BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 080407-EG FLORIDA POWER & LIGHT COMPANY

IN RE: FLORIDA POWER & LIGHT COMPANY'S PETITION FOR APPROVAL OF NUMERIC CONSERVATION GOALS

DIRECT TESTIMONY & EXHIBITS OF:

JOHN R. HANEY

DOCUMENT NUMBER-DATE

05404 JUN-18

FPSC-COMMISSION CLEFT

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		FLORIDA POWER & LIGHT COMPANY
3		DIRECT TESTIMONY OF JOHN R. HANEY
4		DOCKET NO. 080407-EG
5		JUNE 1, 2009
6		
7	Q.	Please state your name and business address.
8	Α.	My name is John R. Haney, and my business address is 9250 West Flagler
9		Street, Miami, Florida 33174.
10	Q.	By whom are you employed and in what capacity?
11	A.	I am employed by Florida Power & Light Company (FPL) as Director,
12		Demand Side Management.
13	Q.	Please describe your duties and responsibilities in that position.
14	А.	I am responsible for the development and product management of Demand
15		Side Management (DSM) programs for FPL's residential and business
16		customers. This includes the development, implementation, on-going
17		management, measurement and verification of DSM programs offered to
18		FPL's customers.
19	Q.	Please state your educational background.
20	A.	I received a Bachelor of Science in Civil Engineering from Mississippi
21		State University in 1981.

DOCUMENT NUMBER-DATE 05404 JUN-18 FPSC-COMMISSION CLERE

Q.

Please provide your employment history.

2 I was hired by FPL in 1981 in the Marketing department to perform Α. residential and commercial/industrial (C/I) energy audits. In addition to 3 working with home and business owners, I had the opportunity to work 4 with builders to help them implement energy efficiency in new 5 construction. I also worked with FPL's participating independent 6 contractors to improve their participation in FPL's DSM programs. I was 7 then given the opportunity to move into a staff position within the 8 Marketing department as a program manager of FPL's DSM programs. My 9 responsibilities grew to managing the team responsible for residential 10 programs. 11

12

In 1996, I joined FPL Services to manage the implementation of energy efficiency measures for large government and institutional customers. I started as a project development engineer and was ultimately promoted to General Manager of FPL Services. I served in that capacity until 2002, when I became Director of Marketing for FPL. In 2008, I became FPL's Director of DSM.

19 Q. Are you sponsoring any exhibits in this case?

A. Yes. I am sponsoring Exhibits JRH-1 through JRH-18, which are attached
to my direct testimony. Each exhibit is identified below:

22 Exhibit JRH-1 FPL's Industry Leading DSM Performance,
 23 DOE/EIA 2007 Data

1	Exhibit JRH-2	FPL's Contribution to National DSM, DOE/EIA
2		2007 Data
3	Exhibit JRH-3	FPL's DSM Performance Among Large Utilities
4	Exhibit JRH-4	FPL's Current DSM Programs
5	Exhibit JRH-5	FPL's DSM Achievements Through 2008
6	Exhibit JRH-6	Low-Income Participants in FPL's DSM Programs
7	Exhibit JRH-7	FPL's Low-Income Customer DSM Initiatives
8	Exhibit JRH-8	FPL's DSM Goals Experience 2005-2008
9	Exhibit JRH-9	FPL's DSM Goals Experience Over Time
10	Exhibit JRH-10	Collaborative Process Roadmap to Determining
11		Goals
12	Exhibit JRH-11	Collaborative Sources Used to Develop the List of
13		Measures
14	Exhibit JRH-12	Detailed List of Measures Entering the Technical
15		Potential Step
16	Exhibit JRH-13	Comparison of Recent Technical Potential Results
17	Exhibit JRH-14	Estimates of FPL's Achievable Potential
18	Exhibit JRH-15	FPL's Proposed DSM Goals 2010 - 2019
19	Exhibit JRH-16	Comparison of FPL's Proposed Goals and
20		Achievable Potential
21	Exhibit JRH-17	Comparison of FPL's Current and Proposed Goals
22	Exhibit JRH-18	Measures Screening

FPL's Technical Potential Study, Commission Document No. 03143-09, is
 part of Staff's composite exhibit.

3 Q. What is the purpose of your testimony?

A. The purpose of my testimony is threefold: to describe FPL's historical
DSM performance, to explain the process followed in the development of
FPL's proposed DSM goals, and to outline FPL's proposed DSM goals.

7 Q. Please summarize your testimony.

- 8 A. FPL is the industry leader in DSM. For nearly three decades, FPL's 9 success has been enabled by a constructive regulatory structure that has 10 supported utilities in the implementation of DSM programs that help 11 customers manage their energy use without promoting DSM that results in 12 higher rates than supply-side options.
- 13

In developing its proposed DSM goals for the 2010-2019 period, FPL has gone beyond the requirements of the Florida Energy Efficiency and Conservation Act (FEECA) by also working within a collaborative of FEECA utilities and environmental groups. The collaborative hired a recognized leader in DSM analysis, Itron, Inc. (Itron), in an effort to bring consistency of analysis and process to this DSM Goals proceeding.

20

FPL utilized the results from Itron's analysis to develop goals for the period 2010-2019. These goals are based on FPL's projected resource needs for 23 the period and the achievable potential estimates and maximum annual

1		adoptions developed by Itron. Multiple scenarios were analyzed, and goals
2		were proposed based on the level of DSM that minimizes the rate impact on
3		FPL's customers. This is consistent with the long and successful history of
4		DSM in Florida.
5		
6		I. FPL'S HISTORICAL DSM PERFORMANCE
7		
8	Q.	Please provide an overview of FPL's history of implementing DSM.
9	A.	FPL began offering DSM programs in the late 1970s, prior to the Florida
10		Legislature's adoption of FEECA in 1980. Since then, FPL has maintained
11		a constant commitment to DSM, along with Florida's policy makers and
12		regulators. FPL has developed a wide array of cost-effective energy
13		efficiency programs that lead the nation in reducing the demand for
14		electricity. In addition to energy efficiency programs, FPL operates the
15		second largest load management program in the nation. FPL's On Call
16		program, established in 1987, is the largest residential direct load control
17		program in the United States. Over 770,000 households, nearly one in five
18		customers served by FPL, participate in this program. FPL's Residential Air
19		Conditioning program has helped 1.1 million customers, more than one in
20		four households FPL serves, to make their homes' largest energy user more
21		efficient.

1 As described in greater detail in the testimony of FPL witness Sim, FPL has 2 made DSM an integral part of its resource planning process. One of the 3 advantages of DSM is the ability to quickly ramp up or down as the 4 resource need dictates. In response to the unexpectedly high 2005 summer 5 peak, FPL greatly increased the level of DSM on its system. The market 6 conditions dictated a quick reaction, and FPL and its customers responded. 7 FPL's load forecast and unmet resource needs have diminished, and FPL's proposed DSM goals reflect that diminished resource need. 8

9 Q. On what basis do you claim FPL to be the industry leader in DSM 10 performance?

11 Α. The U.S. Department of Energy (DOE) reports on the effectiveness of utility DSM efforts through its Energy Information Administration (EIA). 12 13 The EIA reports both energy efficiency and load management achievement. 14 Based on the latest EIA comparative data, which is for the year 2007, out of more than 3,000 reporting utilities, FPL is nationally ranked #1 in 15 cumulative demand reduction from DSM, defined as energy efficiency and 16 load management combined. FPL is also nationally ranked #1 and #2 in 17 cumulative demand reduction from energy efficiency and load 18 19 management, respectively. To put this in perspective, if FPL's cumulative avoided MW from DSM were a "virtual utility," it would be Florida's third 20 largest utility. FPL is also nationally ranked #4 in cumulative energy 21 22 reduction from energy efficiency. FPL's DOE/EIA rankings are shown on 23 Exhibit JRH-1.

1	FPL's successful DSM performance is not simply due to its size. As shown
2	on Exhibit JRH-2, although FPL has only 2% of total U.S. peak demand,
3	FPL provides 12% of the total energy efficiency and 7% of the total load
4	management in the United States. Exhibit JRH-3 shows that within the
5	comparison group of 88 utilities with greater than or equal to 3,000 MW
6	capacity, FPL is in the top decile of MW reduction as a percent of peak
7	demand and in the top quartile of MWh reduction as a percent of sales. So,
8	compared to the industry, FPL has been aggressive and successful in
9	capturing cost-effective DSM for the benefit of its customers.

10 Q. To what does FPL attribute its success as a provider of energy 11 efficiency and load management programs?

A. The reasons for FPL's success are two-fold. First, the Florida Public
Service Commission ("Commission" or "FPSC") has adopted a
constructive regulatory environment for DSM implementation. Second,
FPL carefully manages and administers its DSM programs.

Q. Please explain how a constructive regulatory environment has fostered FPL's success in implementation of DSM.

A. Policy makers and regulators in Florida, including the Commission, have enacted and administered FEECA in a way that has encouraged FPL's and Florida's industry-leading DSM efforts, while at the same time avoiding DSM-related rate increases relative to supply-side options. The Commission has approved goals for the FEECA utilities and the programs necessary to meet those goals, and it has allowed timely cost recovery

1 through the Energy Conservation Cost Recovery Clause (ECCR) for all prudently-incurred program 2 costs related to implementation of Commission-approved DSM programs. 3 The Commission has also 4 approved research and development programs and projects and allowed 5 timely cost recovery for these initiatives. Further, before approving the construction of new electrical power plants in Florida, the Commission has 6 7 ensured that the unit for which approval is being requested could not have 8 been avoided or deferred by implementation of cost-effective DSM. The Commission has also made policy decisions that have avoided cross-9 10 subsidization of participating customers by non-participating customers by choosing the most appropriate DSM cost-effectiveness tests, i.e., Rate 11 12 Impact Measure (RIM) and Participant-based DSM rather than Total Resource Cost (TRC) based DSM. 13

14 Q. Please describe FPL's management and administration of DSM 15 programs.

16 Α. FPL's effective management and administration of its DSM programs can be described in four parts. First, consumer education through energy audits 17 provides the foundation for FPL's DSM strategy. Audits help customers to 18 determine which conservation practices and measures are beneficial to their 19 situation. FPL's customers have responded enthusiastically. On the average 20 21 business day, more than 600 FPL customers take advantage of FPL's energy audits. Since FPL began offering audits in 1981, over 2.7 million 22 23 customers have participated in an on-line audit, a phone-based audit, or an

1 on-site audit. Audits serve two important functions. They provide an 2 essential basis for educating customers on FPL's approved DSM programs. 3 Audits also go beyond FPL's approved programs and identify all measures 4 that make economic sense to the customers. While audits focus on existing 5 buildings, FPL also extends education to the new construction community through its BuildSmart program, which helps builders meet and exceed the 6 7 requirements of Florida's Energy Efficiency Code for Building 8 Construction.

9

Second, FPL has developed and implemented a robust set of cost-effective
 DSM programs to help customers take action on audit recommendations.
 Today, FPL offers programs covering most major residential and
 commercial end-uses. FPL's current DSM programs are summarized in
 Exhibit JRH-4.

15

16 Third, ongoing conservation research and development investigates the cost 17 and feasibility of the next-generation of energy-efficient technology, 18 leading to new or enhanced cost-effective DSM programs. Since 1995, 19 FPL's Conservation Research and Development program has completed 22 20 technology evaluations. Eight of those evaluations have resulted in new 21 DSM programs or the addition of measures to existing programs.

Fourth, FPL has successfully used DSM to cost-effectively avoid new 1 power plant construction. Since the inception of its DSM programs through 2 the end of 2008, FPL has achieved, at the generator, 4,109 MW of summer 3 4 peak demand reduction, 2,983 MW of winter peak demand reduction, and 46,646 GWh of energy savings. Including the impacts for the reserve 5 6 margin, this amount of peak demand reduction eliminated the need for the equivalent of 12 power plants of 400 MW capacity each, or 33 typical 150 7 MW combustion turbine units. FPL's performance is summarized in 8 9 Exhibit JRH-5. Significantly, FPL has achieved this without penalizing 10 customers who are non-participants in its DSM programs. FPL has been able to avoid penalizing non-participating customers by offering only DSM 11 programs that keep rates lower than they otherwise would have been if the 12 avoided power plants had been built. 13

14 Q. Has FPL undertaken efforts to assure that low-income customers 15 derive value from FPL's DSM offerings?

16 Α. Yes. The primary means of assuring that low-income customers secure the 17 benefits of DSM is to advance programs that are cost-effective under both the RIM and Participant tests for DSM cost-effectiveness, which are 18 described in detail in the testimony of FPL witness Sim. That way, if low-19 20 income customers participate, it is clear the program is cost-effective to them because they have decided that the energy savings they expect to 21 22 achieve from participating in the program are worth any up-front investment. However, if they choose not to participate or cannot afford to 23

participate, then the programs they help pay for through the ECCR clause
are still cost-effective to them because their rates are still lower than they
otherwise would have been if the avoided power plants had been built. In
addition, FPL has developed and marketed DSM offerings to low-income
customers through targeted initiatives, as described in Exhibits JRH-6 and
JRH-7.

7 Q. Has FPL been successful in attracting low-income customers to 8 participate in DSM?

9 Yes. In March 2009, FPL engaged The Futures Company (a Yankelovich A. Group Company) to develop a profile of its low-income customers and to 10 11 conduct an analysis of the participation level of current low-income 12 customers and all others in DSM programs. Based on the study, which is summarized in Exhibit JRH-6, FPL determined that for three of its four 13 major program areas, FPL has essentially the same or greater participation 14 for low-income customers as it does for other customers. The exception to 15 this trend is for the Residential HVAC program, which is most likely 16 explained by two factors: (1) low-income customers are less likely to own 17 their residences and are more likely to be renters, and (2) landlords may not 18 be willing to pay the higher up-front cost of efficient HVAC systems 19 beyond the customer incentives. 20

Q. To what does FPL attribute its success in attracting low-income customers to participate in DSM programs?

3 Α. Several initiatives have contributed to this success, including efforts to reach out to low-income customers through targeted offerings of 4 5 Commission-approved DSM programs. FPL often works in cooperation 6 with organizations like The Salvation Army, the Governor's Front Porch Florida Initiative, Habitat for Humanity and the Association of Community 7 8 Organizations for Reform Now (ACORN). Exhibit JRH-7 provides 9 examples of FPL's efforts to target low-income customers for program participation. 10

11 Q. Has FPL experienced success in meeting its DSM goals?

A. Yes. FPL has been very successful in meeting the goals set by the
Commission. As shown in Exhibit JRH-8, as of 2008, FPL has met and
exceeded the cumulative summer MW, winter MW and energy goals for
both the Residential and C/I market segments. (Unless otherwise noted, all
MW or MWh's in my testimony are at the meter.) Exhibit JRH-9 shows
FPL's DSM performance in consistently meeting or exceeding the
Commission-established goals.

Q. Does FPL's consistent success in meeting its DSM goals suggest that the goals FPL has been proposing have been too modest?

A. No. FPL's success in meeting its DSM goals is indicative of a utility which is serious and intentional in its pursuit of cost-effective DSM that benefits all of its customers. It has not been easy for FPL to achieve its DSM goals.

1		This achievement has required a dedication of resources and the
2		development of a means to keep up with new technologies and to identify
3		cost-effective measures and program designs, so that FPL customers have
4		programs that are current and effective. FPL is justifiably proud to be the
5		industry leader in DSM performance.
6		
7		II. COLLABORATIVE APPROACH TO GOALS-SETTING
8		
9	Q.	What was the first step in FPL's development of its proposed 2010-
10		2019 DSM goals?
11	A.	FPL's 2010-2019 DSM goals were developed after forming and leveraging
12		the knowledge of a collaborative group composed of the FEECA utilities
13		and interested environmental organizations (National Resource Defense
14		Council (NRDC) and Southern Alliance for Clean Energy (SACE)). This
15		group is known as the Collaborative. To facilitate the analysis, the
16		Collaborative hired Itron, a nationally recognized energy analysis
17		consulting firm.
18	Q.	Please describe the process followed by the Collaborative to develop the
19		DSM Goals.
20	A.	Once formed, the Collaborative agreed upon the process to be followed in
21		developing the individual technical potential studies. Subsequently, the
22		members of the Collaborative agreed upon a joint effort in developing the
23		achievable potential studies.

1 The Collaborative, through Itron, conducted an assessment of the technical 2 potential for energy and peak demand savings from energy efficiency, 3 demand response, and customer-scale renewable energy in the utilities' 4 respective service territories.

5

Each Collaborative member and Itron contributed to the exhaustive 6 development of the comprehensive measure list to be considered for the 7 technical potential study and in establishing the process for developing the 8 achievable potential. Each measure was reviewed and discussed in detail 9 before being classified as "final" for the study. The Collaborative 10 established the screening criteria for each measure. The requirement was 11 that the measure had to be an existing technology and currently available in 12 the marketplace and for which Florida-specific pricing data was available. 13 Third party measurement and evaluation verification to substantiate its cost 14 15 and savings claims was preffered. Thus, non-commercialized "emerging" technologies were excluded. It should be noted that, FPL tracks and 16 evaluates such technologies on an on-going basis in its Conservation 17 Research and Development program. A detailed procedure of measure 18 19 evaluation is described in Section III of this testimony. As for the process, the Collaborative discussed the roadmap that would be employed to 20 determine the goals. Within these discussions many ideas were brought 21 forward, culminating in the final process shown in Exhibit JRH-10. 22

Since the initiation of this study, Itron and all Collaborative members met 1 regularly to manage the project and to share the rigors of completing the 2 The non-utility members provided input throughout the evaluation. 3 process, including development of the consultant selection weights, 4 evaluation of bidders, and contribution to the statement of work for the 5 They also suggested additional measures for selected consultant. 6 evaluation. Together, non-utility members represented 1/8 of the 7 Collaborative, a vote equal to the voting share for each utility member. 8 9 At the time of the drafting of this testimony, NRDC and SACE were 10 negotiating to change the status of their participation in the Collaborative's 11 assessment of achievable potential. 12 13 **III. METHODOLOGY FOR SELECTING MEASURES FOR** 14 **EVALUATION** 15 16 Please describe for the Commission the process followed in identifying Q. 17 the DSM measures to be analyzed in the development of DSM goals. 18 The objective of this step in the development of DSM Goals is to create a 19 Α. comprehensive list of measures for evaluation, along with each measure's 20 potential demand and energy impacts and its participant cost. The 21 collective experience of the Collaborative served this task well, with each 22

member providing depth and expertise in building up a comprehensive list of potential measures for study.

3

2

1

The Collaborative used various sources to develop the list of measures and supporting data, including utility-specific measurement and verification data, utility measure research data, the Florida Solar Energy Center, Itron data, the California Database for Energy Efficient Resources (DEER), National Renewable Energy Laboratory (NREL), the Electric Power Research Institute (EPRI), and local equipment distributors for pricing information. A complete list of data sources is included in Exhibit JRH-11.

11

By August 2008, the Collaborative had developed a measure list it deemed "exhaustive." Next, Collaborative members independently evaluated each measure's applicability to Florida's climate zones, availability for purchase, third-party provided demand impacts and energy savings, life, and cost. This independent exercise prepared the members to confirm each measure for inclusion in the final list for evaluation.

18

Measures were confirmed during a series of conference calls, each dedicated to a major market segment (Residential, Commercial and Industrial). During the calls, every individual measure was evaluated, discussed and agreed on for rejection or retention for evaluation. If there was an objection to a measure's retention, the objecting party was required

to make the case for the rejection of the measure. Conversely, if there was an objection to a measure's rejection, the objecting party was required to make the case for retention of the measure. As a result of these conference calls, several individual FEECA utilities provided measure data from internal research and development (R&D), and SACE and NRDC provided research briefs for selected measures.

