm-d 9 15 particulate matter F 350 <td></td> <td></td> <td></td> <td></td> <td></td>					
Values Saw actin 3.804.000 7.651.000 2.311.000 G2 bitv 7.200.00 7.43.00	Values flow actm 3,804,000 3,851,000 at 88F actm-w 2,503,000 2,341,000 C2 b.hr 720,800 704,300 N2 b.hr 7,570,000 7,400,000 Ar b.hr 128,900 128,900 C02 b.hr 1,977,000 1,841,000 S03 b.hr 6,262 21,035 S03 b.hr 8,262 21,035 S03 b.hr 7,8 286 H20 b.hr 97,300 592,800 HC1 b.hr 9,03 96,00 H20 vd% 5,78 6,04 C02 vd% 5,78 6,04 C02 vd% 11,53 11,48 S02 ppm-d 280 990 S03 ppm-d 9 15 Particulate matter B.hr 2,067 2,060 HF ppm-d 9 15 Particulate matter B					
atser 2,503,000 2,341,000	attraction actime 2,503,000 2,341,000 C2 bhr 720,800 704,300 N2 bhr 7,570,000 7,400,000 Ar bhr 128,900 128,900 C02 bhr 1,977,000 1,641,000 S03 lbhr 6,262 21,035 S03 lbhr 77,300 562,800 HCI bhr 125,00 96,00 HCI bhr 125,00 96,00 HF bhr 57,300 562,800 HCI bhr 12,50 9,03 C2 vol% 12,50 9,03 C2 vol% 11,53 11,48 S02 ppm-d 3 13 HCI ppm-d 9 15 Particulate matter bhr 2,2067 2,067 S03 ppm-d 9 15 1 Particulate matter bhr 3,50 0,03 B0g - S0g convera					
CZ bhr 720,800 743,300 N2 bhr 7,570,000 7,400,000 Av bhr 128,300 128,300 CO2 bhr 6,272,000 128,41,000 SO2 bhr 6,272 21,035 SO3 bhr 737,000 1,485,00 HCI bhr 12,500 96,00 HZO ovidk 12,50 96,00 HZO ovidk 12,50 96,00 HZO ovidk 12,50 96,00 CO2 vidk 57,8 6,04 CO2 vidk 11,31 11,48 SO2 pgmd 3 13 HZ pgmd 1 12,00 SO3 pgmd 3 13 HF pgmd 0,00 0,00 SO2 psynch 1 1 HF ggmdz/d 0,00 0,00 SO2 SO2 SO2 SO2	O2 Bhr 720,800 704,300 N2 Bhr 7,570,000 7,400,000 Ar Bhr 129,900 128,900 CO2 Bhr 1,977,000 1,841,000 SO2 Bhr 6,262 21,035 SO3 Bhr 77,300 592,600 H2O Bhr 877,300 592,600 HCI Bhr 79,000 1,458,00 HF Ibhr 59,00 99,00 H2O Vol% 12,50 9,03 O2 Vol% 57,8 6,04 CO2 Vol% 11,53 11,48 SO2 Vol% 11,53 11,48 SO2 Vol% 11,51 11,48 SO2 Vol% 11,51 11,48 SO2 Vol% 11,51 11,48 SO2 Jpm-d 3 13 HCI Ipm-d 10 120 HF ppm-d 9 15					
N2 bhr 7,570,000 7,400,000 Ar Bhr 128,000 128,000 1441,000 GO2 Bhr 6,252 21,035 1441,000 SO2 Bhr 6,252 21,035 1441,000 SO3 Bhr 7,77,000 1,441,000 1441,000 SO2 Bhr 7,77,000 1,458,000 1141,000 HCI Bhr 7,500 562,400 11,458,000 HCI Bhr 59,00 96,00 11,458,000 1/CI Bhr 59,00 96,00 11,458,000 2/2 volk 11,25 11,48 11,48 SO2 pgm-d 280 550 11,48 SO2 pgm-d 10 120,00 12,00 HF pgm-d 10 120,00 13 13 GO2 wolk 11 120,00 10,00 14,00 HF pgm-d 10 120,00 10,00 14,00	N2 Bahr 7,570,000 7,400,000 Ar Bahr 120,900 126,900 126,900 CO2 Bahr 1,977,000 1,841,000 502 SO3 Bahr 7,570,000 1,841,000 502 SO3 Bahr 7,730 592,800 592,800 H2O Bahr 7,730 592,800 592,800 HCI Bahr 79,900 1,458,00 99,00 HF Ibhr 59,00 99,00 1458,00 HF Ibhr 59,00 99,00 1458,00 HF Ibhr 59,00 99,00 1458,00 HCI Bahr 12,50 9,03 0 O2 vol% 11,53 11,48 502 SO2 ppm-d 3 13 1 HF ppm-d 10 120,0 1 HF ppm-d 9 15 1 Particulate mattor Bahr 1,50,0	Î				
Ar Buhv 120,000 128,000 128,000 CO2 Buhv 6,252 21,033 1 SO3 Buhv 78 268 1 SO3 Buhv 77,500 562,600 1 1 HP Buhv 109,000 1,456,000 1 1 HF Buhv 109,000 1,456,000 1 1 HF Buhv 12,200 9,03 1 1 CO2 vd1% 12,20 9,03 1 1 CO2 vd1% 13,3 1,48 1 1 SO2 ppm-d 3 13 1 1 1 SO3 ppm-d 1 120 1	Ar Bhr 128,900 128,900 CO2 Bhr 1,977,000 1,841,000 SO2 Bhr 6,262 21,035 SO3 Ibhr 78 266 H2O Ibhr 877,300 592,800 HCI Ethr 109.00 1,456,00 HF Ibhr 59.00 95,00 H2O vol% 12.50 9.03 O2 vol% 12.50 9.03 O2 vol% 11.53 11.48 SO2 yol% 1.51 11.48 SO2 yol% 1.51 11.48 SO2 yom-d 3 13 HCI ppm-d 280 930 SO3 ppm-d 10 120 HF ppm-d 2.067 2.060 Buhr Buhr 0.230 0.227 grade-d F 350 350 Pressure I 1 1 <td>4</td> <td></td> <td></td> <td></td> <td></td>	4				
CO2 Butr 1.977.000 1.841.000 SO2 Butr 6.262 21.035 SO3 Ibhr 79 286 SO3 Ibhr 79 286 HCI bohr 109.00 1,456.00 HCI bohr 129.00 1,456.00 HZO volk 57.300 96.00 C2 volk 57.30 96.00 C2 volk 57.30 96.00 C2 volk 57.30 8.04 C2 volk 11.33 11.48 S02 ppm-d 30 13 HCI ppm-d 9 15 Particulate matter Ibhr 2.067 2.065 RaimmBtu 0.230 0.227 1.0 Particulate matter Ibhr 3.0 0.2 Particulate matter Ibhr 1.0 1.0 RoimmBtu 0.230 0.227 1.0 SO2 - SO2 conversion in bolier	CO2 Brbr 1,977,000 1,841,000 SO2 Brbr 6,262 21,035 SO3 Ibbr 79 265 H2O Ibbr 877,300 592,800 HCI Brbr 109,00 1,458,00 HF Ibbr 590,00 95,00 HZO vol% 12,50 9,03 O2 vol% 5,78 6,04 CO2 vol% 11,53 11,48 SO2 wol% 10 120 HF ppm-d 3 13 HGI ppm-d 9 15 Parliculate matter Ibhr 2,067 2,060 Istramparature F 350 0,027 Gast conversion in bolier % 1 <td>I</td> <td></td> <td></td> <td></td> <td></td>	I				
SO2 Buhr 6,262 21,035 SO3 Ibhr 79 289 H2O Buhr 877,300 562,800 HCI Buhr 109.00 1,488.00 HF Buhr 59,00 99,00 HZO vol% 12,50 8,03 C2 vol% 13,53 11,49 SO2 spm-d 30 13 HCI ppm-d 3 13 HCI ppm-d 10 120 KF ppm-d 9 15 Particulate matter Ib/m 2,027 2,0560 Ib/m 2,047 2,0560 1.0 1.0 SO3 - SO2 scaversion in bolier % 1 1 SO3 - SO2 scaversion in bolier % 1 1 SO3 - SO2 scaversion in bolier % 1 1 SO2 - SO2 scaversion in bolier % 1 1 SO2 - SO2 scaversion in bolier % 1.0 1.0	SO2 Butr 6,262 21,035 SO3 listr 79 265 H2O listr 109,00 1,456,00 HCI Extr 109,00 1,456,00 HF listr 59,00 99,00 H2O vol% 578 6,04 C02 vol% 578 6,04 C02 vol% 11,53 11,48 SO2 ppm-d 290 990 SO3 ppm-d 3 13 HCI ppm-d 3 13 HCI ppm-d 9 15 Parliculate matter lbftr 2,067 2,060 HF ppm-d 9 0,0 0,0 Bog = SO3 conversion in bolier % 1 1 SO2 ppm-d 9 15 Feasure F 350 0,0 SO2 conversion in bolier % <td></td> <td></td> <td></td> <td></td> <td></td>					
S03 Bhr 78 285 H20 Bhr 97,300 592,800 H21 Ehr 199,000 1,455,00 HF Bhr 59,00 96,00 H20 vd% 12,50 96,00 H20 vd% 12,50 96,00 H20 vd% 11,53 11,48 CO2 vd% 11,53 11,49 S02 Aprd 3 13 HCI ppn-d 10 120 S03 ppn-d 9 15 Parliculate matter fb/r 2,067 2,060 H4CI ppn-d 9 15 Parliculate matter fb/r 2,067 2,060 H4G 0,09 0,09 0,09 S02 - SO3 scoversion in boliev % 1 1 S02 - SO3 scoversion in boliev % 1 1 S02 - SO3 scoversion in boliev % 1 1 S02 - SO3 scoversion in bolie	SO3 Ibhr 79 265 H2O Ibhr 877,300 592,800 HCI Ibhr 109.00 1,456.00 HF Ibhr 59.00 99.00 H2O vd% 12.50 9.03 O2 vd% 578 6.04 CO2 vd% 11.53 11.48 SO2 ppm-d 280 990 SO3 ppm-d 3 13 HCI ppm-d 3 13 HCI ppm-d 9 15 SO3 ppm-d 9 15 Particulate matter Ibfr 2.067 2.060 HF ppm-d 9 15 Particulate matter Ibfr 2.067 2.060 B0g SO3 conversion in bolier % 1 1 SO2 starter % 1 1 SO2 starter % 1 1 SO2 starter F 159 162 SO2					
H20 Ibhr 877,300 592,800 HCI Bhr 109,00 1,458,50 HF Ibhr 58,00 96,00 H20 vdN 12,50 90,30 C2 vdN 11,53 11,48 C02 vdN 11,53 11,48 C02 vdN 11,53 11,48 S02 ppmd 230 930 S03 ppmd 10 120 HF ppmd 9 15 Parliculas mater Ibhr 2,087 2,060 gritzda gritzda 0,09 0,277 gritzda gritzda 1 1 HF ppmd 9 15 Parliculas mater Ibhr 2,087 2,060 gritzda gritzda - - Go = SO, conversion in balar % 1 1 SO2 Ibh 454 1,064 SO2 Jbh 454 1,064 Particulais mater Ibhr 136 138 Ibhr 136 134 - GD Process - - -	H2O Johr 877,300 592,800 HCI Bahr 109.00 1,458.00 HF Ibhr 59.00 99.00 H2O vol% 12.50 9.03 O2 vol% 5.78 6.04 CO2 vol% 11.53 11.48 SO2 ppm-d 280 990 SO3 ppm-d 10 120 HF ppm-d 9 15 Parliculate matter Ibhr 2.067 2.060 RdmmBtu 0.230 0.227 gratchd Temparature F 350 350 RdmmBtu 0.230 0.227 gratchd Temparature F 350 350 RdmmBtu 0.0 0.0 0.0 ROg SO3 conversion in bolier % 1 1 ROg SO3 conversion in SCR Ibhr 169 162 SO2 Ibh 454 1.064 ppm(d) 2			1		
Inci Inci Inci 105 00 1.458.00 HF Ib/r 59.00 99.00 HZO velk 12.60 8.03 O2 velk 13.78 6.04 O2 velk 11.33 11.48 SO2 velk 11.33 11.48 SO2 velk 11.33 11.48 SO2 velk 11.33 11.48 SO2 opm-d 280 990 SO3 ppm-d 3 13 HCI ppm-d 0 15 Parkutate matter Ib/r 2.067 2.060 Infimibia 0.230 0.227 1 gatk-ct	HCI bith 109.00 1.458.00 HF bith 59.00 99.00 H2O vol% 5.78 6.04 CO2 vol% 5.78 6.04 CO2 vol% 11.53 11.48 SO2 ppm-d 290 950 SO3 ppm-d 3 13 HCI ppm-d 3 13 HCI ppm-d 9 15 Parliculate matter Ibfr 2.067 2.060 RofmmBtu 0.230 0.227 grade-d Temperature F 350 350 Pressure In wg 0.0 0.0 SO2 ~ SO3 conversion in boller % 1 1 SO2 ~ SO3 conversion in SCR * 1 1 SO2 ~ SO3 conversion in SCR * 1 1 SO2 ~ Ibfh 454 1.064 ppm(d) SO2 ~ Ibfh 454 1.064 ppm(d) Particulate matter Ibfr 136 138 Ibfr 136 138 138 SO2 ~ SO3 conversion efficiency % 92.8 95.0 Particulate matter Ibfr 136 138 <					
HF Ibin 50.0 96.00 H2O vel% 12.50 9.03 O2 vel% 5.78 6.04 CO2 vel% 5.78 6.04 CO2 vel% 11.53 11.48 SO2 opm-d 280 980 SO3 ppm-d 3 13 HCI ppm-d 10 120 HF ppm-d 9 15 Paricutate matter Ibin 2.067 2.060 JummBau 0.230 0.227 0.227 gateLd	HF Ibhr 59.00 99.00 H2O vol % 12.50 9.03 O2 vol % 5.78 6.04 CO2 vol % 11.53 11.48 SO2 ppm-d 290 990 SO3 ppm-d 3 13 HCI ppm-d 10 120. HF ppm-d 9 15 Parliculate matter Ibhr 2.067 2.060 RommBtu 0.230 0.227 gracf-d Temperature F 350 350 Pressure In wg 0.0 0.0 SO2 start 1 1 SO3 ppm(d) 2.067 2.060 Particulate matter Ibhr 2.067 2.060 RommBtu 0.230 0.227 0.227 grace-d F 350 350 SO2 SO3 conversion in boller % 1 1 SO2 SO3 conversion in SCR			}		
H2O volk 12.60 6.03 D2 volk 5.78 6.04 C02 volk 11.53 11.48 S02 ppm-d 290 990 S03 ppm-d 3 13 HCI ppm-d 10 120 HF ppm-d 9 15 Parksubse matter 10.hr 2.067 2.060 ImmBu 0.230 0.227 14 agthc.dd 1 1 1 Temperature F 350 250 Pressure Inveg 0.0 0.0 S02 SO3 conversion in bolier % 1 1 S02 SO3 conversion in SCR	H2O vol % 12.50 9.03 O2 vol % 5.78 6.04 CO2 vol % 11.53 11.48 SO2 ppm-d 290 990 SO3 ppm-d 3 13 HCI ppm-d 3 13 HCI ppm-d 9 15 Particulate matter Ibhr 2.067 2.060 Pressure F 350 350 Pressure In wg 0.0 0.0 SO2 ppm(d) 2.067 2.060 Particulate matter F 350 350 Pressure In wg 0.0 0.0 SO2					
11.00 10.01 10.02 vol % 5.78 6.04 CO2 vol % 11.53 11.48 SO2 ppm-d 280 980 SO3 ppm-d 3 13 HCI ppm-d 10 120 HF ppm-d 0 15 Parlieudate matter 10.02.02 10.02.02 BD 2.067 2.060 InfimmBiu 0.230 0.227 gdtcl-d - SO2 gdtcl-d BD - SO3 0.0 SO4 - Femperature F 350 350 SO2 - Dendes tamperature F SO2 - Desulturization afficiency % But 0.015 IbimmBiu 0.015 Out - Desulturization afficiency % SO2 - <td>No. No. 5.78 6.04 CO2 volk 11.53 11.48 SO2 ppm-d 290 990 SO3 ppm-d 3 13 HCI ppm-d 10 120. HF ppm-d 9 15 Particulate matter Ibhr 2.067 2.060 BohrmBtu 0.230 0.227 grbcLd grbcLd 350 Temperature F 350 Pressure Inwg 0.0 SO2 john 1 SO3 ppm-d 3 Particulate matter F 350 SO2 conversion in bolier % SO2 SO3 1 SO2 Ibh 454 SO2 Ibh 454 SO2 Ibh 454 SO2 Ibh 138 SO2 John 138 SO2 Ibh 454 Desultarization efficiency % 92.8 Particulate matter %</td> <td></td> <td></td> <td></td> <td></td> <td></td>	No. No. 5.78 6.04 CO2 volk 11.53 11.48 SO2 ppm-d 290 990 SO3 ppm-d 3 13 HCI ppm-d 10 120. HF ppm-d 9 15 Particulate matter Ibhr 2.067 2.060 BohrmBtu 0.230 0.227 grbcLd grbcLd 350 Temperature F 350 Pressure Inwg 0.0 SO2 john 1 SO3 ppm-d 3 Particulate matter F 350 SO2 conversion in bolier % SO2 SO3 1 SO2 Ibh 454 SO2 Ibh 454 SO2 Ibh 454 SO2 Ibh 138 SO2 John 138 SO2 Ibh 454 Desultarization efficiency % 92.8 Particulate matter %					
CO2 wd% 11.53 11.48 SO2 ppmd 280 950 SO3 ppmd 3 13 HCI ppmd 10 120. Parlicutate matter Byrd 9 15 Parlicutate matter Byrd 0 15 Pressure Byrds-Ld 200 0.227 grits-Ld grits-Ld - - Ferssure Byrds-Ld - - SO2 solo 0.0 0.0 - SO2 grits-Ld - - - Temperature F 350 350 - SO2 SO3 conversion in bolier % 1 1 - SO2 SO3 conversion in SCR - - - - SO2 SO3 Deprif(1 20.0 49.0 - SO2 Ib/n 454 1.064 - - Barticutate mater Ib/n 138<	CO2 volki 11.53 11.48 SO2 ppm-d 290 990 SO3 ppm-d 3 13 HCI ppm-d 10 120. HF ppm-d 9 15 Particulate matter Ib/m 2.067 2.060 BolmmBtu 0.230 0.227 grbschd grbschd - - - Temperature F 350 350 Pressure In wg 0.0 0.0 SO2 SO3 conversion in bolier % 1 1 SO2 SO3 conversion in SCR - - - Particulate matter Ibhr 136 138 <td></td> <td></td> <td></td> <td></td> <td></td>					
SO2 ppm-d 290 990 SO3 ppm-d 3 13 HG ppm-d 10 120 HG ppm-d 0 15 Particulate matter Ib/m 2.067 2.060 Ib/mBbu 0.230 0.227 Ib/m g/txckd Ib/mBbu 0.230 0.227 g/txckd Ib/mBbu 0.200 0.0 SO2 sSO2 0.0 0.0 SO2 sSO2 0.0 0.0 SO2 SO3 1 1 SO2 SO3 1 1 SO2 SO3 1 1 SO2 SO3 1 1 SO2 Ib/h 454 1.064 ppm(d) 20.0 49.0 SO2 Ib/h 454 1.064 ppm(d) 20.0 49.0 . SO2 Ib/h 138 138 Ib/mBabu 0.015	SO2 ppm-d 280 990 SO3 ppm-d 3 13 HCI ppm-d 10 120. HF ppm-d 9 15 Pariloculate matter IbMv 2.067 2.060 Ib/mmBtu 0.230 0.227 grisc-Ed					
SO3 ppmd 3 13 HG1 ppmd 10 120 HF ppmd 9 15 Parisulase matter Ibfw 2.067 2.060 Ibfw 0.230 0.227 gritect d	SO3 ppm-d 3 13 HCI ppm-d 10 120. HF ppm-d 9 15 Pariloculate matter Ibhr 2.067 2.060 Ib/mmBtu 0.230 0.227 grbscHd grbscHd 3 1 Temperature F 350 350 Pressure In wg 0.0 0.0 SO ₃ -> SO ₃ conversion in boller % 1 1 SO ₂ -> SO ₃ conversion in SCR					
HG ppm-d 10 120 HF ppm-d 9 15 Parliculate matter Ibhr 2.067 2.060 Burnenstaure Ibhr 2.067 2.060 Parliculate matter Ibhr 2.067 2.060 Temperature grisci-d	HGI ppm-d 10 120. HF ppm-d 9 15 Particulate matter Ibhr 2.067 2.060 BufmmBtu 0.230 0.227 great-cd F 350 350 Pressure F 350 350 SOg SO ₃ conversion in boller % 1 1 . SOg SO ₃ conversion in boller % 1 1 . SOg SO ₃ conversion in boller % 1 1 . SOg SO ₃ conversion in SCR F 169 162 Pressure F 169 162 . SO2 Ibhr 454 1,064 . Particulate matter Ibhr 136 138 . Ibit gpm/d2 NA NA NA Desulfunctate matter removal % 92.8 95.0 . Particulate matter removal % 99.82 99.92 .				1	
Hui Hui Hui Paris Paris HF ppm-d 9 15 Parisulase matter Ibhr 2.067 2.060 Ibhr 0.230 0.227 gräscid gräscid Temperature F 350 Pressure In wg 0.0 SO2 - SO2 conversion in boller % 1 SO2 - SO2 conversion in boller % 1 SO2 - SO2 conversion in boller % 1 SO2 - SO2 conversion in SCR	HFppm-d915Particulate matterIbhr2.0672.060Ibhr0.2300.227grisci-dgrisci-dTemperatureF350Pressurein wg0.0SOg SOg conversion in boller%1SOg SOg conversion in boller%1SOg SOg conversion in SCR					
Parliculate matter Ibitr 2.067 2.060 RefmmBau 0.230 0.227 griticulate matter F 350 griticulate matter F 350 griticulate matter F 350 Pressure F 350 SDg - SOg conversion in boller % 1 Stop - SOg conversion in SCR % 1 Sog - SOg conversion in SCR % 1 Juma r ges condition % 1 Gas tamperature F 169 SO2 Ibith 454 Ibithr 136 SO2 Ibith Barliculate matter Ibithr Ibithr 136 SO2 Ibith Gas tamperature F Ibithr 136 Ibithr 138 Ibithr 138 Ibithr 99.82 99.82 99.92 Ibithr 99.82 GD Process Um Spray Dryor Process	Pariculate matterIbhr 2.067 2.060 Ibhr 0.230 0.227 gritect-dgritect-dTemperatureF 350 PressureIn wg 0.0 $SO_a \rightarrow SO_a$ conversion in boller $%$ 1 $SO_a \rightarrow SO_a$ conversion in boller $%$ 1 $SO_a \rightarrow SO_a$ conversion in SCR $%$ 1 $SO_a \rightarrow SO_a$ conversion in SCR $%$ 1Steen gas condition F 169Gas tomperature F 169SO2Ibh454ppm(d)20.049.0Particulate matterIbhr136Idem gas on efficiency $%$ 92.899.8295.0Particulate matter removal $%$ 99.82SO2 $%$ 99.82SO3 $SO_a = 100000000000000000000000000000000000$					
Builden matter Builden 0.230 0.227 Temperature Pressure F 350 350 SO ₂ - SO ₃ conversion in bolier % 1 1 SO ₂ - SO ₃ conversion in bolier % 1 1 SO ₂ - SO ₃ conversion in bolier % 1 1 SO ₂ - SO ₃ conversion in bolier % 1 1 SO ₂ - SO ₃ conversion in SCR * 1 1	Temperature F 350 0.227 Temperature F 350 350 Pressure In wg 0.0 0.0 $SO_a \rightarrow SO_a$ conversion in boller % 1 1 $SO_a \rightarrow SO_a$ conversion in boller % 1 1 $SO_a \rightarrow SO_a$ conversion in SCR % 1 1 Clean gas condition F 169 162 SO2 Ibh 454 1.064 ppm(d) 20.0 49.0 Particulate matter Ibhr 136 IbhmmBtu 0.015 0.015 Mist gpm/fi2 NA Desulfurfizzion efficiency % 92.8 99.82 95.0 99.82					
Temperature Pressure gracid in wg 350 0.0 350 0.0 SDg SOg convension in bolier % 1 1 SCg SOg convension in bolier % 1 1 SCg SOg convension in SCR % 1 1 Zien gas condition F 169 162 SC2 Ibh 454 1.064 ppm(d) 20.0 49.0 Particulate matter Ibhm 810 0.015 Ibhm 136 136 Desultarization afficiency % 92.8 Particulate matter removal % 99.82 SGD Process . Ume Spray Dryer Process	Temperature Pressuregrkc/d F In wg350 350 0.0 $SO_2 \rightarrow SO_3$ conversion in bolier%11 $SO_2 \rightarrow SO_3$ conversion in bolier%11 $SO_2 \rightarrow SO_3$ conversion in SCR%11 $SO_2 \rightarrow SO_3$ conversion in SCR%11 $SO_2 \rightarrow SO_3$ conversion in SCR%11SO2%11Parisculate matterF169162SO21bh4541.064ppm(d)20.049.0Particulate matter1bhr136Ibhr136136Ibhr13695.0Particulate matter removal%92.8Particulate matter removal%99.82SO2					
Temperature Pressure F 350 350 0.0	Temperature F 350 350 Pressure In wg 0.0 0.0 0.0 $SD_a \rightarrow SO_a$ conversion in boller % 1 1 1 $SD_a \rightarrow SO_a$ conversion in boller % 1 1 1 $SO_a \rightarrow SO_a$ conversion in SCR % 1 1 1 $SO_a \rightarrow SO_a$ conversion in SCR % 1 1 1 Claen gas condition % 1 1 1 Claen gas condition F 169 162 162 SO2 Ib/h 454 1.064 1064 ppm(d) 20.0 49.0 49.0 136 138 136 Particulate matter Ib/h 136 </td <td></td> <td></td> <td></td> <td></td> <td></td>					
Pressure In wg 0.0 0.0 0.0 SOg SOg conversion in boller % 1 1 SOg SOg conversion in SCR % 1 1 SOg SOg conversion in SCR % 1 1 SOg SOg conversion in SCR % 1 1 Disen gas condition Gas temperature F 169 182 SO2 Ibh 454 1.064 Particulate matter Ibhr 136 138 Mist gpm/ñ2 NA NA NA GD Process - Ume Spray Dryor Process	Pressure In wg 0.0 0.0 $SD_a \rightarrow SO_a$ conversion in boller % 1 1 1 $SD_a \rightarrow SO_a$ conversion in boller % 1 1 1 $SO_a \rightarrow SO_a$ conversion in SCR % 1 1 1 $SO_a \rightarrow SO_a$ conversion in SCR % 1 1 1 Starn gas condition 50 50 1 1 Gas tomperature F 169 162 50 SO2 Ibth 454 1,064 10 ppm(d) 20.0 49.0 49.0 136 136 SO2 Ibth 136 136 136 136 Particulate matter Ibthr 136 136 10.015 0.015 Mist gpm/h2 NA NA NA 10 10 10 Particulate matter removal % 99.82 95.0 95.92 10 10					
SDa SOa conversion in boiler % 1 1 1 SO SOa conversion in SCR % 1 1 Clean gas condition F 169 162 Gas tomperature F 169 162 SO2 Ib/n 454 1.064 ppm(d) 20.0 49.0 Particulate matter Ib/n 136 138 Ib/nmBtu 0.015 0.015 Mist gpm/h2 NA NA Desulfuritation efficiency % 92.8 95.0 Particulate matter removal % 99.62 99.92	$\begin{split} & \text{SO}_2 \rightarrow \text{SO}_3 \text{ conversion in bolier} & \frac{9}{5} & 1 & 1 & 1 & \\ & & & 1 & 1 & 1 & \\ & & & 1 & 1 & 1 & \\ & & & 1 & 1 & 1 & \\ & & & & 1 & 1 & 1 & \\ & & & & 1 & 1 & 1 & \\ & & & & 1 & 1 & 1 & \\ & & & & 1 & 1 & 1 & \\ & & & & & 1 & 1 & 1 & \\ & & & & & 1 & 1 & 1 & \\ & & & & & 1 & 1 & 1 & \\ & & & & & & 1 & 1 & 1 & \\ & & & & & & 1 & 1 & 1 & \\ & & & & & & & 1 & 1 & 1 & \\ & & & & & & & 1 & 1 & 1 & \\ & & & & & & & & 1 & 1 & 1 & \\ & & & & & & & & 1 & 1 & \\ & & & & & & & & 1 & 1 & \\ & & & & & & & & & \\ & & & & & &$					
% 1 1 1 SO2	% 1 1 iO ₂ SO ₂ conversion in SCR					
% 1 1 1 SO2	% 1 1 iO ₂ SO ₂ conversion in SCR					
% 1 1 1 SO2	% 1 1 iO ₂ SO ₂ conversion in SCR					
SO2 SO2 conversion in SCR	SO2 SO3 conversion in SCR				1	
Clean gas condition F 169 162 Gas tomperature F 169 162 SO2 Ibh 454 1.064 ppm(d) 20.0 49.0 Particulate matter Ibhr 136 IbhmmBtu 0.015 0.015 Mist gpm/h2 NA Desulturization efficiency % 99.62 Particulate matter removal %	Clean gas condition F 169 162 Gas temperature F 169 162 SO2 Ib/h 454 1,064 ppm(d) 20.0 49.0 Particulate matter Ib/hr 136 136 Ib/mmBtu 0.015 0.015 Mist gpm/h2 NA NA Desulfurfizion efficiency % 92.8 95.0	ļ	ļ			
Gas temperature F 169 162 SO2 Ibh 454 1.064 ppm(d) 20.0 49.0 Particulate matter Ibhr 136 Ibh 136 138 Ibhr 136 0.015 Mist gpm/t2 NA Desulfurfizion efficiency % 92.8 Particulate matter removal % 99.82	Gas temperature F 169 162 SO2 Ib/h 454 1,064 ppm(d) 20.0 49.0 Particulate matter Ib/h 136 136 Ib/mmBtu 0.015 0.015 0.015 Mist gpm/h2 NA NA Particulate matter removal % 92.8 95.0				 	
Gas temperature F 169 162 SO2 Ibh 454 1.064 ppm(d) 20.0 49.0 Particulate matter Ibhr 136 Ibh 136 138 Ibhr 136 0.015 Mist gpm/t2 NA Desulfurfizion efficiency % 92.8 Particulate matter removal % 99.82	Gas temperature F 169 162 SO2 Ib/h 454 1,064 ppm(d) 20.0 49.0 Particulate matter Ib/h 136 136 Ib/mmBtu 0.015 0.015 0.015 Mist gpm/h2 NA NA Particulate matter removal % 92.8 95.0	<u></u>				
SO2 Ibh 454 1,064 ppm(d) 20.0 49.0 49.0 Particulate matter ibhr 136 136 ibhrmBtu 0.015 0.015 Mist gpm/t2 NA NA Desulfurfizion efficiency % 99.82 90.92	SO2 Ib/h 454 1,064 ppm(d) 20.0 49.0 Particulate matter Ib/h 136 138 Ib/h 136 0.015 0.015 Mist gpm/h2 NA NA Desulfurfization efficiency % 92.8 95.0 Particulate matter removal % 99.82 \$9.92					
Particulate matter ppm(d) 20.0 49.0 Barticulate matter Ibbr 136 138 Ibbr 136 0.015 0.015 Mist gpm/fi2 NA NA DesulfAritzation efficiency % 92.8 95.0 Particulate matter removal % 99.82 99.92	Particulate matter ppm(d) 20.0 49.0 Particulate matter ib/hv 136 138 :b/mmBtu 0.015 0.015 Mist gpm/h2 NA NA Desulfurfization efficiency % 92.8 95.0 Particulate matter removal % 99.82 35.92					
Particulate matter Ibhr 136 138 IbhrmBtu 0.015 0.015 Milst gmvh2 NA NA DesulfArtzation efficiency % 92.8 95.0 Particulate matter removal % 99.82 96.92	Particulate matter Ib/w 136 138 Ib/mmBtu 0.015 0.015 Mist gpm/h2 NA NA Desulfurfizion efficiency % 92.8 95.0 Particulate matter removal % 99.82 99.92					
Ib/mmBtu 0.015 0.015 Mist gpn/h2 NA NA DesulfArization efficiency % 92.8 95.0 Particulate matter removal % 99.82 99.92	Ib/mmBtu 0.015 0.015 Mist gpm/fi2 NA NA Desulfurfizion efficiency % 92.8 95.0 Particulate matter removal % 99.82 93.92					
Mist gpm/h2 NA NA DesulfAritation efficiency % 92.8 95.0 Particulate matter removal % 99.82 99.92	Mist gpnvh2 NA NA DesulAuftzäon efficiency % 92.8 95.0 Particulate matter removal % 99.82 99.92			· .		
Desulfurization efficiency % 92.8 95.0 Particulate matter removal % 99.82 90.92 GD Process - Ume Spray Dryor Process	Desuliturization efficiency % 92.8 95.0 Particulate matter removal % 99.82 99.92			1	•	
Particulate matter removal % 99.82 90.92 *GD Process - Ume Spray Dryor Process	Particulate matter removal % 99.82 99.92					
GD Process - Ume Spray Dryer Process						
	GD Process - Ume Spray Dryar Process				 	
GD Byproduct Mbxture					 	
	GD Byproduct Mixture				 	

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 62 of 131

10/30/2006 Rev A

BASIC	DESIGN	BASIS

The second state of the second st

. . .

