FILED JUL 12, 2013 DOCUMENT NO. 03963-13 FPSC - COMMISSION CLERK

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

DOCKET NO. 130140-EI

TESTIMONY AND EXHIBIT

OF

RAYMOND W. GROVE

1		GULF POWER COMPANY
2		Before the Florida Public Service Commission
3		Prepared Direct Testimony of Raymond W. Grove Docket No. 130140-EI
4		In Support of Rate Relief Date of Filing: July 12, 2013
5		Date of Filling. July 12, 2013
6	Q.	Please state your name and business address.
7	A.	My name is Ray Grove. My business address is One Energy Place,
8		Pensacola, Florida, 32520.
9		
10	Q	By whom are you employed?
11	A.	I am employed by Gulf Power Company (Gulf or the Company). I am the
12		Manager of Power Generation Services.
13		
14	Q.	What are your responsibilities as Manager of Power Generation Services?
15	A.	I am responsible for Generation Planning, including the Ten Year Site Plan
16		and the Renewable Standard Offer Contract, reporting plant performance
17		through the Generation Performance Incentive Factor, supply side
18		renewable energy development, Operations and Maintenance (O&M)
19		budgeting for Production, and capital budgeting for Production.
20		
21	Q.	Please state your prior work experience and responsibilities.
22	A.	I was hired by Gulf in January 1982 as a district accountant responsible for
23		accounting and budgeting for the Western District. In 1984 I transferred to
24		Internal Auditing, with the primary responsibility for audit of
25		Power Generation and Fuel. I transferred to Power Generation in 1998,

I		with responsibility for accounting and budgeting for Power Generation. I
2		assumed the additional responsibility for Generation Planning in 2002 and
3		supply side renewable generation in 2008.
4		
5	Q.	What is your educational background?
6	A.	I graduated with a Bachelor of Arts in Accounting from the University of West
7		Florida in 1981.
8		
9	Q.	What are the purposes of your testimony?
10	A.	My testimony discusses Gulf's generation resources used and useful in the
11		provision of electric service to our customers. My testimony also addresses
12		Gulf's resource planning process, Production investment, and the 2014
13		Production O&M budget.
14		
15	Q.	Are you sponsoring any exhibits?
16	A.	Yes. I am sponsoring Exhibit RWG-1, Schedules 1 through 10.
17		Exhibit RWG-1 was prepared under my direction and control, and the
18		information contained therein is true and correct to the best of my knowledge
9		and belief.
20		
21	Q.	Are you sponsoring any of the Minimum Filing Requirements (MFRs) filed by
22		Gulf?
23	A.	Yes. A list of MFRs I sponsor or cosponsor is included on Schedule 1 of
24		Exhibit RWG-1. The information contained in the MFRs I sponsor or co-

sponsor is true and correct to the best of my knowledge and belief.

I. GULF'S GENERATION RESOURCES
Please describe Gulf's generating resources that will be available to serve
retail customers during the 2014 test year.
Gulf will generate or purchase electricity from a diverse group of resources in
2014. These resources will include: (a) units owned solely by Gulf, (b) units
owned jointly with other operating companies within the Southern electric
system (SES), (c) units in the SES available to Gulf through the SES
Intercompany Interchange Contract (IIC), and (d) units available to Gulf under

Power Purchase Agreements (PPAs). The fuels used for the generation

resources available to Gulf include coal, oil, natural gas, landfill gas and

municipal solid waste.

Q.

A.

Q. Please describe Gulf's projected capacity mix by fuel type for 2014.

15 A. In the summer of 2014, Gulf will have 3,382 MW of capacity available for our

customers. Exhibit RWG-1, Schedule 2, shows that the resources available

to Gulf will be made up of 55.7 percent coal, 43.0 percent gas, 0.9 percent

oil, and 0.4 percent renewable.

Through an effective planning process, Gulf has a generation mix which will allow us to provide our customers energy from whichever resources are most economical. When coal prices are high, the gas resources can be utilized; when gas prices are high, coal resources can be utilized. In addition, as a party to the SES IIC, Gulf takes advantage of making purchases or sales

Witness: Raymond W. Grove

1		through the Southern Company Power Pool (the Pool) that further benefit our
2		customers.
3		
4	Q.	Please describe the generation resources forecasted to be owned, operated
5		and used by Gulf to serve its retail customers in the summer of 2014.
6	A.	Exhibit RWG-1, Schedule 3 provides a list of the units owned and operated or
7		co-owned by Gulf and used to provide retail service.
8		
9	Q.	What PPAs will Gulf have in place and use to provide electric service in
10		2014?
11	A.	Exhibit RWG-1, Schedule 4 provides a list of the power purchase resources
12		available to Gulf during 2014 and information regarding the fuels and
13		technologies used by these generating resources. All of these agreements
14		have been approved by the Florida Public Service Commission (FPSC or the
15		Commission).
16		
17	Q.	You mentioned the SES Intercompany Interchange Contract, or IIC. Please
18		summarize that arrangement.
19	A.	The IIC is a contract among Alabama Power Company, Georgia Power
20		Company, Mississippi Power Company, Gulf Power Company and Southern
21		Power Company (collectively the Operating Companies). The IIC is designed
22		to provide for the continued operation of the electrical system of the
23		Operating Companies in such a manner as to achieve the maximum possible
24		economies consistent with the highest practical reliable service, the

reasonable utilization of natural resources, and the equitable sharing among

1		the Operating Companies of the costs associated with the operation of			
2		facilitie	facilities that are for the mutual benefit of the Operating Companies and their		
3		custor	customers.		
4					
5	Q.	How d	oes the SES IIC work to the benefit of Gulf's customers?		
6	A.	Gulf's	customers benefit tremendously from Gulf's participation in this pooling		
7		arrang	pement. Benefits include, but are not limited to, the following:		
8		1.	Economic dispatch production cost savings,		
9		2.	Economic sharing of generating reserve capacity,		
10		3.	Lower reserve margin requirements,		
11		4.	Ability to install large, efficient generating units,		
12		5.	Reduced requirements for operating reserves,		
13		6.	Pool market for temporary surpluses of capacity and energy on Gulf's		
14			system,		
15		7.	Ready supply of energy for purchase when Gulf is short,		
16		8.	Opportunity energy sales and purchases		
17			,		
18		In sum	nmary, Gulf's decision to enter into and participate in the SES IIC was		
19		reasor	nable and prudent, and the benefits justify that Gulf's participation in the		
20		IIC is i	n the best interest of our customers.		
21					
22					
23			II. GULF'S RESOURCE PLANNING PROCESS		
24					
25	Q.	Please	provide an overview of Gulf's resource planning process.		