7

1

2

3

4

5

6

The measure selection process yielded a comprehensive list of 267 unique 8 9 measures, including 67 residential measures, 78 commercial measures, and 122 industrial measures. (These unique measures expand to over 2,300 10 measures when building types are considered.) Importantly, the final 11 measure list included 25 "new" measures in the residential sector and 33 12 "new" measures in the commercial sector. New measures are those that 13 Itron had not previously analyzed in past studies. Itron conducted an initial 14 15 assessment of data availability and measure-specific modeling issues associated with "new" measures. For those "new" measures, the FEECA 16 17 utilities and SACE/ and NRDC provided measure data from internal R&D, 18 and SACE and NRDC provided research briefs. A detailed list of measures 19 entering the technical potential step of the DSM Goals development process is provided in Exhibit JRH-12. 20

21 Q. Were natural gas measures included in the list for analysis?

A. No. However, in accordance with FPSC Rule 25-17.0021, F.A.C. regarding
 Goals for Electric Utilities, FPL evaluated four natural gas measures:

- Commercial Gas Direct Expansion (DX), Residential High Efficiency Gas
 Water Heater, Residential Demand Water Heater and Residential Heat
 Pump Water Heater.
- 4 Q. Were demand-side renewable measures included in the list for 5 analysis?
- 6 A. Yes. Three renewable measures were included in the final list for 7 evaluation: solar water heating, photovoltaic powered pool pumps and grid-tied photovoltaic systems. The Collaborative agreed that grid-tied 8 photovoltaic systems were better classified as demand side generation 9 10 rather than a conservation measure, and so required a separate and distinct analytic approach. That analysis appears in Section VI of this testimony. 11 Solar water heating and photovoltaic powered pool pumps were retained in 12 the list of measures. 13
- 14

15 IV. METHODOLOGY FOR DEVELOPING TECHNICAL POTENTIAL

16

17 Q. Please define what you mean by technical potential.

A. The objective of the technical potential step in the DSM Goals development process is to identify the theoretical limit to reducing electric peak demand (MW) and energy (GWh). It should be understood that technical potential is a theoretical construct. It imagines what could happen if every measure was installed everywhere it would fit, regardless of cost or customer acceptance. Technical potential also ignores real-world constraints such as product availability, contractor/vendor capacity, cost-effectiveness, and customer preferences. Simply put, technical potential in no way reflects the energy efficiency potential that is achievable through real-world voluntary utility programs. The calculation of technical potential involves two broad steps: first, the establishment of applicable end-use baselines for each measure for the goals period, and second, the allocation of energy and demand savings to each individual measure.

8 Q. How was the technical potential calculated?

9 A. Total technical potential is the sum of the technical potential of individual
10 end-use measures in all major market segments (Residential, Commercial,
11 and Industrial) and all building types within those segments.

Q. What was the methodology utilized in determining the technical
potential of DSM for FPL?

A. A detailed discussion of Itron's technical potential methodology is available
in the Technical Potential for Electric Energy and Peak Demand Savings in
Florida Power & Light, Dated March 12, 2009 Commission document
03143-09, which is part of Staff's composite exhibit,...

Q. What were the key economic input data that was employed in the
 development of technical potential?

A. Some of the key economic inputs required in this study were current and forecasted retail electricity rates, customer discount rates, and inflation rates. For retail electricity rates, FPL submitted current average retail electricity rates for residential, commercial, and industrial customers in

dollars per kWh terms, as well as 30-plus year forecasts of those retail rates.
 For all sectors, Itron used a customer discount rate of 15% per year and a
 general inflation rate of 2% per year.

4 Q. What were the results of FPL's energy efficiency technical potential 5 study?

The total theoretical energy efficiency technical potential for electric energy 6 A. savings in FPL's service territory for the period 2010 through 2019 is 7 estimated to be approximately 31,849 GWh, or 34% of current baseline 8 annual electricity consumption. The total energy efficiency technical 9 potential for summer peak demand savings is estimated to be approximately 10 8,000 MW, or 43% of current baseline summer system peak demand. The 11 total energy efficiency technical potential for winter peak demand savings 12 is estimated to be approximately 4,784 MW, or 28% of current baseline 13 Residential energy efficiency technical winter system peak demand. 14 15 potential accounts for well over half of total energy efficiency technical 16 potential for electric energy savings (GWh) and more than two thirds of total energy efficiency technical potential for summer and winter peak 17 18 demand savings (MW) in FPL's territory.

19

A comparison of FPL's energy efficiency technical potential results with recently published energy efficiency technical potential results for other major utilities suggests that Itron's study was rigorous. Exhibit JRH-13

illustrates a comparison of recent energy efficiency technical potential
 results.

- Q. Did FPL provide an adequate assessment of the full technical potential
 of all available demand-side efficiency measures, including demand side renewable energy systems?
- A. Yes. This is addressed in Sections III and IV of my testimony, the
 Technical Potential for Electric Energy and Peak Demand Savings in
 Florida Power & Light, Dated March 12, 2009 Commission document
 03143-09, which is part of Staff's composite exhibit, and the direct
 testimony of Itron witness Rufo.
- 11

12 V. METHODOLOGY FOR DEVELOPING ACHIEVABLE POTENTIAL

13

Q. Please explain the process FPL employed for moving from DSM technical potential to DSM achievable potential.

A. As explained by FPL witness Sim, FPL took the technical potential data provided by Itron and performed preliminary cost-effectiveness screening of the measures in the technical potential using enhanced versions of the RIM and TRC tests, hereafter referred to as the E-RIM and E-TRC. This screening included the economic impact of environmental compliance costs for specific emissions including sulfur dioxide (SO₂), nitrogen oxides (NO_x), and carbon dioxide (CO₂). This screening was performed using the

E-RIM, E-TRC and Participant test. This dataset was identified as FPL's
 economic potential.

3

For those measures included in FPL's economic potential, more refined cost-effectiveness analyses were performed. For RIM measures, incentives to customers under three scenarios and administrative costs were included. For TRC measures in FPL's economic potential, program administrative costs were added. The groups of measures passing the final costeffectiveness runs by FPL were then forwarded for Itron to assess in the DSM ASSYST model to calculate achievable potential.

Q. Why has FPL applied the not less than two-year payback criterion in
 developing its maximum incentives for cost-effectiveness screening?

A. FPL has followed this approach for at least fifteen years because it believes this approach is the best, most analytically sound means of avoiding freeriders as required by FPSC rule. The Collaborative also agreed on the use of the two-year payback to minimize free-ridership for consistency across the Collaborative.

18

19 "Free-riders" are people who would have installed the measure without any 20 utility incentive. FPL is required to limit free-riders when proposing DSM 21 goals. The logic underlying the two-year payback criterion is simple and 22 compelling. FPL and its customers, through ECCR recovery of program 23 costs, should not be paying incentives to customers who have a sufficient

economic incentive to implement DSM on their own. The assumption underlying the two-year payback criterion is that a reasonable customer will adopt DSM if the DSM measure provides them a payback on incremental costs in terms of lower utility bills or bill savings within two years or less of adoption of the measure.

6

FPL's customers ultimately pay for FPL's DSM program costs, including 7 customer incentives, through the ECCR clause. FPL's customers should 8 only have to pay customer incentives necessary to encourage additional 9 customer adoption of DSM measures. When a customer has a sufficient 10 incentive to implement a DSM measure - a cost-effective incentive that 11 results in a two-year payback - the remaining FPL customers should not 12 13 have to pay a higher incentive. A two-year payback is a sufficient economic incentive for customers to implement DSM. Paying a higher 14 incentive to encourage a customer to do what the customer already has a 15 sufficient incentive to do does not make economic sense for FPL's general 16 body of customers. They should not be asked to subsidize other customers' 17 bill savings with an incentive in such circumstances. 18

19 Q. Has FPL's use of the minimum two-year payback criterion been 20 tested?

A. Yes. FPL's approach has been tested analytically through research. In
 addition, it was contested by the Legal Environmental Assistance
 Foundation (LEAF) in FPL's 1994 DSM goals proceeding. In its final

1	order, the Commission explicitly noted that LEAF had challenged FPL's
2	use of the two-year payback criterion, and the Commission proceeded to
3	approve DSM goals that were developed using the minimum two-year
4	payback criterion.

5 Q. Has FPL refined its minimum two-year payback criterion in the cost-6 effectiveness screening performed in this case?

A. Yes. Instead of a simple two-year payback criterion, the Collaborative
agreed to run three achievable potential scenarios. One scenario used the
two-year payback criterion in establishing maximum incentives. Another
scenario used the lesser of a minimum two-year payback incentive or an
incentive that was 33% of a measure's incremental cost. A third scenario
used the lesser of a minimum two-year payback incentive or an incentive
that was 50% of a measure's incremental cost.

14 Q. What was the total achievable potential for FPL?

15 Α. The six estimates of FPL's total achievable potential are based on Itron's 16 maximum annual customer adoption rates and are shown in Exhibit JRH-17 14. The RIM achievable potential estimates range from 446.0 MW to 887.6 MW for summer demand, from 211.5 MW to 344.5 MW for winter 18 demand, and from 553.6 GWh to 1,700.3 GWh for energy. The TRC 19 achievable potential estimates range from 455.0 MW to 1,072.7 MW for 20 21 summer demand, from 214.2 MW to 482.3 MW for winter demand, and 22 from 635.2 GWh to 2,177.0 GWh for energy.

1

Q. 3 Please summarize the development of FPL's technical potential for PV. A. The assessment of PV technical potential covered PV installed in the 4 commercial/industrial and residential sectors. The analytic methodology 5 consisted of first estimating total roof area suitable for siting PV systems 6 7 and then translating this roof area into estimates of annual electricity generation and power output coincident with the electric system summer 8 and winter peaks. For commercial/industrial buildings, the total roof area 9 10 also included an estimate of parking lot areas over which parking shade structures might hold PV systems. More detail regarding this process and 11 12 the logic of the model are provided by Itron witness Rufo in his testimony.

13 Q. Did PV systems pass the Commission-approved cost-effectiveness tests?

- A. Every PV system failed the Participant test. Therefore, they were not
 screened under the E-RIM or E-TRC tests. FPL has not traditionally
 offered DSM programs designed to incent measures that are not costeffective to its customers.
- 18 Q. Did FPL consider PV technologies in a smaller, demand-side
 19 generation scale (less than 10 kW)?
- A. Yes. FPL looked at the cost-effectiveness of these smaller sized
 installations, which may be considered for residential and C/I applications,
 but, unfortunately, they also failed the Participant test.

1	Q.	After Itron's and FPL's internal analysis of PV technologies, what is
2		the estimated achievable potential for demand side PV applications?
3	А.	FPL estimates that the achievable potential for these applications is zero
4		"0".
5		
6		VII. ANALYSIS OF HIGH THERMAL EFFICIENCY
7		COGENERATION
8		
9	Q.	What are the key factors for screening cogeneration options?
10	А.	The two primary screening factors that should be evaluated with high
11		efficiency cogeneration are the steam requirements of the facility and a
12		readily available fuel source. In FPL's service territory, there are relatively
13		few known applications where the most effective thermal loads, steam and
14		hot water are large enough and of ample duration to make the high thermal
15		efficiency cogeneration option viable.
16	Q.	What has been FPL's experience in regard to high thermal efficiency
17		cogeneration in its service territory?
18	A.	FPL currently has under contract two facilities, Cedar Bay and Indiantown
19		Cogeneration, providing firm energy and capacity that use high thermal
20		efficiency cogeneration, representing approximately 580 MW of firm
21		generating capability. Both facilities are fueled by coal. FPL also has four
22		additional cogeneration projects in its service territory, with an installed
23		generating capacity of approximately 168 MW that sell their electric output

to FPL on an as-available basis and/or use the electric output of the cogeneration facility to offset their electric consumption. These facilities typically use biomass or natural gas for fuel and steam in the production of sugar, paper products, and hot water.

5 Q. What is your conclusion regarding high thermal efficiency 6 cogeneration?

7 A. High thermal efficiency cogeneration must be evaluated as a supply-side alternative on a case-by-case basis. From time to time, there are C/I 8 customers who have considered high thermal efficiency cogeneration as an 9 alternative. Many of these customers utilized FPL's assistance to evaluate 10 the various cogeneration alternatives. FPL performs specific evaluations, 11 but these site-specific, case-by-case evaluations do not lend themselves to 12 the goals-setting process. In addition, FPL has completed demonstration 13 projects utilizing fuel cells and micro turbines to understand the costs and 14 15 operating characteristics of these emerging combined heat and power technologies. Both technologies were found to have reliability issues, so 16 17 FPL did not develop programs addressing them. Given FPL's ongoing 18 customer assessments of cogeneration, FPL identifies no high thermal efficiency measures for analysis and reflects no value for this end-use in the 19 20 development of its overall DSM goals.

1

Q. Once FPL received the projected achievable potential values for each
 measure, how were these projections utilized to develop the four DSM
 portfolios?

6 Α. After the achievable potential work was completed, FPL developed the list 7 of passing measures for E-RIM and another list of passing measures for E-TRC. Itron then provided FPL with the corresponding ten-year projection 8 9 of maximum annual signups, related system demand (MW), and energy 10 savings (GWh) for each measure based on the measure's final incentive 11 level. As FPL witness Sim explains, both of these lists were analyzed utilizing linear programming (LP) to develop E-RIM and E-TRC optimized 12 DSM portfolios for meeting the projected system need and/or utilizing all 13 DSM "achievable potential". The portfolios balanced the timing of the 14 constraints 15 needed solution with practical regarding program 16 implementation and ramp up and ramp down rates to achieve the lowest 17 present value DSM costs associated with the cost-effectiveness test in 18 question.

19 Q. How were the practical constraints developed?

A. As was described earlier in this testimony, FPL has over 30 years of experience with DSM Program marketing and enrollment. FPL's DSM program managers also conducted a review of recent trends in program signups to estimate the upper and lower limits for future signups.

- Ultimately, FPL decided to take all load control achievable potential and
 levelized both load control and energy efficiency for purposes of program
 continuity.
- Q. FPL received three different scenarios of achievable potential from
 Itron for each of the two cost-effectiveness tests. Which set of data did
 FPL utilize in its analyses?
- A. FPL based its analyses on the two-year payback scenario, which represents
 the largest projection of DSM for both cost-effectiveness tests. This
 scenario is consistent with the Commission's previously approved means of
 addressing free-ridership. It was also the only scenario that provided
 enough DSM achievable potential to meet FPL's resource needs.

12 Q. What are FPL's proposed DSM goals?

A. FPL's proposed DSM goals are set forth on Exhibit JRH-15. Exhibit JRH 16 provides a comparison of FPL's DSM goals with FPL's DSM RIM and
 Participant based Achievable Potential.

Q. Are there additional MW and GWh reductions captured by federal standards?

A. Yes. There are an additional 895 MW and approximately 8,900 GWh of
 energy efficiency savings due to increased codes and standards included in
 FPL's load forecast. Until the recent adoption of these standards, these
 potential savings would have been available for acquisition in FPL's DSM
 programs. So, in comparing FPL's historic DSM goals with its proposed

1 goals, it is important to remember these savings will continue to be 2 achieved, and FPL's goals are over and above these assumed savings.

Q How do FPL's proposed DSM goals for 2010 through 2019 compare to FPL's currently approved DSM goals?

5 A In absolute numbers, they are slightly below the levels of currently 6 approved DSM goals, but when the effect of recently adopted federal 7 energy efficiency standards are added, total demand and energy efficiency 8 gains on FPL's system over the 2010 through 2019 period will far exceed 9 the level of FPL's goals for the 2005 through 2014 period. Total demand 10 savings will be almost twice as large and total energy savings will be nine 11 times as large.

12

13 The 2005 through 2014 cumulative Summer MW and Total GWh goals are 14 802 MW and 1,059 GWh, respectively. FPL's proposed DSM goals for the 15 period of 2010 through 2019 are 607 MW and 878 GWh, respectively. 16 However, there are an additional 895 MW and 8,900 GWh of energy 17 efficiency gains during the 2010 through 2019 period due to new energy 18 efficiency standards that has been accounted for in FPL's load forecast. Thus, total DSM and energy efficiency gains from new energy efficiency 19 20 standards on FPL's system during the period 2010 through 2019 should be 21 1,502 MW and 9,778 GWh. That is the appropriate comparison to FPL's 22 currently approved DSM goals.

1 The 2005 through 2014 cumulative Summer MW and Total GWh goals are 2 802 MW and 1,059 GWh, respectively. FPL's proposed DSM goals for the period of 2010 through 2019 are 607 MW and 878 GWh, respectively. 3 However, there are an additional 895 MW and 8,900 GWh of energy 4 5 efficiency gains during the 2010 through 2019 period due to new energy efficiency standards that have been accounted for in FPL's load forecast. 6 7 These energy efficiency savings that were available to the 2005 thru 2014 8 goals period are not available for utility DSM programs to address in the 9 2010-2019 goals period as a result of the new energy mandates. While that 10 potential has been lost for the DSM goals and programs, it will nonetheless 11 be achieved on FPL's system. Thus, total DSM and energy efficiency gains 12 from new energy efficiency standards on FPL's system during the period 2010 through 2019 should be 1,502 MW and 9,778 GWh. That is the 13 14 appropriate comparison to FPL's currently approved DSM goals.

15

Exhibit JRH-17 provides a comparison of FPL's currently approved goals 16 for the period 2010 through 2014 with FPL's proposed goals for the period 17 2010 through 2019 and the MW and GWh savings that are now captured by 18 19 federal energy efficiency standards. It shows that although FPL's proposed goals are lower than current goals for the 2010 through 2014 period, when 20 21 the MW and GWh savings to be captured from federal standards are 22 reflected, the total demand reduction and energy efficiency on FPL's system for the period 2010 through 2019 is higher than current DSM Goals. 23

Q. What other factors contribute to slightly lower DSM Goals for the 2010 through 2019 period compared to the 2005 through 2014 period?

3 Α. In addition to the significant lost DSM potential due to new energy efficiency standards, there are several other factors at work that result in 4 5 smaller DSM goals. First, FPL has experienced a slowdown in customer 6 and sales growth since 2006 and FPL's forecast indicates that this 7 contraction in total energy sales will continue in the near term. This lowers 8 total DSM potential, particularly in new construction. Second, current 9 economic conditions will act as a barrier to DSM adoption. Third, FPL has 10 a mature DSM program, and saturation rates for FPL are higher than for 11 other utilities without such a successful history. All of these factors suggest 12 that FPL's DSM goals might be smaller than currently approved goals. 13 But, I want to re-emphasize, with the new federal efficiency standards, total 14 demand and energy efficiency improvements on FPL's system during the 15 2010 through 2019 period will result in almost twice the level of demand reduction assumed in FPL's current goals and nine times the level of energy 16 17 consumption assumed in FPL's current goals.

Q. Does the portfolio of measures utilized for the development of the
 proposed DSM Goals represent the expected measures that will be
 included in the DSM Plan to meet the goals?

A. Not completely. FPL's DSM Plan will reflect a slight difference in the mix
of measures to achieve the goals. This reflects the difference between the

modeling of the average impact across all customers versus the impacts at an individual measure installation level.

3

2

1

The methodology utilized by Itron for FPL and the Collaborative meets all of the requirements of the DSM Goals Rule, including the development of a broad range of measures and accounting for measure interactions at an aggregate level. The technical potential and achievable potential results of the model represent a statistical construct of the expected aggregated demand (MW) and energy (GWh) impacts.

10

For DSM Plan development, which will take place within 90 days of the goals being set by the Commission, FPL will utilize the measures identified by the Collaborative with "unadjusted" demand and energy impacts and which pass the cost-effectiveness screening for E-RIM and E-TRC. The passing E-RIM and E-TRC portfolios will then be analyzed utilizing FPL's linear programming model and other models to develop revised corresponding portfolios.

18

The primary difference between the two methodologies revolves around the effect that the stacking order has on the individual measure's energy reduction, demand reduction and ultimately cost-effectiveness for the participant and all customers. As was described in the technical potential section of my testimony, in the goals development methodology all

1 measures were ranked by relative cost-effectiveness and each subsequent 2 measure was allocated a prorated opportunity at demand and energy 3 savings. This methodology results in a reduced impact for measures ranked 4 lower on the list. By utilizing each measure's un-stacked values, the cost-5 effectiveness calculations will reflect the value of an individual purchase 6 decision without dilution. This represents the full value of demand and 7 energy savings to the customer and the system on a single installation basis.

Q. Should the Commission establish incentives to promote both customer owned and utility-owned energy efficiency and demand-side renewable
 energy systems?

11 A. House Bill 7135 encourages the Commission to consider "the need for 12 incentives to promote both customer-owned and utility owned energy 13 efficiency and demand-side renewable energy systems". Appropriate 14 consideration of incentives, based on the goals that are established in this 15 proceeding, could occur in the plan phase of this docket or otherwise in a 16 subsequent proceeding.

Q. What cost-effectiveness test or tests should the Commission use to set
goals?

A. As developed more fully by FPL witnesses Sim and Dean, DSM goals
should be based only upon measures that pass both the E-RIM and
Participant tests.