SCHERER UNITS 1 - 4

DRY FGD				
				,
Composition	w1%	Ca(OH)2 16.0%		
	wt%	Ca903-%H2O 80.0%		
	w1%	CaSO4-2H2O Incl. above		
	wt%	CaCI2-2H20 incl. above		
	w1%	Inerts + Carbon Incl. above		
	w/%	Flyash 3.0%		
	w/%	Moistura 2.0%		
		Mean Particle Size		
and the second second				
Bulk density	15/#3	103 lb/ft3 for landifil sizing		
		•		
		<u>.</u>	1	
Lime	· ·	Design Basis	Range	
Туре		Pabble	-	4
Receiving particle size	inch	3/4 X 0		
Chemical Composition	1			
CaO	wt%-d	90.0		
inerts.	wt%-d	10.0		
inerts.	W(%-G	10.0		
Molsture	with	0.0		
Grindability	kW/ston			
Bulk densky	15/ft3	70 th/#3 for shorts rel toorf 60 t	I b/ft3 for volume capacity of silos	•
Reactivity	*			
- Administry	~		94. 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917 - 1917	
Mantus in Manan				
Makoup Water Name		Service water pond		
BL		Intake from pond		
Temperature at B.L	F	Ambient		
Pressure at B.L	osig	Atmospheric		
Composition*		- tertieden mit te		
Magnesium	ppm	1.5		
Galcium	ppm			
Sodium	ppm			
Potassium	ppm			
Chloride	ррт			
Bicarbonale	ppm		· · · · · · · · · · · · · · · · · · ·	
Sulfate	ppm	10		,
tran	ppm	0.68		
Silica	ррт			
pHsu				· · · · · · · · · · · · · · · · · · ·
Turbidity, NTU	ppm			
TOC	рргті	2		
coo	ppm	12		
TSS	ppm	12		
Total Hardness	ppm as CaCO ₂			4
¹ From 1988 data, will obtain more cu				
			1	

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 63 of 131 10/30/2008 Rev A

BASIC DESIGN BASIS

and the second and an application of the

SCHERER UNITS 1-4

DRYFGD						
Cooling Water						
(Raw water, open loop)		Supply	Ret			
Pressure	psi	Atmospheric psi	40	psi		
				·		
Temperature (Mex)	F	See Makeup Water Conditionst deg F	103	deg F		
Alr						
Name		Instrument			Service	
Supply pressure	ping	Max		Max		
	ging	Min		Min		
Supply temperature	F	Max		Max		
	P .	Min		Min		
Dew point	F	Dry, Oli-Ine (-10F)				
Steam						
Supply pressure	tanja	Max N/A				
	pelg	Min N/A				
Supply temperature	F (2)	Max N/A				
		Min N/A	•			
Electrical Power	V - F - Hz	> 250HP 4160	3φ	60Hz	Advatech Scope (as required)	
	¥-1 ° N4	< 250HP 480	Зф	11. A A A A A A A A A A A A A A A A A A	Advatech Scope (as required)	

4. System Design Requirement		
Ges Path System		
Duct	1 x 100 % Capacity	
Velocity	60 īt/s max	
By-pass	To existing stack	
Stack	Existing (liner to be costed)	
type	Dry stack	
Gas Velocity	Existing	
Height	Existing	
iD Booster Fan	2 x 50 % Capacity Axial	
ID Booster Fan Test Block	15 % Flowrete margin on Case 1 (923MW) gas flow	
D Booster Fan Test Block	32 % Pressure margin on Case 1 (923MW) SPR	
ime Receiving System	(Lime Buik Slorage)	
System capadity	1+0 x 109 % Cepacity at 1.5% S Coal (future)***	
Storage Capacity	30 days at 1.5% S coal (future)*** (6 silos)	
Feeder capacity	1+ 0 x 100 % Capacity et 1.5% S Coal (future)***	
Conveyor capacity	1+ 0 x 100 % Capacity at 1.5% S Coal (future)***	
Operation time	24 hrs per day	
ime Supply System	(feed to Voritmilit Sleker)	
System сараслу	1+0 x 33 % Capacity at 1.5% S Coal (future)*** per sllo	
Slumy Storage Tank Capacity	8 hrs at 1.5% S coal (luture)** - common for 6 stakers	
Feeder capacity	1+0 x 33 % Capacity per sito	
Lime prop. area sump/pump/agitator	1 set of 1 + 1 pumps, 1 + 0 agitator	
Operation time	24 hrs per day	
-	6/7 Scherer Design Basis - DFGD-RA xls	;

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 64 of 131

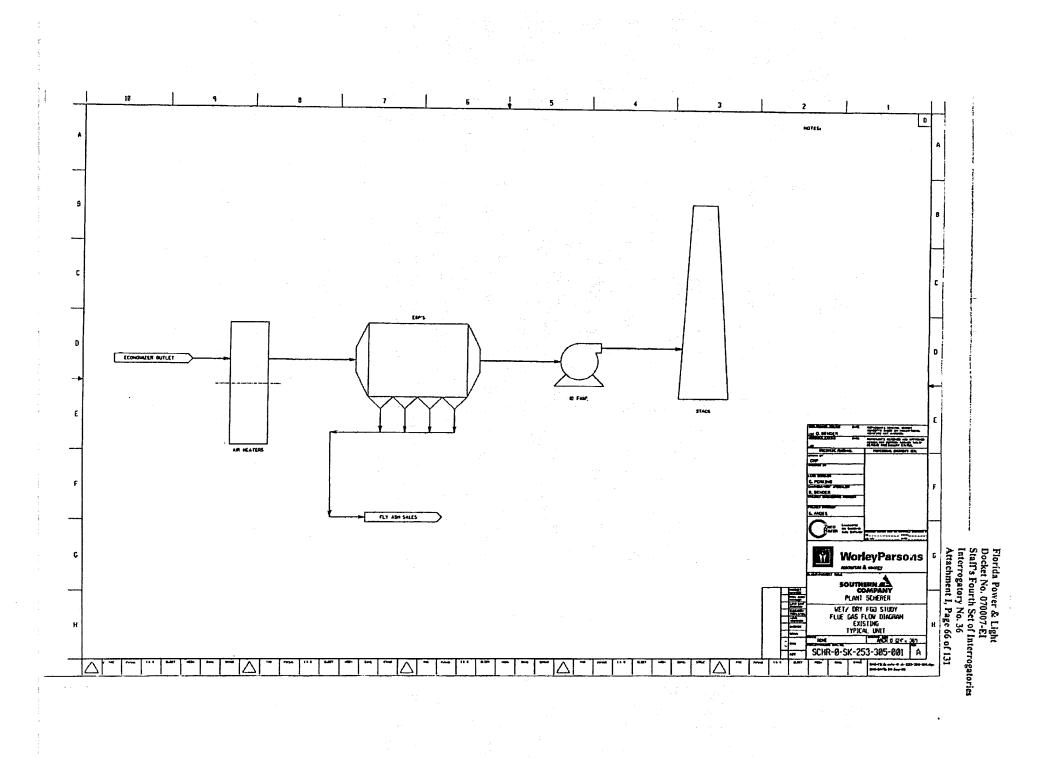
10/30/2006 Rev A

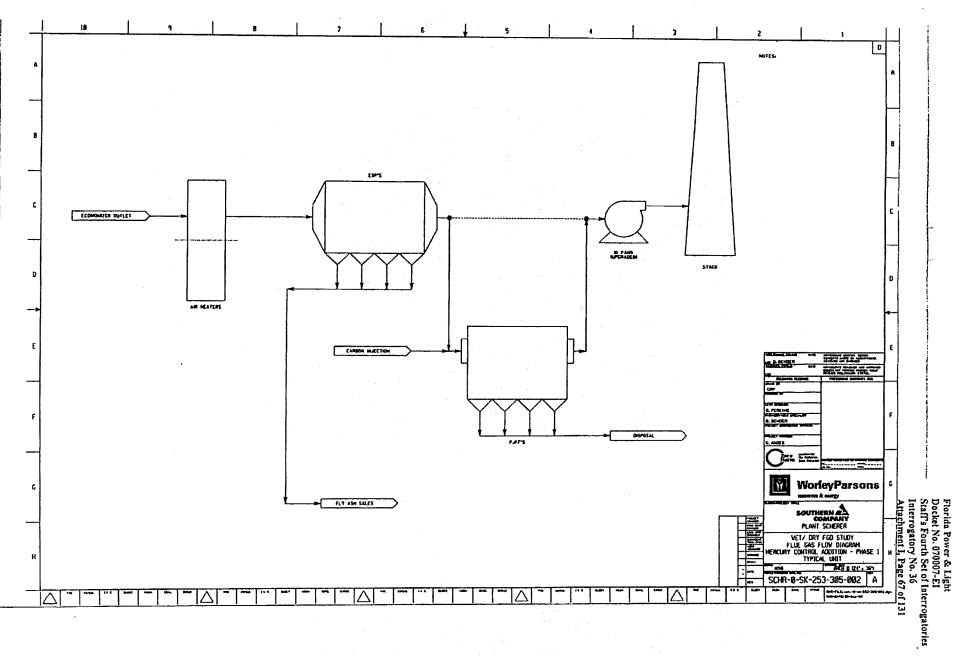
BASIC DESIGN BASIS

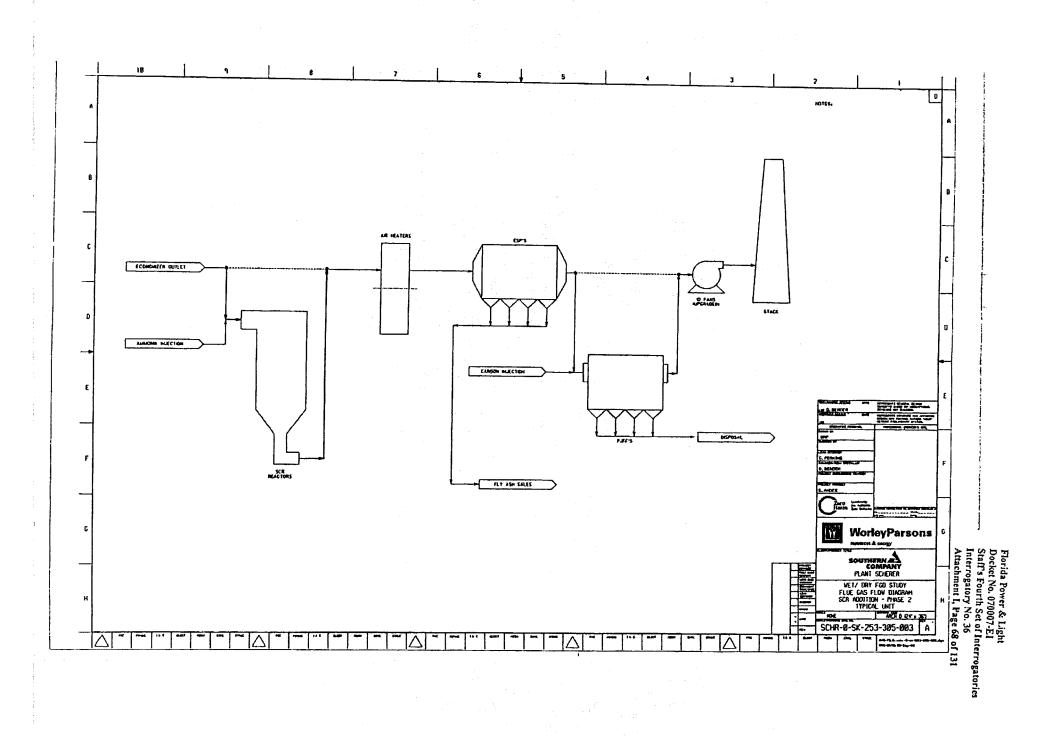
SCHERER UNITS 1 - 4

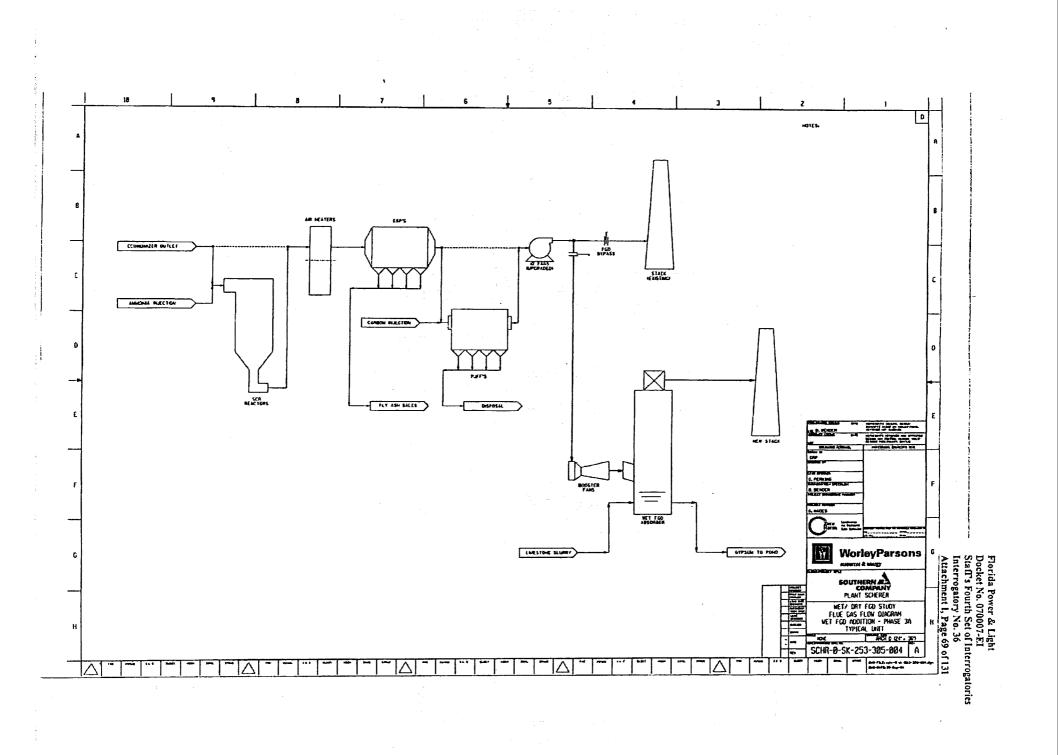
Limestone Supply System	(Siury food to SDA's)	
System Cepacity	1 x 100 % Capacity at 1.5% S Coal (future)*** per pair of units	
Stany Feed Tank Capacity	2 hrs at 1.5% S coal (future)*** - 1 per pair of units	
Limestone slurry feed pump	1+1 x 100 % Capacity at 1.5% S Coal (future)*** per pair of units	
Operation time	24 hrs per day	
Absorption System		
Lime Spray Dryers	3+0 x 100% capacity	
Pulse Jot Fabric Filter	2+0 x 100% capacity	
Absorber a/sa sump/pump/agitator	1 set of 1 + 1 pumps, 1 + 0 agitator - per pair of units	
Operation time	24 hrs per day	
tacycla Ash System		
Silo Storage Capacity	8 hrs - 1 silos per unit	
Mixers .	1+1 x 100% per unit	
Siuny Storage Tank Capacity	4 hrs - 1 per unit	
Slury Feed Pumps	1+1 x 100% per unit	
Operation time	24 hrs per day	
lyash Handling System		
Storage Capacity	4 days @ 1.5% 5 cost (Mure)***	
Operation time	8-10 hrs per dey	
•		
** w & EM. C. and many be used in the fature and he can	n an	
* = 1.5% S coal may be used in the future and liherol urrently using 0.3% S coal.	one is used as the design coal. The plant is	
litty Systems		
Process Water Tank	N/R	
Process Water Intake Pumps	1+1 x 100 % Capacity if reg'd	
GD Plant Air Compressor	1+1 x 100 % Capacity	-41

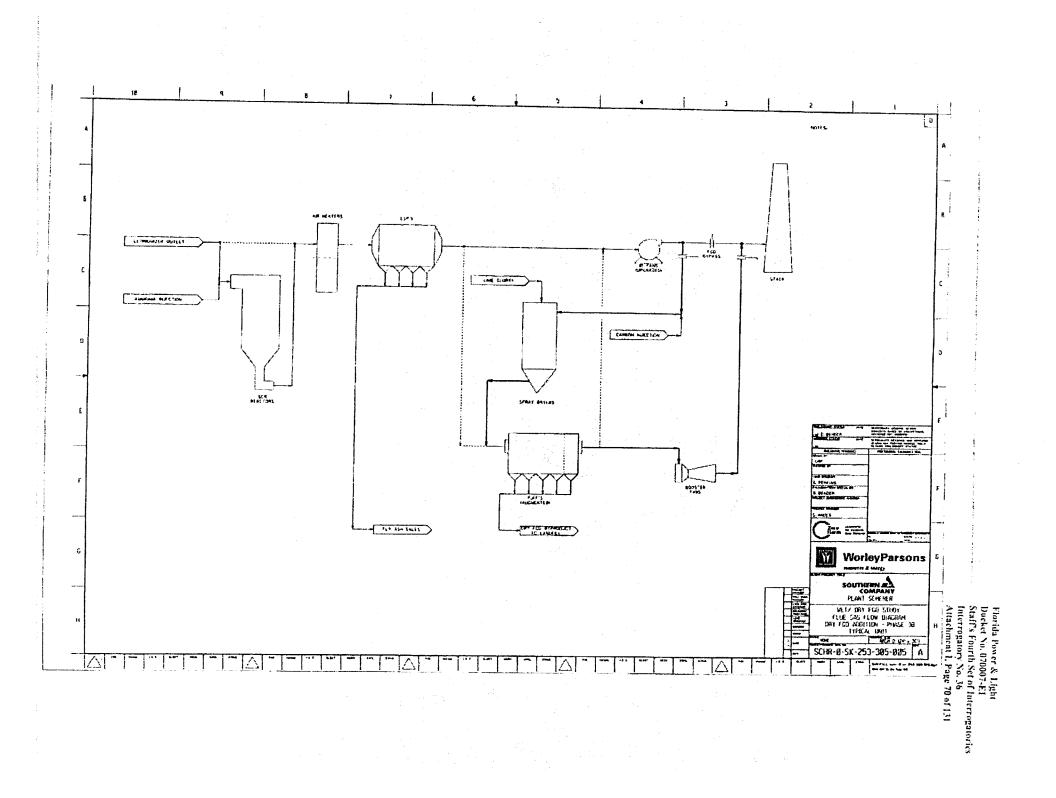
Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 65 of 131


Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B


APPENDIX C


FLUE GAS FLOW DIAGRAMS

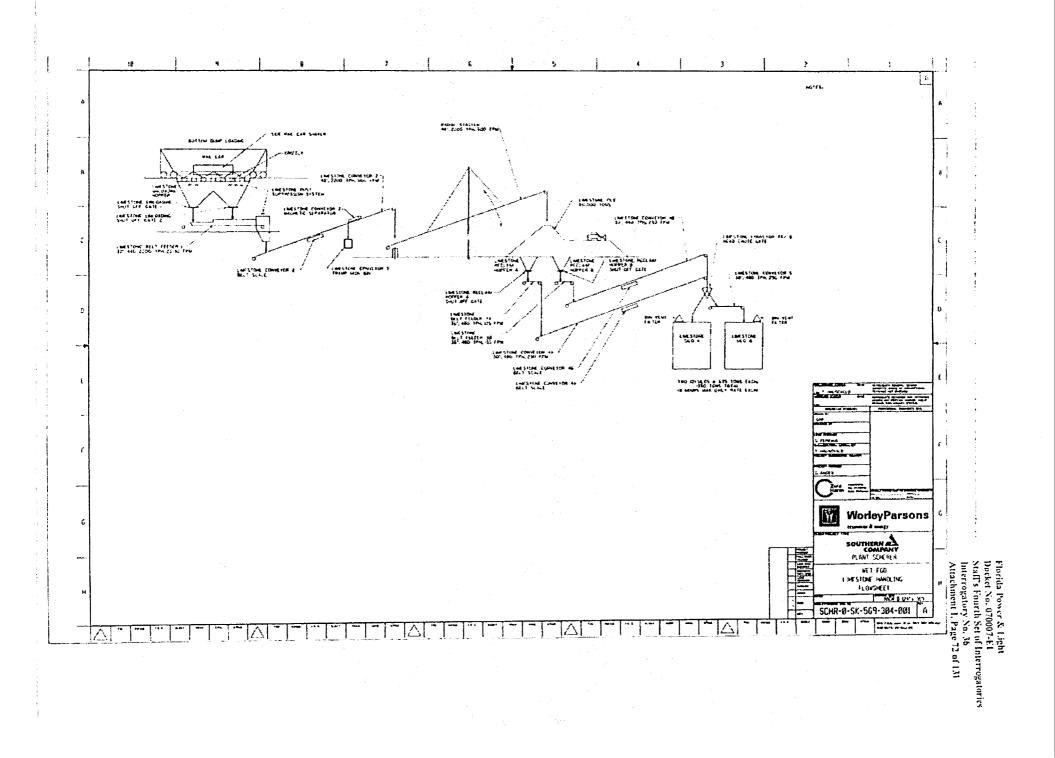

SCHR-1-SK-253-305-001 SCHR-1-SK-253-305-002 SCHR-1-SK-253-305-003 SCHR-1-SK-253-305-004 SCHR-1-SK-253-305-005



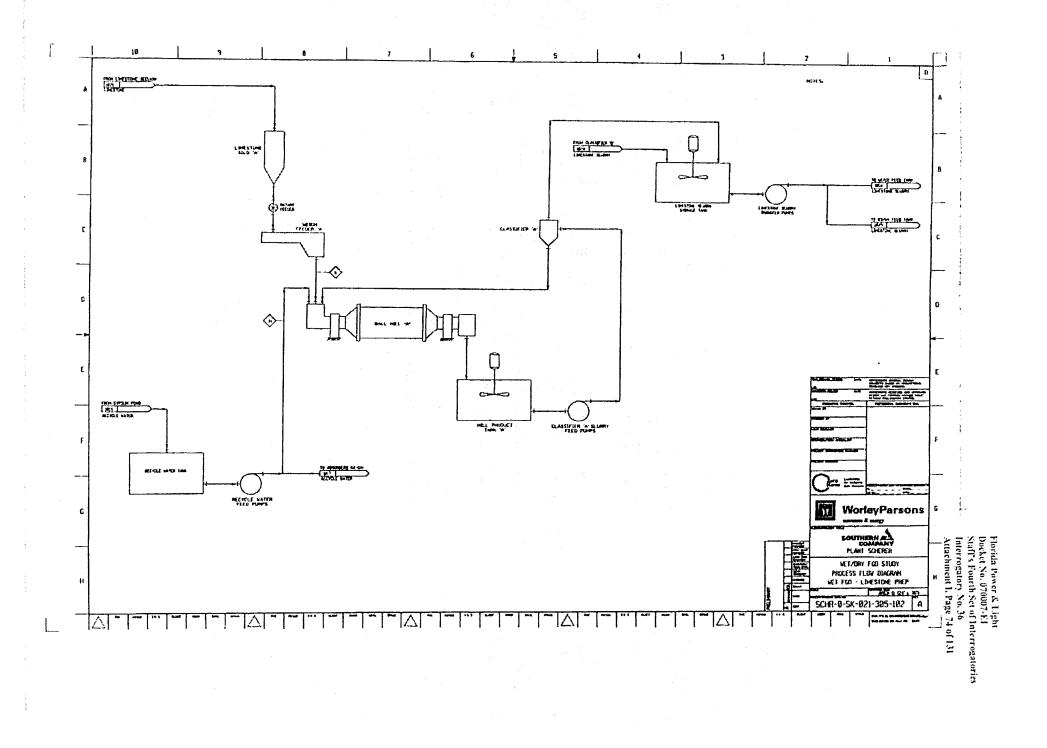
Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 71 of 131

Southern Company Services Plant Scherer FGD Project

FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B


APPENDIX D

CONCEPTUAL PROCESS DESIGN – WET FGD


- Limestone Handling Flow Diagram SCHR-0-SK-569-304-001
- FGD Process Flow Diagram (2 shts) SCHR-0-SK-021-305-101 SCHR-0-SK-021-305-102
- Combustion Calculations
- Material Balance

WorleyParsons

Worle	yParso	ns	CLENT NN		Guorga Power & S						Revenues		T	T	T	T	T	1	<u> </u>	
			PROJECTA	-	Scherer FGD Stud	r WET	-				Cripmer			1	1					ADB HEAMBER.
OAL COMBUSTIC			548.C.C.I		Design Basis (MCF	l - Appala	chinn Coa	1			Revenue							+		
	- CALGOLAI										Den		t				L			CALEUX ALIGH NUMBER
1.05	Los Mr	• er 1.00	isa itar	-	Peak		1						L	1		1	1			
Complete	tan	-	Atoma	a la	Maca	Silve OR Se Comb				Alin Pressla	S.M.					Witz General		wie Racarama		
Conver		1.386	10 384	12 51		1 1200		502	<u>649</u>	101	<u>NI</u>	62	84	ITCL	E.)erene	General and		Lingu intercin
and Product of Contract of Con	Į	145	4 243	244	7 7-566	1 1244		1	2 743								DI MIMOL	NOS BOARDE	~	
1. B. J.		1.805	1 300	30 000	6 D-6572	\$ 944 <i>1</i>	1			£ 641							S.Av	16CH 44 1617		
Meague		1380	1.340	24 613						2011	5 860					Divisi		WÜK Ramonal		
Montas		1117	C 127	16.515				1	+.131							STAUR!	10 ¹ /-	Acia ranarat		
Chargen Chiu/ne		480	\$ 490	31 SM	• • • •	4 1/ 15		1										MANY NOL ME		
Visione		200	0.000	3e 45.1				1						0 694			Entern HOT		Mar View	Amonte Irel) request
Aut.		2+3	6413	18 10 10	0.0004-3			1						0.000	C Dawn	MORVOX	BarriolPir MQ N	*****	- KAVA	2: Newslow FireS responsed
10/4		200	80.48													1.				
knast av h			99 363 L (0) gang		They Mate D3C a												sume strange		CONVAN	Total 1.0mol Hitl) w/o bip
1011		100 117	. (#) gas	114	Findence Mole C2/CA							3 450					i# 3% 02. 44		Service:	Takat Buty Hard who she
Car Heating Value					Total Main G2/28 Main 1/3/28											P 6430	tott stowatie		alleval	Holm Rive to BOR
•					Also Article			1			38 49315									NEW MICH IS BCH
N. Eliferaria	0	185.			Tutel Man D ACo			1					6 463							
PELIANDALA				** · · · ·	ALM HOUTE Is an				2116											
Ber Press 140	7	43			Total Mide W 4/Cm			1	2.16											
Lano P		30			TOWN & A BUC ID			1												
Fiel Humanity th		20			Toest WA BACE			1								1				
Water Vision Presses print	4	m) 1			HUI CPIC I		VPat .	3 85483	6 / 1226	60-578	36.54775	3 +49?7	C ACIUS							
E MARTE MY M	30	8 6			Vo % CP/C #		Val	8 11157	0.06001	8.50088	t 725st	0.06454	6.004/3	0 141584 6 00011	6 600445					
erelical An (Ph ascene)	mul inscho		Tetak		WAR CPX &	130 (81%	1mg	4 12145	• • • •	5 00007	\$ 79618	0.00-024	00007	0 10012	0.000015					
* MON DICH # 8005	0.50		4313.41 10				Me Th	44 50,000	14 et \$34	84.08280	28 0134)	31 84480	30 94800	34 44097	8 500014 20 10:4370					
a Male NERCE 29 603			81,526 17 82		TOWER DATE	1,166 344	* Wet	158 45347	B4 ASMET	2 30004	4876 71386	115 38MEX	1651483	6 301.44	0.013000					
IN BANK ANCE 0 3000			3,590,50 EA		NUM % CAR &	100 00%	1.0	E 10464	0.05452	0.00183	0.69376	0.07003	001100	5 80013	0 100000					
No FACIES + FERSINGIES - T. ASIG P			5.973 ED 40		LA CP/C &		04	288.46.547		293691	1078-F1304	110 30053	18 51 493	@ 20040	0.613600					
the second s	ALS. 100		INE X D		Total Liste	11 (33.508	Wit	1,440,762.6	191,582 2	21.346.5	7.454 484.3	767 585 2	131,259,2	1,454 2						
use his including Easons			64 308 OL &				£ 13	Wet	14	565		Da		D (Die						
		19	303,158 14	N si clack			ente Vit	24.613	21 92 2		29 299	30.567		1.367	Litmof)					
		-					Gas Crest	84,188		Gas Const	\$2.737	10.627		0.282	kha(kd')					
Botlar Heat Ineur			LOW AATE	CALCULAT				GAS FLOW &	ATE CALCULA	Ticht										
	frg Fut	·			* 1		1.1	1974 S. J				·								
Shall 12	734		Insa E	2120Ga	Line Line	tata -	6526	Tome.	- 100.64	a later	100 A	ACEM								
5.47448E-46	708	·	100.0	12.40	10,303,156	0078.0	1.467,726	758.4	-4.86	31 022,500	9.0340	£760,123			·					
B.C7440E+56	706		***	12.85	16,363,156 19,383,156	6.9733	2,450,994	364.0	12-04	11.033,000	60469	3,445,250								
1.57440E+05	758		76 4	12.00	19,363,196 18,363,166	6 9747	1.315.630	345.0	12.60	11,032,008	0.003	3.6-0.013								
\$ \$7 440 - 105	708.				10,363 156	0.7636	2.072.641	338.6		11,033,578	8 6764	3 526 945								
BOLER EPPENENCY C			Up 41	H CHIPONT		Page 4	7,07 2,041	COY	104	11,033,578 Sax	912 B C160	2,416,712	- 48	SCIM					4	
Ers Das Term If, mine		1		Total Aut		Device Heal - B		1.5005	8.19147	10.1508	744 T 80542	1.3168	4.2764	HCL. 6 9829	6.9679	Total	K Luts 1			·····
URCANNA				WT BLAS A			Dry Ges	14384		121	600.34	6345	505	13	1.14.17	134	7 62%	Lets Coropand 1	and district	
URC MOR	0.4	15	*	atai Physiait	51,733 BAY			and stylingen L	Mart Fline							54,397	424%			
CO MINU				Antine Auto	S.att the			Montore Lane								4 497		02 to \$733 Baik	- 11 F	
Require & Other %		21		1 at 10 2 6 €	6 M3 Ritmer Bhu		.04								1	1,313		102 to \$33 \$23		1.00
A HEAMAGE (%, Buse at		15		ANN W CEP	41733 6.Rr	1	10									6	6.00%			
A rituakage (% Ari her		12				1	Andrinas & CA		,	· · · 2					1	3,200	• 30%	p605 (ann)		1.78142-06
No-makage jas terre (*)			6 664 1 16 AM 8	rist trouvels}		1	nuni in Enteri	a Air (madel)	<i>x</i>							DE		pHID (an)		8.00736-02
A is trial As Tunys (F)		0								INTAL LOSAES			•			156,384		supplied Tampas	44.ex (**)	247
										DIAL HEAT IN						1,240,000	- I			
	-								. 1	south effica	HCY %					87 83%	87.83%			

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 75 of 131

1

						- 14. 													
1597 V	VorleyPa		GLIENT NAME:	George Power & S	outhern Co	mpany				Nevislanc				1		1			JOB NUMBER:
V V	wornsyn-a	i suns.	PROJECT NAME:	Scherer FGD Stud	, when					Originator:					1		1		1
			SUBJECT:	Design Basis (MCI	R) - PRB Co	ni .				Reviewer:				1	t				CALCULATION NUMBER
COAL COM	BUSTION CAL	CULATION								Date:				<u>├</u> ───					
Fuet		Coel Mare or Q	al Nertifier PR3 Des	on Basis - Herty From Provinces	Amelysis	1								<u> </u>	I	1		ļ.,	I
					Ande CO3		1	Moles Combus	tion Particia/C	b .			·····		NOx Genera	tion and Amm	nia Requireme	nts.fur.SC.H.	Unsectaded
Constituent	L	Persent	Ant yokat Mary					199	şaz	NA	<u>0</u> 2	<u>68</u>	HCL.	NF.		() DAMANDL	Generated Hor		
Carbon		\$1,210		.011 4.25693	4.25693		4257						• • • • • • •			e]annian	NCs emmissio	~	
rtydrogen Sullur		3,436		018 1.70115	0.00936			1.701	0.008							i whr	NOs as NO2 NOs Renoval		
Nitrogen		6.445		013 0.02445	0.00000	÷	1.	. · · .		0.024					SCIVAL	BNC .	HCk Manaved		3
Maisture		27.230		015 1.51540			1	1.511								3	Moine NCh an I		
Oxygen		11,830	11,930 31	109 0.37283	-0.37263										BONAL	Brown HOZ		RWADIN	Brooker NIHS required
Chlerine		0.010	12 0010	455 D. (2004	17. 3. 10			s	÷1				0.000		#City/Oi	Ibmolfix NO n			t Remotifier hilds received
Fillothe		0.005	0.005 18	996 0.00028										0.006279					
Ash		\$.700	\$200 - 2	and the second												_ <u> </u>		#DIVIOL	Total Libinol N#13 w/s slip
TOTAL		100.008	99.921	Timo Mole 02/C				34.							6.9	open storesb		SCIV/OL	Total Bate Still were sto
Excess av	*		22% (dry gas) 7.091	Excess Mole O2/C		ني. جير ۽ رام	1. at			•	2.372					(vi 3% 07. ar			1
HHV		NGQ		Total Mola Darc	4 - 711606										0000	his alloweth	NHC3 slip	#DIV/6	INTY MIT TO SCIE
Calc, Health	ng Value	6663	1. 1. A.	Since Book		R (J. 197)	1 A. C. S. L.			26.46741		0.319							
% Otherenc		0.73%	N. 4. 199	Moli AviC								0.319							
		0.73%		Moh H20/Carlis			1 ·	1.451											
INELLAIS.		23.43		Total Mote W A/C				1.481											
Term F		86.89		Teta D A E/C															
Ret Humidi		45.60			6.1008.01640		1. S.S.C.	1. N											
	or Press cela	0.6961		AND CONC		West?	436603	4.06357	8.00936	28.49105	2.37201	0.31868	0.00028	0.800270					
its materials		0.0205	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	IN WILLOW		-s - 1948	70.1178	9.12230	0.00025	0.59000	0.06224	0.00636	0.00001	6.800006.0					
hoprotical AN (P% arcassic	mol tracilon.	7 Totales	Vietore	6 100 CON	09	6.12726		0.00021	0.7870	0.07091	0.00953	0.00001	0.900008					
THE MOR DZ/CE	6,74404	0.20129	60,067.35 Breaklard	P Dyliged	م الديمور (در ۲۰	W HIN Y	41.00000	18.01534	64.06280	24.01345	31.99600	30.84000	38.46097	26,006376					
hao Mole NZ/CB	17.84494	0.74864	106 182.82 Spenthe	Turn Lb CPIC			- 107.34740		0.5bear	741.12707	75.80180	12.73084	8.01028	0.006541					
Theo Mais AstCill		0.00901	2,241.73 Templer	Want & CPIC		S. Wet	0,10000	0.07619	j anna a	0.47200	6.00063	0.01184	6.00001	6.000005 9.006581					
Theo Mole H20/C		0.04164	10,206.47 Ibmakhy	040 U		• Dry	187,34740	SHE 503.7	0.59330	742.12707	78.90180	124,228.8	0,01028 108.5						
Cib = 100 lb cos		1.00006	248.568.37 bmolify a	the second s	11,630,881	Wet	1,978,629.1 Wel	Bry	045	7,6,0,046.7	047,001.8 Div		ريونية (الأنبوة طالعة الأر) مردً		1				
etual Air Insta	ding Excess:		373,032.66 ibmethy at 10.636.215* jbdy at 0			HAA .	28.513		Mol Wi	24.005				Biu(brolf)					
			10,636,218 - 1687 M 4		1412	3. 2. S.			Gui Gartet ***	53.00	00.730			BLACEF)					
			UR FLOW RATE CALC		·	1.		ATE CALCULA			1. P			2 - E T					
Dollin Haat	mand to the Course	Fra Reis	and the second second	ALC: NOT A	14.6	et?≻ stCl			ALC: A STALL	1. A. C. C.	X 3 2 5								
All of the		Lbdin	Inter E	Ga	Contraction of the second				ie – s in	5 101	ACEM			1					
B.074402		1.055.163		10,838,21	8.0726	2.461.62	21	4.00	17,006,681	-0.0329	\$,860,630					· · · · · · · · · · · · · · · · · · ·			-
3.57440E		1,056,167	108.0 1		1) . Lewin.			12.00	11.005.001	(.	3,835,474				- -				-
8.87440E	149	1,055,163		10,031,2				12.06	11.835.88	0,0499	3,847,106								-
9.874408		1,855,163	76.0 \$	1.00		23030	236.0	12.00	7 11,035,001		1,785,496		(BCFM)	1		•			t i san an ta
9.87440E		1,055,163		10,836,21				0.000		ULGINEL.	41.2	All		AHRICS	É.	And the second	1. S.	i Spr.	「「「「「「「「「」」
	FFICIENCY CALC [ONITONE				MINI	0.101413	7001	7204	4.2782	6.9628	8,9628	Total	WLOW	Add Designation	Tamparatit	1
	ono (F. wieskage)	213	Total		LOSSES		10350	A CONTRACTOR	24	47185	4364	• 347	6		#2.28				
UBC n As		1.5	Fiyes 1/Tetal		BARC B)	2 million	and Hydrogen I			a start i s	1.1	· • • • • •			a7,6a		í .		<u></u>
UBCINCA	•	9.079	Totat Fig		- Charles and Sold		ale Montere Late		•			•			3.07		502 in 503 B		1.00
CO porter		0	Dollars Auto to		1.1.1.1	LOI	******		* · · ·					.•	L14		602 w 503 50	CR (%)	1.50
' Itadiation 8		8.25			1 2 2	di ta		. • .	· · · ·		1.12					0,000 N			1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -
	çe (% iheo alt)	15	, Aab la	101 PULIE 1010			Street Chil states.	0		1					2,18				4.50076-01
A H Links	(Seal He 20) au	\$.14	 						·			;			Í .				1.22365-01
A H Linki No-looking	e gas temit (F)	344	Usins 1841 is AFL Irint Ro	white)		Iten In Brite	âng Ak (çiedi)		TOTAL LOSSE	3 86.40 B	· · · ·				136,61	16.776	gH2O (MN) Desegned Terry	puradum (P)	215.44
A H Linki No luking			Vicins 1441 is AH irsint Ro	vr344}			âng Ak (çiedi)		TOTAL LOSSE TOTAL HEAT	WUT SLUC I	· · ·					2 16.77%		puratum (F)	

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 76 of 131

	CUENT NAME	Comple Power and Realities Computing Bosocation	Bedder	•	•	1	>	1	4	JOS HUMBER: P
	PROJECT INVIRE	Plant Semante Uniter L, B, S & A FUD Byotum.	Crystater	R. Gradie						
CALCINATION	BUBUBCIT:	Grand Maurie Salence - Appelation Cod	Animar.							CALCULATION NUMBER
entit		August Brass- Matural Rainway	Calar:							• •
								· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	·

\$01,000			st.		1		1		3		4				
5 153 187 184 199	1231-152	Sec. 2. 11	SEP 28 (H)		21072 K-117	1.541.521.51		47.15.17.20	10.00	1 Sec. 12. 14	· · · · · · · · · ·	10.000	C.C. 9455.4	CONSTRUCTION OF	Ster 25
Sy fills and it should	Circle is	F'Sant of		<u> 1921 (</u>	1. 1.5				1.0	N 7					- Aline
	17-15:419	C. March	1.2		. <u>.</u>	£ (Service and	Sec. Co	Colis.	1.1	124.55
N		112,340	1,343	138,348	2,143	196,000	3,386	810	19						
C09		1,018,350	42,004	UNA 35F	10,544	1.06.06	81,10 11	•	•						
MC2.		L/210	*	1,340	- 14	•	ø	•							
w		52	5	87		•	•	•	•						
NIO		800,307	11,024	014,505	36.80F	1,220,177	\$2,728	1.88	78						
#1		7.012.004	#78,854	7,716,061	271.9 1	7,764,869	278,916	31,999	1,200						
ant)		•	4	,	1	•	,	•	•						
HON.		,		104	74	-		•	•						
01		101,340	×.639	254,000	20,002	#00,#P4	35.82	11,000	346						
908		20.8P	809 -	X.8 4		#10	13	•	٠						
LD4			,	ŝ	,	330	5			_			÷.		
Taga Bar Sam, Bad -	200	314 # H # 3	10 A 10 1	EGGAN	14000	SUMARY	101.47		CONTRACT OF	10.4		S - 22 - 5	治时代		17.24
A true line Plan, Dry	65.84%	A SHALL &	Contraction of					10.201		1.5	6 X E	2.2	正確認め作	14.14	d News
614	746,678	٠				•		•							
Ada	•	88,546		- 664		10		4							
Tutal Solies Flow	786,936	\$4,453		4		113		•							
C. C	12.00	15.76			1. 9.02	1205.45				£				18728	
															L
Bas Flow, ACI'M		2457,874		3,74,101		3,036,316		1,362						L	
Mei, ML			29.2844		20 2002		38 3587		38.8137					L	
Yamp, Bug P		300		256		102		. 177							L
Crement, prio		13.4235		Fit. 8051		14.4729		30.36-0						ļ	
													L	L	l
										· · ·					
									÷						
												and the second			
												1999 - C. M. S. M. S 1997 - M. S. M. S 1997 - M. S. M.			