1	A.	The resource planning process utilized by Gulf to determine its future needs
2		is coordinated within the SES Integrated Resource Planning (IRP) process.
3		Gulf participates in the IRP process along with the other SES retail Operating
4		Companies (Alabama Power, Georgia Power, and Mississippi Power). Gulf
5		receives a number of benefits from being part of a collaborative system
6		planning process. Planning its capacity additions in conjunction with the SES
7		retail Operating Companies allows Gulf to meet its demand and reserve
8		requirements by utilizing the temporary surpluses of capacity available on the
9		SES or by sharing our temporary capacity surpluses with the other retail
10		operating companies.
11		
12		This ability to coordinate capacity additions and rely temporarily on any
13		surplus system reserves provides Gulf the opportunity to defer capacity
14		addition decisions in order to consider (a) larger blocks of need that might
15		justify less costly addition alternatives, (b) emerging technologies that might
16		not have been available earlier, and (c) emerging environmental
17		requirements that might affect unit addition choices. Another benefit to Gulf
18		that is gained from planning a large system such as the SES is the ability to
19		receive support of system planning personnel as the need arises without
20		incurring the costs of a large planning staff of its own.
21		
22		The generation planning process employed by the SES uses PROVIEW (a
23		computer model) to screen available technologies in order to produce a

25

listing of preferred capacity resources from which to select the most cost-

Witness: Raymond W. Grove

effective plan for the system. The resulting SES resource needs are

1		allocated among the Operating Companies based on reserve requirements.
2		Each Operating Company then determines the resources that will best meet
3		its capacity and reliability needs.
4		
5		Gulf's long-range goal is to have economical, reliable generating capacity
6		available to meet our customers' needs. In order to meet the anticipated
7		demand that often develops irregularly and in increments much smaller than
8		the capacity of a large, efficient generating unit, and to realize the economies
9		of scale inherent in large units, most electric utilities will construct "blocks" of
10		generating capacity which are temporarily in excess of the requirements
11		anticipated at the time the unit is initially brought on line. If the utility were to
12		satisfy only the annual increase in demand, these small blocks would be
13		much higher in cost on a per unit basis and much lower in efficiency.
14		
15		In planning generating capacity additions, Gulf has certain advantages that
16		greatly benefit its customers. Gulf Power, Alabama Power, Georgia Power,
17		and Mississippi Power operate as an integrated generation and transmission
18		network over a four-state area. Coordinated planning with our Southern
19		system affiliates allows for the staggered construction of larger, more efficient
20		generating units spread throughout the Southern electric system.
21		
22	Q.	Is this the same planning process used in Gulf's last rate case and the same
23		process described in Gulf's Ten Year Site Plan?
1	۸	Voc

1	Q.	Please address any major generating resource changes since Gulf's last rate
2		proceeding.
3	A.	PPAs for Coral Baconton (owned and operated by Shell Energy North
4		America or SENA) and Dahlberg (owned and operated by Southern Power)

America or SENA) and Dahlberg (owned and operated by Southern Power) currently totaling 494 MW will expire on May 31, 2014. In addition, a PPA with Bay County for the output of their Municipal Solid Waste facility is scheduled to expire on July 1, 2014. We anticipate the county will want to renegotiate an extension of that contract, but no decisions have been made at this time.

10

11

12

13

14

15

16

5

6

7

8

9

In addition, there could potentially be a third 1.6 MW landfill gas unit added at the Perdido site as early as August 2014. However, because of uncertainties associated with the unit, Gulf has elected to remove all investment and O&M expense associated with the third unit at Perdido from this case. The adjustments necessary to remove the investment and O&M expenses associated with Perdido Unit 3 are addressed by Gulf Witness Ritenour.

17

18

III. GULF'S PRODUCTION INVESTMENT

20

19

- 21 Q. Mr. Grove, Ms. Ritenour shows a total of \$2.944 billion of plant in service 22 investment in Gulf's 2014 rate base in this case. Are the Production assets 23 associated with these costs used and useful in the provision of electric 24 service to the public?
- 25 A. Yes. The Production assets, which comprise a total of \$1.155 billion of plant

1		in service in Gulf's 2014 rate base in this case, are used and useful in Gulf's
2		provision of electric service.
3		
4	Q.	Were these Production costs reasonable and prudently incurred?
5	A.	Yes. They were incurred pursuant to our capital budget process. I will
6		discuss that process later in my testimony. They also were subject to cost
7		controls used to govern budgeted expenditures. These cost controls are also
8		discussed later in my testimony.
9		
10	Q.	What is Gulf's projected Production Capital Additions Budget for 2013 and
11		2014 excluding Plant Scherer and items recovered through the
12		Environmental Cost Recovery Clause (ECRC)?
13	A.	Gulf's Production non-ECRC Capital Additions Budget for 2013 is
14		\$50,011,000. As shown on Exhibit RWG-1, Schedule 5 page 1 of 2, there
15		are 77 projects scheduled for 2013. However, \$40,000 of the project listed
16		as "Perdido Landfill Gas Energy" and the entire \$4,420,000 for the project
17		listed as "Perdido Landfill Gas to Energy Unit 3" have been removed for
18		reasons discussed earlier in my testimony. The adjustments necessary to
19		remove the projects associated with Perdido Unit 3 are addressed by Ms.
20		Ritenour.
21		
22		Gulf's Production, non-ECRC Capital Additions Budget for 2014 is
23		\$38,384,000. As shown in Exhibit RWG-1, Schedule 5, page 2 of 2, there
24		are 87 capital projects in 2014. All of these budgeted projects for both 2013
25		

1	and 2014 are needed to address safety issues, to maintain efficiency (heat
2	rate), or to sustain reliability.

Q. Please address how Gulf's Production Capital Additions Budget is
 formulated.

A. The Production Capital Additions Budget process is a multi-step process that begins at the plant level and is ultimately approved by Gulf's Executive Management Team, which is made up of the President and CEO and the four vice presidents of Gulf. All capital projects are evaluated to ascertain the necessity of performing the work.

Plant personnel begin the Production budgeting process by evaluating existing plant equipment performance and maintenance costs. Where performance has degraded or is forecasted to degrade to an unacceptable level and maintenance costs are increasing, replacement of the equipment becomes necessary. As part of this evaluation process, plant personnel review the information provided by Gulf to the North American Electric Reliability Corporation (NERC) Generation Availability Data System (GADS) to evaluate events that have triggered unplanned outages or unit derates. Gulf develops plans to address GADS events that continue to be problematic and makes decisions to repair or replace existing equipment. Once plant personnel have identified specific projects, the Group Managers at each plant review the proposed project list to determine which projects will be submitted to the Plant Management Team (the Plant Manager and his direct reports). The Plant Management Team meets to discuss each proposed project to

-		
2		included for consideration in the final budget.
3		
4		Each plant presents its proposed list of capital projects to the Power
5		Generation Leadership Team (the Vice President of Power Generation and
6		his direct reports). The plant managers then meet with the Power Generation
7		Leadership Team to prioritize all projects at the Power Generation Level to
8		ensure the most critical projects are included in the budget submitted for final
9		review by Gulf's executives.
10		
11		Lastly, the Production Capital Additions Budget request is presented to Gulf's
12		executives. The final Capital Additions Budget is ultimately approved or
13		revised by executive management.
14		
15	Q.	How does Gulf control capital cost after the Capital Additions Budget is
16		developed?

determine which projects will be submitted for the next level of review to be

A. Once the Capital Additions Budget is approved, each project is assigned a project manager who is responsible for all aspects of the project. The project manager develops documentation outlining the scope of the project and works with Supply Chain Management to develop a bid package. From start to finish, the project manager is responsible for all on-site management, including contractor performance and invoice review. The plant manager receives a report from the Manager of Power Generation Services each month detailing capital project expenditures and any budget variance for all projects. The Plant Manager is responsible for explaining budget variances.

