FILED 8/22/2019 DOCUMENT NO. 08343-2019

	DOCUMENT NO. 08343-2019
	FPSC - COMMISSION CLERK
1	BEFORE THE
	FLORIDA PUBLIC SERVICE COMMISSION
2	
	In the Matter of:
3	DOCKET NO. 20190015-EG
	COMMISSION REVIEW OF
4	NUMERIC CONSERVATION GOALS
	(FLORIDA POWER & LIGHT
5	COMPANY).
6	
	COMMISSION REVIEW OF
7	NUMERIC CONSERVATION GOALS
	(GULF POWER COMPANY).
8	/
	DOCKET NO. 20190017-EG
9	COMMISSION REVIEW OF
10	NUMERIC CONSERVATION GOALS
10	(FLORIDA PUBLIC UTILITIES
	COMPANY).
11	/
	DOCKET NO. 20190018-EG
12	COMMISSION REVIEW OF
12	
1 2	NUMERIC CONSERVATION GOALS
13	(DUKE ENERGY FLORIDA, LLC).
	/
14	DOCKET NO. 20190019-EG
	COMMISSION REVIEW OF
15	NUMERIC CONSERVATION GOALS
1	
1.0	(ORLANDO UTILITIES
16	COMMISSION).
	/
17	DOCKET NO. 20190020-EG
	COMMISSION REVIEW OF
18	NUMERIC CONSERVATION GOALS
10	
1.0	(JEA).
19	/
	DOCKET NO. 20190021-EG
20	COMMISSION REVIEW OF
	NUMERIC CONSERVATION GOALS
21	
41	(TAMPA ELECTRIC COMPANY).
	/
22	
23	VOLUME 5
	PAGES 774 through 1023
24	111010 //1 011104911 1020
² 4	
25	

1		
2		
3	PROCEEDINGS: COMMISSIONERS	HEARING
4	PARTICIPATING:	CHAIRMAN ART GRAHAM COMMISSIONER JULIE I. BROWN
5		COMMISSIONER GODIE 1. BROWN COMMISSIONER DONALD J. POLMANN COMMISSIONER GARY F. CLARK
6		COMMISSIONER ANDREW GILES FAY
7	DATE:	Tuesday, August 13th, 2019
8	TIME:	Commenced: 2:00 p.m. Concluded: 6:29 p.m.
9		concraded o 25 primi
10	PLACE:	Betty Easley Conference Center Room 148
11		4075 Esplanade Way Tallahassee, Florida
12	REPORTED BY:	DEBRA R. KRICK
13		Court Reporter
14	APPEARANCES:	(As heretofore noted.)
15		PREMIER REPORTING 114 W. 5TH AVENUE
16		TALLAHASSEE, FLORIDA (850) 894-0828
17		
18		
19		
20		
21		
22		
23		
24		
25		

1	I N D E X	
2	WITNESSES	
3	NAME: DONALD P. WUCKER	PAGE
4		
5	Examination continued by Mr. Leubkemann Examination by Ms. Weisenfeld Further Examination by Mr. Perko	787 794 796
6	BRADLEY E. KUSHNER	,,,,
7		
8	Examination by Mr. Perko Prefiled Direct Testimony Examination by Ms. Corbari	800 802 810
9	MARK R. ROCHE	
10	Examination by Mr. Means	815
11	Prefiled Direct Testimony Examination by Ms. Fall-Fry	817 896
12	Examination by Mr. Marshall Examination by Ms. Dziechciarz	899 916
13	JIM GREVATT	710
14		0.05
15	Examination by Mr. Marshall Prefiled Direct Testimony Further Examination by Mr. Marshall	927 930 981
16	FOREST BRADLEY-WRIGHT	
17	Examination by Mr. Marshall	983
18	Prefiled Direct Testimony	985
19		
20		
21		
22		
23		
24		
25		

1		EXHIBITS		
2	NUMBER:		ID	ADMITTED
3	336	SACE POD 14, Utility Program EE budgets, Bates 1-11	783	786
4	337	JEA response to SACE 3rd set of ROGS, No. 74	784	786
5	338	JEA response to staff 1st ROG 114 excerpt of Nos. 5-7	784	786
6	339	JEA response to staff 12th set of ROGs, Nos. 88-94	785	793
7	340	JEA response to staff 3rd set of ROGS, Nos. 25-52	785	
8	341	JEA response to SACE 5th set of ROGs, Nos. 98-100 & Nos. 102-106	785	
9	342	JEA response to staff's 6th set of ROGs	786	
10	53-59	As identified on the comprehensive exhibit list		798
11	336-342	As identified on the comprehensive exhibit list		799
12	343	JEA response to SACE 1st set of ROGs Nos. 1-65, excerpt of No. 12	812	812
13	344	JEA response to SACE 1st set of ROGs Nos. 1-65, excerpt of No. 2	812	812
14	60-62	As identified in the comprehensive exhibit list		813
15	345 63	SACE/TECO composite As identified in the comprehensive	899	926 926
16	64-83	exhibit list As identified in the comprehensive		982
17	84-91	exhibit list		
	ロセージエ	As identified in the comprehensive exhibit list		1022
18				
19				
20				
21				
22				
23				
24				
25				

1	PROCEEDINGS
2	(Transcript follows in sequence from
3	Volume 4.)
4	CHAIRMAN GRAHAM: All right: I got two
5	o'clock on that clock back there, and I have three
6	people at the diocese here, so I am ready to get
7	started.
8	MR. COX: Chairman Graham, FPL asks to be
9	heard for just a minute before we get started back,
10	if that's okay.
11	CHAIRMAN GRAHAM: Okay.
12	MR. COX: So we were talking over lunch at
13	FPL, and we have heard some common questions and
14	themes from the Commissioners in terms of interest
15	in NexGen initiatives for DSM in light of where we
16	are with the goals and what the analyses are
17	showing, and we would like an opportunity, if it
18	was the Commission was inclined to grant it, to
19	allow us to come back with a written proposal, you
20	know, by the start of the hearing tomorrow morning
21	basically outlining proposals that we would have
22	for NexGen initiatives that would usher in sort of
23	the next generation of demand-side management
24	programs. And we would make our witnesses
25	available. We would provide the information in

1	writing to all of the parties, again, by the start
2	of the hearing tomorrow morning, or earlier if you
3	would like us to, but we could safely do it by
4	tomorrow morning, I think.
5	CHAIRMAN GRAHAM: I guess that question would
6	go to my Commissioners that have been asking NexGen
7	questions.
8	Commissioner Brown.
9	COMMISSIONER BROWN: That would be me who's
10	asking the questions. It's an area of great
11	interest. I would love to see what additional
12	proposals proposal you have, and I would
13	appreciate the parties' willingness to accept this
14	as well so that we will all be given an opportunity
15	to ask questions, review what is being proposed.
16	But it is an area of great interest personally to
17	me, so appreciate the offer.
18	MR. MARSHALL: SACE would, and LULAC, would
19	certainly potentially I mean, I don't know
20	what's being contemplated here, whether it's new
21	testimony. So, I mean, without having seen this,
22	we just want to reserve all of our rights to object
23	depending on what this is.
24	CHAIRMAN GRAHAM: Trust me, you will have
25	everything in world, because I have no idea what it

1	is.
2	MR. MARSHALL: Okay.
3	MR. BADDERS: Commissioner Graham
4	CHAIRMAN GRAHAM: Yes.
5	MR. BADDERS: Chairman Graham, Russell
6	Badders on behalf of Gulf Power.
7	We would also like to take the same
8	opportunity. I think we can go back this afternoon
9	and maybe put something together, put it in writing
10	for the parties to have, and give them an
11	opportunity to ask questions of our witness and,
12	you know, of course take care of their due process
13	rights. But we would like to be able to bring
14	something to the Commission at least for your to
15	consider.
16	CHAIRMAN GRAHAM: Mary Anne, what's your
17	opinion on
18	MS. HELTON: Mr. Chairman, you put me in a hot
19	spot here, because you have got a commissioner
20	sitting up there that obviously is very interested
21	in this information.
22	I also am clueless with respect to what NexGen
23	means as well with respect to this proceeding, this
24	process. I think that Mr. Marshall is completely
25	squared up with respect to reserving all rights to

take issue with anything that the IOUs might bring before you tomorrow. And maybe this is a conversation we need to be having in the morning when we -- when we see what it is that Gulf Power and Florida Power & Light plans to present.

My concern is that this is a long, one that starts really early, and we have a very detailed way that we go about it. There is a lot of planning that goes into it, and for the companies to come the second day of the hearing and offer this up and not have everyone have an opportunity to look at it, to think about it, to conduct discovery on it, I don't know if this is something that, on first look, someone can take it and intuitively know how to vet it before you.

So maybe -- maybe -- and I know time is of an issue, but maybe once Florida Power & Light and Gulf Power present it, if the parties can have an opportunity to look at it, to hold it in their hands and to see it for a period of time before we go forward and ask any questions about it, that might help some.

CHAIRMAN GRAHAM: I think we are pretty much of like mind. I don't fault the utilities because they are doing what they think is a good thing. I

2.

1	don't fault Commissioner Brown for wanting the
2	knowledge. My tendency is just to say no and not
3	even open this door, but I think we should look at
4	whatever you present tomorrow and make that
5	determination then.
6	MR. COX: Thank you. We would appreciate
7	that.
8	MR. BADDERS: As do we. Thank you.
9	MR. LAVIA: Chairman Graham, Jay Lavia on
10	behalf of OUC.
11	I haven't talked to my client about this, but
12	we would like to reserve the right to do it too, if
13	there is something we can present to you and that
14	would be helpful.
15	CHAIRMAN GRAHAM: Once again, and there may be
16	a very good chance tomorrow we just say thank you,
17	but let's talk about that another day.
18	MR. LAVIA: That's fine, but we want to have
19	the opportunity.
20	CHAIRMAN GRAHAM: Okay.
21	MR. LAVIA: Thank you.
22	MR. PERKO: I guess I will just do a me-too,
23	Mr. Chairman.
24	CHAIRMAN GRAHAM: Okay. SACE, you were
25	questioning the witness.

1 MR. LEUBKEMANN: We were. But I would like to 2. first report that we had a very productive 3 conversation with our associates over at JEA. 4 CHAIRMAN GRAHAM: Another not bad guy, but you 5 just got to ask him. 6 MR. LEUBKEMANN: Great guys. 7 We are going to stipulate to a few exhibits 8 that we have --9 Let's do this. CHAIRMAN GRAHAM: Let's do 10 Let's go through and number them all, and 11 then tell me the ones that were stipulated to so we 12 don't have to do any of that stuff, but I would 13 just like to number them for simplicity. 14 MR. LEUBKEMANN: Sure. 15 I have reordered the -- my pile based on the 16 ones that are stipulated. 17 CHAIRMAN GRAHAM: Okay. We are with 336, and 18 tell me what you want to label 336. 19 MR. LEUBKEMANN: 336 is going to be SACE POD 20 14, utility program EE budgets, Bates 1 through 11, 21 tab TPS program categories. 22 (Whereupon, Exhibit No. 336 was marked for 23 identification.) 24 CHAIRMAN GRAHAM: What's 337? 25 337 will be JEA's response to MR. LEUBKEMANN:

```
1
         SACE's third set of Interrogatories No. 74.
 2
               (Whereupon, Exhibit No. 337 was marked for
 3
    identification.)
 4
               CHAIRMAN GRAHAM:
                                 338?
 5
               MR. LEUBKEMANN:
                                JEA's response to staff first
         ROG 114 excerpt of Nos. 5 through 7.
 6
 7
               (Whereupon, Exhibit No. 338 was marked for
    identification.)
8
 9
               CHAIRMAN GRAHAM:
                                Hold on.
                                           Hold on.
10
               MR. LEUBKEMANN:
                                I can repeat any of those.
               CHAIRMAN GRAHAM: So 337 is JEA's response to
11
12
         staff's first ROG 1 through 14, is that correct?
13
                                 I believe that's --
               MR. LEUBKEMANN:
14
               CHAIRMAN GRAHAM: I am sorry, 338.
15
               MR. LEUBKEMANN:
                                Yes, Nos. 5 through 7.
16
               CHAIRMAN GRAHAM:
                                 Yes.
17
               Okay. What's 339?
18
               MR. LEUBKEMANN:
                                Okay. And just to clarify,
19
         those last three are the ones we are stipulating
20
         to.
21
                                         We will come back to
               CHAIRMAN GRAHAM:
                                Okay.
22
         that.
23
               MR. LEUBKEMANN:
                                Okay.
24
               CHAIRMAN GRAHAM:
                                 What's 339?
25
```

1 MR. LEUBKEMANN: 339 will be JEA's response to 2. staff's 12th set of interrogatories, Nos. 88 3 through 94, excerpt of 93. 4 (Whereupon, Exhibit No. 339 was marked for 5 identification.) 6 CHAIRMAN GRAHAM: Okay. 7 340 will be excerpt number MR. LEUBKEMANN: 8 34, Attachment 2, Residential Admin Costs from 9 JEA's response to staff's third set of 10 interrogatories to JEA Nos. 25 through 52. 11 (Whereupon, Exhibit No. 340 was marked for 12 identification.) 13 CHAIRMAN GRAHAM: That's 240. 14 341? 15 MR. LEUBKEMANN: 341 will be JEA response to 16 SACE's fifth set of ROGs Nos. 98, 99, 100, 102, 17 103, 104, 105, 106. 18 (Whereupon, Exhibit No. 341 was marked for 19 identification.) 20 CHAIRMAN GRAHAM: And the last one, I take it, 21 is 342? 22 MR. LEUBKEMANN: That is correct. 23 CHAIRMAN GRAHAM: Which is JEA's response to 24 staff's sixth set of ROGs?

25

MR. LEUBKEMANN:

Yes, Mr. Chairman.

1 (Whereupon, Exhibit No. 342 was marked for 2 identification.) 3 CHAIRMAN GRAHAM: And JEA is stipulating 336, 4 337 and 338, is that correct? 5 MR. PERKO: That's correct. Okay. 6 CHAIRMAN GRAHAM: 7 (Whereupon, Exhibit Nos. 336-338 were received 8 into evidence.) 9 CHAIRMAN GRAHAM: All right. So I take it you 10 don't have anything else you need to add to either 11 one of those three? 12 Not on those three. MR. LEUBKEMANN: 13 CHAIRMAN GRAHAM: Okay. 14 Thank you very much, Mr. MR. LEUBKEMANN: 15 Chairman. 16 CHAIRMAN GRAHAM: Staff, did you get all 17 those? 18 MS. WEISENFELD: Yes, we did. Thank you. 19 CHAIRMAN GRAHAM: Okay. Proceed. 20 MR. LEUBKEMANN: Thank you. 21 Whereupon, 22 DONALD P. WUCKER 23 was recalled as a witness, having been previously duly sworn to speak the truth, the whole truth, and nothing 24

25

but the truth, was examined and testified as follows:

- 1 EXAMINATION (continued)
- 2 BY MR. LEUBKEMANN:
- 3 Q Mr. Wucker, if I could direct your attention
- 4 to staff ROG 34. I am sorry, that's Exhibit 340.
- 5 A 340. Okay, I think you can hear me now. And
- 6 you said it was Exhibit 340?
- 7 Q Yes, that's right.
- 8 A Yes.
- 9 Q JEA received this document from Nexant as part
- of its study of energy efficiency potential for JEA?
- 11 A That's correct.
- 12 O And this column marked Program Costs, I
- believe it's the far right column, represents the per
- unit administrative cost for each measure?
- 15 A That's correct.
- 16 Q Does JEA really contend that it would have
- 17 spent 1,169 in administrative costs per solar pool
- 18 heater as an administrative cost?
- 19 A Well, JEA has never administered solar pool
- 20 heaters, so I really don't know what those program costs
- 21 would be.
- 22 Q Does JEA really contend that it would have to
- 23 spend \$1,478 in administrative costs for a 21 SEER air
- 24 source heat pump from base electric resistance heating
- 25 installed?

- 1 A It would be the same answer. We have never
- 2 administered that particular measure, so I don't know.
- 3 Q For the measure ceiling insulation R-12
- 4 through R-38, there is a 166-dollar administrative cost
- 5 per home.
- 6 A Where is that for the -- R-12 to R-38?
- 7 Q Yes.
- 8 A Right, I see that.
- 9 Q So JEA agrees that in addition to the costs of
- 10 the materials, labor, incentives, it would cost JEA \$166
- 11 per home to administer a program to install that R-38
- insulation in homes that currently have R-12 insulation?
- 13 A It very well may.
- 14 Q For the measure ceiling insulation R-2 through
- 15 R-38, there are administrative costs ranging from \$385
- 16 to \$640 per home.
- 17 A I see that.
- 18 O In this case, JEA agrees that the program to
- 19 administer R-38 insulation would cost either \$385, \$397
- or \$640 per homes that currently have R-2 insulation?
- 21 A Well, as was discussed earlier, these are
- 22 values that Nexant derived. I don't -- I can't say that
- 23 they would be that different, but they are equal to the
- 24 energy saved. They have been distributed over, as I
- understand it, over the kilowatt hours saved.

- 1 O So would it be JEA's contention that one
- 2 program to install R-38 insulation would not, in fact,
- 3 cost four times as much to run as another to install the
- 4 same insulation?
- 5 A It may not.
- 6 Q Thank you.
- 7 A Can I add something to that response?
- 8 Q Certainly.
- 9 A So we do look at insulation, and sometimes we
- do have to qualify, especially in low income, and so
- 11 time has to be spent to qualify which homes are most in
- 12 need. So sometimes it does take more time to study
- 13 that.
- And we also -- a lot of JEA's programs are
- 15 outsourced through implementation contractors. So where
- some of the other utilities may implement these things
- on their own, we look to implementation contractors, not
- 18 just to implement them, but to help us understand the
- 19 market and the market barriers to administer these
- 20 programs.
- 21 Q Thank you for that clarification.
- 22 A Thank you.
- 23 Q If I could direct your attention to Exhibit
- 24 No. 341.
- 25 A Okay.

- 1 Q And do you sponsor the answers to
- 2 Interrogatories Nos. 98 through 105?
- 3 A I believe that's correct. I really don't have
- 4 my -- let's see here, 98 through 105? Yes, I have.
- 5 Yes.
- 6 Q In Interrogatory 98, you answer that JEA's
- 7 load forecast makes no explicit assumptions as to the
- 8 adoption of any energy efficiency measures above
- 9 baseline code and standards?
- 10 A Correct.
- 11 Q And JEA's load forecast does assume that some
- 12 people may adopt above code energy efficiency measures
- even in the absence of a utility-sponsored DSM program?
- 14 A It's -- I believe it's inherent in the
- 15 forecast, yes.
- 16 Q So JEA does not contend that the load forecast
- 17 it provided to Nexant assumed its customers would adopt
- 18 zero additional energy efficiency measures above
- baseline codes and standards during the next 10 years?
- 20 A Say that again. I am sorry.
- 21 Q JEA does not contend that the load forecast it
- 22 provided Nexant assumed its customers would adopt zero
- 23 additional energy efficiency measures above baseline
- 24 codes and standards during the next 10 years?
- 25 A I believe that's correct.

- 1 Q And finally, JEA does contend that the load
- 2 forecasts supplied to Nexant are accurate?
- 3 A We believe that they are as accurate as -- we
- 4 strive to be as accurate as possible would our load
- 5 forecast. Yes.
- 6 Q If I could direct your attention to Exhibit
- 7 342.
- 8 A I am there.
- 9 Q Okay. And for response 58, you sponsored this
- 10 interrogatory answer?
- 11 A Yes, I did.
- 12 Q This interrogatory asks about how JEA has
- evaluated the success of its programs despite not using
- 14 any evaluation measurement and verification methods such
- 15 as customer surveys and historical trends -- historic
- 16 trends; is that right?
- 17 A I believe that's in regard to the payback
- 18 period -- I am sorry, the -- let me reread this. Give
- 19 me one minute.
- I assume this is in regard to free-ridership.
- 21 Q I believe this is asking in general about the
- 22 success of existing programs and how they have
- 23 incorporated --
- MR. PERKO: I am sorry, could we restate the
- 25 question? I am not sure what question is pending

- 1 at this point.
- MR. LEUBKEMANN: Sure, happy to do so.
- 3 BY MR. LEUBKEMANN:
- 4 Q This interrogatory is simply asking how JEA
- 5 has evaluated the success of its existing programs
- 6 despite not using any evaluation measurement and
- 7 verification methods such as customer surveys and
- 8 historic trends.
- 9 A Okay.
- 10 CHAIRMAN GRAHAM: Is that a statement or a
- 11 question?
- 12 BY MR. LEUBKEMANN:
- 13 Q I'm asking if that is what the question is
- 14 about, sorry.
- 15 A Yes, I believe it is. I mean, when I see the
- 16 words spillover effects, I think free-ridership that, as
- 17 I recall -- yes -- I mean, obviously, it says EMEV,
- 18 so --
- 19 Q Okay. And you write is that ideally -- quote,
- 20 ideally a thoughtful program design can manage the
- amount of free riders, however, it may also be
- 22 restrictive and limit participation?
- 23 A Correct.
- Q In your answer, you do not contest that JEA
- 25 has not used EMEV research methods to evaluate its

- 1 programs, including the efficacy of the two-year screen
- 2 at estimating free-ridership?
- 3 A Correct, we have not use.
- 4 Q Okay. Thank you very much.
- 5 A Can I add one thing to that response?
- 6 We have looked at other benchmarks and other
- 7 studies, and it seems to me the best way to address it
- 8 is proactively, like we mentioned in the program design,
- 9 and the free-ridership seems to be the tried and true
- 10 method. And from my experience, I met with customers
- 11 that seem to understand the value of the quick payback,
- 12 so --
- 13 O Thank you.
- 14 CHAIRMAN GRAHAM: Quick question for you.
- 15 339, was that one of the ones you agreed upon, or
- are you just not using that?
- MR. LEUBKEMANN: Yes, that's a good point.
- 18 339 is -- yes, we stipulating to 339 as well.
- 19 CHAIRMAN GRAHAM: Okay. I just want to make
- sure I had it correctly.
- 21 (Whereupon, Exhibit No. 339 were received into
- 22 evidence.)
- 23 CHAIRMAN GRAHAM: The other thing is since --
- as far as I know, you haven't been before us
- before. Usually the way it works with witnesses,

- 1 you will ask the question, you will allow him to
- answer yes or no and then explain the answer yes or
- no. You can let him editorialize as long as he
- 4 wants. If you choose to just have him answer the
- 5 question, then it's to his attorney to come back
- and answer the rest of it on redirect.
- 7 I mean, I just want you to know that that's
- 8 the tool in your tool belt.
- 9 MR. LEUBKEMANN: I do appreciate that,
- 10 Chairman.
- 11 CHAIRMAN GRAHAM: Okay. Staff.
- MS. WEISENFELD: Thank you, Mr. Chairman. We
- only have a few questions.
- 14 EXAMINATION
- 15 BY MS. WEISENFELD:
- 16 O Good afternoon, Mr. Wucker.
- 17 A Good afternoon.
- 18 O Ashley Weisenfeld with Commission staff. I
- 19 have got a few questions about free-ridership for you.
- 20 A Okay.
- 21 Q And for these questions, I will be referring
- 22 to an excerpt from Exhibit No. 218, which is JEA's
- 23 response to staff's first set of interrogatories,
- 24 specifically No. 5.
- 25 A Okay.

- 1 Q You should have a copy in the folder in front
- 2 of you.
- 3 A I am there.
- 4 Q Got it. Okay, great.
- 5 And just to confirm, is it true JEA used a
- 6 two-year payback screening to account for free riders in
- 7 this proceeding?
- 8 A Yes, that is correct.
- 9 Q Did JEA consider using any alternative method
- 10 such as surveys or historical data to account for free
- 11 riders?
- 12 A No, we didn't.
- O Okay. Did JEA considering using a shorter or
- longer payback period for its screening of free riders?
- 15 A We looked at it in the sensitivities, but we
- 16 used the two-year payback.
- 17 O And can you please explain why JEA believes
- 18 the two-year payback screening is the best method to
- 19 address free-ridership?
- 20 A Well, it's been said many times, and I would
- 21 agree with what's been said, is it's reasonable. A
- 22 50 percent return is a very attractive return. I wish
- 23 my retirement gave me that. And I think it's tried and
- 24 true in Florida, so --
- 25 Q Thank you so much.

- MS. WEISENFELD: Staff has no more questions.
- 2 CHAIRMAN GRAHAM: Commissioners, any questions
- of the witness?
- 4 Redirect?
- 5 MR. PERKO: Thank you, Mr. Chairman, very
- 6 briefly.
- 7 FURTHER EXAMINATION
- 8 BY MR. PERKO:
- 9 Q Just for the record, Mr. Wucker, you were
- 10 asked a number of questions about Exhibit 340, excerpts
- 11 from an attachment to Interrogatory No. 34 from staff.
- 12 Do you recall those questions?
- 13 A Exhibit 340, you said?
- 14 **Q 340.**
- 15 A Give me one minute to get there.
- 16 O It's Exhibit 340.
- 17 A Right. They are not sequential, so I am
- 18 searching. I am sorry.
- 19 Yes, I am sorry. It was the second sheet. I
- 20 was going from the back. Yes.
- 21 Q My friend from Earthjustice asked you a number
- of questions regarding the program costs for solar pool
- 23 heater that's in the left-hands column at \$1,100 and
- 24 69 -- \$1,169.51, do you recall that?
- 25 A Yes, I do.

- 1 Q I just want to make sure the record is clear.
- 2 Where did those numbers come from?
- 3 A Those numbers came from Nexant based off their
- 4 expertise.
- 5 Q And do you know how they developed those
- 6 numbers?
- 7 A Yes. As Mr. Herndon has explained, they were
- 8 distributed over energy. So they collected admin costs
- 9 and used their best judgment and decided to distribute
- 10 them evenly over measures based off of energy saved
- 11 kilowatts.
- 12 Q And you were asked some questions regarding
- 13 the program costs for various ceiling insulation
- 14 measures. Did those figures also come from Nexant?
- 15 A Yes, they did.
- 16 Q And was what is your understanding of how
- 17 Nexant developed those costs?
- 18 A Same method -- same methodology.
- 19 O Thank you.
- 20 And finally, in response to staff, a question
- 21 regarding why didn't you -- or did you consider use of
- 22 customer survey data. Do you recall those questions?
- 23 A Yes, I do.
- Q Why didn't you look at customer survey data?
- 25 A Well, in the past, we have looked at other

- 1 means of free-ridership, and we've hired -- we've hired
- 2 consultants to help us make decisions with program
- 3 design, but -- and I think FPL stated it earlier. I
- 4 think the survey data can be complex. It can be
- 5 contentious, and it can be costly. So it didn't seem
- 6 the best approach. It seemed to be -- a better way was
- 7 to be proactive in the design of the programs, was to
- 8 manage the free-ridership piece.
- 9 MR. PERKO: Thank you, Mr. Chairman. I have
- 10 nothing further.
- 11 CHAIRMAN GRAHAM: Exhibits.
- MR. PERKO: Yes. Mr. Chairman, I would move
- Exhibit Nos. 53 through 59 into the record at this
- 14 time.
- 15 CHAIRMAN GRAHAM: If there is no objections,
- we will enter Exhibits 53 through 59 into the
- 17 record.
- 18 (Whereupon, Exhibit Nos. 53-59 were received
- 19 into evidence.)
- 20 CHAIRMAN GRAHAM: SACE?
- MR. LEUBKEMANN: SACE would move to enter
- Exhibit 336 through 342 into the record.
- 23 CHAIRMAN GRAHAM: No objections?
- MR. PERKO: No objection.
- 25 CHAIRMAN GRAHAM: We will enter 336 through

1 342 into the record. 2. (Whereupon, Exhibit Nos. 336-342 were received 3 into evidence.) 4 CHAIRMAN GRAHAM: Staff. 5 MS. WEISENFELD: None, thank you. 6 CHAIRMAN GRAHAM: You guys are good? 7 MS. WEISENFELD: Yes, we are good. 8 CHAIRMAN GRAHAM: Okay. Next witness. 9 Thank you, sir. 10 THE WITNESS: Thank you. 11 CHAIRMAN GRAHAM: Just FYI, Commissioner Clark 12 had a family emergency during lunch and he is gone, 13 and we do not expect him back today, but hopefully 14 we will see him tomorrow morning. 15 Did Mr. Kushner leave? 16 MR. PERKO: I am sorry, Your Honor -- Mr. 17 Chairman. I believe we reached an agreement, at 18 least with SACE regarding Mr. Kushner, but I would 19 call him to the stand at this time, I guess. 20 Okay. I always like it when CHAIRMAN GRAHAM: 21 you guys come together and sing Kumbaya. 22 Whereupon, 23 BRADLEY E. KUSHNER 24 was called as a witness, having been first duly sworn to 25

speak the truth, the whole truth, and nothing but the

- 1 truth, was examined and testified as follows:
- MR. PERKO: I apologize, Mr. Chairman.
- 3 EXAMINATION
- 4 BY MR. PERKO:
- 5 Q Mr. Kushner, were you sworn at the beginning
- 6 of this hearing yesterday?
- 7 A Yes, I was.
- 8 Q Could you please state your name and business
- 9 address?
- 10 A Yes, Bradley Kushner, 2465 Southern Hills
- 11 Court, Oviedo, Florida, 32765.
- 12 Q And are you the same Bradley Kushner who just
- 13 testified earlier this afternoon?
- 14 A I am.
- 15 Q And have you caused to be filed prefiled
- direct testimony consisting of six pages in Docket No.
- 17 **20190020?**
- 18 A Yes.
- 19 Q Do you have any changes or corrections to that
- 20 testimony?
- 21 A No.
- 22 Q If I were to ask you the same questions today,
- 23 would your answers be the same?
- 24 A They would be.
- MR. PERKO: At this time, Mr. Chairman, I

```
1
          would ask that the prefiled direct testimony of
2
          Mr. Kushner be inserted into the record as though
 3
          read.
 4
               CHAIRMAN GRAHAM:
                                   We will insert Mr. Kushner's
 5
          prefiled direct testimony into the record as though
 6
          read.
7
                (Whereupon, prefiled testimony was inserted.)
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
```

1		BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION
2		DIRECT TESTIMONY OF BRADLEY E. KUSHNER
3		ON BEHALF OF
4		JEA
5		DOCKET NO. 20190020-EG
6		APRIL 12, 2019
7		
8	Q.	Please state your name and business address.
9	A.	My name is Bradley E. Kushner. My business address is 2465 Southern Hills Ct.,
10		Oviedo, Florida 32765.
11		
12	Q.	By whom are you employed and in what capacity?
13	A.	I am employed by nFront Consulting LLC as an Executive Consultant.
14		
15	Q.	What are your responsibilities in that position?
16	A.	My responsibilities include project management and project support for various projects
17		for electric utility clients. These projects include integrated resource plans, power supply
18		studies, power supply requests for proposals, demand-side management/conservation
19		reports, and other regulatory filings.
20		
21	Q.	Please describe nFront Consulting LLC.
22	A.	nFront Consulting is organized into two service practices – Energy and Transmission &
23		Delivery. nFront Consulting's Energy Practice provides advisory services to support and
24		optimize the assets, programs, systems, and business operations of our electric industry
25		clients nFront Consulting assists in the areas of planning, implementing, and managing

resources, portfolios, and individual business unit operations. nFront Consulting interacts on behalf of our clients with regulatory, political, and environmental agencies; the financial community; and other professional service providers on national, state, and local levels to complete large-scale transactions, projects, or programs.

nFront Consulting's Transmission and Delivery Services Practice provides independent transmission consulting, analyses and advisory services to support project financing, acquisitions, development, transmission risk, curtailment and congestion assessments, transmission planning, resource integration, and open access, expert witness and regulatory services.