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatorics Interrogatory No. 36 Attachment I, Page 77 of 131

:.

GLENT NAME.	Basey's Parent and Sauffairs Company Controller	Periater	•	•	2	•	JOB HEAMINGA &
	Plant Enhanner Gemen 1, 2, 5 & 4 FGED Bystern	Originalise;	A Crashe		 	,I	
SEACT:	Ower at Manutal Raismon - App stantion Coul	Reviewe:					CALLULATION HUMAN
	Report Shout - Maxandi Halanza	Date			· · · · · · · · · · · · · · · · · · ·		•

Stream	5	6	1	•	3	10
Minest Cash			REPORT	PART DISTRICT		41 44 Fam. + 18 44
	bhr	tight -	and a		-	the statements
C+C03	3,41	34.422	1,481	1.84	-	•
CuSCO;1/2120	• .	• 1	-	1,636	•	•
CASD4.2H20	•	3	AL612 -	34.04	1 4	1
100	100	This is a second s	105,255	04,354	363,473	43,414
MgCO3	an 🛛	363	m -	5 5 4		
deal Inoria	2443	240	1.M2	36,230	3	
^{ri} yean			1,724	K.BNC	•	÷ .
108	•	244	1.40	1 1 1 1 1 1 1 1 1 1	17,536	1.40
				医石中亚虫植物	CALCULATION PARTY	CAN TO THE REAL OF
					5 S	
Mass Flow Solds, Whe	3,74	36.361	7080	306,365	.	1
Mass Flow Liquids, inter	3,000	130.511	174,637	181,310	M9.300	4270
Flow, gpm	•	247	£10	-	1542 -	- 1 🗰 👘 🖓
Specific Gravity	•	ເຫ	128		_ C _ 8.46	· · · · •
CL, pprov	•	X14	30,000	• · ·	11.572	21.91
155,%		20	20 M 1	71.00	6105	2003
TDS, %		192	3.00	100	سد	\$08

Streen		11	N	14	
	blv	Nature 1	*	ljular -	
C+C03	•	•	•	•	
Ca\$03:1/2hz0	. •	•			
C4504:2H20	•	•	-	13	
MgCOT	•	•	-	•	
120	800.001	ent.r	2.078		I
Alle in the second	•	•	•	1	l
Fiyash	•	•	•		
IDS	•	•		16700	
harden e. Start	12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	States and the second sec	State and the second		
					19. J.
Mass Flow Solds, July	•	•	-	45	
Mass Flow Liquids, Tale	CAR.140	1276	2,275	500,523	
Flow, gen	1233	3		16215	
Specific One-My		6.00	9.59	0.00	
CI-, serve	•	•	2,97	31.07	. .
735. ¥	8.00	4.84	8008	s 10h	
TOS, %	680	6.07	208	120	

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 78 of 131

	(1.4.41) minute	Georgin Perror and Sundaum Computy Recommend	Realin	A	•	1	1	3	•	JOB HEANDER; 0
	PHOJECT HAVE	Plant Schorer Sings 5, 2 5 & 5 FBD Bysion:	Organite:	L. Bright				_		
CALEMADON		Swerit Rainvil Balance, 1988 Coal	Perture.							CALCULATION HEMISE
SHLET	HOMOREST:	Report Sheet - Mysionia Balance	Ome.				1			•

Mare and			wi.		1	1	1		2	1	4	1		1	
a ingenied	No for Last	ner Sett A	12 29	17 63		1111		C. 1845.	127	1 . 2 . 14	Hey Parts	201.14	1011	12-22-2	55.0
	1	2.942.040	10.25									t istalie	i en el contra de la br>La contra de la contr		1.1.1
	-90, March 7, 69											F	1. 33,078	CHILLSON	175 228
		134,949	2714	E34,345	3,010	136.139	\$,365	136,133	1.365						+
+03		1,818,744	41.861	131674	44,967	1,360,977	4380	3,003,077	45,880	<u> </u>	•		1	 	
HCL		111	,	111		•		•		•	•			<u> </u>	
*		8 1		¢1	<u> </u>	· ·	<u> </u>		•		•			I	
HORD		86,50	49,649	801,343	RA	1,256,254	84,837	LIRLIN4	84,839	*	<u>n</u>			 	<u> </u>
82		2,847,762	744,846	1,867,786	345.865	TARLAN	381,346	7,876,638	\$61,548	80,838		I		<u> </u>	Į
)m()		•	1		'		· · ·		'	· · · · · · · · · · · · · · · · · · ·	· ·			L	ł
HÔn		394		304	16	304		304	50	•	•	ļ		<u> </u>	<u> </u>
02		816,195	7K.38Q	810,100	75,200	112,544	36,377	812,644	36,377	1,948				<u> </u>	
\$C3		6.199	y r	6.198	=	1,94	1	194	1	•	· · · · ·	ļ		<u> </u>	_
903		 	2	197		- 198	1	118		•					
The Istal Ban Comment Shill			1. 161,211 -	***** * **	in an rifade	J ST BARS	5 430.078 ·	-max Arti-	Terrand 2	ickis in T	1.	A	69 A.A		The second
Total Gas (Ment Day		. m.m.m.s.	and manage in-	100204	Physical D	an maturate	为国际 通		1778 A. 193	Sec. Sec.	198642-3	3.54	10 26 21	16. 新聞の家	tor all
										L				I	
C94	1.064.163	•				•		•		· ·	L			 	
44	•	ML134		494		113		153		•	1	ļ			
Tuid Balles flow	1,004,403	50,134		444		113		113		•	ļ			Į	+
						· .	L				1				1000200
TT DESCRIPTIONS		ကျပါ တားခ	化基本合约		. P					10267		No. No.	40 (N G).	10222.222	
							· .	1		ļ	L	<u> </u>		ļ	+
Gas Flow, ACTH		4,464,608		3,658,698		3,251,014		128.09		2214	Ļ	ļ,	<u> </u>	<u> </u>	
Mar WL			30.572		24.6545		21, 8458		36.9116		M.M2f	L		↓	
Temp, dep ?		336		263		i uli		108		200				┣───	┿───
		13 6720		34,0004		14.4720		34.484	1	38,305	1	1	1	1 .	1

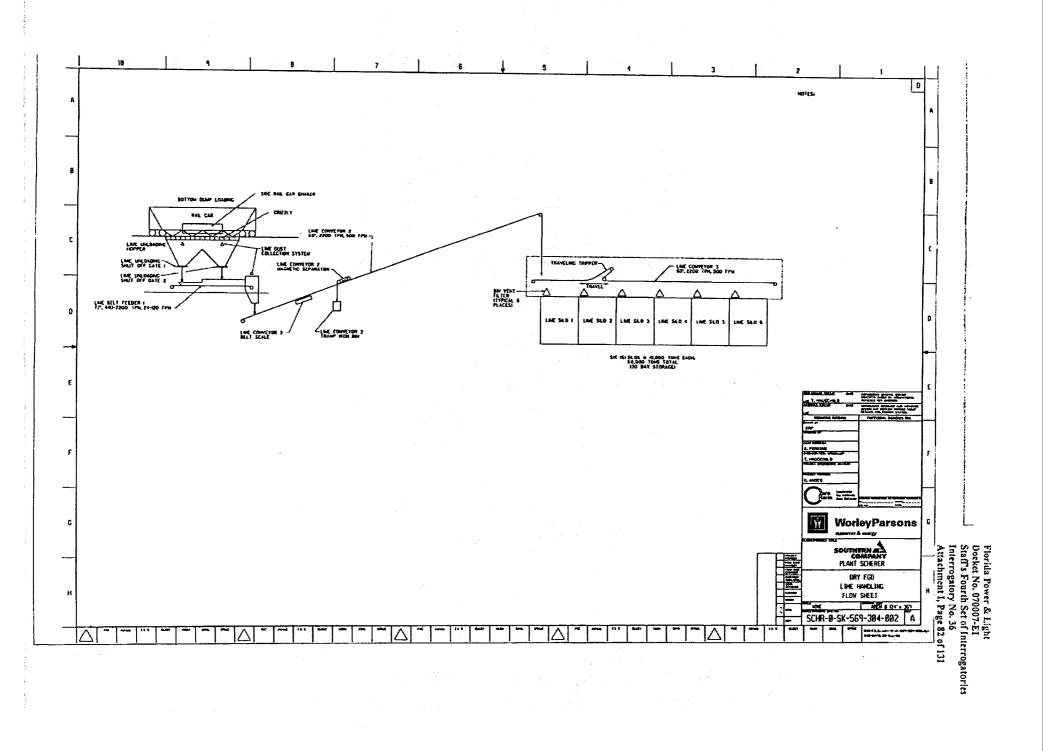
Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 79 of 131

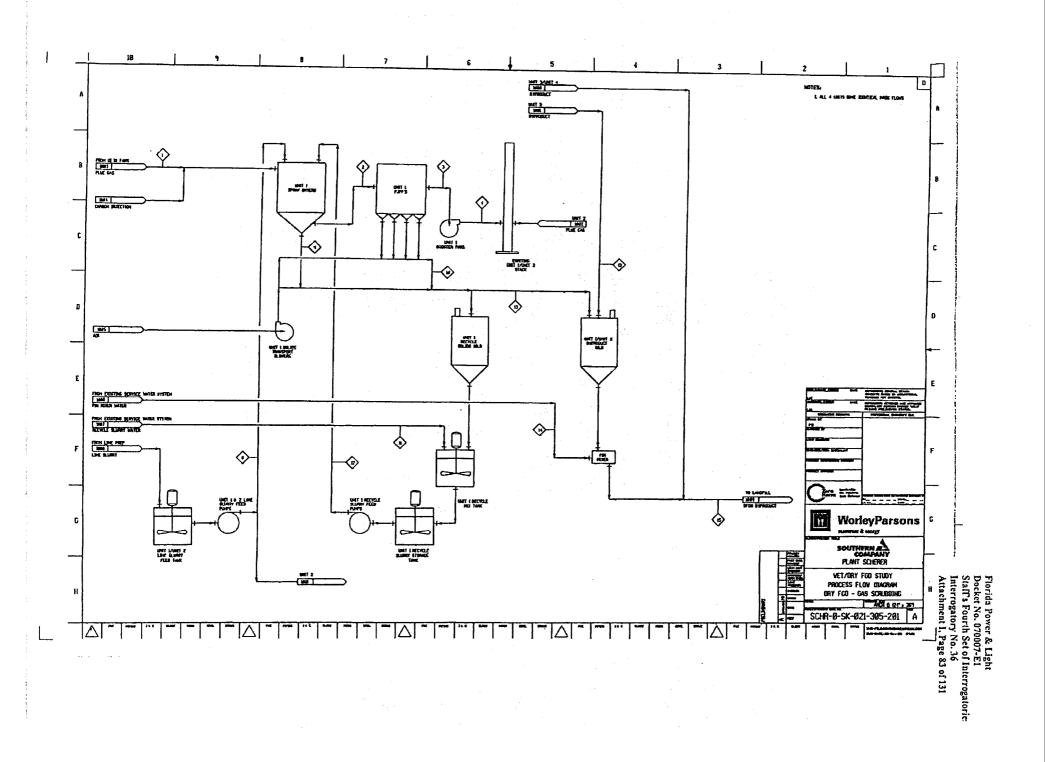
	CLENT HUNE	Courses Prover and Bautherin Company Construints	Reduce	•	•	1	,	4	JOB HUNDER 8
	PROJECT HAVE:	Plant Balance Bolls 1, 2, 3 & 4 FBB Byttern	Crigonae	B.Onde					
CALCULA YOM BHEET	URRCF	Dravib Malarid Ralanza- PRB Cod	Noterer.						CALCULATION MANDER:
	wonset.	August States - Scalador Balances	Deter				 +		•

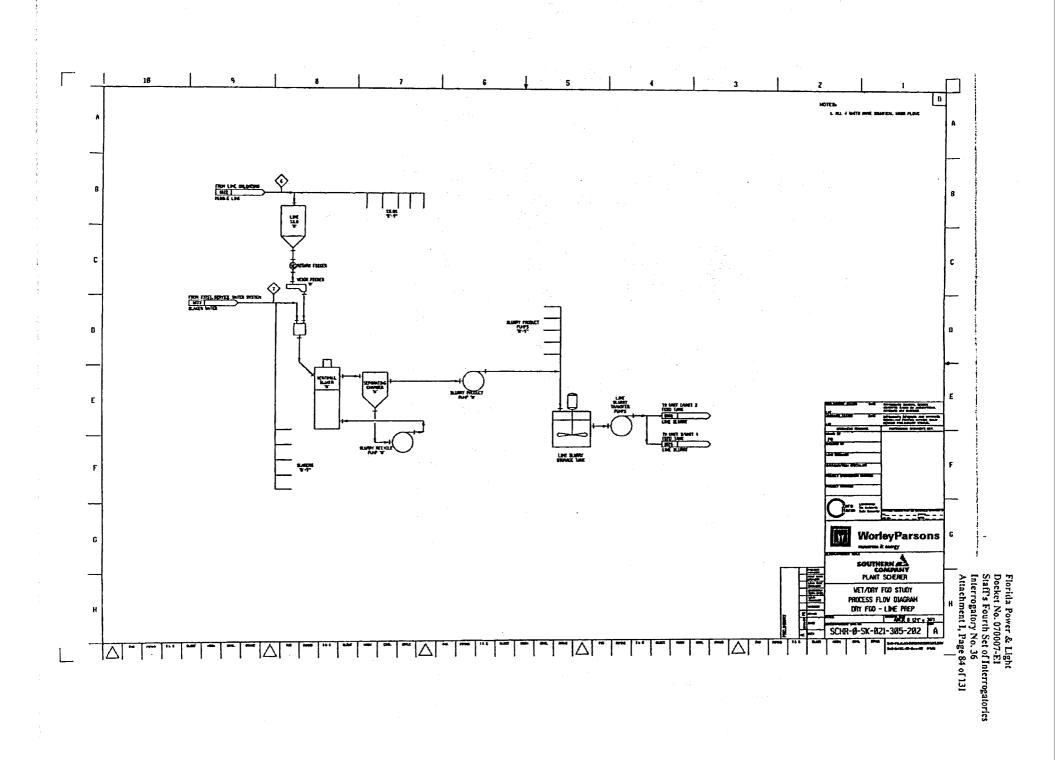
Siresin	\$	5		•	•	18
13. TO 251						
	lijiv	£/W	6hr	1. Av	bh.	<u>tviv</u>
C#CD3	18,812	PENE	43			· · · · · · · · · · · · · · · · · · ·
CaSO3:1/2H20	· •	*	100			
C4504.7H20	•	s11	\$8,605			
420	MQ (M	41,304	10.01			
Mecos	1 1	126	•			
alian ingris	1,864	1,842	2,980			
tree!		612	1.781			-
108	•	745	40x			
				用的时间 上的空间	的目的是一种名称自	
Mass Flow Scilles, July	52,081	1344	2144			
Mess Plow Liquids, July	•	41.894	94364			
Filter, igen		65	218			
Specific Gravity		1.16	1 12			
Ch. ppma		2,858	4,05#			
763, %		74.54	29.00			
TDS, 16		0.84	0.68		,	

Streent	ท	u	13	Ŵ
	and a	alar i		
20005	. 0	•		
3\$03 1/2H2O	•	•		
Ca504 2H20	• `	•		
MyC03	•	•		
420	\$40,080	-		
Alleli inerte	•	•		
* Tyrandi	•	•		
105	,	· · ·		
但的時代就是家門				
Mass Fiow Bolkis, John	•	•		
Made Plow Liquidia, Mily	5-13,998	#		
Flow, gom	1292	1		
Specific Gravity	94.6	6.90		
Ci., plane	0	0		
T55, %	6.09	¢.00		
TDE, %	8.00	00.6		

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 80 of 131 Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatorics Interrogatory No. 36 Attachment I, Page 81 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B


APPENDIX E


CONCEPTUAL PROCESS DESIGN – DRY FGD


- Lime Handling Flow Diagram SCHR-0-SK-569-304-002
- FGD Process Flow Diagram (2 shts) SCHR-0-SK-021-305-201 SCHR-0-SK-021-305-202
- Combustion Calculations
- Material Balance

WorleyParsons resources & energy

		CLENT NAM	Æ	George Power & Sou	athern Co	mpany				Revisio:	-			-				1	JCB MUNIBER:
🕅 WorleyPaı	rsons	PROJECT N	AME:	Scherer FGD Study						Originator:			<u> </u>			 	1	1	1
	<u></u>	SUB.ECT:		Design Basis (MCR)	- Angelac	blan Coal				Reviewe.							-	1	CALCULATION NUMBER:
OAL COMBUSTION CALC	ULATION			Design case (mont	- rupane					Date:			<u> </u>			<u> </u>		1	-
Funt	 Cont billion or C	sei Iserblier f	Anonhritum (`onf		1			ا بوسید سب		لمتيخب	, ,		L		J		1	
					Mole ()2		1	Moties Combu	tion Participal	.	· · · · · · · · · · · · · · · · · · ·	· · · ·	· · · · · ·				onia Regultered		Deprotected
Centern	Persent	Ad very	MC YA	ADDALE.	ity Comb		502	120	202	82	92	<u>8</u>	HCT	<u>HE</u>			Germand No.		
Carbon	71,308	70.864	12.011	5.89983	5.89988	-	\$.500									i bhr	NDs as NO2		
Hydrogen	4.548	4.540	2.016		1.12444			2.249							(CONO)		NOX Removed		
Sultur	1.500	1.500	32.084		0.04678				0,047	0.050					409/08	bAv 5	NOx removed		
Neogen	1.380 6.387	1,380 6,327	28.013 18.015					6,351		0.430						a 👘	Motor NCa at		
	\$.440	5.490	31,999		-8.17157	,								. 1		aniothe NO2		ACHIVICE.	beniuper CHM V-loand
Oxygen Ohiolog	8,506	0.205	36.453							A.C.A.	1.000		0.008		(Crypt)	haniti x0	nimeved.	SON/	2 Ibmelity HH3 required
Fluorine	4.913	0.013	18 205				ļ							9.000695					
A-13	9.240	9.240					1 .			1 - A - E - E	in Die -		•					#01V70s	Total Llung! MFCI was she
TOTAL	109.500	99.555		Theo Mole O2/C la	8.69854		1		, :	, Q.				100	6.64	ligene energij	Ne MHC STip	SCIVICI	Tolet Bahr NH3 wie silp
Encars or %	45.00	03% (dry pm)	8.639	Excess Mails 02/City	3.10478		•				3,105	S		19 ¹¹ - 19 4	1 Mar 1	141 394 02. 6	10		
HHV	12800			Tetal Nels OZ/Cib	18.00434		ľ								Q.090	dewells which	is N2G slip	#DIVHI	Iohr HHJ is SCR
Galc, Heating Value	12821			Made H2KCB	37,21003		-			\$7.21003		0.444							
				Lipis ArtCile	8.44603]					0.448		1					
% Difference	0.18%			Total Mais D A/Cit Mais H2Q/Cit-In sh	47,86238			2.040											
MELARDAIA	29.43			Total Moto W A/Clb	49.702231		ł												
Bar Press "Hg	10.00			Total D A INC &	1,340,40297	-	1												
Tanya F Ruti Humidity %	85.90			Total W A INCO	1,417.15136		ł				1.1								
Weiter Vagor Press pris	0.0581			Met CP/C b	51.406	Wet	5.39960	4.83992	0.04876	37,25965	3.10479	0,44803	0.00564	6.000685					
to maist/la dry sir	8.0268			Ver % CP/C b	100.00%	YNN	0.11477	0.00026	6.00091	0.72482	0.00040	0.00872	0.00011	0.000015					
	nal hection	Totals:		Version CNC B	100.00%	10-ry	0.12616		0.001000	0.79613	0.00639	8.00968	0.00012	0.000015					
no Mola D2/Cib 6.89954	0.20126	48,913.44 8	Intoitu			Mor W1	44.00995	14,81534	64.04280	28.01340	31,99860	36.94600	26.48997 6.20889	25.006370					
ee Mole N2/Cib 25.06208	8.74806	101,928.17 8		Total Lb CP/C IN	1,507,477	Wel	258.45367	83,64968	2.00004	1043.78844 6,68239	0.04500	0.01187	6,00014	0.000006					
an Mole Ar/Cib 0.30888	0.00801	2,190.50 8		Work % CP/C &	100.00%	Wat	0.17274	0.05545	2,99664	1042.76944	99,34988	17.80778	0.20589	6.013800					
ee Mole H20/CIb 1.40079	0.04104	8,973.23 R		LU CP/C & Total Lafv	10.667,070	Dry Wet	1.040.763.8	597,506.8	21,246.5		704.327.1	126,863.9		96.5					
b = 100 to cost) TOTALS:	1.00000	243,005.35 R		1003K CBHW	10,067,010	048	Wel	Dry	GAS	Wel	Dry		Cp (Bluft) est)						
tunt Air Including Excent:		357,357.75 E				Mel W1	28.513		Hagi WT	28.325	30.447			Bud(bood)					
		10,000,000				Gas Const	54,186		Gas Cornel	57,865	60,743		0.252	86.J(\$#^}					
		AIR FLOW RAT	E CALCULA	TION			GAS PLONT IN	TE CALCULA	TION	in a second	6. 3 . 4 .								
Boller Heat Input	frg Rele	1239 C	····; ···		•					- 1 S. F.C.		1.1							
En/it	LindHir	Jame E	7420Ga	<u>bhr</u>	1011		Impef	720 Gr.	<u>priat</u>	60004	45231 5331,656								
1 1410E+01	706.838	80.8	12.04	10,048,717	0.0720	2,328,985	780.8	4.44	10,687,070	8.0468	3,330,650							· · · · ·	-
\$.\$744DE+89	708,838	180.8	12.00		0.0791	2,308,294	344.8	8.00 -12.00	10,647,070	0.0465	3,670,482								_
1.87440E+08	708,938	64.6	12.06		0.0733	2,254,876	330.8	1.00	10,667,070	0.0520	3,425,303								-
8.874408+01	708,938	20.0	12.00		0.0747 0.0635	7,004,620		0.000	10,667,070	0.0761	2,340,712		(SGFM)	I				_	
9.874405+89	708,938		ADI OUPOL	10,046,717	Finduct	2004.020	CON	H20	\$02	NE	62	AR	HCL	141					
BOLER EFFICIENCY CALC (H		тноор	Total Ash		Specifi Heal -	Staffbred F)	0.5711	8.19210	10.1520	7.0044	7.2193	4.7767	6.9630	8.0639	Total	%L000		d Yemperatur	4
Ext Gen Tomp (F. wheelaye)	223 4.5	D -	nan mun IstyTolal Ash		LOBSES	Dry Ges	14437		121	94722	\$730	490	10	1 1 7	17,612 54,271				
UBC in Ash %	0,435		Total Flyadh		(Buc to)	Fuel Modelure	and Hydrogen L	elent Heel			. *				4,277		1802 in 803 B	cultur (%)	1.00
UBC M/Ch	CAU .		Boltom Ash				è Mulatura Latar										502 to 803 5		1.00
CO ppmv	0.25		Add to ESP			LOF							فليتورجون أأرا		1.10				1000 C
Radidon & Ofer %	1.23	Sec. 1	ANTESP								10 S 1	A ALLAND	19 (A S		22	1 0.25		Sec. Sugar	1,82018-05
- A H (and cape (% water all)	10.00							P 25	ст. Ст.	76 196	Ste Line		$\mathcal{X} \neq \mathcal{X}$	್ರೀ ್				na da com	8.02016-07
a side and the set of the set			12 21		2,22,22,0	استوجا والمتعار	ng Alr Heredit								Sec. 12 in	Dicks Sec. 2	1	1997 C	A State State State State
- A Hisserings (W Art Intel)		UNITE MALLER AL	it trapi fourtain					and the second second		2 Y 200	A West States	19. (d. ¹ 7. ¹ 7.	- 1997 - 9 a G		·	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Composed Term	Caratra (L)	
- A H Levelage (W Al I tal) - Ho lastage per sere (P) - A H John Al Terry (P)	540		t pape powers			1	5 S	54 - F.	TOTA: LOOSE	REAL PLACE	1. A. S. A.	Carlo V		and the second		1 22 24 19	Copunctive Taxa	()	

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 85 of 131

Wor	1		GLIENT NAM	Æ: (Georga Power & So	uthern Co	mpany				· Revision:				_					JOB HUMBER:
Wor	loyPa	rsons	PROJECT N	AME: S	Scherer FGD Study						Originator:							1	1	7
			SUBJECT:		Design Basis (MCR)	- PRB Co	aí				Reviewer:			· · · · ·						CALCULATION MUMBER:
COAL COMBUST	TION CALC	ULATION			····•						Dates							1		-1
Fint		Cost May or Co	ul Identifier I	PRB Design Bus	as - HHV From Provinals A	atysts	T												········	
						Mole O2 hr Comb			Moter Combus		NT CONTRACTOR	01	AB	HCL			ing and Amn ing Allong	Gunerated N		Unproducted
Constituent.	r	Persed \$1.216	Adi.yakan \$1,131	Mai 7/1 12.011	<u></u> 4,25683	4,25652		<u>\$201</u> 4,257	120	301	<u>P4</u>	<u></u>		Coab.				NOx exercise		
Carbon Hydrogen		3,410	3.430	2.016	1,20115	0.85053			1,701								LAV	NOs as NO2		
Sutter	·	8,360	6.300	32.064	0.00636	6.06836				0.009					· · · ·	4CeV/CR		HOs Remov	4	
Nikugett	· .	4.841	0.965	28 013	0.07445						8.074					BOIV/DI	B.tv	MDx remove		
Moleture		27,336	21.230	58.015	1.51149				1.511							•	5	Mater HOL B		
Oxygen		11.030	11,030	31.990	6.37283	-0.37283	1				1 54.5		91 - NA	6.000			Results NO		NO:VOI	benapes Citis viteens beiapes Citis viteensi 33
Chlorine		0.010	0.010	35.453	8.00028						and the second		· · ·	8000	0.000779	· Manakor t	animonty (ac)	Lawrone o	6.3IV.	VE ISSUENT AND MEDICAS
Fluorine		0.005	0.005	16.998	6.00028						1. . .	s. i e	•.		1				ACIV/OF	Total Lbmol NH3 w/o slip
Ash		\$ 300	6.200		Theo Mole U2/C to	4.74404					<u>с</u> 1 н.					0.04		na ilka Sin	MORVAGE	Tatal Ibits NHS we sto
TOTAL	r		99,521 23% (dry gee)	8.605	Encare Mails 02/City	2,12482				• • •	·. · ·	2.135	an an an an An an an an an				(4 1% 02.			
Except at %	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	8604	un tei ber		Total Mole 02/Cib	6.87866								· · · · ·	· · ·		lofty allowed		#DIVA	Ibhr Mill is BCR
Calc, Heating Velu		6463			Mole H2/Cip	25 54518					25.58516		•	× .						
					Mole As/Cite	8.30506							0.308							
% Difference	ł	0.73%			Total Mote D A/Cile	12.77208														
NEET AIR DATA					Mole H2D/Cib In ait	1.40257			1.403											
Bac Perss 'Hy	ſ	29.43			Total Mole W A/Cib	34,174645														
Terrap F	1	99.68			Total D A forC is	848.14817		-												
Rel Hernicky %	L	85,99		_	Total W A B/Cib	874.41591	_	4,25083	4.61521	8.00936	25.60981	2.15482	0.30504	0.00078	0.000279	1 A 1				
Water Vaper Press	a pala	1968.0			Hel CP/C Is	36.935	Wet	0.11526	0.12496	6.00025	6.68338	0.05780	0.00404	0.00001	C.000006					
to molectilo dry air		0.0264			V#1% CP/G B V#1% CP/C B	108.00%		0.13171	0.12490	9,00025	0.70235	0 00605	0.00953	8.00001	0.000000					
waretical Air fo% and	caks): ;74464	moi traction 0.20128	Totals: \$5,057,35			100.00 4	MO WE	44.00995	18.01534	\$4.06266	20.01346	31,999900	38.94800	36,46097	30.000379					
	7.64.64	0.74866	106,162,62		Total Lt CP/C II	1,009,137		187,34740	\$3.14452	8.59930	717.41233	68.31162	12.30528	0.91026	0.005581					
	21245	0,000011	2241.73		Wybe % CP/C Ib	100.00%	. Weat	0.17523	0.01777	8.00056	0.67102	0.06369	0.01151	0.00001	6.000005					
	96729	0.04104	10,208.47 4	Concilities	La CP/C la	885.993		187.34740		0.58039	717.41233	88.31162	12,30628	8.91028 108.5	0.003561					
to = 100 le post)	TOTALS:	1.90000	248,668.37	tanolifu alt	Total Lture	11,261,145	Wet	1,976,820.1	\$77,310.1		7,568,868.0	720,708.8	129,451.3	Ca (Biulta anti)	34.6	1 A				
ctual Air Including En			300,598.14 1	tenol?s at			ALB.	Wel	Ογ	GAS	28.947	Dry 30.508			BW(Ibrioff)					
			10,281,474 1	bity ply church			Sad Wi Gas Corret	28.513 54,188		Mai Wi Ges Const	53,374	52,513			Biw(NF)				·.	
			· · · · · · ·				Ges Conte	GAL PLOW N												
Ashin .	. · · · · · · · · · · · · · · · · · · ·	W. Cal	AR FLOW RAT	E CALCULATI	DN	.•	 •••• 	The store of		1000 - 1945		A								
Ballar Heat Input				7120Ga.	Life	6.82	ACEN	InneE	720 Ga	- Edit	\$£03	ACEN								
207460E-00		1.055.163	Tarme E 90.0	12.00	10,261,574	6.0720	2,361,405	706.3	-4.04	11,281,140	6.0330	5,764,821								
9.07440E+09		1,058,183	196.8	12.40	10,281,874	0.0707	2,424,703		8.94	11,281,140	20042	3,963,966								
9.47440E+09		1,055,163	80.8	12.89	10,281,674	6.0733	2,338,108	338.0	-12.00	15,281,140	0.0478	3,925,182								_
9,07440E-09		1,055,163	78.0	12.00	10,201,674	0,0747			64.0	11,281,140	0.0513	2,563,131		(SCFM)						-
9.07440E+09		1,055,103		1	10,201,474	0.0035	2,051,399	54.5	8.000	11,281,140	0.0/31 N2	4,063,131	AR	HCL		1				
BOILER EFFICIE	NCY CALC IN		THODE	NAH DISPOSITI		Preduct		CO2 8,5696	1.19164	18,1506	7 0642	7.218	4,2764	6.8629	6.9528	Total	% Loca		Int Temperatur	NC:
Exit Gas Temp (F.	(wheekage)	113		Telel Ash	86,204 lb/w	Specif Heat	Bur(Band F) Dry Gas	90367	3.19100	24	45735	3629	338			60,412	7.42			
VOCLARK		1.5	Elý.	ANN BROTHER	0.96	LOSSES:		3030/ and Hydrogen L	atent Heat	**						67,040	1.00			
UBCINCIN		0.079		Yold Flynais	50,124 listy 5,570 listy	10.000.00	Combation of	y Lokura Loler	a Heat							2,029		% SC2 10 SC3		1.00
CO ppmv		•		Botion Ash	5.570 Err		LOI								Same in	1,148		16 802 b 803		L L L ROLL AND
Radiation & Other		8.25 14	Sale Se	ABBBE				Sec. 2				6.4	1. 200		9 ⁶⁷		. C. 30.00			6.006eti06+
AH Jahren (K	140,0m) rs			AND DEP					1 Sec.	an a d	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1. 1. 1. 1. 1	1000	STOC ALL				1.24968-0
A Hi Lookage (%	AN SOLO CON		2	i ja dina distanti dina j			Head in Enlart		÷ - (1005	0.010			Sec. 1		10.00	100 July 1	nolinatina (P)	200 10 10
		10	Sector .	· • • • • • • • •	A Start Start	573. YE	1 × 14 M	х.		TOTAL LOGSE	8 BWC 6 44	12 C		5 4 C 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		133,000	EX S	ालप्रदेश		and the second second
Allenter		. X			a service of the serv	<u> </u>		$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$		TOTAL HEAT		S.S. R.	HE A	A 15-34	T. Stares	5	1 . MA	N 30 5	3. A A	S. M. S.
				S State / C		Se	*													

.