1	At the Company level, the Corporate Planning group requires a detailed
2	explanation quarterly of all budget variances greater than 10 percent or
3	\$250,000 (whichever is lower). Variances less than \$10,000 do not require a
4	variance explanation.

- Q. How are new capital projects or changes to existing projects incorporated in
 the current year budget?
- A. In the event a new project or an increase in expenditures associated with an existing project is necessary, the planning unit must submit a justification letter to the Vice President with functional responsibility. If approved by the functional Vice President, the letter is also reviewed and approved by the Chief Financial Officer. Finally, the letter is sent to Corporate Planning where the change is documented and added to the financial plan.

14

- Q. Was Gulf's Production non-ECRC Capital Additions Budget for 2013 and
 2014 developed by this budget and cost control process?
- 17 Α. Yes. The projects included in Gulf's Production Capital Additions Budget 18 were approved pursuant to this rigorous evaluation and approval process. 19 Gulf's effective capital budgeting and cost control process has helped to 20 ensure that our generating fleet continues to provide reliable and efficient 21 generation. The dollars included in the test year non-ECRC Capital Additions 22 Budget for Production are reasonable, prudent, and necessary. Gulf will 23 continue to evaluate the benefits of additional capital projects in the future to ensure that we are able to provide our customers with reliable, cost-effective 24 25 and efficient generating capacity.

1		IV. GULF'S 2014 PRODUCTION O&M BUDGET
2		
3	Q.	What are Gulf's Production O&M budgets for 2013 and 2014?
4	A.	Gulf's Production O&M budget for 2014 is set forth on Exhibit RWG-1,
5		Schedule 6 and Schedule 7. Gulf's Production O&M budget for 2014 is
6		\$106,736,000, including Steam Production, Other Production, and Other
7		Power Supply expenses.
8		
9		Gulf's Production O&M budget for 2013 is set forth on Exhibit RWG-1,
10		Schedule 7. Gulf's Production O&M budget for 2013 is \$91,429,000
11		including Steam Production, Production Other, and Other Power Supply
12		expenses.
13		
14	Q.	Are Gulf's projected levels of Production O&M expenses of \$91,429,000 in
15		2013 and \$106,736,000 in 2014 reasonable and prudent?
l6	A.	Yes. My conclusion is based primarily on the fact that Gulf's 2013 and 2014
17		Production O&M budget are the product of a rigorous budget process
18		implemented by experienced employees who know their jobs and their
19		facilities. Each year, Gulf's Power Generation Organization develops a five-
20		year O&M budget based on historical results, projected maintenance and
21		outage planning. As we develop the budget request, we focus on planned
22		outages and baseline expenses.
23		
24		Over the years, Gulf's plant personnel have gained valuable knowledge
25		relating to the maintenance of our equipment. Our experience indicates that

each unit should have a regularly scheduled planned outage to inspect and
repair fuel handling equipment, boilers and auxiliary equipment every 18 to
24 months unless conditions warrant an adjustment to the schedule. In
addition, a major planned outage is scheduled on each unit every 8 to 10
years, which includes work on the turbine and generator equipment in
addition to the equipment listed above.

Baseline expenses are costs required to conduct the day-to-day operation and maintenance of the generating equipment and auxiliary equipment and facilities. Baseline expenses include all labor, material and other expenses, such as contracts for maintaining grounds, janitorial services, and other services.

The five-year O&M budgets are developed at the plant level with the goal of maintaining high reliability and efficiency. As discussed in Gulf Witness Burroughs' testimony, Gulf has done an exceptional job of maintaining high unit reliability and efficiency. At the same time Gulf has fostered an environment where employee safety is our number one priority.

As each plant develops a five-year O&M budget, the Plant Management

Team seeks input from system owners and unit owners to ensure the most
critical issues receive attention. Each plant assigns a system owner (expert)
over major systems such as boiler, turbine or generator. In addition, each
unit has an individual assigned as the unit owner with the expectation that the
individual will be the coordinator of any work related to the assigned unit. As

1	the O&M budget is developed, the Plant Management Team meets to
2	discuss all aspects of the equipment maintenance requirements.
3	
4	Once the Plant Management Team is satisfied that their O&M budgets meet
5	the plant's needs, the Power Generation Leadership Team meets to discuss
6	the overall Power Generation O&M budget. In the event that there are
7	resource (labor, physical, or financial) constraints, the Power Generation
8	Leadership Team discusses risks associated with projects and prioritizes
9	projects to help ensure the most critical activities are included in the budget.
10	Lastly, the Power Generation budget is submitted to Gulf's Corporate
11	Planning and Budgeting departments. Ms. Ritenour discusses the budget
12	process that takes place after Corporate Planning and Budgeting receives
13	the Power Generation O&M budget request.
14	
15	The \$106,736,000 included in the 2014 Production O&M budget was
16	developed using teams from the plants whose expertise and understanding
17	of plant equipment and plant operations has been clearly demonstrated by
18	the continued high performance indicators of the units. The budgets are then
19	reviewed and modified by the Plant Management Team, the Power
20	Generation Leadership Team, and ultimately Gulf's Executive Management
21	Team. The 2014 Production O&M budget is the product of this robust
22	budgeting process and is also adjusted for rate case adjustments.
23	
24	
25	

I	Q	is Guir's projected level of Production Oaki expenses of \$106,736,000 in
2		2014 representative of a going forward level of Production O&M expenses
3		beyond 2014?
4	A.	Yes. As shown on Schedule 7 of Exhibit RWG-1, the average Production
5		O&M budget for the three year period (2015 - 2017) is \$108,284,000. The
6		Production O&M expense for the 2014 test period is representative of the
7		ongoing level of expense necessary to maintain generation performance and
8		reliability.
9		
10	Q.	On your Schedule 7, you show a series of adjustments in the years 2013 -
11		2017. Please explain the purpose for each of those adjustments.
12	A.	There are three adjustments to the Production O&M request:
13		
14		1. The adjustment for Plant Scholz of \$1,475,000 related to Steam
15		Production consists of an outage adjustment of \$415,000 and a non-
16		outage O&M adjustment of \$1,060,000. When Gulf made the decision
17		to retire Plant Scholz, the entire 2013 budget cycle was adjusted to
18		reflect the operational and maintenance expenses that would be
19		required with the understanding the plant would retire in April 2015.
20		The ratemaking adjustments that reflect these budget changes are
21		addressed by Ms. Ritenour.
22		
23		2. When Gulf originally developed the budget in the fall of 2012 for the
24		budget cycle 2013 - 2017, Gulf planned to have the Perdido Unit 3 on

the ground and available to our customers by the end of 2013. As a

1		result of uncertainties associated with the in-service date of the third
2		unit, Gulf made the decision to remove all expenses (\$400,000)
3		associated with the third unit from our request in this proceeding. The
4		ratemaking adjustments to remove this project from the test year are
5		addressed by Ms. Ritenour.
6		
7		3. The wholesale adjustment of \$255,000 is related to wholesale
8		expenses that Gulf has removed from base rates since these
9		expenses are not related to retail customers.
10		
11	Q.	Production O&M expenses in 2014 are higher than the five year historical
12		average for the period 2008 through 2012. Why is the 2014 Production O&M
13		Budget representative of the ongoing level of expenses necessary to
14		maintain generation performance and reliability?
15	A.	The historical average level of Production O&M expense of \$95,343,000 for
16		the years 2008 through 2012 is not representative of Gulf's going forward
17		level of Production O&M expenses. If Gulf were held to such a level of
18		expenses, necessary and essential maintenance would have to be foregone,
19		and generation unit performance would likely suffer. There are a number of
20		factors that have led to the increase in Production O&M expenses for the
21		period 2013-2017 relative to the period 2008-2012.
22		
23		However, it is important to put this comparison in context. To simply
24		compare a 2008 dollar to a 2017 dollar is not meaningful. In order to make a
25		meaningful comparison, Exhibit RWG-1, Schedule 8 of my testimony