Q. Please state your educational background and professional experience.

Α. I received my Bachelors of Science in Mechanical Engineering from the University of Missouri-Columbia in 2000 and my Masters of Business Administration from Emporia State University in 2013. I have nearly 20 years of experience in the engineering and consulting industry. I have experience in the development of integrated resource plans, ten-year-site plans, DSM plans, and other capacity planning studies for clients throughout the United States. Utilities in Florida for which I have worked include JEA, Florida Municipal Power Agency, Kissimmee Utility Authority, OUC, Lakeland Electric, Gainesville Regional Utilities (GRU), Reedy Creek Improvement District, Tampa Electric Company, and the City of Tallahassee. I have performed production cost modeling and economic analysis, and otherwise participated in six Need for Power Applications that have been filed on behalf of Florida utilities and approved by the Florida Public Service Commission (FPSC). I have also testified before the FPSC in Need for Power and Conservation Goal proceedings.

\sim	XX71 4 * 41		4 4 *	41
O.	what is the i	nurnose of vour	testimony in	this proceeding?
×.	111111111111111111111111111111111111111	par pose or jour		mis proceduring.

A. The purpose of my testimony in this proceeding is to discuss the methodology used to
develop the avoided capacity costs that were provided to Nexant for use in their analyses
of DSM measures for JEA. I will also discuss JEA's fuel forecasts used in the production
cost modeling that formed the basis for the avoided energy costs provided to Nexant.

Q. Are you sponsoring any exhibits to your testimony?

8 A. Yes. Exhibit No. __ [BEK-1] is a copy of my resume. Exhibit No. __ [BEK-2]
9 summarizes the avoided unit costs. Exhibit No. __ [BEK-3] summarizes JEA's fuel price
10 forecast.

Q. How was the timing of avoidable capacity additions determined?

A. Based on JEA's current load forecast over the next 20 years and its existing and planned future generating resources, JEA is anticipated to require additional capacity to maintain a 15 percent reserve margin over the 2020 through 2022 period, and again beginning in 2029. Given the timing and magnitude of the anticipated capacity requirements for the 2020 through 2022 period, it has been assumed that JEA would purchase capacity to maintain its reserve margin requirements. For the anticipated capacity requirements beginning in 2029, it has been assumed that JEA would install a new simple cycle F-class combustion turbine at the existing Greenland Energy Center (GEC). Following installation of the new simple cycle unit in 2029, additional capacity is projected to be required in 2039 to maintain reserve margin requirements, at which time a second new simple cycle F-class combustion turbine is assumed to be installed at GEC. JEA has made no commitments to any of these short-term purchases or simple cycle unit additions, and for purposes of this docket, each of these is considered avoidable capacity.

1	Q.	How were capital costs for these additions calculated?
2	A.	Capital costs for the 2020 through 2022 purchases were treated as demand costs
3		associated with a power purchase agreement (PPA), and were based on short-term market
4		alternatives available to JEA.
5		
6		Capital costs for the new simple cycle F-class combustion turbines were based on
7		estimates used by JEA for resource planning activities. Capital costs were escalated to
8		the year the new units are assumed to be in-service (i.e., 2029 and 2039) using a 2.0
9		percent annual escalation rate, and include costs for interest during construction to
10		determine an estimated in-service year installed cost. Resulting installed costs were
11		multiplied by a fixed charge rate to determine a levelized installed capital cost, which
12		was divided by the output of the combustion turbine to develop a levelized installed
13		capital cost per kW.
14		
15	Q.	How were fixed operating and maintenance (O&M) costs for these additions
16		calculated?
17	A.	Fixed O&M costs for the 2020 through 2022 purchases were included in the demand
18		costs for the PPA discussed previously.
19		
20		Fixed O&M costs for the new simple cycle F-class combustion turbines were based on
21		estimates used by JEA for resource planning activities. The fixed O&M cost estimates,
22		in \$/kW-yr., were escalated to nominal dollars at a 2.0 percent escalation rate.
23		In addition to the fixed O&M costs, a natural gas pipeline usage charge of \$0.28/MMBtu
24		was included for the new simple cycle F-class combustion turbines to reflect costs for

1		utilizing the existing natural gas lateral at GEC. This cost was converted to a fixed cost
2		per kW-yr based on an assumed 5 percent capacity factor.
3		
4	Q.	Please discuss how the total avoided costs per kW were calculated.
5	A.	Total avoided costs per kW were calculated by adding the avoided capital costs (or
6		demand charges in the case of the PPA discussed previously) to the avoided fixed O&M
7		costs and the natural gas pipeline usage charge. The resulting annual avoided costs per
8		kW were determined by dividing by the total kW installed in each year. This approach
9		was used in order to capture the difference in installed costs for the simple cycle
10		combustion turbine added in 2039 as compared to the simple cycle added in 2029 due to
11		escalation of the capital costs to in-service year dollars. The avoided costs per kW are
12		presented in Exhibit No [BEK-2].
13		
14	Q.	Please discuss the base case fuel forecast.
15	A.	Exhibit No [BEK-3] provides a summary of JEA's fuel price projections for natural
16		gas, coal (including a blend of coal/natural gas/petroleum coke for JEA's Northside solid
17		fuel units), and diesel fuel. These projections were developed utilizing information
18		obtained from sources routinely utilized in the utility industry, including the New York
19		Mercantile Exchange (NYMEX) and the U.S. Energy Information Administration.
20		
21	Q.	Did JEA consider high and low fuel price sensitivities?
22	A.	Yes. In addition to the base case fuel price forecasts, JEA considered high and low fuel
23		price sensitivities. The high and low fuel price projections provide a band of plus/minus

25 percent around the base case fuel price projections. This high and low band is

1		consistent with what JEA used in the previous FEECA goal-setting process. See Docket
2		No. 130203-EM, Direct Testimony of Vento and Wucker, p. 10, 1. 5-8 (Apr. 2, 2014).
3		
4	Q.	How were energy costs for each of the cases previously identified in your testimony
5		developed?
6	A.	Under my direction and supervision, JEA utilized ProSym, an industry accepted
7		production cost model, to perform production cost modeling of its electric generating
8		system, taking into account existing and planned future generating resources, the avoided
9		units, its load forecast, and the base fuel price projections discussed previously in my
10		testimony.
11		
12		The resulting energy costs were taken from the ProSym output and include fuel as well as
13		non-fuel variable O&M costs associated with dispatch of JEA's resources to meet
14		forecast system demand requirements. The ProSym output was provided to Nexant for
15		use in the economic analysis.
16		
17	Q.	Were energy costs developed for each of the fuel price cases discussed previously in
18		your testimony?
19	A.	Yes. The energy costs developed using the base case fuel price projections were
20		increased by 25 percent for the high fuel price sensitivity and decreased by 25 percent for
21		the low fuel price sensitivity.
22		
23	Q.	Does this conclude your testimony?
24	A.	Yes it does.
25		

- 1 BY MR. PERKO:
- 2 Q And Mr. Kushner, are you also sponsoring
- 3 exhibits preliminarily labeled BEK-1 through 3 --
- 4 A Yes.
- 5 Q -- attached to your testimony?
- 6 A Yes. I am sorry.
- 7 Q Do you have any --
- 8 MR. PERKO: And for the record, Mr. Chairman,
- 9 those are marked as Exhibits 60 through 61, I
- 10 believe.
- 11 CHAIRMAN GRAHAM: Duly noted.
- 12 BY MR. PERKO:
- 13 Q Do you have any changes or corrections to
- 14 those exhibits, Mr. Kushner?
- 15 A No.
- 16 Q Have you prepared a summary of your testimony?
- 17 A Yes, I have.
- 18 Q And would you please present that to the
- 19 Commission at this time?
- 20 A My name is Bradley Kushner. I am an executive
- 21 consultant with nFront Consulting LLC, and I am
- 22 testifying on behalf of JEA.
- 23 My testimony addresses the avoided costs and
- 24 fuel and energy -- fuel price and energy cost
- 25 projections reflected in JEA's cost-effectiveness

- 1 evaluations performed by Nexant as part of this docket.
- 2 The JEA anticipates requiring additional capacity over
- 3 the 2020 through 2022 period and again beginning in 2029
- 4 for the anticipated capacity requirements from 2020
- 5 through 2022, it has been assumed that JEA with purchase
- 6 capacity. For subsequent capacity requirements, it has
- 7 been assumed that JEA would install new simple cycle
- 8 F-Class combustion turbines at the existing Greenland
- 9 Energy Center site.
- JEA has made no commitment to any of the
- 11 short-term purchases or simple cycle unit additions, but
- 12 for purposes of the cost-effectiveness evaluations in
- 13 this docket, these capacity resources are being
- 14 considered JEA's avoided units. The capital costs and
- 15 fixed operating and maintenance costs for the avoided
- 16 units were provided to and used by Nexant in its
- 17 cost-effectiveness evaluations.
- The overall approach to develop energy costs
- 19 used in this docket is appropriate as JEA has relied on
- 20 industry accepted production cost model and reputable
- 21 and recognized industry sources for fuel price
- 22 projections.
- JEA used a combination of New York Mercantile
- 24 Exchange, or NYMEX, futures prices for natural gas as
- well as information included in the U.S. Energy

- 1 Information Administration's annual energy outlook, or
- 2 AEO.
- JEA's projected coal prices are based on NYMEX
- 4 futures prices, historical transportation costs and AEO
- 5 projections. JEA's petroleum coke price projections are
- 6 based on historical ratios of petroleum coke prices to
- 7 coal prices.
- 8 Under my supervision and direction, JEA's
- 9 energy costs were using -- were developed using the pros
- 10 and production cost model. JEA developed sensitivity
- 11 cases that reflect energy costs that are 25 percent
- 12 higher and 25 percent lower than those associated with
- 13 the base case fuel price projections. And Nexant
- 14 performed sensitivity analyses using these
- 15 sensitivities.
- 16 Thank you.
- 17 Q Does that complete your summary, Mr. Kushner?
- 18 A Yes.
- MR. PERKO: At this time, Mr. Chairman, I
- would tender the witness for cross-examination.
- 21 CHAIRMAN GRAHAM: Okay. OPC.
- MS. FALL-FRY: No questions.
- MS. WYNN: No questions.
- 24 EXAMINATION
- 25 BY MS. CORBARI:

- 1 Q Good morning, Mr. Kushner. I just have
- 2 hopefully a quick -- quick question.
- 3 Although the Commission does not set rates for
- 4 municipal utilities such as JEA and OUC, municipals are
- 5 required to go to the Commission for an affirmative need
- 6 determination for any expansion in steam electrical
- 7 generation or solar generation of 75 megawatts or less;
- 8 is that your understanding?
- 9 A Yes.
- 10 Q And you have testified in need determinations
- 11 before the Commission?
- 12 A I have.
- 13 Q In a need determination proceeding, do you
- 14 know if one factor the Commission considers is whether
- 15 demand-side management would avoid the need for the
- 16 additional generation?
- 17 A I think that's one factor. I think it could
- 18 mitigate or delay the need for the proposed unit, yes.
- 19 Q Could zero DSM goals speed up the time period
- 20 for a utility to add generation?
- 21 A I don't know that zero DSM goals would
- 22 specific to JEA and OUC. The timing of that need would
- 23 be based on DSM accomplishments in part, and other
- 24 considerations, but not directly associated with DSM
- 25 qoals.

1	Q Thank you.
2	A You are welcome.
3	CHAIRMAN GRAHAM: SACE?
4	MR. LEUBKEMANN: After conferring with my pal,
5	Mr. Perko, we are going to forego our cross of
6	Mr. Kushner and, instead, stipulate into the record
7	two exhibits on the weighted average cost of
8	capital and future gas price errors.
9	CHAIRMAN GRAHAM: You are going to have to
10	give me the description.
11	MR. LEUBKEMANN: Yes. The first is JEA
12	response to SACE first set of ROGs Nos. 1 through
13	65, excerpt of No. 12.
14	CHAIRMAN GRAHAM: We'll call that 343.
15	(Whereupon, Exhibit No. 343 was marked for
16	identification.)
17	MR. LEUBKEMANN: And for 344, we have JEA
18	response to staff's first set of ROGs, excerpt No.
19	2.
20	(Whereupon, Exhibit No. 344 was marked for
21	identification.)
22	CHAIRMAN GRAHAM: And JEA stipulates those
23	two?
24	MR. PERKO: That's correct, Mr. Chairman.
25	(Whereupon, Exhibit Nos. 343 & 344 were

1 received in evidence.) 2 CHAIRMAN GRAHAM: Okay. Did you have any other questions of this witness? 3 4 MR. LEUBKEMANN: No, I do not. 5 CHAIRMAN GRAHAM: Staff? Staff has no questions. 6 MS. WEISENFELD: 7 CHAIRMAN GRAHAM: Commissioners? Redirect. 8 9 No redirect. MR. PERKO: 10 CHAIRMAN GRAHAM: Exhibits? 11 MR. PERKO: Yes, Mr. Chairman, I believe I 12 misspoke earlier. We would move Mr. Kushner's 13 Exhibits No. 60 through 62 into the record at this 14 time. 15 CHAIRMAN GRAHAM: If there is no objections, 16 we will move Exhibits 60, 61, 62 into the record. 17 (Whereupon, Exhibit Nos. 60-62 were received 18 in evidence.) 19 CHAIRMAN GRAHAM: SACE, we will -- I think we 20 have already entered yours, 343 and 344 into the 21 record. 22 Thank you. MR. LEUBKEMANN: Yes. 23 CHAIRMAN GRAHAM: Did I hear something? 24 I think we are done with this witness. 25 Thank you, sir.

1	THE WITNESS: Thank you.
2	(Witness excused.)
3	CHAIRMAN GRAHAM: TECO.
4	MR. MEANS: Good afternoon, Commissioners. My
5	name is Malcolm Means, and I am with the Ausley
6	McMullen law firm here in Tallahassee, representing
7	Tampa Electric, and we call Mark Roche.
8	CHAIRMAN GRAHAM: SACE, do you have the same
9	scenario going on with the TECO witness?
10	MR. MARSHALL: There might be a couple of
11	exhibits we could stipulate to, but we haven't had
12	a chance to confer.
13	CHAIRMAN GRAHAM: Let's take a 10-minute break
14	until a quarter till. I will let the two of you
15	guys go over that stack.
16	MR. MARSHALL: Okay.
17	CHAIRMAN GRAHAM: So we will be back here at a
18	quarter to 3:00.
19	(Brief recess.)
20	CHAIRMAN GRAHAM: Okay. TECO, your witness.
21	MR. MEANS: Mr. Chairman, just to follow up,
22	we had a brief discussion during the break, and we
23	are willing to stipulate that these documents are
24	what they purport to be, and we would have no
25	objection to their authenticity or admissibility

- 1 CHAIRMAN GRAHAM: Okay. Well, let's take care
- of that when we get back to SACE.
- 3 Have we entered the witness, you have done
- 4 your three-minute summary?
- 5 MR. MEANS: Not yet, Mr. Chairman.
- 6 THE WITNESS: I have not.
- 7 CHAIRMAN GRAHAM: Okay. Darn-it.
- 8 Whereupon,
- 9 MARK ROBERT ROCHE
- 10 was called as a witness, having been previously duly
- 11 sworn to speak the truth, the whole truth, and nothing
- 12 but the truth, was examined and testified as follows:
- 13 EXAMINATION
- 14 BY MR. MEANS:
- 15 Q Good afternoon, Mr. Roche. Can you please
- state your full name for the record, please?
- 17 A Yeah. My name is Mark Robert Roche.
- 18 Q And, Mr. Roche, were you previously sworn?
- 19 A Yes, I was.
- 20 Q By whom are you currently employed, and what
- 21 is your position?
- 22 A I am employed by Tampa Electric and Peoples
- 23 Gas System. I cover DSM programs for both companies, as
- 24 well as storm hardening for Tampa Electric.
- 25 Q And can you please provide your business

- 1 addresses, please?
- 2 A Yes. It's 702 North Franklin Street, Tampa,
- 3 Florida, 33602.
- 4 Q And did you prepare and cause to be filed in
- 5 Docket No. 20190021-EG on April 12th, 2019, prepared
- 6 direct testimony consisting of 77 pages?
- 7 A Yes, I did.
- 8 Q And did you also cause to be filed errata to
- 9 that testimony on August 5th, 2019?
- 10 A Yes, I did.
- 11 Q Other than the changes in the errata, do you
- 12 have any other changes to your testimony?
- A No, I don't.
- Q With those changes, if I were to ask you the
- 15 questions contained in your filed direct testimony
- 16 today, would your answers be the same?
- 17 A Yes, they would.
- MR. MEANS: Mr. Chairman, we ask that the
- prepared direct testimony of Mr. Mark Roche with
- the described corrections be inserted into the
- 21 record as though read.
- 22 CHAIRMAN GRAHAM: We will insert Mr. Roche's
- direct testimony into the record with the
- corrections as though read.
- 25 (Whereupon, prefiled testimony was inserted.)

Winter – Economic Potential (RIM Portfolio)

Original filed April 12, 2019 Modified due to Summation Error

3,256 MW 3,754 MW

Winter – Economic Potential (TRC Portfolio)

Original filed April 12, 2019 Modified due to Summation Error

2,488 MW 2,986 MW

Winter – Post Free-ridership Economic Potential (RIM Portfolio)
Original filed April 12, 2019 Modified due to Summation Error
2,409 MW 2,907 MW

Again, the above corrections have no effect on the company's Achievable Potential or proposed Demand Side Management goals.

Attached herewith for filing in this docket are revised Bates stamp ("Bates") pages from Tampa Electric's testimony and exhibits in this proceeding which reflect the changes indicated to correct the effects of the incorrect summation. We would appreciate your circulating the following revised Bates pages to the recipients of the April 12 filing so that they may be substituted in place of the originals:

Bates		
Page#	Line #	Change
40)	19	2,318 to 2,816
(45)	3	3,256 to 3,754
(45)	9	2,488 to 2,986
(51)	17	2,409 to 2,907
52)	12	2,326 to 2,824
92	Table 1-2	673 to 1,171
92	Table 1-2	2,318 to 2,816
126	Table 5-2	673 to 1,171
126	Table 5-2	2,318 to 2,816

INTRODUCTION:

2

1

Q. Please state your name, address, occupation and employer.

4

5

6

7

8

9

3

A. My name is Mark R. Roche. My business address is 702

North Franklin Street, Tampa, Florida 33602. I am

employed by Tampa Electric Company ("Tampa Electric" or

"the company") as Manager, Regulatory Rates in the

Regulatory Affairs Department.

10

11

12

Q. Please provide a brief outline of your educational background and business experience.

13

14

15

16

17

18

19

20

21

22

23

24

25

Α. I graduated from Thomas Edison State College in 1994 with Bachelor of Science degree in Nuclear Engineering Technology and from Colorado State University in 2009 with a Master's degree in Business Administration. work experience includes twelve years with the US Navy in nuclear operations as well twenty-one years as of electric and gas utility experience. My utility work has various positions Marketing included in and Sales, Customer Service, Distributed Resources, Load Management, Power Quality, Distribution Control Center Operations, Department, Meter Field Operations, Service Meter Delivery, Revenue Assurance, Commercial and Industrial Energy Management Services, and Electric and Gas Demand Side Management ("DSM") Planning and Forecasting. In my current position, I am responsible for Tampa Electric's Energy Conservation Cost Recovery ("ECCR") Clause and Storm Hardening, and Peoples Gas System's Natural Gas Conservation Cost Recovery ("NGCCR") Clause.

7

1

2

3

4

5

6

Q. What is the purpose of your testimony in this proceeding?

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Α.

8

The purpose of my testimony is to present, for Commission review and approval, Tampa Electric's proposed numerical DSM goals for 2020-2029. Tampa Electric's proposed goals upon the analytical work performed by company and Nexant. Nexant is a consulting and analysis services firm with an exclusive focus eneray on providing support to clients in the areas of management, demand response, grid management and renewables as well as offering a comprehensive suite of software designed to support these areas. Nexant has over 18 years of experience in the field DSM evaluations and was chosen through a rigorous request for proposal vetting process. The goals are separated into summer demand, winter demand and annual energy components commercial/industrial both the residential and support of the proposed DSM goals, sectors. Ιn

testimony will demonstrate that the process Tampa Electric utilized to establish its reasonably achievable, cost-effective goals complies with the requirements of Rule 25-17.0021, Florida Administrative Code ("F.A.C.").

5

6

7

8

9

10

11

1

2

3

4

In addition, my testimony complies with the requirements asked of the Florida Energy Efficiency and Conservation Act ("FEECA") utilities by Commission Staff on June 20, 2018 and the Order Establishing Procedure within this proceeding by addressing the following components within my testimony:

12

13

 Provide the process used by Tampa Electric to develop the DSM Technical, Economic and Achievable Potentials.

14 15

16

17

• Provide the complete measure list that was evaluated and identify measures that were eliminated or added as compared to the 2013 technical potential study.

18 19

20

21

Provide t.he number of measures that were screened out during free-ridership consideration and the list of measures cost-effective remained at the achievable potential.

22

Provide the impact from energy efficiency that

2324

is occurring in Tampa Electric's service area

1	stemming from Energy Efficiency and Appliance
2	Standards.
3	• Provide the economic and achievable potential
4	for residential and commercial/industrial
5	winter and summer demand and annual energy
6	savings for a Base Case that includes the
7	effects of free-ridership but does not include
8	costs associated with carbon dioxide emissions,
9	for both a Rate Impact Measure ("RIM") test-
10	based evaluation and a Total Resource Cost
11	("TRC") test-based evaluation.
12	• Provide an estimate of the average residential
13	customer bill impact for each evaluation.
14	• Provide a detailed description of how the Base
15	Case was developed, including forecasts for
16	generation resources, customer winter and
17	summer demand and annual energy for load, and
18	fuel prices.
19	• Provide the economic potential for residential
20	and commercial/industrial winter and summer
21	demand and annual energy savings for the
22	following sensitivities, for both a RIM and TRO
23	based evaluation:
24	o Higher fuel prices;
25	o Lower fuel prices;

1	o Shorter free-ridership exclusion periods
2	and;
3	o longer free-ridership exclusion periods.
4	• Provide a detailed description of how the
5	sensitivities were developed and compare them
6	to the Base Case, including forecasts for fuel
7	prices.
8	• Provide a discussion of how supply-side
9	efficiencies are incorporated in the utility's
10	planning process and how supply-side
11	efficiencies impact demand-side management
12	programs.
13	• Provide a discussion of how the utility's
14	proposed goals encourage the development of
15	demand-side renewable energy systems.
16	• Provide a discussion of the utility's current
17	demand-side management programs that includes
18	historical participation rates, cumulative
19	kilowatt ("kW") and kilowatt hour ("kWh")
20	savings, measures included in each program, and
21	program impacts related to building code and
22	appliance efficiency standards.
23	• Provide an explanation of how free-ridership
24	was addressed in the development of the goals
25	and include any analysis performed.

1		• Provide explanations of what were the primary
2		drivers that significantly influenced the
3		achievable potential's results.
4		• Provide an explanation for potential fuel cost
5		changes and include any analysis performed.
6		
7	Q.	Have you prepared any exhibits in support of your
8		testimony?
9		
10	A.	Yes. I have prepared an exhibit entitled, "Exhibit of
11		Mark R. Roche." It consists of 17 documents and has been
12		identified as Exhibit No. MRR-1, which contains the
13		following documents:
14		• Document No. 1 contains Tampa Electric's proposed
15		DSM goals at the generator for 2020-2029.
16		• Document No. 2 provides the overall process used to
17		develop the company's proposed DSM goals for 2020-
18		2029.
19		• Document No. 3 provides the process used to develop
20		the Technical Potential and the Market Potential
21		Study of Demand Side Management in Tampa Electric
22		Company's Service Territory Report.
23		• Document No. 4 provides the comprehensive DSM
24		measure list utilized in this proceeding.
25		• Document No. 5 provides the DSM measures that were

1	either added or removed to the 2018 comprehensive
2	measures list as compared to the 2013 technical
3	potential study.
4	• Document No. 6 provides Tampa Electric's DSM
5	Technical Potential for Energy Efficiency, Demand
6	Response and Distributed Energy Resources.
7	• Document No. 7 provides the process used to develop
8	the Economic Potential.
9	• Document No. 8 contains Tampa Electric's avoided
10	unit cost data used for cost-effectiveness
11	evaluations.
12	• Document No. 9 contains all the assumptions used for
13	the performance of cost-effectiveness.
14	• Document No. 10 provides Tampa Electric's 2020-2029
15	DSM Economic Potential for the RIM and TRC cost-
16	effectiveness tests.
17	• Document No. 11 provides the DSM Economic Potential
18	cost-effectiveness sensitivity analyses.
19	• Document No. 12 provides the process used to develop
20	the Achievable Potential.
21	• Document No. 13 provides the 2020-2029 estimated
22	annual DSM Achievable Potential for the RIM and TRC
23	cost-effectiveness tests.
24	• Document No. 14 provides the list of DSM measures
25	that make up the RIM and TRC DSM Achievable

	ı	
1		Potentials.
2		• Document No. 15 provides a summary of the overall
3		potentials.
4		• Document No. 16 provides the projected residential
5		annual bill impacts for the RIM and TRC 2020-2029
6		DSM portfolios.
7		• Document No. 17 provides Tampa Electric's current
8		DSM programs and achievements.
9		
10	Q.	Is Nexant providing direct testimony?
11		
12	A.	Yes, Jim Herndon, Nexant's Vice President, Strategy and
13		Planning, will be filing direct testimony that will
14		support the goals Tampa Electric is proposing for the
15		2020-2029 DSM goals period.
16		
17	TAMP	A ELECTRIC'S PROPOSED DSM GOALS:
18		
19	Q.	What are Tampa Electric's cumulative DSM goals that are
20		appropriate and reasonably achievable for the period
21		2020-2029?
22		
23	A.	The appropriate and reasonable cumulative DSM goals at
24		the generator for Tampa Electric for the period 2020-2029
25		are as follows:
	1	

1		Residential
2		Summer Demand: 54.0 MW
3		Winter Demand: 25.5 MW
4		Annual Energy: 103.6 GWh
5		Commercial/Industrial
6		Summer Demand: 25.8 MW
7		Winter Demand: 17.8 MW
8		Annual Energy: 61.4 GWh
9		Combined
10		Summer Demand: 79.7 MW
11		Winter Demand: 43.3 MW
12		Annual Energy: 165.0 GWh
13		
14	Q.	What cost-effectiveness methodology did Tampa Electric
15		utilize to derive these proposed DSM goals?
16		
17	A.	The cost-effectiveness methodology that Tampa Electric
18		utilized for these proposed goals is the RIM test in
19		conjunction with the Participant Cost Test ("PCT"). The
20		RIM test, when used in tandem with the PCT, provides a
21		cost-effective, fair, reasonable and equitable
22		determination of DSM expenditures for both the DSM
23		program participants and non-participants. The RIM test
24		puts the least amount of upward pressure on rates while
25		allowing for significant accomplishments of DSM measure

deployment. Furthermore, the RIM test does not promote cross-subsidization among participants and participants. Finally, history indicates that this longstanding decisions Commission's in the past approve a utility's DSM goals based on the RIM test have not hindered the DSM performance of the Florida utilities relative to other utilities in the industry. these results and the fairness of the methodology, Tampa Electric believes its DSM goals for the 2020-2029 period should be established on the RIM test basis.

11

12

13

14

10

1

2

3

4

5

6

7

8

9

Q. What is the annual portion of these proposed goals for each segment on an annual basis for the upcoming period of 2020-2029?

15

16

17

18

19

20

21

A. The annual portion for these proposed goals for each segment (Residential, Commercial/Industrial and Combined) for the upcoming period of 2020-2029 are included in my Exhibit No. MRR-1, Document No. 1 which details the incremental annual and cumulative amounts that comprise these goals.

22

23

24

25

Q. How do Tampa Electric's proposed DSM goals for the upcoming period of 2020-2029 compare to the company's proposed DSM goals for the 2015-2024 period?

A.	Tampa Electric's proposed cumulative DSM goals for the
	upcoming period of 2020-2029 as compared to the company's
	proposed DSM goals for the 2015-2024 period show a slight
	decrease in overall demand reduction and an increase in
	the annual energy ("AE"). Here is the comparison of the
	proposed cumulative combined DSM goals for the upcoming
	period of 2020-2029 as compared to the company's proposed
	DSM goals for the 2015-2024 period proposed goals at the
	generator:

		2020-2	029	2015-2	024
Summer	Demand:	79.7	MW	56.3	MW
Winter	Demand:	43.3	MW	78.3	MW
Annual	Energy:	165.0	GWh	144.3	GWh

Q. What are the major drivers that established Tampa Electric's overall proposed 2020-2029 DSM goals for demand to be at a slightly lower level than what the company proposed during the last DSM goals setting process?

A. There are several factors that influenced the slight overall reduction in the company's current proposed DSM goals for demand from those proposed five years ago.