- Q. Should the Commission establish separate goals for demand-side
 renewable energy systems?
- 3 A. No. the technical potential and achievable potential for demand-side 4 renewable energy systems are adequately addressed in FPL's proposed 5 goals.
- 6 Q. Should the Commission establish additional goals for efficiency 7 improvements in generation, transmission, and distribution?
- 8 A. Not in this proceeding. If such additional goals are desired, they should be
 9 considered in a subsequent proceeding.
- Q. Should the Commission establish separate goals for residential and
 commercial/industrial customer participation in utility energy audit
 programs?
- A. FPL does not believe that such goals are necessary, but FPL would not
 oppose reasonably achievable energy audit goals.
- Q. Which DSM measures passed the various levels of economic screening
 and were used in FPL's proposed DSM goals?
- 17 A. This is shown on Exhibit JRH-18.
- 18
- IX. CONCLUSIONS
- 20

- 21 Q. What conclusions do you draw regarding FPL's proposed DSM goals?
- A. FPL went beyond the requirements of FEECA and participated in a
 Collaborative. The Collaborative used a reputable consultant, Itron, with
prior experience in an attempt to provide consistency in methodology, data collection and assumptions. The consultant developed DSM technical and achievable potential estimates using a sound analytical process. FPL assessed its full technical DSM potential in developing its DSM goals. FPL appropriately integrated its DSM achievable potential into its planning process to develop its proposed goals.

8 FPL's proposed DSM goals are customer sensitive in that (a) they employ a 9 two-year minimum payback, (b) they avoid asking customers to acquire 10 more DSM resources than are needed to meet FPL's planning needs, and 11 (c) they are E-RIM and Participant tests based. FPL's proposed goals 12 represent FPL's reasonably achievable, cost-effective DSM potential during 13 the period 2010 through 2019.

14 Q. Does this conclude your testimony?

15 A. Yes, it does.

7

FPL is #1 in cumulative demand reduction (MW) from DSM, defined as energy efficiency and load management combined Rank Utility Cumulative Demand Reduction (MW) 1 Florida Power & Light 3,595 2 Southern California Edison 3,401 3 Pacific Gas & Electric 2,517 4 5 Northern States Power 1,977 Progress Energy Florida 1,802 6 7 8 Alabama Power 1,478 Wisconsin Electric Power Commonwealth Edison 1,154 1,134 Progress Energy Carolinas 9 949 10 Duke Energy 675

If FPL's cumulative demand reduction from DSM were a "virtual utility," it would be Florida's 3rd largest utility

Rank	Utility	Summer Peak MW
1	Florida Power & Light	21,962
2	Progress Energy Florida	10,355
3	FPL Cumulative DSM (Generator Equivalent)	4.724 ¹
4	Tampa Electric (TECO)	4,123
5	Seminole Electric Co-Op	3,793
6	JEA	2.897
7	Gulf Power	2.634
8	Orlando Utilities Commission	1.085
9	Withlacoochee River Electric Co-Op	879
10	Lee County Electric Co-Op	774

	FPL is #1 in cumulat (MW) from er	FPL is #1 in cumulative demand reduction (MW) from energy efficiency				
Rank	Utility	Summer Peak MW				
1	Florida Power & Light	2.077				
2	Southern California Edison	1,802				
3	Pacific Gas & Electric	1,480				
4	Northern States Power	1,054				
5	Wisconsin Electric Power	674				
6	Progress Energy Florida	652				
7	Progress Energy Carolinas	630				
8	Tennessee Valley Authority (TVA)	493				
9	Connecticut Light & Power	469				
10	PacifiCorp	393				

¹ After accounting for 9.5% line loss and 20% reserve margin factors.

	FPL is #2 in cumulative demand reduction (MW) from load management					
Rank	Utility	Cumulative Load Management MW				
1	Southern California Edison	1,599				
2	Florida Power & Light	1,518				
3	Alabama Power	1,425				
4	Progress Energy Florida	1,150				
5	Commonwealth Edison	1,134				
6	Pacific Gas & Electric	1,037				
7	Northern States Power	923				
8	Nebraska Public Power District	814				
9	Duke Energy	675				
10	Arkansas Electric Co-Op	567				
	FPL is #4 in c (MWh) f	umulative energy reduction rom energy efficiency				
Rank	Utility	Cumulative Energy Efficiency MWh				
1	Southern California Edison	9,613,063				
2	Pacific Gas & Electric	8,523,060				

Kan k	Utility	Cumulative Energy Efficiency M
1	Southern California Edison	9,613,063
2	Pacific Gas & Electric	8,523,069
3	Northern States Power	4,298,362
4	Florida Power & Light	3,975,851
5	Connecticut Light & Power	2,424,378
6	Massachusetts Electric	2,246,977
7	PacifiCorp	2,073,555
8	Puget Sound Energy	1,943,716
9	Potomac Electric Power	1,789,608
10	Interstate Power and Light	1,405,042
		· ·

FPL's Contribution to National DSM

FPL contributes more than its proportionate share of DSM relative to peak demand

FPL's DSM Performance Among Large Utilities

Comparison of DSM as a Percentage of Peak Demand

Docket No. 080407 - EG FPL's DSM Performance Among Large Utilities, DOE/EIA 2007 Data hibit JRH-3, Page 1 of 2

FPL's DSM Performance Among Large Utilities

A Comparison of Energy Efficiency as Percentage of Retail Sales

Docket No. 080407 - EG FPL's DSM Performance Among Large Utilities, DOE/EIA 2007 Data Exhibit JRH-3, Page 2 of 2

		FPL's Current DSM Programs
1	Residential Conservation Service	An energy audit program designed to assist residential customers in making their homes more energy efficient through the installation of conservation measures and the implementation of conservation practices.
2	Residential Building Envelope Program	A program designed to encourage qualified customers to install energy-efficient building envelope measures that cost-effectively reduce FPL's coincident peak air conditioning load and customer energy consumption.
3	Residential Load Management Program ("On Call")	A program designed to offer voluntary load control to residential customers.
4	Duct System Testing and Repair Program	A program designed to identify air conditioning duct system leaks and have qualified contractors repair those leaks.
5	Residential Air Conditioning Program	A program designed to provide financial incentives for residential customers to purchase a more efficient unit when replacing an existing air conditioning system.
6	BuildSmart Program	The objective of this program is to encourage the design and construction of energy-efficient homes that cost effectively reduces FPL's coincident peak load and customer energy consumption.
7	Low-Income Weatherization Program	This program employed a combination of energy audits and incentives to encourage Low-Income housing administrators to perform tune-ups of Heating and Ventilation Air Conditioning (HVAC) systems and install reduced air infiltration energy efficiency measures.
6	Business On Call Program	This program is designed to offer voluntary load control of central air conditioning to GS and GSD customers.
9	Cogeneration and Smail Power Production	A program intended to facilitate the installation of cogeneration and small power production facilities.
10	Business Efficient Lighting	A program designed to encourage the installation of energy efficient lighting measures in business facilities.
11	Commercial / Industrial Load Control	A program designed to reduce coincident peak demand by controlling customer loads of 200 kW or greater during periods of extreme demand or capacity shortages.
12	Commercial Demand Reduction	A program designed to reduce coincident peak demand by controlling customer loads of 200 kW or greater during periods of extreme demand or capacity shortages.
13	Business Energy Evaluation	This program is designed to provide evaluations of business customers' existing and proposed facilities and encourage energy efficiency by identifying DSM opportunities and providing recommendations to the customer.
14	Business Heating, Ventilating and Air Conditioning Program	A program designed to reduce the current and future growth of coincident peak demand and energy consumption of business customers by increasing the use of high efficiency heating, ventilating and air conditioning (HVAC) systems.

		FPL's Current DSM Programs
15	Business Custom Incentive	A program designed to assist FPL's business customers to achieve electric demand and energy savings that are cost-effective to all FPL customers. FPL will provide incentives to qualifying customers who purchase, install and successfully operate cost-effective energy efficiency measures not covered by other FPL programs.
16	Business Building Envelope Program	A program designed to encourage eligible business customers to increase the efficiency of the qualifying portion of their building's envelope, in order to reduce HVAC energy consumption and demand.
17	Business Water Heating	A program designed to encourage eligible business customers to install qualifying Heat Recovery Units (HRU) or Heat Pump Water Heater (HPWH) equipment.
18	Business Refrigeration Program	A program designed to encourage eligible business customers to install energy-saving equipment to reduce or eliminate the use of electric heating elements needed to prevent condensation on display case doors and to defrost freezer doors.
19	Conservation Research & Development Program	A program designed to evaluate emerging conservation technologies to determine which are worthy of further evaluation as candidates for program development.

Source

•

2008 ECCR True-up, Schedule CT-6

FPL Cumulative 1981 - 2008 Reduction (At the Generator)								
Total Reduction	Summer MW	Winter MW	Energy *GWh					
C/I Conservation	799	375	20.558					
Residential Conservation	1,576	1,051	25,787					
On Call	974	881	198					
C/I Load Control	509	509	97					
CDR	167	167	5					
Business On Call	84	-	0					
Total	4,109	2,983	46.646					
+20% reserve	4,931							
400 MW plants avoided	12							
150 MW combustion turbines avoided	33							
RCS Surveys	2.578.683							
BEE Surveys	129,158							
Total Energy Surveys	2,707,841							

Market Segment Summary			·
	Summer MW	Winter MW	Energy *GWh
C/I Conservation	799	375	20,558
C/I Load Control	760	676	103
Total C/I	1,559	1,051	20,661
Residential Conservation	1,576	1,051	25,787
Residential Load Control	974	881	198
Total Residential	2,550	1,932	25,985
Total Residential and C/I	4,109	2,983	46,646

Docket No. 080407 - EG Low-Income Participants in FPL's DSM Programs Exhibit JRH-6, Page 1 of 1

In March 2009, FPL engaged The Futures Company (a Yankelovich Group Company) to develop a profile of its Low-Income customers and to conduct an analysis of the participation level of current Low-Income and all-others in DSM programs. As a baseline, the analysis determined that Low-Income customers represented 20% of FPL's residential customers. The purpose of this analysis was to understand the participation rate of Low-Income customers in FPL's DSM offerings and the participation rate of other customers.

FPL DSM Program	Participation Rate of FPL's Low-Income Customers	Participation Rate of All Other FPL Customers		
Residential Building Envelope Program	29%	20%		
Residential Duct Repair Program	27%	20%		
Residential On Call Program	18%	20%		
Residential HVAC Program	9%	20%		

For three of its four major program areas, FPL has essentially the same or greater participation for Low-Income customers as it does for other customers. The exception to this trend is for the Residential HVAC program, which is most likely explained by two factors: (i) Low-Income customers are less likely to own their residences and more likely to be renters. (ii) Landlords may not be willing to pay the higher up front cost of efficient HVAC systems beyond the customer incentives. Given these two factors, the 9% participation rate is reasonably successful.

FPL's success in attracting low-income customers to its DSM programs are the result of several outreach initiatives, often in cooperation with organizations like The Salvation Army, the Governor's Front Porch Florida Initiative, Habitat for Humanity and the Association of Community Organizations for Reform Now (ACORN). FPL's initiatives include:

	FPL Low-Income Initiatives						
Targeting DSM Programs to Rental Properties	Because low-income customers are more likely to be renters, FPL's efforts to target and encourage landlords and property managers to make apartment complexes more efficient by repair leaking A/C ducts and adding insulation have resulted in many low-income customers benefiting from these programs.						
Low-Income Weatherization Program	Since 2005, this Commission-approved DSM program has provided incentives for the installation of weather-stripping, HVAC maintenance and room A/C replacement to 1,505 customers. It also supports Federal funded Weatherization Assistance Program (WAP) incentive programs for low-income energy efficiency installations for weatherization improvements.						
The FPL Low-income Initiative	Since 2007, FPL ASSIST agencies, including the Salvation Army, have referred 417 customers to FPL's low-income initiative. Referral customers have received pledges for payment assistance, including LIHEAP. Participants receive an energy audit with an emphasis on education and smart energy habits. Half of the participants have been referred by ACORN.						
Low-Income Education Seminars	Since 2007, FPL has conducted 18 seminars for 531 low-income customers in Miami- Dade and Broward Counties. Seminar participants receive information on how to take advantage of FPL DSM programs, options for managing utility deposits, sources of payment assistance and four free compact fluorescent (CFL) light bulbs.						
FPL BuildSmart for Humanity	Since 2005, the FPL Foundation has funded energy efficiency upgrades to 600 Habitat for Humanity homes. In partnership with local Habitat for Humanity organizations, FPL's Commission approved BuildSmart program certifies the new homes to be at least 10% more energy efficient than required by Florida building code. FPL employees also volunteer to help build these homes, working alongside the future homeowner.						
FPL Home Energy Makeover	Since 2006, FPL Home Energy Makeovers have provided free energy efficiency home improvements to 238 low-income households throughout our service territory. Working with local agencies, including the Governor's Front Porch Florida Initiative, FPL employees and participating DSM contractors team-up with local volunteers to perform Energy Makeovers on up to 50 low-income homes in a single day. Participants may receive all Commission approved residential DSM programs as well as additional measures funded by the FPL Foundation, at no charge.						

Docket No. 080407 - EG FPL's DSM Goals Experience 2005 - 2008 Exhibit JRH-8, Page 1 of 1

	Winter Peak MW Reduction			Summer Beak MM Reduction			OMB Essent Deduction			
		1 CONTRACTOR		John	Summer Feak WW Reduction			Givin Energy Reduction		
		Cumulative	(Cumulative			Cumulative		
	Cumulative	Commission	1	Cumulative	Commission	1	Cumulative	Commission	1	
	Total	Approved	1	Total	Approved		Total	Approved	1	
Year	Achieved	Goal	% Variance	Achieved	Goal	% Variance	Achieved	Goal	% Variance	
2005	36.3	38.8	-6%	92.5	74.0	25%	184.2	121.8	51%	
2006	110.8	79.3	40%	219.8	141.7	55%	383.9	216.8	77%	
2007	233.5	122.5	91%	384.2	211.9	81%	593.6	306.0	94%	
2008	312.7	170.6	83%	519.3	287.2	81%	753.9	401.1	88%	
2009		221.5	1 1	1	365.9			501.2		
2010	1 /	275.2	1		447.9			606.1		
2011		330.9	1		532.1			714.3		
2012		388.5	1		618.8			825.8		
2013		448.1	1		707.9			940.5		
2014		512.4	L	1 /	801.7	4		1,058.6	1	

Residential and Commercial/Industrial

The Winter Peak, Summer Peak and Energy Reductions represent the Residential and Commercial/Industrial combined DSM effort.

residentia:									
	Winter	Peak MW Red	duction	Summer Peak MW Reduction			GWh Energy Reduction		
		Cumulative			Cumulative			Cumulative	
	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission	
	Total	Approved		Total	Approved		Total	Approved	
Year	Achieved	Goal	% Variance	Achieved	Goal	% Variance	Achieved	Goal	% Variance
2005	21.4	26.0	-18%	49.8	47.8	4%	91.6	90,3	1%
2006	62.5	55.6	12%	118.5	91.9	29%	191.2	166.0	15%
2007	104.3	89.2	17%	171.0	140.6	22%	247.5	246.9	0%
2008	136.1	127.3	7%	238.7	194.6	23%	351.0	333.3	5%
2009		168.0			252.1			424.1	
2010		211.3			313.2			519.5	
2011		256.3			377.1			617.9	
2012		303.3			443.6			719.3	
2013		352.0			512.8			823.7	
2014		405.1			586.9			931.0	

Commercial/Industrial

	Winter	Peak MW Red	duction	Summe	er Peak MW Re	duction	GWh Energy Reduction			
		Cumulative			Cumulative			Cumulative		
	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission		
	Total	Approved		Total	Approved	4	Total	Approved		
Year	Achieved	Goal	% Variance	Achieved	Goal	% Variance	Achieved	Goal	% Variance	
2005	14.9	12.8	16%	42.7	26.3	62%	92.6	31.5	194%	
2006	48.3	23.7	104%	101.3	49.8	103%	192.7	50.8	279%	
2007	129.2	33.3	288%	213.2	71.3	199%	346.1	59.1	486%	
2008	176.7	43.2	309%	280.6	92.6	203%	402.9	67.8	494%	
2009		53.5			113.8			77.0		
2010		63.9			134.6			86.5		
2011		74.4			155.1			96.4		
2012		85.1			175.2			106.5		
2013	96.1			195.1	195.1		116.9			
2014		107.3			214.9			127.6		

FLORIDA POWER & LIGHT COMPANY Comparison of Achieved kW and kWh Reductions

with Annual Target Included in Public Service Commission Approved Goals - November 30, 2004 December 31, 2008

Docket No. 080407 - EG FPL's DSM Goals Experience Over Time Exhibit JRH-9, Page 1 of 2

					in daga len				
	Winter P	Peak MW Reduc	ction	Summer I	Peak MW Redu	ction	GWh E	nergy Reducti	on
		Cumulative			Curnulative			Cumulative	
	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission	
	Total	Approved	%	Total	Approved	%	Total	Approved	%
Year	Achieved	Goal Variance		Achieved	Achieved Goal		Achieved	Goal	Variance
2000	94.6	112.1	-16%	134.9	121.7	11%	188.9	160.4	18%
2001	175.2	171.2	2%	244.8	199.8	22%	400.0	275.9	45%
2002	266.7	214.1	25%	363.0	269.0	35%	606.9	393.5	54%
2003	391.5	257.2	52%	528.2	339.4	56%	803.2	514.4	56%
2004	421.8	300.2	40%	605.0	410.4	47%	964.0	637.7	51%
2005		344.8			483.6			766.8	
2006		386.1			554.2			895.8	
2007		427.0			625.0			1,025.0	
2008		467.9	1		696.6)		1,155.6	
2009		505.4			764.7			1,286.6	

Residential and Commercial/Industrial

The Winter Peak, Summer Peak and Energy Reductions represent the Residential and Commercial/Industrial combined DSM effort.

	Winter F	Peak MW Reduc	tion	Summer	Peak MW Redu	ction	GWh E	nergy Reducti	on					
		Cumulative			Cumulative			Cumulative						
	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission						
ł	Total	Approved	%	Total	Approved	%	Total	Approved	%					
Year	Achieved	<u>Goai</u>	Variance	Achieved	Goal	Variance	Achieved	Goal	Variance					
2000	78.3	91.6	-15%	93.4	75.5	24%	123.7	91.9	35%					
2001	139.4	139.0	0%	158,4	126.5	25%	231.0	178.3	30%					
2002	225.2	170.0	32%	243.1	169.4	44%	350.3	267.1	31%					
2003	256.0	200.4	28%	293.4	212.8	38%	434.9	357.3	22%					
2004	273.6	230.1	19%	338.9	256.6	32%	526.2	448.9	17%					
2005		260.6			302.0	1		544.2						
2006		289.0			347.0			640.9						
2007		317.2			392.6	l		739.3						
2008		345.7			439.4		l	840.3						
2009	372.4				485.9		943.2	_						

Commercial/Industrial

T	Winter F	eak MW Reduc	tion	Summer	Peak MW Redu	GWh Energy Reduction			
		Cumulative		·	Cumulative			Cumulative	
1	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission	
	Total	Approved	%	Total	Approved	%	Total	Approved	%
Year	Achieved	Goal Variance		Achieved	Goal	Variance	Achieved	Goal	Variance
2000	16.4	20.5	-20%	41.5	46.2	-10%	65.2	68.5	-5%
2001	35.9	32.2	11%	86.3	73.3	18%	169.0	97.6	73%
2002	41.4	44.1	-6%	119.8	99.6	20%	256.7	126.4	103%
2003	135.5	56.8	139%	234.8	126.6	85%	368.3	157.1	134%
2004	148.2	70.1	111%	266.1	153.8 73%		437.8	188.8	132%
2005		84.2			181.6			222.6	
2006		97.1			207.2	1		254.9	
2007	l	109.8		l	232.4	1	l .	285.7	
2008	122.2		257.2			ļ	315.3		
2009	133.0			278.8			343.4		

Docket No. 080407 - EG FPL's DSM Goals Experience Over Time Exhibit JRH-9, Page 2 of 2

Residential												
	Winter F	Peak MW Reduc	ction	Summer F	Peak MW Redu	ction	GWn E	nergy Reducti	on			
		Cumulative			Cumulative			Cumulative				
	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission				
	Total	Approved	%	Total	Approved	%	Total	Approved	%			
Year	Achieved	Achieved Goal Variance		Achieved	Goal	Variance	Achieved	Goal	Variance			
1994	101	101 77 3		107	88	22%	102	66	55%			
1995	191	157 22%		206	181	14%	213	150	42%			
1996	285	236 21%		333	272	23%	396	239	65%			
1997	411	315	30%	483	362	34%	623	337	85%			
1998	502	394	27%	607	455	33%	774	453	71%			
1999	608	468	30%	710	543	31%	931	568	64%			
2000		542			631			684				
2001		617			719			799				
2002	691				807			914				
2003	765		\		895			1,030				

	Gommercial/industrial													
	Winter F	eak MW Reduc	tion	Summer	Peak MW Redu	ction	GWh E	nergy Reducti	on					
		Cumulative			Cumulative			Cumulative						
	Cumulative	Commission		Cumulative	Commission		Cumulative	Commission	()					
	Total Approved %		Total	Approved	%	Total	Approved	%						
Year	Achieved	Goal	<u>Variance</u>	Achieved	Goal	Variance	Achieved	Goal	Variance					
1994	17	9	91%	44	23	90%	144	67	114%					
1995	100	100 69 4		165	111	48%	352	139	154%					
1996	156	93	68%	271	167	63%	690	212	225%					
1997	174	114	53%	325	223	46%	816	292	179%					
1998	206	136	51%	385	285 35%		915	383	139%					
1999	208	158	32%	411	353	17%	992	473	110%					
2000		180			420			563						
2001		202			487			652						
2002	223				554			742						
2003		245			622			832						

Variance Explanation: **Residential** - FPL continued to exceed its residential target in 1999 as a result of higher than expected participation and SEER level installs in the Residential Air Conditioning program, resulting in demand and energy savings exceeding the planned weighted average savings.