......

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 86 of 131

MATERIAL BALANCE - DRY FGD PROCESS w/ CAPP COAL Scherer Wet/Dry FGD Study

Stream -	(Ref)	1	2	3	4	5
Flue Gas	Flue Gas	Flue Gas	Flue Gas	Flue Gas	Flue Gas	(Not
	from AH	to Spray	from Spray	from	to Stack	(bead)
	to ESP	Absorber	Absorber	Baghouse		
		(inc. ACI)				
Total gas, lb/hr	10,687,070	10,689,127	11,307,664	11,140,285		
Total (Gas), Dry	10,094,471	10,094,471	10,062,757	10,081,904	10,061,904	
Flow, ACFM	3,670,518	3,650,605	3,052,674	3,082,530	3,024,608	
Flow, SCFM	2,348,940	2,348,940	2,518,706	2,518,608	2,518,608	
Temp, "F	330	350	167	162	167	
Pressure, in.w.c.	-12.0	0.0	-3.0	-10.0	0.5	
Pressure, paia	14.02	14.46	14.35	14.09	14.47	
Density, Ib/R3	0.0485	0.0488	0 0608	0.0602	0.0602	
Part, Ib/MMBtu	6.803	0,227	18.368	0.015		
SO2, ppmwv	910 1	910.1	66.7	42.5		
SO2, Ib/MMBlu	2.341	2.341	0.18	0.12	0.12	

Stream -	5	7	8	9	10	11	12	13	14	15	
Solid/Liquid	Lime Feed	Slaker	Lime	Absorber	Baghouse	Recycle	Recycle	Total	Pin	Total	
	to	Water	Slurry to	Solids	Solids	Water	Slurry to	Solid	Mixer	to	
	Slaker	Feed"	Atomizer	Catch	Catch	Feed	Atomizer	Product	Water**	Landfill*	
Component											
CaO, lb/hr	146,461	0	0	0	0	0	0	0	0	0	
Ca(OH)2, lb/hr	0	0	48,378	2,811	25,278	0	16,437	11,664	0	46,656	
Flyash, Ib/hr	o	0	0	495	4,455	0	2,897	2,056	. 0	8,222	
Other, Ib/hr	16,273	0	4,068	15,214	135,813	0	88,962	63,129	0	252,514	
TSS, 1b/hr	162,735	0	52,446	18,520	168,546	0	108,295	76,848	0	307,393	
H2O, Ib/hr	0	676,404	157,338	378	3,399	322,678	324,886	1,568	13,941	34,155	
Total, Ib/hr	162,735	676,404		18,898			433,182	78,418	13,941	341,54	
Flow, GPM		1351	363	<u> </u>		845	743	-	28	-	
Specific Gravity		1.000	1.155			1.000	1,165	-	1.000		
Temp, *F			100 - 150	167	162	Ambient	Ambient	162	Ambient	Ambient	
рН			10 - 12.5				7-8				
TSS, %	100	0	25.00	98	96	0	25	98	0	90	
Max. Flow, GPM	- 1	-	-	-	-		•	•		L	

* 4 Units * 4 Units

** 2 Units * 4 Units

Florida Power & Light Docket No. 07007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 87 of 131

MATERIAL BALANCE - DRY FGD PROCESS w/ PRB COAL Scherer Wet/Dry FGD Study

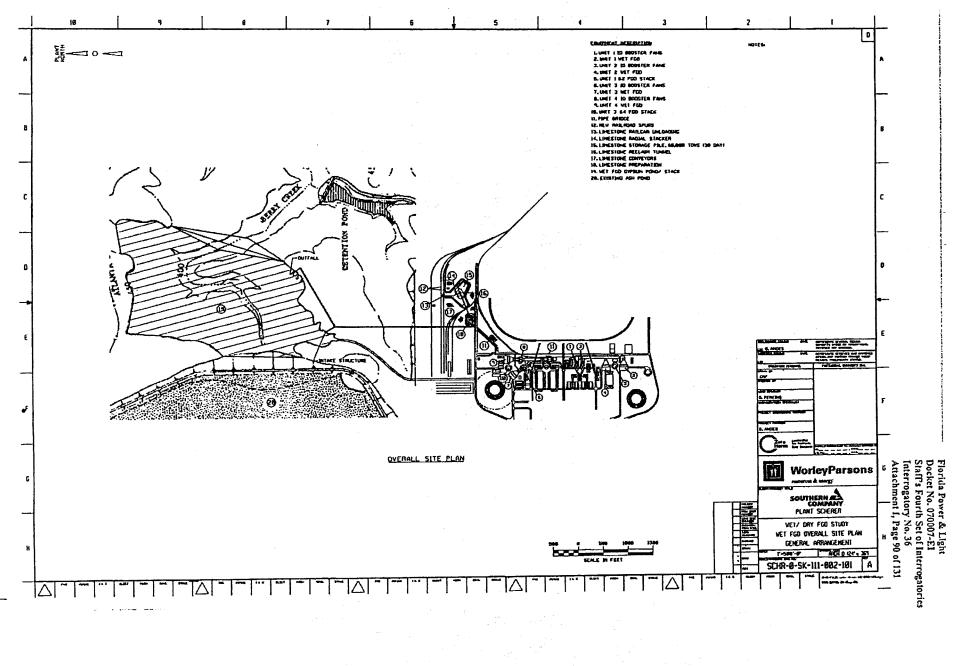
Stream -	(Ref)	1	2	3	4	5
Flue Gas	Flue Gas	Flue Gas	Flue Gas	Flue Gas	Flue Gas	(Not
	from AH	to Spray	from Spray	from	to Stack	Used)
	to ESP	Absorber	Absorber	Baghouse		
		(inc. ACI)				
Total gas, Itvhr	11,281,140	11,283,224	11,855,778	11,780,010	11,780,010	
Total (Gas), Dry	10,403,830	10,403,830	10,394,962	10,394,750	10,304,750	
Flow, ACFM	3,925,211	3,903,917	3,297,102	3,329,730	3,267,155	
Flow, SCFM	2,511,930	2,511,930	2,692,518	2,692,491	2,692,491	
Temp, *F	330	350	174	169	173	
Pressure, in.w.c.	-12.0	0.0	-3.0	-10.0	0.5	
Pressure, psia	14.02	14,46	14.35	14.09	14.47	
Density, lb/ft3	0.0479	0.0482	0.0595	0.0590	0.0590	
Part, Ib/MMBtu	5.525	0.230	8.341	0.015	0.015	
SO2, ppmwv	253.3	253.3	23.7	17.1	17.1	
SO2, Ib/MMBlu	0.697	0.697	0.070	0.050	0.050	

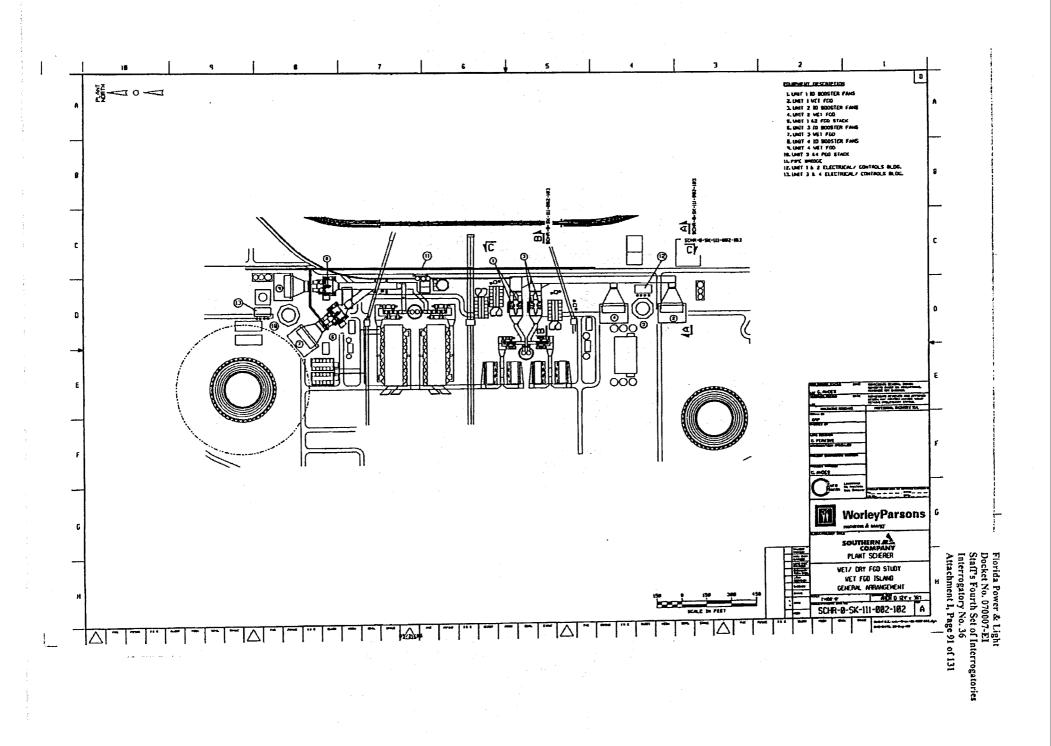
Stream -	6	7	8	9	10	11	12	13	14	15
Solid/Llquid	Lime Feed	Slaker	Lime	Absorber	Baghouse	Recycle	Recycle	Total	Pin	Total
	to	Water	Slurry to	Solids	Solids	Water	Slurry to	Solid	Mixer	to
	Slaker	Feed'	Atomizer	Catch	Catch	Feed	Atomizer	Product	Water**	Landfill*
Component										
CaO, lb/hr	41,394	0	0	0	0	0	0	Ō	0	(
Ca(OH)2, ib/hr	0	0	13,673	1,237	11,112	0	8,976	3,388	0	13,552
Flyash, Ib/hr	0	Ó	0	760	6,824	Ō	5,512	2,081	0	8,32
Other, Ib/hr	4,599	0	1,150	6,414	67,619	0	46,541	17,567	Ō	70,266
TSS, lb/hr	45,993	0	14,823	8,410	75,556	0	81,029	23,035	0	92,142
H2O, Ib/hr	0	250,462	59,291	172	1,542	448,305	447,549	470	4,179	10,238
Total, Ib/hr	45,993	250,462	74,114	8,582	77,098	446,305	508,578	23,506	4,179	102,380
Flow, GPM		500	133			893	947		8	
Specific Gravity		1,000	1,117		-	1.000	1.073		1.000	-
Temp, *F		Ambient	100 - 150	174	169	Ambient	Ambient	169	Ambient	Amblent
pH		0	10 - 12.5				7-8			-
TSS, %	100	0	20	98	98	0	12	98	0	90
Max. Flow, GPM		0		-	-					•

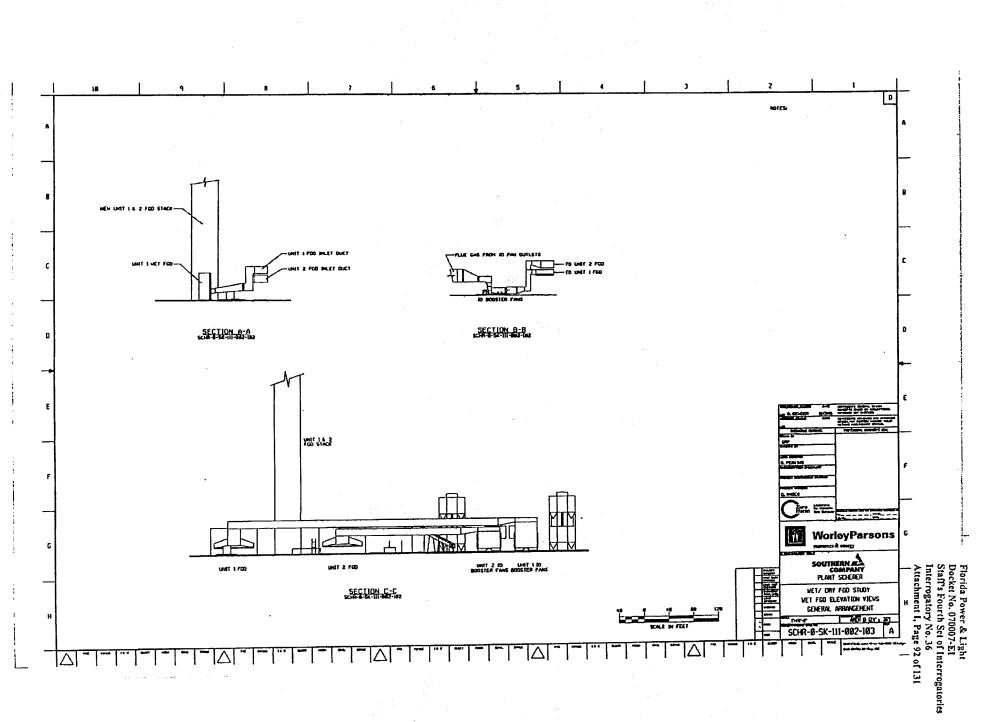
* 4 Units * 4 Units

.

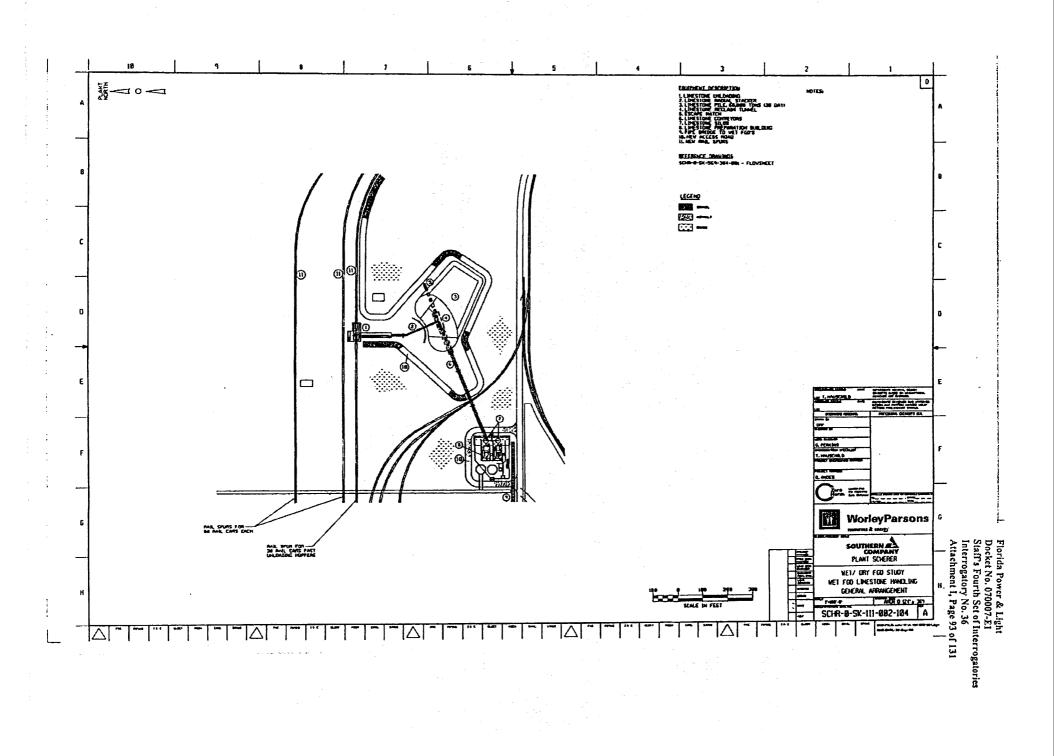
** 2 Units * 4 Units


Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 88 of 131 Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 89 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B


APPENDIX F

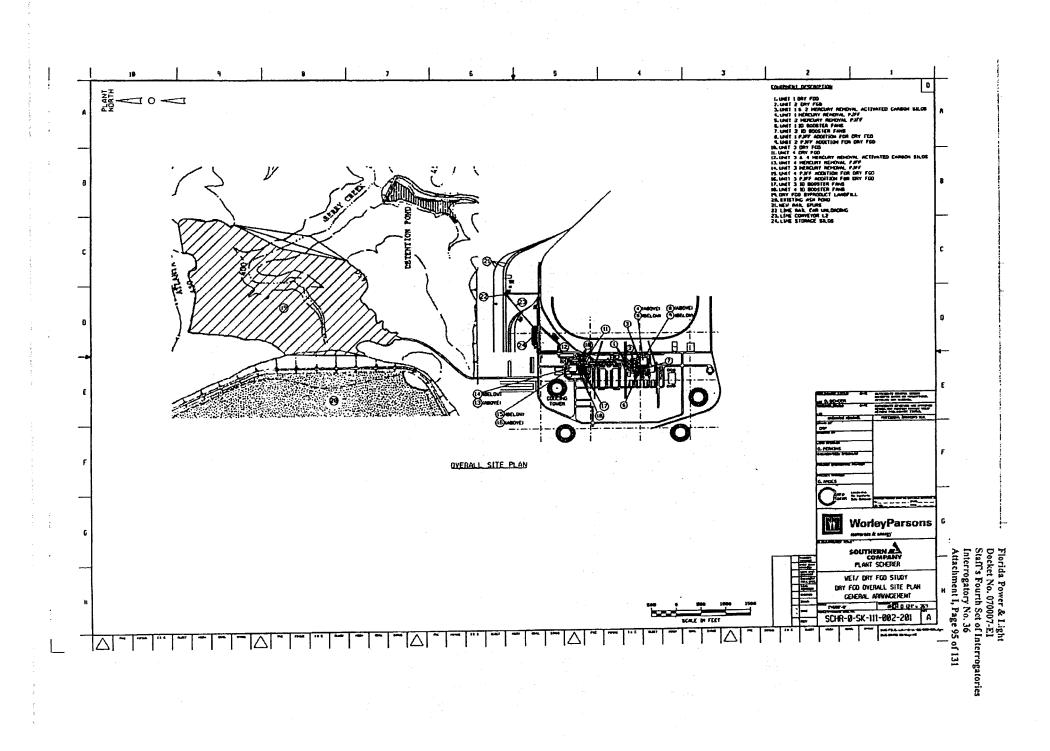

GENERAL ARRANGEMENTS - WET FGD

SCHR-0-SK-111-002-101 SCHR-0-SK-111-002-102 SCHR-0-SK-111-002-103 SCHR-0-SK-111-002-104

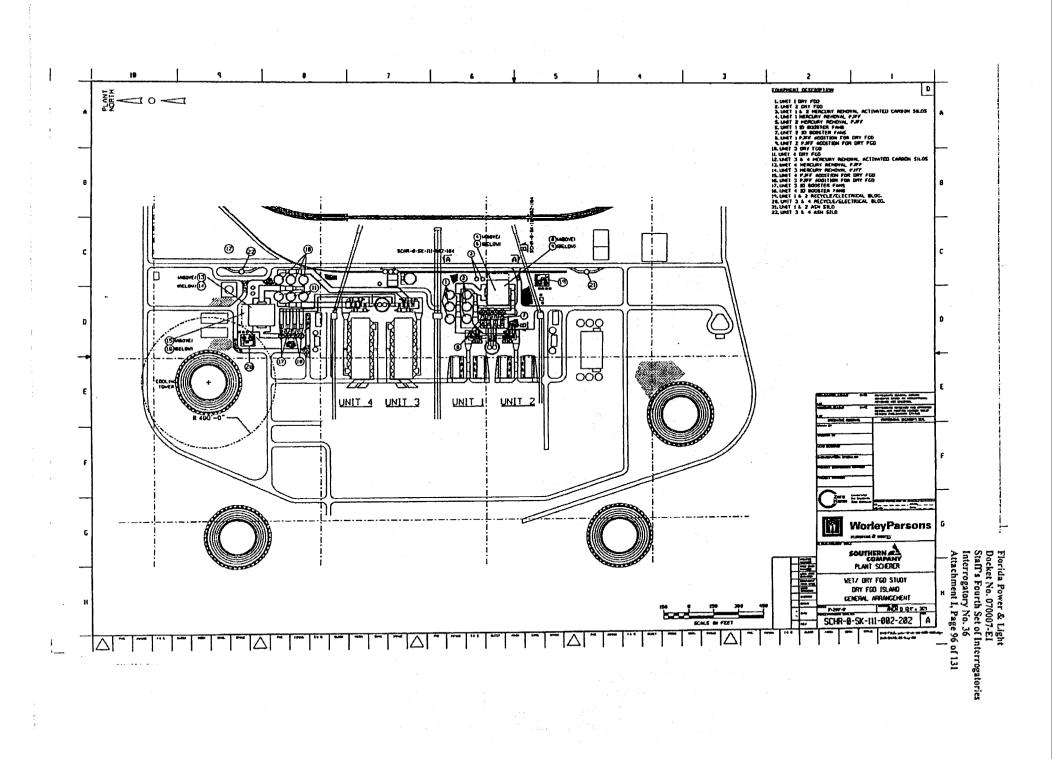


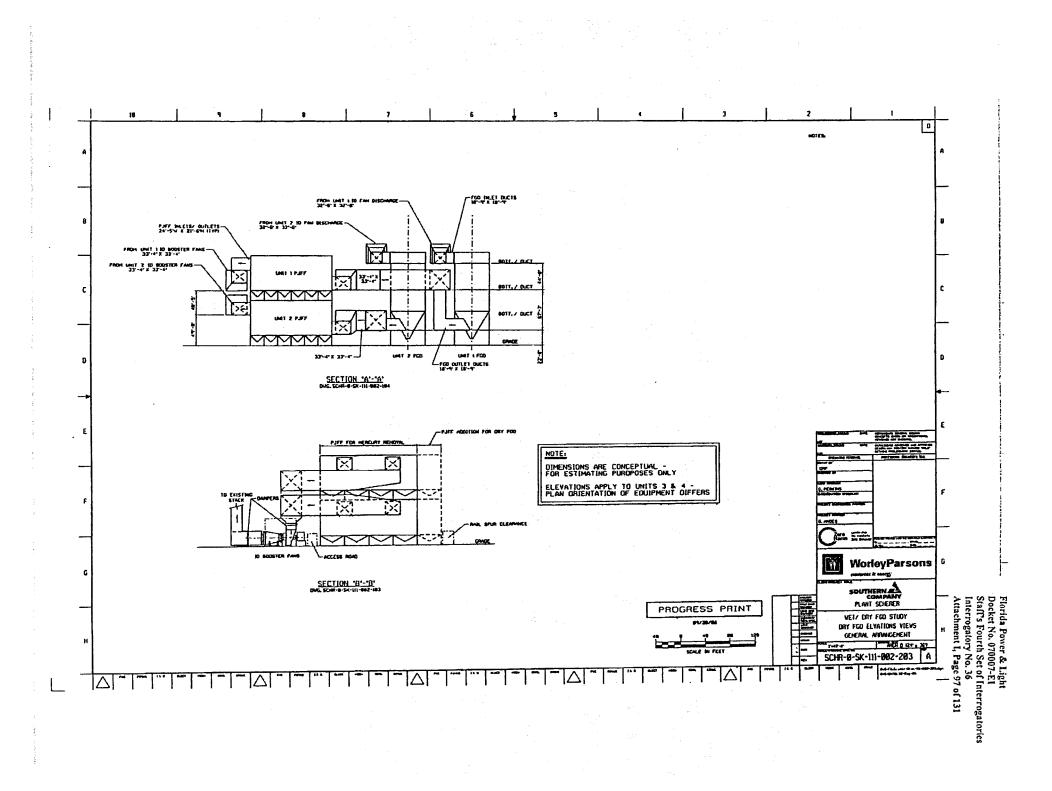
.

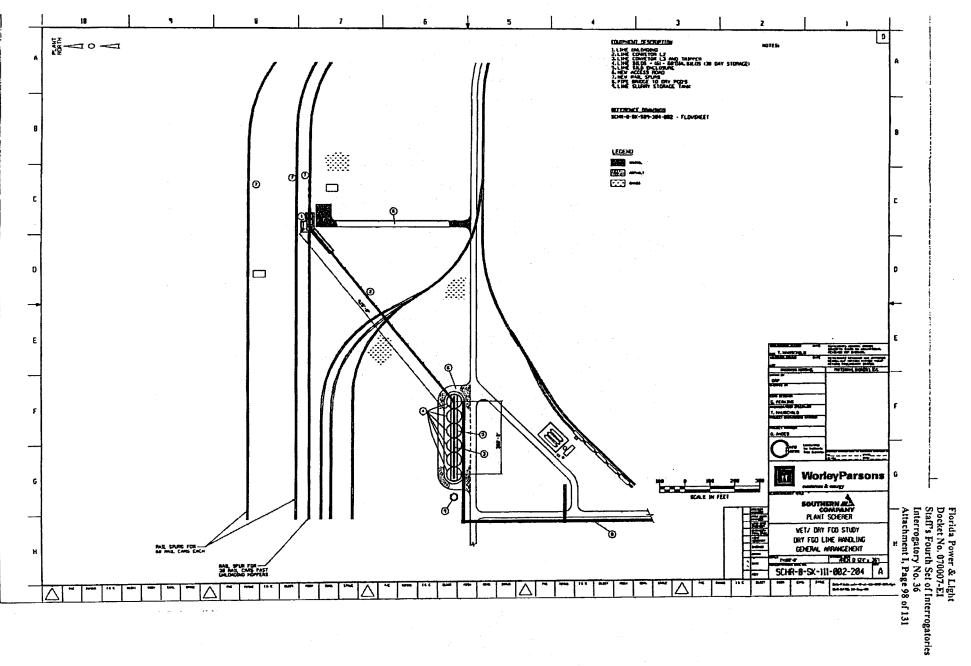
Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 94 of 131 FGD Process Selection Study


SCHR-1-LI-021-0001, Rev. B

APPENDIX G


GENERAL ARRANGEMENTS - DRY FGD


SCHR-0-SK-111-002-201 SCHR-0-SK-111-002-202 SCHR-0-SK-111-002-203 SCHR-0-SK-111-002-204



.

Southern Company Services Plant Scherer FGD Project Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 99 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

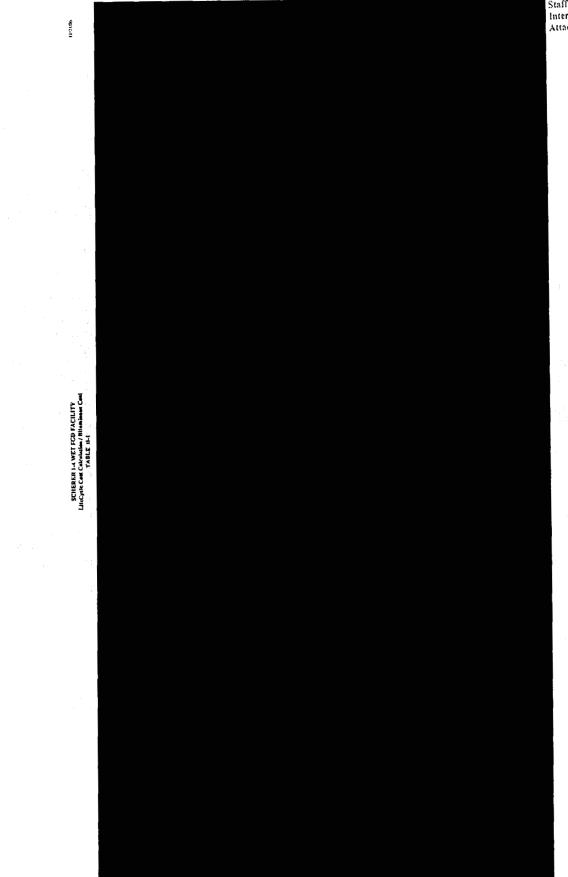
APPENDIX H

LIFE CYCLE COST SPREADSHEETS - WET FGD

Table H-1 Table H-2

Worley Parsons

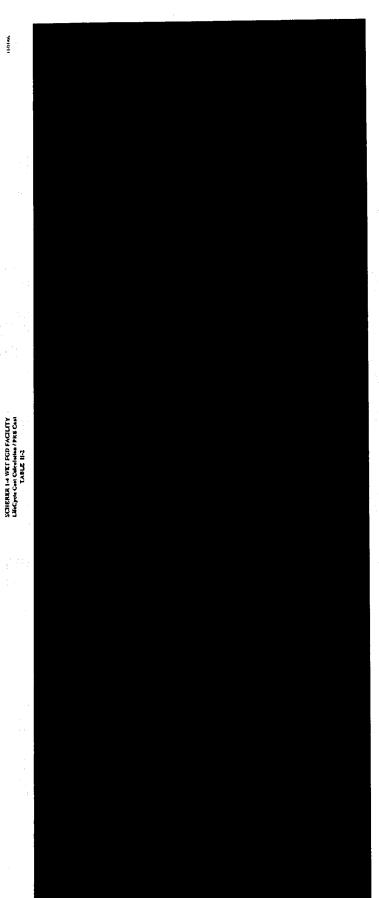
CONFIDENTIAL


Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 100 of 131

SCHERER 14 WET FCD FACULITY LIFC5rth Coa Calutation / Baumionus Coat TABLE II-1

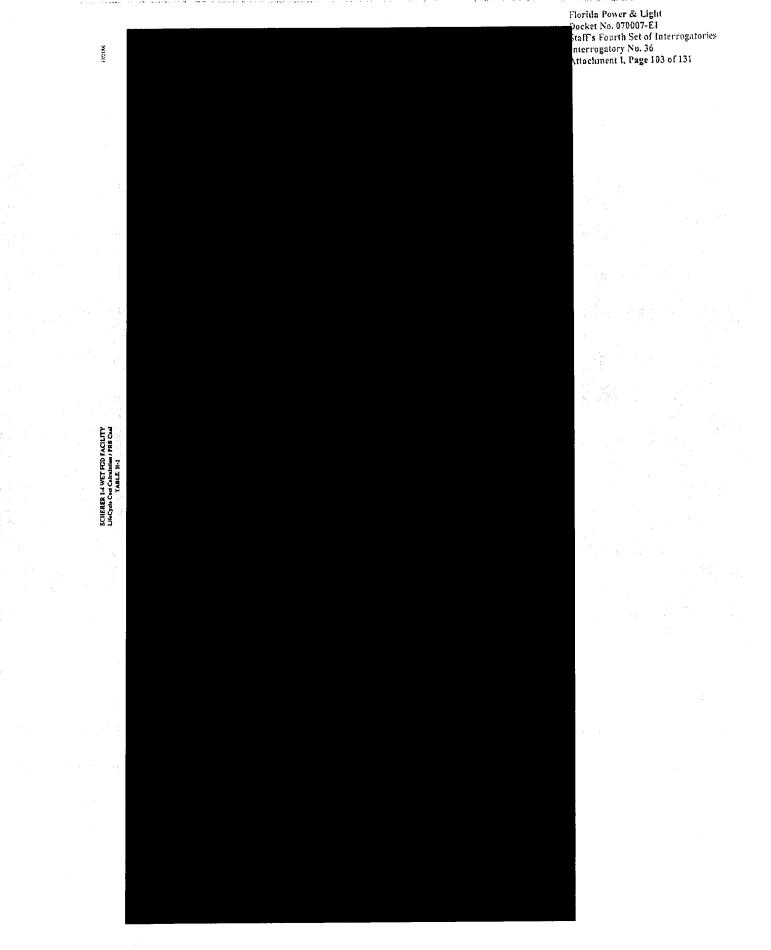
2001[21]

CONFIDENTIAL


Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatorie Interrogatory No. 36 Attachment I, Page 101 of 131

CONFIDENTIAL

112126


Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 102 of 131

CONFIDENTIAL

.

Manana ang Manana ang Kanana ang K

and a second
Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I. Fage 104 of 131 FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

Southern Company Services Plant Scherer FGD Project

APPENDIX I

LIFE CYCLE COST SPREADSHEETS - DRY FGD

Table I-1 Table I-2

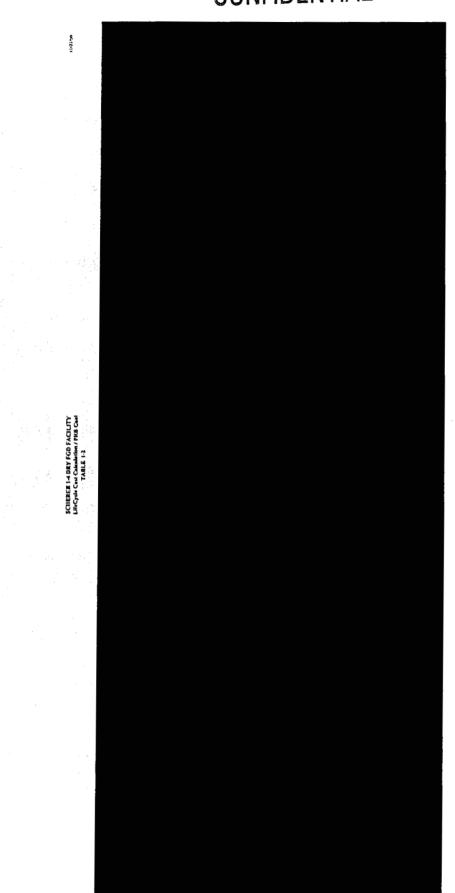
CONFIDENTIAL

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 105 of 131

1

SCIFERER 1-4 DRY PGD #ACLLITY LifeCycle Cen Calewalian / Blumieress Caul TABLE 1-1

en jun


CONFIDENTIAL

e an in the second s

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogaton Interrogatory No. 36 Attachment I, Page 106 of 131

(a) A state of the second sec second sec

-

.

Floritia Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 107 of 131

CONFIDENTIAL

the distance of the second
Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 108 of 131 119,046 SCHERER 1-4 DRY FCD FACILITY LRFCycle Cert Calculation / PRR Ceal TABLE 1-3

....

Florida Power & Light Docket No. 070007-E1 StafFs Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 109 of 131

Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

APPENDIX J

BASIS OF THE CAPITAL COST ESTIMATES

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment L Page 110 of 131

WorleyParsons

Estimate Basis Southern Company – Plant Scherer (4x900 MW) Wet vs. Dry FGD Study

Introduction

WorleyParsons has been requested by Southern Company to prepare conceptual cost estimates to evaluate wet and dry flue gas de-sulfurization (FGD) technologies at Plant Scherer near Juliette, GA.

The estimates provide conceptual costs for engineering, procurement, and construction for the project. The estimates are based on brief descriptions and general arrangements. The estimate accuracy is - 25%/+35%. The pricing is based on the WorleyParsons pricing database and supplemented with quotes. The estimates were developed to evaluate the costs and benefits of the two technologies and are not intended to represent the complete project cost. A detailed cost estimate of the total scope must be prepared to establish costs suitable for budgeting.

Scope of Work

The wet FGD estimate is based on using the Advatech FGD technology. The scope includes new chimneys, new booster ID fans, ductwork, wet FGD absorbers, new rail spurs, limestone unloading system, limestone handling system, limestone preparation system, field-erected tanks, gypsum disposal pond, additional DCS, start-up transformers, unit auxiliary transformers, foundations, sitework, utility piping, and bulk electrical. Engineered buildings are included for the limestone preparation system, and the electrical/control equipment.