These factors include:

- 1 2 3 4 5 6
- 9

8

12

11

13

15

1617

18

19

- 20
- 21
- 22

23

- 24
- 25

- In addition to the continued decline of average electricity usage per customer, the overall annual customer growth for the company's service area is projected to slightly decrease, thereby deferring the in-service date of the next generating unit in the company's expansion plan used for DSM evaluations.
- The base year avoided and fixed O&M costs for Tampa Electric's next avoided unit has decreased.
- The avoided generating unit fuel cost has decreased with a lower fuel escalation rate.
- Florida building codes have become more stringent from previous levels, thus placing more downward pressure on customer usage.
- Various Federal energy efficiency and appliance standards have been enacted affecting several baseline measures used for the evaluation of potential DSM measures.
- Q. What is Tampa Electric's average electricity usage per month for a typical residential customer and how does this compare to the usage of five years ago?
- A. In 2018, a typical Tampa Electric residential customer used a weather adjusted kWh amount of 1,107 kWh on a

monthly basis. Five years ago, the typical Tampa 1 2 Electric residential customer used a weather adjusted kWh 3 amount of 1,173 kWh on a monthly basis. 4 5 Q. What is the proposed avoided unit and associated costs that Tampa Electric utilized in the preparation of these 6 proposed DSM goals? 7 8 The proposed avoided unit is a 7FA.05 Combustion Turbine Α. 9 that has a winter capacity rating of 245 MW and a summer 10 11 capacity rating of 229 MW. The proposed unit would be placed into service in January of 2023. The cost of the 12 unit has a base year avoided generating cost of \$526.30 13 14 per kW and a fixed O&M cost of \$5.83 per kW per year. 15 16 Q. How do these avoided unit costs compare to the avoided unit that was used five years ago? 17 18 The avoided unit cost five years ago had a base year 19 Α. 20 avoided generating cost of \$650.64 per kW and a fixed O&M cost of \$11.95 per kW per year. 21 22 23 How did the avoided generating unit fuel cost and fuel escalation rate used in the new goal setting compare to 24

25

the avoided generating unit that was used five years ago?

A. The current avoided generating fuel cost is 3.75 cents per kilowatt-hour ("kWh") with a fuel escalation rate of 4.54 percent. The avoided generating fuel cost five years ago was 4.70 cents per kWh and the fuel escalation rate was 5.21 percent.

Q. For the 2020-2029 DSM goals setting period, what is the company's projected energy and demand impacts due to energy efficiency and appliance standards improvements?

A. The company's estimate for the energy and demand impacts due to more stringent energy efficiency and appliance standards over the 2020-2029 DSM goals period is an overall reduction of customer energy usage of 5.79 GWh, a reduction in overall summer demand of 158 MW and a reduction in overall winter demand of 163 MW.

Q. Were there any drivers that put upward pressure on Tampa Electric's proposed 2020-2029 DSM demand goals to be set at a higher level than what the company proposed during the last DSM goals setting process?

A. Yes, while the combination of all drivers caused the overall proposed demand goals to be lower, there were several drivers that caused the overall decrease to be a

lessor amount than it would have been absent of those factors. Those factors include:

3

4

5

6

7

8

1

2

- K-Factor increase;
- Decreased customer equipment escalation rate;
- Decreased utility discount rate;
- Increased base year avoided transmission cost; and
- Increased base year avoided distribution cost.

9

10

11

12

13

Q. Would you explain why the proposed 2020-2029 DSM goals for summer demand and annual energy went up, while the winter demand goal went down as compared to 2015-2024 DSM goals setting period?

14

15

16

17

18

19

20

21

22

23

24

25

Yes, the main driver causing the summer demand to go up the increased weighting of the value of the next avoided unit for the summer peaking period. This increase summer weighting causes technologies in that impact summer demand to be more cost-effective while at the same time decreasing the cost-effectiveness of technologies that impact winter demand. The increase in the proposed 2020-2029 annual energy savings goals is attributed to more residential technologies having a summer demand achieving cost-effectiveness coupled with impact months and cooling hours thus increasing summer

overall combined annual energy goal slightly as compared to the 2015-2024 DSM goals proceeding.

3

4

5

6

1

2

Q. Regardless of the results of the RIM cost-effectiveness analysis, do you believe that DSM goals should always be set higher than previously set goals?

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

No, I do not. Setting goals too high just for the sake Α. of having higher goals can lead to costly, unfair and imprudent results for Tampa Electric's customers. DSM goals should be set with a clear focus on the costs the utility would have to incur to serve the load that the conservation efforts are reasonably projected to avoid. In addition, the conservation measures selected should minimize impacts avoid cross-subsidization rate and The Commission has been able to between customers. accomplish these objectives in the past through the primary use of the RIM test (to minimize rate impacts and avoid cross-subsidization), the two-year payback screen to minimize free ridership and a process that focuses on the utility's most recently projected resource needs.

22

23

Q. How do Tampa Electric's DSM goals accomplishments compare to other utilities in the nation?

25

24

	ı	
1	A.	Tampa Electric's accomplishments are significantly
2		greater than most other utilities in the United States.
3		Tampa Electric began its DSM efforts in the late 1970s
4		prior to the 1980 legislative enactment FEECA. Since
5		then, the company has aggressively sought Commission
6		approval for numerous DSM programs designed to promote
7		energy efficient technologies and to change customer
8		behavioral patterns such that energy savings occur with
9		minimal effect on customer comfort. Additionally, the
10		company has modified existing DSM programs over time to
11		promote evolving technologies and to maintain program
12		cost-effectiveness.
13		
14		From the inception of Tampa Electric's Commission
15		approved programs through the end of 2018, the company

has achieved the following savings:

17

18

19

20

16

Summer Demand: 729.7 MW

Winter Demand: 1,236.0 MW

> Annual Energy: 1,560.5 GWh

21

22

23

These peak load achievements have eliminated the need for nearly seven 180 MW power plants.

24

25

The magnitude of these continuing efforts by Tampa Electric, as well as other utilities in Florida, clearly demonstrated by Florida's ranking in the United States Energy Information Administration's recent With respect to "Total Energy Consumed per analyses. Capita, 2016", Florida ranks 46th (of 51 States). respect to "Total Energy Expenditures per Capita, 2016", Florida ranks 50th. Finally, with respect to "Average Retail Price of Electricity to the Residential Sector, December 2018", Florida ranks 26th. This last ranking is particularly noteworthy Florida's with average Residential Retail price of 11.86 cents per kWh which is 10.8 percent below the national average and substantially lower than other States such as Massachusetts with a residential retail price of 21.99 cents per kWh, New York at 17.34 cents per kWh and California at 19.44 cents per This residential retail price deserves merit with the fact that Tampa Electric has achieved its level of DSM reduction impacts within stringent regulatory rules and statutory requirements by offering a portfolio of DSM programs that reduce rates for all customers, both DSM participants and non-participants alike. Ιt is worth noting that Tampa Electric's current Residential Retail Price of 10.36 cents per kWh is significantly lower than the Florida average.

25

1

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

OVERALL PROCESS TO DEVELOP DSM GOALS:

2

3

4

5

1

Q. Would you describe the overall process that Tampa Electric utilized to develop the proposed DSM goals in this proceeding?

6

7

8

9

10

11

12

13

14

15

16

the overall process first starts with the Α. Yes, development of a technical potential study which is the theoretical maximum amount of energy and capacity that could be displaced by energy efficiency, demand response and distributed energy resources regardless of acceptability to customers and other barriers that may prevent the installation or adoption of an efficiency measure. The technical potential is only constrained by factors such as technical feasibility and the applicability of measures.

17

18

19

20

21

22

23

24

25

Once the technical potential is developed, the company determines the economic potential. The economic potential is determined by evaluating each of the measures cost-effectiveness under the RIM and TRC effectiveness tests. The economic potential is the amount of energy and capacity that could be reduced by those energy efficiency, demand response and distributed energy resource measures that pass cost-effectiveness.

For the RIM economic potential, lost revenue is the only cost component that is introduced. For the TRC economic potential, the full incremental cost of the measure is the only cost component introduced.

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

Once the economic potential is achieved, the company removes programs that have a negative PCT, runs sensitivity analyses for low and high fuel, and then performs the consideration of free-ridership After these sensitivity analyses are performed, point. company introduces program administration evaluates adoption rates and participation rates based develops upon incentives, and then the achievable potential which become the company's proposed DSM goals. This overall process is included in my Exhibit No. MRR-1, Document No. 2.

17

18

Q. Did Tampa Electric develop its own Technical Potential Study?

20

21

22

23

24

25

19

A. No, Tampa Electric, in collaboration with the other FEECA utilities (Florida Power and Light, Duke Energy Florida, Gulf Power Corporation, Orlando Utilities Commission, Jacksonville Electric Authority and Florida Public Utilities) utilized a vendor to develop the technical

potential study. 1 2 3 Q. Did the vendor develop a technical potential study for all the FEECA utilities to use or a technical potential 4 5 study specific for each utility including Tampa Electric? 6 The vendor developed a technical potential study that was 7 Α. specific for each utility, including Tampa Electric. 8 9 did Tampa Electric have a new technical potential Why 10 Q. 11 study developed? 12 Tampa Electric, in collaboration with the other 13 14 utilities, made the decision to have a new technical potential study developed because the prior 15 16 potential study that was used in the previous numeric goals proceeding was a refreshed technical potential 17 that developed from the Itron technical 18 study was potential study performed ten years ago in 2009. 19 20 Did Tampa Electric develop its own economic potential? 21 Q. 22 23 Α. Yes. 24 Did Electric perform its fuel sensitivity 25 Q. Tampa own

analyses and free-ridership considerations?

2

A. Yes.

4

3

Q. Did Tampa Electric perform its own achievable potential?

6

7

5

A. Yes.

8

9

PROCESS TO DEVELOP THE TECHNICAL POTENTIAL:

10

11

12

13

Q. Please discuss the process that Tampa Electric utilized to develop the technical potential that would be used to develop the company's proposed DSM goals?

14

15

16

17

18

19

20

21

22

23

24

25

Tampa Electric started the process of developing the Α. proposed goals by collaborating with the other FEECA utilities in making the decision to have a new technical potential study developed. I have included an overview of the process to develop the technical potential in my Exhibit No. MRR-1, Document No. 3. I have also included the Market Potential Study Report from Nexant, within my Exhibit No. MRR-1, Document No. 3, that was developed specifically for Tampa Electric which includes the process that was utilized to develop Tampa Electric's technical potential.

To support the development of the new technical potential study, the FEECA utilities initiated the timing starting in early 2016, to discuss the and 2017, deliverables needed. Starting on June 13, the FEECA utilities participated in ongoing weekly conference development of the technical calls to support the In July 2017, the FEECA utilities potential study. initiated a request for proposal to seek vendors that were capable of performing a technical potential study. September From August 2017 through 2017, the FEECA utilities screened and evaluated the responses request for proposals. The proposals were screened based upon several criteria which included prior experience, quality of experience, ability to achieve deliverables deadlines, methodology, data sources and engineering methods, alternative approaches, discovery thoroughness, other supporting documentation, price and In addition to screening the request for price controls. submitted, proposals on every vendor what was that submitted a request for proposal supplied utility names and points of contact to which at least two of these sourced utilities were called and interviewed to discuss the working relationship, project management effectiveness, study quality, witness performance, overall outcome, other DSM related engagements

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

overall impression. After the screening was completed, the FEECA utilities invited the top two vendors to a final selection presentation in addition to a question and answer meeting that was held on October 2, 2017. At the conclusion of this meeting, the FEECA utilities met and selected the vendor Nexant to perform the technical potential study.

Q. After the FEECA utilities selected Nexant to perform the technical potential study, how did Nexant gather the necessary data to be able to conduct a technical potential study specific to Tampa Electric?

A. Shortly after the FEECA utility meeting on October 2, 2017, Nexant provided the company with a sheet that outlined the comprehensive information needed that was specific to Tampa Electric. This data sheet included Tampa Electric's peak load and energy sales forecasts for 2018-2028, details used for developing the company's 10-year load forecast, customer premise forecasts for 2018-2028, customer characteristics and billing data, any load research data for 2015 and 2016, prior utility potential studies, historical program and measure information, preliminary technical potential measure lists, and hourly utility system load data for 2012 through 2016.

Q. Did Tampa Electric provide all the data that was requested by Nexant for the performance of the technical potential study?

A. No, there were some items that Tampa Electric did not have. These items included having all of Tampa Electric business customers segmented by their NAICS or SIC code, availability of Advanced Metering Infrastructure ("AMI") and the associated 15-minute interval data and customer end use load shapes, recent end-use survey and baseline study data, studies of thermostat control and conjoined studies regarding customer preferences for program or rate design.

Q. Is the technical potential study that was performed by Nexant specific for Tampa Electric, less accurate due to these data items that were missing?

A. No, one of the main benefits of doing a technical potential study in a collaborative fashion with the other neighboring FEECA utilities and Nexant is to be able to use proxy data to fill in these sources of data when the data requested does not exist. Even if these data pieces could not have been fulfilled by proxy, I am confident that the technical potential developed by Nexant specific

1		for Tampa Electric would have been accurate.
2		
3	Q.	How did the FEECA utilities evaluate which measures would
4		be included in the process of developing the technical
5		potential study?
6		
7	A.	Nexant and all the FEECA utilities provided input into
8		which measures would be included in the process of
9		developing the technical potential study. Each of the
10		provided measures was reviewed for its technical
11		feasibility and applicability and had to meet the
12		following two additional criteria:
13		1) The measure must be commercially available in
14		the Florida marketplace.
15		2) The measure cannot be considered a behavioral
16		savings.
17		
18	Q.	Did the FEECA utilities seek any other input for which
19		measures would be included in the process of developing
20		the technical potential study?
21		
22	A.	Yes, the FEECA utilities asked for and received a list of
23		proposed measures from the Southern Alliance for Clean
24		Energy ("SACE").
25		

Q. Did the FEECA utilities add any of the measures that SACE provided in their measures list that the FEECA utilities used as the final measures list, and if no, why?

4

5

6

8

9

10

11

12

13

14

1

2

3

utilities Α. No, the FEECA reviewed the list SACE, from the majority of those proposed measures proposed measures were already included in the utility developed measures list. The remaining measures were chosen not to be used because they were behavioral measure or would not be considered a measure. An example of this is a duct seal with a blower door. Duct sealing is a measure and it is included in the measure list, but the blower door is not a measure, it would be considered to be a piece of test equipment.

15

16

17

Q. Did Tampa Electric meet with SACE after the measure list was developed?

18

19

20

A. Yes, the company chose to meet with SACE in a series of conference calls between December 19, 2018, and January 25, 2019.

22

23

21

Q. What was the purpose of the conference calls with SACE?

24

25

A. The main purpose was to allow SACE an opportunity to

,	•	
1		critique and provide feedback on the draft technical
2		potential studies that the company was receiving from
3		Nexant.
4		
5	Q.	What feedback did SACE provide?
6		
7	A.	First, I thought their feedback was very constructive to
8		Tampa Electric. SACE provided the following
9		recommendations:
10		• Adjust the line loss factor within the company's
11		cost effectiveness model to account for line losses
12		during only the peak hour.
13		• Adjust the life of measures for building envelope
14		type measures to greater than a 20-year life.
15		• Adjust the baseline for certain measures to quantify
16		the savings from what is actually installed in the
17		field versus a minimum building code or federal
18		appliance standard.
19		• Adjust the applicability of wall insulation.
20		• Adjust the free-ridership screen.
21		
22	Q.	Did Tampa Electric implement any of these recommendations
23		from SACE?
24		
25	A	Yes, the company changed the appropriate residential and

commercial building envelope measure lives to cap them at the company's DSM study period of 25 years. The following building envelope items: windows, doors, wall insulation and the home ceiling insulation, building structure all have industry rated lives of well The company also agreed to examine the over 25 years. line loss factor at the peak hour at some time in the future, currently the company utilizes a weighted average to develop the transmission and distribution line loss factors which has consistently been used for all of the company's prior DSM goal setting proceedings.

12 13

1

2

3

4

5

6

7

8

9

10

11

Q. Why did the company not adopt the other three recommendations by SACE?

15

16

17

18

19

20

21

22

23

24

25

14

company does not agree with using an adjusted Α. baseline for certain measures to quantify the energy actually installed in the field savings from what is minimum building code or federal appliance standard. The additional measurement and verification a potential participant would make for program very difficult to pass cost effectiveness due to having a heavy burden in overall utility costs such as labor, equipment and other internal costs as compared to the incentive that could be provided to the customer.

The company does not agree with the assessment of the 1 applicability factor for homes in Florida for wall 2 3 insulation since most single-family homes will be of Finally, the company does not view a block construction. 4 5 need for a change in the way free-ridership is taken into consideration for the company's proposed DSM goals and 6 programs. 7 8 Were there any measures, beyond behavioral or ones that 9 Q. would be considered test equipment, chosen not to be used 10 11 as a DSM measure? 12 being consistent with prior DSM goal 13 14 periods, the company did not include any supply side efficiency measures as potential measures for this DSM 15 goals setting proceeding. 16 17 Please identify how many DSM measures were evaluated that 18 Q. support this 2020-2029 DSM goals setting proceeding? 19 20 Tampa Electric's comprehensive DSM measure list developed 21 Α. was comprised of the following: 22 23 Residential Energy Efficiency Measures: 91 Commercial Energy Efficiency Measures: 127 24

30

Industrial Energy Efficiency Measures:

	•	
1		Demand Response Measures: 21
2		Distributed Energy Resource Measures: 9
3		Combined Total DSM Measures: 278
4		
5	Q.	How does this measure list compare to the prior DSM goal
6		setting proceeding that occurred in 2014?
7		
8	A.	In the prior DSM goal setting proceeding that occurred in
9		2014, Tampa Electric at that time had 274 total DSM
10		measures that were evaluated.
11		
12	Q.	How did Tampa Electric ensure that the DSM measure list
13		was complete and accurate?
14		
15	A.	Tampa Electric in collaboration with the other FEECA
16		utilities and Nexant conducted weekly phones calls
17		beginning in October of 2017 through the beginning of
18		2019 to ensure the DSM measure list and the associated
19		demand and energy savings impacts from each measure were
20		accurate.
21		
22	Q.	Beyond the measure list categories listed above, did the
23		measures have further segmentation?
24		
25	Α.	Yes, each of the energy efficiency, demand response and

1	distribute energy resources categories for residential,
2	commercial and industrial sectors were further segmented.
3	
4	Residential energy efficiency and demand response was
5	segmented into:
6	• Single family homes
7	• Multi-family homes
8	• Manufactured homes
9	Residential distributed energy resources was segmented
10	into:
11	Single family homes
12	• Multi-family homes
13	Commercial energy efficiency was segmented into:
14	• Assembly
15	• College and University
16	• Grocery
17	• Healthcare
18	• Hospitals
19	• Institutional
20	• Lodging/Hospitality
21	• Miscellaneous
22	• Restaurants
23	• Retail
24	• School K-12
25	• Warehouse

1	Commercial demand response was segmented into customers
2	using the following energy usages:
3	• 0 - 15,000 kWh
4	• 15,0001 - 25,000 kWh
5	• 25,001 - 50,000 kWh
6	• ≥ 50,001 kWh
7	Commercial distributed energy resources was segmented
8	into the following:
9	Battery storage:
10	• 0 - 15 MWh
11	• >15 MWh - 25 MWh
12	• >25 - 50 MWh
13	• >50 MWh
14	Photovoltaics:
15	• Assembly
16	• College and University
17	• Grocery
18	• Healthcare
19	• Hospitals
20	• Institutional
21	• Lodging/Hospitality
22	• Miscellaneous
23	• Restaurants
24	• Retail
25	• School K-12

1	• Warehouse
2	Combined Heat and Power:
3	• 5,500 kW Steam Turbine-Biomass
4	• 3,500 kW Steam Turbine-Biomass
5	• 3,500 kW Gas Turbine
6	• 3,000 kW Gas Turbine
7	• 2,500 kW Gas Turbine
8	• 4,500 kW Reciprocating Engine
9	• 1,500 kW Steam Turbine-Biomass
10	• 3,000 kW Reciprocating Engine
11	• 1,125 kW Fuel Cell
12	• 800 kW Fuel Cell-Biogas
13	• 1,250 kW Reciprocating Engine
14	• 1,250 kW Reciprocating Engine-Biogas
15	• 500 kW Fuel Cell
16	• 350 kW Reciprocating Engine
17	• 175 kW Fuel Cell
18	• 200 kW Micro Turbine
19	• 150 kW Reciprocating Engine
20	• 100 kW Micro Turbine
21	• 100 kW Micro Turbine- Biogas
22	• 50 kW Micro Turbine
23	Industrial energy efficiency was segmented into:
24	Agriculture and Assembly
25	• Chemicals and Plastics

ı	Ī	
1		• Construction
2		• Electrical and Electronic Equipment
3		• Lumber/Furniture/Pulp/Paper
4		Metal Products and Machinery
5		Miscellaneous Manufacturing
6		• Primary Resource Industries
7		• Stone/Clay/Glass/Concrete
8		• Textiles and Leather
9		• Transportation Equipment
10		Water and Wastewater
11		Large Commercial and Industrial demand response was
12		segmented into customers using the following demand
13		usages:
14		• 0 - 50 kW
15		• 51 - 300 kW
16		• 301 - 500 kW
17		• ≥ 501 kW
18		
19	Q.	How do these residential, commercial and industrial
20		segments affect the measure list?
21		
22	A.	The segmentation means that when we look at an individual
23		measure from the measure list, it will be examined from a
24		multiple of ways for cost-effectiveness. For example, a
25		residential smart thermostat is one measure and will be

analyzed six ways. It will be analyzed if it was installed in a new or existing single-family home, new or existing multi-family residence, and a new or existing manufactured home. These additional analyses are called permutations. The residential, commercial and industrial segmentation provided above required 4,317 individual permutations of the measure list to be performed for cost-effectiveness.

Q. Were there any commercial or industrial segments that were excluded from the technical potential?

A. No, the technical potential was based upon the load forecast of Tampa Electric, so all customers and market segments were included in the technical potential analysis.

Q. Does the measure list contain demand-side renewable energy systems?

A. Yes, the Distributed Energy Resource measures contains residential and commercial photovoltaic systems.

Q. Do you have a list of all the DSM measures you provide the count for above?

A. Yes, the comprehensive list of all the DSM measures the company utilized in the development of the company's proposed 2020-2029 DSM goals is included in my Exhibit No. MRR-1, Document No. 4.

5

6

7

8

1

2

3

4

Q. Do you have a list of all the DSM measures that were eliminated or added as compared to the 2013 technical potential study?

9

10

11

12

13

14

15

A. Yes, the comprehensive list of all the DSM measures the company utilized in the development of the company's proposed 2015-2024 DSM goals and a list providing those measures that were added or removed in the newly developed comprehensive measure list is included in my Exhibit No. MRR-1, Document No. 5.

16

17

18

Q. Did the collaborative process among the FEECA utilities bring value to the overall DSM goals setting process?

19

20

21

22

23

Α. Yes, the process provided many benefits including economic benefits from sharing in the total provided an open platform to thoroughly vet differences which has provided consistency, established accurate baselines to begin the new period of setting DSM goals.

25

REVISED: 08/05/2019

1	TAMPA ELECTRIC'S TECHNICAL POTENTIAL:
2	
3	Q. What is Tampa Electric's technical potential?
4	
5	A. The company's technical potential is made up of estimates
6	for energy efficiency, demand response and distributed
7	energy resources. The technical potential estimates from
8	these categories are not additive due to the interactive
9	effect of certain measures on end uses. With this
10	backdrop, Tampa Electric's technical potential for energy
11	efficiency is:
12	Summer Demand: 1,138 MW
13	Winter Demand: 583 MW
14	Annual Energy: 4,483 GWh
15	
16	Tampa Electric's technical potential for demand response
17	is:
18	Summer Demand: 2,399 MW
19	Winter Demand: 2,816 MW
20	Annual Energy: 0 GWh
21	
22	Tampa Electric's technical potential for distributed
23	energy resources is:
24	Summer Demand: 2,215 MW
25	Winter Demand: 619 MW

Annual Energy: 12,266 GWh

2

3

4

5

6

7

1

The full detail of these values is included in the company's Market Potential Study Report from Nexant in my Exhibit MRR-1, Document No. 3. I have also included a comparison of Tampa Electric's 2014 Technical Potential in my Exhibit MRR-1, Document No. 6.

8

9

PROCESS USED TO DEVELOP THE ECONOMIC POTENTIAL:

10

11

12

Q. Please describe the process Tampa Electric utilized to develop the company's economic potential?

13

14

15

16

17

18

19

20

21

22

23

24

25

Α. The process to develop the economic potential began in the beginning of 2017 by meeting with the company's Load Research and Forecasting and Resource Planning Departments to make them aware of the data that will be able to support the development of needed to be technical potential but also the information that will support the analysis for the economic potential. The company's Load Research and Forecasting Department asked to prepare a load forecast specifically for the DSM goals setting 2020-2029 period. The company's Resource Planning Department was asked to utilize the DSM goals setting 2020-2029 load forecast and perform an updated integrated resource planning ("IRP") process to determine the timing and costs of the next avoided unit and fuel costs.

4

5

6

7

1

2

3

The process then determined the remaining costeffectiveness inputs by taking the current 2019 values and escalating them into the year 2020.

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The process then took the comprehensive list of all DSM measures contained in the technical potential that were spread across the various categories and building types and developed the economic potential by utilizing the Commission's approved cost-effectiveness tests, namely, the RIM and TRC tests. When calculating the RIM test, only lost revenues were considered on the cost side of the equation. For the TRC test, only the customer's full incremental equipment cost was considered on the cost side of the equation. For both the RIM and TRC tests, the benefits were comprised of avoided supply side costs that included the generator, transmission and distribution, and fuel costs. This process to develop the economic potential is included in my Exhibit No. MRR-1, Document No. 7.

24

25

Q. Is the load forecast that was generated to support the

2020-2029 DSM goals setting period the same as Tampa Electric's typical annual forecast used to develop the 3 company's Ten-Year Site Plan? Α. No, the load forecast that is developed specifically for 6

5

7

8

9

4

1

2

DSM goals setting 2020-2029 period uses the same methodology as the company's typical annual forecast used to develop the company's Ten-Year Site Plan with the exception that it assumes that all DSM activities stop as of December 31, 2019.

11

12

13

14

15

10

Is the IRP process used with this modified load forecast Q. to support the 2020-2029 DSM goals setting period the same as Tampa Electric's typical annual process used to develop the company's Ten-Year Site Plan?

16

17

Yes, it is identical.

18

19

20

21

Is the IRP process used to support the 2020-2029 DSM Q. goals setting period the same process that Tampa Electric used in prior DSM goals setting periods?

22

23

24

25

Yes, the IRP process that Tampa Electric used has been utilized and approved in all previous DSM goals setting proceedings and is clearly delineated in the company's

1		annual Ten-Year Site Plan filing.
2		
3	Q.	Do you have a list that details the information of Tampa
4		Electric's avoided unit, including fuel costs, that was
5		determined in the IRP process that was performed?
6		
7	A.	Yes, in my Exhibit No. MRR-1, Document No. 8 details the
8		information of Tampa Electric's avoided unit and fuel
9		costs that were determined in the IRP process that was
10		performed.
11		
12	Q.	Do you have a list that identifies all input assumptions
13		that were used in the RIM and TRC cost-effectiveness
14		tests to develop the economic potential?
15		
16	A.	Yes, in my Exhibit No. MRR-1, Document No. 9 identifies
17		all the input assumptions that were used in the cost-
18		effectiveness RIM and TRC tests to develop the economic
19		potential.
20		
21	TAMP	A ELECTRIC'S ECONOMIC POTENTIAL:
22		
23	Q.	What is Tampa Electric's economic potential?
24		
25	A.	Under the RIM cost-effectiveness test evaluation, the

REVISED: 08/05/2019

860

economic potential resulted in the following savings: 1 Summer Demand: 4,928 MW 2 Winter Demand: 3,754 MW 3 Annual Energy: 12,669 GWh 4 5 Under the TRC cost-effectiveness test evaluation, this 6 7 economic potential resulted in the following savings: Summer Demand: 2,656 MW 8 Winter Demand: 2,986 MW 9 10 Annual Energy: 1,785 GWh 11 The details of these values are included in my Exhibit 12 MRR-1, Document No. 10. 13 14 TAMPA ELECTRIC'S ECONOMIC POTENTIAL SENSITIVITIES: 15 16 Please describe what economic potential sensitivities 17 Q. Electric conducted to be compliant with Tampa the 18 Commission's Order Establishing Procedures 19 in this proceeding? 20 21 Tampa Electric's economic potential sensitivity analyses 22 A. were conducted based upon the RIM and TRC economic 23 24 potentials with regard to the following factors: 1) Lower fuel costs; 25

ı	1	
1		2) Higher fuel costs;
2		3) Shorter free-ridership consideration;
3		4) Longer free-ridership consideration; and
4		5) Consideration of the cost of carbon.
5		
6	Q.	How did the company perform the sensitivity for lower and
7		higher fuel costs?
8		
9	A.	The sensitivity for lower and higher fuel costs was
10		performed by varying the fuel cost in a similar manner as
11		Tampa Electric's sensitivity conducted in the company's
12		annual fuel docket when the company conducted fuel
13		hedging.
14		
15	Q.	How did the company perform the sensitivity for shorter
16		and longer free-ridership consideration?
17		
18	A.	The sensitivity for shorter and longer free-ridership
19		consideration was performed by changing the requirement
20		from a two-year simple payback to a one-year simple
21		payback (shorter) and a three-year simple payback
22		(longer).
23		
24	Q.	Did the company perform the sensitivity for the
25		consideration of the cost of carbon?

A. No, Tampa Electric did not include the cost of carbon dioxide ("CO2" or "Carbon") in the process of establishing the economic potential.

4

1

2

3

Q. Why did Tampa Electric not consider the cost of carbon?

6

7

8

9

10

11

12

13

14

15

16

17

18

5

Tampa Electric has two reasons for not considering the Α. cost of carbon. The first is that Tampa Electric does not include the cost of carbon in the IRP process that used to establish the costs and fuel costs of the next avoided unit for this 2020-2029 DSM goals setting proceeding and the company does not include the cost of carbon in the IRP process that is used to develop the annual Ten-Year Site Plan. The second is the cost of carbon in the state of Florida is not imposed by any State or Federal regulations on the emissions of carbon nor have any laws for the emission of greenhouse gases like carbon currently been enacted at the Federal State levels.

20

21

22

19

Q. Has the company ever considered the cost of carbon in a DSM goals setting proceeding?

23

24

25

A. Yes, it has been used only one time. It was used in the 2005-2014 DSM goals setting proceeding where Tampa

Electric followed the Commission Staff's request to perform carbon sensitivities on Tampa Electric's economic potential.

Q. Please describe the results of the sensitivity analyses that were performed when applied to Tampa Electric's 2020-2029 RIM and TRC DSM economic potentials?

A. Tampa Electric's sensitivity analyses results on the 2020-2029 RIM and TRC DSM economic potentials were modest at best. From a RIM perspective, the greater variation occurred with summer demand and annual energy relative to fuel costs and annual energy due to payback duration. From a TRC perspective, the greater variation occurred with annual energy relative to fuel costs and payback duration. The processes to perform the sensitivity analyses are included in my Exhibit MRR-1, Document No. 11.