Commercial/Industrial - The commercial/industrial programs variance percentage still continues to reflect an overall overachievement even though the C/I Load Control program kW additions for 1999 were reduced by 29 MWs from the loss of Ameristeel as an FPL customer in January 1999.

	Residential and Commercial/Industrial												
	Winter P	eak MW Reduc	tion	Summer F	eak MW Redu	ction	GWh E	nergy Reducti	on				
		Cumulative			Cumulative			Cumulative					
	Cumulative	Commission		Cumulative	Commission	1	Cumulative	Commission					
	Total	Approved	%	Total	Approved	%	Total	Approved	%				
Year	Achieved	Achieved Goal Variance		Achieved	Goal	Goal Variance		Goal	Variance				
1994	118	118 86 37%		151	111	36%	246	133	85%				
1995	290	226 28%		371	292	27%	565	289	96%				
1996	440	329	34%	605	439	38%	1,085	451	141%				
1997	585	429	36%	808	585	38%	1,439	629	129%				
1998	708	530	34%	992	740 34%		1,688	836	102%				
1999	816	626	30%	1,122	896	25%	1,922	1,041	85%				
2000		722	1		1,051	1 1		1,247					
2001		819			1,206	1		1,451					
2002		914			1,361			1,656					
2003		1,010			1,517			1,862					

Docket No. 080407 - EG Collaborative Process Roadmap to Determining Goals Exhibit JRH-10, Page 1 of 1

Collaborative Sources Used to Develop the List of Measures

Residential Efficiency Measure Data Sources:

- Anello, M, D Parker, J Sherwin, and K Richards, 2001. Measured Impact of Advanced Windows on Cooling Energy Use. FSEC-PF-364-01.
- California Public Utilities Commission, 2001. Database for Energy Efficient Resources 2001 Update. Available at: <u>http://energy.ca.gov/deer/index.html</u>
- California Public Utilities Commission, 2004. Database for Energy Efficient Resources Version 2.01. Available at: <u>http://energy.ca.gov/deer/index.html</u>
- California Public Utilities Commission, 2008. Database for Energy Efficient Resources 2008. Interim results from ongoing project not yet publicly available.
- Roth, K and K McKenney, 2007. Energy Consumption by Consumer Electronics in U.S. Residences. Prepared for the Consumer Electronics Association by TIAX LLC. TIAX report #D5525. Available at:
- http://www.ce.org/pdf/energy%20consumption%20by%20ce%20in%20u.s.%20residence s%20(january%202007).pdf
- Parker, D, M Anello, S Kalaghchy, and J Klongerbo, 2000a. FPC Residential Monitoring Project: Assessment of Direct Load Control and Analysis of Winter Performance. Prepared for Florida Power Corporation. FSEC-CR-1112-99.
- Parker, D, J Sonne, and J Sherwin, 2000b. Comparative Evaluation of the Impact of Roofing Systems on Residential Cooling Energy Demand in Florida. FSEC-CR-1220-00.
- Parker, D, J Sherwin, and M Anello, 2001. FPC Residential Monitoring Project: New Technology Development Radiant Barrier Pilot Project. FSEC-CR-1231-01.
- Porter, S, L Moorefield, and P May-Ostendorp, 2006. Energy Use of Plug Load Devices in California Homes: Field Research Report. Prepared for the California Energy Commission by Ecos Consulting. Available at: <u>http://www.efficientproducts.org/reports/plugload/Plug_Loads_CA_Field_Research_Report_Ecos_2006.pdf</u>

- U.S. Department of Energy, 2004. 2001 Residential Energy Consumption Survey. Available at: <u>http://www.eia.doe.gov/emeu/recs/contents.html</u>
- U.S. Department of Energy, 2008. 2005 Residential Energy Consumption Survey. Available at: <u>http://www.eia.doe.gov/emeu/recs/contents.html</u>
- Wenzel, T, J Koomey, G Rosenquist, M Sanchez, and J Hanford, 1997. Energy Data Sourcebook for the U.S. Residential Sector. LBNL-40297. Available at: <u>http://enduse.lbl.gov/Info/LBNL-40297.pdf</u>

Commercial efficiency measure data sources:

- California Public Utilities Commission, 2001. Database for Energy Efficient Resources 2001 Update. Available at: <u>http://energy.ca.gov/deer/index.html</u>
- California Public Utilities Commission, 2004. Database for Energy Efficient Resources Version 2.01. Available at: <u>http://energy.ca.gov/deer/index.html</u>
- California Public Utilities Commission, 2008. Database for Energy Efficient Resources 2008. Interim results from ongoing project not yet publicly available.
- Parker, D, J Sonne, and J Sherwin, 1997. Demonstration of Cooling Savings of Light Colored Roof Surfacing in Florida Commercial Buildings: Retail Strip Mall. FSEC-CR-964-97.
- Regional Economic Research, 1996. Commercial and Industrial Sector End-Use Study. Prepared for Florida Power and Light Company.
- Roth, K, F Goldstein, and J Kleinman, 2002. Energy Consumption by Office and Telecommunications Equipment in Commercial Buildings Volume I: Energy Consumption Baseline. Prepared for the USDOE Office of Building Technology State and Community Programs. Arthur D. Little Reference No. 72895-00.
- U.S. Department of Energy, 2008. 2003 Commercial Building Energy Consumption Survey. Available at: <u>http://www.eia.doe.gov/emeu/cbecs/contents.html</u>

Industrial efficiency measure data sources:

Alliance to Save Energy. 2000. Steam Digest 2000. Prepared for U.S. Department of Energy, Office of Industrial Technologies. Washington, DC. <u>http://www.oit.doe.gov/bestpractices/steam/pdfs/digest2k.pdf</u>

- Aspen Systems Corporation. 2003. Nonresidential Market Share Tracking Study. Prepared for the California Energy Commission. December.
- Aspen Systems. 2003. The Compressed Air Systems Market Assessment and Baseline Study for New England. Rockville, MD: Aspen Systems Corporation.
- Caffal, C. 1995. Energy Management in Industry. Centre for the Analysis and Dissemination of Demonstrated Energy Technologies (CADDET), The Netherlands. Analyses series 17, December.
- Canadian Industry Program for Energy Conservation and Canadian Foundry Association. 2003. Guide to Energy Efficiency Opportunities in Canadian Foundries. Ottawa, ON.
- Centre for the Analysis and Dissemination of Demonstrated Energy Technologies (CADDET). 1997. Process Heating in the Low and Medium Temperature Ranges (Caddet Analysis report 22), International Energy Agency/CADDET, Sittard, The Netherlands.
- Centre for the Analysis and Dissemination of Demonstrated Energy Technologies (CADDET). 1997. Saving Energy with Efficient Compressed Air Systems. Maxi Brochure 06.
- Centre for the Analysis and Dissemination of Demonstrated Energy Technologies (CADDET). 2001. Saving Energy with Daylighting Systems. Maxi Brochure 14.
- Compressed Air Challenge (CAC). 2002. Guidelines for Selecting a Compressed Air System Service Provider and Levels of Analysis of Compressed Air Systems. Available at http://www.compressedairchallenge.org.
- Compressed Air Challenge (CAC). 2001. Assessment of the Market for Compressed Air Efficiency Services, prepared by XENERGY Inc. for Oak Ridge National Laboratory and Lawrence Berkeley National Laboratory and USDOE Compressed Air Challenge.
- Council of Forest Industries. 1996. Energy Efficiency Opportunities in the Solid Wood Industries. Vancouver, BC: Carrol-Hatch Ltd.
- De Beer, J.G., van Wees, M.T., Worrell, E., and Blok, K., 1994. ICARUS-3: The Potential of Energy Efficiency Improvement in the Netherlands up to 2000 and 2015. Utrecht, The Netherlands: Utrecht University.
- Department of Energy (DOE). 2003. Office of Industrial Technologies, Energy Efficiency and Renewable Energy. Industries of the Future Program for Metal Casting. Information available at: <u>http://www.oit.doe.gov/metalcast/</u>

- Einstein, D., Worrell, E., Khrushch, M. 2001. "Steam systems in industry: Energy use and energy efficiency improvement potentials." Lawrence Berkeley National Laboratory. LBNL-49081.
- Elliot, N. R. of the American Council for an Energy Efficient Economy (ACEEE). 1994. Electricity Consumption and the Potential for Electric Energy Savings in the Manufacturing Sector. Washington, D.C.
- Energy Information Administration, 2007. Manufacturing Energy Consumption Survey 2002. Washington, DC: Energy Information Administration, US Department of Energy.
- Galitsky C., Martin N., Worrell E., Lehman B. 2003. Energy Efficiency Improvement and Cost Saving Opportunities for Breweries: An Energy Star Guide for Energy and Plant Managers. Lawrence Berkeley National Laboratory. Report LBNL-50934.
- Galitsky C., Worrell E., Ruth M. 2003. Energy Efficiency Improvement and Cost Saving Opportunities for the Corn Wet Milling Industry: An ENERGY STAR Guide for Energy and Plant Managers. Lawrence Berkeley National Laboratory. Report LBNL-52307.
- Galitsky, C. and E. Worrell. 2003. Energy Efficiency Improvement and Cost Saving Opportunities for the Vehicle Assembly Industry - A Guide for Energy and Plant Managers. Berkeley, CA: Lawrence Berkeley National Laboratory. Report LBNL-50939.
- Galitsky, C. and Worrell, E. 2004. Profile of the Chemical Industry in California. Prepared for the California Energy Commission. Berkeley, CA: Lawrence Berkeley National Laboratory. Report LBNL-55668.
- Hydraulic Institute and Europump. 2001. Pump Life Cycle Costs: A Guide to LCC Analysis for Pumping Systems. Parsippany, NJ.
- Hydraulic Institute. 2002. Website, http://www.pumps.org/
- Industrial Assessment Center (IAC). Industrial Assessment Center Database. <u>http://oipea-www.rutgers.edu/site_docs/dbase.html</u>.
- Infomil, 1996. Information Plastic Processing Industry, The Hague, The Netherlands (in Dutch)
- Infomil, 1997. Information for Bread and Bread-and Pastry-Bakeries for Energy Use in Environmental Permitting. The Hague, The Netherlands: Infomil (in Dutch)

- Ingersoll Rand. 2001. Air Solutions Group-Compressed Air Systems Energy Reduction Basics. http://www.air.ingersoll-rand.com/NEW/pedwards.htm
- Interlaboratory Working Group on Energy-Efficiency and Clean Energy Technologies, 2000. Scenarios for a Clean Energy Future. Oak Ridge, TN: Oak Ridge National Laboratory and Berkeley, CA: Lawrence Berkeley National Laboratory.
- Itron, Inc. 2006. California Energy Efficiency Potential Study. Prepared for the Pacific Gas & Electric Company. May 24. Available at: <u>http://www.calmac.org/</u>.
- Jallouk, P., and C.D. Liles. 1998. Industrial Electric Motor Drive Systems. Centre for the Analysis and Dissemination of Demonstrated Energy Technologies (CADDET), Sittard, The Netherlands.
- Lawrence Berkeley National Laboratory (LBNL) and Resource Dynamics Corporation. 1998. Improving Compressed Air System Performance, a Sourcebook for Industry. Prepared for the U.S. Department of Energy, Motor Challenge Program.
- Lawrence Berkeley National Laboratory (LBNL), Resource Dynamics Corporation and the Hydraulic Institute. 1999. Improving Pumping System Performance: A Sourcebook for Industry. Prepared for the U.S. Department of Energy Motor Challenge Program.
- Ledyard, T., L. Barbagallo and E. Lionberger. 1999. Commercial and Industrial O&M Market Segment Baseline Study (Final Report). Middletown, CT: RLW Analytics.
- Martin N., Anglani N., Einstein D., Khrushch M., Worrell E., Price LK. 2000. Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry. Lawrence Berkeley National Laboratory. Report LBNL-46141.
- Martin, N., E. Worrell, M. Ruth, L. Price, R.N. Elliott, A.M. Shipley, J. Thorne. 2000. Emerging Energy-Efficient Industrial Technologies. Lawrence Berkeley National Laboratory/American Council for an Energy-Efficient Economy, Berkeley, CA/Washington, DC. Report LBNL-46990.
- Martin, N., N. Anglani, D. Einstein, M. Khrushch, E. Worrell, L.K. Price. 2000. "Opportunities to Improve Energy Efficiency and Reduce Greenhouse Gas Emissions in the U.S. Pulp and Paper Industry," Berkeley, CA: Lawrence Berkeley National Laboratory. Report LBNL-46141.
- Mercer, A.C. 1994. Learning from Experiences with Industrial Drying Technologies. Sittard, The Netherlands: CADDET.

Docket No. 080407-EG Collaborative Sources Used to Develop the List of Measures Exhibit JRH-11, Page 6 of 8

- Michaelson, D. A. and F. T. Sparrow. 1995. "Energy Efficiency in the Metals Fabrication Industries". In: ACEEE 1995 Summer Study on Energy Efficiency in Industry, Partnerships, Productivity, and the Environment, conference proceedings, New York. Vol. 1: 135-137.
- Nadel, S., N. Elliott, M. Shepard, S. Greenberg, G. Katz and A.T. de Almeida. 2002. Energy-Efficient Motor Systems: A Handbook on Technology, Program and Policy Opportunities (2nd Edition), Washington, DC: ACEEE
- National Dairy Council of Canada. 1997. Guide to Energy-Efficiency Opportunities in the Dairy Processing Industry. Mississauga, ON, Canada.
- Natural Resources Canada, The Council of Forest Industries, Canadian Industry Program for Energy Conservation. 1996. Energy Efficiency Opportunities in the Solid Wood Industries. Vancouver, BC.
- Paprican. 1999. Energy Cost Reduction in the Pulp and Paper Industry, Pointe Claire, Quebec, Canada: Paprican.
- Radgen, P. and E. Blaustein (eds.). 2001. Compressed Air Systems in the European Union, Energy, Emissions, Savings Potential and Policy Actions. Germany.
- Tutterow, V. 1999. Energy Efficiency in Pumping Systems: Experience and Trends in the Pulp and Paper Industry. American Council for an Energy Efficient Economy (ACEEE).
- Tutterow, V., D. Casada and A. McKane. 2000. "Profiting from your Pumping System." Proceedings of the Pump Users Expo 2000. Louisville, KY: Pumps & Systems Magazine and Randall Publishing Company. September.
- U.S. Census Bureau. 1997. 1997 Economic Census: Comparative Statistics for California 1987 SIC Basis: Manufacturing. http://www.census.gov/epcd/ec97sic/E97SCAD.HTM
- U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy. 2004. Industrial Assessment Centers (IAC) Database. <u>http://iac.rutgers.edu/database/</u>
- U.S. Department of Energy. 2004. Improving Process Heating System Performance: A Sourcebook for Industry. Industrial Technologies Program. Washington, DC. http://www.oit.doe.gov/bestpractices/pdfs/proc_heat_sourcebook.pdf
- U.S. Department of Energy. 2004. Improving Steam System Performance: A Sourcebook for Industry. Industrial Technologies Program. Washington, DC. http://www.nrel.gov/docs/fy05osti/35682.pdf

- Worrell, E. and Galitsky, C. 2003. Energy Efficiency Improvement Opportunities for Cement Making - An ENERGY STAR Guide for Energy and Plant Managers. Berkeley, CA: Lawrence Berkeley National Laboratory, (LBNL 54036).
- Worrell E., Martin N., Price LK. 1999. Energy Efficiency and Carbon Dioxide Emissions Reduction Opportunities in the U.S. Iron and Steel Sector. Lawrence Berkeley National Laboratory. Report LBNL-41724.
- Worrell, E. and Galitsky, C. 2004. Profile of the Petroleum Refining Industry in California Prepared for the California Energy Commission. Berkeley, CA: Lawrence Berkeley National Laboratory (LBNL-55450).
- Worrell, E. and Galitsky, C. Energy Efficiency Improvement and Cost Saving Opportunities for Petroleum Refineries: An Energy Star Guide for Energy and Plant Managers, Lawrence Berkeley National Laboratory, Berkeley, CA (forthcoming).
- Worrell, E., Dian Phylipsen, Dan Einstein, Nathan Martin. 2000. Energy Use and Energy Intensity of the U.S. Chemical Industry. Berkeley, CA: Lawrence Berkeley National Laboratory (LBNL-44314).
- Worrell, Ernst, Nathan Martin, Norma Anglani, Dan Einstein, Marta Khrushch, Lynn Price. 2001. "Opportunities to Improve Energy Efficiency in the U.S. Pulp and Paper Industry," Proceedings Paper Machine Technology, February 7-8, Lanaken, Belgium.
- XENERGY. 1998. United States Industrial Electric Motor Systems Market Opportunities Assessment. Prepared for the U.S. Department of Energy's Office of Industrial Technology and Oak Ridge National Laboratory. Burlington, MA. December.
- XENERGY. 2001a. California Industrial Energy Efficiency Market Characterization Study. Prepared for PG&E. December.
- XENERGY. 2001b. Motorup Evaluation and Market Assessment. Prepared for Motorup Working Group. Burlington, MA.
- XENERGY. 2002. California's Secret Energy Surplus: The Potential for Energy Efficiency. Prepared for the Energy Foundation. September.