The dry FGD estimate is based on current spray dryer absorber technology. The scope includes re-using the existing chimneys, new booster ID fans, ductwork, spray dry absorbers, fabric filter (baghouse) addition, new rail spurs, lime unloading system, lime storage and handling system, lime slaking system, SDA solids recycle system, field erected tanks, disposal solids handling system, unit auxiliary transformers, foundations, sitework, utility piping, and bulk electrical. An engineered building is included for the SDA solids recycle system and electrical equipment. The lime slaking system is located under the lime storage silos.

General Basis

• The mercury removal project will install fabric filters for removal of the particulate associated with the injection of activated carbon. As discussed in Section 7.2, these components would have to be upgraded with additional

11/21/2006 Estimate basis - Plant Scherer 111706.doc 1

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 111 of 131

2

WorleyParsons

Estimate Basis Southern Company – Plant Scherer (4x900 MW) Wet vs. Dry FGD Study

compartments for use in a dry FGD system. The cost for the additional bank of fabric filters is included in this study.

- Water treatment facilities are excluded.
- Gypsum dewatering facilities are excluded.
- Construction is based on multiple contracts with only one tier of overhead and profit.
- Crew rates are based on merit shop wage rates for Georgia. The crew rates include fringes, taxes, contractor indirect costs, and fee.
- The construction is based on 50-hour work-weeks.
- Removal of hazardous materials or site remediation is excluded.
- Aboveground and underground demolition and relocation allowances are included.
- All costs in the estimate are expressed in 4th Quarter 2006 dollars.
- Escalation is excluded.
- All taxes are excluded.
- BOP Engineering is included as an allowance.
- Construction management and start-up are by the Owner.
- General contingency of 15% is included.
- · Owners' costs are excluded.
- Contractor's overhead and profit are included.
- Additional contractor's fees to cover risks typically associated on an EPC contract are excluded.

Budgetary Quotes Received

Wet FGD

- FGD island (furnish & erect)
- Booster ID fans and motors
- CEMS
- DCS addition
- Limestone preparation system

Dry FGD

- SDA (furnish only)
- Booster ID fans and motors
- CEMS
- DCS addition
- Lime slaking system
- Lime storage silos
- Lime unloading & conveying system

11/21/2006

Estimate basis - Plant Scherer 111706.doc

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 112 of 131

WorleyParsons resources & energy

Estimate Basis Southern Company – Plant Scherer (4x900 MW) Wet vs. Dry FGD Study

Disposal solids silo and handling system

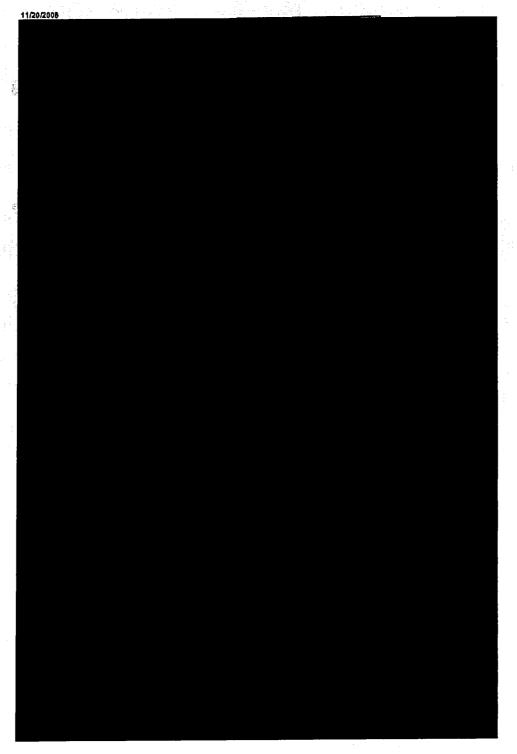
Stack & duct lining

11/21/2006 Estimate basis - Plant Scherer 111706.doc

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 113 of 131

Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

APPENDIX K


PROJECT CAPITAL COST ESTIMATES WET & DRY

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 114 of 131

CONCEPTUAL ESTIMATE

Plant Scherer Wet vs Dry FGD Study

Estimate summary - Plant Scherer Wet and Dry FGD Study 111706.xls

Florida Power & Light Ducket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 <u>Attachment</u> I, Page 115 of 131

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 116 of 131

CONCEPTUAL ESTIMATE

and how the state of the state of the second

Plant Schorer Wet FGD Study

the second stars also also

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment 1, Page 117 of 131

.

CONCEPTUAL ESTIMATE Plant Scherer Dry FGD Study

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 118 of 131

Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

APPENDIX L

MAJOR EQUIPMENT LISTS WET & DRY

Worley Parsons

Plant Scherer Wet FGD Major Equipment List

System	Equipment Name	Total Qty	Sizing Criteria	Size	Motor HP
1. Limestone Handling	Rail Spur	3	Minimum of one unit train reagent delivery		N/A
	Railcar Receiving Hopper - dual dischg	1	125 T capacity		N/A
	Vibratory Feeders (Receiving Hopper)	2	2200 TPH capacity		15
	Belt Feeder (Receiving Hopper)	1	2200 TPH capacity	72" belt, 110 fpm	
	Stockoul Conveyor	1 1	2200 TPH capacity	48" belt, 500 fpm	15
· · · · · · · · · · · · · · · · · · ·	Belt Scale	<u> </u>	48" belt		13
	Magnetic Separator		48" belt		
	Dust Suppression System	1 1			15
and a second	Limestone Radial Stacker	1 1	2200 TPH capacity	48" belt, 500 fpm	
	Reclaim Hoppers	2			
	Vibratory Feeders (Reclaim Hoppers)	2	480 TPH ea.		5
	Belt Feeders (Reclaim Hoppers)	2	480 TPH ea.	36" bell, 135 fpm	
	Reclaim Conveyors	2	480 TPH ea.	30" belt, 290 fpm	
·	Limestone Day Bins w/Vent Filters	2	8 hr capacity	675 T	NA
2. Limestone Prep	Vibratory Feeders (Day Bins)	2	80 tph	·····	3
	Slide Gates	2			N/A
	Weighbeit Feeder & Chutes	2	80 tph ea.		5
	Limestone Ball Mills	2	80 tph ea	15' dia x 30' lg	4000
	Mill Lubrication System	2			
	Mill Product Tank Agitator	2			15
	MIII Product Tank	2			N/A
	Classifier Feed Pumps	4			25
	Mill Classifier	2			N/A
	Limestone Slurry Storage Tank	1	8 hr working storage capacity	450,000 gal.	N/A
	Slurry Storage Tank Agitator	1			40
	Limestone Slurry Transfer Pumps	4			80
	Recycle Water Tank	1	8 hr working storage capacity	550,000 gal.	N/A
	Mill Area Sump Pumps	2			25
	Mill Area Sump Agitator	1			15
3. Wet FGD Area	Absorber Vessel	4	Single Pass		N/A
(Advatech Scrubber Island)	Absorber Recirc Pumps	36			1200
	Oxidation Air Blowers	8			2500
	Absorber Bleed Pumps	8			30
	Absorber Agitators	24			75
	Sump Pumps	4			25
	Sump Agitators	4			15

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 119 of 131

1 of 2

Plant Scherer Wet FGD Major Equipment List

System	Equipment Name	Total Qty	Sizing Criteria	Size	Motor HP
	Limestone Slurry Feed Tanks	2	2 hr storage capacity		N/A
	Limestone Slurry Feed Tank Agitators	2			40
	Limestone Slurry Feeds Pumps	8			80
I. Flue Gas System	Booster Fans	8		·····	12000
	Stack Bypass Dampers w/Actuator	4	· · · · · · · · · · · · · · · · · · ·		
	Bypass Damper Seal Air Fans	8	·		50
	WFGD Inlet Damper w/Actuator	4			
	WFGD Inlet Damper Seal Air Fans	8			50
5. Mech. BOP Equipment	Service Air Compressors	4		· · · · · · · · · · · · · · · · · · ·	
	Air Receivers	3	· · · · · · · · · · · · · · · · · · ·		
	Instrument Air Dryers	3		·····	
	Reclaim Water Pumps	2			
······································	Recycle water Feed Pumps	2		······································	
8. Electrical Distribution Sys.	FGD Service Transformers		25KV-13.8KV-13.8KV	50/66/83 MVA	
	FGD MV Transformers	8	13.8-4.16 KV	13/17/21 MVA	
	FGD Startup Transformers	2	115KV-13.8KV-13.8KV	50/66/83 MVA	
	13.8 KV Switchgear	1 Lt			
	4.16 KV Switchgear	1 Lt			
·	Unit Substations	14			
	480V Motor Control Centers	1.1			
7. Control System	I/O Cabinets	14			
	Processor Cabinets	1.1			
	Engr Workstations	2			
	· · · · · · · · · · · · · · · · · · ·				
،					

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 120 of 131

2 of 2 👒

Plant Scherer Dry FGD Major Equipment List

	Equipment Name	Total Qty	Sizing Criteria	Size	Motor HP
. Lime Handling	Rail Spur	3	Minimum of one unit train reagent delivery		N/A
-	Railcar Receiving Hopper - below grade	2	2200 TPH capacity		N/A
	Belt Feeder	1	2200 TPH capacity	72" BW, 24-120 FPM, 37' long	60
	Stockout Conveyor	<u> </u>	2200 TPH capacity	60" BW, 500 FPM, 960' long	700
· · · · · · · · · · · · · · · · · · ·	Silo Conveyor on top of silos	1	2200 TPH capacity	60" BW, 500 FPM, 360' long	100
· · · · · · · · · · · · · · · · · · ·	Traveling Tripper on top of Silos	<u>'</u>	2200 TPH capacity	100 D11, 000 11 Mi, 000 101.g	10
· · · · · · · · · · · · · · · · · · ·	Lime Bulk Storage Silos	6	30 Day Storage Combined (60,000 lons)	60'Día x 200'H, Concrete	N/A
	Line Baik Storage Silos		So Day Storage Combined (00,000 tons)		
. Lime Prep	Live Bottom Feeders	6	0 to 50 TPH		5
	Rolary Feeders	6	1 to 50 TPH		
	Weigh Belt Feeders	6	0 to 50 TPH	30" belt	15
	Hot Water Heaters	6	Match slaker water need		
	Vertimil Lime Slakers	6	2,000 TPD Lime feed Total, 3 op, 3 spare		
	Separating Chambers	6			
······································	Slurry Recycle Pumps	6			
	Slurry Product Pumps	6			20
	Lime Slurry Storage Tank	1 .	8 hour capacity - 4 units		
	Lime Slurry Tank Agitator	1			40
	Lime Slurry Transfer Pumps	2			80
	Sump Pumps	2	Area Washdown		15
	Sump Agitator	1			25
3. Dry FGD Area	Lime Slurry Feed Tanks	2	2 hr capacity - 2 units		
	Feed Tank Agitators	2			-{
	Lime Slurry Feed Pumps	4			
	Spray Dryer Absorbers	12			
	Rotary Atomizers	36			
	SDA Hopper Heaters	12			
	Rotary Airlock Valves	12			
	Atomizer Feed Tanks	4	· · · · · · · · · · · · · · · · · · ·		40
	Atomizer Feed Tank Agitators	4			80
	Atomizer Feed Pumps	8			25
	SDA Area Sump Pumps	4			-1
	SDA Area Sump Pump Agitators	2			1
	Dudan Lat Fabric Filling Add9 Concerts	24	-		
4. Fabric Filter System	Pulse Jet Fabric Filter - Add'l Cmprts Pulse Air Compressors		(Existing)		
(Addition)	Hopper Heaters	24			

Plant Scherer Dry FGD Major Equipment List

	Total Qty	Sizing Criteria	Size	Motor HP
Compartment Inlet Louver Dampers	24			
Compartment Outlet Poppet Dampers	24			
Bags and Cages	20,160			
Recycle Solids Silos	4	8 hr capacity		
Recycle Stury reed Famps	°			
Bogeter Fore			······································	6500
		· ·····		50
		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	50
				50
SDA Ootiet Damper Sear Air Fans				
Conveying Air Blowers	4			
Pressure Feeders	120			
Pressure Feeder Bodies	120			
Pressure Feeder Valving	1 Lt			
By-Product Silos	2	5,000T ea.		
Silo Fluidizing System	2			
Mixer/Unloaders	2			
Service Air Compressors	4			
Air Receivers	3			
Instrument Air Dryers	3	· · · · · · · · · · · · · · · · · · ·		
EGD Service Transformers	4	25KV-6.9KV-6.9KV	30/40/50 MVA	
A REAL PROPERTY AND A REAL			30/40/50 MVA	
	Compartment Outlet Poppet Dampers Bags and Cages Recycle Solids Silos Live Bottom Feeders Rotary Feeders Weigh Belt Feeders Recycle Mix Tanks Recycle Mix Tanks Agitators Recycle Slurry Storage Tanks Recycle Slurry Storage Tank Agitators Recycle Slurry Storage Tank Agitators Recycle Slurry Storage Tank Agitators Recycle Slurry Feed Pumps Booster Fans Stack Bypass Damper w/Actuator Stack Bypass Damper w/Actuator SDA Inlet Damper w/Actuator SDA Inlet Damper Seal Air Fans SDA Outlet Damper Seal Air Fans SDA Outlet Damper Seal Air Fans Conveying Air Blowers Pressure Feeders Pressure Feeder Solies Pressure Feeder Valving By-Product Silos Silo Fluidizing System Mixer/Unloaders	Compartment Outlet Poppet Dampers 24 Bags and Cages 20,160 Recycle Solids Silos 4 Live Bottom Feeders 4 Rotary Feeders 4 Weigh Belt Feeders 4 Recycle Mix Tanks 4 Recycle Mix Tank Agitators 4 Recycle Slury Storage Tanks 4 Recycle Slury Storage Tanks 4 Recycle Slury Storage Tank Agitators 4 Recycle Slury Feed Pumps 8 Booster Fans 8 SDA Inlet Damper W/Actuator 4 SDA Outlet Damper Seal Air Fans 8 SDA Outlet Damper Seal Air Fans 8 Conveying Air Blowers 4 Pressure Feeders 120 Pressure Feeder Bodies 120 Pressure Feeder Valving 1 Lt By-Product Silos 2 Silo Fluidizing System 2 Service Ai	Compartment Oullet Poppet Dampers 24 Bags and Cages 20,160 Recycle Solids Silos 4 8 hr capacity Live Bottom Feeders 4 Rotary Feeders 4 Weigh Belt Feeders 4 Recycle Mix Tanks 4 Recycle Mix Tanks 4 Recycle Mix Tank Agitators 4 Recycle Slury Storage Tanks 4 Recycle Slury Storage Tank Agitators 4 Recycle Slury Feed Pumps 8 Booster Fans 8 Slack Bypass Damper w/Actuator 4 Slack Bypass Damper w/Actuator 4 SDA Inlet Damper Seal Air Fans 8 SDA Cullet Damper Seal Air Fans 8 Conveying Air Blowers 4 Pressure Feeders 120 Pressure Feeder Bodies 120 Pressure Feeder Solies 2 Slor Fuidting System 2 Silor Fuidting System 2 Silor Fuidting System 2 Mixer/Unloaders 3 FGD Service Transformers 4 Startup Transformers 2	Compartment Oullet Poppet Dampers 24 Bags and Cages 20,160 Recycle Solids Silos 4 Live Bottom Feeders 4 Rotary Feeders 4 Weigh Belt Feeders 4 Recycle Mix Tank Agilators 4 Recycle Slury Storage Tanks 4 Recycle Slury Storage Tank Agilators 4 Recycle Slury Storage Tank Agilators 4 Recycle Slury Storage Tank Agilators 4 Recycle Slury Feed Pumps 8 Booster Fans 8 Slack Bypass Damper WActuator 4 SDA Intel Damper Seal Air Fans 8 SDA Outlet Damper Seal Air Fans 8 Side Fundtisting 120 Pressure Feeders 120

2 of 3

Florida Power & Light Docket No. 07007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment J, Page 122 of 131

Plant Scherer Dry FGD Major Equipment List

System	Equipment Name	Total Qty	Sizing Criteria	Size	Motor HP
	480V Motor Control Centers	<u>1 Lt</u>			
0. Control System	I/O Cabinets				
in control system	Processor Cabinets	1 Lt			
and a second	Engr Workstations	2			
· ····			· · · · · · · · · · · · · · · · · · ·		
F					

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 123 of 131

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 124 of 131

Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B

APPENDIX M

PROJECT MILESTONE SCHEDULES WET & DRY

WorleyParsons

J Esty Rei Constant Progress Ger	SOUTHERN COMPANY - PLANT SCHERER CONCEPTUAL CONSTRUCTION ME ESTORE VET FOD LINTS 1 & 2	Smeet 1 of 1	Werlayê <u>Rendalî</u> n	ansons <u>Chercked</u> LT-33 FL-31	tachment 1, Page 125 of 131
					2 5
	n in a star and a star and a star a				
	an de la companya de La companya de la comp		Barris a second strength and but	•	
	and a state of the second s	1			
	tij odenje obstatil od svetski se obstatil ∳				
ana ana ang ang ang ang ang ang ang ang		an a		1 · · · · · · · · · · · · · · · · · · ·	, a Again a 📘 🚬
					к., с ,
10200000000000000000000000000000000000					
	Mainaisofeoinprearentinaleoinplum a Duiten Contaction (Exception of the Angeleon of the Angele	MALIJAN GINGLIMANAN JANA KUKANAN GINZINA KATANAN KUKANAN		A A MARINA A A A A A A A A A A A A A A A A A A	
ни на					

1. A. S.

CONFINENTIAL

ניאן גומאוסומוגר גראוגאידיג מאומומוגר גראוגאידיג מאומוגר גראוגאידיג מאומרניט אינאראיג גראו גראוגאידיג מאומוגר גראוגאידיג Activity Activity Descriptio 2014 [201 CARTS Y.C. 11 -ENGINEERING PHASE 1 10000000000 SW253W715 PHASE 1 - PRELIMPLARY ENGLISEERING . . . ×. ENGINEERING PHASE 2 4 SW25TW770 PHASE 2 - DETAILED ENGINEERING and the second state of the se SPACE RELENCE SW252W729 EQUIPMENT OPEC & DELIVERY - CHIMPLEY PROPERTY AND A STREET EV253W735 EQUEMENT SPEC & DELIVERY - WET FOD And an and the second second second second second and the second se FOLD POEC 1 DE SERV. LUISETONE STORAGE / DOCT 01+716 \$12/745 · • • 1 5W253W750 EQUIPMENT SPEC & DELIVERY - DUCTWORK / STEEL PROPERTY OF THE PROPERTY OF THE PROPERTY OF NAT THE PROPERTY AND A DECK EQUIPMENT SPEC & DELIVERY - BOOSTER FANS 5W253W769 A CONTRACTOR OF THE OWNER \$14/75 THE? 18 EQUIPMENT SPEC & DELIVERY - SOLIDS DISPOSAL SW253W765 EQUIPMENT SPEC & DELIVERY - BOP Contraction of the second s MARSINGS COMPARENT APEC & DELIVERY . TRANSFORMERS Carine and the second second . . E TRANSPORT \$W253W795 INSTALLATION SPEC & CONTRACTS unisten de CONSTRUCTION SW060CC305 Unit 3 Scrubber Construction in the second -----_____ 1992-01 SW253W305 SITE PREP. DEMO. CLEARANCE 31 1 C. S. Augel 1.16 5 SW253W316 UNDERGROUND & PILES 57 SW253W315 FOUNDATIONS 2 50/2530/229 STRUCTURAL STEEL SW253W317 CHIMMLEY (UD & UH) 24 SW253W340 FABRIC FILTER IN SERVICE - UNIT 3 SW253W325 LINESTONE STORAGE AND PREP (UDAUA) 1 SW253W330 Case an DUCTWORK WET FOD ISLAND in the second second SW253W335 EW253W045 TRANSFORMERS / ELECTRICAL FRAME REPORT SWZSIWOSE BOOSTER FANS & DAMPERS CHIEF IN C.SM050CC310 Ung 3 Scrubber Reading for Service BAZSTWISS STARTUP / COMMISSIONING CONSTRUCTION high the good and the second SMD60CC405 Unit 4 Scrubber Construction Construction of 8W253W405 SITE PREP, DEMO, CLEARANCE 030019 SW252W110 UNDERGROUND & PLES Courses and an and a state SW253WHIS FOUNDATIONS 101111111 SW253WR28 STRUCTURAL STEEL -----SW253W425 MECHANICAL EQUIPMENT -----1 902530430 DUCTWORK The line was a line back of SW253WA35 WET FOD ISLAND ٥ FABRIC FILTER IN SERVICE - UNIT 4 SW253W442 10000 ALC: CALLER TRANSFORMERS / ELECTNICAL 54/2530445 time the state 8W253W450 BOOSTER FANS & DAMPERS 1. C. C. T. SW069CC410 |Unit 4 Scrubber Readled for Bervice 100 SW253WASS STARTUP / CONGESSIONENG WedevParsons Sheet 1 of 1 Checked LT-30 FL-30 31.111 00 Start Dale Enty Ber Revis Date BOLTHEAN COMPANY - PLANT SCHERER CONCEPTUAL CONSTRUCTION MILESTONES WET FOD UNITS 3 & 4 Finish Dale 97.JUM1 Process Bas Data Date 11SEP0 21NOV06 12:19 tus Date © Primavera Systems, Inc

CONFIDENTIAL

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 126 of 131

Activity ID	Activity Description	ROND JENG		NIDJEMAN		Diffe u	CINIA INC.	JA SIO	NCD JEP		ARON		2011 A M J J J		D JIPM		ALLO	MOJE			IOND	<u>jun</u> t	2016 A N -[]-[]	AIAIO	
		14.4.9.11.2.6.6.71		141111111111	137223324	252617981		242424275		4344 1841		STAL	SSERIEZSE			87,686,97 1	<u>Trank</u>						197120	uteren	indus
INEERING P	HARE 1	1					2				5		÷ :	:											
1530815	PHASE 1 - PRELIMINARY ENGINEERING	tal and a second the	<u> </u>												<u> </u>	· · · · · · · · · · · · · · · · · · ·									<u> </u>
SINEERING P											۰.	•	•				• :	1			1 .			10	•
	PHASE 2 - DETAILED ENGINEERING	<u></u>	1.4			····					· ·					ļ.,					1				-
OCUREMENT		4	·	ATRACTOCIC		÷			÷.,			i		1	i	1.				1.1	13				÷ .
	EQUIPMENT SPEC & DELIVERY - DRY FOD						. .								• •	i :	÷								
	EQUIPMENT SPEC & DELIVERY - LINE STORAGE & PREP	4				- C	•					•	: '	:			· .	:	15.	: <u> </u>				:]	
	EQUIPMENT SPEC & DEUVERY - DUCTWORK / STEEL			and the second second				. ,					:			1	. · .		1:						
	EQUIPMENT SPEC & DELIVERY - BOOSTER FANS			and second second			, 71		÷ 1	1		. !	:		÷ į	- ÷		1	11					•	÷
	EQUIPMENT SPEC & DELIVERY - BOLIOB DISPOSAL						دن محم	4							: !	1	. .	.	- -						·
2530665	EQUIPMENT SPEC & DELIVERY - BOP			ETTATION				• • • • •		•	: :	. 1		-	1	· ·	-	1			1 .				
	EQUIPMENT SPEC & DELIVERY - TRANSFORMERS	1		Erokers		<u></u>	2243-14 				6 . i	1			. f	1	18				1.				
	INSTALLATION SPEC & CONTRACTS			Linkers	CLOSED -		ليسم بيث				<u> </u>		-		· [<u> </u>	÷		-+	<u> </u>				- 	·
				•	;	: •		4		1	: ::				1		•	1	1:	- 1					
NSTRUCTION				-		1 i		<u>.</u>	-	1						1:									÷.
	FABRIO FILTER IN BERVICE - UMT 2	1				•	1	· · ·		÷					÷		1	÷.							•
	BITE PREP, DEMO, CLEARANCE	4			•	:	1		<u>i</u> t 1		29999 B			-	the second	1		-	11						1
	Unit 2 Berukber Construction				- 1	· ;		1. ·		1 5	10050000					, , ,	-								
530210	UNDERGROUND & PILES		11:		1		*			1					· [i i		.			1:2				<u>}</u> .
530215	FOUNDATIONS	يستعادين والسبار				فسر أنذ		• • • • • • • • • • • • • • • • • • • •		مۇت بىلى ق			2 alle		<u>.</u>		- <u></u>								
	STRUCTURAL STEEL		1		÷		1	1		1 1	(L		- 1 Store 10					1		- 1	1:2				•
	LINE STORAGE AND PREP (UI&U2)						1 de la composición de la comp		< : :		•					1	1.	•			1				-
\$30230	DUCTWORK	j :.																							,
530235	DRY FOD IBLAND				1	•	-	·				6	WUIAm			<u>.</u>	يسر الم		· 1						
530217	MECHANICAL EQUIPMENT				:	1.0		1								í .									
2530245	TRANSPORMERS / ELEGTRIGAL		1.	. ;÷		· · ·		:		: · · ·	1 . F				<u></u>	1.00		11		• : <u>•</u> !	1 -				
530250	BOOSTER FANS & DAMPERS		1:		÷ .	1:			, i					CORE		11. 			_1:						
SOCC210	Unit 2 Scrubber Readed for Bervice			·			:	: .		4 1	5 et 🚦		•	* <u>;</u>	i			Contrary	- · ·						
1530255	STARTUP / COMMISSIONING		<u>i</u> i		• ;	1		•		÷ 1	· ·		· · ·		. 1	1		. EX7.0	<u>zaraju</u>					.:	
								∎ Sju ≫oust¢		a conseniga		i ng siti	1		1										•
NSTRUCTIO	H					· · ·	• ,	• • • •		: ;	· · · ;				S 1 1		<u> </u>							: : [
2530140	FABRIC FILTER IN BERVICE - UNIT 1			. : <u>.</u>	1	• .		1	0							1:		:1				1:		1	
253D105	STE PREP, DEMO, CLEARANCE				· i		· .	1		1	: i		1 :			1.4						1			
060CC106	Unit 1 Scrubber Construction								1 - I	1 1	: :				COLORIZED	1: • •	<u> </u>	- 11						- 1	1
2530110	UNDERGROUND & PILES					i.		1 - C	·; '									:	:	•					
2530115	FOUNDATIONS			·				t . 	بسار الجسم			£		i						·		+++	+++		<u> </u>
253C120	STRUCTURAL STEEL				•			!.	;i (1 1			1	1	2 E T					र जरह	: [] :				. *
1530125	MECHANICAL EQUIPMENT									1 .	: :	1 . 1		: :		- California - Cal									i ·
2530130	DUCTWORK	1:						1 .	• •	1 .	. :	5 · · ·													i.
2530135	DRY FOD ISLAND			:		1	· • ;	11		1	1		1:											- 1	1.
2630145	TRANSFORMERS / ELECTRICAL			; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;		1.	, : , :	1.		<u>+ </u>	<u> </u>		<u> </u>	;		4		1200463	-		++	++	+++		<u> </u>
2530150	BOOSTER FANS & DAMPERS								::		1	1	1:			1.			1			111			11
960CC11D	Unit 1 Gorubber Readled for Service				, 1								i 1				-								
		251 - 2 4 - +		•		78. B. S. S.		1222		. 1		, in try rist		1., .	a yan kan sa				1 1 1		1 2 :	(COLOR)		11	
2530155	STARTUP / COMMESSIONING					1.								* :	<u>. 1 – – – – – – – – – – – – – – – – – – </u>	<u></u>			11					<u></u>	<u> </u>
530135	STACIO FOOTBALLIO																								
												- <u>-</u>													
											<u> </u>				·										
	31 A/L06					-					Shee	1 of 1							Parson	N#			ckad	A-	ppro
Onie	27JUN14	THE PARTY OF THE P					ERN COMP	*****	AMT BOUR	000			Date				Rav	iston			<u> </u>		-29	~~	ANG.
sh Dute s Dale	115EP06		Int Programs			CONCEPT	TUAL CON	STRUCTK	ON MILES	ONES													-29		
			Critical Ad	in the later of th				DUNITS	44.9			1_													

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 127 of 131

Activity ID	Acti+ky		1007	JIF MANA DI JI	ASOMDIJIFI	2009		2016		MALE ILLAS		2012	TOTAL P	261	-		2414	
	Cos supplies	Entraining and a second		IN THE REAL PROPERTY.	und and the second	bbbbbb	NAME AND ADDRESS	a federation of the	is pair is a	-	de 15 de 16 de 16	VANNOT	111110	7				
NOINEERING	na una substation de la company de la comp Phase 1						2. a.						1					
	PHASE 1 - PRELIMINARY ENGINEERING	Carrier Carrier										I. 11	· :					
NGINEERING															: []	_		<u></u>
	PHASE 2 - DETAILED ENGINEERING		Contraction of the local division of the loc									•			11			- 1
ROCUREMEN	T ·		1 1	1		<u> </u>						<u> </u>		_ <u>_</u>	+ + + -		· • • • • • • • • • • • • • • • • • • •	.
02530735	EQUAPMENT SAEC & DELIVERY - DRY FOD		and the second s		tournaria -													
02530740	EQUIPMENT SPEC & DELIVERY - LINE STORAGE & PREP		EX STORE	THE ADDRESS OF		۱ <u>۱</u> ۲	· ` ,											
02530750	EQUIPMENT SPEC & DELIVERY - DUCTWORK / STEEL		2000	Here Britshow	230 230 200						i i					(} : '		
02530760	EQUIPMENT SPEC & DELIVERY - BOOSTER FANS		E.6.9	asset and the second second	1	6 - E 1			• .	1. 11	-			1:				
02530745	EQUIPMENT SPEC & DELIVERY - BOLIDE DISPOSAL	1	07776		win in the second			·			1	• · · · ·				11	; ;	
02530765	EQUIPMENT SPEC & DELIVERY - BOP			- and the second second	Contraction of the second second								•			- 1 (m)		1
02530755	EOUPMENT SPEC & DELIVERY - TRANSFORMERS										1		- 1					
02530755	INSTALLATION SPEC & CONTRACTS	·	;	CALL MANAGE SALA	D								•					
				•										1:00	111			1
ONSTRUCTIO			4 C.	· ·	-	- 1 *			1;									
02530305	SITE PREP, DEMO, CLEARANCE	-	•		5				::	11								:
006000345	Unit 3 Souther Construction		• `		<u></u>			2007U312			1		1	1: 1				
	UNDERGROUND & PILES	1							-		: 4							: ·
02530315	FOUNDATIONS STRUCTURAL STEEL	_	:	•		د ان سند محمود محمد			; :	14 - L.			<u></u> }					
D253D348		-	بالعسة أواله بالا		<u></u>	. منتقبة					ann Lugi -							
	FABRIC FILTER IN SERVICE - UNIT 3	-	i						1.7	1. 1			- 1	1 : -				:1
2530317	MECHANICAL BOUIPMENT				1.000.00						i							
	LINE ETORAGE AND PREP (USLUA)				ن النظار مور				1			1	:]					
2530330	DUCTWORK	1	i			بالانتخاب أبتك أأخذت					· 1	S 1,	.					
02630335	DRY FGD ISLAND		a 11		, (<u>2.1440</u>								114	.: 14-		
02530345	TRANSFORMERS / ELECTRICAL			-		تشيتنا		<u></u>										:] -
02130350	BOOSTER FANS & DAMPERS		i.			· L:			: :		· 1	į :						
000000318	Unit 3 Scrubber Reedled for Service	4						200761-A-10			•]							
		a a status y se sua								1044-1-1-0					:::			
02530355	STARTUP / COMMISSIONING	, ,						·										÷
		4	-	1 e		:		1.1					: [1 .
ONSTRUCTIO	N SITE PREP, DEMO, CLEARANCE	4	1		· · ·		622202											
0060000405	Unit 4 Sembler Construction				1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	1	Contraction of the		12.261-012	-								
02530410	UNDEAGROUND & PILEB					· ·	279.900					· ·	. 1					
02530415	FOUNDATIONS	-	. !				(H. 40.04)					!: !					111	
02530470	STRUCTURAL STEEL			11 1		1 1		TA BORLAS ME										: [-
02530425	MECHANICAL EQUIPMENT		·····		· · · · · · · · · · · · · · ·	f	اسخ بمسته بكروحات ب	-	a ann an a									
02530420	DUCTWORK	1				i. •				23								
02530435	DRY FGQ ISLAND	1						े केंद्रव	Surserviti Curre	zi) (*								
02530142	FABRIC FILTER IN SERVICE - UNIT 4						•	6 C				[1 22]	1					
	TRANSFORMERS / ELECTRICAL					5		6		a la marcina	m :				÷ : ?			:
02530445	DOCATER FANS & DAMPERS	• • • • • • • • • • • • •			•				12.726	5777952(72)		<u> </u>				-1		:1
D2530450 0060CC410	Unit 4 Scrubber Readled for Service										(TRANSDOC		. :					:1
02530455	STARTUP / COMMISSIONING	1																<u>: </u>
149307933	fermint, i presentation		<u> </u>															
													:					
				·. ·		·····	· · · · · ·		Sheet 1 of 1				Worle	Parsons				
ert Date Vals Date	31JUL06 27JUN14		- 1				PLANT SCHERE	ali su su s		Date			evision			Cher	ted	Approve
to Data	11GEPD#		Pregress Bar		CONCEPTUAL	CONSTRUC	TION MILESTO	VEB										
n Deto	21NOV06 12:17		Crizical Activity			RY FOD UNIT												

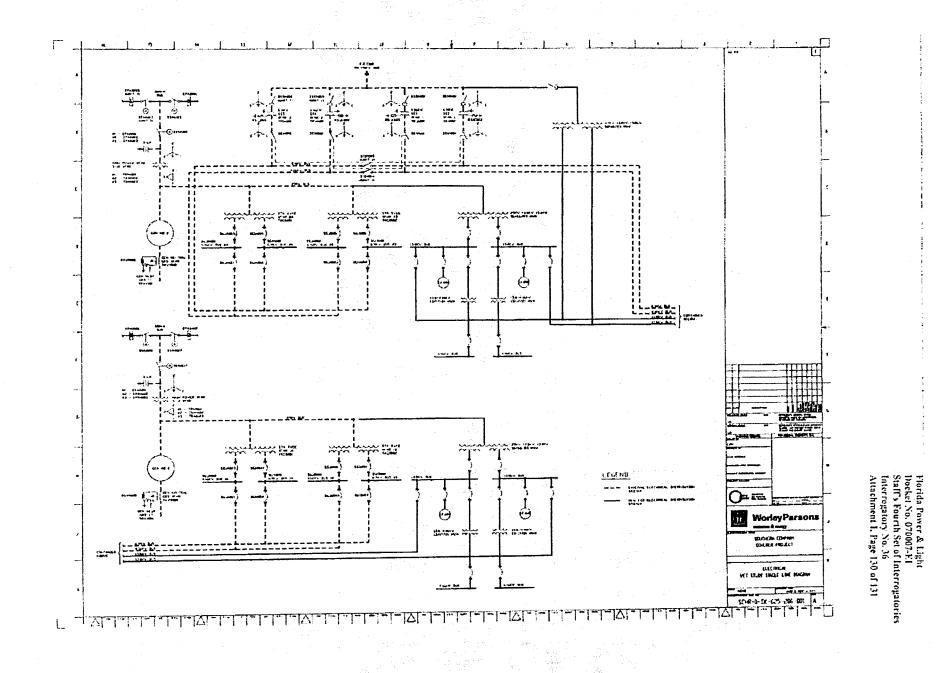
,

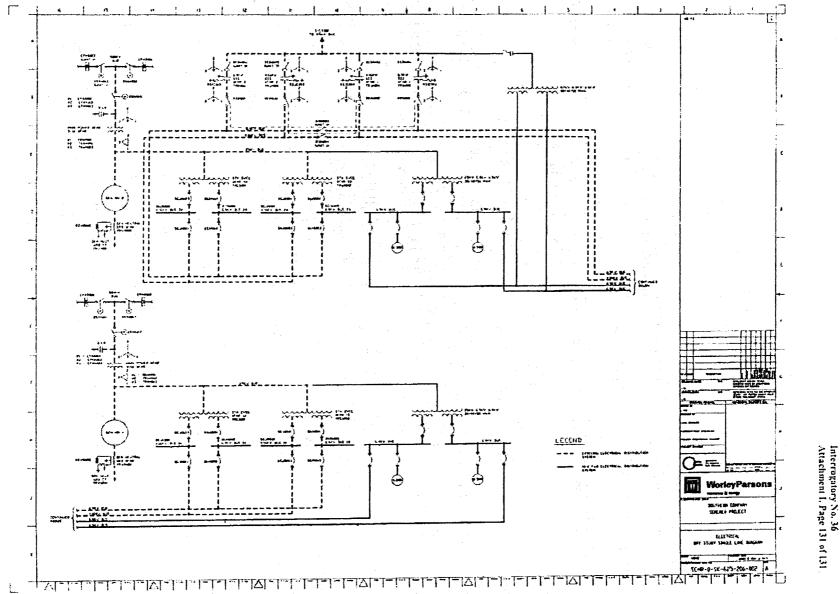
• **

CONFIDENTIAL

Florida Power & Light Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 128 of 131

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 129 of 131


Southern Company Services Plant Scherer FGD Project FGD Process Selection Study SCHR-1-LI-021-0001, Rev. B


APPENDIX N

ELECTRICAL SINGLE-LINE DIAGRAMS (Typical – Units 1 & 2) WET & DRY

SCHR-0-SK-625-206-001 SCHR-0-SK-625-206-002

Florida Power & Light Docket No. 070007-E1 Staff's Fourth Set of Interrogatories Interrogatory No. 36 Attachment I, Page 131 of 131

Annual System Emissions Reduction by Polutant

Site	SJRPP Unit 1 & 2	SJRPP Unit 1 & 2	Scherer 4	Scherer 4	Martir	n 1 & 2 - Manatee	1&2
Project:	SCR with Ammonia Injection	SCR with Ammonia Injection	Wet FGD Scrubber	Baghouse & Mercury Sorbant Injection	800 MW Cycling Project	800 MW Cycling Project	800 MW Cycling Project
[Yearly NOx	Yearly NOx	Yearly SO2	Yearly Mercury	Yearly SO2	Yearly NOx	Yearly CO2
	Reduction	Reduction	Reduction	Reduction	Reduction	Reduction	Reduction
	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)	(Tons)
Year	, ,						
2008	3,611	0	0	0.00	0	0	. 0
2009	7,666	0	0	0.00	6,619	2,627	1,137,423
2010	7,644	0	0	0.10	9,401	3,293	1,336,497
2011	7,669	0	0	0.14	7,376	4,355	1,485,389
2012	7,723	2,340	15,618	0.13	7,969	4,873	1,612,764
2013	7,706	2,951	19,534	0.13	8,507	4,762	1,622,297
2014	7,690	2,929	19,535	0.13	8,690	4,195	1,496,406
2015	7,138	2,929	19,537	0.13	8,039	4,559	1,567,416
2016	3,294	2,931	19,591	0.13	6,393	4,113	1,373,473
2017	3,270	2,939	19,535	0.13	6,261	4,532	1,469,354
2018	3,274	2,924	19,488	0.13	8,058	4,904	1,582,008
2019	3,277	2,924	19,513	0.13	9,196	4,882	1,593,025
2020	3,287	2,945	19,591	0.13	8,216	5,240	1,642,888
2021	3,284	2,940	19,534	0.13	7,921	5,136	1,622,994
2022	3,278	2,935	19,534	0.13	8,005	4,892	1,679,445
2023	3,273	2,925	19,536	0.13	6,658	4,691	1,690,528
2024	3,319	2,976	19,594	0.13	6,769	4,271	1,712,155
2025	3,283	2,945	19,497	0.13	6,716	4,533	1,774,348

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 37 Page 1 of 1

Q.