Q. Do you have a summary showing the results of the sensitivity analyses?

A. Yes, my Exhibit No. MRR-1, Document No. 15 provides a summary showing the results of the sensitivity analyses.

Q. Should the results of these sensitivity analyses be used in any manner to influence or establish Tampa Electric's DSM goals for the 2020-2029 period?

4

5

6

7

8

9

10

11

1

2

3

Α. No, Tampa Electric believes the sensitivity analyses simply provides a relative indication as to how costeffectiveness evaluations may be affected by changes in assumptions. There is no basis to conclude that assumption changes modeled by the company this sensitivity exercise will in some manner become more plausible than the actual assumptions utilized.

12

TAMPA ELECTRIC'S CONSIDERATION OF FREE-RIDERS:

14

15

16

17

13

Q. Please provide the process that Tampa Electric utilized to consider free-riders used to develop the proposed DSM goals in this proceeding?

18

19

20

21

22

23

24

25

A. Tampa Electric accomplished the free-ridership consideration requirement through the application of a longstanding Commission recognized practice, initially approved in the 1994 DSM goals proceeding. There, the Commission approved the use of a participant payback of two years or less without a utility incentive. The free-ridership consideration is performed by removing those

measures from the RIM and TRC achievable potential consideration that have a simple payback equal to or less than two years. The execution of this consideration for free-ridership required not only the use of the RIM and cost-effectiveness tests, but also the PCT in conjunction with each.

7

8

1

2

3

4

5

6

Q. What does the term "free-ridership" mean to Tampa Electric?

10

11

12

13

14

15

16

9

A. The term "free-ridership" describes a situation where a customer willingly accepts a rebate or other type of incentive to purchase goods or services that the customer would have purchased anyway, without the rebate or other incentive, because of the cost-effectiveness of the goods or services purchased.

17

18

19

20

Q. Does Tampa Electric support the two-year or less simple payback screen as an appropriate way to consider for free-riders?

21

22

23

24

25

A. Yes, the two-year or less period of time is sufficient motivation for a customer's natural, self-serving adoption of the DSM measure. Simplistically, Tampa Electric, and ultimately its customers, should not pay

REVISED: 08/05/2019

specific customers to do what they would do on their own without an incentive. Because of this and Rule 25-17.0021, F.A.C., which requires the minimization of free riders in the setting of DSM goals, the two-year simple payback criterion is the appropriate means to apply to minimize free ridership as required by Rule.

Q. How many measures remained qualified and the associated summer demand, winter demand and annual energy savings of these measures after consideration of free-ridership under the RIM and PCT evaluation?

A. After consideration of free-ridership, 1,100 individual measure permutations remained qualified under the RIM and PCT evaluation and resulted in the following savings:

Summer Demand: 2,557 MW

Winter Demand: 2,907 MW

Annual Energy: 747 GWh

Q. How many measures were removed due to having a simple payback of two-years or less after consideration of free-ridership under the RIM and PCT evaluation?

A. After consideration of free-ridership, the two-year payback removed 779 individual measure permutations under

REVISED: 08/05/2019

1		the RIM and PCT evaluation.
2		
3	Q.	How many measures remained qualified and the associated
4	41	summer demand, winter demand and annual energy savings of
5		these measures after consideration of free-ridership
6		under the TRC and PCT evaluation?
7		
8	A.	After consideration of free-ridership, 944 individual
9		measure permutations remained qualified under the TRC and
10		PCT evaluation and resulted in the following savings:
11		Summer Demand: 2,465 MW
12		Winter Demand: 2,824 MW
13		Annual Energy: 686 GWh
14		
15	Q.	How many measures were removed due to having a simple
16		payback of two-years after consideration of free-
17		ridership under the TRC and PCT evaluation?
18		
19	Α.	After consideration of free-ridership, the two-year
20		payback removed 1,005 individual measure permutations
21		under the TRC and PCT evaluation.
22		
23	Q.	Did Tampa Electric comply with Staff's request and the
24		Order Establishing Procedure by performing a sensitivity
25		analyses utilizing the consideration of free-ridership?

ĺ	Ī	
1	A.	Yes, as described earlier Tampa Electric complied with
2		Staff's request and the Order Establishing Procedure by
3		performing a sensitivity analyses utilizing the
4		consideration of free-ridership of a one-year and three-
5		year period for the simple payback.
6		
7	Q.	How many individual measure permutations were removed due
8		to having a simple payback of one-year and three-year
9		period for the free-ridership sensitivity as compared to
10		the two-year free-ridership consideration under the RIM
11		and PCT, and the TRC and PCT evaluation?
12		
13	A.	The amount of measure permutations that were removed
14		under the RIM and PCT, and the TRC and PCT evaluation
15		after consideration of free-ridership and the free-
16		ridership sensitivity analyses are below:
17		
18		Measure permutations removed under RIM and PCT:
19		One-year Free-Ridership Sensitivity: 427
20		Two-year Free-Ridership Consideration: 779
21		Three-year Free-Ridership Sensitivity: 1,065
22		
23		Measure permutations removed under TRC and PCT:
24		One-year Free-Ridership Sensitivity: 523
25		Two-year Free-Ridership Consideration: 1,005

Three-year Free-Ridership Sensitivity: 1,301

Q. Do you have a summary showing the free-ridership consideration in addition to the results of the free-ridership sensitivities?

A. Yes, my Exhibit No. MRR-1, Document No. 15 provides a summary showing the results of the free-ridership consideration and sensitivity analyses.

PROCESS TO DEVELOP THE ACHIEVABLE POTENTIAL:

Q. Would you describe the overall process that Tampa Electric utilized to develop the achievable potential in this proceeding?

A. Yes, the process to develop the achievable potential study takes all the measures that successfully passed cost-effectiveness and the free-ridership consideration at the economic potential and to now perform both RIM and TRC cost-effectiveness by first including program administration costs without any incentives or rebates. The measures that pass this level of RIM and TRC cost-effectiveness are then analyzed to see if an incentive or a rebate can be provided. In this process, for the RIM

test the rebate is set at either the maximum level drive the RIM cost-effectiveness score to be 1.01 or to the level that places the measure simple payback of two For the TRC cost-effectiveness test, the rebate vears. the level that places the measures Once the incentive levels have payback of two years. been determined that will maximize participation, company used Bass Models, Adoption Curves its experience with current programs and incentives to estimate and project the activity over the 2020-2029 DSM goals setting period within each of the cost-effective The individual measures annual energy (in kWh) measures. and summer and winter demand (in kW) are determined for their contributions in each of the 2020-2029 DSM goals All the residential period vears. and commercial/industrial contributions are summed by year for these sectors and totaled to become the annual and cumulative DSM achievable potential. This process achievable potential develop the is included my Exhibit MRR-1, Document No 12.

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Q. How did Tampa Electric develop the administrative costs utilized in the development of the achievable potential?

24

25

A. Tampa Electric has significant experience running

effective DSM programs and utilized the administrative 1 cost estimated based on its experience with the same or 2 similar measures contained in the company's existing DSM 3 programs. 4 5 TAMPA ELECTRIC'S ACHIEVABLE POTENTIAL: 6 7 What is Tampa Electric's total achievable potential? Q. 8 9 the RIM cost-effectiveness Under test evaluation, Α. the 10 78 individual 11 achievable potential resulted in evaluations remaining with the following savings: 12 Summer Demand: 74.4 MW 13 14 Winter Demand: 40.4 MW 156.5 GWh Annual Energy: 15 16 Under the TRC cost-effectiveness test evaluation, this 17 achievable potential resulted in 68 individual 18 evaluations remaining with the following savings: 19 Summer Demand: 154.7 MW 20 Winter Demand: 75.6 MW 21 Annual Energy: 392.9 GWh 22 23 These values are stated at the meter level and are also 24 included in my Exhibit MRR-1, Document No. 13. 25

Ī	Ī	
1	Q.	Do these DSM achievable potentials include demand
2		response and distributed energy resources?
3		
4	A.	Yes, in addition to energy efficiency, these DSM
5		achievable potentials include demand response and
6		consideration of distributed energy resources. No
7		measures within distributed energy resources remained
8		cost-effective.
9		
10	Q.	Will you provide a list of the RIM-based cost-effective
11		measures and TRC-based cost-effective measures that made
12		the contributions to the achievable potential?
13		
14	A.	Yes, the list of measures that supported the RIM-based
15		and TRC-based achievable potential are included in my
16		Exhibit No. MRR-1, Document No. 14.
17		
18	Q.	Is the achievable potential the same as what the company
19		is proposing as the DSM goals for the 2020-2029 goals
20		setting period in this proceeding?
21		
22	A.	The RIM-based achievable potential is the amount of cost-
23		effective annual energy (in kWh) and summer and winter
24		demand (in kW) given the current economic conditions that

Tampa Electric is seeing for its next avoided unit at the

İ	Ī	
1		meter. To obtain the DSM goals for the 2020-2029 goals
2		setting period, these annual energy and summer and winter
3		demand savings will be adjusted so that amount of savings
4		is provided at the generator level, which are the
5		proposed company's 2020-2029 DSM goals.
6		
7	Q.	What is Tampa Electric's total achievable potential after
8		being adjusted to savings at the generator?
9		
10	A.	Under the RIM cost-effectiveness test evaluation, the
11		achievable potential at the generator resulted in the
12		following savings:
13		Summer Demand: 79.7 MW
14		Winter Demand: 43.3 MW
15		Annual Energy: 165.0 GWh
16		
17		Under the TRC cost-effectiveness test evaluation, the
18		achievable potential at the generator resulted in the
19		following savings:
20		Summer Demand: 165.9 MW
21		Winter Demand: 81.1 MW
22		Annual Energy: 414.6 GWh
23		
24		These values are also included in my Exhibit MRR-1,
25		Document No. 13.

1	Q.	Would you provide the DSM achievable potentials at the
2		generator for energy efficiency and demand response
3		separately?
4		
5	A.	Yes, for energy efficiency under the RIM cost-
6		effectiveness test evaluation, the achievable potential
7		at the generator resulted in the following savings:
8		Summer Demand: 51.7 MW
9		Winter Demand: 26.3 MW
10		Annual Energy: 165.0 GWh
11		
12		For demand response under the RIM cost-effectiveness test
13		evaluation, the achievable potential at the generator
14		resulted in the following savings:
15		Summer Demand: 28.0 MW
16		Winter Demand: 17.1 MW
17		Annual Energy: 0.0 GWh
18		
19		For energy efficiency under the TRC cost-effectiveness
20		test evaluation, the achievable potential at the
21		generator resulted in the following savings:
22		Summer Demand: 122.1 MW
23		Winter Demand: 54.1 MW
24		Annual Energy: 414.6 GWh
25		

For demand response under the TRC cost-effectiveness test evaluation, the achievable potential at the generator resulted in the following savings:

Summer Demand: 43.8 MW

Winter Demand: 26.9 MW

Annual Energy: 0.0 GWh

7

8

9

10

11

1

2

3

4

5

6

Q. From the RIM-based achievable potential, will the measures that remained cost-effective become the new DSM programs Tampa Electric will submit within the DSM Plan once the goals are approved?

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Not necessarily, the data obtained from the process to develop the achievable potential will be used, but the process to develop DSM goals is to determine the amount of cost-effective annual energy (in kWh) and summer and winter demand (in kW) given the current economic conditions that Tampa Electric is seeing for its next avoided unit at this time. is a combination of Ιt theoretical, mathematical and realistic inputs for each individual measure as they stand alone. Designing a DSM program that would be used to support obtaining the Commission's annual and cumulative DSM goals may use a single measure or any combination of measures to develop a cost-effective program. Tampa Electric is not limited to using any measures that could be utilized in a costeffective DSM Program. For example, the company is
planning to retain its current weatherization and energy
education programs that include energy-efficiency kits
which are made up of both cost-effective and not costeffective measures which focus on gaining participation
of low-income customers in the company's DSM programs
portfolio.

Q. What residential summer and winter Megawatt (MW) and annual Gigawatt-hour (GWh) goals should be established for the period 2020-2029 at the generator?

A. Tampa Electric's reasonably achievable generator level combined RIM-based Residential DSM goals for the 2020-2029 period are:

Summer Demand: 54.0 MW

Winter Demand: 25.5 MW

Annual Energy: 103.6 GWh

Q. What commercial/industrial summer and winter Megawatt (MW) and annual Gigawatt hour (GWh) goals should be established for the period 2020-2029 at the generator?

A. Tampa Electric's reasonably achievable generator level

combined RIM-based Commercial/Industrial DSM goals 1 the 2020-2029 period are: 2 3 Summer Demand: 25.8 MW Winter Demand: 17.8 MW 4 5 Annual Energy: 61.4 GWh 6 Do you have a summary of each of the potentials from the 7 Q. technical potential through the economic, including 8 sensitivities and ending with the achievable potential? 9 10 Yes, my Exhibit No. MRR-1, Document No. 15 provides a 11 summary of each of the potentials developed that include 12 the impacts of the sensitivities. 13 14 ADHERENCE TO F.A.C. RULES AND STATUTORY REQUIREMENTS: 15 16 Has Tampa Electric provided an adequate assessment of the 17 achievable potential of all available demand-side 18 conservation and efficiency measures, including demand 19 20 response and distributed energy resources? 21 Yes, Tampa Electric has conducted an adequate assessment 22 23 of the full technical, economic and achievable potentials of all available demand-side conservation and efficiency 24 measures including demand response and distributed energy 25

The company employed a reasonable approach to 1 resources. identifying administrative costs and incentives for the 2 against 3 measures and evaluated the measures the appropriate supply-side avoided cost data. 4 5 Does the evaluation process utilized by Tampa Electric to 6 Q. establish its proposed DSM goals for the 2020-2029 period 7 8 address the requirements of Rule 25-17.0021, F.A.C.? 9 Yes, the Rule requires a utility to: 10 Α. 1) Project its proposed DSM goals in both the 11 residential and commercial/industrial sectors. 12 2) Give consideration to measures applicable for new 13 and existing construction. 14 3) Ensure that major end-use categories specified in 1.5 the Rule be assessed. 16 4) Consider things overlapping 17 such as measures, appliance efficiency standards, interactions 18 building codes, free-riders, rebound effects and the 19 utility's latest monitoring and evaluation data. 20 21 The comprehensive DSM measure list developed by the FEECA 22 23 utilities and Nexant for Electric Energy and Peak Demand savings for Tampa Electric, and the company's overall 24

25

evaluation process for its technical potential to its

proposed DSM goals for the 2020-2029 period fully meet the requirements of Rule 25-17.0021, F.A.C.

3

4

5

6

7

1

2

Q. Has Tampa Electric provided an adequate assessment of the full technical potential of all available demand-side conservation and efficiency measures, demand response and demand-side renewable energy systems?

8

9

10

11

12

13

14

15

16

17

18

19

20

21

Yes, Tampa Electric, in conjunction with the other FEECA Α. utilities, developed a comprehensive DSM measure list. Subsequently, the company conducted an adequate assessment of full technical potential the of all available demand-side conservation and efficiency distributed measures, demand response and energy resources which included renewable energy systems. of 301 measures, including energy total efficiency, demand response and distributed energy resources measures were identified and evaluated by the company. These 301 measures and the additional residential and commercial cost-effectiveness segmentation required over 70,000 evaluations.

22

23

24

Q. How has Tampa Electric incorporated supply-side efficiencies into its planning process?

efficiencies Supply-side include improvements in Α. generation, transmission and distribution. Therefore, Tampa Electric's motivation to deliver electric service its customers in the most economical and efficient manner possible makes executing supply-side efficiencies A review naturally occurring result. of Electric's plans for supply-side endeavors is an inherent element of the company's annual Ten-Year Site Plan which is routinely reviewed by this Commission. Furthermore, supply-side efficiency and conservation resources are analyzed in every need determination for new sources of generation. When Tampa Electric selects its avoided supply-side for utilization in DSM costs costeffectiveness evaluations, it is selecting resources that and determined previously been reviewed be efficient. Of further note is the fact that while efficiency improvements in supply-side resources important, these improvements have a tendency to reduce potential savings available through DSM activity.

20

21

22

23

24

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Electric's Q. Does Tampa proposed DSM goals adequately reflect the costs and benefits to customers who participate in programs developed to promote DSM measures?

A. Yes, through Tampa Electric's, the other FEECA utilities and Nexant's work to develop the technical potential study with updated baselines and incremental equipment costs, the company's proposed RIM-based DSM goals adequately reflect the costs and benefits to customers who will participate in programs developed to promote DSM measures.

8

9

10

11

12

1

2

3

4

5

6

7

Q. Does Tampa Electric's proposed DSM goals adequately reflect the costs and benefits to the general body of ratepayers as a whole, including utility incentives and participant contributions?

13

14

15

16

17

18

19

20

21

22

23

24

25

Α. Yes, the surest way to adequately reflect the costs and benefits to the general body of ratepayers as a whole without subsidization within or across rate classes is to employ the continued use of the RIM cost-effective test for DSM goals setting and program approval. Since the inception of Florida, this Commission has DSM in longstanding practice of utilizing the RIM test to provide fair, equitable and reasonable treatment for all ratepayers while minimizing overall rate impacts of DSM expenditures. Tampa Electric strongly encourages the Commission to continue this practice so as to establish meaningful goals while minimizing overall DSM

impacts.

2

1

PROJECTED 2020-2029 RESIDENTIAL BILL IMPACTS:

4

5

6

7

8

3

Q. For Tampa Electric, what are the 2020-2029 annual bill impacts on residential customers using 1,200 kWh/month for the projected RIM-based achievable portfolio and the projected TRC-based achievable portfolio?

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

To make the determination of the 1,200 kWh/month annual Α. residential bill impact for the 2020-2029 period relative the RIM-based and TRC-based achievable portfolios, Tampa Electric's approach was to provide the total impact of each of these portfolios and also include the current ongoing of maintaining existing DSM costs the company's system. These current ongoing principally included load management costs associated with maintaining the existing level of load management on perform the system, costs to energy audits the required by Rule 25-17.003, F.A.C., projected research and development, supporting advertising for DSM programs, education supporting administration energy and activities. The results of these analyses for the 2020-2029 period are contained in my Exhibit No. Document No. 16 which provides the estimated ten-year

total cost for a 1,200 kWh/month bill would be \$356.78 for the RIM-based achievable portfolios and \$516.13 for the TRC-based achievable portfolio.

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

1

2

3

It is important to realize the dollar amounts for the RIM and TRC achievable portfolios are estimates for only one customer's electric bill. Α more realistic view gained by looking at the impact across the company's entire system and thus its entire customer base. The estimated ECCR clause deliver RIM-based cost to the achievable portfolio for the 2020-2029 period projected to be \$396.4 million. The estimated ECCR clause cost to deliver the TRC-based achievable portfolio the 2020-2029 period is projected to be \$573.5 million. Therefore, the TRC-based achievable portfolio \$177.1 million greater burden for customers. Furthermore, the RIM-based achievable portfolio, definition of the RIM test, is cost-effective for both participating and non-participating customers; therefore, there are no losers. However, the TRC-based achievable portfolio is cost-effective for program participants but not for non-participants. Under the TRC-based achievable portfolio, non-participants will actually be subsidizing participants for their DSM efforts. the program Therefore, the RIM-based achievable portfolio is the more 1 2 3 cost-effective, less expensive, more reasonable and equitable approach to take in order to provide another resource to assist the company in meeting future system needs.

5

6

7

4

OTHER INFORMATION REQUESTED BY THE COMMISSION'S ORDER ESTABLISHING PROCEDURE:

8

9

10

11

12

13

Q. Does your testimony include the company's current DSM programs, that includes the historical participation rates, cumulative kW and kWh savings, measures included in each program and program impacts related to building code and appliance efficiency standards?

14

15

16

17

18

19

20

21

Yes, in addition to the historical savings and impacts appliance efficiency standards previously from as discussed earlier, I am including descriptions of Tampa Electric's current portfolio of Commission approved DSM programs and the most recent annual and cumulative DSM achievements from the company's DSM programs in my Exhibit MRR-1, Document No. 17.

22

23

24

25

Q. What goals, if any, should be established for increasing the development of demand-side renewable energy systems, pursuant to Section 366.82(2), F.S.?

Currently, there are a few key reasons why there is not a Α. need for having a goal or incentives for the development of demand-side renewable energy systems. The company gained a lot of information when it offered incentives the renewable energy systems initiative program that was offered during the 2010 through 2015 DSM goals period and the company is continuing to see the price of solar renewable energy systems decrease. The residential renewable energy systems still are not costeffective in all three cost-effectiveness tests (TRC, RIM The commercial renewable energy systems passed under the RIM cost-effectiveness test but significantly failed the other two cost-effectiveness tests (TRC and PCT). The residential and commercial renewable energy screened without were both out any program administration or incentive costs so they will not pass cost-effectiveness as a DSM program over the foreseeable Another main reason for not having a goal or horizon. incentives for renewable energy systems is the current market, even with these systems being not cost-effective, many residential and commercial customers are making the choice to install these systems on their own or leasing these systems. Since the renewable energy initiative pilot closed, the company has seen the following customer interconnections of renewable new

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2016: 286 2 2017: 740 3 2018: 1,259 4 5 Ιf the renewable energy systems passed 6 0. costeffectiveness, would Tampa Electric offer a DSM program 7 that had goals and incentives for these systems? 8 9 renewable if passed Yes, the energy systems 10 Α. costeffectiveness and the other screening that is performed, 11 Tampa Electric would design a DSM program to offer and 12 incentivize the installation of renewable energy systems. 13 14 Tampa Electric support renewable energy 15 0. Does installations? 16 17 Yes, the company supports both customer and utility 18 Α. installed renewable energy system installations. 19 When 20 customers install а renewable energy system, the interconnection process they go through is very customer 21 friendly and we have many solar experts that will assist 22 23 the customer with any questions. From а utility perspective, in 2017, Tampa Electric committed to add 600 24

energy systems at the end of each of these years:

1

25

MW of solar renewable energy systems and is committed to

making its generation fleet cleaner and greener.

Q. Does Tampa Electric see any need for a different type of program to increase the development of demand-side renewable energy systems?

A. Tampa Electric believes there is a need for more energy education surrounding all of the potential options that a customer can choose if they want their energy needs to come from a renewable energy system. With the increase in home systems ownership, leasing opportunities, participation in a renewable block program, participation in a community shared solar program, or some of the other mechanisms that we see around the United States today. More education around these options is still needed.

CONCLUSIONS:

Q. What overall DSM goals are reasonably achievable for Tampa Electric for the 2020-2029 period?

A. Based on the thorough and rigorous analysis performed by

Nexant and Tampa Electric for this current DSM goals

setting process, the company's reasonably achievable

generator level combined RIM-based DSM goals for the

2020-2029 period are: 1 Summer Demand: 79.7 MW 2 3 Winter Demand: 43.3 MW 165.0 GWh Annual Energy: 4 5 These amounts are detailed on an annual basis for both 6 the residential and commercial/industrial sectors in my 7 Exhibit No. MRR-1, Document No. 1. 8 9 By accomplishing these DSM goals, Tampa Electric will 10 11 increase overall energy efficiency in its service area and lower electric rates for all customers. The company 12 is guite aware that keeping electric rates 13 as 14 possible while advancing broad scale efforts of overall conservation is important to its customers and therefore 15 the company. 16 17 Does the methodology used by Tampa Electric to set DSM 18 Q. goals for the 2020-2029 period comply with statutory and 19 20 F.A.C. requirements? 21 Tampa Electric began its evaluation with having a 22 Α. 23 technical potential study developed that utilized a comprehensive and up to date list of potential 24 measures for residential and commercial and industrial 25

These measures were sectors. applied over multiple 1 construction and building types and considered several 2 3 aspects of measure interaction as well as free-ridership statutory consideration. Tampa Electric adhered to 4 5 requirements by developing estimated economic achievable potentials while properly reflecting cost and 6 benefits to all customers. Additionally, Tampa Electric 7 utilized a sound, proven approach that has been used and 8 approved in principle by this Commission in past 9 goals setting proceedings. 10

11

12

13

14

Q. Does Tampa Electric's proposed DSM goals provide a costeffective means for all ratepayers to help meet the need for additional generation through 2029?

15

16

17

18

19

through the continued use of the RIM cost-Α. Yes, effectiveness test, Tampa Electric has assured its ratepayers that the most cost-effective resources will be used to meet future capacity needs.

20

21

22

Q. Should Tampa Electric's proposed 2020-2029 DSM goals be approved?

23

24

25

A. Yes. Tampa Electric's proposed 2020-2029 DSM goals meet rule and statutory requirements, are cost-effective for

participants and non-participants, help to minimize the rate impact for future capacity needs, addresses the desires and needs of its customers, and are reasonably achievable.

Q. Are the Company's proposed goals based on an adequate assessment of the full technical potential of all available demand-side and supply-side conservation and efficiency measures, including demand-side renewable energy systems, pursuant to Section 366.82(3), F.S.?

A. Yes.

Q. Does the Company's proposed goals adequately reflect the costs and benefits to customers participating in the measure, pursuant to Section 366.82(3)(a), F.S.?

A. Yes.

Q. The Company's proposed goals adequately reflect the costs and benefits to the general body of ratepayers as a whole, including utility incentives and participant contributions, pursuant to Section 366.82(3)(b), F.S.?

A. Yes.

Τ.	Q.	boes the company's proposed goars adequatery refrect the
2		need for incentives to promote both customer-owned and
3		utility-owned energy efficiency and demand-side renewable
4		energy systems, pursuant to Section 366.82(3)(c), F.S.?
5		
6	A.	Yes.
7		
8	Q.	Does the Company's proposed goals adequately reflect the
9		costs imposed by state and federal regulations on the
10		emission of greenhouse gases, pursuant to Section
11		366.82(3)(d), F.S.?
12		
13	A.	Yes.
14		
15	Q.	What cost-effectiveness test or tests should the
16		Commission use to set goals, pursuant to Section 366.82,
17		F.S.?
18		
19	A.	The RIM-based cost-effectiveness test.
20		
21	Q.	Does the Company's proposed goals appropriately reflect
22		consideration of free riders?
23		
24	A.	Yes.
25		

1	Q.	What residential summer and winter Megawatt (MW) and
2		annual Gigawatt-hour (GWh) goals should be established
3		for the period 2020-2029?
4		
5	A.	Tampa Electric's reasonably achievable generator level
6		combined RIM-based Residential DSM goals for the 2020-
7		2029 period are:
8		Summer Demand: 53.9 MW
9		Winter Demand: 25.5 MW
10		Annual Energy: 103.6 GWh
11		
12	Q.	What commercial/industrial summer and winter Megawatt
13		(MW) and annual Gigawatt hour (GWh) goals should be
14		established for the period 2020-2029?
15		
16	A.	Tampa Electric's reasonably achievable generator level
17		combined RIM-based Commercial/Industrial DSM goals for
18		the 2020-2029 period are:
19		Summer Demand: 25.8 MW
20		Winter Demand: 17.8 MW
21		Annual Energy: 61.4 GWh
22		
23	Q.	Does this conclude your testimony?
24		
25	A.	Yes.

- 1 BY MR. MEANS:
- 2 Q Mr. Roche, did you also prepare and cause to
- 3 be filed with your direct testimony an exhibit marked
- 4 MRR-1 consisting of 17 documents?
- 5 A Yes, I did.
- 6 MR. MEANS: And, Mr. Chairman, this exhibit is
- 7 identified as Exhibit 63 on staff's comprehensive
- 8 exhibit list.
- 9 CHAIRMAN GRAHAM: Duly noted.
- 10 BY MR. MEANS:
- 11 Q And Mr. Roche, did you cause to be filed an
- 12 errata to Exhibit MRR-1 on August 5th, 2019?
- 13 A Yes, I did.
- Q Other than those changes, do you have any
- other changes to your exhibit?
- 16 A No, I don't.
- 17 Q Mr. Roche, did you prepare a summary of your
- 18 direct testimony?
- 19 A Yes, I did.
- Q Will you please read that summary?
- 21 A Yes.
- Good afternoon, Commissioners. My direct
- 23 testimony describes the comprehensive, thorough and
- 24 rigorous analysis used by Tampa Electric and Nexant to
- 25 develop the full technical potential. I also support

- 1 the company's proposed DSM goals for the 2020 through
- 2 2029 period.
- 3 Our proposed goals before you are based upon
- 4 Tampa Electric's most recent resource planning process.
- 5 The goals are aggressive and, at the same time, are
- 6 reasonably achievable and cost-effective for all
- 7 customers.
- 8 The method employed by the company to
- 9 establish these goals fully adheres Rule 25-17 of the
- 10 Florida Administrative Code. It is consistent with
- 11 approved practices established in previous goals
- 12 hearings, and it specifically follows the Commission's
- order establishing procedure for this proceeding.
- 14 To develop the proposed goals, Tampa Electric
- 15 followed the systematic and thorough process and
- 16 documented each step to ensure transparency. Tampa
- 17 Electric took two years to carry out this process to
- 18 ensure the completeness of the technical potential and
- 19 accuracy of the achievable potential.
- The process required the cost-effective
- 21 analysis of 278 individual measures across various
- 22 customer segments in which no customer segment was left
- out. To analyze these measures accurately, the company
- 24 performed over 70,000 cost-effective evaluations.
- Tampa Electric's proposed goals were developed

- 1 utilizing the Rate Impact Measure test in conjunction
- 2 with the Participant Cost test. This method assures
- 3 compliance with the Florida Statutes, and then it
- 4 recognizes the costs and benefits to participating
- 5 customers and the costs and benefits to the general body
- of ratepayers as a whole, ensuring fairness for both
- 7 participating and nonparticipating customers.
- 8 Tampa Electric believes the continued use of
- 9 the Rate Impact Measure test in conjunction with the
- 10 Participant Cost test remains the most appropriate
- 11 cost-effective approach to establish DSM goals. The use
- of this combination ensures the DSM programs eventually
- 13 approved will be beneficial to all customers, will place
- 14 the least amount of upward pressure on rates, and will
- 15 avoid creating cross-subsidies across or among the
- 16 company's customers.
- This goal development process and the rigorous
- 18 analysis I just described have delivered significant
- 19 success for Tampa Electric and its customers, and for
- 20 the other Florida utilities and their customers as well.
- 21 Tampa Electric's proposed DSM goals were
- 22 carefully developed in a manner fully compliant with
- 23 FEECA and your implementing rules. The goals achieve
- the proper balance of aggressiveness in the pursuit of
- demand and energy savings, but at the same time being

- 1 cost-effective and free of cross-subsidization for all
- 2 customers.
- Based on these facts, and the other matters
- 4 discussed in great detail in my testimony, Tampa
- 5 Electric asks the Commission to approve the DSM goals
- 6 that we have proposed for the company.
- 7 Thank you.
- MR. MEANS: We tender the witness for cross.
- 9 CHAIRMAN GRAHAM: Thank you.
- Mr. Roche, welcome.
- 11 THE WITNESS: Thank you, Chairman Graham.
- 12 CHAIRMAN GRAHAM: OPC.
- 13 EXAMINATION
- 14 BY MS. FALL-FRY:
- 15 O Good afternoon.
- 16 A Good afternoon.
- 17 Q According to your testimony, you only used RIM
- in conjunction with the PCT to set your DSM goals,
- 19 correct?
- 20 A Yes, to establish the proposed goals of the
- 21 generator level at Tampa Electric, we used the Rate
- 22 Impact Measure test and the Participant Cost test. And
- 23 we also used the Total Resource Cost test in conjunction
- 24 with the Participant Cost test just to kind of get a
- look at what we call achievable potential for TRC.