Demand response measure data sources:

Faruqui, Ahmad and Sanem Sergici, 2008. The Power of Experimentation: New Evidence on Residential Demand Response. May 11. Available at: http://www.brattle.com/ documents/uploadlibrary/upload683.pdf

Docket No. 080407-EG Collaborative Sources Used to Develop the List of Measures Exhibit JRH-11, Page 8 of 8

Goldman, Charles, Nicole Hopper, Ranjit Bharvirkar, Bernie Neenan, and Peter Cappers, 2007. Estimating Large-Customer Demand Response Market Potential: Integrating Price and Customer Behavior. Berkeley, CA: Lawrence Berkeley National Laboratory (LBNL-63347). June 1. Available at: http://repositories.cdlib.org/lbnl/LBNL-63347/

FERC, 2008. Assessment of Demand Response and Advanced Metering: Staff Report, December. Available at: <u>http://www.ferc.gov/legal/staff-reports/12-08-demand-response.pdf</u>

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 1 of 7

Residential Measures

Measure

number **Residential Energy Efficiency**

- 1 14 SEER Split-System Air Conditioner
- 2 15 SEER Split-System Air Conditioner
- 3 17 SEER Split-System Air Conditioner
- 4 19 SEER Split-System Air Conditioner
- 5 14 SEER Split-System Heat Pump
- 15 SEER Split-System Heat Pump 6
- 17 SEER Split-System Heat Pump 7
- 13 EER Geothermal Heat Pump 8
- 9 HVAC Proper Sizing
- Attic Venting 10
- Sealed Attic w/Sprayed Foam Insulated Roof Deck 11
- A/C Maintenance (Outdoor Coil Cleaning) 12
- A/C Maintenance (Indoor Coil Cleaning) 13
- Proper Refrigerant Charging and Air Flow 14
- Electronically Commutated Motors (ECM) on an Air Handler Unit 15
- 16 Duct Repair
- 17 Reflective Roof
- Radient Barrier 18
- 19 Window Film
- 20 Window Tinting
- Default Window With Sunscreen 21
- Single Pane Clear Windows to Double Pane Low-E Windows 22
- 23 Double Pane Clear Windows to Double Pane Low-E Windows
- 24 Ceiling R-0 to R-19 Insulation
- 25 Ceiling R-19 to R-38 Insulation
- Wall 2x4 R-0 to Blow-In R-13 Insulation 26
- 27 Weather Strip/Caulk w/Blower Door
- 28 HE Room Air Conditioner - EER 11
- HE Room Air Conditioner EER 12 29
- CFL (18-Watt integral ballast) 30
- 31 Premium T8, Elecctronic Ballast
- Photocell/timeclock
- 32
- 33 HE Refrigerator - Energy Star version of above
- 34 HE Freezer
- Heat Pump Water Heater (EF=2.9) 35
- 36 HE Water Heater (EF=0.93)
- 37 Solar Water Heat
- A/C Heat Recovery Units 38
- 39 Low Flow Showerhead
- 40 Pipe Wrap
- 41 Faucet Aerators
- 42 Water Heater Blanket

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 2 of 7

- 43 Water Heater Temperature Check and Adjustment
- 44 Water Heater Timeclock
- 45 Heat Trap
- 46 Energy Star CW CEE Tier 1 (MEF=1.8)
- 47 Energy Star CW CEE Tier 2 (MEF=2.0)
- 48 Energy Star CW CEE Tier 3 (MEF=2.2)
- 49 High Efficiency CD (EF=3.01 w/moisture sensor)
- 50 Energy Star DW (EF=0.68)
- 51 Two Speed Pool Pump (1.5 hp)
- 52 High Efficiency One Speed Pool Pump (1.5 hp)
- 53 Variable-Speed Pool Pump (<1 hp)
- 54 PV-Powered Pool Pumps
- 55 Energy Star TV
- 56 Energy Star TV
- 57 Energy Star Set-Top Box
- 58 Energy Star DVD Player
- 59 Energy Star VCR
- 60 Energy Star Desktop PC
- 61 Energy Star Laptop PC

Residential Demand Response

- 62 Switch Cycling Program
- 63 Switch Shedding Program
- 64 Smart Thermostats
- 65 In home display with peak threshold warning system and pre-set control strategies
- 66 On-Off Switching via low-power wireless communication technology

Residential Photovoltaic (PV)

Rooftop solar PV

Commercial Measures

Measure number

67

Commercial Energy Efficiency

- 68 Premium T8, Elecctronic Ballast
- 69 Premium T8, EB, Reflector
- 70 Occupancy Sensor
- 71 Continuous Dimming
- 72 Lighting Control Tuneup
- 73 CFL Screw-in 18W
- 74 CFL Hardwired, Modular 18W
- 75 PSMH, 250W, magnetic ballast
- 76 PSMH, 250 W, electronic ballast
- 77 High Bay T5
- 78 LED Exit Sign
- 79 High Pressure Sodium 250W Lamp

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 3 of 7

- 80 Outdoor Lighting Controls (Photocell/Timeclock)
- 81 Centrifugal Chiller, 0.51 kW/ton, 500 tons
- 82 High Efficiency Chiller Motors
- 83 EMS Chiller
- 84 Chiller Tune Up/Diagnostics
- 85 VSD for Chiller Pumps and Towers
- 86 EMS Optimization
- 87 Aerosole Duct Sealing
- 88 Duct/Pipe Insulation
- 89 Window Film (Standard)
- 90 Ceiling Insulation
- 91 Roof Insulation
- 92 Cool Roof
- 93 Thermal Energy Storage (TES)
- 94 DX Packaged System, EER=10.9, 10 tons
- 95 Hybrid Dessicant-DX System (Trane CDQ)
- 96 Geothermal Heat Pump, EER=13, 10 tons
- 97 DX Tune Up/ Advanced Diagnostics
- 98 DX Coil Cleaning
- 99 Optimize Controls
- 100 Packaged HP System, EER=10.9, 10 tons
- 101 Geothermal Heat Pump, EER=13, 10 tons
- 102 HE PTAC, EER=9.6, 1 ton
- 103 Occupancy Sensor (hotels)
- 104 High Efficiency Fan Motor, 15hp, 1800rpm, 92.4%
- 105 Variable Speed Drive Control
- 106 Air Handler Optimization
- 107 Electronically Commutated Motors (ECM) on an Air Handler Unit
- 108 Demand Control Ventilation (DCV)
- 109 Energy Recovery Ventilation (ERV)
- 110 Separate Makeup Air / Exhaust Hoods AC
- 111 High-efficiency fan motors
- 112 Strip curtains for walk-ins
- 113 Night covers for display cases
- 114 Evaporator fan controller for MT walk-ins
- 115 Efficient compressor motor
- 116 Compressor VSD retrofit
- 117 Floating head pressure controls
- 118 Refrigeration Commissioning
- 119 Demand Hot Gas Defrost
- 120 Demand Defrost Electric
- 121 Anti-sweat (humidistat) controls
- 122 High R-Value Glass Doors
- 123 Multiplex Compressor System
- 124 Oversized Air Cooled Condenser
- 125 Freezer-Cooler Replacement Gaskets
- 126 LED Display Lighting

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 4 of 7

- 127 High Efficiency Water Heater (electric)
- 128 Heat Pump Water Heater (air source)
- 129 Solar Water Heater
- 130 Demand controlled circulating systems
- 131 Heat Recovery Unit
- 132 Heat Trap
- 133 Hot Water Pipe Insulation
- 134 PC Manual Power Management Enabling
- 135 PC Network Power Management Enabling
- 136 Energy Star or Better CRT Monitor
- 137 CRT Monitor Power Management Enabling
- 138 Energy Star or Better LCD Monitor
- 139 LCD Monitor Power Management Enabling
- 140 Energy Star or Better Copier
- 141 Copier Power Management Enabling
- 142 Printer Power Management Enabling
- 143 Convection Oven
- 144 Efficient Fryer
- 145 Vending Misers (cooled machines only)

Industrial Measures

- Industrial Energy Efficiency
- 146 Compressed Air-O&M
- 147 Compressed Air Controls
- 148 Compressed Air System Optimization
- 149 Compressed Air-Sizing
- 150 Comp Air Replace 1-5 HP motor
- 151 Comp Air ASD (1-5 hp)
- 152 Comp Air Motor practices-1 (1-5 HP)
- 153 Comp Air Replace 6-100 HP motor
- 154 Comp Air ASD (6-100 hp)
- 155 Comp Air Motor practices-1 (6-100 HP)
- 156 Comp Air Replace 100+ HP motor
- 157 Comp Air ASD (100+ hp)
- 158 Comp Air Motor practices-1 (100+ HP)
- 159 Power recovery
- 160 Refinery Controls
- 161 Fans O&M
- 162 Fans Controls
- 163 Fans System Optimization
- 164 Fans- Improve components
- 165 Fans Replace 1-5 HP motor
- 166 Fans ASD (1-5 hp)
- 167 Fans Motor practices-1 (1-5 HP)
- 168 Fans Replace 6-100 HP motor
- 169 Fans ASD (6-100 hp)

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 5 of 7

- 170 Fans Motor practices-1 (6-100 HP)
- 171 Fans Replace 100+ HP motor
- 172 Fans ASD (100+ hp)
- 173 Fans Motor practices-1 (100+ HP)
- 174 Optimize drying process
- 175 Pumps O&M
- 176 Pumps Controls
- 177 Pumps System Optimization
- 178 Pumps Sizing
- 179 Pumps Replace 1-5 HP motor
- 180 Pumps ASD (1-5 hp)
- 181 Pumps Motor practices-1 (1-5 HP)
- 182 Pumps Replace 6-100 HP motor
- 183 Pumps ASD (6-100 hp)
- 184 Pumps Motor practices-1 (6-100 HP)
- 185 Pumps Replace 100+ HP motor
- 186 Pumps ASD (100+ hp)
- 187 Pumps Motor practices-1 (100+ HP)
- 188 Low Pressure Nozzle
- 189 Micro Watering System
- 190 Pump Retrofit Irrigation
- 191 Bakery Process (Mixing) O&M
- 192 O&M/drives spinning machines
- 193 Air conveying systems
- 194 Replace V-Belts
- 195 Drives EE motor
- 196 Gap Forming papermachine
- 197 High Consistency forming
- 198 Optimization control PM
- 199 Efficient practices printing press
- 200 Efficient Printing press (fewer cylinders)
- 201 Light cylinders
- 202 Efficient drives
- 203 Clean Room Controls
- 204 Clean Room New Designs
- 205 Drives Process Controls (batch + site)
- 206 Process Drives ASD
- 207 O&M Extruders/Injection Moulding
- 208 Extruders/injection Moulding-multipump
- 209 Direct drive Extruders
- 210 Injection Moulding Impulse Cooling
- 211 Injection Moulding Direct drive
- 212 Efficient grinding
- 213 Process control
- 214 Process optimization
- 215 Drives Process Control
- 216 Efficient drives rolling

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 6 of 7

- Drives Optimization process (M&T) 217
- Drives Scheduling 218
- 219 Machinery
- 220 Efficient Machinery
- Bakery Process 221
- Drying (UV/IR) 222
- Heat Pumps Drying 223
- 224 Top-heating (glass)
- Efficient electric melting 225
- Intelligent extruder (DOE) 226
- 227 Near Net Shape Casting
- Heating Process Control 228
- Efficient Curing ovens 229
- 230 Heating - Optimization process (M&T)
- 231 Heating - Scheduling
- Efficient Refrigeration Operations 232
- **Optimization Refrigeration** 233
- Other Process Controls (batch + site) 234
- 235 Efficient desalter
- 236 New transformers welding
- Efficient processes (welding, etc.) 237
- 238 Process control
- Centrifugal Chiller, 0.51 kW/ton, 500 tons 239
- High Efficiency Chiller Motors 240
- EMS Chiller 241
- Chiller Tune Up/Diagnostics 242
- 243 VSD for Chiller Pumps and Towers
- EMS Optimization Chiller 244
- Aerosole Duct Sealing Chiller 245
- 246 Duct/Pipe Insulation - Chiller
- Window Film (Standard) Chiller 247
- Roof Insulation Chiller 248
- Cool Roof Chiller 249
- Thermal Energy Storage (TES) Chiller 250
- DX Packaged System, EER=10.9, 10 tons 251
- 252 Hybrid Dessicant-DX System (Trane CDQ)
- Geothermal Heat Pump, EER=13, 10 tons 253
- DX Tune Up/ Advanced Diagnostics 254
- 255 DX Coil Cleaning
- **Optimize** Controls 256
- 257 Premium T8, Elecctronic Ballast
- 258 CFL Hardwired, Modular 18W
- CFL Screw-in 18W 259
- High Bay T5 260
- Occupancy Sensor 261
- Replace V-belts
- 262
- Membranes for wastewater 263

Docket No. 080407 - EG Detailed List of Measures Entering the Technical Potential Step Exhibit JRH-12, Page 7 of 7

Commercial/Industrial Demand Response

- 264 Automated control strategies
- Direct load control system 265

Commercial Photovoltaic (PV) Rooftop solar PV

- 266
- PV Mounted on Commercial Parking Lot Shade Structures 267

Comparison of Recent Technical Potential Results {Electric, Energy Efficiency)												
Study	FPL	Florida FEECA Utilities	Rhode island	Georgia Power	Vermont	North Carolina	Oregon	California	Average			
Year conducted	2009	2009	2008	2007	2007	2006	2003	2003				
Fuel	Electric	Electric	Electric	Electric	Electric	Electric	Electric	Electric				
Residential	38%	39%	34.0%	33%	40%	40%	28%	•				
Commercial	31%	31%	27.0%	33%	40%	32%	32%	-				
Industrial	18%	18%	14.0%	26%	21%	22%	25%	-				
Total Technical Potential	34%	34%	30%	31%	35%	33%	31%	18%	31%			
Consultant	ltron, KEMA	ltron, KEMA	KEMA	Nexant	GDS	GDS	Ecotope, ACEEE	ACEEE				

.

Docket No. 080407 - EG Estimates of FPL Achievable Potential Exhibit JRH-14, Page 1 of 3

Estimates of FPL Total Achievable Potential¹ 2010 to 2019 (at the Meter)

Residential Summer MW	RIM	TRC	Detailed on
2-year payback	296.2	474.0	JRH-14, page 2
2-year payback, 50% ²	244.2	248.6	JRH-14, page 2
2-year payback, 33% ³	205.3	209.4	JRH-14, page 2
ł			
Residential Winter MW	RIM	TRC	
2-year payback	198.3	356.0	JRH-14, page 2
2-year payback, 50%	154.4	158.6	JRH-14, page 2
2-year payback, 33%	132.8	138.0	JRH-14, page 2
Residential GWh	RIM	TRC	
2-year payback	354.6	790.3	JRH-14, page 2
2-year payback, 50%	258.7	330.3	JRH-14, page 2
2-year payback, 33%	183.2	241.7	JRH-14, page 2
C/I Summer MW	RIM	TRC	
2-year payback	591.4	598.7	JRH-14, page 3
2-year payback, 50%	272.3	288.9	JRH-14, page 3
2-year payback, 33%	240.7	245.7	JRH-14, page 3
C/I Winter MW	RIM	TRC	
2-year payback	146.2	126.3	JRH-14, page 3
2-year payback, 50%	87.2	84.0	JRH-14, page 3
2-year payback, 33%	78.7	76.1	JRH-14, page 3
C/I GWh	RIM	TRC	
2-year payback	1,345.6	1,386.7	JRH-14, page 3
2-year payback, 50%	525.7	623.2	JRH-14, page 3
2-year payback, 33%	370.3	393.5	JRH-14, page 3
	·····		
Total Summer MW	RIM	TRC	
2-year payback	887,6	1,072.7	
2-year payback, 50%	516.5	537.4	
2-year payback, 33%	446.0	455.0	
		····-	
Total Winter MW		TRC	
2-year payback	344,5	482.3	
2-year payback, 50%	241.7	242.6	
2-year payback, 33%	211.5	214.1	
Tetel CWA			
10tai GWD	RIM	TRC	
2-year payback	1,700.3	2,177.0	
2-year payback, 50%	784.4	953,4	

2-year payback, 33%

¹ Achievable Potential numbers shown above for FPL were not utilized in FPL's analysis. FPL used the maximum annual potential signup values from Itron, which are higher than the Achievable Potential values shown above.

553.5

635.2

² Notation used throughout the exhibit refers to an incentive established at the lesser of a minimum of 2-year payback or 50% of the incremental cost of the measure.

³ Notation used throughout the exhibit refers to an incentive established at the lesser of

a minimum of 2-year payback or 33% of the incremental cost of the measure.

							Residential - Existing								
[G	Wh		••			Summ	er MW						
RIM L	RIM M	RIM H	TRC L	TRC M	TRC H	RIM L	RIM M	RIM H	TRC L	TRC M	TRC H				
5.70	8.06	11.02	7.16	9.74	27.09	14.6	8 15.89	17.50	14.75	15.88	24.5				
16.52	23.35	31.95	20.65	28.13	79.25	31.7	35.20	39.90	31.88	35.16	60.6				
32.03	45.31	61.96	39.91	54.50	153.96	50.8	7 57.68	66.77	51.17	57.57	107.1				
51.82	73.34	100.12	64.40	88.11	247.53	72.0	1 83.05	97.66	72.40	82.82	162.1				
75.39	106.52	145.11	93.55	128.14	354.31	94.8	9 110.91	131.97	95.37	110.60	223.1				
99.27	140.05	189.97	124.06	169.78	453.78	117.9	B 139.00	166.25	118.95	139.17	280.2				
121.69	171.56	231.73	152.94	209.35	542.95	140.4	1 166.14	198.98	141.89	166.90	332.3				
142.73	201.17	270.57	180.24	246.93	622.68	162.2	192.37	230.26	164.22	193.82	379.7				
162.45	228.95	306.66	206.04	282.60	693.83	183.4	L 217.73	260.18	185.97	219.97	423.0				
180.93	255.00	340.14	230.41	316.45	757.21	204.0	4 242.28	288.80	207.16	245.39	462.5				

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

180.93

Estimates of FPL's Total Achievable Potential 2010 to 2019 (at the Generator)

207.16

245.39

24.53

60.64

107.12

162.19

223.10

280.22

332.30

379.76

423.02

462.51

		Winte	MW		
RIM L	RIM M	RIM H	TRCL	TRC M	TRCH
11.59	12.24	13.67	11.70	12.28	20.43
23.79	25.71	29.85	24.12	25.80	49.81
36.57	40.32	48.33	37.20	40.50	87.08
49.90	55.99	68.83	50.90	56.27	130.52
63.73	72.61	91.07	65.15	73.04	177.79
77.80	89.55	113.43	79.77	90.37	220.73
91.71	106.14	134.86	94.22	107.42	258.86
105.47	122.40	155.43	108.52	124.19	292.62
119.08	138.34	175.20	122.68	140.70	322.43
132.56	153.98	194.21	136.68	156.95	348.72

						_				Resident	tial - Nev	v								
			Ĝ	Wh			Summer MW										Winte	r MW		
	RIM L	RIM M	RIM H	TRC L	TRC M	TRCH	R	IM L	RIM M	RIM H	TRC L	TRC M	TRC H		RIM L	RIM M	RIM H	TRC L	TRC M	TRC H
2010	0.17	0.26	0.88	0.74	0.90	1.97		0.09	0.14	0.45	0.15	0.21	0.67		0.01	0.03	0.24	0.09	0.11	0.42
2011	0.44	0.67	2.29	1.90	2.31	5.12		0.23	0.35	1.16	0.39	0.55	1.75	[0.04	0.08	0.63	0.22	0.28	1.09
2012	0.72	1.10	3.88	3.18	3.88	8.70		0.38	0.58	1.97	0.65	0.91	2.99]		0.06	0.13	1.06	0.37	0.47	1.86
2013	0.91	1.41	5.02	4.09	4.99	11.30		0.48	0.74	2.55	0.83	1.17	3.89		0.08	0.17	1.38	0.48	0.60	2.43
2014	1.10	1.71	6.21	5.02	6.13	14.00		0.58	0.90	3.16	1.02	1.43	4.82		0.09	0.20	1.71	0.59	0.74	3.02
2015	1.31	2.04	7.53	6.04	7.38	17.02		0.69	1.08	3.83	1.22	1.71	5.88		0.11	0.24	2.08	0.71	0.89	3.68
2016	1.54	2.42	9.13	7.27	8.88	20.70		0.82	1.28	4.65	1.46	2.05	7.17		0.13	0.29	2.54	0.86	1.07	4.50
2017	1.79	2.83	10.87	8.58	10.50	24.71		0.95	1.50	5.54	1.71	2.42	8.58		0.15	0.33	3.03	1.01	1.26	5.39
2018	2.07	3.30	12.92	10.11	12.38	29.44	1	1.10	1.74	6.58	2.01	2.84	10.24	1	0.17	0.39	3.61	1.19	1.48	6.44
2019	2.28	3.65	14.48	11.26	13.80	33.07		1.21	1.93	7.38	2.23	3.16	11.52		0.19	0.43	4.06	1.33	1.65	7.26

Docket No. 080407-EG Estimates of FPL's Achievable Potential Exhibit JRH-14, Page 2 of 3

Estimates of FPL's Total Achievable Potential 2010 to 2019 (a	at the G	Jenerator)
---	----------	------------

Commercial - Existing

		GWh								
	RIM L	RIM M	RIM H	TRC L	TRC M	TRC H				
2010	16.49	25.94	138.14	15.52	24.39	82.47				
2011	43.44	68.19	357.76	41.56	65.27	227.88				
2012	77.29	120.94	596.97	75.04	117.91	413.16				
2013	114.90	178.96	806.78	113.15	177.79	610.57				
2014	154.18	238.92	966.67	153.90	241.79	796.07				
2015	193.72	298.41	1080.23	195.86	307.44	954.40				
2016	232.74	356.19	1158.83	238.01	373.05	1077.56				
2017	270.68	412.07	1216.16	279.73	438.31	1169.83				
2018	307.72	465.25	1262.16	321.19	502.26	1241.49				
2019	343,44	515.34	1300.86	361.90	564.15	1297.37				

.