1		provides an analysis with everything in 2014 dollars, using the CPI index
2		published by the Bureau of Labor and Statistics. In that analysis, the average
3		budget for the projected years (2013 - 2017) is \$102,101,339 while the
4		historical average is \$104,124,434. Thus, all other things being equal, the
5		entire increase in average annual expense could be explained by the impact
6		of inflation alone.
7		
8	Q.	Putting inflation aside, are there other factors that result in Gulf's Production
9		O&M expense for the period 2013 - 2017 being slightly higher than the
10		period 2008 – 2012?
11	A.	Yes. The expenditures for a large portion of the historical period (2008
12		through 2012) were low because Gulf made a conscious decision in the
13		years 2008 – 2010 to hold down costs in an effort to defer a rate proceeding.
14		This is best explained by looking at the actual Production O&M expenses in
15		2008 through 2010. Clearly, the amounts being spent in 2008 through 2010
16		were significantly lower than the amounts spent in 2011 and 2012. The
17		average spend in 2008 through 2010 was \$88,507,000 while the average
18		spend in 2011 and 2012 was \$105,596,000. Holding down expenses in 2008
19		through 2010 was part of Gulf's initiative to defer asking for rate relief until
20		2012.
21		
22		In contrast, the forecasted levels of Production O&M expenses for the period
23		2014-2017 more closely approximate the level of expenses incurred in 2011
24		and 2012 rather than the dramatically restrained levels of 2008 through 2010.

Gulf took calculated risks in those earlier years without an adverse effect on

1 EFOR. However, Gulf could not continue to spend at the 2008 – 2010 levels 2 without risking reliability issues which would have a direct impact on our customers in the form of increased fuel costs. As a result Gulf was forced to 3 ask for rate relief in 2012. 4 5 Q. 6 How were you able to hold down expenses? 7 Α. We prioritized maintenance, but we did it to avoid asking for a base rate 8 increase during a time of weak economic recovery and high unemployment. We made calculated risk assessments of what maintenance had to be 9 10 performed. Our EFOR performance indicator shows Gulf was able to make these reductions while we continued to maintain excellent performance. 11

13 Q. Given that Gulf was able to hold down expenses in the prior years to avoid a 14 rate case, shouldn't Gulf be able to continue to hold down costs with minimal 15 impact to the generating fleet?

No. This strategy is acceptable for a short period of time but only if the fleet has been well maintained in the years immediately preceding the reduction. As shown in Mr. Burroughs' testimony, Gulf has enjoyed years of exceptional EFOR. This is driven by an excellent maintenance strategy focused on addressing problem equipment and issues in a timely manner. If Gulf were to hold expenditures dollars down without allowing for an increase in the cost of doing business, there is a risk that EFOR will deteriorate. Increased EFOR has a direct negative effect on fuel and replacement power costs and ultimately on our customers.

25

12

16

17

18

19

20

21

22

23

24

Α.

1 Q.	Please discuss (Bulf's approach to	planned outages.
------	------------------	--------------------	------------------

outage requirements.

2 A. Gulf has 12 generating units, and in 2014 there are 6 planned outages.

A total of 39 planned outage weeks are scheduled across the fleet. The planned outage schedule varies from year to year based on the maintenance requirements of each generating unit and the need for adequate generating capacity in service to meet demand throughout the year. Exhibit RWG-1, Schedule 9, page 1 of 2 of my testimony clearly shows that the planned maintenance forecast for 2014 is typical of the expected future planned

In general, Gulf plans outages on each unit every 18 to 24 months, unless conditions warrant an adjustment to the schedule. Outage planning begins as soon as the previous outage is completed. Plant management, system owners, and unit owners continually evaluate unit performance and determine what items need to be addressed at the next outage. Prior to the unit outage the Plant Leadership Team meets to determine what specific items need to be addressed while the unit is off-line. The major equipment evaluated for each outage includes boilers, pulverizers, condenser systems, turbine valves and other auxiliary equipment.

- Q. How does the planned outages expense in the prior rate case test year (2012) compare to the planned outage expense for the test year in this proceeding?
- 24 A. In the prior rate case, Gulf projected to spend \$23,149,000 for planned

1		outages in 2012. In this proceeding Gulf is requesting \$17,221,000 for the
2		test year (2014).
3		
4	Q.	Why are the planned outage O&M expenses in the test year significantly
5		lower than the amount requested in the prior case?
6	A.	The costs associated with Planned Outages are a direct result of outage
7	-	scope. Exhibit RWG-1, Schedule 9, page 2 of 2 shows that in the prior rate
8		case test year there were 5 outages totaling \$23,149,000. In the current test
9		year there are 6 outages, but the forecast costs are only \$17,221,000. The
10		planned outages in the projected test year are for a different group of units
11		and the outage scope on the units is also different. The 2012 planned
12		outages included two major turbine boiler outages while there is only one
13		turbine outage included in the current period.
14		
15	Q.	Please address why Gulf's request for \$17,221,000 for planned outages in
16		Production in the test year is representative of planned outage expenses in
17		the future.
18	A.	Exhibit RWG-1, Schedule 9, page 1 of 2 provides a detailed analysis of
10		planned outage expense in Production Steam for the five year period

planned outage expense in Production Steam for the five-year period
beginning with 2013. The planned outage expenses for the 2014 test year
are \$17,221,000. The average planned outage expense for the future period
(2015 – 2017) is \$17,149,000.

Q. The Production O&M budget request in the Test Year is \$106,736,000 which is higher than the Prior Year of \$91,429,000. Can you explain the increase?

23

Docket. 130140-El Page 21 Witness: Raymond W. Grove

1 A. Yes. If you examine my Exhibit RWG-1, Schedule 7 you will clearly see the
2 increase is driven almost entirely by an increase in planned outages (after the
3 adjustments related to Plant Scholz) of \$14,801,000. The 2013 level of
4 planned outages is the lowest level of outage expense for the entire period
5 shown on Exhibit RWG-1, Schedule 7. As I explain below, the level of
6 planned outage expenses in 2013 is abnormally low and not representative of
7 future conditions.

8

9 Q. Why were the planned outage expenditures abnormally low in 2013?

A. As I discussed earlier we have traditionally performed outage work on a 10 11 cyclical basis. However, in 2012 and 2013 we saw a drop in capacity factor on the coal fleet driven by a reduction in natural gas prices and a 12 13 corresponding increase in generation from our natural gas fleet. As gas prices dropped we were able to shift generation from coal to gas resources. 14 15 As a result of lower capacity factors on the coal fleet, Gulf made the strategic decision to extend maintenance cycles and planned outages. The ability to 16 17 make these types of adjustments in response to changed circumstances is 18 one of the benefits of properly maintaining our portfolio of generating

20

19

resources.