What entities were solicited and what entities responded to RFPs with bids for each CAIR/CAMR project valued at over \$1 Million?

A.

For the reburn and low NOx burner projects, four entities (G.E., B&W, Ansaldo, and Mobotec) were requested to provide proposals for the 400 MW units and two entities (G.E. and Mobotec) provided proposals. For the Putnam water injection project, the combustion turbine OEM Siemens provided a Customer Informational Letter outlining the modifications necessary and estimated costs. Siemens was considered the only viable source for supplying the parts and services for the Putnam Units due to the complexity of implementing a modification such as water injection on a gas turbine.

FPL did not issue any RFPs for CAIR/CAMR projects Related to St. Johns River Power Park (SJRPP) or Scherer Unit 4. FPL is a non-operating partial owner of SJRPP and Scherer Unit 4. Services are procured for SJRPP by JEA on their own behalf and as agent for FPL. Equipment and services are procured for Plant Scherer by Georgia Power Company/Southern Company on their behalf and as agent for the six other co-owners.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 38 Page 1 of 1

Q.

Provide a financial analysis comparing the retrofit of FPL's Scherer 4 as proposed by FPL with replacement generation based on a natural gas combined cycle unit, considering base, high, and low fuel price sensitivities. Consider the most cost effective approach available to FPL regarding the physical location of the combined cycle unit.

Α.

FPL has ownership and contractual commitments to pay its share of the capital and operating costs of Scherer 4, which FPL must pay regardless of how much energy output FPL takes from Scherer 4. Thus, FPL would not avoid having to pay its share of Scherer 4 costs, other than its portion of variable costs, if it decided to build an additional combined cycle unit and took power from that unit instead of Scherer 4. While FPL has not performed a formal economic analysis of that alternative, considering that the energy costs for combined cycle generation are significantly greater than the energy costs of Scherer 4, FPL strongly doubts that one could economically justify the costs of building and operating a combined cycle unit with just the avoided Scherer 4 variable costs.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 39 Page 1 of 1

Q.

Provide a financial analysis comparing the retrofit of FPL's Scherer 4 as proposed by FPL with replacement generation based on a natural gas combined cycle unit (s), considering base, high, and low future carbon capture/sequestration requirements sensitivities. Consider the most cost effective approach available to FPL regarding the physical location of the combined cycle unit.

A.

FPL believes that it is inappropriate to evaluate the replacement of FPL's ownership share of Scherer Unit 4 with gas fired combined cycle technology as described in the response to interrogatory question 38.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 40 Page 1 of 1

Q.

What are the FGD technologies proposed for the Scherer Units 1 through 4, the proposed installation dates, and the relative costs of the units? What synergies and cost savings, if any, are planned in the design, procurement, and installation of Scherer Units 1 through 4 by a single vendor or group of vendors working together?

A.

The proposed FGD technology for Scherer Units 1 through 4 is the Advatech Wet FGD (Wet Scrubber).

Current required operation dates of the flue gas desulfurization and total cost estimates (as of 08/10/2007) are as follows:

Unit 1 Operational Prior to 12/31/2014
Unit 2 Operational Prior to 12/31/2013
Unit 3 Operational Prior to 12/31/2011
Unit 4 Operational Prior to 12/31/2012

FPL's share of the cost of the Unit 4 FGD upgrade is

Georgia Power Company acting as Operating Agent per contractual agreement has selected the Advatech Wet Scrubber with the goal of completing the detail design for all four Scherer units within 18 months and commit to equipment procurement for all units for better pricing and lower risk.

Southern Company, parent to Georgia Power Company, has a bulk procurement program to leverage price and other contractual concessions based on the volume of materials purchased for the fleet of environmental projects being executed within their system.

Georgia Power Company is developing a construction bid package strategy that will utilize contractor cost in the most efficient manner. An example is to bid piling / caisson installation packages for SCR and FGD for all four Scherer units.

In every phase of the project Georgia Power Company has committed to look for ways to improve efficiencies.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 41 Page 1 of 1

Q.

Show how the aggregate emissions of FPL, both with and without the planned controls, compare to FPL's expected annual emission allowances.

А.

Attachment I shows the system total emissions, before and after the planned controls.

Florida Power & Light Company Docket No. 070007-El Staff's Third Set of Interrogatories Interrogatory No. 41 Attachment I, Page 1 of 1

Total System Emissions with and without planned controls

								1			
	Bas	e Assumpt	ions		<u> </u>	Vith Control	S		Incremen	tal System I	missions
	(1)	(2)	(3)		(4)	(5)	(6)		(7) =(4) - (1)	(8) =(5) - (2)	(9) =(6) - (3)
	SO2	NOx	Hg		SO2	NOx	Hg		SO2	NOx	Hg
	System	System	System		System	System	System		System	System	System
	Emissions	Emissions	Emissions		Emissions	Emissions	Emissions		Emissions	Emissions	Emissions
Year	Tons	Tons	Tons		Tons	Tons	Tons		Tons	Tons	Tons
2008	109,019	47,611	0.41		109,065	44,000	0.41		45	-3,611	0.00
2009	110,897	46,045	0.43		104,369	35,749	0.43		-6,528	-10,295	0.00
2010	89,247	40,047	0.35		79,945	29,118	0.25		-9,302	-10,929	-0.10
2011	64,931	34,976	0.32		57,637	22,973	0.18		-7,294	-12,003	-0.14
2012	65,388	35,642	0.32		41,912	20,727	0.19		-23,476	-14,915	-0.13
2013	66,776	35,739	0.32		38,861	20,360	0.19		-27,915	-15,379	-0.13
2014	72,703	37,569	0.32		44,644	22,758	0.19		-28,059	-14,811	-0.13
2015	64,962	36,067	0.31	l	37,489	21,443	0.18		-27,473	-14,624	-0.13
2016	56,845	31,673	0.25		30,954	21,330	0.12		-25,891	-10,343	-0.13
2017	53,167	30,071	0.25		27,451	19,339	0.12		-25,716	-10,732	-0.13
2018	55,910	28,304	0.25		28,394	17,193	0.12		-27,516	-11,111	-0.13
2019	60,179	28,904	0.25		31,551	17,817	0.12		-28,628	-11,086	-0.13
2020	55,497	28,004	0.25		27,756	16,538	0.12		-27,741	-11,466	-0.13
2021	55,039	28,406	0.25		27,665	17,065	0.12		-27,374	-11,341	-0.13
2022	55,899	28,569	0.25		28,453	17,481	0.12		-27,446	-11,087	-0.13
2023	51,859	27,912	0.25		25,759	17,019	0.12		-26,100	-10,893	-0.13
2024	52,013	27,817	0.25		25,723	17,326	0.12		-26,290	-10,491	-0.13
2025	46,624	26,758	0.22		20,567	16,015	0.09		-26,058	-10,743	-0.13

Note: The values above are based on FPL's sytem capability; ie., FPL units and purchases.

Controls:

SJRPP Unit 1 and 2: -SCR with ammonia injection -Mercury CEMS Scherer 4: -Wet FGD Scrubber -SCR with ammonia injection -Fabric filter baghouse & mercury sorbant injection -Mercury CEMS Manatee Unit 1 and 2; Martin Unit 1 and 2: -800 MW cycling project

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 42 Page 1 of 1

Q.

Provide FPL's comparison of the ECRC cost of implementing the originally-planned reburn and low NOx burner projects at Cape Canaveral, Port Everglades, Turkey Point, and Putnam plants, plus required NOx allowance costs, to the cost of installation of the proposed 800 MW cycling project, plus required NOx allowance costs.

A.

FPL has not compared the costs of implementing the reburn and low NOx burner projects to the costs of 800 MW cycling projects. The 800 MW project, in addition to substantial emission savings, produces large fuel savings which makes it more cost-effective than any other project under consideration for FPL's CAIR compliance strategy. In FPL's strategy, the gas reburn and low NOx burner projects were considered to be additional or complimentary projects to the 800 MW cycling project.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 43 Page 1 of 1

Q.

Who provided the detailed information contained in Exhibit RRL-5 of Witness LaBauve's direct testimony of August 3, 2007?

A.

APTECH, an engineering firm, was contracted by FPL to provide the detailed information.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 44 Page 1 of 1

Q.

What method(s) is FPL using to solicit vendors for the design, procurement, and construction of the 800 MW Unit Cycling Project in the most cost effective way?

A.

FPL is utilizing the normal, established company procurement process. This provides controls, access to favorable FPL rates with vendors and takes advantage of economy of scale where applicable. Work on the first unit will begin in 2008. Bids have been received for the finishing superheater tube (FSH) replacements and a review is in progress. Specifications for the heat recovery area (HRA) drains have been developed and are being reviewed by FPL engineering personnel.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 45 Page 1 of 1

Q.

How might future carbon capture requirements impact the full implementation of the 800 MW Unit Cycling Project, as referenced on Page 11 of Witness LaBauve's August 3, 2007 direct testimony?

А.

The 800 MW Unit Cycling Project is anticipated to produce both reductions in NOx emissions and associated reductions in fuel use. Reductions in fuel use will produce related reductions in emission of CO2. Prior to the availability of commercially available cost-effective carbon capture equipment for fossil steam generating units, FPL is unaware of any effects, either positive or negative, of the individual projects being performed as part of the 800 MW Unit Cycling Project on the ability to add future carbon capture equipment.

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 46 Page 1 of 1

Q.

What impact is the proposed 800 MW unit cycling project expected to have on fuel costs for each generating unit?

А.

It is important to note that in deciding whether the cycling project is economic, the relevant fuel costs are the system costs, not the fuel costs of the individual 800 MW units. Attachment I, shows the system fuel costs, before and after the cycling projects.

Florida Power & Light Company Docket No. 070007-EI Staff's Third Set of Interrogatories Interrogatory No. 46 Attachment I, Page 1 of 1

	(1)	(2)	(3) =(2)-(1)		
	800 MW units	Change Case without economically cycling 800 MW units	System FUEL SAVINGS		
<u>YEAR</u>	<u>Cost (\$M)</u>	<u>Cost (\$M)</u>	<u>(\$M)</u>		
2007	5,246	5,246	0		
2008	5,569	5,569	0		
2009	5,105	5,202	97		
2010	5,168	5,230	62		
2011	4,986	5,054	68		
2012	5,330	5,433	103		
2013	5,614	5,704	90		
2014	5,825	5,933	108		
2015	6,357	6,454	98		
2016	7,078	7,192	114		
2017	7,715	7,838	123		
2018	8,126	8,276	151		
2019	8,707	8,845	139		
2020	9,105	9,280	175		
2021	9,448	9,634	186		
2022	9,974	10,181	207		
2023	10,497	10,748	251		
2024	11,191	11,443	252		
2025	11,989	12,265	276		

System Production Cost Difference Due to Economically Cycling of the 800 MW Units

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 47 Page 1 of 1

Q.

Provide the updated annual price projections for SO2, NOx, and mercury allowances. Compare to the cost of CAIR/CAMR compliance for each unit by year under FPL's most recent CAIR/CAMR plan.

А.

The annual price projections for SO2, NOx, and mercury are shown in Attachment I.

FPL has compared the costs of its CAIR/CAMR strategy versus a strategy where FPL relies only in the purchase of allowances. This is done at the system level, not at the unit level, as FPL believes that the proper comparison is at the system level. This system-level comparison is provided in Attachment II.

Florida Power & Light Company Docket No. 070007-El Staff's Third Set of Interrogatories Interrogatory No. 47 Attachment I, Page 1 of 1

Nominal \$/Ton

	NOx	SO2	Hg
Year	\$/Ton	<u>\$/T</u> on	\$/Ton
2008	0	972	0
2009	1,674	1,065	0
2010	1,826	1,165	59,971,424
2011	1,991	1,276	59,360,067
2012	2,182	1,398	58,754,359
2013	2,391	1,532	58,154,370
2014	2,619	1,677	60,539,881
2015	2,867	1,838	66,290,458
2016	3,140	2,013	72,584,634
2017	3,436	2,203	79,445,273
2018	3,761	2,411	86,708,345
2019	4,116	2,638	95,175,091
2020	4,506	2,888	104,170,294
2021	3,337	3,163	114,099,102
2022	2,473	3,465	124,973,551
2023	1,831	3,795	136,885,007
2024	1,356	4,155	149,931,006
2025	1,004	4,552	164,218,862

Florida Power & Light Company Docket No. 070007-El Staff's Third Set of Interrogatories Interrogatory No. 47 Attachment II, Page 1 of 3

Revenue Requirements: Base Case

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	Annual	Incremental	System	Incremental	Total	Total		NPV	NPV
	Discount	Generation	Generation	Generation	System	Emission	Annual	Annual	Cumulative
	Factor at	Capital	Variable O&M	Fixed O&M	Fuel	Costs*	Costs	Cost	Costs
Year	0.08302	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)
2008	1.000	0	97	0	5,745	106	5,948	5,948	5,948
2009	0.923	0	100	0	6,148	17	6,266	5,785	11,733
2010	0.853	0	109	0	6,174	9	6,292	5,364	17,098
2011	0.787	0	113	0	6,006	83	6,202	4,882	21,980
2012	0.727	0	119	0	5,724	226	6,069	4,411	26,391
2013	0.671	0	121	0	5,991	403	6,515	4,373	30,763
2014	0.620	0	122	0	6,484	508	7,114	4,409	35,172
2015	0.572	0	131	0	7,066	653	7,850	4,491	39,664
2016	0.528	0	136	0	7,698	725	8,559	4,522	44,186
2017	0.488	0	149	0	8,029	891	9,069	4,424	48,609
2018	0.450	0	154	0	8,188	1,051	9,393	4,231	52,840
2019	0.416	0	158	0	8,684	1,221	10,062	4,185	57,025
2020	0.384	0	160	0	8,950	1,403	10,513	4,037	61,062
2021	0.355	0	170	0	9,392	1,553	11,115	3,941	65,004
2022	0.327	0	177	0	10,008	1,821	12,006	3,931	68,934
2023	0.302	0	187	0	10,594	1,999	12,780	3,863	72,798
2024	0.279	0	197	0	11,384	2,283	13,863	3,870	76,667
2025	0.258	0	210	0	12,192	2,419	14,822	3,820	80,487
	Total NPV =	0	1,315	0	72,506	6,667	80,487		

Florida Power & Light Company Docket No. 070007-El Staff's Third Set of Interrogatories Interrogatory No. 47 Attachment II, Page 2 of 3

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	Annual	Incremental	System	Incremental	Total	Total		NPV	NPV
	Discount	Generation	Generation	Generation	System	Emission	Annual	Annual	Cumulative
	Factor at	Capital	Variable O&M	Fixed O&M	Fuel	Costs*	Costs	Cost	Costs
Year	0.08302	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)
2008	1.000	10	98	1	5,747	106	5,962	5,962	5,962
2009	0.923	24	105	2	6,029	10	6,169	5,696	11,658
2010	0.853	57	119	2	6,049	(2)	6,225	5,307	16,965
2011	0.787	58	123	2	5,838	74	6,095	4,798	21,763
2012	0.727	111	133	2	5,542	193	5,981	4,347	26,110
2013	0.671	126	136	2	5,803	360	6,427	4,314	30,424
2014	0.620	121	138	2	6,308	461	7,030	4,357	34,781
2015	0.572	121	146	2	6,872	602	7,743	4,430	39,211
2016	0.528	115	148	2	7,519	673	8,457	4,468	43,679
2017	0.488	113	159	2	7,828	835	8,937	4,360	48,038
2018	0.450	108	165	2	7,974	985	9,234	4,159	52,197
2019	0.416	105	168	2	8,474	1,145	9,895	4,115	56,312
2020	0.384	100	171	2	8,712	1,323	10,308	3,958	60,271
2021	0.355	97	181	2	9,144	1,467	10,891	3,862	64,132
2022	0.327	93	188	2	9,743	1,726	11,752	3,847	67,980
2023	0.302	90	196	2	10,307	1,900	12,495	3,777	71,757
2024	0.279	85	207	2	11,085	2,174	13,553	3,783	75,540
2025	0.258	83	221	2	11,869	2,301	14,475	3,731	79,271
	Total NPV =	820	1,415	19	70,784	6,234	79,271		

Revenue Requirements: Planned Controls Implemented

Controls:

SJRPP Unit 1 and 2: -SCR with ammonia injection -Mercury CEMS Scherer 4: -SCR with ammonia injection -Fabric filter baghouse & mercury sorbant injection -Fabric filter baghouse & mercury sorbant injection -Mercury CEMS Manatee Unit 1 and 2; -800 MW cycling project

Florida Power & Light Company Docket No. 070007-EI Staff's Third Set of Interrogatories Interrogatory No. 47 Attachment II, Page 3 of 3

[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]	[10]
	Annual	Incremental	System	Incremental	Total	Total		NPV	NPV
	Discount	Generation	Generation	Generation	System	Emission	Annual	Annual	Cumulative
	Factor at	Capital	Variable O&M	Fixed O&M	Fuel	Costs*	Costs	Cost	Costs
Year	0.08302	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)	(Millions)
2008	1.000	10	1	1	2	0	14	14	14
2009	0.923	24	4	2	(119)	(7)	(96)	(89)	(75)
2010	0.853	57	10	2	(125)	(11)	(67)	(57)	(132)
2011	0.787	58	11	2	(168)	(9)	(107)	(84)	(217)
2012	0.727	111	14	2	(183)	(33)	(88)	(64)	(281)
2013	0.671	126	15	2	(188)	(43)	(88)	(59)	(340)
2014	0.620	121	16	2	(176)	(47)	(84)	(52)	(392)
2015	0.572	121	15	2	(195)	(51)	(107)	(61)	(453)
2016	0.528	115	12	2	(179)	(52)	(102)	(54)	(507)
2017	0.488	113	11	2	(201)	(57)	(132)	(64)	(571)
2018	0.450	108	11	2	(214)	(66)	(160)	(72)	(643)
2019	0.416	105	11	2	(210)	(76)	(167)	(69)	(713)
2020	0.384	100	11	2	(238)	(80)	(205)	(79)	(791)
2021	0.355	97	11	2	(248)	(87)	(224)	(80)	(871)
2022	0.327	93	10	2	(265)	(95)	(255)	(83)	(954)
2023	0.302	90	9	2	(287)	(99)	(285)	(86)	(1,040)
2024	0.279	85	10	2	(299)	(109)	(311)	(87)	(1,127)
2025	0.258	83	10	2	(324)	(119)	(347)	(89)	(1,217)
	Total NPV =	820	100	19	(1,721)	(434)	(1,217)		

Change in Revenue Requirements: (Planned Controls Implemented) - (Base Case)

Notes: Negative Indicates Savings

Controls:

SJRPP Unit 1 and 2:	-SCR with ammonia injection				
	-Mercury CEMS				
Scherer 4:	-Wet FGD Scrubber				
	-SCR with ammonia injection				
	-Fabric filter baghouse & mercury sorbant injection				
	-Mercury CEMS				
Manatee Unit 1 and 2; Martin Unit 1 and 2:					
	-800 MW cycling project				

Florida Power & Light Company Docket No. 070007-EI Staff's Fourth Set of Interrogatories Interrogatory No. 40 Page 1 of 1

Q.

What are the FGD technologies proposed for the Scherer Units 1 through 4, the proposed installation dates, and the relative costs of the units? What synergies and cost savings, if any, are planned in the design, procurement, and installation of Scherer Units 1 through 4 by a single vendor or group of vendors working together?

A.

The proposed FGD technology for Scherer Units 1 through 4 is the Advatech Wet FGD (Wet Scrubber).

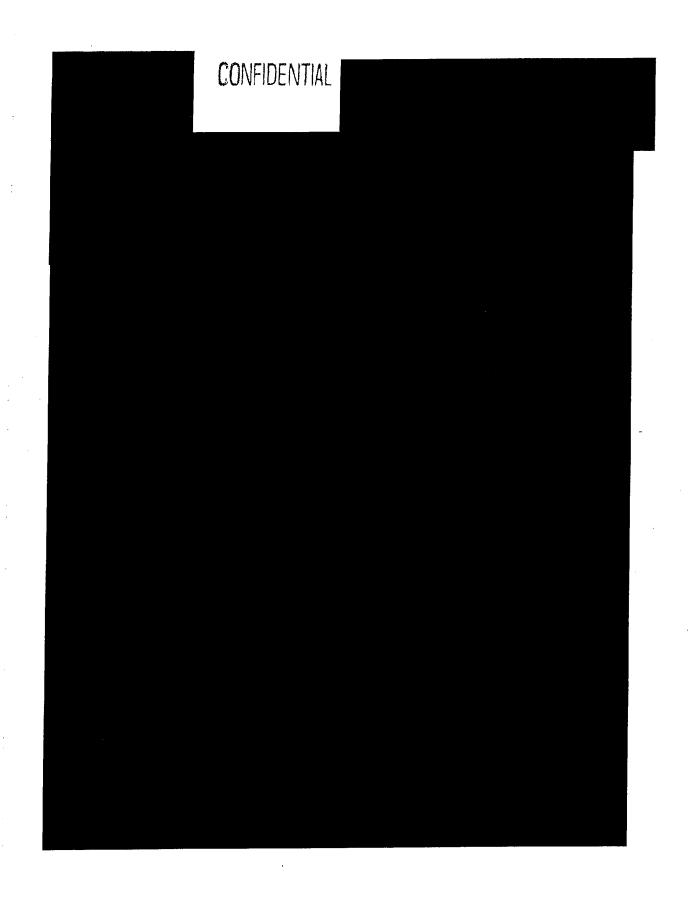
Current required operation dates of the flue gas desulfurization and total cost estimates (as of 08/10/2007) are as follows:

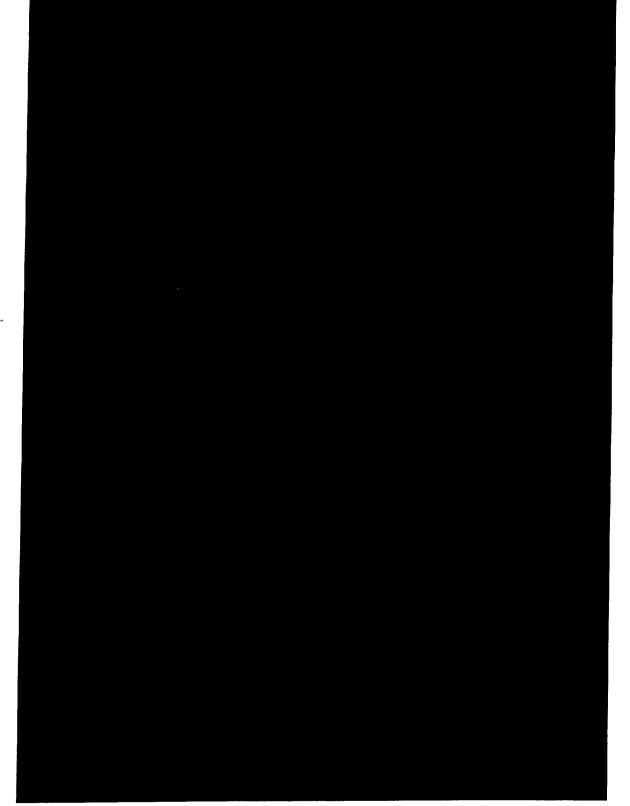
Unit 1 Operational Prior to 12/31/2014

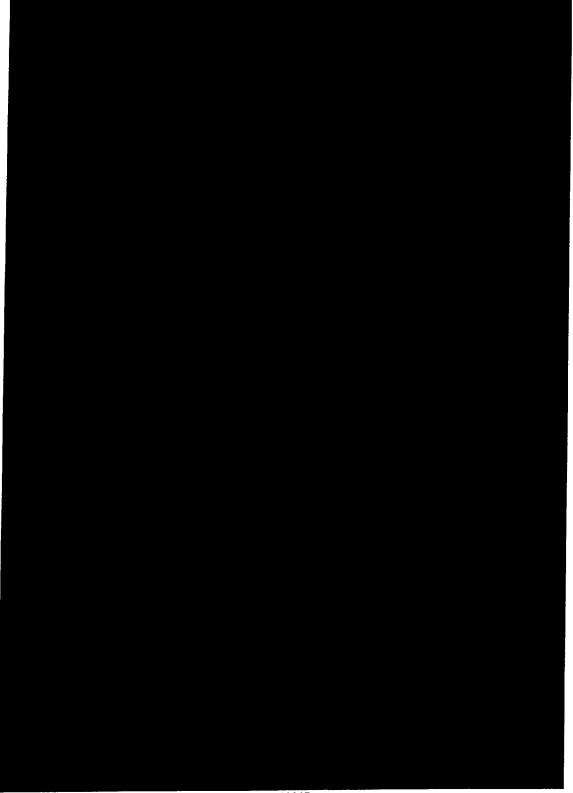
Unit 2 Operational Prior to 12/31/2013

Unit 3 Operational Prior to 12/31/2011

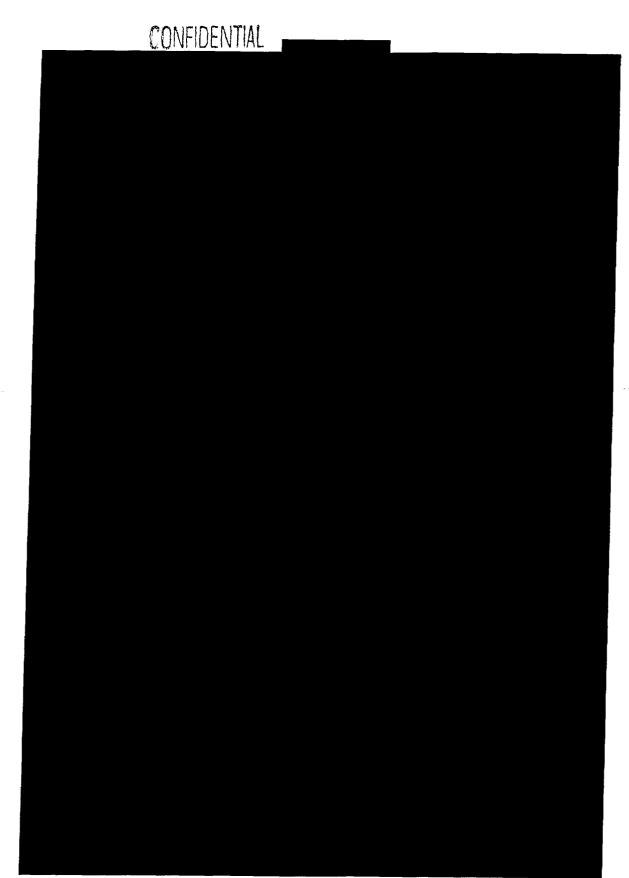
Unit 4 Operational Prior to 12/31/2012

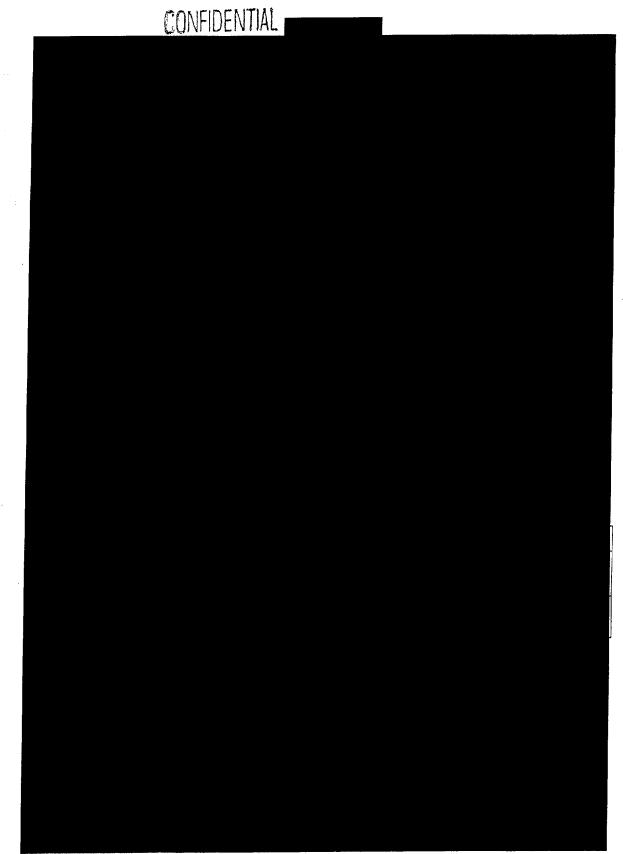

FPL's share of the cost of the Unit 4 FGD upgrade is

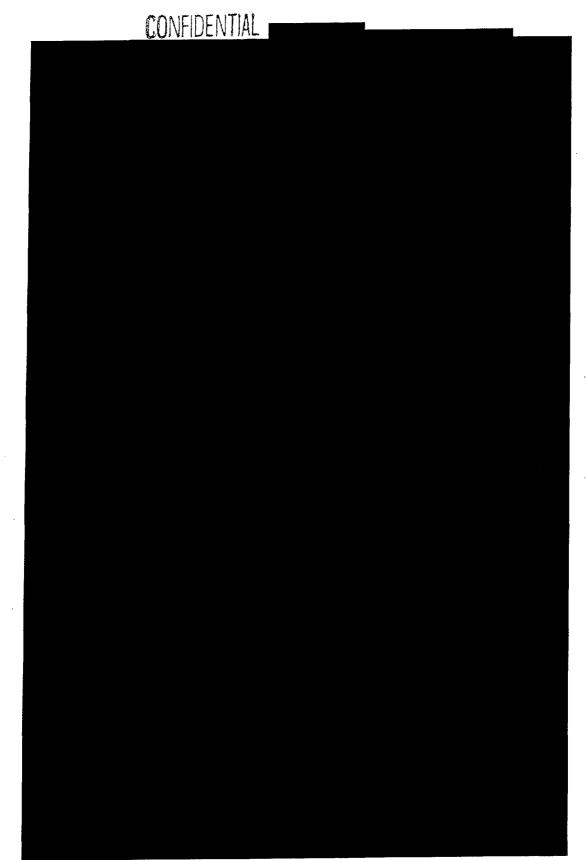

Georgia Power Company acting as Operating Agent per contractual agreement has selected the Advatech Wet Scrubber with the goal of completing the detail design for all four Scherer units within 18 months and commit to equipment procurement for all units for better pricing and lower risk.