- 1 Q Right. But when you set your actual goals,
- you didn't use -- you used the goals that were
- 3 consistent -- you set your achievable potential based on
- 4 the RIM test, though?
- 5 A Yes, the goals we recommend for approval to
- 6 the Commission is based upon the Rate Impact Measure
- 7 test and the Participant Cost test.
- 8 Q Okay, thank you.
- 9 And TECO has low income residential DSM
- 10 programs, right?
- 11 A That is correct. We have two.
- 12 Q And your low income program includes programs
- 13 that have not passed the Rate Impact Measure test?
- 14 A As a whole, those programs typically do not
- 15 pass cost-effectiveness because we pay for everything
- 16 for those customers. You know, we recognize that
- 17 customers, at times, may not have the financial
- 18 wherewithal to actually, you know, I would say, you
- 19 know, spend the dollars to actually participate in kind
- of an incentive or a rebate type program. And since
- 21 those customers actually do chip into the energy
- 22 conservation cost recovery clause, we think it's
- 23 important that they have an opportunity to participate
- 24 in programs as well, but --
- 25 O Thank you.

- 1 And some of those programs included less than
- 2 a two-year payback, right?
- 3 A Yes. Both programs actually include measures.
- 4 There is five measures in the energy efficiency kit for
- 5 energy education awareness and outreach program. And
- 6 then there is 11 measures in our weatherization program.
- 7 Two of those measures in the 11 are
- 8 cost-effective and actually are run as separate DSM
- 9 programs. The other nine measures, you know, we
- 10 typically, when we design the program, those are going
- 11 to give us, you know, kind of a lot of energy savings.
- 12 So when those are coupled together, it becomes a pretty
- 13 effective program for those customers.
- 14 Q Okay. And you are planning to retain those
- 15 programs?
- 16 A Yes. We will probably get rid of at least one
- 17 measure that I -- I heard the, you know, proverbial
- 18 water heater wrap, you know, all water heaters after
- 19 1996 are required to have insulation. So it's probably
- 20 time that that is actually -- that portion is retired.
- 21 Q And the megawatts associated with those
- 22 programs that you retain, you agree that they should be
- 23 included in your 2020 to 2029 DSM goals?
- 24 A Yes. I agree and recommend that those
- 25 contributions, that those achievements actually go

- 1 toward contributions to the DSM goals that we are
- 2 finally approved by the Commission, yes.
- 3 Q Okay, thank you.
- 4 MS. FALL-FRY: No further questions.
- 5 CHAIRMAN GRAHAM: Okay. Ms. Wynn?
- 6 MS. WYNN: No.
- 7 CHAIRMAN GRAHAM: Kelley?
- 8 MS. CORBARI: No questions.
- 9 CHAIRMAN GRAHAM: SACE.
- MR. MARSHALL: Thank you. We have a lot of
- 11 exhibits that I believe have --
- 12 CHAIRMAN GRAHAM: Actually, what I propose,
- the next one we have is 345. Let's call this the
- SACE/TECO composite, and we are with 345.
- MR. MARSHALL: Okay.
- 16 (Whereupon, Exhibit No. 345 was marked for
- 17 identification.)
- 18 CHAIRMAN GRAHAM: And if you need to ask any
- questions about it, just tell us which ones.
- MR. MARSHALL: All right, I will. And there
- are a few questions we have from the composite.
- 22 CHAIRMAN GRAHAM: Sure.
- 23 EXAMINATION
- 24 BY MR. MARSHALL:
- 25 Q And the first one will be regarding the first

- 1 page of the composite, 345, where it's description
- 2 excerpt from TECO 2018 DSM program accomplishments
- 3 report.
- 4 A Yes, I have it.
- 5 Q And if I could direct your attention to the
- 6 last page of that report.
- 7 A I have it.
- 8 Q And this reports the Tampa Electric Company's
- 9 accomplishments for its neighborhood weatherization
- 10 program for 2018?
- 11 A Yes.
- 12 Q And that is a low income program?
- 13 A It is.
- 14 Q And in 2018, Tampa Electric actually
- 15 accomplished almost 10 gigawatt hours of energy
- 16 reductions at the generator?
- 17 A That is correct.
- 18 Q And had over 7,000 participants?
- 19 A Yes.
- 20 Q Did you -- were you here when Mr. Koch from
- 21 Florida Power & Light discussed their 34 gigawatt hour
- 22 goal for low income programs over the next 10 years?
- 23 A I was in the room, but I am not here to speak
- 24 about Florida Power & Light.
- Q Well, is it fair to say that in 2018, Tampa

- 1 Electric accomplished more than 3.4 gigawatt hours of
- 2 savings for their low income weatherization program?
- 3 A I can tell you, on our report we achieved the
- 4 9.792 gigawatt hours.
- 5 Q And that's more than 3.4?
- 6 A Mathematically, yes.
- 7 Q And Tampa Electric Company is a smaller
- 8 utility than Florida Power & Light?
- 9 A Yes, it is a smaller utility. Less customers,
- 10 yes.
- 11 Q If I could direct your attention next, we are
- 12 going to go to the one that says TECO response to
- 13 staff's first set of interrogatories No. 26. I think
- it's the very last one of the composite.
- 15 A Oh, I thought you were going in order, my
- 16 friend.
- 17 O I think this one might be out of order, but
- 18 hopefully the rest will be close to order.
- 19 A Excerpt from Exhibit No. 241?
- 20 **Q Yes.**
- 21 A Okay.
- Q Wait -- yeah, this is excerpt No. 26 from
- 23 TECO's first set of interrogatories.
- 24 A Interrogatory 38?
- 25 CHAIRMAN GRAHAM: No. The very last one in

- 1 your composite.
- MR. MARSHALL: It should be Interrogatory No.
- 3 26.
- 4 CHAIRMAN GRAHAM: It says excerpt No. 26.
- 5 THE WITNESS: Got it, from staff's first set?
- 6 CHAIRMAN GRAHAM: Yes.
- 7 BY MR. MARSHALL:
- 8 Q I am looking at the table attached. It
- 9 provides the lost revenue for the, both the TRC and the
- 10 RIM achievable potential?
- 11 A That is correct.
- 12 Q And looking down to 2029, the lost revenue
- value for the TRC achievable potential is lower than the
- 14 RIM achievable potential?
- 15 A Yes.
- 16 Q And similarly, the basis point impact is also
- 17 lower under the TRC achievable potential?
- 18 A That is correct. That's just a function of
- 19 math at that point.
- 20 Q All right. Going back to sort of the front of
- 21 the composite to the one that is described as TECO's
- response to SACE POD 3, Bates-stamped 198.
- 23 A Yes, I have it.
- Q And this would -- this spreadsheet would
- 25 include the residential energy efficiency achievable

1 potential for TECO?

- 2 A This is the spreadsheet right before the
- 3 measures actually get combined. When measures come from
- 4 the technical potential, they are broken up by customer
- 5 segments. You know, like our residential is going to be
- 6 broken up into a single family home, multi-family,
- 7 manufactured home.
- 8 So you have all these customer segments going
- 9 from the technical potential to the economic potential,
- 10 and then you keep running them down, but eventually you
- 11 need to be able to combine them into one to run an
- 12 achievable potential on that one program because you are
- 13 not going to have, like, a ceiling insulation program
- 14 just for single family. You would want a program that
- is designed to basically cover all of those customer
- 16 segments.
- 17 O And in this spreadsheet, you have utility
- 18 nonrecurring costs for each of those measures?
- 19 A Yes.
- 20 Q And that would represent the administrative
- 21 costs?
- 22 A Yeah. Those are our administrative costs, and
- 23 we base those upon our light programs.
- Currently, we have 36 conservation programs in
- our portfolio, 14 residential, 22 commercial. So we

- 1 have good experience with how much one of these programs
- 2 should cost us, yes.
- And so, just to be clear, TECO did not use the
- 4 Nexant administrative costs for the measures?
- 5 A No. We developed our own economic and
- 6 achievable potential.
- 7 Q And so TECO only assigned \$30 of
- 8 administrative costs to the variable speed pool pump,
- 9 for example?
- 10 A That is correct.
- 11 Q And for duct repair, only \$18?
- 12 A Yes.
- 13 Q And for ceiling insulation, utility
- 14 nonrecurring costs were \$50?
- 15 A That is correct.
- 16 O And the same administrative costs were
- assigned to ceiling insulation for both R-2 to R-38 and
- 18 **R-12 to R-38?**
- 19 A Right. There would be no difference in having
- 20 an attic inspection before the actual work is done.
- 21 Then the customer actually completes the work, notifies
- 22 the utility. Then we have a requirement to go out and
- 23 actually post verify at least one of every 10
- 24 installations to ensure it's in compliance with the
- 25 program standards.

- 1 Q Switching subjects, if I could direct your
- 2 attention to your testimony. Do you have a copy of your
- 3 testimony with you?
- 4 A I do.
- 5 **Q** To page 20.
- 6 A Okay, I am there.
- 7 Q And on this page, you cite a few different
- 8 analyses from the Energy Information Administration
- 9 ranking Florida in relation to other states.
- 10 A That is correct. When I developed this, you
- 11 know, Florida has a great history of doing demand-side
- 12 management for almost four decades. So when you look at
- 13 the cumulative amount of DSM that has been accomplished
- 14 as well, at the same time, to keep customer rates lower
- than the national average, I think that's pretty
- 16 commendable.
- 17 Q And so for example, you look at the average
- 18 retail price of electricity to the residential sector
- 19 and find that Florida ranked 26?
- 20 A Yes.
- 21 Q If I could direct your attention to the next
- 22 part of the composite exhibit, 2017 average residential
- 23 monthly bill for EIA data.
- 24 A I have it.
- 25 Q And according to this, the average monthly

- 1 residential electricity bill is \$126.44?
- 2 A Let me catch up to you.
- 3 Q Sure.
- 4 A Yeah, that's for the state of Florida. Tampa
- 5 Electric's average bill is around \$104.
- 6 Q And subject to check, Florida on here, that
- 7 would be the eighth highest of in the nation for
- 8 electricity bills?
- 9 A Yeah, but we have a very, like, high heating
- 10 load climate, so there is much more cooling hours in
- 11 Florida. So comparing the total bill to what a customer
- 12 uses -- I mean, I heard the discussion earlier with
- 13 Washington, DC, their climate heating and cooling hours
- 14 are much, much different than the state of Florida.
- 15 Q But you don't dispute the numbers on this
- 16 sheet?
- 17 A No, I don't have any -- I mean, I like the
- 18 Energy Information Administration, so --
- 19 O If I could direct your attention to the next
- 20 part of the composite exhibit, TECO's response to SACE's
- 21 **POD 3 BS 186?**
- 22 A Thave it.
- 23 O And we can take the next two as well at the
- 24 same time I think, BS 188 and BS 195.
- 25 A I have them.

1 Q What are these documents?

- 2 A Yeah. These are documents, when you get down
- 3 to the achievable potential, when you are getting into
- 4 the -- you know, you have calculated your maximum
- 5 incentive that you can pay those customers, both on a
- 6 RIM basis and on a TRC basis, we need to actually
- 7 project their participation. So we will use Bass models
- 8 and adoption curves to formulate how are customers going
- 9 to adopt the technology so we can actually, you know,
- 10 project an accurate customer participation rate.
- We will look at, like, our historical
- 12 participation in our programs just to validate whether
- or not we are actually seeing that same participation
- 14 along the curve.
- 15 Q And so what do you find when you compare it to
- 16 your own internal surveys?
- 17 A Yeah, customers don't really participate like
- 18 adoption curves, because those are kind of like
- 19 theoreticals, where they assume, hey, you know,
- 20 everybody is kind of in the same boat. It's kind of
- 21 like mashed potatoes, it's very lumpy at times.
- Q Turning your attention to TECO's load
- 23 forecasting. TECO's load forecast does not assume that
- there would be no additional adoption by consumers of
- 25 energy efficiency measures above the baseline codes and

- 1 standards over the next 10 years?
- 2 A Can you repeat that question?
- 3 Q Sure.
- 4 TECO's load forecast does not assume that
- 5 there would be no additional adoption by its customers
- of energy efficiency measures above the baseline codes
- 7 and standards?
- 8 A Yeah, maybe it's better if I just answer it
- 9 the way I understand our load forecast is done.
- 10 Our annual load forecast includes natural
- 11 occurring demand-side management, which could be, you
- 12 know, customers adopting technologies that are higher
- 13 efficiency. Could be such as doing maintenance on an
- 14 existing peace of equipment to make it last longer than
- 15 the manufacturer's rated life. Could be, you know, as
- 16 simple as, you know, some behavioral change that a
- 17 customer is doing out of an energy audit that our load
- 18 forecasting folks will actually see. You know, it could
- 19 be, you know, removing the second refrigerator out of
- 20 the, you know, the garage.
- 21 And we don't really know what's kind of
- 22 happening in that sector, so that natural occurring is
- 23 projected, as well as we know the impact from building
- 24 code and appliance standards.
- 25 Q And so TECO, in its load forecasting, assumes

- 1 that the energy consumption trends will continue in a
- 2 similar manner to the past?
- 3 A I think we are going to -- well, we forecasted
- 4 a little bit slower customer growth, so it won't really
- 5 rise as rapidly as we have kind of seen in the past.
- 6 It's kind of still increasing, just at a diminishing
- 7 rate.
- 8 Q What I guess I am trying to get at, though, is
- 9 that in its load forecasting, it assumes that customers
- 10 will continue to adopt measures above baseline codes and
- 11 standards into the future as they have done in the past?
- 12 A Yes, that's correct. Yeah.
- 13 Q And so it is not TECO's contention that the
- 14 load forecast utilized by Nexant in this proceeding
- 15 assumed that TECO's customers would adopt zero
- 16 additional energy efficiency measures above baseline
- codes and standards over the next 10 years?
- 18 A I think that's only part of it.
- 19 Q And then TECO does contend that the load
- 20 forecasts it gave Nexant were accurate?
- 21 A Yes. Knowing the -- how, I guess, important
- 22 the load forecast is to our load research and
- 23 forecasting team, I would definitely say it was
- 24 accurate.
- 25 O TECO also believes that if a measure has a

- 1 payback of less than two years, the customer should
- 2 purchase and install that measure without any additional
- 3 economic incentive?
- 4 A Yes. Tampa Electric has actually used the
- 5 two-year payback screen when we initially filed for it
- 6 in 1991, when we rolled out our custom and -- our custom
- 7 commercial/industrial incentive program, and it has
- 8 actually been used since that time exclusively as the
- 9 method to consider free-ridership.
- 10 Q And TECO has not performed or commissioned any
- 11 studies or reports to form that belief?
- 12 A That is correct. We have not done a study for
- 13 it. You know, one of the things when we run programs,
- 14 we want to be good stewards of our customers' money. If
- 15 we are going to conduct that complex study, you know, as
- 16 I mentioned in my discovery responses, that we would
- 17 outsource that just because I think that if Tampa
- 18 Electric performed that study, and if it was any
- 19 different than maybe a different person viewed it. So
- 20 imagine if it went to a four-year simple payback, I
- 21 think the discussion now would be much more kind of
- 22 emphatic.
- 23 O And then so TECO has not conducted a customer
- 24 survey to assess the percent and number of free rider
- 25 customers participating in its DSM programs?

- 1 A No.
- 2 Q If I could direct your attention to your
- 3 testimony, document No. 13, page one. This will be
- 4 page -- marked as page 180 at the bottom.
- 5 A Yes, I have it.
- 6 Q So at the generator, the RIM based achievable
- 7 potential was 165 -- I am sorry, I think I have made
- 8 **a** --
- 9 A That is the combined goal for the -- proposed
- 10 for the company, 165 gigawatt hours at the generator.
- 11 Q Yes. And for TRC, as reflected on the next
- page, that was 414.6 gigawatt hours?
- 13 A That is correct.
- 14 Q If I could direct your attention to document
- No. 17, page five of five.
- 16 A Yes.
- 17 Q In 2018, TECO achieved 50.8 gigawatt hours of
- 18 combined energy savings?
- 19 A That is correct.
- There are some numbers to understand kind of
- 21 behind there. If you look at the numbers, like in 2018,
- 22 some of our participation was actually from some very
- 23 large customers participating in an interruptible
- 24 program, which those have significant energy savings.
- 25 So when you look at, like the, you know, the 30.2 in

- 1 2017, or the 33.7 gigawatt hours in 2018, those are due
- 2 to very large customers, like one-off's participating in
- 3 the program, which is greatly influencing that number to
- 4 be driven upward.
- 5 Q But even looking at the residential, the
- 6 percent -- the total achieved, for example, for 2018 is
- 7 280 percent higher than the Commission approved goal?
- 8 A Yes. But to understand how the company
- 9 actually accomplishes the residential goals, if you --
- 10 you know, summer peak megawatts is, I would say,
- 11 relatively easy. But that winter peak goal, if you look
- 12 at that, you know, we exceeded it.
- 13 Yeah, it's 123 percent, but typically the
- 14 company has to work very, very hard to actually
- 15 accomplish that residential winter goal. So typically
- 16 that -- when you try to really hit that winter goal,
- 17 that's going to bring on a whole bunch more annual
- 18 energy along with it.
- 19 O And TECO has hit those goals?
- 20 A Say again.
- 21 Q And TECO has hit those goals?
- 22 A Yes. It's actually very important to us to
- 23 actually accomplish the goals as put forth by the
- 24 Commission.
- 25 Q If TECO kept doing 50.8 gigawatt hours of

- 1 energy -- combined energy savings per year, that would
- 2 actually be greater than its TRC achievable potential of
- 3 414.6 gigawatt hours over the next 10 years?
- 4 A Yeah, that is true. But I think there is some
- 5 things to understand with -- between RIM and TRC.
- 6 You know, RIM favors programs that have high
- 7 demand savings. Where we look at lost revenue, that
- 8 kind of hurts you in that formula, even though there is
- 9 other, you know, good things in that denominator as far
- 10 as RIM, as far as the program costs, the incentives,
- 11 those are actually baked in.
- But I think when you look at RIM, that favors
- 13 the demand side of the equation, so that you can
- 14 actually defer the power plant. Where, when you look at
- 15 TRC, you know -- and even in that goal, like the TRC
- 16 amount is probably three times the amount as the 165, or
- 17 it's close if you look at the amount of demand that's
- 18 put forth by TRC.
- And that's because TRC actually favors, like I
- 20 will say, inexpensive type of technologies, because
- 21 really what -- I say submarines, or causes
- 22 cost-effectiveness to fail for TRC is the incremental
- 23 costs. Okay, so what happens is you are kind of there,
- 24 and you are investing all this money with TRC, but you
- are not really deferring the power plant, okay.

- 1 So when you look at kind of a revenue
- 2 requirement, you know, your revenue requirement went up
- 3 for the actual generating source, but the problem with
- 4 TRC is because it favors those inexpensive -- those
- 5 programs and measures, you get a boatload of energy
- 6 savings.
- 7 So what happens is your revenue requirement
- 8 goes up, so when you bring it over to develop your rate,
- 9 now I have a much lower kilowatt hour kind of sales
- 10 portion, so that actually drives the rate up, right. So
- 11 when you look at Total Resource Cost, you know, that's
- 12 why we say it subsidizes because, you know, if I have
- one customer participating, their electric bill goes
- 14 down. Well, somebody is going to have to make that up,
- and that's going to be those nonparticipants.
- 16 Q And I think you are anticipating my next
- 17 question here, so I think that was a helpful
- 18 explanation.
- 19 So if you look at, for example, document No.
- 20 16 of your testimony.
- 21 A Yes, I am there.
- 22 Q And this includes -- on this table, you have
- 23 the total annual DSM portfolio costs for both RIM and
- 24 TRC?
- 25 A That is correct. 396 million for the RIM

- 1 portfolio over the 10 years, and then an additional
- 2 177 million on top of that to afford the TRC portfolio.
- 3 Q And so that RIM portfolio of 396 million, if
- 4 you divided that by the 165 gigawatt hours of the RIM
- 5 achievable potential, that would be about \$2.4 million
- 6 per gigawatt hour of savings?
- 7 A Yeah, I will accept your math.
- 8 Q And similarly, doing it for TRC, with the
- 9 total portfolio cost of 573,475,000 almost 476,000,
- 10 dividing that by the 414.6 gigawatt hours, that would be
- 11 about a little less than 1.4 million per gigawatt hour
- 12 of energy savings?
- 13 A Like I said, I will accept your math. I think
- 14 the issue is when you actually look at both of those
- 15 combined. So one, if I use a TRC portfolio, I am
- 16 putting a lot of pressure to actually increase rates and
- 17 cause cross-subsidization, where RIM, I don't have that
- 18 issue.
- 19 Also in TRC, right now I have a higher
- 20 portfolio cost. So now my energy conservation cost
- 21 recovery clause goes up. So really I have my rates
- 22 going up and clause rate going up, and it's kind of
- 23 exacerbating the problem.
- Q Thank you.
- MR. MARSHALL: No further questions.

- 1 CHAIRMAN GRAHAM: Staff.
- 2 EXAMINATION
- 3 BY MS. DZIECHCIARZ:
- 4 Q Good afternoon, Mr. Roche. This is Rachael
- 5 Dziechciarz with Commission staff.
- 6 A Good afternoon, Rachael.
- 7 Q So I just have a few questions about TECO's
- 8 use of the two-year payback screening.
- 9 Is it correct that -- well, we have already
- 10 established that TECO used the two-year payback
- 11 screening, correct?
- 12 A Yes, ma'am.
- 13 Q Did TECO consider using any alternative
- 14 method, such as surveys or historic data, to account for
- 15 free riders in this proceeding?
- 16 A Not at this time, no.
- 17 Q And did TECO consider using a shorter or
- 18 longer payback period for screening its free riders in
- 19 this proceeding?
- 20 A In the process to get to the achievable
- 21 potential for the proposed goals, we would continue the
- recommendation to continue with the two-year payback.
- 23 We did, just as all of the other FEECA utilities, you
- 24 know, do the sensitivities at the economic potential for
- 25 the one- and three-year basically simple payback screen.

- 1 Q Okay. Thank you.
- 2 And why does TECO believe that the two-year
- 3 payback screening is the best method to address free
- 4 riders?
- 5 A Yeah, I think some of the other witnesses I
- 6 thought said it really well. That it's a reasonable
- 7 approach. It's effective. It doesn't cost a bunch of
- 8 money. You know, a free rider is a customer that
- 9 actually receives a rebate. So it actually received the
- 10 rebate, but they were going to actually purchase the
- 11 equipment on their own.
- 12 So the purpose of the free-ridership
- 13 consideration is to try to prevent that from happening.
- 14 It's not a perfect science to actually do that, but you
- 15 want to limit to as much as practical. So in other
- 16 words, you know, I don't want to go out there and spend,
- 17 you know, \$4 in conservation clause money to save a
- 18 dollar over here. It just doesn't make cost-effective
- 19 sense to actually do that.
- 20 Q Okay. Thank you.
- MS. DZIECHCIARZ: Staff has no more questions.
- 22 CHAIRMAN GRAHAM: Okay, Commissioners.
- 23 Commissioner Brown.
- 24 COMMISSIONER BROWN: Thank you.
- Mr. Roche, excellent testimony. Really

1	thorough prefiled testimony. Had a lot of
2	information in it. Thank you for that, and for
3	your testimony here today.
4	THE WITNESS: Thank you.
5	COMMISSIONER BROWN: Question about the
6	participation rate, and I was trying to see where
7	it was in your if it was there.
8	Has customer participation over all in the DSM
9	programs offered by TECO increased since the last
10	goal setting proceeding?
11	THE WITNESS: Yeah. I think, for the most
12	part, our participation has really continued on,
13	you know, from the prior DSM goals proceeding. I
14	think there is other programs, you know, like we
15	recently rolled out a on-line energy audit which
16	I mean, I think it was fabulous. It was, like, in
17	the last six months, we've had 30,000 authenticated
18	audits. So that's customers going in and actually
19	entering, you know, a user ID and a password to
20	actually go in and actually utilize the tool. So
21	really, I would say it's probably been steady.
22	I think with our proposed goals, I don't
23	really see a, like, a big drop projected for our
24	participation going in the next five years either.
25	COMMISSIONER RROWN: One of your programs is

an R&D component, is that correct? A conservation R&D?

3 Yes. We are pretty active in THE WITNESS: 4 the R&D component. You know, as you kind of asked 5 the question about Grid Edge, or kind of like home 6 energy management, we are looking at most likely 7 filing in this DSM plan that will be subsequent to 8 the, you know, the approval of the goals is an R&D 9 project, or really a pilot program at that time, to 10 look at solar canopy tied with batteries and to tie 11 it with electric vehicle charging both for, like, 12 large industrial type trucks as well as for 13 vehicles.

We recently, about two months ago, we rolled out a home management system pilot that, you know, we use employees as kind of, I will say, the captive guinea pigs for that, just to test it out to see what they would do. But that would provide really realtime information to residential customers on, hey, is my refrigerator, you know, is my refrigerator running too often? But they would connect current transformers and the breaker on the appliances they select, and then they would get access to that information, or to put flags in there to provide warnings, et cetera.

14

15

16

17

18

19

20

21

22

23

24

1	About two years ago, we did a R&D project with
2	the University of South Florida to look at
3	commercial battery storage. And they did a
4	wonderful report for that. When we got to the next
5	phase of the project, it was really the cost of the
6	commercial batteries that we were looking at
7	purchasing and installing at two customer sites.
8	Each battery was about a quarter of a million
9	dollars, and that would exhaust our R&D budget
10	quite rapidly. So we basically shelved that until
11	we can say, hey, how, you know, does battery cost
12	and that technology come down, so eventually one
13	day we can kind of resurrect that R&D program.
14	COMMISSIONER BROWN: That's great. All of
15	that sounds super exciting, and I appreciate the
16	work that you are doing, not use just for TECO and
17	all of its customers, but really for the whole
18	state.
19	THE WITNESS: Yes, ma'am.
20	CHAIRMAN GRAHAM: With regard to education on
21	conservation, Tampa Electric does a lot of
22	different things in the community. What type of
23	DSM programs do you do on the education front?
24	THE WITNESS: Yeah, education is probably
25	the primarily front is our energy audits. So our

1	energy analysts are, they are all certified, some
2	with some national level of energy management. So
3	it's kind of our core, right? And they will go out
4	and educate customers on, you know, quick paybacks,
5	behavioral changes, even up to, like, things are
6	much more, you know, costly than a two-year payback
7	technology. Then it kind of gets down to our
8	energy education program, where we will, you know,
9	participate in trade shows. And then we also
10	COMMISSIONER BROWN: And schools, you are
11	throughout the schools.
12	THE WITNESS: Yeah. I was actually very
13	excited, Commissioner Brown, that Hillsborough
14	County school.
15	So one of the programs we modified during this
16	last five years was we added a electric vehicle
17	education to driving education in Hillsborough
18	County. And we were actually very excited that
19	finally the, you know, Hillsborough County actually
20	approved the finally to get the electric
21	vehicles.
22	So in June of this year, we actually installed
23	the other two chargers at the other two remaining
24	high schools. Polk and Pasco County do not have
25	drivers ed. So we are still kind of holding on to

1	those two chargers. Hopefully they will resurrect						
2	their program. But we see that, the drivers						
3	education really kind of starting off here						
4	relatively quickly.						
5	COMMISSIONER BROWN: It sounds like you all						
6	are doing a lot from your testimony.						
7	With regard to distributed energy resources on						
8	the demand side, it appears that you are still						
9	continuing to offer PV incentives.						
10	THE WITNESS: We don't have a I would say						
11	we don't have a PV program like we had during the						
12	five-year pilot. We did we did learn a lot						
13	during that five-year pilot, but we continued, you						
14	know, even the energy audits or energy education to						
15	educate customers on solar or renewable						
16	technologies.						
17	We do have a renewable block program that						
18	we you know, it's a self-funded program that						
19	will actually fund energy education strictly on						
20	solar. It will do advertising on solar.						
21	And then the main portion of that program						
22	funds PV arrays to be installed, whether they are						
23	at schools. We did the most recent array is						
24	with the Florida, I am going to call it the Fish						
25	and Wildlife kind of center down in Apollo Beach.						

1	But we've done them at Legoland, MoSI. But really
2	just to give our customers an opportunity to see,
3	you know, the benefits of solar.
4	And it's really kind of, I would say, like,
5	we've seen great and awesome participation without
6	any incentives. So since 2017, so in the
7	two-and-a-half years up until May 31st, we've had
8	about 2,800 PV arrays installed on residential
9	homes.
10	So if you look at that, that's about four PV
11	arrays a day, which I think our next metering
12	policy and the friendliness of our staff to kind of
13	walk a customer through, you know, all of the steps
14	that they need to do to actually install that
15	array, to get the net meter, to get the disconnect
16	switch that, you know, we fund for that, I think
17	it's pretty incredible.
18	COMMISSIONER BROWN: Lastly, with regard to
19	our statute mandate that requires utilities to
20	encourage demand-side renewable energy, any other
21	alternative programs that you have contemplated
22	other than what you have mentioned?
23	THE WITNESS: Yeah, the unfortunate part is
24	that, you know, both ways that we looked at PV. So
25	we looked at PV by itself. We looked at PV coupled

1	with battery storage
2	COMMISSIONER BROWN: That's what I am getting
3	at.
4	THE WITNESS: Both of them actually failed.
5	You know, RIM for a PV, there is nothing you can do
6	at this time to actually get it to pass. For TRC,
7	the current costs we are seeing is about \$3. Five
8	years ago, the cost of PV was about \$3.50.
9	So that price is still coming down, but kind
10	of the hard part is is that, you know, it's not
11	really a huge demand saving technology, so it has a
12	lot of lost revenue in there. But for TRC, the
13	costs would have to get down to about 98 cents.
14	And then even to be attractive to a
15	participant for the Participant Cost test, the
16	costs would have to get down do \$1.60 per watt to
17	make it feasible for a customer.
18	COMMISSIONER BROWN: Thank you. Great
19	testimony.
20	THE WITNESS: All right. Thank you.
21	CHAIRMAN GRAHAM: Commissioner Fay.
22	COMMISSIONER FAY: Thank you, Mr. Chairman.
23	I will echo Commissioner Brown. I thought the
24	testimony was very informative and very helpful as
25	you work through this. This question might be a

1	little out of your lane, so feel free to let me
2	know.
3	But the controlling statute for these
4	conservation goals talks about a utility's ability
5	to work with the Commission. The term is used
б	actually as a reward, but essentially that there is
7	a incentive to the utility to pursue and exceed
8	these goals. Is that something you guys have
9	looked at as a company just looking at what you
10	have done?
11	THE WITNESS: Yeah. Commissioner
12	Commissioner Fay, we've always taken the position,
13	you know, the company that you know, if you
14	establish goals based upon RIM and the Participant
15	Cost test, then you are really going for the least
16	cost option for those aggressive DSM goals.
17	So just in that manner, there really should be
18	no reason for us to come in and ask for kind of a
19	bonus adder when, really, both participants and
20	nonparticipants win. Even in RIM, you know, we are
21	being made whole because the program is actually
22	cost-effective.
23	COMMISSIONER FAY: Okay. Thank you.
24	CHAIRMAN GRAHAM: Commissioner Polmann.
25	COMMISSIONER POLMANN: Thank you, Mr.