21 Q. Did shifting outages have the effect of increasing planned outages in the test 22 year?

A. No. In fact, in our prior rate case Gulf had forecasted to spend \$20,195,000 in 2014 for planned outages. In this case Gulf is requesting \$17,221,000 for planned outages in 2014 or a reduction of \$2,974,000. The same relationship

1		occurs in 2015 where Gulf budgeted \$20,615,000 in the prior case for
2		planned outages while Gulf budgeted \$15,186,000 for planned outages in
3		2015 in our current case.
4		
5	Q.	Please address why the scope of planned outages assumed in the 2014 test
6		year is appropriate.
7	A.	As I have discussed throughout my testimony, Gulf has worked hard to
8		maintain our fleet of generators in a manner that ensures high reliability. Our
9		success is demonstrated in the testimony of Mr. Burroughs. As one can see
10		from the outages discussed below, the work we are planning simply includes
11		the normal type of maintenance that is required to maintain our fleet of
12		generation. Moreover, the work described below is indicative of the work we
13		plan to continue on our entire fleet in the future. The following is a list of the
14		outages planned for the test year:
15		 Plant Crist Unit 4 has a 30-day planned outage to address boiler
16		inspection/repairs, replacing coal piping, Station Service transformers,
17		soot blowers, and pulverizer rebuilds.
18		 Plant Crist Unit 5 has a 30-day planned outage to address boiler
19		inspection/repairs, replacing coal piping, Station Service transformers,
20		soot blowers, and pulverizer rebuilds.
21		 Plant Crist Unit 6 has a 58-day planned outage to address boiler
22		inspections/ repairs, ash hopper, ash piping, and pulverizer rebuilds.
23		 Plant Smith Unit 3 has two 9-day planned outages to address boiler

• Plant Daniel Unit 2 has a 72-day planned outage to address boiler

inspection/repairs.

24

25

1		inspection / repairs, LP turbine, and FGD activities.
2		Perdido has an outage planned to work on generators, cranks, cams,
3		main bearings and cylinders.
4		
5	Q.	How does the current planned outage budget for the test year 2014 compare
6		to the benchmark from 2012?
7	A.	As is shown on Exhibit RWG-1, Schedule 9, page 2 of 2, the amount allowed
8		in our prior rate case for planned outages in 2012 was \$23,149,000, which
9		results in a benchmark amount of \$24,308,000 for the 2014 test year. Gulf's
10		planned outage budget for 2014 is \$17,221,000 or \$7,087,000 less than the
11		benchmark amount.
12		
13	Q.	Are you testifying that these same planned outages will recur each year?
14	A.	Not at all. I am testifying that this level of outages, and more importantly, this
15		level of total planned outage O&M dollars are typical or representative of
16		annual planned outage O&M dollars. What is recurring annually is the level
17		of planned outage expense, not each planned outage itself. We budget to
18		spread our outages over time, and virtually every type of work performed in a
19		planned outage will recur at some time in the future. However, we attempt to
20		schedule planned outages so that some occur every year and that the
21		general level of planned outage expenses will be roughly equivalent from
22		year to year.
23		

25

Q.

If you attempt to incur planned outage costs that are roughly equivalent each

Witness: Raymond W. Grove

year, why is the level of planned outages and the level of planned outage

1		dollars in 2013 so low relative to both prior and subsequent years?
2	A.	There were two driving forces behind the planned outage dollars in 2013.
3		First, as gas prices fell and Gulf was able to obtain firm gas transportation
4		and firm transmission for the Central Alabama facility Gulf was able to shift
5		generation from the coal fleet to the gas fleet. This resulted in our running
6		the coal fleet in 2013 much less and allowed planned outage cycles to be
7		extended. As I mentioned earlier this shift from coal to gas has provided
8		significant benefits to our customers in terms of reduced fuel costs. Second,
9		at the same time loads have dropped off and not recovered as rapidly as Gulf
10		anticipated and we were forced to look hard at ways to reduce costs in the
11		short term.
12		
13	Q.	How does Gulf's 2014 Production O&M expense forecast compare to the
14		O&M expense benchmark historically employed by the Commission?
15	A.	The O&M benchmark for Production is \$112,289,000 as provided to me by
16		Gulf Witness McMillan. Gulf's projected 2014 Production O&M expenses are
17		\$106,736,000 which results in a favorable benchmark variance of
18		(\$5,553,000). This is shown on Exhibit RWG-1, Schedule 10. There are
19		three sections to Production: Steam Production is (\$8,360,000) below the
20		benchmark; Production-Other Power Supply is (\$657,000) below the
21		benchmark; and Production Other is \$3,464,000 over the benchmark.
22		
23		
24		

1	Q.	Please explain why Gulf's Production Other O&M is \$3,464,000 over the
2		O&M benchmark.
3	A.	There are several reasons the Production Other expenses are above the
4		benchmark.
5		
6		First, there was an \$800,000 increase in labor dollars to maintain and operate
7		the gas combined cycle unit (CC) at Plant Smith. On an overall basis, there
8		was a corresponding decrease in Production Steam labor, as dollars were
9		shifted from the coal units to the CC.
10		
11		Second, Planned Outage work on the Smith CC and the Perdido facilities are
12		\$800,000 more than the prior test year. Although there is an increase in
13		Production Other planned outage expense, there is a corresponding
14		decrease in the planned outage expense for Production Steam.
15		
16		Third, Work on the Heat Recovery Steam Generator (HRSG) in 2014 is
17		budgeted to be \$2,000,000 more than was allowed in the 2012 rate case.
18		The structural corrosion associated with the saltwater cooling towers
19		continues to require the levels of maintenance budgeted in 2014 and beyond.
20		
21		
22		VII. SUMMARY
23		
24	Q.	Please summarize your testimony.
25	A.	Gulf maintains and operates generation resources designed to serve our

Docket. 130140-El Page 26 Witness: Raymond W. Grove

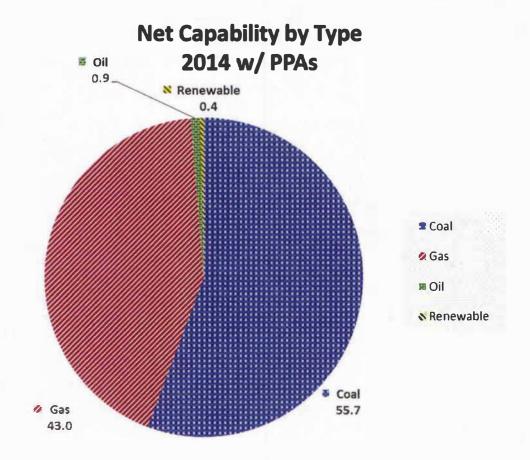
1		customers economically and reliably. Gull has made sound generation
2		planning decisions that were clearly in the best interest of our customers.
3		
4		Gulf's Production operation continues to provide, reliable electric service to
5		our customers to meet their increasing demand for electricity. The reliability
6		of Gulf's generating units and low EFOR are clear indications that Gulf has
7		executed an effective maintenance program that continues to provide our
8		customers with reliable service. Gulf is committed to maintaining our
9		generating facilities through the effective use of resources that focuses not
10		only on reliability but also efficiency.
11		
12		Gulf's entire Production, Other Production, and Other Power Supply
13		investment should be included in Gulf's rate base. This property is used and
14		useful in providing service to Gulf's customers. Moreover, the investment
15		has been reasonably and prudently incurred and managed.
16		
17		Gulf's Production capital additions and O&M expenses are carefully
18		controlled and utilized in a manner to ensure high availability and low EFOR.
19		The \$106,736,000 budgeted for Power Production O&M and \$38,384,000
20		budgeted for Capital Additions in the test year are reasonable, prudent, and
21		necessary expenditures and should be included in establishing Gulf's base
22		rates.
23		
24	Q.	Does this conclude your testimony?
25	A.	Yes, it does.