Summer MW										
RIM L	RIM M	RIM H	TRC L	TRC M	TRCH					
20.42	21.99	59.92	20.38	21.79	42.33					
42.26	46.44	145.59	42.23	46.07	104.21					
65.16	72.71	238.69	65.24	72.34	179.44					
88.80	100.18	324.03	89.12	100.07	259.90					
112.93	128.38	394.43	113.62	128.84	337.79					
137.33	156.95	449.91	138.53	158.28	407.74					
161.91	185.64	492.94	163.71	188.14	465.90					
186.54	214.26	527.28	189.06	218.20	512.56					
211.17	242.64	556.60	214.50	248.26	551.37					
235.70	270.68	582.68	239.92	278.17	583.89					

	Winter MW										
RIM L	RIM M	RIM H	TRC L	TRC M	TRC H						
6.80	7.20	11.93	6.66	6.92	8.05						
14.09	15.16	27.76	13.73	14.45	17.81						
21.75	23.66	45.66	21.11	22.43	29.23						
29.66	32.52	63.98	28.70	30.73	42.17						
37.72	41.59	81.55	36.44	39.26	56.32						
45.87	50.75	97.74	44.26	47.93	71.19						
54.04	59.91	112.07	52.11	56.67	85.92						
62.20	69.04	124.53	59.96	65.46	99.70						
70.32	78.08	135.65	67.81	74.25	112.50						
78.39	86.99	145.76	75.63	83.01	124.14						

									Commer	C181 - INE	W							
	r <u> </u>		G	Wh			Summer MW					Winter MW						
	RIML	RIM M	RIM H	TRC L	TRC M	TRCH	RIM L	RIM M	RIM H	TRC L	TRC M	TRC H	RIM L	RIM M	RIM H	TRC L	TRC M	TRC H
2010	0.92	0.53	1.30	1.09	1.67	2.25	0.17	0.09	0.25	0.20	0.30	0.38	0.01	0.01	0.01	0.02	0.03	0.05
2011	2.36	1.26	3.46	2.77	4.46	6.21	0.44	0.21	0.66	0.50	0.81	1.04	0.03	0.02	0.04	0.05	0.07	0.14
2012	4.41	2.20	6.68	5.18	8.67	12.38	0.82	2 0.37	1.29	0.94	1.57	2.06	0.06	0.04	0.07	0.08	0.14	0.29
2013	6.09	2.91	9.39	7.16	12.23	17.68	1.13	0.48	1.81	1.29	2.21	2.94	0.08	0.06	0.10	0.12	0.20	0.42
2014	8.72	3.96	13.73	10.25	17.94	26.28	1.62	2 0.65	2.65	1.85	3.25	4.37	0.11	0.08	0.14	0.17	0.29	0.62
2015	11 45	4 99	18.29	13.46	23.95	35.42	2.13	0.82	3.54	2.43	4.34	5.87	0.15	0.11	0.18	0.22	0.39	0.84
2016	14 68	6 17	23.77	17.26	31.18	46.48	2.73	1.00	4.60	3.12	5.66	7.70	0.19	0.14	0.24	0.28	0.51	1.11
2017	18 29	7 45	29.93	21.50	39.33	58.99	3,40) 1.20	5.80	3.89	7.14	9.76	0.24	0.17	0.30	0.35	0.64	1.42
2018	22.63	8 94	37 39	26.61	49.21	74.22	4.21	1.43	7.25	4.82	8.93	12.27	0.29	0.21	0.37	0.43	0.80	1.79
2019	26.90	10.37	44.78	31.63	59.00	89.37	5.01	1.65	8.69	5.73	10.71	14.76	0.35	0.25	0.44	0.51	0.96	2.16
AU 1/	~~~~~	10.07																

	Summer MW at the Meter									
	Resi	dential	Com	mercial	Te	Total				
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative				
2010	26.6	26.6	33.4	33.4	60.0	60.0				
2011	26.6	53.2	33.4	66.8	60.0	120.0				
2012	26.3	79.5	33.7	100.5	60.0	180.0				
2013	26.2	105.7	33.8	134.3	60.0	240.0				
2014	26.2	131.9	33.8	168.1	60.0	300.0				
2015	26.2	158.1	33.8	201.9	60.0	360.0				
2016	26.2	184.3	34.3	236.2	60.5	420.5				
2017	26.2	210.5	34.7	270.9	60.9	481.4				
2018	26.2	236.7	35.8	306.7	62.0	543.4				
2019	26.6	263.3	36.6	343.3	63.2	606.6				

	Winter MW at the Meter										
	Resi	dential	Com	nercial	Тс	Total					
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative					
2010	24.6	24.6	8.5	8.5	33.1	33.1					
2011	24.6	49.2	8.5	17.0	33.1	66.2					
2012	24.7	73.9	8.5	25.5	33.2	99.4					
2013	24.7	98.6	8.6	34.1	33.3	132.7					
2014	24.7	123.3	8.9	43.0	33.6	166.3					
2015	24.7	148.0	9.0	52.0	33.7	200.0					
2016	24.7	172.7	9.2	61.2	33.9	233.9					
2017	24.7	197.4	9.6	70.8	34.3	268.2					
2018	24.7	222.1	10.1	80.9	34.8	303.0					
2019	24.6	246.7	10.2	91.1	34.8	337.8					

	Energy (GWh) at the Meter										
	Resi	dential	Comr	nercial	Тс	Total					
Year	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative					
2010	33.1	33.1	41.0	41.0	74.1	74.1					
2011	33.1	66.2	41.4	82.4	74.5	148.6					
2012	32.8	99.0	44.2	126.6	76.9	225.5					
2013	32.7	131.7	45.3	171.8	78.0	303.5					
2014	32.7	164.4	53. 9	225.7	86.6	390.1					
2015	32.7	197.1	54. 6	280.3	87.3	477.4					
2016	32.7	229.8	59.8	340.1	92.5	569.9					
2017	32.7	262.5	63.3	403.4	96.0	665.9					
2018	32.7	295.2	71.2	474.6	103.9	769.8					
2019	33.1	328.3	75.4	549.9	108.4	878.2					

Docket No. 080407 - EG Comparison of FPL's Proposed DSM Goals and Participant Test Based Achievable Potential Exhibit JRH-16, Page 1 of 1

	Winte	er MW	Summ	er MW	Energy	/ GWh					
Year	Cumulative Achievable Potential	Cumulative Proposed Goal	Cumulative Achievable Potential	Cumulative Proposed Goal	Cumulative Achievable Potential	Cumulative Proposed Goal					
2010	25.9	33.1	78.1	60.0	151.3	74.1					
2011	58.3	66.2	187.3	120.0	395.5	148.6					
2012	95.1	99.4	308.7	180.0	669.5	225.5					
2013	134.3	132.7	426.1	240.0	921.3	303.5					
2014	174.5	166.3	532.2	300.0	1,131.7	390.1					
2015	213.4	200.0	623.5	360.0	1,296.0	477,4					
2016	249.7	233.9	701.2	420,5	1,423.5	569.9					
2017	283.3	268.2	768.9	481.4	1,527.5	665.9					
2018	314.8	303.0	830.6	543,4	1,619.1	769.8					
2019	344.5	337.8	887.6	606.6	1,700.3	878.2					

RESIDENTIAL

	Winte	er MW	Summ	er MW	Energy GWh		
Year	Cumulative Achievable Potential	Cumulative Proposed Goal	Cumulative Achievable Potential	Cumulative Proposed Goal	Cumulative Achievable Potential	Cumulative Proposed Goal	
2010	13.9	24.6	18.0	26.6	11.9	33.1	
2011	30.5	49.2	41.1	53.2	34.2	66.2	
2012	49.4	73.9	68.7	79.5	65.8	99.0	
2013	70.2	98.6	100.2	105.7	105.1	131.7	
2014	92.8	123.3	135.1	131.9	151.3	164.4	
2015	115.5	148.0	170.1	158.1	197.5	197.1	
2016	137.4	172.7	203.6	184.3	240.9	229.8	
2017	158.5	197.4	235.8	210.5	281.4	262.5	
2018	178.8	222.1	266.8	236.7	319.6	295.2	
2019	198.3	246.7	296.2	263.3	354.6	328.3	

COMMERCIAL / INDUSTRIAL

	Winter MW		Summ	er MW	Energy GWh	
Year	Cumulative Achievable Potential	Cumulative Proposed Goal	Cumulative Achievable Potential	Cumulative Proposed Goal	Cumulative Achievable Potential	Cumulative Proposed Goal
2010	11.9	8,5	60.2	33.4	139.4	41.0
2011	27.8	17.0	146.3	66.8	361.2	82.4
2012	45.7	25,5	240.0	100.5	603.6	126.6
2013	64.1	34.1	325.8	134.3	816.2	171.8
2014	81.7	43.0	397.1	168.1	980.4	225.7
2015	97.9	52.0	453.4	201.9	1,098.5	280.3
2016	112.3	61.2	497.5	236.2	1,182.6	340.1
2017	124.8	70.8	533.1	270.9	1,246.1	403.4
2018	136.0	80.9	563.8	306.7	1,299.6	474.6
2019	146.2	91.1	591.4	343.3	1,345.6	549.9
Comparison of FPL's Current and Proposed Goals

Docket No. 080407-EG Comparison of FPL's Current and Proposed Goals Exhibit JRH-17, Page 1 of 2

Comparison of FPL's Current and Proposed Goals

Docket No. 080407-EG Comparison of FPL's Current and Proposed Goals Exhibit JRH-17, Page 2 of 2

	844 Starting Measures	665 Passing RIM Economic Potential	279 Passing RIM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION					L
1	Premium T8, Electronic Ballast	Y		Y		
2	Premium T8, EB, Reflector	Y		Y		
3	Occupancy Sensor	Y	Y			Y
4		Y				
	POR Dramium T8, 15R			¥		
7	ROB Premium T8, FB, Reflector			Y		
- á	Occupancy Sensor	, Y		··		
9	Lighting Control Tune-up	Ý		Y		
10	CFL Screw-in 18W	Y		Y	·	
11	CFL Hardwired, Modular 18W	Y		Y		
12	PSMH, 250W, magnetic ballast	Y		Y		
13	High Bay T5	Y		Y		
14	LED Exit Sign	<u> </u>	Y	Y	Y	Υ
16	Dutdoor Lighting Controls Merry Vor (Photocell/Timeclock)	T T		······································		
17	Outdoor Lighting Controls HID (Photocell/Timeclock)		···· v ·····	<u> </u>	V	~ ~ ~ ~
18	Centrifugal Chiller, 0.51 kW/ton, 500 tons	Ý ····	Ý	Ý	'y	
19	GSD-GSLD Gas Chiller	Y		Y	·-··	·
20	High Efficiency Chiller Motors	Y	Y	Y	Ŷ	Ŷ
21	Chiller - EMS	Y	Y	Y	Y	Y
22	Chiller - Tune Up/Diagnostics	Y	Y	Y	Y	Y
23	Chiller - VSU for Puttips and Towers	Y		Y		
- 25	Chiller - Ewo Opertization	<u> </u>	Ý	Y V	Y	Y
26	Chiller - Duct/Pice Insulation			T		
27	Chiller - Window Film (Standard)	v v	v	v	v	·····
_28	Chiller - Ceiling Insulation	Ý	Ý	Ý	Ý	Y
29	Chiller - Roof Insulation	Y	Y	Ŷ	Ý.	Ŷ
30	Chiller - Cool Roof	Y				
31	GSD-GSLD Thermal Energy Storage	Y		Y		
32	DX Packaged System, EER=10.9, 10 tons	Y	Y	Y	Y	Y
33	Hyong Dessicant-DX System (Trane CDQ)	<u> </u>	Y	Y	Υ	Υ
34	DX Tune Llo/ Advanced Diagnostics	Ý V	······································	· · · · · · · · · · · · · · · · · · ·		
36	DX - Coil Cleaning	v	······		<u> </u>	<u>r</u>
37	DX - Optimize Controls	÷ · · · · ·	Y	Ý	¥	V
38	DX - Aerosole Duct Sealing	Y	,	Ŷ	······	
39	DX - Duct / Pipe Insulation	Ŷ				
40	DX - Window Film (Standard)	Y	Υ	Y	Y	Y
41	DX -Ceiling Insulation	Y	Y	Y	Y	Y
42	DX - Roof Insulation	¥	Y	¥	<u>Y</u>	Y
44	Packaged HP System EER=10.9 10 tons		Y	T	¥	Ÿ
45	Geothermal Heat Pump, EER=13, 10 tons	÷	Y	Y		
46	HP- Aerosole Duct Sealing	<u> </u>		Y	·····	
47	HP- Duct/Pipe Insulation	Y				
48	HP-Window Film (Standard)	Y	Y	Ŷ	Y	Ŷ
49	HP-Ceiling Insulation	Y	Y	Y	Y	Y
50	HP-Root Insulation	Y Y	Y	<u>Y</u>	Y	Y
51	COOL ROOF - DX	Y Y	Ŷ	Y	Y	Y
53	Occusancy Sensor (hotels)					<u>Y</u>
54	High Efficiency Fan Motor, 15hp, 1800rpm, 92.4%	- Y	Y Y	y	Y	
55	Variable Speed Drive Control	Y Y	Ý	'	Ý	
56	Air Handler Optimization	Y	Ŷ	Ý	Ŷ	Y
57	Electronically Commutated Motors (ECM) on an Air Handler Unit	Y	Y	Y	Y	Y
58	Demand Control Ventilation (DCV)	Y				
- 59	Energy Kecovery Vendlauon (ERV)	Y				
61	High Efficiency Fan Motors	<u>,</u>	~	ř	···· · · · · · · · · · · · · · · · · ·	
62	Strip Curtains for Walk-ins	Y Y		· · · · · · · · · · · · · · · · · · ·	1	
63	Night Covers for Display Cases	Y		Y		
64	Evaporator Fan Controller for MT Walk-ins	Y	Y	Y	Y	
65	Efficient Compressor Motor	Y		Ŷ		
66	Compressor VSD Retrofit	Y	Y	Y	Y	Y
68	Refrigeration Commissioning			Y .		
69	Demand Hot Gas Defrost	· · · · ·		V		
70	Demand Defrost Electric	Ý		Y		
71	Anti-sweat (Humidistat) Controls	Y		Y		
72	High R-Value Glass Doors	Y	Y	Ŷ	Y	Y
73	Multiplex Compressor System	Y	Ŷ			Y
74	Oversized Air Cooled Condenser	Y	Y	Y	Ŷ	Y
70	Freezer-Gooler Keplacement Gaskets	<u>Y</u>		Υ		
77	High Efficiency Water Heater /Flactric				~ ~ ~	
78	Heat Pump Water Heater (Air Source)	Ý				· · · ·
79	Demand Controlled Circulating Systems	Ý ···	,	,		
80	Heat Recovery Unit	Y				
81	Heat Trap	Ý		Y		
82	Hot Water Pipe Insulation	Y				
84	PC Manual Power Management Enabling	<u> </u>		Y		
85	Energy Star or Better Monitor					

	844 Starting Measures	665 Passing RtM Economic Potential	279 Passing RiM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION					·
86	Monitor Power Management Enabling	<u> </u>		Y		
87	Energy Star of Better Monitor Monitor Monitor Device Management Englishing	ř.		Ŷ		
89	Energy Star or Better Copier	Y		Y	· · · ·	
90	Copier Power Management Enabling	Ý	Y	Ý	Ý	Y
91	Printer Power Management Enabling	Ŷ		Y		
92	Restaurant - Convection Oven	Ý				
93	Restaurant - Efficient Fryer	Υ				
94	Vending Misers (Cooled Machines Unity)	Y		······································		
95	GSD-GSLD PV GSD-GSLD Pv	`	×	~	v	
97	Premium T8, Elecctronic Ballast	Ý	······································	Y		
98	Premium T8, EB, Reflector	Ý		Ŷ		
99	Occupancy Sensor	Y	Y			Y
100	Continuous Dimming	Y				
101	Lighting Control Tune-up	Y		Y		
102	POR Premium 16, 165	Y Y		¥		
103	Occupancy Sensor	Ý ·····	Y	F		· · · · · · · · · · · · · · · · · · ·
105	Lighting Control Tune-up	Y		Y		
106	CFL Screw-in 18W	Y		Y		
107	CFL Hardwired, Modular 18W	Y		Y		
108	PSMH, 250W, Magnetic Ballast	Y.		Y		
109	FD Evit Sion	¥		······································	v	· · · · · ·
111	High Pressure Sodium 250W Lamp	····· y	· · · · · · · · · · · · · · · · · · ·	T		
112	Outdoor Lighting Controls Merc Vor (Photocell/Timeclock)			Y		
113	Outdoor Lighting Controls HID (Photocell/Timeclock)	Y	Y	Y	Y	Y
114	Centrifugal Chiller, 0.51 kW/ton, 500 tons	Y	Y	Y	Y	Ŷ
115	High Efficiency Chiller Motors	Y	Y	Y	Ŷ	Y
116	Chiller - EMS	Y	Y	<u> </u>	Y	Y Y
11/	Chiller - YSD for Pumpt and Towart	Y	Ŷ	Ť	Ť	Y I
119	Chiller - EMS Optimization				Y Y	v
120	Chiller - Aerosole Duct Sealing	t · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	Ý		
121	Chiller -Duct/Pipe Insulation	Y				
122	Chiller - Window Film (Standard)	Y	Y	Y		Y
123	Chiller - Celling Insulation	Y	Ŷ	Y	Y	Y
124	Chiller - Roof Insulation	¥	Y	Y	<u> </u>	<u>Y</u>
125	DX Parkaged System EEB±10.9 10 tone	Y	····	~	· ·	
127	Hybrid Dessicant-DX System (Trane CDO)	Ý		Ŷ	Y	·
128	Geothermal Heat Pump, EER=13, 10 tons	† 	· · · · · · · · · · · · · · · · · · ·			
129	DX Tune Up/ Advanced Diagnostics	Y	Y	Y	Y	Y
130	DX - Coll Cleaning	Ŷ		Y		
131	DX - Optimize Controls	Y	Y	<u> </u>	Y	Y
132	DX - Aerosole Duct Sealing			<u> </u>		
134	DX - Window Film (Standard)		······	Y	Y	Y
135	DX -Ceiling Insulation	Ý	Ý	Ŷ	Ý Ý	Ý
136	DX - Roof Insulation	Y	Y	Ý	Y	Y
137	DX - Cool Roof	Y	Y	Y .	Y	Y
138	Packaged HP System, EER=10.9, 10 tons	Y				
139	Geothermal Heat Pump, EER=13, 10 tons	<u> </u>	<u> </u>	Y		Y
140	HP- Durt/Pine Insulation			ř		
142	HP-Window Film (Standard)		Y	Y		v
143	HP-Ceiling Insulation	† Ý	Ý	Ý Ý	Ý	Ý
144	HP-Roof Insulation	Y	Ŷ	Y	Y	Ŷ
145	Cool Roof - DX	Y	Y	Y	Y	Y
146	HE PTAC, EER=9.6, 1 ton	<u> </u>	Y Y	<u> </u>	<u>Y</u>	Y.
14/	Licupancy sensor (notels)	<u>↓ </u>	Ť.		¥	¥
149	Variable Speed Drive Control		Ý	ý		+
150	Air Handler Optimization	Ý	Ý ·····	Ý	Ý	Ý
151	Electronically Commutated Motors (ECM) on an Air Handler Unit	Y	Ŷ	Ŷ	Y	Y
152	Demand Control Ventilation (DCV)	Y				
153	Energy Recovery Ventilation (ERV)	<u> </u>				
104	High-Efficiency Ean Motors	<u> </u>		Y	- v	v
156	Strip Curtains for Walk-ins	ł ż		Y Y		<u> </u>
157	Night Covers for Display Cases	Ý		Ý		
158	Evaporator Fan Controller for MT Walk-ins	Y	Y	Y	Y	Y
159	Efficient Compressor Motor	Y		Y		
160	Compressor VSD retrofit	Y	Y	Y	Y	Y
161	Floating Head Pressure Controls	<u>Y</u>		Y		
162	Demand Hot Gas Defroit]	Y		
164	Demand Defrost Electric	<u>† - ↓</u>				r
165	Anti-Sweat (Humidistat) Controls	1 · · · · · · ·		Ý	1	1
166	High R-Value Glass Doors	Y	Y	Ŷ	Ý	Y
167	Multiplex Compressor System	Y	Y	Ý	Ý	Y
168	Oversized Air Cooled Condenser	Y Y	Y	Y	Y	Y
170	LED Display Lighting	+	·····	Ý V		
		1 1				

-

.