1 Chairman. 2. At this point, all of my questions have been 3 asked by my fellow Commissioners. Thank you for 4 your testimony, sir. 5 CHAIRMAN GRAHAM: Redirect. No redirect. 6 MR. MEANS: 7 CHAIRMAN GRAHAM: Fantastic. Exhibits. 8 9 We would ask that Exhibit No. 63 MR. MEANS: 10 on the comprehensive exhibit list be entered. 11 CHAIRMAN GRAHAM: If no objections, we will 12 enter Exhibit 63. 13 (Whereupon, Exhibit No. 63 was received into 14 evidence.) 15 CHAIRMAN GRAHAM: SACE, you have the composite 16 exhibit 345? 17 We would ask that 345 be MR. MARSHALL: Yes. 18 moved into the record. 19 CHAIRMAN GRAHAM: We will move 345 into the 20 record as well. 21 (Whereupon, Exhibit No. 345 was received into 22 evidence.) 23 CHAIRMAN GRAHAM: I believe that's all the exhibits for this witness. Would you like to 24 25 excuse him?

- MR. MEANS: Thank you, Mr. Roche.
- THE WITNESS: Thank you.
- 3 CHAIRMAN GRAHAM: Okay. SACE, your first
- 4 witness.
- 5 MR. MARSHALL: SACE calls Jim Grevatt to the
- 6 stand.
- 7 Whereupon,
- 8 JIM GREVATT
- 9 was called as a witness, having been first duly sworn to
- 10 speak the truth, the whole truth, and nothing but the
- 11 truth, was examined and testified as follows:
- 12 EXAMINATION
- 13 BY MR. MARSHALL:
- 14 Q Good afternoon, Mr. Grevatt.
- 15 A Good afternoon.
- 16 Q Were you previously sworn yesterday?
- 17 A Yes.
- 18 O And could you please state your name and
- 19 business address for the record?
- 20 A My name is Jim Grevatt. Business address is
- 21 10298 Route 116 in Hinesburg, Vermont.
- 22 Q And on whose behalf are you testifying today?
- 23 A I am here on behalf of the Southern Alliance
- 24 for Clean Energy.
- 25 Q And on June 10th, 2019, did you prepare and

- 1 cause to be filed direct testimony and exhibits in this
- 2 case?
- 3 A Yes.
- 4 Q Do you have that testimony and those exhibits
- 5 with you today?
- 6 A Yes.
- 7 Q If I asked you the same questions today, would
- 8 your answers be the same?
- 9 A Yes, they would.
- 10 Q Do you have any changes to your prefiled
- 11 testimony or exhibits?
- 12 A I do have a couple of changes.
- 13 There was a typographical error that rippled
- 14 through in a couple of spots that I would like to
- 15 correct. And these changes were addressed in staff's --
- 16 response to staff's third interrogatory.
- But for the record, on page 23 of my
- 18 testimony, in table two, which is labeled impact of
- 19 two-year payback screen on TRC economic potential, if we
- 20 look at the row for TECO, the first value is 747 it
- 21 should be 686. Changing that value following the row
- 22 across to the one-year payback screen, that should be
- 23 86 percent instead of 71 percent. And the next value
- should be 160 percent instead of 139 percent.
- 25 And then also on Table 3, labeled achievable

1	potential as percent of economic potential with a
2	two-year payback screen for TECO row, the same 747
3	should be 686. And then in the last row in the last
4	column in the TECO row, it says 41 percent. It should
5	be 44 percent.
6	And the corresponding changes in the text in
7	my testimony page 22, line 19, replace 71 percent with
8	86 percent. Page 22, line 24, replace 139 percent with
9	160 percent. And page 39, line 17, replace 41 percent
10	with 44 percent.
11	Also one more minor typographical error,
12	footnote 42 references a Duke Energy Carolinas North
13	Carolina docket. That should be a South Carolina
14	docket.
15	Q Thank you.
16	MR. MARSHALL: Mr. Chairman, at this point, I
17	would like to have Mr. Grevatt's prefiled direct
18	testimony entered into the record as though read.
19	CHAIRMAN GRAHAM: We will enter Mr. Grevatt's
20	prefiled direct testimony into the record as though
21	read with those corrections.
22	(Whereupon, prefiled testimony was inserted.)
23	
24	
25	

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re:	Commission Review of Numeric Conservation Goals Florida Power & Light Company) DOCKET NO. 20190015-EC)))
In re:	Commission Review of Numeric Conservation Goals Gulf Power Company) DOCKET NO. 20190016-EC
In re:	Commission Review of Numeric Conservation Goals Duke Energy Florida, LLC) DOCKET NO. 20190018-EC
In re:	Commission Review of Numeric Conservation Goals Orlando Utilities Commission) DOCKET NO. 20190019-EC
In re:	Commission Review of Numeric Conservation Goals JEA) DOCKET NO. 20190020-EC
In re:	Commission Review of Numeric Conservation Goals Tampa Electric Company) DOCKET NO. 20190021-EC

TESTIMONY OF JIM GREVATT ON BEHALF OF SOUTHERN ALLIANCE FOR CLEAN ENERGY

June 10, 2019

I. INTRODUCTION AND QUALIFICATIONS

2 Q. Please state your name, title and employer.

A. My name is Jim Grevatt. I am a Managing Consultant at Energy Futures Group,

located at 10298 Route 116, Hinesburg, VT 05461.

5

1

3

4

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Q. Please describe Energy Futures Group.

A. Energy Futures Group ("EFG") is an energy efficiency consulting firm established in 2010. EFG specializes in the design, implementation, and evaluation of energy efficiency, demand response, renewable energy and other distributed energy programs and policies. EFG has worked on behalf of utilities and other energy efficiency program administrators, public utility commissions, other government agencies, and environmental, low-income, and affordable housing advocacy organizations in 36 states, seven Canadian provinces, and several countries in Europe. EFG's recent work has included serving as advisors on the development of efficiency program portfolios and policies in eight of the ten highest-ranking states in the American Council for an Energy-Efficient Economy's ("ACEEE") 2018 State Energy Efficiency Scorecard. In addition, EFG has authored or co-authored reports on lessons learned from leading residential retrofit programs in North America and Europe; the key pitfalls that can be encountered in performing energy efficiency potential studies; emerging practices in the use of energy efficiency to defer or entirely avoid electric transmission and distribution upgrades; a regional residential lighting strategy for the Northeast; the effectiveness of leading efficiency financing initiatives; and a national best practices manual for cost-effectiveness analysis of efficiency resources.²

1

Q. Please summarize your professional and educational experience.

2 A. I have worked in the energy efficiency industry since 1991 in a wide variety of roles. 3 Prior to joining EFG, I served as the Director of Residential Energy Services at 4 Efficiency Vermont and the District of Columbia Sustainable Energy Utility. I also 5 served as the Manager of Energy Services at Vermont Gas Systems, managing both 6 residential and commercial energy efficiency programs. I have extensive hands-on 7 experience conducting hundreds of energy audits for Vermont's Low-Income 8 Weatherization Assistance Program and Vermont Gas Systems' demand side 9 management (DSM) programs. 10 In my current role as Managing Consultant at EFG, I have advised regulators, utilities 11 and other energy efficiency program administrators, environmental organizations, and 12 low-income and affordable housing advocates in numerous states, including Missouri, 13 Mississippi, Maryland, North Carolina, Pennsylvania, Delaware, Virginia, New 14 Jersey, Illinois, California, Vermont, Maine, Colorado, New Mexico, Nevada, Iowa, 15 and New Hampshire, as well as British Columbia. I use my in-depth knowledge of 16 energy efficiency program operations and management, and my experience in 17 strategic planning, to help ensure that programs achieve their desired market impacts. 18 I received a B.F.A. from the University of Illinois. My resume, attached as Exhibit 19 JMG-1, provides additional detail regarding my professional and educational 20 experience. 21 22 Have you previously testified before the Florida Public Service Commission? Q: 23 A: No, I have not.

24

1 Q: Have you previously testified before other similar state regulatory bodies? 2 A: Yes, I have provided expert witness testimony before utility commissions in North 3 Carolina, Colorado, Nevada, Kentucky, Iowa, and British Columbia, and have 4 authored public comments on behalf of clients in multiple proceedings in 5 Pennsylvania. I have also appeared numerous times before the Maryland Public Service Commission. 6 7 8 II. TESTIMONY SUMMARY 9 10 What is the purpose of your testimony? Q: 11 My testimony assesses the reasonableness of the energy efficiency savings goals A: 12 proposed in this proceeding by the Florida utilities. My testimony focuses most 13 heavily on the goals proposed by Florida Power & Light Company (FPL). However, 14 because I address policy issues related to goal setting, as well as generic concerns 15 regarding the methodology used to develop the efficiency potential study upon which 16 all the utilities' goals are based, my testimony also addresses the goals of Duke Energy Florida, LLC, Gulf Power Company, Tampa Electric Company, JEA, and 17 Orlando Utilities Commission. 18 19 20 Q: Please summarize the conclusion you have reached with regard to the utilities' 21 proposed savings goals. 22 The utilities' proposed savings goals are unreasonably low. Specifically, the utilities' A: 23 proposals would leave enormous amounts of cost-effectively achievable energy 24 savings potential untapped. That may require them to invest in more expensive 25 supply options, saddling their customers with higher electricity bills as a result.

Q: What is your basis for that conclusion?

A: There are two primary reasons I conclude that the utilities' proposed goals are unreasonably low:

1. Misguided reliance on the Ratepayer Impact Measure (RIM) test.

The utilities argue that the RIM test is the appropriate cost-effectiveness test for determining what efficiency measures to promote. However, the RIM test is not actually a test of cost-effectiveness. Rather, it is a test of a measure's or program's potential to cut into utility profits (i.e., lost revenue), which would only effect rates if it caused utilities to seek regulatory approval to increase rates to remain just as profitable as without the efficiency programs. Therefore, it is really just a test of whether rates, and thus bills, could go up for non-participants if a utility goes below the lower bound on their allowed return on equity and increases rates through a rate case, because participants will see bills go down even if rates increase. And, even as such a test, it is not particularly useful. That is why no other state in the country relies on the RIM test as the sole or even primary determinant of whether an efficiency measure or program merits utility investment. It is also why the RIM test is not applied to supply-side investments; if it were, many supply-side investments, such as new power plants and capacity upgrades to substations, would be routinely rejected.

That is not to say that potential rate impacts should not be a consideration in determining the level and pace of cost-effective efficiency investments. They just should not be the only factor considered. Instead, as discussed in the National Standard Practice Manual for Assessing Cost-Effectiveness of Energy Efficiency

Resources, regulators should consider trade-offs between bill savings, participation levels, and rate impacts. For example, basing FPL's efficiency savings goals on the amount of savings the Company estimates to be cost-effectively achievable under the Total Resource Cost (TRC) test, instead of no efficiency measures (only demand response measures passed the RIM test), would increase rates by only five thousandths of a penny per kWh (\$0.00005/kWh), but would reduce the cumulative net present value of revenue requirements (CPVRR) by over \$100 million. Simply dismissing the opportunity to provide such benefits to customers on the basis of an almost imperceptible rate increase does not seem reasonable.

2. Reliance on a fundamentally flawed efficiency potential study.

The efficiency potential study significantly understates the level of energy efficiency savings that can be achieved cost-effectively under the TRC test. First, and probably most importantly, it screens out all measures that have less than a two-year payback on the grounds that is necessary to exclude free riders. That alone cuts the estimate of achievable potential roughly in half. However, the potential study had already excluded all naturally occurring savings – the savings that would be associated with free riders – before it applied the two-year payback screen. Doing this means that presumed free riders were effectively removed from the estimate of savings potential twice, thus the two-year screen inappropriately removed only non-free rider savings potential.

The potential study also artificially and arbitrarily assumed that financial incentives for efficiency measures could not be greater than the level at which the "payback" would be bought down to two years. Again, the rationale was to limit free ridership

based on the assumption that customers facing paybacks of two years or less would all invest in such measures. However, there is no empirical or analytical basis for that assumption. In fact, as discussed further in Section IV of my testimony, the utilities' own analyses suggest that limiting financial incentives to a two-year payback would dramatically reduce the number of customers who would participate in programs – directly contradicting the stated basis underlying the assumption.

Other conservatisms built into the potential study include the omission of early retirement measures; some unreasonably high assumptions regarding non-incentive costs; and various other measure-specific concerns. I discuss all of these concerns in greater detail in the following sections of my testimony.

Q:

A:

Given these concerns, what would you recommend the utilities' savings goals be?

I recommend that the utilities' savings goals be based on the amount of savings that would be cost-effectively achievable under a properly applied TRC test – i.e. one that corrected for all of the problems with the potential study that I have discussed. Unfortunately, those problems are so numerous and complex that the utilities' studies cannot be readily modified to produce appropriate goals. Thus, I recommend that the PSC examine the magnitude of the problems with the potential study, in conjunction with an examination of the actual achievements of leading southern utilities such as Duke Energy Carolinas – which achieved savings equal to 1.67% of annual sales to customers eligible to participate in its programs in 2018 – and Entergy Arkansas – which achieved savings equal to 1.44% of sales to eligible customers in 2018.

1		III. PROBLEMS WITH PRIMARY RELIANCE ON THE RIM TEST
2		
3	1.	The RIM test is not a cost-effectiveness test.
4	Q:	Please describe the RIM test.
5	A:	The RIM test compares (1) utility system benefits (avoided energy costs, avoided
6		T&Dtrm costs, avoided capacity costs, etc.) to (2) the sum of (A) utility system costs
7		(efficiency program costs) plus (B) lost revenues. It is only a test of whether rates
8		will go up if the utility seeks and receives rate adjustments necessary to maintain the
9		level of profits it would have earned absent the efficiency programs. It is not a test of
10		cost-effectiveness.
11		
12	Q:	Why is it not a test of cost-effectiveness?
13	A:	Because it doesn't just assess changes in costs. A cost is an expense or sacrifice
14		incurred to produce an object, service, or outcome. Efficiency program spending is a
15		cost. However, lost revenues, which are central to the RIM test and typically
16		dominate the so-called "cost" portion of the RIM benefit-cost test equation, are not
17		actually a cost.
18		
19	Q:	Why are lost revenues not a cost?
20	A:	Lost revenues can occur when efficiency programs cause total electricity sales to
21		decline, requiring the recovery of both a utility's fixed costs (e.g. the CEO's salary,
22		the cost of trucks and repair crews, etc.) and its past, sunk costs (e.g. a power plant
23		built in the past for which costs – along with a rate of return to provide profits for a
24		utility's shareholders – are still being recovered) to be spread over a smaller volume
25		of sales. No new costs are incurred. The utility still needs to recover the same

1 amount of money that has been approved by regulators for its fixed costs. But 2 because the same amount of money needs to be recovered over a smaller volume of 3 sales, rates may need to be increased. 4 5 Q: Isn't it important to understand the rate impacts of efficiency programs? 6 A: Yes. But rate impact assessment is different from cost-effectiveness assessment. 7 When faced with a choice between an electric bill for 1000 kWh at \$0.10/kWh (\$100 8 total) or a bill for 800 kWh at \$0.11/kWh (\$88 total), customers will be better off to 9 choose the latter because it will cost them less even though the rate is higher. 10 11 The real issue with rate impacts caused by efficiency programs is that not every 12 customer will see their bill go down; while efficiency program portfolios can be 13 designed to be broad and diverse enough so that all customers have the opportunity to 14 participate, not every customer will choose to take advantage of those opportunities 15 and participate. Thus, concerns about possible rate impacts driven by lost revenues 16 are really concerns about non-participants. Put another way, the RIM test is really a 17 test of impact on those customers who choose not to participate in an efficiency 18 program. 19 20 Q: Does the RIM test have value as a test of impact on non-participants? 21 A: It has some value, but even as a test of impact on non-participants it is not particularly 22 helpful on its own. For one thing, a RIM benefit-cost ratio does not tell you by how 23 much rates will go up or down. Further, it doesn't tell you how many customers 24 would be adversely affected, particularly over a multi-year period. Nor does it tell you which customers would be adversely affected. Finally, it doesn't tell you 25

anything about the benefits you would be forgoing if you allow concerns about nonparticipants to determine all investment decisions.

Why do those things matter? Why isn't it reasonable to strictly adhere to RIM

3

Q:

A:

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1

2

test results and eliminate efficiency programs that produce any rate impacts and therefore any amount of impact on those who choose not to participate? Conceptually, it is never a good idea to pursue an investment when its benefits do not exceed its costs, however any economic analysis must monetize all costs and benefits if it is to be used dispositively. One can point to examples in which regulators approve investments that nominally increase costs on the basis of benefits that are understood, but that are not precisely valued. For example, regulators regularly approve upgrades to the distribution system in order to improve reliability. Similarly, as discussed in Mr. Wright's testimony, regulators in some states approve low income efficiency programs even when they do not pass the TRC or other cost-effectiveness tests. However, in both of those examples the underlying rationales for approval are still that benefits exceed costs. In the example of distribution system investments, regulators are making a judgment that increased reliability – a benefit – is worth the cost. In the low income efficiency program example, regulators are making a judgment that the equity benefits of serving low income customers and/or other unquantified or unmonetized benefits (e.g. reduced utility credit and collection costs, health, and safety benefits, etc.) are worth the cost. Put simply, regulators are still adhering to the principle that benefits must exceed costs. It is just that some benefits have not been monetized so that they fit easily into a cost-effectiveness test, and regulators are using their informed judgment to compensate for that.

1 In contrast, there is no conceptual reason to always reject any and all investments that 2 may increase rates and/or that may result in inequities between different customers. 3 While those outcomes may in isolation (i.e. all other things being equal) be undesirable, they are often accompanied by other outcomes that are highly desirable, 4 5 requiring regulatory consideration of trade-offs. Indeed, regulators approve rate 6 increases and make decisions in other proceedings regularly that create some level of 7 inequity between different customers. That can happen as a result of approvals of 8 supply-side investments that increase rates (which I discuss further below), as a 9 function of rate design decisions,³ and probably in other ways as well. Regulators 10 approve such investments when they conclude that the benefits associated with the 11 investments are substantial enough to outweigh equity concerns. 12 13 Put another way, regulators routinely – either explicitly or implicitly – consider trade-14 offs between rate impact and/or equity concerns on the one hand, and benefits to the 15 system as a whole or to customers as a whole on the other. That same consideration 16 of trade-offs should apply to consideration of which energy efficiency program 17 investments to support as well. 18 19 2. The RIM test is not applied to supply-side investments. 20 Is the RIM test typically applied to supply-side investments? 0: 21 A: No, not in my experience. 22 23 Q: What would happen if it was? 24 A: Many proposed supply side investments would fail. Put simply, because the RIM test 25 is a test of whether rates may go up, any supply-side investment that would raise

1 rates, all other things being equal, would fail the RIM test.

A:

A:

Q: On p. 39, lines 18-23 of his testimony, FPL witness Whitley states the following: "Because all customers on FPL's system are served by the Supply option if that option is chosen, all customers are 'participants' in the selected Supply option. Electric rates and bills for all customers move in the same 'direction', either up or down from year-to-year compared to another Supply option that could be selected. Therefore, there is no subsidization of one group of customers by another group."

Do you agree?

No. I disagree with both the notion that all customers are "participants" when a supply investment is made and – more importantly – the assertion that there is no subsidization of one group of customers by another group when supply-side investments are made.

O: Why do you disagree?

Consider supply-side investments that are made solely to address growing demand – either at the system-level (e.g. a new power plant) or at the local level (e.g. a substation capacity upgrade). By definition, the need for those supply-side investments is driven solely by new customers who are adding load to the system and/or existing customers whose demands are growing. If we are making an analogy to efficiency programs, they are the only "participants" in the supply-side investment. The new power plant and/or the new substation is being built to meet their needs, not the needs of customers whose demand is not growing. It is hard to understand how existing customers whose demand has remained unchanged or even declined could be

characterized as "participants" in a substation capacity upgrade driven entirely by other customers' peak demands.

More importantly, the costs of the new power plant and/or the substation capacity upgrade in this scenario will not be borne solely by the customers whose new demand or growing demand created the need for the supply-side investments. Instead, to the extent that these costs are recovered through rates, they will be borne by all customers, including those existing customers whose demand did not grow. In the case of a substation (or other distribution system) capacity upgrade, customers who are not even served by the substation being upgraded will pay some (if not most) of the cost. That is the very definition of cross-subsidization.

A:

Q: Are you suggesting that there is a problem with how the costs of supply-side investments are allocated?

I am not offering an opinion on that subject. I am simply making the point that there may not only be rate increases, but also cross-subsidization between different customers when supply-side investments are made. Thus, strict adherence to the RIM test in order to eliminate any rate impact and any cross-subsidization between customers is imposing a very different "screen" on efficiency program investment decisions than regulators impose on supply-side investment decisions – even though efficiency programs can be a lower cost alternative to some of those supply-side investments. In supply-side proceedings, not using the RIM test requires regulators to appropriately apply their judgment in assessing benefits, whereas the use of the RIM test in energy efficiency proceedings falsely implies that such judgment is not required.

1		
2	3.	Reliance on RIM test means rejecting hundreds of millions of dollars of bill
3		savings.
4	Q:	What are the implications of adopting the RIM test as the basis for determining
5		whether an efficiency measure or program is promoted?
6	A:	The short answer is that rejecting all efficiency measures that fail the RIM test will
7		result in total electric bills for the state that are hundreds of millions of dollars higher
8		than they could have been.
9		
10	Q:	What is the basis for that statement?
11	A:	As Table 1 shows, the cumulative present value of revenue requirements (CPVRR)
12		for FPL's TRC plan was \$104 million lower than the CPVRR for the RIM plan it has
13		proposed instead. And that is just for FPL. Also, it is a very conservative estimate of
14		the amount of bill reductions that could be achieved because of numerous problems
15		with FPL's analysis of achievable TRC potential which I discuss in the next section
16		of my testimony.
17		
18	Q:	What would be the trade-off in terms of rate impact for adopting the FPL TRC
19		plan (instead of its proposed RIM Plan) and achieving that \$104 million in
20		CPVRR savings?
21	A:	As Table 1 shows, the trade-off, also based on FPL analyses, would be an average
22		increase in electric rates of about five thousandths of a penny per kWh (or less than a
23		0.06% increase) – if the utility sought and received approval for rate adjustments
24		necessary to keep its profits at the same level as without efficiency programs.

Table 1: Bill Savings and Rate Impacts of FPL TRC Plan (vs. RIM Plan)⁴

	CP\	CPVRR		Levelized Rate		
		Difference			Difference	
		from RIM		Difference	from RIM	
		Plan		from RIM Plan	Plan	
Plan	(millions \$)	(millions \$)	(\$/kWh)	(\$/kWh)	(percent)	
TRC	\$52,924	-\$104	0.096332	\$0.000054	0.056%	
RIM	\$53,028	\$0	0.096278	\$0.000000	0.000%	

A:

4. No other state relies on RIM to screen out efficiency measure or programs.

Q: Are you aware of any other state that relies on the RIM test to screen efficiency measures or programs out of demand-side management (DSM) portfolios?

No. A number of jurisdictions consider the results of the RIM test along with the results of a variety of other tests when determining which efficiency programs to support. However, to my knowledge, no other state in the country relies on the RIM test as the sole or even primary determinant of whether individual efficiency measures or programs merit utility investment. Indeed, in 2012 the American Council for an Energy Efficient Economy published a report that showed that only one of the 41 states that relied upon one cost-effectiveness test as its "primary" test–Virginia – used RIM⁵ as the primary test, and in 2018 the Virginia General Assembly passed legislation rejecting that practice.⁶

To my knowledge, there are only three notable changes with regard to the use of the RIM test since that report was published. First, in 2014, Florida shifted to relying on RIM as its primary test.⁷ Second, as noted above, Virginia no longer relies on RIM as its primary cost-effectiveness test. Instead, the state currently supports any efficiency program that passes three of the following four tests: RIM, TRC, Utility Cost Test

(UCT) and Participant Cost Test (PCT).⁸ Third, the state of Iowa partially applies 1 2 RIM at the total portfolio level, which is notably different from the Florida utilities' 3 proposed approach of using RIM to screen out individual efficiency measures and programs. Efficiency measures and programs that fail the RIM test are included in 4 5 DSM portfolios to the extent that demand response programs that pass RIM provide 6 enough downward pressure on rates to offset the upward pressure on rates associated 7 with the efficiency programs. Even under this constraint MidAmerican Energy 8 proposed an annual utility energy efficiency investment of roughly \$165 million 9 between 2019-2023.9 10 11 12 IV. PROBLEMS WITH THE FLORIDA POTENTIAL STUDIES 13 14 1. Measures with paybacks of less than two years were inappropriately excluded. 15 Q: How did the Florida utilities treat efficiency measures with a payback of less 16 than two years in their assessments of efficiency potential? All such measures were removed from estimates of efficiency potential. 10 17 A: 18 19 What is the rationale put forward by the Florida utilities for excluding all Q: 20 efficiency measures with a payback of less than two years from their efficiency 21 potential studies? 22 23 A: The utilities suggest that this exclusion is necessary and appropriate to "minimize the impact of 'free riders.'"11 The underlying rationale is explained by FPL witness 24 25 Koch:

"It simply recognizes that rational customers will act in their own economic interest and take measures to reduce energy consumption, if it is sufficiently attractive economically for them to do so without a utility incentive payment. It is also an example of a free market economy working as it should – rational economic decisions being made in one's best interest without government intervention through mandates or provision of incentives."

Q: Do you find that argument to be persuasive?

- 10 A: No. There are several major problems with the argument:
 - 1. The utilities have provided no empirical evidence or data to support the notion that all efficiency measures with a payback of less than two years are or would be routinely purchased or installed by customers in the absence of utility programs.
 - 2. The argument that customers would adopt measures with short paybacks because it is economically rational ignores the underlying premise for utility sponsored efficiency programs: that market barriers often preclude customers from investing in efficiency measures that are cost-effective.
 - 3. Even in cases in which there are no non-financial market barriers, some customers will not buy measures with two-year paybacks because they are even more short-term focused than that. Low income customers are good examples. This is discussed further in Mr. Wright's testimony.

4. The utilities' own analyses of achievable potential – in which they assume that significant portions of potential for measures with initial paybacks of longer than two years would not be captured if financial incentives for such measures were limited to

1 reducing paybacks to two years – directly contradicts the premise that all or most 2 customers would invest in measures with paybacks that short. 3 5. In developing estimates of technical potential – the foundation for both economic and achievable potential – Nexant already accounted for naturally-occurring efficiency. 4 5 Thus, the potential effects of free ridership were already excluded from the estimates 6 of savings potential before the application of the two-year payback screen. Thus, the 7 two-year payback screen is a redundant adjustment for free riders that artificially 8 makes cost-effective efficiency potential appear to be lower than it really is. 9 10 Q: How does the application of a two-year payback screen to eliminate efficiency 11 measures from estimates of economic and achievable potential ignore the 12 underlying premise for utility-funded efficiency programs? 13 A: The underlying premise for utility-funded efficiency programs is that such programs 14 are necessary to address market barriers to customer adoption of cost-effective 15 efficiency resources. Those market barriers can take many forms, including many 16 non-financial forms. Key examples of market barriers that can stop customers from 17 investing in measures, even those with short payback periods, include: 18 Lack of awareness of a DSM measure; 19 Lack of awareness of potential savings benefits – both of customers who would 20 buy or install measures and sometimes of sales staff for retailers, contractors, or other vendors selling products; 21 Concern with service or product degradation; 22 23 Availability of a DSM measure; 24 Past experiences with DSM measures: Competing demands for available financial resources; 25

1		• Split incentives – between the entity or individuals that must pay for a measure					
2		and the entity or individuals that would receive the benefits (e.g. between					
3		landlords and tenants and between builders and home-buyers); and					
4		• Limited or inadequate technical expertise of trade allies (e.g. HVAC					
5		contractors, new construction design professionals, builders). 12					
6							
7	Q:	Are there data to support the notion that the combination of market barriers					
8		faced by consumers leads to less than universal purchase and installation of					
9		measures with paybacks of up to two years?					
10	A:	Yes. First, one can look at market shares for efficient products that the utilities					
11		removed from their estimates of efficiency potential because of their short paybacks.					
12		Consider, for example, Energy Star commercial griddles and Energy Star computer					
13		servers. Both measures were removed from FPL's TRC analysis because of the two-					
14		year payback screen, 13 but both have national market shares of under 20%. 14					
15							
16	Q:	Can you provide examples of how the utilities' own analyses of achievable					
17		potential directly contradict the premise that all or most customers would in					
18		in measures with paybacks of two years or less?					
19	A:	Consider the two-speed pool pump measure. This measure passed the TRC test for					
20		FPL and had an estimated payback without any efficiency program incentives of 3.5					
21		years. Because FPL (and the other utilities) assume that financial incentives for					
22		measures cannot buy the customer payback to less than two years, the Company					
23		assumed that its program rebates could only cover 43% of the measure cost and that					
24		the remaining 57% of the incremental cost of the measure would need to be borne by					
25		its customers. Under that assumed constraint, the Company estimated that an					

1 efficiency program promoting this measure could only acquire 4% of the savings 2 potential because the out-of-pocket cost to customers would still be relatively high. 15 3 Put another way, FPL has estimated that even with the cost bought down to a twoyear payback, 96% of its customers would not buy the measure! That obviously and 4 5 fundamentally contradicts the notion that the vast majority of customers considering 6 efficiency measures with two-year paybacks would buy such measures and therefore 7 be free riders in any utility programs promoting such measures. 8 9 Q: How did Nexant exclude naturally-occurring efficiency from its estimates of 10 technical potential? 11 A: Nexant makes clear that it excluded two forms of naturally-occurring efficiency from 12 its estimates of technical potential in section 5.1.1 of its potential study report: 13 1. savings that will materialize in the future as a result of government codes and 14 standards: and 15 2. additional savings that will materialize in the future because some customers will buy 16 products more efficient than required by such minimum standards without utility-17 funded efficiency programs – what Nexant calls "baseline measure adoption." 18 As Nexant put it, the result is an estimate of "net penetration rates" (emphasis added) 19 which represents "the difference between the anticipated adoption of efficiency 20 measures as a result of DSM efforts and the 'business as usual' adoption rates absent 21 DSM intervention." This was accomplished by: "...discuss[ing] the assumptions included in the base sales forecast with 22 23 the [utility's] load forecasting group to determine the assumptions on 24 naturally-occurring efficiency adoption, as well as using utility-specific and regional data on current levels of efficiency adoption that were 25

23

24

25

A:

included in the applicability factors applied to each measure."¹⁶

3 Q: How does the fact that Nexant excluded naturally-occurring efficiency from its 4 estimates of technical potential make the application of the two-year payback 5 screen when estimating economic potential "redundant" as a mechanism for 6 removing free riders? 7 A: By definition, free riders are efficiency program participants that would have installed 8 promoted measures without the program. Again, by definition, the savings from such 9 potential free ridership are included in Nexant's estimate of naturally-occurring 10 efficiency (baseline measure adoption) which Nexant excluded from its estimates of 11 technical potential. In other words, Nexant's estimates of technical potential already 12 removed any savings from customers who could be candidates to be free riders. 13 Because economic potential and achievable potential are both subsets of technical 14 potential, no additional adjustments are necessary to remove potential "free riders" at those stages of the analysis. Thus, the fact that Nexant and/or the utilities applied a 15 16 two-year payback screen at the economic potential stage means that they have 17 inappropriately "double-adjusted" for potential free riders. 18 19 Q: Are you suggesting that because Nexant excluded the effects of naturally-20 occurring efficiency from the potential study that utility programs to promote 21 efficiency cost-effective measures with paybacks of two years or less would not 22 have free ridership?