Docket. 130140-El Page 27

AFFIDAVIT

STATE OF FLORIDA)	Docket No. 130140-El
COUNTY OF ESCAMBIA)	
Before me the undersigned authority,	personally appeared Raymond W. Grove,
who being first duly sworn, deposes, and say	s that he is the Manager of Power
Generation Services for Gulf Power Compan	y, a Florida corporation, and that the
foregoing is true and correct to the best of his	s knowledge, information, and belief. He is
personally known to me.	
	mond W. Grove nager of Power Generation Services
Sworn to and subscribed before me th	nis 8th day of July, 2013
Notary Public, State of Florida at Large Commission NoF/	MONICA A WILLIAMS MY COMMISSION # EE18680 EXPIRES February 06, 2016
Commission No.	- Man

My Commission Expires 2/6/16


Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 1 Page 1 of 1

Responsibility for Minimum Filing Requirements

<u>Schedule</u>	<u>Title</u>
B-11	Capital Additions and Retirements
B-12	Production Plant Additions
C-6	Budgeted Versus Actual Operating Revenues and Expenses
C-8	Detail of Changes in Expenses
C-9	Five Year Analysis - Change in Cost
C-34	Statistical Information
C-41	O&M Benchmark Variance By Function
F-5	Forecasting Models
F-8	Assumptions

Florida Public Service Commission Docket No. 130140-EI GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. _____(RWG-1) Schedule 2 Page 1 of 1

Total Capacity 3,382 MW

Note – Assumes Coral Baconton and Dahlberg PPAs have expired for Summer of 2014.

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 3 Page 1 of 1

Owned and Operated or Jointly Owned Generating Capacity

Unit Description	Net Generation (MW)
Crist Unit 4	75
Crist Unit 5	75
Crist Unit 6	299
Crist Unit 7	475
Smith Unit 1	162
Smith Unit 2	195
Smith Unit 3	556
Smith Unit A	32
Scholz Unit 1	46
Scholz Unit 2	46
Pea Ridge Unit 1	4
Pea Ridge Unit 2	4
Pea Ridge Unit 3	4
Perdido Unit 1	1.6
Perdido Unit 2	1.6
Daniel Unit 1	255
Daniel Unit 2	255

Although a third 1.6 MW landfill gas-fired generating unit at the Perdido site is scheduled for August 2014, there is so much uncertainty about whether and when such a unit might be built, Gulf has not included such a unit in rate base or listed it as available capacity.

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 4 Page 1 of 1

Power Purchase Agreements

<u>Agreement</u>	<u>Technology</u>	Fuel	<u>MW</u>	Start Date	End Date
Bay County	Steam	MSW	11	July 2008	July 2014
Coral Baconton	СТ	Gas/Oil	195	June 2009	May 2014
Dahlberg	СТ	Gas/Oil	299	June 2009	May 2014
Central Ala.	CC	Gas	885	Nov 2009	May 2023

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 5 Page 1 of 2

2013 Production Capital Additions Budget (\$000)

2013 2013 Description Description PERDIDO LANDFILL GAS ENERGY SCHOLZ-MISC. STEAM PLANT ADDITIONS 120 120 Perdido Landfill Gas to Energy Unit 3 SMITH 1&2 - MISC. STEAM PLANT ADDITIONS 500 4,420 CRIST UNIT 4 & S ASH SYSTEM 600 VAC MCC SMITH 3 - BFP HYDRAULIC COUPLINGS 2.700 30 **CRIST U6 DUCTWORK AND EXPANSION JOINTS** 50 SMITH 3 - LTSA 20,905 CRIST 4 & S PRIMARY/SECONDARY ASH COLLECTOR REPLACEME SMITH 3 - REPLACE INLINE AIR FILTERS 300 200 **CRIST 4 & S ASH CONTROLS** 1.000 SMITH 3 - BLADE HEALTH MONITOR 600 **CRIST COMMON SILO TRANSFORMERS** 200 SMITH - AIR COMPRESSOR REPLACEMENT 200 CRIST 6C 41 60 V BUS REPL BREAKERS 40 **DANIEL-MISC. STEAM PLANT ADDITIONS &** 108 CRIST 4 - 2300 VOLT BREAKERS 30 DANIEL 1 & 2 COAL HANDLING CONTROLS 44 CRIST S - 2300 VOLT BREAKERS 30 DANIEL WATER TREATMENT PLANT CONTROLS 21 **CRIST 6 PYRITE HOPPERS** 20 DANIEL 1&2 ASH HANDLING CONTROLS 37 CRIST 6 & 7 REPLACE COOLING TOWER BUILDING **DANIEL 1&2 CONVEYOR BELT** 420 38 CRIST U1-2-3 2300 VOLT SWITCHGEAR 30 **DANIEL 2 ZENON CASSETTES** 252 **CRIST 4 & S SSS TRANSFORMER REPLACEMENT** 500 DANIEL 2 CONDENDSER TUBES 3,027 **DANIEL!&2 CONVEYOR DIRECT DRIVE GEARBOXES** CRIST U4 ASSET PROTECTION 50 111 **CRIST UNIT S WALL BLOWERS** 25 **DANIEL 1&2 AIR COMPRESSORS** 141 **CRIST UNIT S LONG RETRACT SOOTBLOWERS** 25 **DANIEL 1 BENTLEY VIBRATION SYSTEM** CRIST UNIT'S BURNER REPLACEMENT 25 DANIEL 2 BENTLEY VIBRATION SYSTEM 600 **CRIST 6 REPLACE ASH HOOPER** 250 **DANIEL 1 REPLACE ZENON CASSETTES** 252 **CRIST US ASSET PROTECTION** 50 DANIEL 1 & 2 NERCCIP 149 **CRIST U6 ASSET PROTECTION** SMITH 3 - MISC. STEAM PLANT ADDITIONS 50 900 **CRIST U7 ASSET PROTECTION** 50 SMITH - CYBER SECURITY 86 **CRIST S - AIR HEATER BASKETS** 25 **ENVIR-WASTE-SMITH CAP ASH LANDFILL CELLS** 200 SMITH 1&2 - AIR COMPRESSOR DESICCANT DRYER SYST CRIST-MINOR MISC ADDITIONS 750 250 CRIST 4 - PULVERIZED COAL PIPING 50 SMITH 1&2 - REPLACE YARD SUMP PUMPS 450 CRIST 6 CONTROL SYSTEM UPGRADES 400 **SMITH - NERC CIP IMPLEMENTATION** 264 1,000 CRIST- MAJOR MISC ADDITIONS SMITH 3 - REPLACE EVAP COOLER FILL MEDIA 100 CRISTU4 REPL BREAKERS CABLE & SWITCHES FOR ARC FLASH ST 75 SMITH 1&2 - REPLACE LIVE STORAGE FEEDER 250 CRIST LAB DATA MANAGEMENT SYSTEM-OVATION 500 **SMITH 3 - CORROSION PROJECT** 1,500 CRIST DEMINERALIZER NEUTRALIZATION BASIN LEVEL CONTROL DANIEL UNIT 1 & 2 LAB ANALYSISEQIP 75 697 **CRIST HYDRO-BIN PUMP AND PIPING** 150 **DANIEL 2 COAL FEEDER** 113 **CRISTU 4 & S ASH SLUICEPUMP SKIDS DANIEL SHAKER SLIDE GATES** 300 250 ENVIR-WASTE- CRIST-FLY ASH LANDFILL STORAGE CELL DEVELOF 500 DANIEL 2 DCS UPGRADE 8 **CRIST COMMON -CONVEYOR BELTS REPLACEMENT** 150 **DANIEL 2 BOILER FEED PUMPS CRIST 4 & S REPLACE COAL CRUSHER** 100 Daniel - Purchase/Install Unit 1A&B Battery Banks 289 CRIST 4-7 AQUEAQUSAMMONIA/HYDRAZINE BULK TANKS 363 Daniel 1 & 2 Beck Drivers and Speed Changers 192 **CRIST 4-7 NEW RAW WATER SUPPLYWELL** 800 Daniel 1 & 2 Closed Loop Coolers 217 **CRIST UNIT 6 UPS BATTERIES AND ROOM** 600 Daniel-Replace Roof over Service Building 79 **CRIST UNIT 7 UPS BATTERIES AND ROOM** 600 50,011 Total