	844 Starting Measures	665 Passing RIM Economic Potential	279 Passing RIM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION	· · · · · · · · · · · · · · · · · · ·				
171	High Efficiency Water Heater (electric)	Y	Y	Y	Y	Y
172	Heat Pump Water Heater (air source)	Y	Y	Y	Y	Y
173	Heat Recovery Linit	Y Y				
175	Heat Trap	Y Y		Y		
176	Hot Water Pipe Insulation	Ý				
177	PC Manual Power Management Enabling	Y		Ŷ		
178	PC Network Power Management Enabling	Y		Υ		
179	Energy Star or Better Monitor	Y		<u> </u>		
180	Monitor Power Management Enabling	<u> </u>		¥		
161	Monitor Power Management Enabling					
183	Energy Star or Better Copier	ý		Y		
184	Copier Power Management Enabling	- Y	Y	Y	Y	Y
185	Printer Power Management Enabling	Υ		Y		
186	Restaurant - Convection Oven	Ŷ				
107	Restaurant - Efficient Fryer	<u> </u>				
168	Vending Misers (cooled machines only)	Y		<u>v</u>		
169	Premium T8 EB Reflector			Y		
191	Occupancy Sensor			· ··· ·	· · · · · ·	
192	Continuous Dimming					
193	Lighting Control Tune-up	1		Y		
194	ROB Premium T8, 1EB			<u> </u>		
195				· · · · · · · · · · · · · · · · · · ·		
197	Lighting Control Tune-up			Y		
198	CFL Screw-in 18W			Y		
199	CFL Hardwired, Modular 18W	L		Y		
200	PSMH, 250W, Magnetic Ballast			Y		
201	High Bay T5			¥.		
202	LED Exit Sign			······································		
203	Outdoor Lighting Controls Merc Vor (Photocell/Timeclock)			Y		
205	Outdoor Lighting Controls HID (Photocell/Timeclock)			Ŷ	Ŷ	
206	Centrifugal Chiller, 0.51 kW/ton, 500 tons	Y		Y		
207	High Efficiency Chiller Motors	Y		Υ	Y	
208	Chiller - EMS			<u> </u>	Y	
209	Chiller - Tune Up/Diagnostics	Y	<u> </u>	<u> </u>	Y	Y
210	Chiller - EMS Ontimization			Y V		
212	Chiller - Aerosole Duct Sealing	- v				
213	Chiller -Duct/Pipe Insulation	Ý				
214	Chiller - Window Film (Standard)	Ŷ		Y	Y	
215	Chilter - Celling Insulation	Y	Y	Y	Y	Ŷ
216	Chiller - Roof Insulation	Y	Y	Y	Y	Y
217	CS Thermal Energy Styrage	Y V		×		
210	DX Peckaged System EER=10.9 10 toos	T		v	V V	
220	Hybrid Dessicant-DX System (Trane CDQ)			Ý	Ý	
221	Geothermal Heat Pump, EER=13, 10 tons					
222	DX Tune Up/ Advanced Diagnostics	Y	Y	Y	Y	Y
223	DX - Coll Cleaning	Y	l	Y		
224	DX - Optimize Controls	······		Y Y		
220	DX - Acrosole LACt Sealing DX - Duct / Pine institution	t		T		
227	DX - Window Flim (Standard)			Y	Y	
228	DX -Ceiling Insulation	Y	Y	Ý	Ý ····	Y
229	DX - Roof Insulation	Y	Y	Y	Y	Ý
230	DX - Cool Roof	Y	Y	Y	Y	Y
231	Packaged HP System, EER=10.9, 10 tons	Y				<u> </u>
232	Geothermal Heat Pump, EEK=13, 10 tons	- <u>Y</u>	Y	· · · · · · · · · · · · · · · · · · ·	, T	Y
233	HP- Aerosole Duct Sealing	, v		T		
235	HP-Window Film (Standard)	<u> </u>		Y	Y	
236	HP-Ceiling Insulation	Y	Y	Ý	Y Y	Y
237	HP-Roof Insulation	Y	Y	Y	Y Y	Y
238	Cool Roof - DX	Y	Y	Y	Y .	Y
239	ME PTAU, EER=9.6, 1 ton	1		Y V	L V	
241	High Efficiency Fan Motor, 15hb, 1800rpm, 92.4%			Y .	†	
242	Variable Speed Drive Control	1.	i	Ŷ	Y	
243	Air Handler Optimization	<u> </u>		Y	Y	
244	GS Solar Water Heater					
245	Electronically Commutated Motors (ECM) on an Air Handler Unit			Y	Y	
246	Demand Control Ventilation (DCV)	t <u>Y</u>			· · · · · ·	
24/	Separate Makeup Air / Evhaust Hoods AC			Y		
249	High-Efficiency Fan Motors	1		Y Y	Y	1
250	Strip Curtains for Walk-ins			Ý	1	
251	Night Covers for Display Cases			Y		
252	Evaporator Fan Controller for MT Walk-Ins			Y	Y	
253	Efficient Compressor Motor			<u> </u>		
255	Floating Head Pressure Controls	<u>+</u>		Y Y	1	1
1	, inducing (induct i fundation of controla		1	L	A	dan series and

	844 Starting Measures	665 Passing RiM Economic Potential	279 Passing RIM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION	·				
256	Refrigeration Commissioning			Y		
257	Demand Hot Gas Defrost			Y		
258	Demand Defrost Electric			Y		
259	High R-Value Clere Doors			¥		·
261	Multiplex Compressor System			Y		
262	Oversized Air Cooled Condenser		· · · · · · · · · · · · · · · · · · ·		Ý	
263	Freezer-Cooler Replacement Gaskets			Y		
264	LED Display Lighting			Y		
265	High Efficiency Water Heater (electric)			<u>Y</u>	<u>Y</u>	
265	Heat Fump Water Heater (air source)			Y	Y	
20/	Heat Recovery Unit					
269	Heat Trap			Y		· · · · · -
270	Hot Water Pipe Insulation					
271	PC Manual Power Management Enabling			Ý		
272	PC Network Power Management Enabling			Y		
273	Energy Star or Better Monitor			Y		
275	Foerov Star or Better Monitor					
276	Monitor Power Management Enabling			· · · · · · · · · · · · · · · · · · ·	·	
277	Energy Star or Better Copier			Y Y		
278	Copier Power Management Enabling			Y		
279	Printer Power Management Enabling			ΥΥ		
280	Restaurant - Convection Oven					
281	Kestaurant - Encient Fryer					
262	GS PV			Ţ		
284	Curtailable	Ÿ	Y	Y	Y	Ŷ
285	GS Business on Call	Ý	Y	Y Y	Y	Y
286	GSD Demand Response	Ý	Y	Ŷ	Ŷ	Y
287	Compressed Air-O&M	Y		Y		
288	Compressed Air - Controls		····· Y ·····		Y	<u> </u>
209	Compressed Air- System Optimization		· ·			
291	Comp Air - Replace 1-5 HP motor	Y				
292	Comp Air - ASD (1-5 hp)	<u> </u>				
293	Comp Air - Motor practices-1 (1-5 HP)	Y	Y	Y	Y.	Y
294	Comp Air - Replace 6-100 HP motor	Ŷ				
295	Comp Air - ASD (6-100 hp)	Y		Y		
296	Comp Air - Motor practices-1 (6-100 HP)		<u> </u>		¥	Y
29/	Comp Air - ASD (100+ br)		· · · · · · · · · · · · · · · · · · ·		T	
299	Comp Air - Motor practices-1 (100+ HP)	······		Ý Ý	Y Y	Y
300	Power recovery	Y	Y	Y Y	Y	Y
301	Refinery Controls	Y	Y	Y	Υ	Y
302	Fans - O&M	Y		Y		
303	Fans - Controls	Y			<u> </u>	<u> </u>
304	Fans- improve components		·	Y Y		
306	Fans - Replace 1-5 HP motor	├─── <u></u>			1	
307	Fans - ASD (1-5 hp)	Y				
308	Fans - Motor practices-1 (1-5 HP)	Y Y	Y	Y	Y	Y
309	Fans - Replace 6-100 HP motor	Y Y				
310	Fans - ASD (6-100 hp)	<u>}ÿ</u>		÷ · · · ·		
312	Fans - Replace 100+ HP motor	├── └		v		
313	Fans - ASD (100+ hp)	<u> </u>		Y Y	<u> </u>	·····
314	Fans - Motor Practices-1 (100+ HP)	Ý		Y T		
315	Optimize Drying Process	Y	Y	Y	Y	Y
316	Power Recovery	Y	Y	Y	Y	Y
317	Refinery Controls	├ \ <u>`</u>		Y		
318	Pumps - O&M			·		
320	Pumps - Consors	<u> </u>		v v	Y	· · · · · · · · · · · · · · · · · · ·
321	Pumps - Sizing	1 - '	<u> </u>	Ý	<u></u>	1
322	Pumps - Replace 1-5 HP motor	Ý				
323	Pumps - ASD (1-5 hp)	Y	<u></u>	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
324	Pumps - Motor Practices-1 (1-5 HP)	Y .	Y	Y	Y	Y
325	Pumps - Replace 6-100 MP motor					
327	Pumps - Motor Practices-1 (6-100 HP)	+	Y	Y Y	Y Y	Y Y
328	Pumps - Replace 100+ HP motor	Y	Ý	Y	Y	Y
329	Pumps - ASD (100+ hp)	YY		Y		
330	Pumps - Motor Practices-1 (100+ HP)	Y	Ý	Ŷ	Υ	Y
331	Power Recovery	<u> </u>	Y	Y	<u> </u>	<u>.</u>
332	Rakery - Droces /Miving) - OAM		Y	Ť T	¥	······································
334	O&M/drives Spinning Machines	<u>├</u>		<u>↓ </u>		
335	Air Conveying Systems			Y Y	1	
336	Replace V-Beits	Y Y		Ý		
337	Drives - EE motor	Y		Y		
338	Gap Forming Papermachine			Y		
340	Optimization Control PM	+	·	¥		
				,		

	844 Starting Measures	665 Passing RIM Economic Potential	279 Passing RIM Achievable Potentiai	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION					·
341	Efficient Practices Printing Press	Y		Y		
342	Efficient Printing Press (Fewer Cylinders)	Y	Y	Y	Y	Υ
343	Efficient Driver	<u> </u>	<u>Y</u>	<u> </u>	Y	Y
345	Clean Room - Controls	¥	v	v v		
346	Clean Room - New Designs	÷		······································		······································
347	Drives - Process Controls (betch + site)	Ý	Ŷ	Ý	Ý ·····	
348	Process Drives - ASD	Y	Y	Y	Ŷ	Ý ·
349	O&M - Extruders/Injection Moulding	Y		Y Y		
350	Extruders/Injection Moulding-Multipump	Y	Y	Y	Y	Y
351	Direct Drive Extruders	Y	Y	Y	Y	Y
352	Injection Moulding - Impulse Cooling	<u> </u>	Ŷ	<u> </u>	Ŷ	Y
354	Efficient Grinding		······	······································	Y	¥
355	Process Control	Ý Y			<u>.</u>	T
356	Process Optimization	Y	Y	Ý	Y	Y
357	Drives - Process Control	Y	Y	Ŷ	Ŷ	Ý
358	Efficient Drives - Rolling	Y		Ý		
359	Drives - Optimization Process (M&T)	Y		· · · · · · · · · · · · · · · · · · ·		
360	Unives - Scheduling	<u>Y</u>	Y	Y	Y	Y
367	Machinery Efficient Machinery	¥		Y		
363	Bakery - Process		T		ř	<u>Y</u>
364	Drying (UV/IR)	Ý	Ŷ			
365	Heat Pumps - Drying	Ý –	Ŷ	Ý	Ý	Y
_ 366	Top-heating (Glass)	Y Y		Ý Ý		
367	Efficient Electric Melting	Y.	Y	Y	Y	Y
368	intelligent Extruder (DOE)	Y	Y	Y	Ŷ	
369	Heating - Descare Casting	Y		Y		
371	Efficient Curing overs	· · · · · · · · · · · · · · · · · · ·	¥	¥	· · · · · · · · · · · · · · · · · · ·	Y
372	Heating - Optimization Process (M&T)	· · · · · · · · · · · · · · · · · · ·	1		<u> </u>	······
373	Heating - Scheduling	Y Y	Y	Ŷ	Y	
374	Efficient Refrigeration - Operations	Y		Y		
375	Optimization Refrigeration	Y	Y	Ý	Y	
376	Other Process Controls (batch + site)	Y	Y	Y	Υ	Y
3//	Efficient Desaiter	Y	Y	Y	Y	Y
370	Efficient Processes (Melding ato)	Y Y				
380	Process Control	······		<u> </u>	<u> </u>	
381	Power Recovery	Ý	····· · · · · · · · · · · · · · · · ·			
382	Refinery Controls	Ý ····		Ŷ	·····	· · · · ·
383	Centrifugal Chiller, 0.51 kW/ton, 500 tons	Y	Y	Y	Y	Y
384	High Efficiency Chiller Motors	Y	Y	Y	Y	Y
305	Chiller - EMS Chiller Tune Un/Dispective	Y Y	Y	Y	Y	Y
387	Chiller VSD - for Pumps and Towers	······································	¥	Y	Y	Y
388	Chiller - EMS Optimization	Ý	· · · · · · · · · · · · · · · · · · ·		v v	T
389	Chiller - Aerosole Duct Sealing	Ý		Y	_	·
390	Chiller - Duct/Pipe Insutation	Y				
391	Chiller -Window Film (Standard)	Y	Y	Y	Y	Y
392	Chiller - Roof Insulation	Ľ.	Y	Y	Y	Y
393	DX Packaged Sustam EER=10.0.40 tons	<u> </u>		v		
395	Hybrid Dessicant-DX System (Trane CDO)		<u>, , , , , , , , , , , , , , , , , , , </u>	······································	Ŷ	Y
396	Geothermal Heat Pump, EER=13, 10 tons		· · · ·			1
397	DX Tune Up/ Advanced Diagnostics	Y	Y	Ŷ	Y	Y
398	DX Coil Cleaning	Y		Y		
399	DX -Optimize Controls	Y		Y		
400	DX - Aerosole Duct Sealing	<u> </u>		Y		
402	DX - Window Film (Standard)			v	~	~
403	DX -Roof Insulation	†	Ý	Y	Ý.	Y
404	DX - Cool Roof	Ŷ	Y	Y	Y	Y
405	Premium T8, Elecctronic Ballast	Y		Y		
406	CFL Hardwired, Modular 18W	Y		Y		
407	High Bay T6	Y .		Y		· · · · · · · · · · · · · · · · · · ·
409	Occupancy Sensor	- ·		۲ ۷	~~~~	···· v ·····
410	Replace V-belts		(Y	· · · ·	f
411	Membranes for Wastewater	Y	Y	Ŷ	Y	Y
412	Compressed Air-O&M	Y		Y		
413	Compressed Air - Controls	Y	Y	Y	Y	Y
414	Compressed Air - System Optimization	Y		Y		
410	Completesed Air- Sizing	<u> </u>		Ŷ		
417	Comp Air - ASD (1-5 ho)					
418	Comp Air - Motor Practices-1 (1-5 HP)		Y	Y	Y	
419	Comp Air - Replace 6-100 HP Motor	ý l	·····	· · · · · · · · · · · · · · · · · · ·	·	
420	Comp Air - ASD (8-100 hp)	Ŷ.		Y		
421	Comp Air - Motor Practices-1 (6-100 HP)	Y	Y	Y	Y	Y
422	Comp Air - Replace 100+ HP motor	Y	Y	Y	Ŷ	Y
423	Comp Air - ASU (100+ hp)			Y		
425	Power Recovery		Y	Y Y	Y	ý

	844 Starting Measures	665 Passing RM Economic Potential	279 Passing RiM Achievable Potential	641 Passing TRC Economic Potantial	305 Passing TRC Achievable Potential	267 Used for Goals
· · · · · ·	MEASURE DESCRIPTION					
426	Retinery Controls	·	Y	<u> </u>	Y	Y
42/	Fans - Controls	└─── ` ↓	.	Y	Y	
429	Fans - System Optimization	↓	Ý ····	Ý	Ŷ	Y
430	Fans- Improve Components	Ý I		Y		······
431	Fans - Replace 1-5 HP motor	Y				
432	Fans - ASD (1-5 hp)	Y				
433	Fans - Motor Practices-1 (1-5 HP)	Y	Y	Y	Y	Y .
434	Fans - Replace 6-100 HP motor	└─── <u>↓</u> ───┤				
435	Fans - AGU (0- IVU IIP)	┞━━━┇╴┤			······	
437	Fans - Replace 100+ HP motor		Ý	Y	·	
438	Fans - ASD (100+ hp)	Y	· · ·	Y		
439	Fans - Motor Practices-1 (100+ HP)	Y 1		Y		
440	Optimize Drying Process	Y	Y	Y	Y	
441	Power Recovery	<u> </u>	Ŷ		Y	Y
442	Pumos - Q&M					
444	Pumps - Controls					
445	Pumps - System Optimization	Y I	Y	Ŷ	Y	Y
448	Pumps - Sizing	Y		Ŷ		
447	Pumps - Replace 1-5 HP motor	Y				
448	Pumps - ASD (1-5 hp)					
449	Pumps - Motor Practices-1 (1-0 HP)	Ť	¥	ř		Ÿ
450	Pumps - Keplace 0-100 n# Motor Pumps - ASD (8-100 ho)	·		Y	}	
452	Pumps - Motor Practices-1 (6-100 HP)	t	Y	Y	Y	Y
453	Pumps - Replace 100+ HP motor	Ý	Y	Ý	Y	ý
454	Pumps - ASD (100+ hp)	Y 1		Ý		
455	Pumps - Motor Practices-1 (100+ HP)	Y	Y	Y	<u>Y</u>	Y
456	Power Recovery	├ <u></u>		Y	<u>`</u>	Ļ
45/	Remery Controls	·	Y	- V	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
459	O&M/drives Spinning Machines			- Y		
460	Air Conveying Systems	Y 1		Ŷ		
461	Replace V-Belts	Y		Y		
462	Drives - EE motor	Y		Y		
463	Gap Forming Papermachine	Y		Y		
464	High Consistency Forming	¥		· · · · · · · · · · · · · · · · · · ·		
400	Efficient Practices Printing Prace	t	· · · · · · · · · · · · · · · · ·			
467	Efficient Printing Press (fewer cylinders)	† -	Y	Ý	Y	Y
468	Light Cylinders	Y	Ŷ	Y	Y Y	Ý
469	Efficient Drives	Y Y		Y		
470	Clean Room - Controls	Y	Y	Y	Y	Y
471	Clean Room - New Designs			<u> </u>		Y .
472	Drives - Process Controls (Datch + site)		÷	¥		<u>*</u>
474	O&M - Extruders/injection Maulding			Y Y	t	<u> </u>
475	Extruders/injection Moulding-Multipump	Ý Ý	Y	Ý	Y	Y
476	Direct Drive Extruders	Y	Ŷ	<u>Y</u>	<u>Y</u>	Y
477	Injection Moulding - Impulse Cooling	Y	Y	Y	Y	Y
478	Injection Moulding - Direct drive	Ŷ	Y	Y Y	<u>Y</u>	Y
479	Efficient Grinding	<u> </u>	Y	<u> </u>	↓ ¥	¥
480	Process (Jontrol			— <u> </u>	~ ~	~
482	Drives - Process Control	Y	ý v	Ŷ	Ý	Ý
483	Efficient Drives - Rolling	Ý		Ý	<u> </u>	
484	Drives - Optimization Process (M&T)	Y		Y		
485	Drives - Scheduling	Y	Y	Y	Y	Ŷ
486	Machinery	<u> </u>		<u> </u>	· · · ·	
487	Efficient Machinery	<u>├</u>	<u> </u>		¥¥	<u> </u>
468	Drving (IIV/IR)			- v		v
490	Heat Pumps - Drying	<u> </u>	Ý Ý	Ý	ÝÝ	Ý
491	Top-Heating (glass)	Y		Ŷ		
492	Efficient Electric Melting	Y	Y	Y	Y	Y
493	Intelligent Extruder (DOE)		Y	<u> </u>	<u>↓¥</u>	Y
494	Heating - Process Control	<u>↓ </u>			<u></u>	
496	Efficient Curing ovens	†	Ý	Ý	†	† ÷
497	Heating - Optimization Process (M&T)	L Y	<u> </u>	<u> </u>		
498	Heating - Scheduling	Y	<u> </u>	Y	Y	Y
499	Efficient Refrigeration - Operations	Ý		Y	L	
500	Optimization Refrigeration	<u> </u>	Ý.	¥	<u>↓</u>	<u> </u>
501	Uner Process Controls (batch + site)	<u> </u>			 	÷.
502	New Transformers Welding	t	t			· · · · · · · · · · · · · · · · · · ·
504	Efficient Processes (Welding, etc.)	İ Ý	Y	Y Y	Y Y	Y
505	Process Control	Ý	Y Y	Y	Y	Y Y
506	Power Recovery	Y	Y	Y	Y	Y
507	Refinery Controls	<u>Y</u>		Y		
800	High Efficiency Chiller Mater	<u> </u>		<u> </u>	<u>├──</u> रें <u>-</u>	
510	Chiller - EMS	Y	Y	Y	├── ┆ ──	