No. I am simply saying that the exclusion of naturally-occurring efficiency is, by itself, all that is necessary to develop estimates of net savings potential – i.e. savings after removing free riders – that is cost-effectively achievable. The next step is to

1 design programs to acquire that potential. Inevitably, most such programs will have 2 some level of free ridership – from both measures with shorter paybacks and 3 measures with longer paybacks. The level of free ridership will be a function of the 4 market and the program design. 5 6 Q: Do you agree that it is appropriate to address free ridership, both in setting 7 savings goals and in the design and implementation of programs? 8 A: Yes. As already discussed, if the two-year payback screen were removed from the 9 potential study the result would be an estimate of net savings potential -i.e. 10 excluding any savings from possible free riders. After addressing other concerns 11 discussed below this would be an adequate basis for goal setting. Then, when the 12 utilities design and implement programs to capture that level of savings potential, the 13 savings they produce from such programs should be evaluated and adjusted to 14 exclude the effects of free ridership. That is the way concerns regarding free 15 ridership are addressed in numerous other jurisdictions. 16 17 Q: In his deposition, witness Herndon stated that although he was unaware of any 18 other jurisdiction that adjusted estimates of efficiency potential by removing 19 measures with two-year paybacks or less, he was aware of programs in other 20 jurisdictions that limit financial incentives to levels necessary to buy paybacks down to two years.¹⁷ Doesn't that support the notion that applying a two-year 21 22 payback screen is a reasonable approach to removing free riders from the potential study? 23 24 A: No. To the contrary, it supports the alternative approach that I have suggested 25 instead. Potential studies that already adjust for naturally-occurring efficiency do not

need and should not have another arbitrary adjustment applied to their estimates of savings potential. And no other state or potential study of which either I or Mr. Herndon are aware does that. However, once savings goals are set, it is appropriate to design programs to minimize free ridership (in conjunction with other objectives). For some measures or some programs in some markets, one option that can make sense is to limit incentives to levels that are associated with customer paybacks of two years, or some other time period. For other measures, programs, and markets that would not make sense. In fact, in my experience, while payback may be one factor that is considered in the determination of incentive levels, specific financial incentive payback limits are typically only applied in other jurisdictions to custom Commercial and Industrial programs targeting larger business customers. Put simply, this is a program design issue not a potential study or goal setting issue.

A:

Q: What is the effect of the application of the two-year payback screen to the utilities' estimates of TRC cost-effective achievable potential?

As sensitivities to their analyses, the utilities each estimated how much higher the estimates of economic potential would be if the two-year payback screen was reduced to one year. As Table 2 shows, just reducing the two-year payback screen to one year would increase estimates of economic potential by 54% for FPL and by 26% to 11% 86% for the other utilities. Two of the utilities – TECO and Gulf – provided estimates of economic potential without a two-year payback screen. I have estimated that number for FPL by rerunning its cost-effectiveness tool. The result of eliminating the inappropriate two-year payback screen entirely is to increase the estimate of economic potential by 80% for Gulf, 139% for TECO and over 150% for FPL. Put simply, eliminating the two-year screen results in roughly a doubling – or more – of

Corrections input by Debbie Krick, court reporter.

cost-effective savings potential.

A:

Table 2: Impact of Two-Year Payback Screen on TRC Economic Potential

	TRC Economic Energy Efficiency Potential (GWh)			% Increase in TRC Econ Potential vs. 2-Year Payback Screen	
	w/2-year		without		
	payback	payback	payback	1-Year Payback	No Payback
Utility	screen	screen	screen	Screen	Screen
FPL	3554	5490	8905	54%	151%
Duke	3117	3915	n.a.	26%	n.a.
TECO <	686 747	1275	1785	86% 7/10%x	160% 189%)
Gulf	981	1253	1762	28%	80%
Orlando	465	710	n.a.	53%	n.a.
JEA	1024	1383	n.a.	35%	n.a.

Corrections input by Debbie Krick, court reporter.

- 2. In estimating achievable potential, incentives were inappropriately limited to levels necessary to buy customer paybacks down to two years.
- Q: How did the utilities address the issue of payback periods for cost-effective efficiency measures whose payback without financial incentives was greater than two years?
 - The utilities included efficiency measures that were cost-effective and had paybacks of greater than two years in their estimates of achievable potential. But when estimating how much savings was achievable from those measures, they assumed that they could not provide financial incentives greater than the amount that would be associated with buying the customer payback down to two years. Again, the rationale that they put forward for adopting this assumed limitation was that buying paybacks down to levels below two years would mean paying free riders.

Q: Is that a reasonable conclusion?

No. For reasons I have already stated, it is not reasonable to assume that all measures with a two-year payback or less will be universally purchased and installed without a utility program. Further, as I've also already discussed, the utilities own estimates of achievable potential show that they do not actually believe that buying paybacks down to two years will ensure that most customers will purchase and install such measures. If they actually did believe that, then their estimates of achievable potential would be the same as (or very close to) their estimates of economic potential; instead, as Table 3 shows, they are dramatically lower, particularly for FPL.

A:

Table 3: Achievable Potential as Percent of

Economic Potential With a Two Year Payback Screen

	G	Wh									
	TRC Econ										
	Potential										
	w/2-year	TRC									
	payback	Achievable	AP as								
Utility	screen	Potential	% of EP								
FPL	3554	196	6%								
Duke	3117	432	14%								
TECO <	686 xxxx	305	X41/%	44%							
Gulf	981	222	23%								
Orlando	465	137	29%								
JEA	1024	262	26%								

Corrections input by Debbie Krick, court reporter.

A:

Q: What are the implications of this inappropriate assumption?

By the utilities' own admission, this assumption has the effect of lowering estimates of achievable potential. In fact, as Table 3 shows, only TECO estimates that it can achieve as much as 40% of its economic potential; none of the other utilities estimate that they can achieve even 30% of their economic potential. Put simply, for measures

1		for which market barriers are such that it is not possible to achieve significant market
2		penetration without driving paybacks to less than two years, the utilities' estimates of
3		achievable savings potential have been artificially reduced.
4		
5	Q:	Why is FPL's estimate of the portion of economic potential that it can achieve –
6		6% – so much lower than all the other utilities?
7	A:	I am not certain. However, it is worth noting that FPL essentially adopted a three-
8		year payback screen. It did this by assuming that the incentives it could offer for
9		measures with paybacks of between two and three years (when buying paybacks
10		down to two years) were too small to have an impact on the market, so they
11		eliminated such measures from their achievable potential estimates. ¹⁹ The result was
12		eliminating about half of the TRC cost-effective measures that passed the two-year
13		payback screen when estimating TRC achievable potential. I do not know if the other
14		utilities did the same thing. If they did not, then this could be a big part of the reason
15		FPL's estimates of achievable potential, as a percent of economic potential, is so
16		much lower than the others.
17		
18		
19		
20		
21	3.	Potential study inappropriately excludes early retirement measures.
22	Q:	What is "early retirement"?
23	A:	Early retirement is when an efficiency program successfully encourages a customer to
24		cost-effectively replace a still functioning piece of electricity-consuming equipment
25		before that equipment would otherwise have been replaced.

Α.

Q: How did the potential studies exclude such measures?

The potential study assumes that the only opportunity for efficient equipment measures is at the time such equipment would naturally turn over, when customers have already made a decision to replace equipment. Thus, it assumed that the portion of the market that can be affected each year is equal to the number of customers with a particular piece of equipment divided by the average measure life of that equipment. For example, if a commercial light fixture has an average life of 15 years, the potential study assumed that one-fifteenth of the existing stock of such light fixtures would get replaced each year and that efficiency upgrades could only occur at that pace.

Q:

A:

Is it reasonable to limit estimates of savings potential to such time of turnover opportunities?

No. It is usually true that the costs of efficiency savings are lower at the time of natural turnover than through early retirement. Indeed, early retirement is probably not cost-effective for many measures. However, that is not true for all measures. In fact, there are some measures for which early retirement can be quite cost-effective and from which substantial savings can be realized. Commercial light fixtures are notable examples. In fact, savings from such measures – at least in the short to medium term – can be substantially higher than savings that are achievable when waiting until time of natural turnover. This is because the baseline from which savings from early retirement measures should be initially measured (i.e. the existing equipment efficiency) can be much less efficient than the baseline for a standard new piece of equipment.²⁰

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Q:

A:

Q:

Α.

Do utility efficiency programs in other states include early retirement measures? Yes. Again, not for all measures, but for some measures. In fact, early replacement is common enough that a number of states' Technical Reference Manuals (TRM), which document common assumptions and/or protocols for estimate savings, include specific reference to early retirement measures (alternatively called early replacement measures) and how to estimate savings for them. For example, the Arkansas TRM "allows for early replacement of certain measures that have been verified through a number of evaluations." It further states that such early replacement has the benefit of "being able to claim higher energy savings for the remaining useful life (RUL) of the equipment (the efficiency difference between the new, efficient equipment and the existing equipment), and then dropping to lower energy savings rates (under higher baselines) only for the period of the EUL that exceeds the RUL (the difference between new, efficient equipment and a code baseline)."21 Illinois is an example of another state whose TRM explicitly allows for calculating savings from existing equipment efficient levels for early retirement measures.²² What was the utilities' rationale for excluding early retirement measures from the potential study? FPL has suggested that the reason early retirement measures were not included in estimates of achievable potential is that there was a "lack of reliable information on early retirement adoption rates."23

1 **Q**: Is that a reasonable explanation? 2 A: No. As noted above, a number of utilities across the country run programs that 3 include some early retirement measures. They all develop estimates of participation 4 rates for those programs when developing plans they submit to their regulators. 5 6 Q: What are the implications of excluding early retirement measures from the 7 potential study? 8 A: Excluding early retirement measures has the effect of reducing estimates of 9 achievable potential, at least in the near to medium-term (e.g. in the next five years) 10 during which the less efficient existing equipment would have been the baseline from 11 which to measure savings. 12 13 4. Cost-effective mid-efficiency measures excluded from economic savings potential 14 when higher-efficiency measures – to which all savings potential was assigned when estimating technical potential – fail economic screening. 15 16 Q: What should happen when estimating technical potential and economic potential 17 from end uses for which there are multiple potential "tiers" of efficiency 18 improvement? 19 A: When estimating technical potential, the most efficient measure should be assumed to 20 be purchased and/or installed. For example, for residential pool pumps for which 21 there are two efficiency upgrade options – two-speed pumps and variable speed 22 pumps – the estimate of technical potential should be based on the presumption that 23 all new pool pumps are the most efficient option, or variable speed pumps. To ensure 24 that there is no double-counting of savings, the study should assume no market penetration of the less efficient upgrade option, or two-speed pumps. 25

When estimating economic potential, all of the savings should be assumed to come from the most efficient measure that passes the cost-effectiveness test, which may be a lower level of efficiency than was included in the technical potential estimate. For example, if the most efficient option on which technical potential was based — variable speed pool pumps in the example I've been using — fail cost-effectiveness screening, but the less efficient option of two-speed pool pumps pass, the economic potential should be based on the presumption that all new pool pumps purchased in the future will be two-speed pool pumps.

A:

Q: Is that how the utilities and their consultant estimated technical potential and achievable potential?

That is how all the utilities estimate technical potential. However, it is not how they all estimated economic potential. At least FPL and TECO failed to assign economic savings potential to measures that could cost-effectively provide levels of efficiency above baseline when the most efficient alternative measure used to estimate technical potential was not cost-effective.

Q: Can you provide an example?

A: I will give two FPL examples, one related to the efficient pool pumps discussed above and another related to air source heat pumps as replacements for electric resistance furnaces.

I'll start with savings potential from efficient pool pumps. Because variable speed pool pumps are more efficient than two-speed pool pumps, FPL estimated technical

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

potential from pool pumps based entirely on the savings that variable speed units could provide. That amounted to about 58 MW of summer peak savings, 33 MW of winter peak savings and 280 GWh of annual energy savings.²⁴ Again, that is the appropriate way to estimate technical potential. Then, when conducting costeffectiveness screening, FPL found that although the two-speed pool pump passed the TRC test, the variable speed pool pump did not. Once it realized that was the case, the Company should have included in its estimate of economic potential the savings that could be provided by two-speed pool pumps. However, it neglected to do that. Instead, even though the two-speed pool pump was TRC cost-effective, the Company estimated that the economic savings potential from the measure was zero.²⁵ Similarly, when analyzing the savings potential by displacing electric resistance heating, the utilities analyzed two options: (1) a SEER 14 air source heat pump and a SEER 21 air source heat pump. Because SEER 21 is more efficient than SEER 14, FPL estimated technical potential from heat pumps replacing electric resistance heat based entirely on the savings that SEER 21 systems could provide. That amounted to about 77 MW of summer peak savings, 95 MW of winter peak savings and 474 GWh of annual energy savings. ²⁶ Again, that is the appropriate way to estimate technical potential. Then, when conducting cost-effectiveness screening, FPL (and TECO) found that although the SEER 14 air source heat pump displacing electric resistance heat passed the TRC test, the SEER 21 alternative did not. Once it realized that was the case. FPL and TECO should have included in their estimate of economic potential the savings that could be provided by SEER 14 air source heat pumps displacing electric resistance heat. However, they neglected to do that. Instead, even though the SEER 14 air source heat pump displacing electric resistance heat was TRC cost-

effective, FPL and TECO estimated that the economic savings potential from the
measure was zero.²⁷

Q: What is the effect of the two TRC cost-effective measures you have identified as being inappropriately excluded from FPL's estimates of economic potential? A: It is substantial. As Table 4 shows, just correcting the omitted savings from these two measures could increase FPL's estimate of TRC economic energy savings potential by 25%. It would also increase FPL's estimate of TRC economic winter peak savings by 33% and summer peak savings by 5%.

Table 4: Corrected FPL Pool Pump and ASHP Economic Potential Estimates

	Technical Potential			FPL E	con Pote	ntial	Corrected Econ Potential			
Measure Name	GWh	S-MW	W-MW	GWh	S-MW	W-MW	GWh	S-MW	W-MW	
Two-Speed Pool Pump	0	0	0	0	0	0	92	29	28	
Variable Speed Pool Pump	280	58	33	0	0	0	0	0	0	
SEER 14 ASHP vs elec res heat	0	0	0	0	0	0	223	0	46	
SEER 21 ASHP vs elec res heat	474	77	95	0	0	0	0	0	0	
Totals for Both Measure Groups	754	135	128	0	0	0	316	29	74	
FPL Total for Other Residential		1251	618	228						
% Increase from Correction							25%	5%	33%	

A:

Q: How did you develop those estimates of corrected economic potential?

I compared FPL's estimates of the per unit savings of the lower tier efficiency measure to the higher tier alternative. For example, two-speed pool pumps produce only 33% of the energy savings, 50% of the summer peak savings and 87% of the winter peak savings that a variable speed pool pump would produce.²⁸ I then multiplied those ratios by the technical potential of the higher tier measure to estimate the economic potential of the lower tier measures.

2	Q:	Have you identified and quantified the impact of all measures for which this
3		problem occurs within FPL's estimates of economic potential?
4	A:	No. That would require a substantial amount of analysis which, given the range of
5		issues I have had to address, I was not able to undertake as part of drafting this
6		testimony. Nor have I assessed the extent to which this may be a problem for the
7		other utilities.
8		
9	5.	Some non-incentive cost assumptions are unreasonably high.
10	Q:	How did the utilities apply non-incentive costs when estimating achievable
11		savings potential?
12	A:	The utilities made assumptions about average program costs per measure and
13		included those costs when assessing which measures were cost-effective for estimates
14		of potential. ²⁹
15		
16	Q:	Have you reviewed those assumptions?
17	A:	Only for FPL.
18		
19	Q:	Did you find FPL's non-incentive cost assumptions to be reasonable?
20	A:	Some appear to be unreasonably high. For example, FPL assumes that the average
21		non-rebate cost for promoting investment in residential LED light bulbs is \$29 per
22		light bulb! That is unfathomably high. By way of comparison, Commonwealth
23		Edison, the electric utility serving the Chicago metropolitan area, rebated
24		approximately 11.25 million light bulbs in its 2018 Residential Lighting Discounts
25		program. ³⁰ Its non-incentive costs for the program were \$5.98 million ³¹ – or about

1		\$0.53 per light bulb. In other words, FPL assumed a non-rebate cost per light bulb
2		that was on the order of 55 times higher than ComEd's actual program experience.
3		
4		Similarly, FPL assumes that the non-incentive costs per low flow showerhead and per
5		faucet aerator are \$29, or more than four times the total cost of the showerhead and
6		nearly ten times the cost of the aerator. Again, that is unfathomably high.
7		
8	Q:	What are the implications of using such unreasonably high assumptions for non-
9		incentive costs?
10	A:	It depends. To the extent that the measures with problematic non-rebate cost
11		assumptions were excluded from the estimates of achievable potential because they
12		had paybacks of less than two years, as appears to be the case with low flow
13		showerheads, there is no effect because FPL had already (inappropriately) excluded
14		such measures from its estimate of achievable potential. However, it appears that
15		some measures with potentially high savings potential (e.g. residential LED light
16		bulbs) may have been excluded from TRC economic potential, and therefore TRC
17		achievable potential as well, because of the unreasonably high non-incentive costs.
18		
19	6.	Assorted other potential study conservatisms contribute to underestimation of
20		achievable cost-effective savings potential.
21	Q:	Have you identified any other problematic assumptions with the utilities'
22		efficiency potential studies?
23	A:	Yes, though I have not exhaustively reviewed every assumption in the studies. There
24		are literally at least tens of thousands of different assumptions, so reviewing every
25		one of them, as well as how they all interact, would have been an enormous

undertaking which I did not have the resources to pursue and for which this kind of proceeding is not well-suited given the amount of back-and-forth questioning that would be required. However, I have selectively examined a number of assumptions and identified more granular concerns. Examples are as follows:

Understating residential heat pump water heating savings per unit. In estimating savings for residential heat pump water heaters, the utilities make a couple of problematic assumptions that lead to understating savings. First, the Energy Factor assumed for a heat pump water heater – 2.5³² – is at the low end of the range for available models. Indeed, of the 58 models with capacities of less than 55 gallons that are Energy Star rated, only two had Energy Factors of below 2.8; the average was 3.3 – or about 25% more efficient than assumed by the utilities.³³ In addition, the utilities inappropriately used a "manufactured home square footage adjustment" to reduce estimated savings potential for heat pump water heaters installed in manufactured homes by 41%.³⁴ There is no basis for reducing water heater savings down by the size of the home. Water heater savings are primarily a function of the number of occupants in the home; the utilities' savings formula for heat pump water heaters had already accounted for the fact that manufactured homes have fewer occupants than single family homes.³⁵

• Artificial cap on measure lives of 20 years. Nexant appears to have assumed that measures cannot have lives of longer than 20 years. That is too short for a number of measures such as attic insulation or wall insulation added to homes, whole house fans, and centrifugal chillers. Other jurisdictions assume lives for such measures of 25 years³⁷ or even longer. Capping measures at 20 years results in understating of the cost-effectiveness of some measures.

- Use of average line loss rates rather than marginal line loss rates to convert savings at the customers' meters to savings at the generator. Efficiency programs' impact on line losses are by definition equal to marginal loss rates. This is important because line losses grow (largely) exponentially with load, meaning that marginal line loss rates are much higher than average line loss rates. Thus, by using average loss rates the utilities are understating the economic value of efficiency savings.
 - Failure to include all participant benefits in TRC test. It appears as if the utilities included only electric system benefits in the calculation of the TRC test. They exclude a number of additional participant benefits such as other fuel savings (e.g. natural gas savings that can occur when insulating a home with central air conditioning and gas heat), water savings (e.g. associated with low flow showerheads), or any of a range of non-energy benefits. The utilities suggest that is appropriate because inclusion of such benefits is "inconsistent with the test's purpose which is to evaluate DSM measures from an all resource perspective." However, other fuel savings and water savings are "resource benefits." More importantly, the utilities have misconstrued the conceptual purpose of the TRC test, which is to assess cost-effectiveness from the combined perspective of the utility system and program participants. However and program participants all participant costs, but not all participant benefits, the utilities' TRC analyses violate one of the fundamental principles of cost-effectiveness analysis, with the result being a bias against efficiency resources.

25

1 7. Combined effect of potential study conservatisms is dramatic understating of 2 achievable potential. 3 Q: What is the combined effect of all of the conservatisms in the utilities' potential 4 studies on the bottom line estimates of achievable savings? 5 A: That is very difficult to precisely quantify without essentially conducting a new 6 analysis in which all assumptions are re-examined and revised (as needed), which I 7 did not have the resources to do and for which this kind of proceeding is not well-8 suited. However, the impact is huge. As noted earlier, just eliminating the 9 inappropriate two-year payback screen would have the effect of increasing TRC 10 economic potential by roughly half. 11 12 An alternative way to approach this question is to compare what the Florida potential 13 studies suggested was economically achievable under the TRC test to what utilities in 14 other leading states in the South have recently achieved. As Table 5 below shows, 15 Duke Energy Carolinas (DEC) achieved savings equal to approximately 1.67% of sales to eligible customers in 2018.⁴² That is at least 7.5 times greater than what any 16 17 of the Florida utilities have suggested is TRC achievable and more than 90 times what 18 FPL has suggested is TRC achievable – even though DEC was not implementing a 19 plan designed to achieve all cost-effective savings. Similarly, Entergy Arkansas 20 achieved savings equal to approximately 1.44% of its 2018 sales to eligible 21 customers. 43 That is at least 6.5 times what any of the Florida utilities have suggested 22 is TRC achievable and about 80 times what FPL has suggested is TRC achievable – 23 again, even though Entergy Arkansas was not implementing a plan designed to 24 achieve all cost-effective savings.

Table 5: Florida TRC Achievable Estimates vs. Leading Southern Utility Actuals⁴⁴

				Annual TRC	Total	Savings
				Achievable	Eligible	as % of
		Study or		Savings	Sales	Eligible
Utility	State	Actual?	Year(s)	(GWh)	(GWh)	Sales
FPL	FL	Study	2020-2029	20	108,514	0.02%
Duke	FL	Study	2020-2029	43	38,024	0.11%
TECO	FL	Study	2020-2029	31	19,187	0.16%
Gulf	FL	Study	2020-2029	22	10,809	0.21%
Orlando	FL	Study	2020-2029	14	6,568	0.21%
JEA	FL	Study	2020-2029	26	11,825	0.22%
Duke Energy Carolinas	NC/SC	Actuals	2018	811	48,454	1.67%
Entergy	AR	Actuals	2018	256	17,730	1.44%

A:

V. RECOMMENDATIONS

Q: What cost-effectiveness test would you propose that the Public Service

Commission (PSC) rely upon in setting the utilities' energy efficiency savings goals?

As I stated earlier in this testimony, I strongly recommend against relying on the RIM test, as it is not a test of cost-effectiveness, has limited value in assessing potential impacts on non-participants, and is not used when assessing the reasonableness of supply-side resources for which energy efficiency can be a lower cost alternative. Conceptually, a properly executed TRC test – one that fully accounts for all utility system and participant impacts – is a much better gauge of the value of efficiency. The PSC could also consider a separate assessment of potential rate impacts, along with estimates of how many customers may participate over a 10-year period, to determine whether any constraints on acquisition of all TRC cost-effective efficiency potential may be warranted in order to balance concerns about impacts on any customers who choose not to participate.

I	Q:	Are you suggesting that the PSC base the utilities' energy efficiency savings goals
2		on their current estimates of TRC cost-effective achievable potential?
3	A:	No. As I also discussed above, the TRC test as used by the utilities does not account
4		for all utility system benefits or all participant benefits and therefore understates what
5		is cost-effective. Perhaps even more importantly, there are numerous other problems
6		with the utilities' efficiency potential studies' methodologies and assumptions that
7		lead to significant underestimation of cost-effective potential, even under their
8		definition of the TRC.
9		
10	Q:	How would you suggest the PSC establish efficiency savings targets for the
11		utilities in this proceeding?
12	A:	If the PSC does not order that the Utilities conduct a properly executed TRC Test, and
13		given the absence of a defensible empirical analysis of cost-effective efficiency
14		potential in the state, one approach would be to make an attempt at partially
15		correcting the utilities' TRC economic potential results as I discuss below. This
16		would be a very conservative approach as many issues leading to lower TRC results
17		would remain unaddressed (such as FPL assigning zero economic potential to certain
18		measures). Another approach would be to base energy efficiency targets on what the
19		leading utilities in the South are already achieving. Specifically, the PSC could
20		require each Florida utility to ramp up to 1.50% incremental annual savings per year
21		– a level comparable to the 1.67% Duke Energy Carolinas achieved in 2018 and the
22		1.44% achieved by Entergy Arkansas in 2018.
23		
24	Q:	Couldn't comprehensive corrections be made to the utilities' potential studies to
25		address the problems you have identified?

9		problems you have identified?
8	Q:	Can you illustrate the magnitude of the impact of correcting for any of the
7		
6		my testimony, as well as ensure that there are no others that need addressing.
5		would be an enormous undertaking to comprehensively address the issues I raised in
4		thousands of efficiency measure permutations for six different utilities. Put simply, it
3		identify given the limited time available to review numerous assumptions for literally
2		interactive. Moreover, it is likely that there are others that I have not been able to
1	A:	Yes, conceivably. However, the problems are numerous, complicated, and

Yes. I have estimated the impacts of correcting just two of the many problems noted: (1) the double-adjustment for free riders resulting from the application of a two-year payback screen; and (2) unreasonably low expectations by most of the utilities (the one possible exception being TECO) regarding the portion of economic potential that is achievable. As Table 6 shows, just correcting those two problems – by not using any payback screen and assuming that about half of economic potential is achievable instead of the 6% assumed by FPL and the 14 to 29% assumed by all but one of the other utilities (TECO assumed would suggest that at least average annual savings ranging from 0.4% to 0.8% of annual electricity sales, depending on the utility, would be cost-effectively achievable over the 2020 to 2029 period.

A:

Corrections input by Debbie Krick, court reporter.

Α.

Table 6: Results of Eliminating Two-Year Payback Screen and Assuming 50% of Economic Potential is Achievable

Utility	2017 Annual Sales (GWh)	Utility Estimates of Average Annual Achievable Potential (GWh)	Utility Estimates of Achievable Potential as Percent of Sales	10-Year TRC Econ Potential without 2-Year Payback Screen (GWh)	Average Annual TRC Econ Potential without 2-Year Payback Screen (GWh)	Partially Corrected Average Annual Goal at 50% of Econ Potential (GWh)	Partially Corrected Average Annual Savings as Percent of Sales
FPL	108,514	20	0.02%	8905	891	445	0.4%
Duke	38,024	43	0.11%	5599	560	280	0.7%
TECO	19,187	31	0.16%	1785	179	89	0.5%
Gulf	10,809	22	0.21%	1762	176	88	0.8%
OUC	6,568	14	0.21%	835	84	42	0.6%
JEA	11,825	26	0.22%	1839	184	92	0.8%

Q: How did you estimate economic potential without a two-year payback screen?

As discussed above, both TECO and Gulf provided their own estimates of TRC economic potential without any payback screen. I have used their estimates. For FPL, I computed the amount of TRC cost-effective savings without a two-year payback screen using all of FPL's measure assumptions and the confidential analytical tool provided by the Company. I did not have such a tool for Duke, Orlando, or JEA, so I assumed that their TRC economic potential without a two-year payback screen would be approximately 80% higher than their own estimates of TRC economic potential with such a screen. The 80% increase is equivalent to Gulf Power's increase, the lowest of the three increases either made available by the utilities themselves or which I was able to compute.

Q: Why did you assume that half of the economic potential would be achievable?