,

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 5 Page 2 of 2

2014 Production Capital Additions Budget (\$000)

Descripton	2014	Description	2014
PERDIDO LANDFILL GAS ENERGY	200	CRIST - MAJOR MISC ADDITIONS	1,000
CRIST UNIT 4 & 5 ASH SYSTEM 600 VAC MCC	180	CRIST U4 REPL BREAKERS CABLE & SWITCHES FOR ARC FL	175
CRIST UNIT 7 ROOF TUBES HEADER TO HEADER	800	CRIST UNIT 6 TURBINE PROTECTION SYSTEM	280
CRIST U6 DUCT WORK AND EXPANSION JOINTS	700	CRIST CONSOLIDATED AIR COMPRESSOR AND DRYER AREA	175
CRIST UNIT 7 FINISHING SUPERHEATER	1,500	CRIST 7 BOTTOM ASH HOPPER	500
CRIST U7 DUCT WORK AND EXPANSION JOINTS	750	CRIST ADDITION OF SAMPLE PANEL IN LABORATORY	55
CRIST 4 & 5 PRIMARY/SECONDARY ASH COLLECTOR F	400	CRIST UNIT 7 HOT REHEAT PIPING	500
CRIST 4 BOTTOM ASH DOGHOUSE AND SLUICE GATE	138	CRIST UNITS 4 5 6 & 7 CHEMICAL FEED SYSTEM	300
CRIST 4 & 5 ASH CONTROLS	2,000	CRIST COMMON DEMINERALIZER #2 REVERSE OSMOSIS SY	1.000
CRIST 7 CONDENSER VACUUM PUMPS	50	SCHOLZ - MISC. STEAM PLANT ADDITIONS	120
ENVIR - WASTE - CRIST FLY ASH LANDFILL STORAGE CI	500	SMITH 1&2 - MISC. STEAM PLANT ADDITIONS	500
CRIST 6C 4160 V BUS REPL BREAKERS	360	SMITH 1 - PRIMARY AIR INSTRUMENTATION	200
CRIST 7 C4160 VOLT BUS REPLACE BREAKERS	40	SMITH 2 - PRIMARY AIR INSTRUMENTATION	200
CRISTCOMMON #2 DEMIN. MCC. REPLACEMENT	30	SMITH 1 - VACUUM PUMPS	150
CRIST 4 - 2300 VOLT BREAKERS	420	SMITH 2 -VACUUM PUMPS	150
CRIST 6 PYRITE LINES	118	SMITH 3 - REPLACE INLINEAUR FILTERS	200
CRIST 5 2300 VOLT BREAKERS	420	SMITH 1&2 - REPLACE #5 HP HEATER	200
CRIST 6 PYRITE HOPPERS	120	SMITH 3 - POWER GRAPHICS	750
CRIST U6 BLOWDOWN TANK REPLACEMENT	120	SMITH 1 - GENERAL SERVICE WATER COOLER REPLACEMEN	500
CRIST U1-2-3 2300 VOLT SWITCHGEAR	270	SMITH 2 - EXPANSION JOINT REPLACEMENT	300
CRIST 4&S SSSTRANSFORMER REPLACEMENT	1,250	SMITH 1&2 - SAFETY VALVE REPLACEMENT	200
CRIST U4 ASSET PROTECTION	50	DANIEL-MISC, STEAM PLANT ADDITIONS &	18
CRIST UNIT 5 WALL BLOWERS	300	DANIEL 1&2 CONVEYOR BELT	30
CRIST UNIT 5 LONG RETRACT SOOTBLOWERS	400	DANIEL2 CAPITAL VALVE REPLACEMENTS	38
CRIST UNIT S BURNER REPLACEMENT	475	DANIEL !&2 CONVEYOR DIRECT DRIVE GEARBOXES	110
CRIST 6 REPLACEASH HOOPER	3,350	DANIEL 1&2AIR COMPRESSORS	70
CRIST 7 AIR HEATER BASKETS	500	DANIEL 1 BENTLEY VIBRATION SYSTEM	598
CRIST US ASSET PROTECTION	50	DANIEL RELAY MODERNIZATION	1,217
CRIST U6 ASSET PROTECTION	50	SMITH 3 - MISC. STEAM PLANT ADDITIONS	500
CRIST U7 ASSET PROTECTION	50	SMITH - CYBER SECURITY	86
CRIST S - AIR HEATER BASKETS	500	ENVIR-WASTE-SMITH CAP ASH LANDFILL CELLS	200
CRIST - MINOR MISC ADDITIONS	750	SMITH1-REPLACEDUCTWORK	350
CRIST 7 - ECONOMIZER	1,500	SMITH 3 - CORROSION PROJECT	1,000
CRIST 7 - DIVISION WALL SUPERHEATER	848	SMITH 1 - EXPANSION JOINT REPLACEMENT	250
CRIST 7 - PULVERIZED COAL PIPING	50	DANIEL 2 EXPANSION JOINTSCO043S C00437 C01716	15 1
CRIST 4 - PULVERIZED COAL PIPING	1,500	DANIEL SHAKER SLIDE GATES	250
CRIST 4 - EXCITER AND VOLTAGE REGULATOR	400	DANIEL 2 FW HEATER 4 LP	321
CRIST 5 - EXCITER AND VOLTAGE REGULATOR	400	DANIEL 1 BOILER FEED PUMPS	5
CRIST 6 CONTROL SYSTEM UPGRADES	1,200	DANIEL 2 BOILER FEED PUMPS	101
CRIST 5 CONTROL SYSTEM UPGRADES	400	DANIEL 1SEAL AIR SYSTEM	20
CRIST 4 CONTROL SYSTEM UPGRADES	400	Daniel 1 & 2 Beck Drivers and Speed Changers	43
CRIST 4 MONITORING SYST EM UPGRADES	138	Daniel 1 & 2 Closed Loop Coolers	218
CRIST 5 MONITORING SYSTEM UPGRADES	138	Daniel 1 & 2 CPAT Drum Index	238
CRIST 7 CONTROL SYSTEM UPGRADES	1,300	Total	38,384