	844 Starting Measures	665 Passing RiM Economic Potential	279 Passing RfM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION					J
511	Chiller- Tune Up/Diagnostics	<u> </u>	Y	Y	Y	Y
512	Chiller VSD - for Pumps and Towers	Y	Y	Y	Y	Y
513	Chiller - EMS Optimization	Y	Y	<u>Y</u>	Y	- <u> </u>
514	Chiller - Aerosole Luct Sealing	<u> </u>		Y		
516	Childer - Window Film (Standard)					
517	Chiller - Roof Insulation	Ŷ	Y	Y	Y	Y Y
518	Chiller -Cool Roof	Y				
519	DX Packaged System, EER=10.9, 10 tons	Y	Y	Y	<u> </u>	Y
520	Hybrid Dessicant-DX System (Trane CDQ)	<u>v</u>	- <u> </u>	Y	¥	······································
527	DX Tune Up/ Advanced Disonostics			Y	Y	— — , — — — — — — — — — — — — — — — — — — —
523	DX Coil Cleaning	Ý	· · · · · ·	Ŷ		
524	DX -Optimize Controls	Y		Υ		
525	DX -Aerosole Duct Sealing	<u>Y</u>		Y		
526	DX - Duct/Pipe Insulation	¥		· · · · · · · · · · · · · · · · · · ·		
528	DX -Roof Insulation			······································		
529	DX - Cool Roof	Ŷ	Y	Ŷ	Ý	Ý
530	Premium T8, Electronic Ballast	Y		Y		
531	CFL Hardwired, Modular 18W	Y		Y		
532	High Rev TE			Y		·
534	Occupancy Sensor			Y	···· Y	
535	Replace V-belts	Ý		Y Y		
536	Membranes for Wastewater	Y	Y	Υ	Y	Υ
537	Lighting 15% More Efficient Design	Y		Y		
538	Lighting 25% More Efficient Design	Y V	Υ	¥	<u> </u>	Ŷ
540	Cooling & Ventilation 30% More Efficient Design			Y	·····	
541	Lighting 15% More Efficient Design		·	Ŷ		
542	Lighting 25% More Efficient Design			Y	Y	
543	Cooling & Ventilation 10% More Efficient Design			Y	Y	
544	Cooling & Ventilation 30% More Efficient Design			¥	<u> </u>	
546	Lighting 25% More Efficient Design	·				
547	Cooling & Ventilation 10% More Efficient Design	Y		Y	·	
548	Cooling & Ventilation 30% More Efficient Design	Y.	- Y	Y	Ŷ	<u>Y</u>
549	Lighting 15% More Efficient Design			Y		
550	Cooling 20% More Efficient Design	<u> </u>		Y V		
552	Cooling & Ventilation 30% More Efficient Design					
553	Lighting 15% More Efficient Design	Ŷ		Y		
554	Lighting 25% More Efficient Design	Y		Y		
555	Cooling & Ventilation 10% More Efficient Design	- <u>Y</u>		<u> </u>		
557	Lighting 15% More Efficient Design			·	<u>├───</u> ─′	
558	Lighting 25% More Efficient Design	Y		Ý	·····	
559	Cooling & Ventilation 10% More Efficient Design	Y		Y		
560	Cooling & Ventilation 30% More Efficient Design	Y		Y		
561	Refrigeration 10% More Efficient Design		LY	¥	<u> </u>	¥
563	Idhting 15% More Efficient Design			Y		
564	Lighting 25% More Efficient Design	Ý Ý		Ŷ	Ŷ	Y
565	Cooling & Ventilation 10% More Efficient Design	Y		Y	· · · · · · · · · · · · · · · · · · ·	
566	Cooling & Ventilation 30% More Efficient Design	<u> </u>	Ŷ	<u> </u>	<u>Y</u>	Y
568	Ligning 15% More Emckent Design	÷		<u> </u>		
569	Cooling & Ventilation 10% More Efficient Design				Y	Ý Ý
570	Cooling & Ventilation 30% More Efficient Design	Ŷ	Y	Y	Ŷ	Ŷ
571	Lighting 15% More Efficient Design	Y		Y		
572	Lighting 25% More Efficient Design	<u> </u>	Y	¥	Y	Y
573	Cooling & Ventilation 30% More Efficient Design			······································		
575	Lighting 15% More Efficient Design	<u></u>	<u> </u>	Ý		<u>↓ </u>
576	Lighting 25% More Efficient Design			Ŷ		
577	Cooling & Ventilation 10% More Efficient Design	Y		Ý		
578	Cooling & Ventilation 30% More Efficient Design	Y V		Ý		——————————————————————————————————————
580	Lighting 25% More Efficient Design	Ý	ł ż	Ý Y	<u> </u>	
581	Cooling & Ventilation 10% More Efficient Design	Y Y				
582	Cooling & Ventilation 30% More Efficient Design	Y				
583	14 SEER Split-System Air Conditioner			· · · · · · · · · · · · · · · · · · ·		<u> </u>
595	17 SEER Solit-System Air Conditioner					
586	19 SEER Split-System Air Conditioner	Y				
587	14 SEER Split-System Heat Pump	Y Y				
588	15 SEER Split-System Heat Pump	Y				
589	AC Proper Sizing		·	· · · · · · · · · · · · · · · · · · ·		
591	Sealed Attic w/Sprayed Foam Insulated Roof Deck - SS AC		 			
592	AC Maintenance (Outdoor Coil Cleaning) - SS AC	Ŷ		Y		
593	AC Maintenance (Indoor Coil Cleaning) - SS AC	Y				
595	Electronically Commutated Motors (ECM) on an Air Handler Unit			·	<u>↓ </u>	<u>├</u>

	844 Starting Measures	665 Passing RIM Economic Potential	279 Passing RIM Achievable Potentiai	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION				·	· · · · · · · · · · · · · · · · · · ·
596	Duct Repair - SS AC	Y				
597	Reflective Roof - SS AC	Y	Y	Y	Y	Y
598	Radient Barrier - SS AC	Y				
599	Window Film - SS AC	Y		Y		
600	Window Tinting - SS AC	Y		<u> </u>	·	
601	Default Window With Sunscreen - SS AC			¥		
802	Single Pane Clear Windows to Dol Pane Low-E Windows - SS AC	<u>-</u>	Υ	¥	Y	Y
804	Ceiling R-19 to R-19 Insulation - SS AC	<u> </u>				
605	Votall 2v4 R-0 to Blow in R-13 Installation - SS AC				··· ··· ··· ··· ···	
806	Weather Strip/Caulk w/Blower Door - SS AC	<u>+</u>				<u> </u>
607	14 SEER Split-System Heat Pump					
608	15 SEER Solit-System Heat Pump			<u> </u>		
609	17 SEER Split-System Heat Pump	Y Y		·	· · · · ·	· · · · · · · · · · · · · · · · · · ·
610	HVAC Proper Sizing - SS HP					····
611	Sealed Attics	Y				
612	AC Maintenance (Outdoor Coll Cleaning) - SS HP	Y		Y		
613	AC Maintenance (Indoor Coll Cleaning) - SS HP	Y				
614	Proper Refrigerant Charging and Air Flow	Y	Ý	Y	Y Y	Y T
615	Electronically Commutated Motors (ECM) on an Air Handler Unit	Y		Y ····		
616	Duct Repair - SS HP	Y				
617	Reflective Roof- SS HP	<u>↓ `` `</u>	Y	Υ	Y	Y
618	Kadient Barrier - SS HP					
619	Window Tittine _ SS HP			<u> </u>		
624	Default Window With Superson CC LD					
622	Single Page Clear Windows to Dbl Page Low F Windows - 99 HD					
623	Ceiling R-0 to R-19 Insulation - SS HP			·		
624	Ceiling R-19 to R-38 Insulation- SS HP		<u> </u>			
625	Wall 2x4 R-0 to Blow-In R-13 Insutation - SS HP	†				
626	Weather Strip/Caulk w/Blower Door - SS HP					
627	HE Room Air Conditioner - EER 11	Y	Y			
628	HE Room Air Conditioner - EER 12	Y				
629	Reflective Roof - Room AC	Y	Y	Ŷ	Ŷ	Y
630	Window Film- Room AC	Y		Y		
631	Window Tinting - Room AC	Ŷ		<u> </u>	Y	
632	Default Window With Sunscreen - Room AC	Y		Y	Y	
633	Single Pane Clear Windows to Dbl Pane Low-E Windows - Room AC	Y	Y	<u> </u>	Ŷ	Y
634	Celling R-0 to R-19 Insulation- Room AC	<u>Y</u>				
635	Celling R-19 to R-38 Insulation- Room AC	<u> </u>				
630	Wail 2x4 R-0 to Blow-In R-13 Insulation- Room AC	YY				
639	CEL /18-Watt integral ballast) 0.5 br/day	·		······································		
639	CFL /18-Wett integral ballast), 0.0 hi/day	├─── ───		····		
640	CFL (18-Watt integral ballest) 6.0 br/day				· · · · · · · · · · · · · · · · · · ·	
641	ROB 2L4'T8, 1EB - Indoor					
642	ROB 2L4'T8, 1EB - Outdoor	<u> </u>		÷	·	
643	RET 2L4'T8, 1EB - Indoor	···-		Ý		
644	RET 2L4'T8, 1EB - Outdoor			Y		
645	HE Refrigerator - Energy Star version of above			Y	Y	
646	HE Freezer			Y		
647	Heat Pump Water Heater (EF=2.9)					
648	AC Heat Recovery Units	Y				
649	Low Flow Showerhead			Y		
650	Pipe Wrap					
651	Haucet Aérators	<u> </u>		Y		
004	Water Heater Temperature Chack and Advectment			Y V		
854	Water Hester Timerlock			ř		
655	Heat Tran					
656	Energy Star CW CEE Tier 2 (MEF=2 0)	t		v v		
657	Energy Star CW CEE Tier 3 (MEF=2.2)			·······		
658	High Efficiency CD (EF=3.01 w/moisture sensor)			·····		· ·
659	Energy Star DW (EF=0.68)		· · · · · · · · · · · · · · · · · · ·			
660	Energy Star TV			Y		
661	Energy Star Large Screen TV			Y		
662	Energy Star Set-Top Box			Y		
663	Energy Star DVD Player			Y		
664	Energy Star VCR			Y		
000	Energy Star Desktop PC					
847	14 SEER Solt-System Als Conditioner			Y		
660/	15 SEER Split-System Air Conditioner					
669	17 SEER Split-System Air Conditioner	<u>├</u>				
670	19 SEER Split-System Air Conditioner	t				
671	14 SEER Split-System Heat Pump	r y				
672	15 SEER Split-System Heat Pump	Y				
673	17 SEER Split-System Heat Pump	Y				
674	AC Proper Sizing	Y		Y.		
675	Sealed Attic w/Sprayed Foam Insulated Roof Dack - SS AC	Y				
676	A/C Maintenance (Outdoor Coil Cleaning) - SS A/C	Y		Y		
677	A/C Maintenance (Indoor Coll Cleaning) - SS A/C	Y		Ŷ		
678	Proper Reingerant Charging and Air Flow - SS AC	<u> </u>	Y	Y	Y	Y
690	Durt Repairs SS AC	<u>+∵</u>	<u> </u>	Y	Y	Y
		1 1	Y Y			Y Y

	844 Starting Measures	665 Passing RIM Economic Potential	279 Passing RiM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION	L.,			h	·····
681	Reflective Roof - SS AC	<u>Y</u>	Y	Y	Y	Y
682	Radient Barrier - SS AC	Y				
683	Window Film - SS AC	Y I		Y		
684	Vindow Linting - SS AC Default Window With Supersen, - SS AC		Y	r V		r V
686	Single Pane Clear Windows to Dbl Pane Low-E Windows - SS AC	'Y	Y	Ý	Ý ·····	Y
687	Ceiling R-0 to R-19 Insulation - SS AC	<u> </u>				
688	Ceiling R-19 to R-38 insulation - SS AC	Y				
689	Wall 2x4 R-0 to Blow-in R-13 Insulation - SS AC	Y				
690	Weather Strip/Caulk W/Blower Door - SS AC					
692	15 SEER Split-System Heat Pump					
693	17 SEER Split-System Heat Pump	Ý				
694	HVAC Proper Sizing - SS HP	Y		Y		
695	Sealed Attics	Y				
696	AC Maintenance (Outdoor Coli Cleaning) - SS HP			<u> </u>		
698	Proper Refrigerant Charging and Air Flow	Ŷ		Y Y	Y	Ŷ
699	Electronically Commutated Motors (ECM) on an Air Handler Unit	Ý Ý	·····	Ý		· · · · · · · · · · · · · · · · · · ·
700	Duct Repair - SS HP	Y				
701	Reflective Roof- SS HP	Y	Y	Y	Y .	Ŷ
702	Radient Barrier - SS HP	¥				
704	Window Tinting - SS HP					
705	Default Window With Sunscreen - SS HP	Y	Y	Y Y	Ý	
706	Single Pane Clear Windows to Dbl Pane Low-E Windows - SS HP	<u> </u>	Ŷ	Y	Ý Ý	Y
707	Ceiling R-0 to R-19 Insulation - SS HP	Y				
708	Ceiling R-19 to R-38 Insulation- SS HP	Y				
710	Waither Strip/Caulk w/Bitwar Door - SS HP	Y				
711	HE Room Air Conditioner - EER 11	Y	Y	Ý -	Y	Y
712	HE Room Air Conditioner - EER 12	Y Y				
713	Reflective Roof - Room AC	Y	Y	Y	Y	Y
714	Window Film- Room AC	Y				
716	VVINDOW LINDING - ROOM AC Default Window With Sunscreen - Room AC	¥			Y	
717	Single Pane Clear Windows to Dbl Pane Low-E Windows - Room AC			1		
718	Celling R-0 to R-19 Insulation- Room AC	ÝÝ				
719	Ceiling R-19 to R-38 Insulation- Room AC	Y				
720	Wall 2x4 R-0 to Blow-In R-13 Insulation- Room AC	Y				
721	CEI (19-Wett integral ballact) 0.5 bridger					
723	CFL (18-Watt integral ballast), 0.5 hr/day					
724	CFL (18-Watt integral ballast), 6.0 hr/day			Ý		
725	ROB 2L4T8, 1EB - Indoor			Y		
726	ROB 2L4'T8, 1EB - Outdoor			Y		
727	RET 2L4T8, 1EB - Indoor			└ <u>`</u>		
729	HE Refrigerator - Energy Star Version of Above		·	Y Y	Y	
730	HE Freezer	<u> </u>	<u> </u>	Y	1	
731	Heat Pump Water Heater (EF=2.9)					
732	AC Heat Recovery Units	Y				
734	Pipe Wran					
735	Faucet Aerators			Y	t	
736	Water Heater Blanket			Y		
737	Water Heater Temperature Check and Adjustment			Ý		
738	Water Heater Timeclock					
740	Energy Star CW CFF Tier 2 (MEF=2.0)					
741	Energy Star CW CEE Tier 3 (MEF=2.2)				L	
742	High Efficiency CD (EF=3.01 w/moisture sensor)					
743	Energy Star DW (EF=0.68)					
744	Energy Star TV			÷		
746	Energy Star Set-Top Box					
747	Energy Star DVD Player			Ý	<u> </u>	
748	Energy Star VCR			Y		
749	Energy Star Desktop PC					
750	14 SEER Split-System Air Conditioner - 13SSAC			T T		
752	15 SEER Split-System Air Conditioner- 13SSAC	†	·	-	1	
753	17 SEER Split-System Air Conditioner - 13SSAC	Y				
754	19 SEER Split-System Air Conditioner - 13SSAC	Y				
755	14 SEER Split-System Heat Pump - 13SSAC					
757	10 SEER Spir-System Heat Pump - 13SSAC	<u>}∛</u>			<u>}</u>	
758	AC Proper Sizing			Y		<u> </u>
759	Sealed Attic w/Sprayed Foam Insulated Roof Deck - SS AC	Y		· · · · ·		
760	AC Maintenance (Outdoor Coll Cleaning) - SS AC	Y		Y		
761	AC Maintenance (Indoor Coil Cleaning) - SS AC	Y .		<u> </u>		<u> </u>
763	Electronically Commutated Motors (ECM) on an Air Handler Link	+	·····		Ý ·····	
764	Duct Repair - SS AC	ý	† <u>'</u>	<u> </u>	Ý	
765	Reflective Roof - SS AC	Ý	Y	Y	Y	Y

	844 Starting Measures	665 Passing RIM Economic Potential	279 Passing RIM Achievable Potential	641 Passing TRC Economic Potential	305 Passing TRC Achievable Potential	267 Used for Goals
	MEASURE DESCRIPTION					
766	Kadieni Barrier - SS AC	<u>`</u>				————
769	Window Tinting - SS AC	·····			÷	
769	Default Window With Sunscreen - SS AC	· · · · · · · · · · · · · · · · · · ·		Ý		
770	Single Pane Clear Windows to Dbl Pane Low-E Windows - SS AC	Ì γ	Ý	Ý	· · · · · · · · · · · · · · · · · · ·	Y
771	Ceiling R-0 to R-19 Insulation - SS AC	Ý				· · · · · · · · · · · · · · · · · · ·
772	Ceiling R-19 to R-38 Insulation - SS AC	Y				
773	Wall 2x4 R-0 to Blow-In R-13 Insulation - SS AC	Y				
774	Westner Strip/Caulk W/Blower Door - SS AC				·	
778	15 SEER Solit-System Heat Pump- SS HP					
777	17 SEER Split-System Heat Pump- SS HP				· · · · · · · · · · · · · · · · · · ·	
778	HVAC Proper Sizing - SS HP	Y		Y		
779	Sealed Attics	Y				
780	AC Maintenance (Outdoor Coll Cleaning) - SS HP	Y		Y		
781	AC Maintenance (Indoor Coll Creaning) - SS HP					
783	Electronically Commutated Motors (ECM) on an Air Handler Linit				· · · · · · · · · · · · · · · · · · ·	
784	Duct Repair - SS HP	Ý	Y	Ϋ́Υ	Ŷ	Ŷ
785	Reflective Roof- SS HP	Y	Ŷ	Ŷ	Y Y	Y
786	Radient Barrier - SS HP	Ŷ				
787	Window Film - SS HP	<u> </u>				
788	Window Tinting - SS HP		······································		¥	
790	Single Pane Clear Mindows to DN Dans Low E Mindows CE HD				Y	
791	Ceiling R-0 to R-19 Insulation - SS HP		· · · · · · · · · · · · · · · · · · ·		······································	
792	Ceiling R-19 to R-38 Insulation- SS HP	Ý				
793	Wall 2x4 R-0 to Blow-In R-13 Insulation - SS HP	Y				
_794	Weather Strip/Caulk w/Blower Door - SS HP					
795	HE Room Air Conditioner - EER 11	¥	Y	Υ	Y	Y
797	Reflective Roof - Room AC	¥				
798	Window Film- Room AC					
799	Window Tinting - Room AC	Y				
800	Default Window With Sunscreen - Room AC	Y T		Y		
801	Single Pane Clear Windows to Dbl Pane Low-E Windows - Room AC	Y				
802	Ceiling R-0 to K-19 Insulation- Room AC					
804	Wall 2y4 R-0 to Blow-In R-13 Institution- Room AC				· · ·	
805	Weather Strip/Caulk w/Blowar Door - Room AC					
806	CFL (18-Watt integral ballast), 0.5 hr/day			Y		· · · · · · · · · · · · · · · · · · ·
807	CFL (18-Watt integral ballast), 2.5 hr/day			<u> </u>		
808	CFL (18-Watt integral ballast), 6.0 hr/day			Υ		
609	ROB 2L4/TB, 1EB - Indoor			Y		·
810	RUB 2L416, 1EB - Outdoor			└ <u>──</u> ·─ <u>↓</u> ──·──		
812	RET 2L4T8, 1EB - Outdoor	<u> </u>		÷	· · · · · · · · · · · · · · · · · · ·	
813	HE Refrigerator - Energy Star Version of Above	t		Ý · · · · ·	Y	
814	HE Freezer			Y		
815	Heat Pump Water Heater (EF=2.9)					
816	Res Solar Water Heater		·	L		
819	AU Heat recovery Units	ř				
819	Pipe Wrap	+				
820	Faucet Aerators			Ý Ý		
621	Water Heater Blanket			Y		
822	Water Heater Temperature Check and Adjustment			·		
823	Water Heater Timeclock			├ÿ	<u> </u>	
825	Res Gas Heat Pumo			├		
826	Res Gas Water Heater					
827	Res Demand Water Heater		1	Ý Ý	Ý.	
828	Energy Star CW CEE Tier 2 (MEF=2.0)			Y		
829	Energy Star CW CEE Tier 3 (MEF=2.2)				L	
830	High Efficiency CD (EF=3.01 w/moisture sensor)	<u></u>	ļ	YY	<u> </u>	
832	Two Speed Pool Pumo (1.5 hn)	+				<u>├</u> ───
833	High Efficiency One Speed Pool Pump (1.5 hp)	<u> </u>				
834	Variable-Speed Pool Pump (<1 hp)	Y		Ý	Y	
835	PV-Powered Pool Pumps	Ŷ				
836	Energy Star TV			¥		
837	Energy Star Large Screen TV	+				
839	Res PV	t				
840	Energy Star DVD Plaver	<u> </u>		Y	· · · · · · · · · · · · · · · · · · ·	
841	Energy Star VCR			Y Y		
842	Res Demand Response	Y Y	Y	Y	Y	Y
843	Energy Star Desktop PC			¥		
044	Energy Star Laptop PC		1	Y Y	1	1