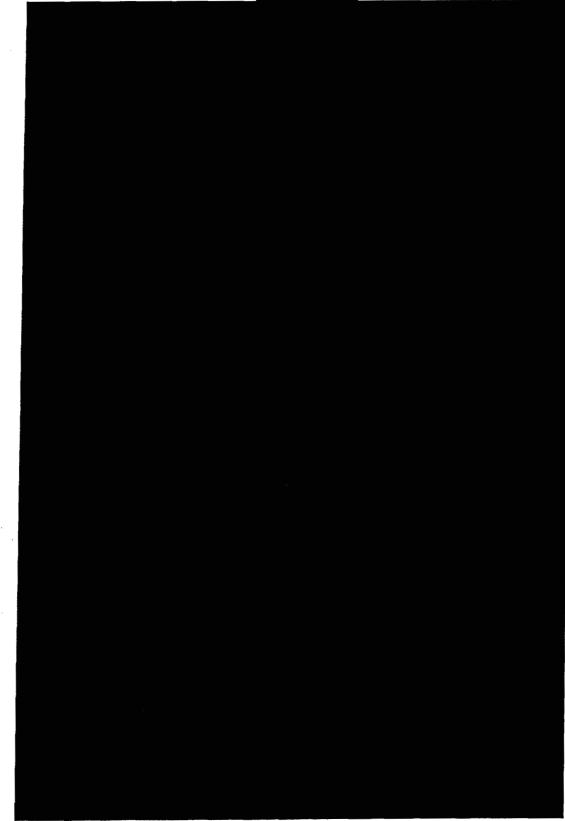

Southern Company, parent to Georgia Power Company, has a bulk procurement program to leverage price and other contractual concessions based on the volume of materials purchased for the fleet of environmental projects being executed within their system.

Georgia Power Company is developing a construction bid package strategy that will utilize contractor cost in the most efficient manner. An example is to bid piling / caisson installation packages for SCR and FGD for all four Scherer units.


In every phase of the project Georgia Power Company has committed to look for ways to improve efficiencies.

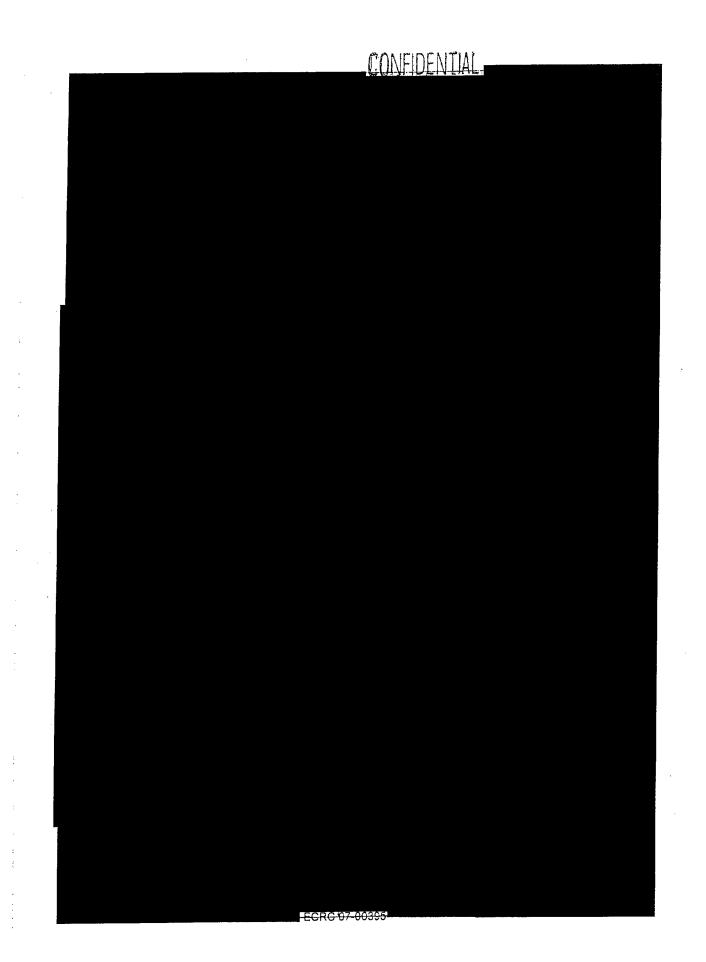


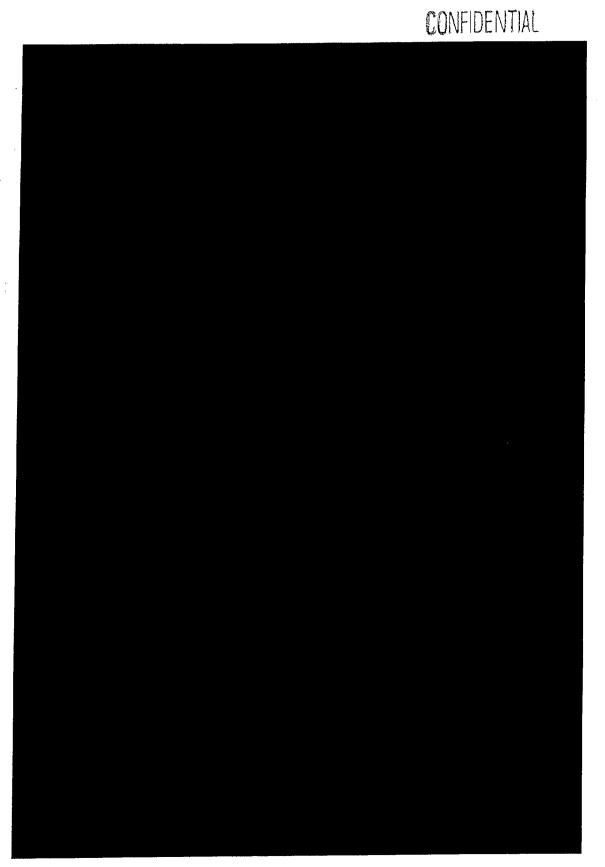

ECRC 07-00387

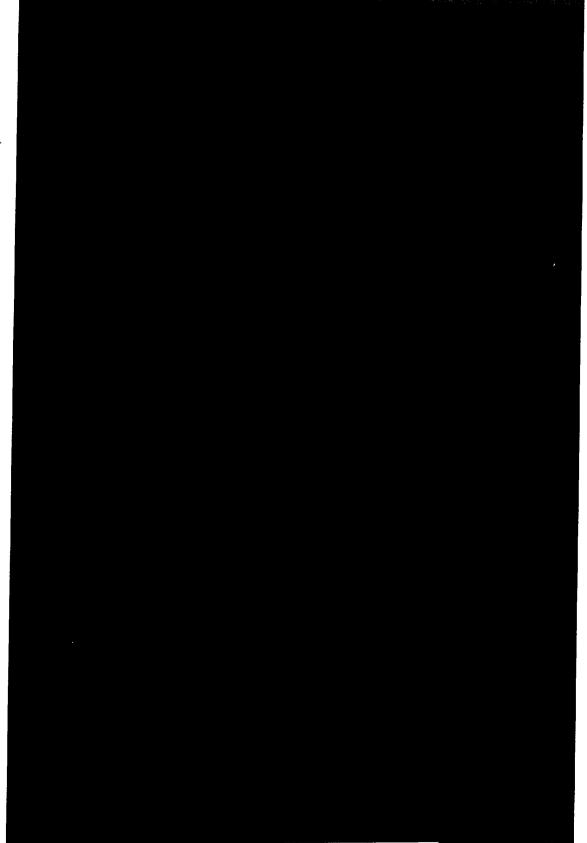


.

÷

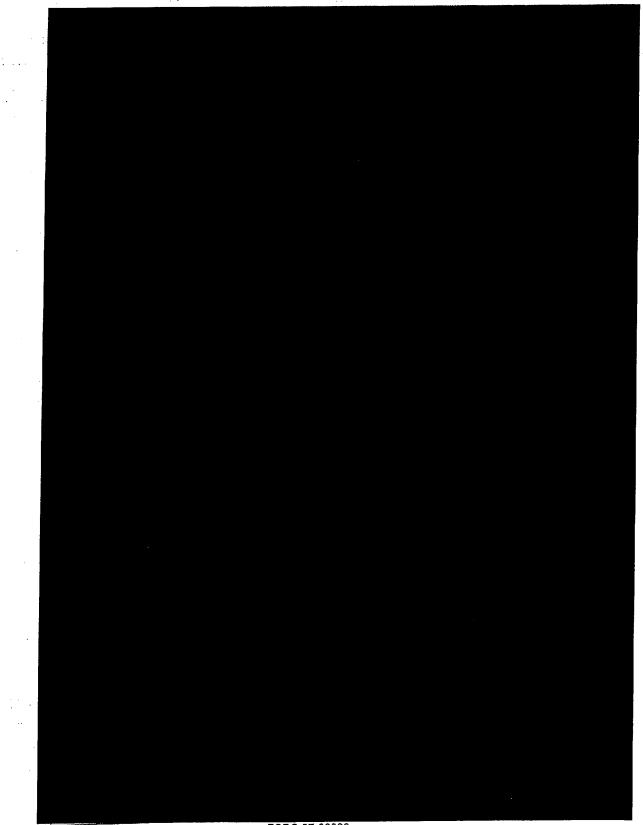


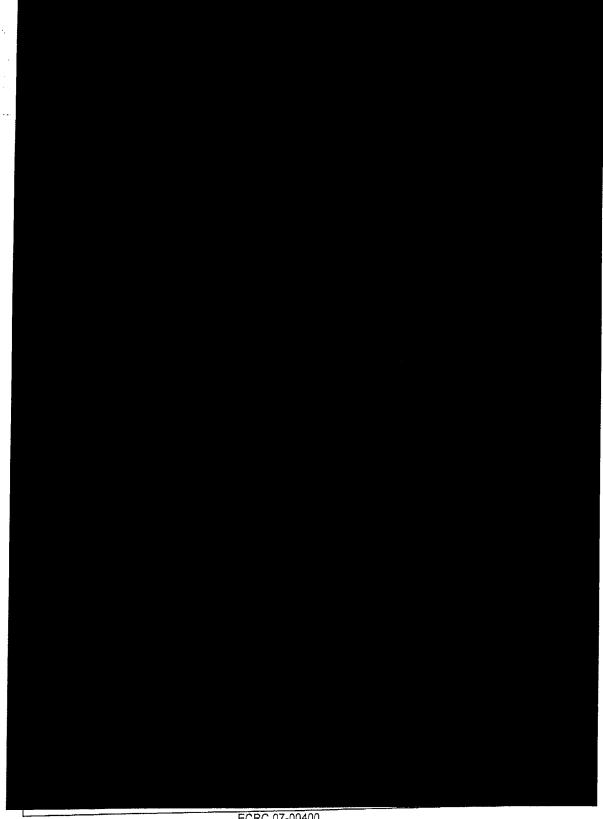

ECRC 07-00392



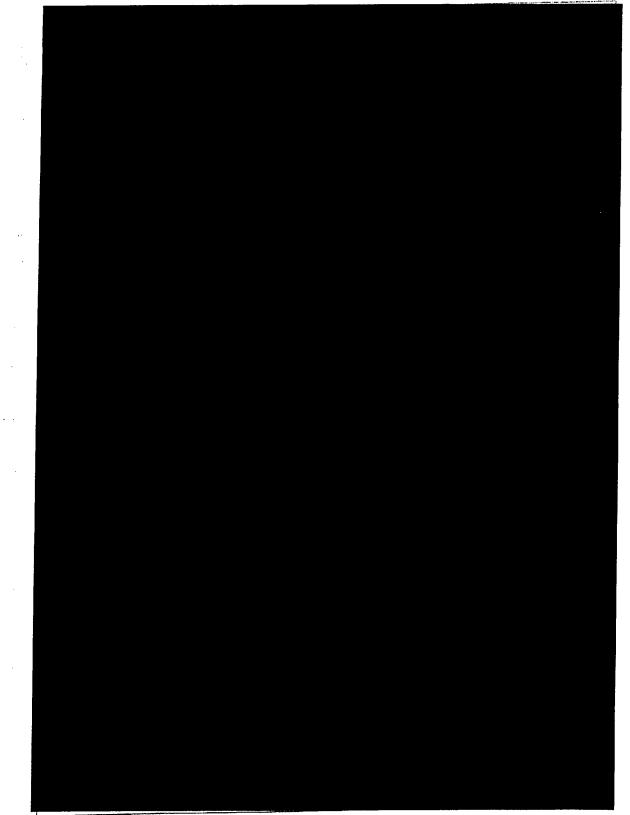
ECRC 07-00394

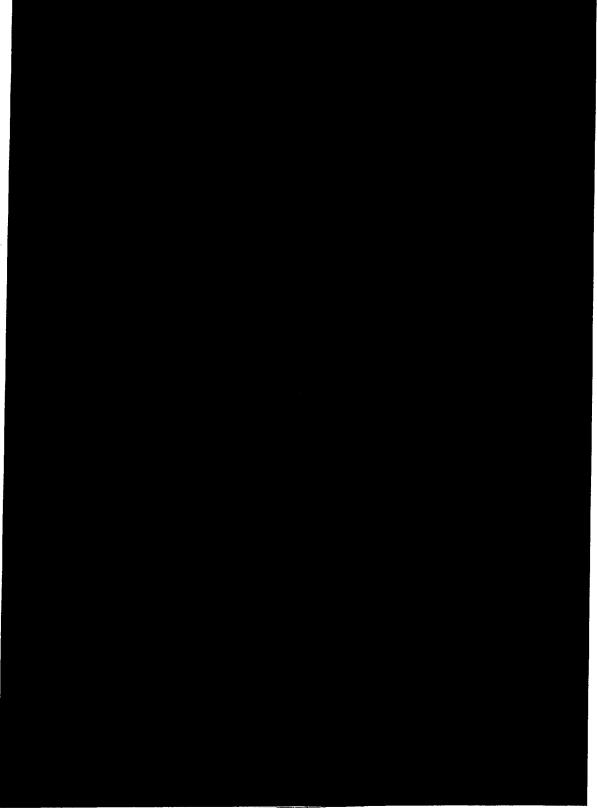
.....

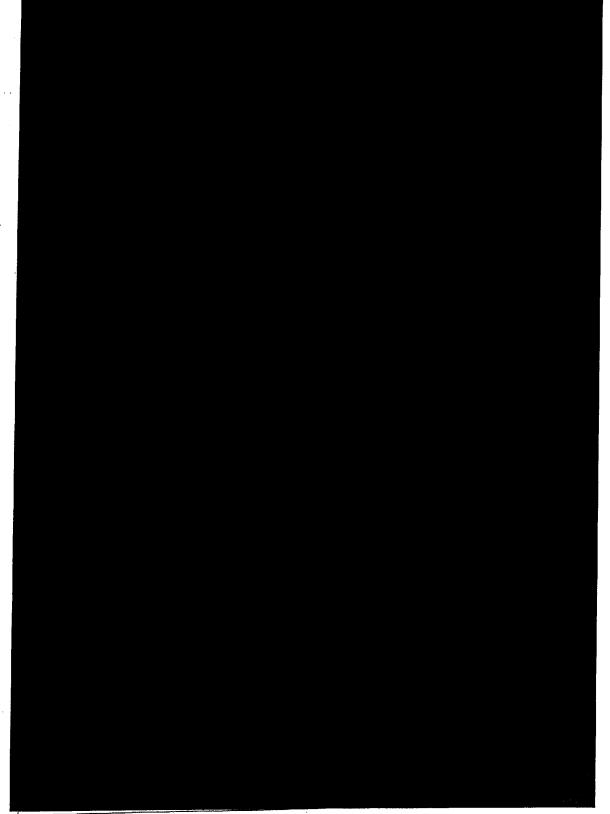

.


ECRC 07-00397

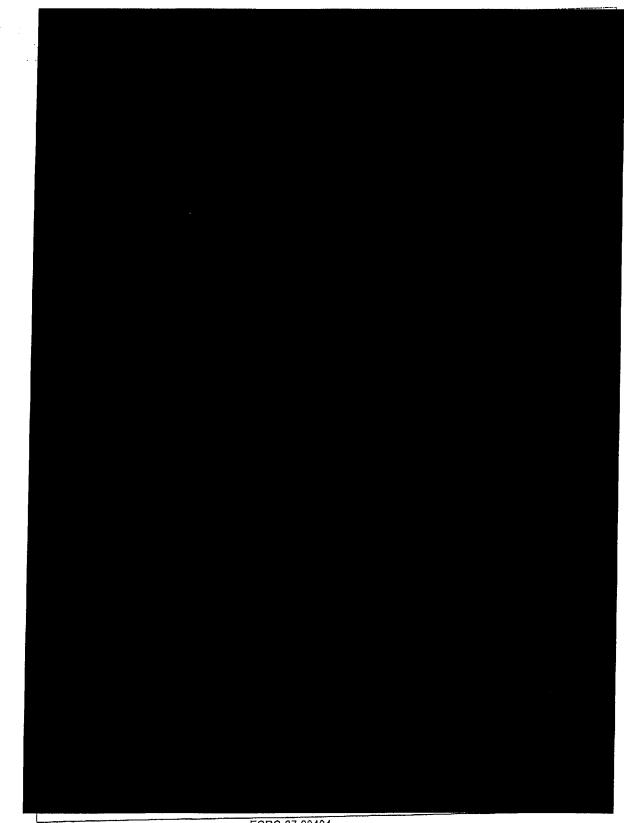
ECRC 07-00398


ľ



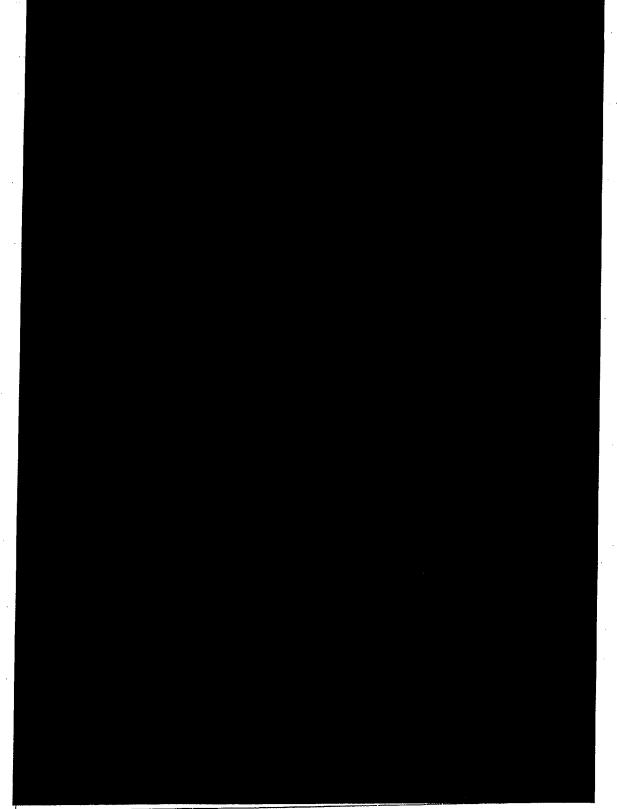

.....

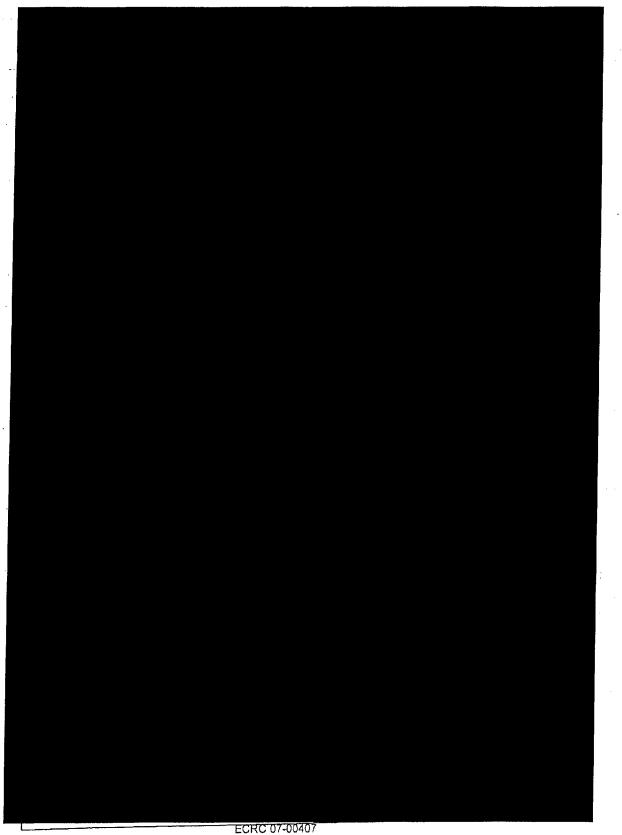
ECRC 07-00400



ECRC 07-00402

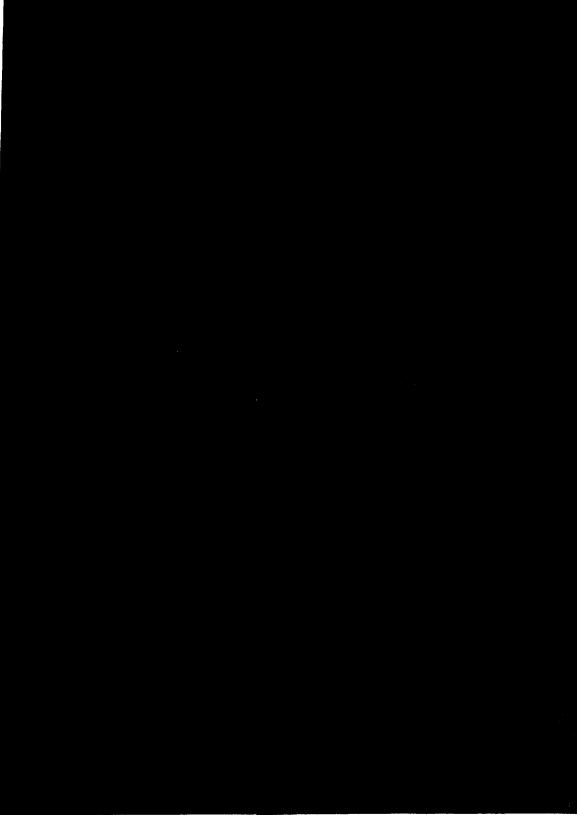
.


ł


ECRC 07-00404

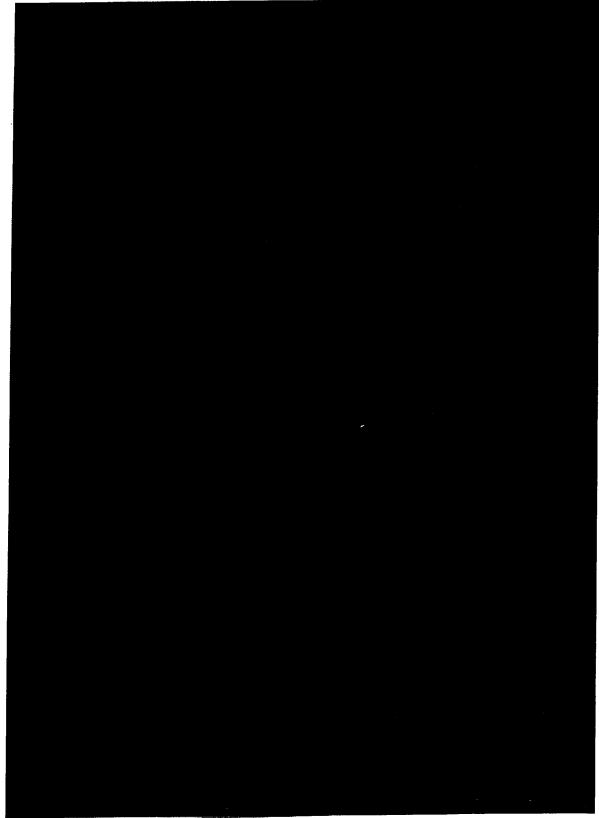
ECRC 07-00405

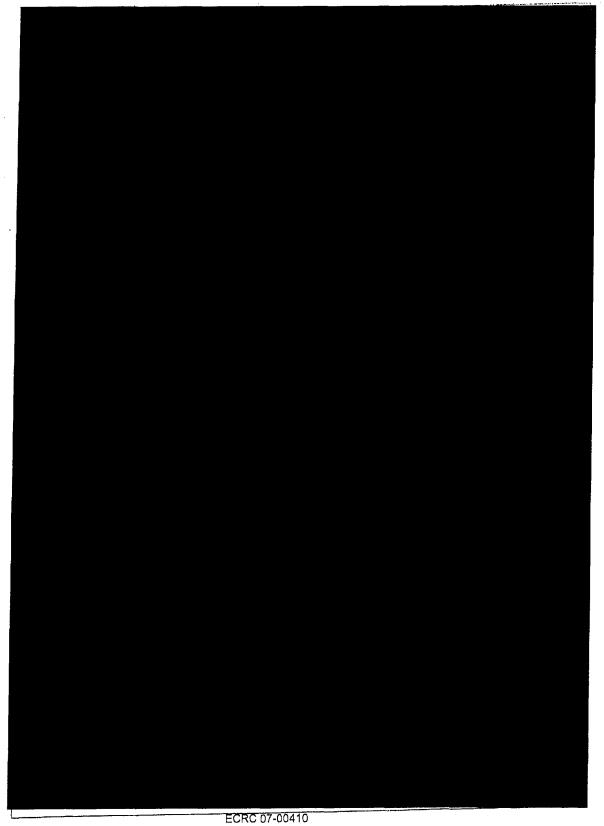
.



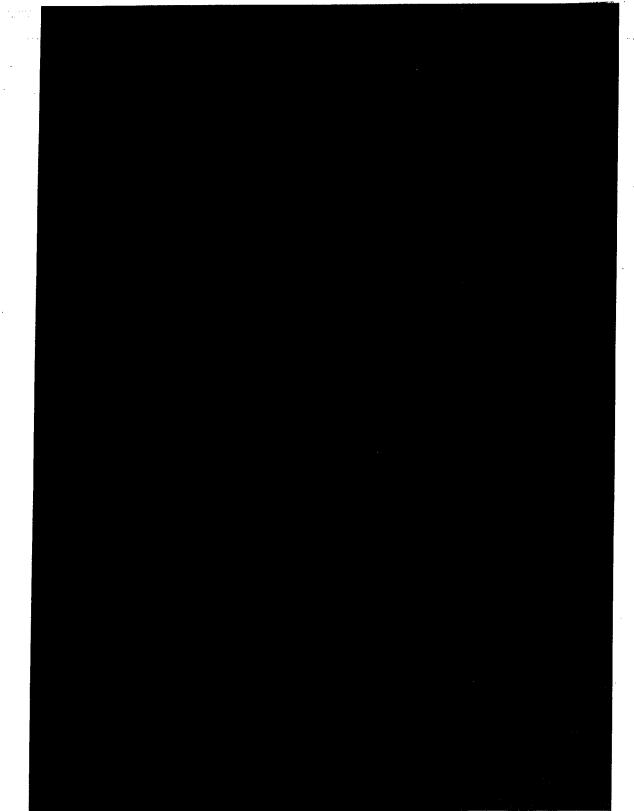
.

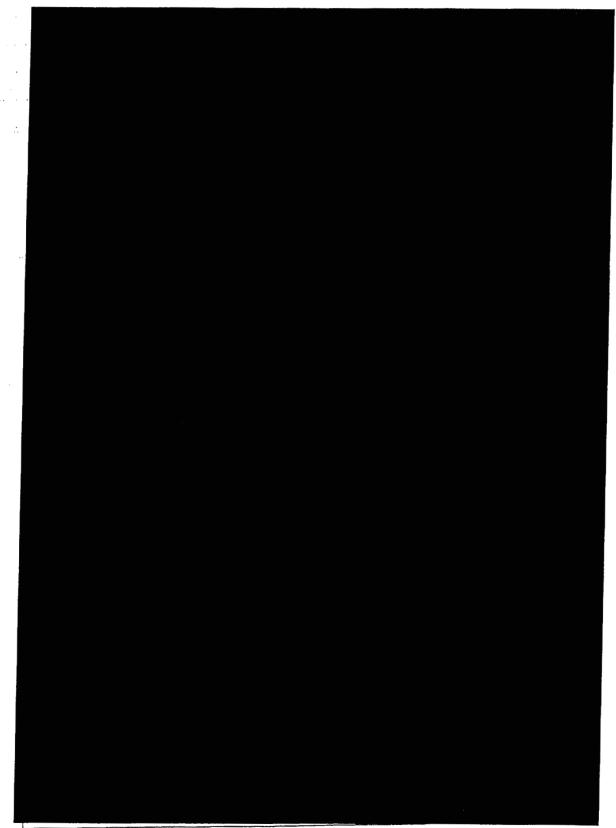
·- .


•

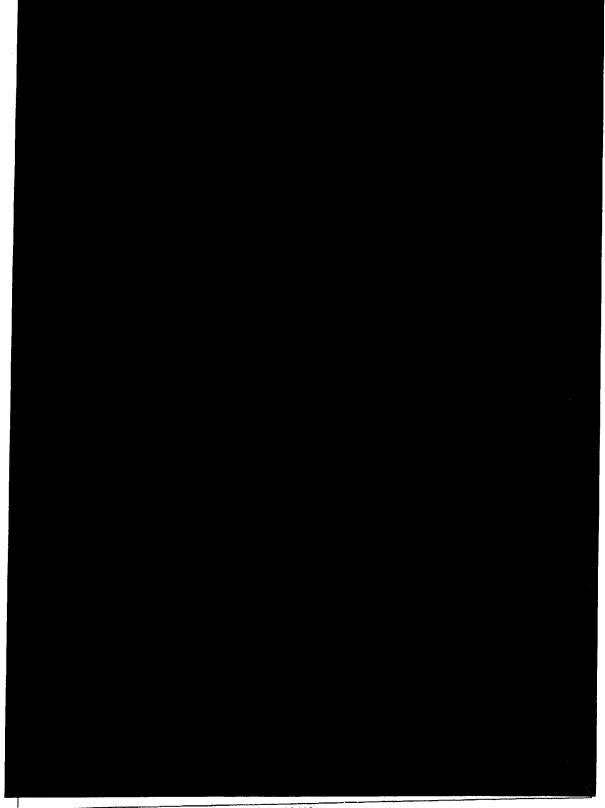

÷

..

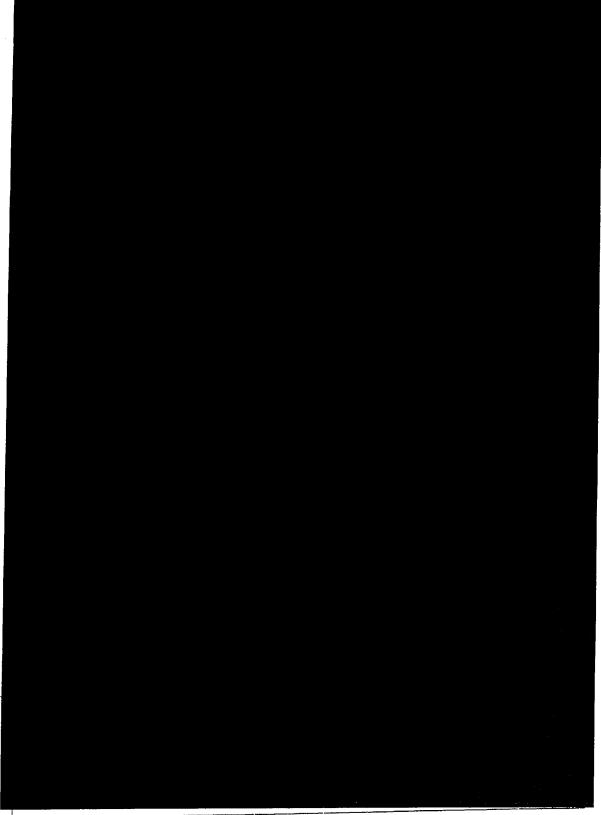

:.



ECRC 07-00409

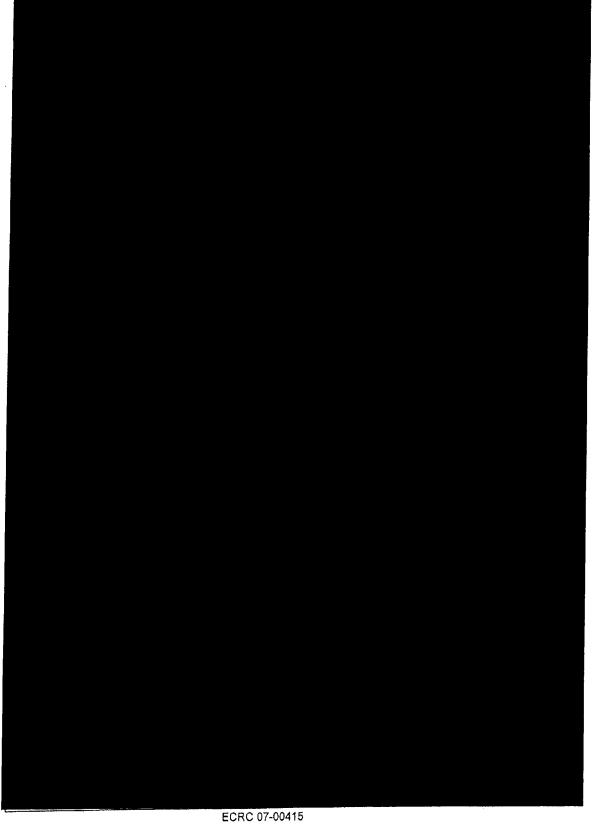


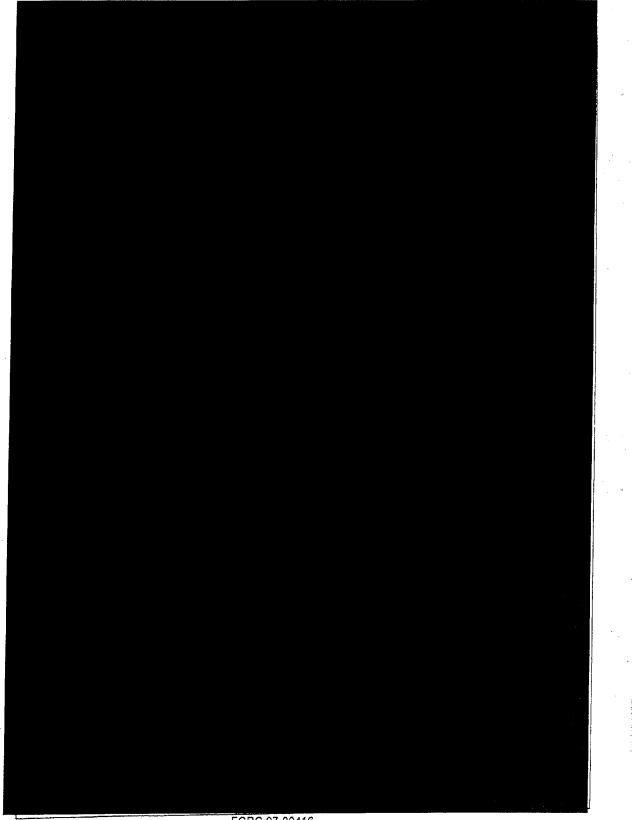
.