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 6 Page 1 of 1

2014 Production O&M Budget (\$000)

<u>Description</u>	2014 Test Year Budget
Steam Production	91,723
Other Production	11,142
Other Power Supply	<u>3,871</u>
Total Production	106,736

Excludes Environmental Cost Recovery and Plant Scherer

Florida Public Service Commission

Docket No. 130140-EI

GULF POWER COMPANY Witness: Raymond W. Grove

Exhibit No. ____(RWG-1)

Schedule 7 Page 1 of 1

Gulf Power Company Production FERC's

Excludes Plant Scherer and ECRC

	Actual 2008	Actual 2009	Actual 2010	Actual 2011	Actual 2012
Baseline Materials	7,288	6,376	7,762	8,514	7,843
Baseline Other	40,7 2 7	37,820	46,923	47,393	44,846
Baseline Labor	27,328	25,769	27,237	27,779	28,150
Total Baseline	75,343	69,965	81,922	83,686	60,839
Total Outages	13,014	14,183	10,871	26,206	20,109
Special Projects	67	61	96	136	215
Total Actual/Budget	<u>88,424</u>	84,209	92,889	110,028	101,163
	Average 2008 - 2012		95,343		
	Average 2008 - 2010		68,507		
	Average 2011 - 2012		105,596		

	Budget 2013	Budget 2014	Budget 2015	Budget 2016	Budget 2017
Basefine Materials	10,321	10,006	10,035	10,439	10,200
Baseline Other	50,381	51,593	51 ,925	53,252	54,410
Basefine Labor	29,009	29,476	30,288	31,339	31,863
Total Baseline	89,711	91,075	92,248	95,030	96,473
Total Outages	2,772	17,636	15,601	21,055	16,022
Adjustment for Scholz	(352)	(415)	(415)	(415)	(400)
Special Projects	332	155	159	170	172
Adjustmenta					
Scholz	(790)	(1,060)	(2,071)	(3,353)	(3,412)
Perdido	•	(400)	(405)	(415)	(414)
Wholesale	(244)	(255)	(257)	(266)	(255)
Total Actual/Budget	91,429	106,736	104,860	111,806	108,188

Average 2013 - 2017	104,603
Average 2015 - 2017	108,284

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. _____(RWG-1) Schedule 8 Page 1 of 1

Gulf Power Company Production O&M Adjusted by CPI to 2014 Dollars

Actual Expenditures CPI Index	<u>2008</u> 88,424,000 215.26	<u>2009</u> 84,209,000 214.56	<u>2010</u> 92,889,000 218.08	<u>2011</u> 110,028,000 224.94	2012 101,163,000 229.66
CPI Adjusted	99,063,142	94,648,781	102,719,696	117,961,912	106,228,638
				Adjusted Average	104,124,434
		2044	2045		2047
	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>
Actual Expenditures	91,429,000	106,736,000	104,860,000	111,806,000	108,186,000
CPI Index	234.72	241.16	247.08	252.92	258.63
CPI Adjusted	93,937,533	106,736,000	102,347,570	106,607,366	100,878,227
				Adjusted Average	102,101,339

Florida Public Service Commission

Docket No. 130140-EI

GULF POWER COMPANY Witness: Raymond W. Grove

Exhibit No. ____(RWG-1)

Schedule 9 Page 1 of 2

Gulf Power Company Planned Outage 2013 – 2017 (\$000)

(excludes labor, ECRC and Plant Scherer)

	<u>2013</u>	<u>2014</u>	<u>2015</u>	<u>2016</u>	<u>2017</u>
Crist Plant Unit 4	-	2,703	-	3,215	-
Crist Plant Unit 5	-	2,950	-	3,166	-
Crist Plant Unit 6	75	4,646	28	6,278	34
Crist Plant Unit 7	55	-	4,493	-	5,758
Crist Common	69	69	47	74	25
Scholz Plant Unit 1	-	-	-	-	-
Scholz Plant Unit 2	-	-	-	-	-
Scholz Common	-	-	-	-	-
Smith Plant Unit 1	24	-	4,720	19	19
Smith Plant Unit 2	-	31	600	25	4,909
Smith CT	-	-	-	-	-
Smith CC	2,192	1,668	1,683	4,813	1,236
Smith Common	-	-	23	-	50
Plant Daniel	5	4,835	3,305	3,050	3,590
Perdido		319	287		_
Total Production	2,420	17,221	15,186	20,640	15,621
Production Steam	228	15,234	13,216	15,827	14,385
Production Other	2,192	1,987	1,970	4,813	1,236

 Total Production Average 2015-2017
 \$17,149,000

 Total Production Average 2013-2017
 \$14,218,000

 Production Steam Average 2013-2017
 \$11,778,000

 Production Other Average 2013-2017
 \$2,440,000

Florida Public Service Commission Docket No. 130140-EI GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 9 Page 2 of 2

Gulf Power Company Planned Outages

Benchmark Comparision

Crist	Prior Test Year		Benchmark	Test Year	Variance
4	-	1.05007	-	2,702,800	2,702,800
5	-	1.05007	-	2,949,900	2,949,900
6	6,966,000	1.05007	7,314,788	4,645,530	(2,669,258)
7	6,120,000	1.05007	6,426,428	-	(6,426,428)
Common	322,000	1.05007	338,123	69,012	(269,111)
Smith	Prior Test Year		Benchmark	Test Year	Variance
1	-	1.05007	-	-	-
2	2,269,000	1.05007	2,382,609	31,186	(2,351,423)
ст	-	1.05007	-	-	-
cc	1,133,000	1.05007	1,189,729	1,668,255	478,526
Common	153,000	1.05007	160,661	-	(160,661)
Scholz	Prior Test Year		Benchmark	Test Year	Variance
1	-	1.05007	-	-	-
2	-	1.05007	-	-	-
Common	39,000	1.05007	40,953	•	(40,953)
Daniel	Prior Test Year		Benchmark	Test Year	Variance
	6,147,000	1.05007	6,454,780	4,835,360	(1,619,420)
Perdido Landfill	Prior Test Year		Benchmark	Test Year	Variance
	-	1.05007	-	319,000	319,000
Total Production	23,149,000		24,308,070	17,221,043	(7,087,027)
	22.046.022		22 442 244	45 222 700	(7.004.550)
Production Steam	22,016,000		23,118,341	15,233,788	(7,884,553)
Production Other	1,133,000		1,189,729	1,987,255	797,526

Florida Public Service Commission Docket No. 130140-El GULF POWER COMPANY Witness: Raymond W. Grove Exhibit No. ____(RWG-1) Schedule 10 Page 1 of 1

2014 Production O&M Benchmark Comparison (\$000)

	Test Year	2014 Test Year Production	
Description	Benchmark	O&M Budget	Variance
Steam Production	100,083	91,723	(8,360)
Other Production	7,678	11,142	3,464
Other Power Supply	<u>4,528</u>	<u>3,871</u>	<u>(657)</u>
Total Production	<u>112,289</u>	<u>106,736</u>	<u>(5,553)</u>