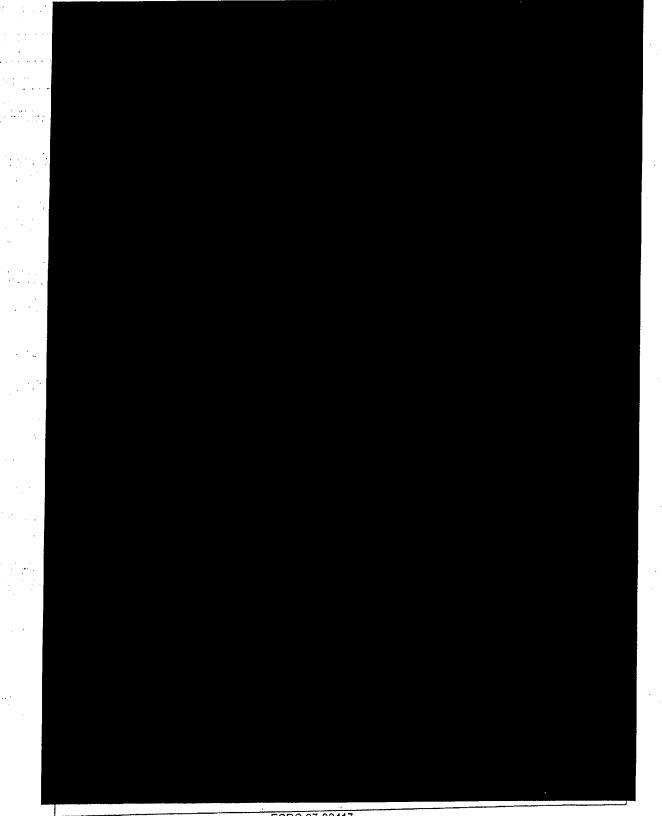


ECRC 07-00412

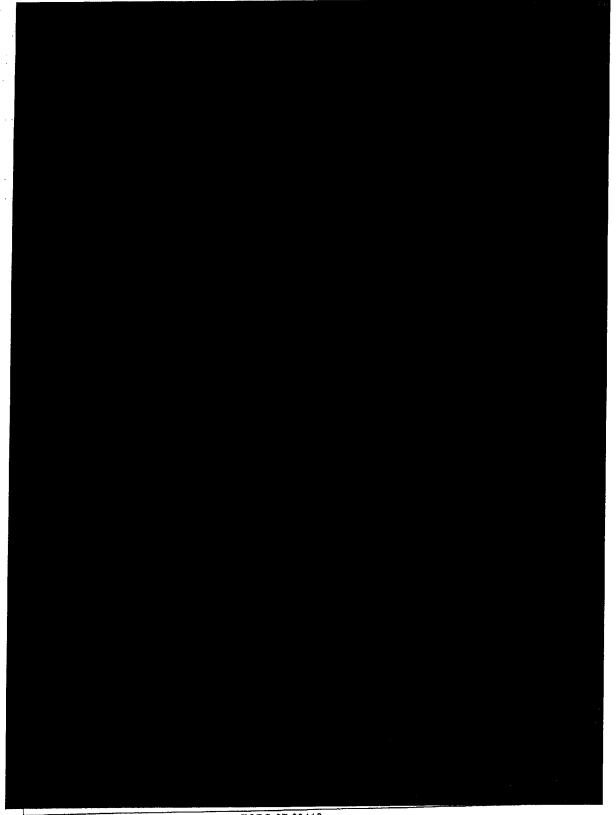
.

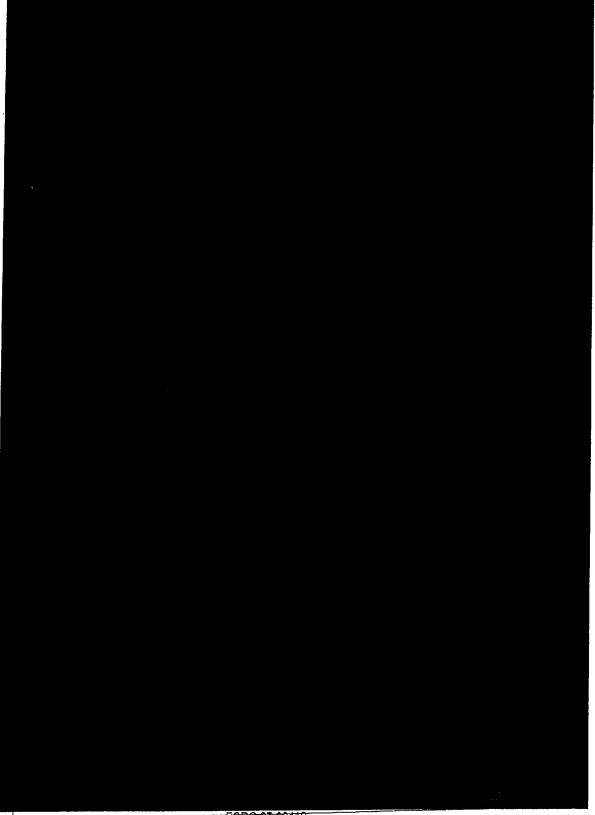

:

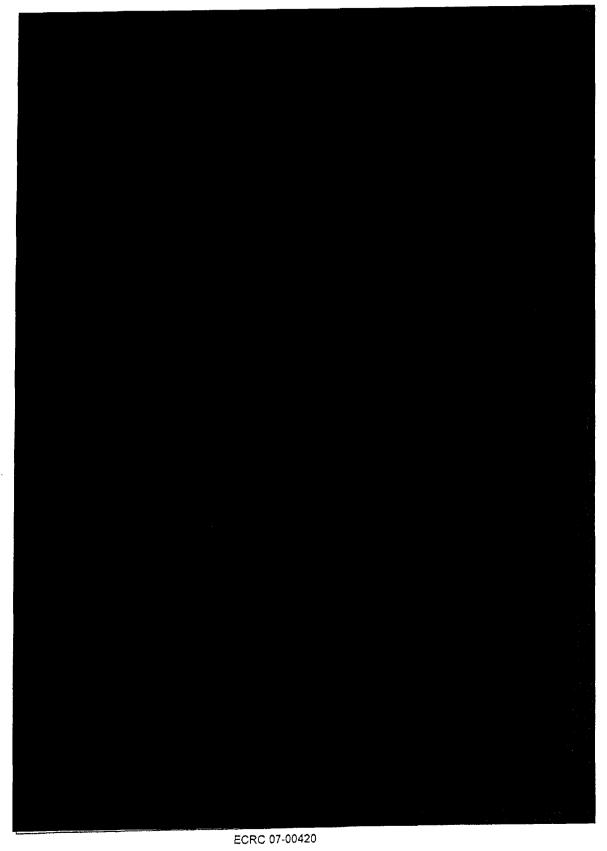

.


÷

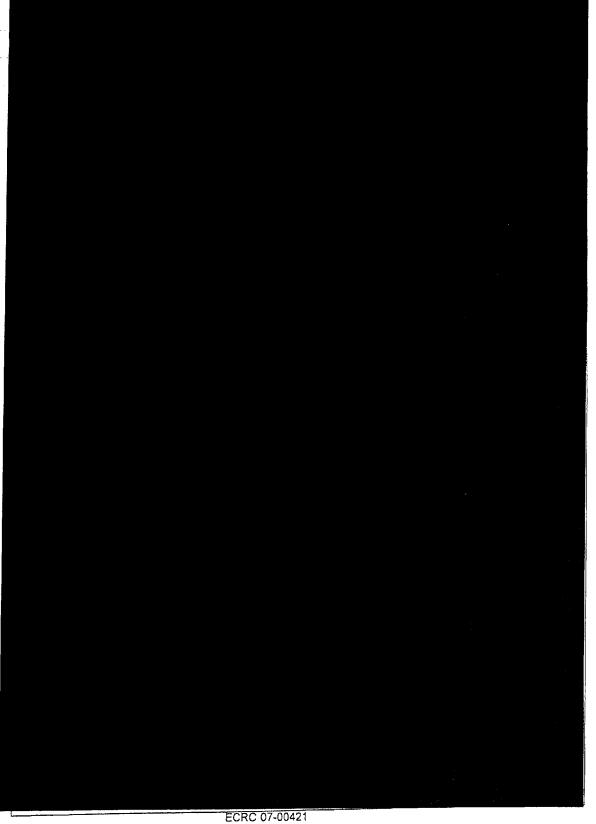
ECRC 07-00414



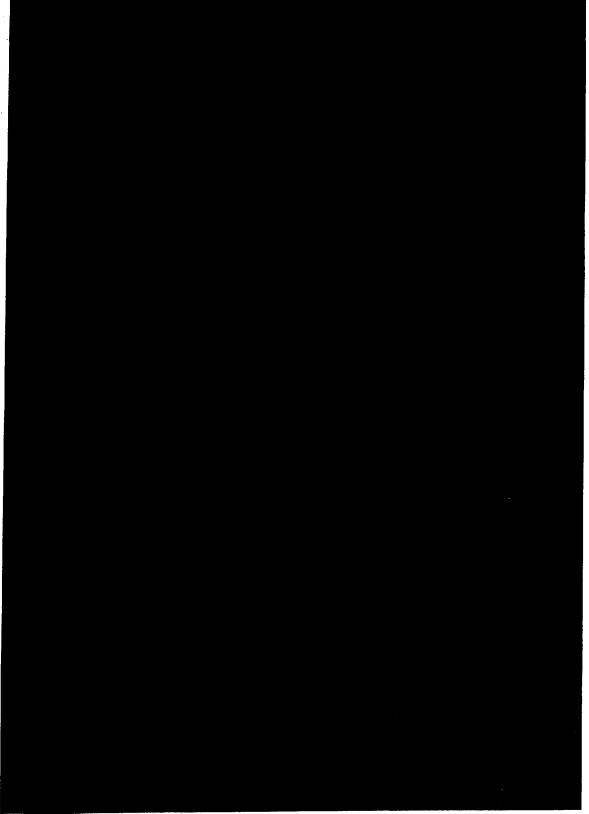

.

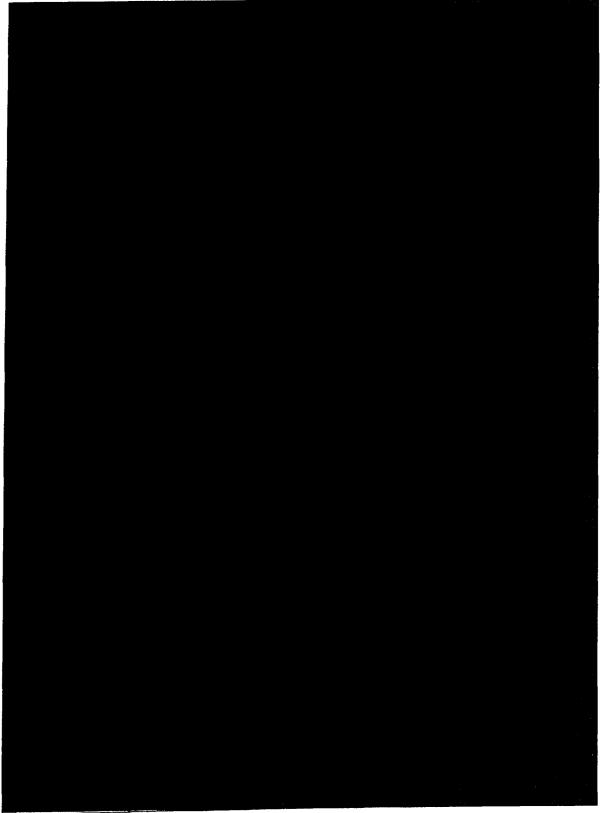


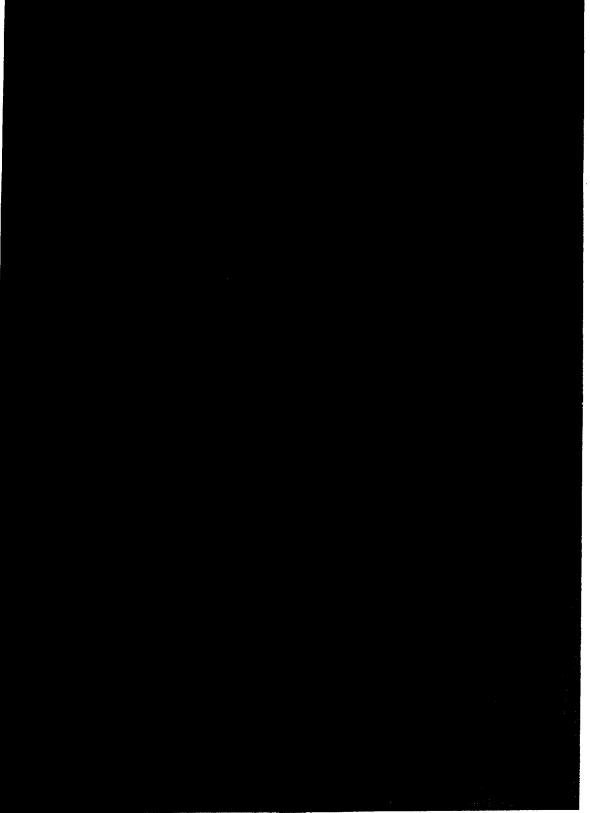
.....



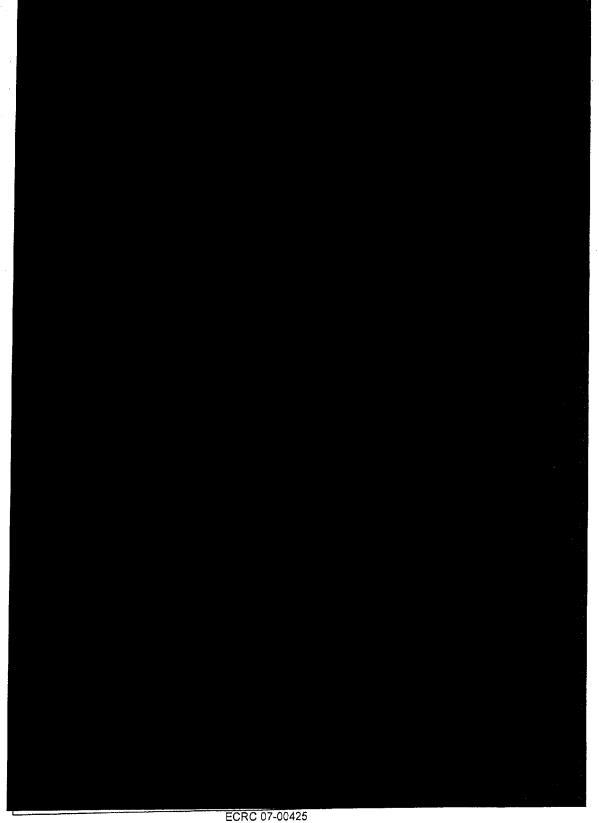
.

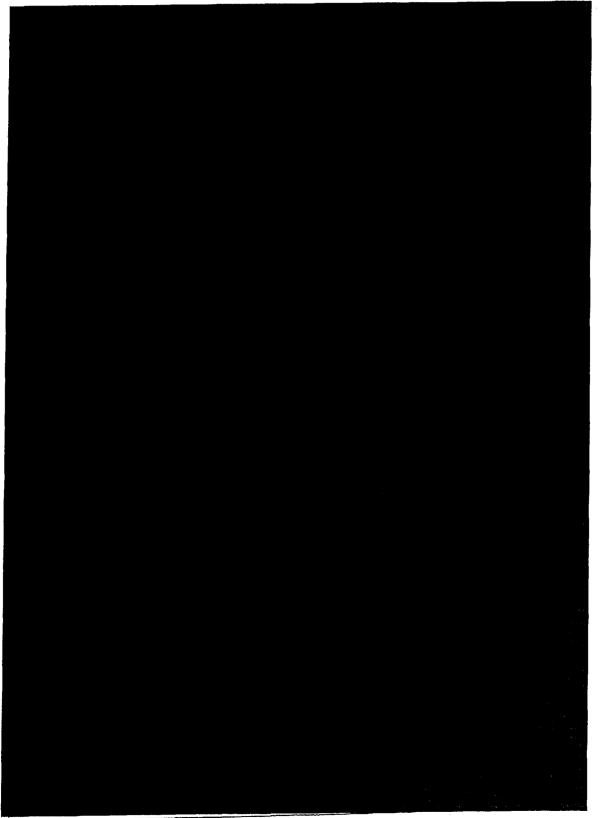



٦



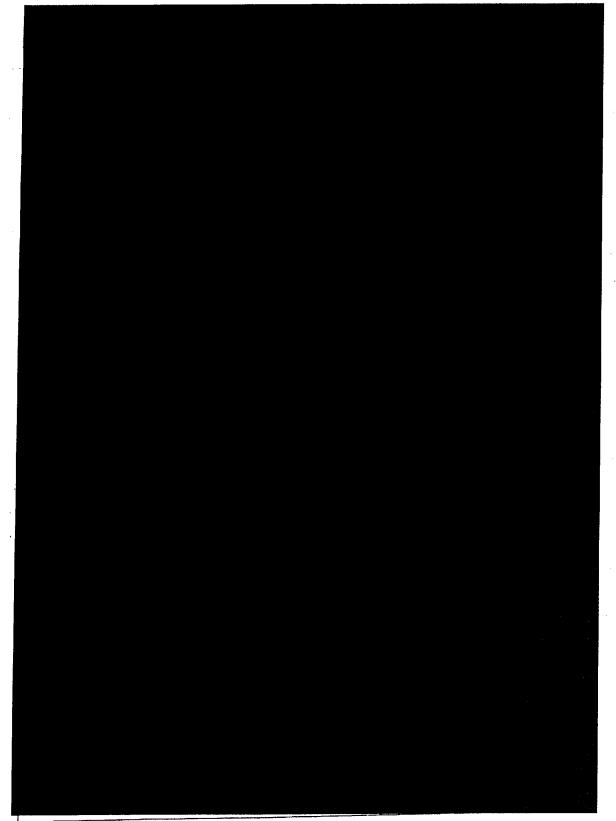
÷


ECRC 07-00422

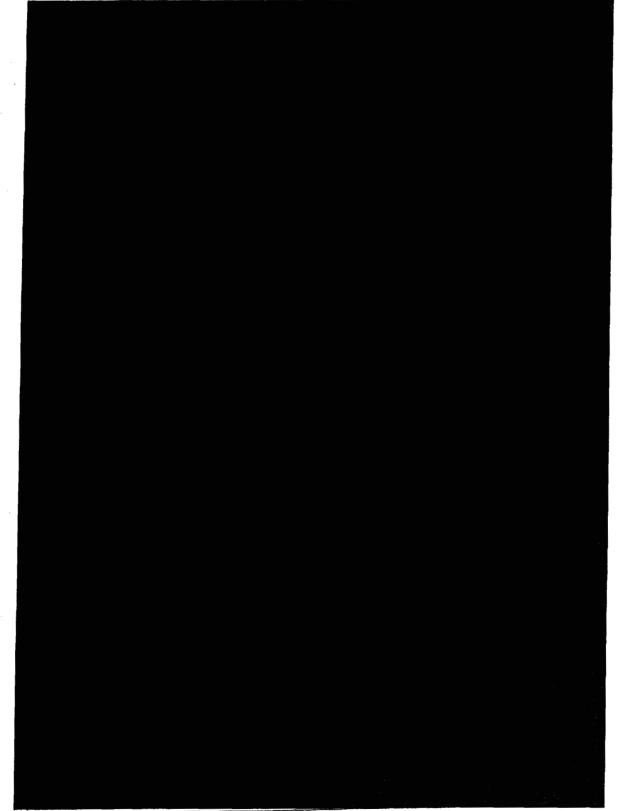


:

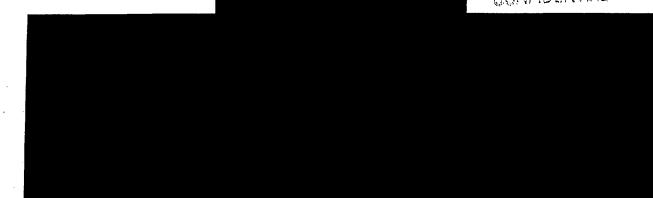
ECRC 07-00424

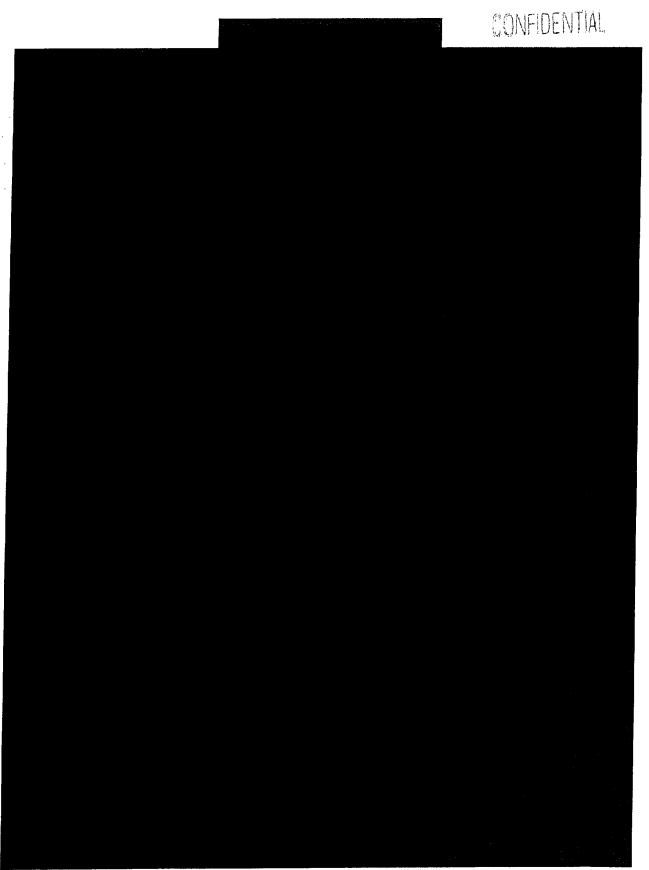


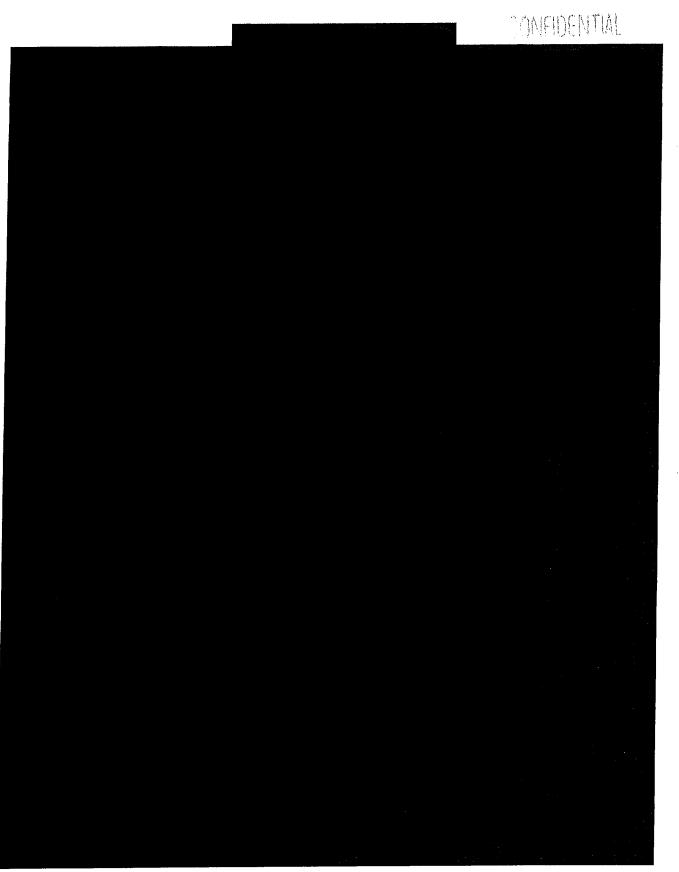
ECRC 07-00426



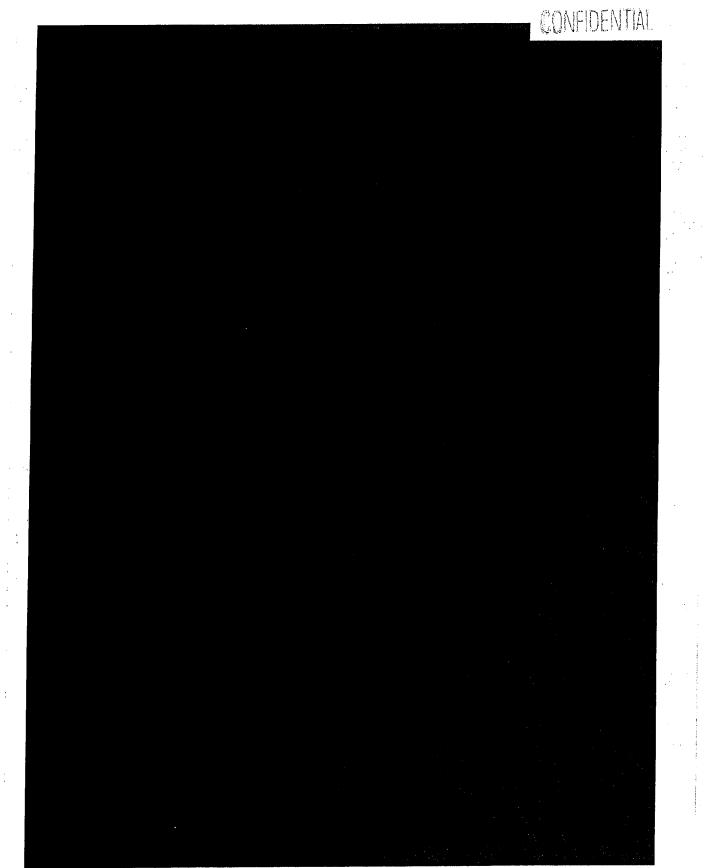
ECRC 07-00427

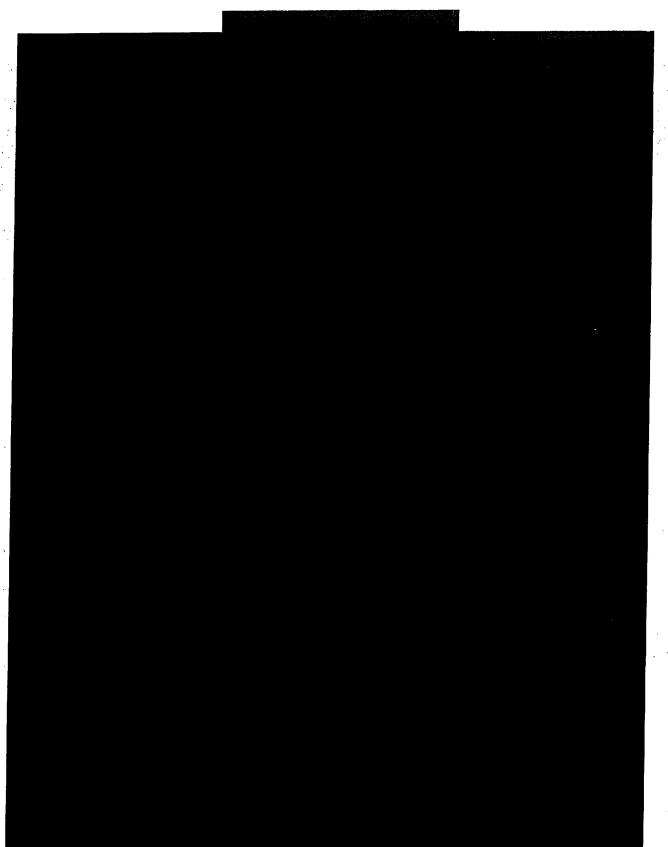

ECRC 07-00428

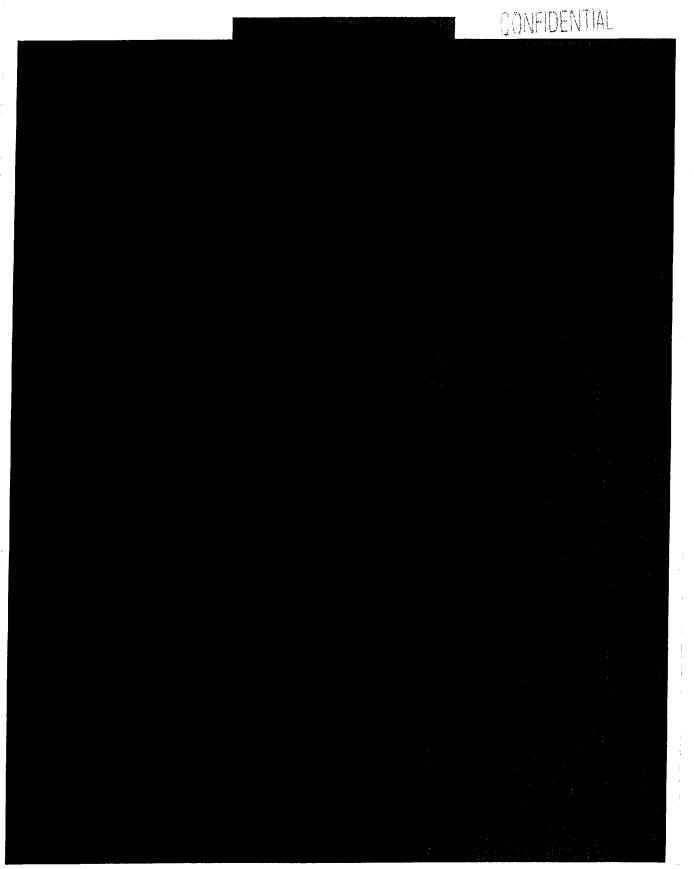

Ξ,

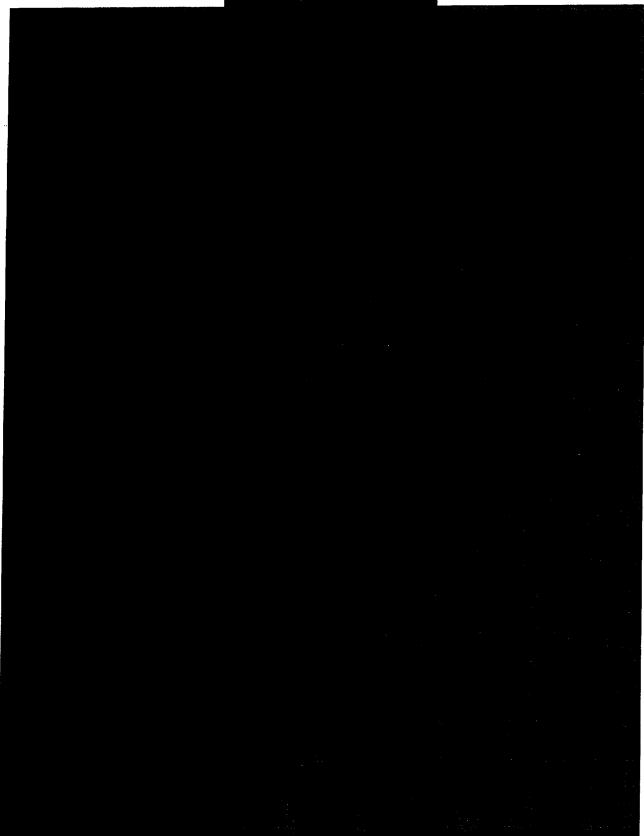


. . ,

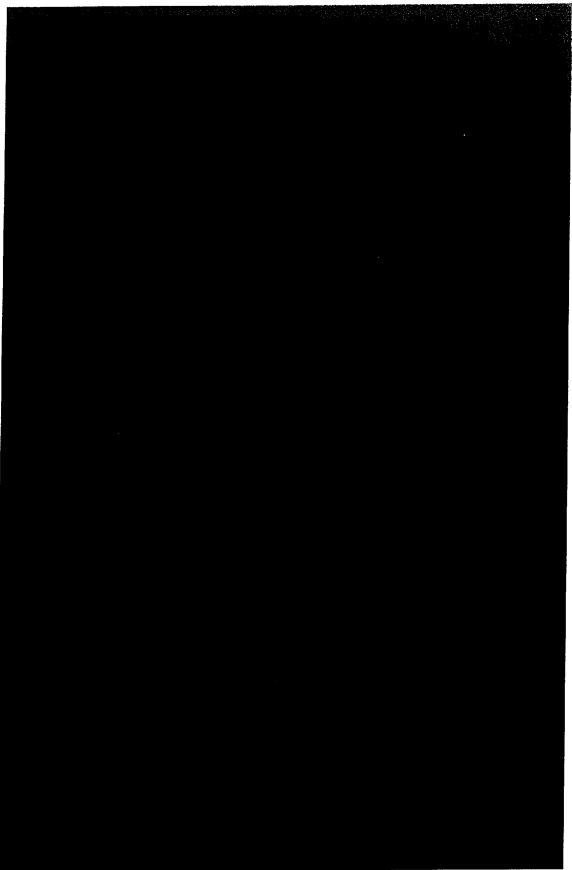



and a second

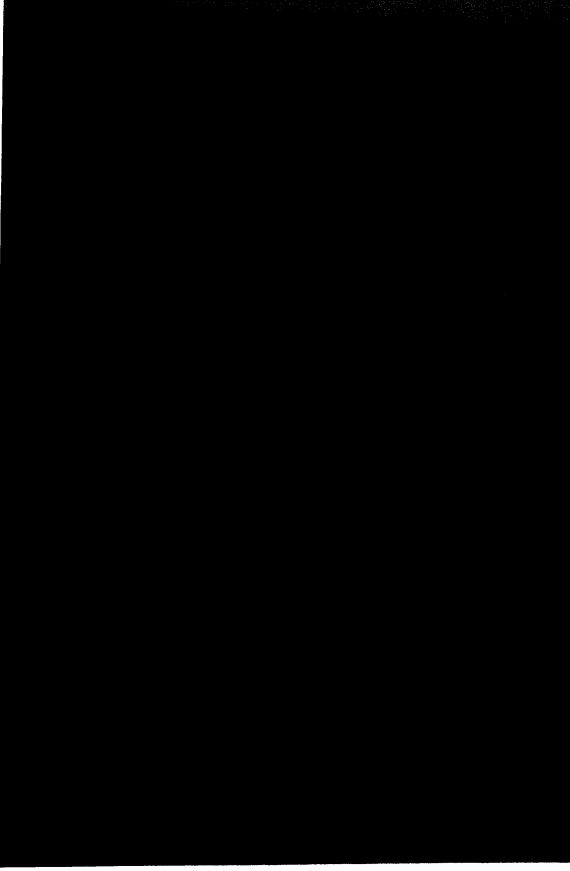

ECRC 07-00433

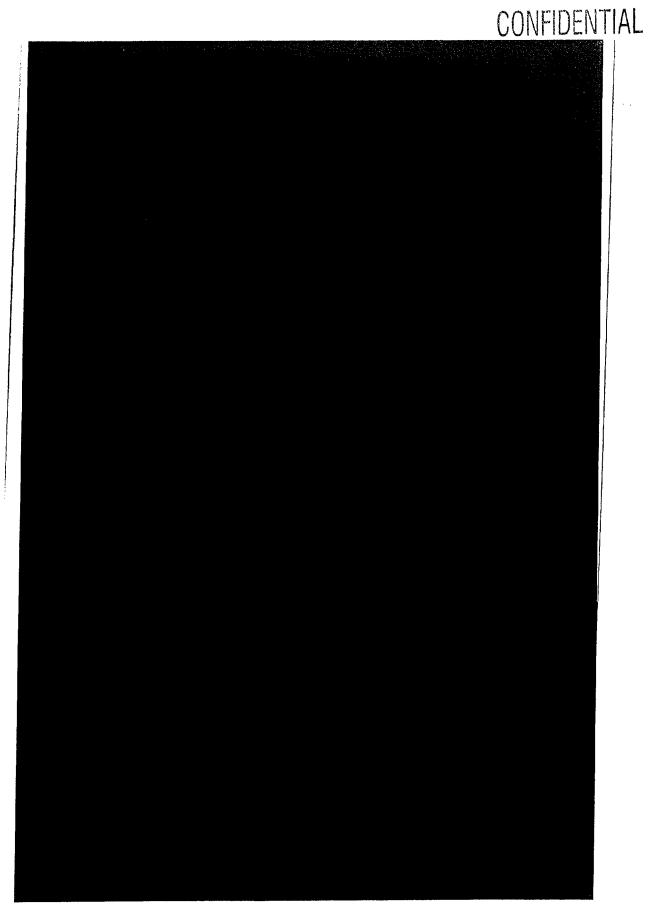


ECRC 07-00434



ŀ





ECRC 07-00437