1 **A**: That is a level consistent with several efficiency potential studies I have reviewed. 2 For example, a recent efficiency potential study conducted for DTE, one of the two 3 large investor-owned utilities in Michigan, estimated that the utility could achieve 4 savings equal to 15.1% of its sales – about 46% of the estimated economic potential of 32.5% – over an 11-year period. 45 Similarly, a 2015 Arkansas efficiency potential 5 study estimated that roughly 50% (2282 GWh out of 4594 GWh) of the savings the 6 study found to be "economic" was achievable over the 2016 to 2025 period. 46 And a 7 8 2018 study for the city of New Orleans found that maximum achievable potential over ten years – 25% of sales – was 56% of the economic potential.⁴⁷ 9 10 11 Q: What would the utilities annual savings goals be if they were based on TRC cost-12 effective and achievable savings potential, as corrected for the two problems you 13 just discussed (i.e. eliminating a two-year payback screen and assuming 50% of 14 economic potential is achievable over ten years)? 15 A: Assuming that the utilities could ramp up energy savings at the pace of at least 0.3% 16 of sales per year (e.g. a utility whose goals are to ramp up to 0.6% of sales per year would take two years to get to that point), 48 and assuming that the peak savings to 17 18 energy savings ratios in the economic potential would be reflective of the ratios in achievable potential, ⁴⁹ the savings would be as shown in Tables 7, 8, and 9 below. 19 20 Comparable tables broken down into Residential and Non-Residential values are 21 provided as Exhibit JMG-2 to my testimony. 22 23 24 25

Table 7: GWh Savings Based on Partially Corrected TRC Achievable

	Annual		Incremental Annual Energy Savings (GWh)										
Utility	Sales	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	Total	
FPL	108,514	326	445	445	445	445	445	445	445	445	445	4,333	
Duke	38,024	114	228	280	280	280	280	280	280	280	280	2,582	
TECO	19,187	58	89	89	89	89	89	89	89	89	89	861	
Gulf	10,809	32	65	88	88	88	88	88	88	88	88	802	
Orlando	6,568	20	39	42	42	42	42	42	42	42	42	393	
JEA	11,825	35	71	92	92	92	92	92	92	92	92	842	

Table 8: Summer MW Savings Based on Partially Corrected TRC Achievable

	TRC		Summer Peak MW										
Utility	kWh/kW	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	Total	
FPL	3889	84	115	115	115	115	115	115	115	115	115	1114	
Duke	2935	39	78	95	95	95	95	95	95	95	95	880	
TECO	5475	11	16	16	16	16	16	16	16	16	16	157	
Gulf	5063	6	13	17	17	17	17	17	17	17	17	158	
Orlando	5299	4	7	8	8	8	8	8	8	8	8	74	
JEA	5381	7	13	17	17	17	17	17	17	17	17	156	

Table 9: Winter MW Savings Based on Partially Corrected TRC Achievable

	TRC		Winter Peak MW										
Utility	kWh/kW	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	Total	
FPL	6650	49	67	67	67	67	67	67	67	67	67	652	
Duke	5625	20	41	50	50	50	50	50	50	50	50	459	
TECO	6736	9	13	13	13	13	13	13	13	13	13	128	
Gulf	5933	5	11	15	15	15	15	15	15	15	15	135	
Orlando	7802	3	5	5	5	5	5	5	5	5	5	50	
JEA	7858	5	9	12	12	12	12	12	12	12	12	107	

However, because these tables reflect savings estimates based on only partial corrections to the utilities' analyses, they significantly underestimate what is really cost-effectively achievable. Again, since it is not possible to make all the needed corrections to the utilities' analyses in this proceeding, I recommend that the PSC consider what the leading Southern utilities have achieved as being what is cost-effectively achievable – i.e. ramping up to energy savings equal to approximately 1.5% of sales per year.

A:

Q: What would be a reasonable ramp up period for getting to a 1.50% per year savings goal?

Assuming (as above) that the utilities could ramp up at a rate of 0.3% energy savings as a percent of sales per year, it would be reasonable to ramp up to the 1.50% per year level over a five-year period. Table 10 shows the resulting trajectory of savings assuming a baseline level of sales consistent with 2017 sales levels. That may be conservatively low if sales increase over time.

Table 10: Proposed Energy Efficiency Savings Goals (GWh)

Incremental Annual Energy Savings (GWh)							10-Year			
2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	Total
0.30%	0.60%	0.90%	1.20%	1.50%	1.50%	1.50%	1.50%	1.50%	1.50%	12.00%
326	651	977	1,302	1,628	1,628	1,628	1,628	1,628	1,628	13,022
114	228	342	456	570	570	570	570	570	570	4,563
58	115	173	230	288	288	288	288	288	288	2,302
32	65	97	130	162	162	162	162	162	162	1,297
20	39	59	79	99	99	99	99	99	99	788
35	71	106	142	177	177	177	177	177	177	1,419
	0.30% 326 114 58 32 20	0.30% 0.60% 326 651 114 228 58 115 32 65 20 39	2020 2021 2022 0.30% 0.60% 0.90% 326 651 977 114 228 342 58 115 173 32 65 97 20 39 59	2020 2021 2022 2023 0.30% 0.60% 0.90% 1.20% 326 651 977 1,302 114 228 342 456 58 115 173 230 32 65 97 130 20 39 59 79	2020 2021 2022 2023 2024 0.30% 0.60% 0.90% 1.20% 1.50% 326 651 977 1,302 1,628 114 228 342 456 570 58 115 173 230 288 32 65 97 130 162 20 39 59 79 99	2020 2021 2022 2023 2024 2025 0.30% 0.60% 0.90% 1.20% 1.50% 1.50% 326 651 977 1,302 1,628 1,628 114 228 342 456 570 570 58 115 173 230 288 288 32 65 97 130 162 162 20 39 59 79 99 99	2020 2021 2022 2023 2024 2025 2026 0.30% 0.60% 0.90% 1.20% 1.50% 1.50% 1.50% 326 651 977 1,302 1,628 1,628 1,628 114 228 342 456 570 570 570 58 115 173 230 288 288 288 32 65 97 130 162 162 162 20 39 59 79 99 99 99	2020 2021 2022 2023 2024 2025 2026 2027 0.30% 0.60% 0.90% 1.20% 1.50% 1.50% 1.50% 1.50% 326 651 977 1,302 1,628 1,628 1,628 1,628 114 228 342 456 570 570 570 570 58 115 173 230 288 288 288 288 32 65 97 130 162 162 162 162 20 39 59 79 99 99 99 99	2020 2021 2022 2023 2024 2025 2026 2027 2028 0.30% 0.60% 0.90% 1.20% 1.50% 1.628 1,628 1,628 1,628 1,628 1,628 1.628 1.628 1.628 1.628 1.628 1.628 1.628 288 288 288 288 288 288 288 288 288 288 288 1.62 1.62 1.62 1.62 1.62	2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 0.30% 0.60% 0.90% 1.20% 1.50% 1.628 1,628 1,628 1,628 1,628 1,628 1.628 1.628 1,628

Q: If the PSC adopted a 1.50% per year savings goal, what would you recommend with regards to summer and winter peak demand savings goals for energy efficiency programs for each utility?

I cannot recommend specific peak demand savings targets because I arrived at these energy savings targets from a "top down" perspective on what is reasonable rather than from a "bottom up" approach to estimating savings. As discussed above, this top down approach was necessitated by the numerous problems with the utilities' efficiency potential studies that rendered them completely insufficient as a reference for the magnitude of cost-effectively achievable savings potential. If the studies'

estimates of the ratios of TRC economic potential for summer and winter peak savings to TRC economic potential for energy savings would be applicable to the much more realistic and substantial 1.50% per year energy savings goals, the results would be as shown in Table 11 below. Comparable tables of peak savings by sector, as well as energy savings by sector, are provided in Exhibit JMG-3 of my testimony. However, I would suggest additional analysis be undertaken to determine whether those ratios would hold under an effective set of programs designed to achieve the energy savings goals. Thus, I would recommend that the PSC initiate a process to more carefully assess peak demand savings potential, perhaps even as part of the utilities' energy efficiency program plan filings, in order to establish such goals.

Table 11: Peak Savings Based on Florida Studies' TRC kW/kWh Ratios

14	
15	

A:

TRC **Summer Peak MW** kWh/kW 10-Year Utility Ratio Total FPL Duke TECO Gulf Orlando JEA

10-Year TRC Winter Peak MW kWh/kW Total FPL Duke TECO Gulf Orlando JEA

Q: Do you have any other recommendations?

Yes. To address concerns about equity, I would recommend that the PSC also adopt goals specifically for savings from low income customers. Mr. Wright's testimony has more specific suggestions in that regard.

- 2 Q: Does that conclude your testimony?
- 3 A: Yes, it does.

- 1 BY MR. MARSHALL:
- 2 Q And did you have any exhibits attached to your
- 3 testimony?
- 4 A Yes, I do.
- 5 Q And those would be Exhibits JMG-1 through
- 6 **JMG-20?**
- 7 A Correct.
- 8 MR. MARSHALL: And just for the record, those
- 9 would be Exhibits 64 through 83 on staff's
- 10 comprehensive exhibit list.
- 11 CHAIRMAN GRAHAM: Duly noted.
- 12 BY MR. MARSHALL:
- 13 Q Mr. Grevatt, did you prepare a summary of your
- 14 testimony?
- 15 A Yes, I did.
- 16 Q Would you please go ahead and give us your
- 17 summary?
- 18 A I would be happy to. Thank you.
- 19 Good afternoon, Mr. Chairman and
- 20 Commissioners. Based on my review of the petitions
- 21 filed by the companies, I recommend that the Commission
- 22 reject the utilities' proposed goals and, instead,
- 23 require the utilities to achieve significantly more
- 24 energy efficiency so that customers are not deprived of
- 25 hundreds of millions of dollars in cost-effective

- 1 benefits. My technical analysis of the utility proposed
- 2 goals identified two foundational reasons for the
- 3 remarkably low and unsupportable savings goals proposed
- 4 by the utilities.
- 5 First, in spite of generation efficiency,
- 6 increased codes and standards and other market changes,
- 7 customer bills are high, indicating that the RIM is no
- 8 longer reliable as the primary test to protect
- 9 customers. Limiting programs to those that pass RIM
- 10 ignores enormous cost-effective customer benefits.
- 11 For example, in FPL's TRC plan, it has a
- 12 revenue requirement that is \$104 million less than the
- 13 RIM plan, but the rate impact of the TRC plan is only
- 14 five/one-thousandths of a cent per kilowatt hour more,
- 15 five-one-thousandths of a cent per kilowatt hour.
- 16 So just on the CPVRR basis alone, TRC makes
- 17 more sense. And that's not even considering the
- 18 enormous potential for bill savings that participating
- 19 customers will receive.
- 20 So RIM is really a measure of lost revenues,
- 21 and that is really about utility profits more than
- 22 anything else; because to the extent to which rates are
- 23 going to go up based on lost revenues depends on whether
- 24 the Commission determines that the utility is earning
- 25 within its allowed band of return, and whether the

- 1 Commissioner determines that those lost revenues should
- 2 be authorized to be collected or not.
- RIM may indicate directionally whether rates
- 4 will go up. If utilities are allowed to collect lost
- 5 revenues, then they may suggest whether nonparticipant
- 6 costs will increase. But when that increase is barely
- 7 measurable, it's not worth sacrificing hundreds of
- 8 millions of dollars in benefits.
- 9 Secondly, the utility's assessment of
- 10 achievable potential is deeply flawed with a profound
- 11 bias towards underestimating potential. Free riders are
- 12 accounted for in Nexant's baseline measure adoption
- 13 forecast in the technical potential estimate.
- So the utility used subsequent to that of a
- 15 two-year payback screen to remove free riders from
- 16 economic potential, I believe, is indefensible. It's
- 17 removing the same group of free riders twice. It does
- 18 not make any sense.
- 19 Further, the assumption that all customers
- 20 will install measures that have a two-year payback has
- 21 no empirical basis, defies experience and common sense,
- 22 and it contradicts the utility's own projections for
- 23 participation.
- So I attempted to address these and other
- 25 flaws in the potential study, and provided a partially

- 1 corrected estimate of TRC achievable potential, but I
- 2 found that because there were deficiencies that were
- 3 really rampant throughout the utility models, this still
- 4 greatly underestimates a TRC achievable savings.
- 5 Therefore, I recommend that the utilities' ramp up to
- 6 one-and-a-half percent annual savings over a multiyear
- 7 period. And the one-and-a-half percent number is based
- 8 on consistency with several leading utilities in the
- 9 southeast, the achievements that they are making.
- In short, the combination of the flaws that I
- 11 found in my analysis leads to insupportably low goal
- 12 proposals that appear to be based on maximizing utility
- 13 profits rather than on serving customers.
- 14 Thank you.
- 15 Q Thank you.
- 16 MR. MARSHALL: We tender the witness for
- 17 cross-examination.
- 18 CHAIRMAN GRAHAM: Thank you.
- 19 OPC?
- 20 MS. FALL-FRY: No questions.
- 21 CHAIRMAN GRAHAM: Ms. Wynn?
- MS. WYNN: No questions.
- 23 CHAIRMAN GRAHAM: Kelley?
- MS. CORBARI: No questions.
- 25 CHAIRMAN GRAHAM: JEA?

1	MR. PERKO: No questions.
2	CHAIRMAN GRAHAM: Any questions? Anybody down
3	this line?
4	MR. LAVIA: No questions.
5	MR. BERNIER: No questions.
6	MR. MEANS: No questions.
7	MR. COX: No questions.
8	CHAIRMAN GRAHAM: Staff?
9	MS. DUVAL: No questions.
10	CHAIRMAN GRAHAM: Commissioners?
11	I guess there is no redirect?
12	MR. MARSHALL: I guess not.
13	CHAIRMAN GRAHAM: Hold on a second.
14	Commissioner Polmann decided he needed to ask a
15	question.
16	COMMISSIONER POLMANN: Good afternoon, sir.
17	THE WITNESS: Good afternoon.
18	COMMISSIONER POLMANN: I understand from your
19	summary remarks that your recommendation is to ramp
20	up to one-and-a-half percent of sales?
21	THE WITNESS: Correct.
22	COMMISSIONER POLMANN: I had some, I don't
23	want to say difficulty, but I read a number of
24	different things in your direct testimony, so I
25	just wanted to clarify that that is your actual

1 recommendation, among many other things that were 2. written? 3 THE WITNESS: It is. 4 COMMISSIONER POLMANN: Okay. So that's a 5 single number that you are recommending? THE WITNESS: 6 Yes. 7 COMMISSIONER POLMANN: Okay. Thank you very Thanks for the clarification. 8 much. 9 Thanks, Mr. Chairman. 10 CHAIRMAN GRAHAM: Redirect? 11 FURTHER EXAMINATION 12 BY MR. MARSHALL: 13 Just to be clear, but you did present a 0 14 partially -- you did present a separate set of TRC achievable potential goals as well in your testimony, in 15 16 addition to the 1.5 percent goals? 17 I did, indeed. And those -- the partially Α corrected TRC achievable is higher -- you know, 18 19 considerably higher than the goals -- certainly than the 20 RIM goals proposed by the utilities, especially those 21 utilities that proposed goals of zero, but not as high 22 as one-and-a-half percent. 23 The one-and-a-half percent certainly represents the high end of what utilities in the 24

25

southeast are achieving, but, you know, as an

- 1 alternative approach, making the corrections, at least
- 2 to the most fundamental flaws that I identified in the
- 3 potential study, and supporting those TRC achievable
- 4 goals would be, I think, a great step forward.
- 5 Q Thank you.
- 6 MR. MARSHALL: No further questions.
- 7 CHAIRMAN GRAHAM: Exhibits?
- 8 MR. MARSHALL: We would move that Exhibits 64
- 9 through 83 be entered into the record.
- 10 CHAIRMAN GRAHAM: 64 through 83, is there any
- objections to entering those into the record?
- Seeing none, we will enter Exhibits 64 through 83.
- 13 (Whereupon, Exhibit Nos. 64-83 were received
- 14 in evidence.)
- 15 CHAIRMAN GRAHAM: Would you like to excuse
- 16 this witness?
- 17 MR. MARSHALL: We would. We ask that the
- 18 witness be excused.
- 19 CHAIRMAN GRAHAM: Thank you, sir, for your
- testimony.
- THE WITNESS: Thank you, Commissioners.
- 22 (Witness excused.)
- 23 CHAIRMAN GRAHAM: Okay. Next witness.
- 24 MR. MARSHALL: SACE would call Forest
- 25 Bradley-Wright to the stand.

- 1 Whereupon,
- 2 FOREST BRADLEY-WRIGHT
- 3 was called as a witness, having been previously duly
- 4 sworn to speak the truth, the whole truth, and nothing
- 5 but the truth, was examined and testified as follows:
- 6 EXAMINATION
- 7 BY MR. MARSHALL:
- 8 Q Good afternoon. Were you previously sworn
- 9 yesterday?
- 10 A Yes, I was.
- 11 Q And could you please state your name and
- 12 business address for the record?
- 13 A Forest Bradley-Wright. 3804 Middlebrook Pike,
- 14 Knoxville, Tennessee, 37921.
- 15 Q And on whose behalf are you testifying today?
- 16 A The Southern Alliance for Clean Energy and the
- 17 League of United Latin American Citizens.
- 18 O On June 10th, 2019, did you prepare and cause
- 19 to be filed direct testimony and exhibits?
- 20 A Yes, I did.
- 21 Q And do you have that testimony and those
- 22 exhibits with you today?
- 23 A I do.
- Q If I asked you the same questions today, would
- your answers be the same?

1	A They would.
2	Q And do you have any changes to your prefiled
3	testimony or exhibits?
4	A I do have one small change. On page four of
5	my testimony, referring to a figure related to energy
6	burden, on lines 12 through 13, there is a parenthetical
7	statement that states that the energy burden includes
8	both household and transportation costs. That
9	parenthetical statement can be struck. This refers only
10	to household costs, which are germane to this testimony.
11	MR. MARSHALL: Mr. Chairman, at this point, I
12	would like to have Mr. Bradley-Wright's prefiled
13	direct testimony entered into the record as though
14	read.
15	CHAIRMAN GRAHAM: We will enter Mr. Wright's
16	prefiled direct testimony with that correction into
17	the record as though read.
18	(Whereupon, prefiled testimony was inserted.)
19	
20	
21	
22	
23	
24	
25	

BEFORE THE FLORIDA PUBLIC SERVICE COMMISSION

In re:	Commission Review of Numeric Conservation Goals Florida Power & Light Company) DOCKET NO. 20190015-EC)))
In re:	Commission Review of Numeric Conservation Goals Gulf Power Company) DOCKET NO. 20190016-EC
In re:	Commission Review of Numeric Conservation Goals Duke Energy Florida, LLC) DOCKET NO. 20190018-EC
In re:	Commission Review of Numeric Conservation Goals Orlando Utilities Commission) DOCKET NO. 20190019-EC
In re:	Commission Review of Numeric Conservation Goals JEA) DOCKET NO. 20190020-EC
In re:	Commission Review of Numeric Conservation Goals Tampa Electric Company) DOCKET NO. 20190021-EC

TESTIMONY OF FOREST BRADLEY-WRIGHT ON BEHALF OF SOUTHERN ALLIANCE FOR CLEAN ENERGY

June 10, 2019

1		I. Introduction
2	Q.	Please state your name, position and business address.
3	A.	My name is Forest Bradley-Wright. I am the Energy Efficiency Director for Southern
4		Alliance for Clean Energy ("SACE"), and my business address is 3804 Middlebrook
5		Pike, Knoxville, Tennessee.
6		
7	Q.	On whose behalf are you testifying in this proceeding?
8	A.	I am testifying on behalf of SACE.
9		
10	Q.	Please summarize your qualifications and work experience.
11	A.	I graduated from Tulane University in 2001 and in 2013 received my Master of Arts
12		degree from Tulane in Latin America Studies with an emphasis on international
13		development, sustainability, and natural resource planning.
14		
15		My work experience in the energy sector began in 2001 at Shell International Exploration
16		and Production Co., where I served as Sustainable Development Team Facilitator.
17		
18		From 2005 to 2018, I worked for the Alliance for Affordable Energy. As the Senior
19		Policy Director, I represented the organization through formal intervenor filings and
20		before regulators at both the Louisiana Public Service Commission and the New Orleans
21		City Council on issues such as integrated resource planning, energy-efficiency
22		rulemaking and program design, rate cases, utility acquisition, power plant certifications,
23		net metering, and utility scale renewables. As a consultant, I also prepared and filed
24		intervenor comments on renewable energy dockets before the Mississippi and Alabama
25		Public Service Commissions. In 2014, I was a runoff candidate for the Louisiana Public

25

1 Service Commission First District seat. Since 2018, I have been the Energy Efficiency Director for SACE. My responsibilities 2 3 include leading dialogue with utilities and regulatory officials on issues related to energy 4 efficiency in resource planning, program design, budgets, and cost recovery. This 5 includes formal testimony, comments, presentations, and/or informal meetings in the 6 states of Georgia, Florida, North Carolina, South Carolina, Mississippi, and in 7 jurisdictions under the Tennessee Valley Authority. 8 9 A copy of my resume is included as Exhibit FBW-1. 10 11 Q: Have you been an expert witness on energy-efficiency matters before regulatory 12 commissions? Yes, I have filed expert witness testimony in Georgia related to Georgia Power 13 A: 14 Company's 2019 Demand Side Management application and in North Carolina related to 15 the Duke Energy Carolinas DSM/EE Recovery Rider. This is my first time submitting 16 testimony to the Florida Public Service Commission ("Commission"). 17 18 Q: Please summarize your testimony and key findings. 19 A: I have reviewed the utility filings as they relate to evaluation of low-income efficiency 20 opportunities and came to the following conclusion: 21 With a low-income population totaling more than 5 million individuals (36.8%) across 22 their combined service territories, and a prevalence of high energy burdens that cause 23 financial vulnerability, there is an enormous need for energy efficiency that matches the 24 unique characteristics of this important customer segment.

A:

- Due to fundamental flaws in applicability of the Ratepayer Impact Measure ("RIM") test
 and the two-year screen, the Commission should establish evaluation standards for low income efficiency based primarily on the Total Resource Cost ("TRC") test.
 - I offer a methodology for calculating the low-income targets, provide specific savings levels for each utility, and suggest they be incorporated into the overall savings goals set by the Commission in this proceeding.
 - I recommend the Commission set an expectation that all low-income customers will have access to relevant efficiency programs going forward, through both neighborhood deployment and deeper savings programs.

II. Specific Energy Efficiency Targets Should Be Established For Serving Low-income
Customers

Q: Why is addressing energy burden for low-income customers an important consideration for Commission action in this Florida Energy Efficiency Conservation Act ("Energy Efficiency Act") proceeding?

For millions of Floridians living on limited income, paying the monthly energy bill presents a significant financial challenge, one that can lead to difficult tradeoffs against other essential needs. Research by the American Council for an Energy Efficient Economy¹ shows that families with high energy burdens often struggle to move out of poverty, may face increased economic hardship, and are at greater risk of negative health effects related to respiratory diseases and increased stress. The National Association for the Advancement of Colored People has recognized that advancing energy efficiency and clean energy is essential to decreasing depending on harmful energy production practices while preserving health and livelihoods of community members.²

Utilities Commission ("OUC").

Figure 1. Quartile Energy Burdens of Low-Income Households in Southeastern Cities

Quartile Energy Burdens of Low-Income Households in Southeastern Cities

Low-income households in Florida cities in this study face high energy burdens. On average, half the low-income households in Jacksonville, Tampa, Orlando, and Miami have an energy burden greater than 7.2%, and a quarter of them, over 12%. The national average is 3.5%.

Corrections input by Debbie

Krick, court reporter.

Figure 1 above shows that total energy burdens **books household and transportation** in major Florida cities are far above the threshold for unaffordability for households in the top quintile.

According to U.S. Census data, more than 5 million people served by the utilities in this proceeding live on incomes that are at or below 200% of the federal poverty levels, the threshold used for determining eligibility for federally funded low income weatherization assistance. In each of the utility service areas, this represents more than a third of the population, ranging from 35% for Gulf Power Company ("Gulf") to 43% for Orlando

Table 1 below uses U.S. Census data to calculate the percentage of population in each utility service territory that is at or below 200% of the federal poverty level.

A:

Table 1. Service Territory Population At or Below 200% of the Federal Poverty Level ³

	Total Population Population Below 200% Poverty		% Below 200% Poverty	
		Level	Level	
Florida Power & Light	8,648,817	3,171,934	36.7%	
Duke Energy Florida	3,099,509	1,158,262	37.4%	
Tampa Electric	1,414,898	511,709	36.2%	
Jacksonville Electric	777,039	289,477	37.3%	
Gulf Power	524,860	183,894	35.0%	
Orlando Utilities Comm.	169,278	73,238	43.3%	
Total	14,634,402	5,388,514	36.8%	

Energy efficiency is widely recognized as the best strategy for reducing high energy burdens. Its deployment should be scaled in both breadth and depth to truly and effectively improve conditions for the millions of families and individuals struggling to pay high monthly electric bills.

Q: How do energy efficiency programs address energy burden?

Utility energy efficiency programs that are designed to serve the unique needs of low-income customers address energy burdens at their root source. These programs strive to provide assistance to the neediest customers, like the elderly, disabled, struggling families, the working poor, and others for whom unaffordable energy bills can be the difference between their ability to make rent or afford medicine, food, or other

25

1 necessities. 2 3 Many low-income households reside in older homes, which are often poorly insulated, 4 have outdated appliances, and use heating and cooling systems that are less efficient. 5 During times of extreme hot or cold weather, these inefficient homes have much higher 6 energy bills, which can lead to difficult decisions between reducing or forgoing food or 7 medicine in order to pay energy costs, leaving the home at unhealthy temperatures, or having their electricity service disconnected.⁴ According to a recent report by the Federal 8 9 Reserve, nearly 40 percent of Americans would struggle to cover an unexpected \$400 10 expense, such as a car repair or appliance replacement, and 12% wouldn't be able to pay their current monthly bills, 5 while others resort to high-interest short-term lending (e.g. 11 12 payday loans), which can lead to even greater financial risk.⁶ 13 14 Energy efficiency improvements would substantially reduce energy bills for these 15 families, both in general and especially during periods of extreme hot or cold temperatures. But without efficiency programs directed to serve low-income households, 16 17 the same financial constraints that make energy bills unaffordable will also make efficiency improvements inaccessible, thus perpetuating a cycle of high electricity bills 18 19 and energy insecurity. In recognition of this, utility efficiency programs for low-income 20 customers typically provide the improvements for free, rather than covering just a portion 21 of the incremental cost like standard efficiency rebate offerings. 22 23 Q: Has the Commission emphasized a need for utilities to provide energy efficiency to 24 low-income customers?

25

1 **A:** The Commission made energy efficiency for low-income customers a key policy priority 2 in the 2014 Energy Efficiency Act target-setting proceeding. Support of energy 3 efficiency for low-income customers is a notable area of rare common interest between 4 Florida's major utility companies and public interest advocates, like the Southern 5 Alliance for Clean Energy. I believe further growth and formalization of low-income 6 energy efficiency in this Energy Efficiency Act proceeding will be an important step 7 forward, one that will make a significant difference in the lives of those customers who 8 most need it. 9 10 In the 2014 Energy Efficiency Act final order, the Commission stated its concern for low-11 income customers and the need for energy efficiency assistance. 12 "During the hearing, we voiced our concerns regarding how the FEECA Utilities' goals-13 14 setting analyses affected the low income customer base and questioned the FEECA 15 Utilities regarding the types of programs each utility marketed to their low income customers."7 16 17 18 Unfortunately, when the RIM test and two-year payback screen were applied, the most 19 affordable measures with some of the highest impacts had been removed from the target 20 setting process. This included measures that commonly make up low-income efficiency 21 program offerings. However, the Commission's Order indicated that flexibility was 22 warranted when it came to incorporating measures with a short payback period, stating 23 generally: 24

1		"Using a two-year criterion to screen for potential free riders in the goals-setting stage is
2		not so rigid as to prevent low-cost measures from being included in carefully crafted
3		utility programs."8
4		
5		The Commission was even more specific with their guidance to utilities with regard to
6		addressing the two-year payback issue in their DSM implementation plans:
7		
8		"When the FEECA Utilities file their DSM implementation plans, each plan should
9		address how the Utilities will assist and educate their low income customers, specifically
10		with respect to the measures with a two-year or less payback."9
11		
12	Q:	What actions has the Commission taken since to ensure this policy priority is
13		enacted?
14	A:	In responding to each utility's 2015 DSM Plans, the Commission further reinforced and
15		specified their expectations regarding efficiency offerings for low-income customers.
16		Most significant was the Commission's acceptance of measures and programs without
17		the RIM test and two-year payback screening requirements. The Commission addressed
18		each of these issues in their Order approving Tampa Electric Company's ("TECO") 2015
19		DSM Plan:
20		
21		"In the goal-setting proceeding, we established a two-year payback methodology to
22		account for free riders, but that educational and low-income programs, including those
23		with measures with a less than two-year payback, were encouraged."10
24		

1		"The only programs in TECO's DSM Plan to fail the RIM test were programs that target
2		eligible low-income ratepayers. These programs did pass the TRC test, and comply with
3		the requirements established in Order No. PSC-14-0696-FOF-EU, to assist and educate
4		low-income customers."11
5		
6		In approving Florida Power & Light's ("FPL") 2015 DSM Plan, they again stated that the
7		utility's low-income efficiency program had met the Commission's requirements by
8		passing the TRC test, rather than the RIM test, and specifically noted inclusion of
9		measures for the low-income program without the two-year screen:
10		
11		"The only program in FPL's DSM Plan to fail the RIM test is the Residential Low
12		Income program, which targets eligible low income ratepayers for assistance with
13		weatherization, air conditioning, and water heating. The program does however pass the
14		TRC test, and complies with the requirements established in Order No. PSC-14-0696-
15		FOF-EU to assist and educate low-income customers."12
16		
17		"FPL has incorporated the two-year payback methodology into the design of its DSM
18		Plan, and only includes savings from measures with a less than two-year payback in its
19		residential low income program." ¹³
20		
21		The Commission similarly approved the program plans for all Energy Efficiency Act
22		utilities that followed these guidelines.
23		
24	Q:	Have the Utilities spoken to inclusion of low-income efficiency in their 2019 Energy
25		Efficiency Act applications?

1 A: Yes, each utility has indicated their intention to continue offering specialized low-income 2 efficiency programs while including accommodations like those described above. 3 4 FPL stated in testimony that efficiency has been an important form of assistance for low-5 income customers and indicated that addressing it is a requirement from the 6 Commission's 2014 Energy Efficiency Act target-setting Order. The Company went 7 further this time, requesting a specific target for low-income efficiency that is notable for 8 being approximately 34 times larger than the entire target they propose for all other 9 customers. 10 11 "As previously discussed, in the decades since FEECA was enacted, the marketplace has 12 evolved dramatically. While utility-provided incentives for traditional EE measures no longer make sense because they are not cost-effective, 14 they have been one of the 13 14 sources of assistance to low income customers. In recognition of these changes, FPL is 15 proposing to retain and expand its existing Low Income program. Although this program 16 is not cost-effective, FPL believes continuing to provide assistance to this vulnerable 17 group is appropriate and warranted to replace eliminated EE program options that will no 18 longer be available. This proposal is consistent with the Commission 2014 Goals docket 19 Order No. PSC-14-0696-FOF-EU, wherein the Commission recognized the importance 20 of supporting these customers. If approved, the estimated ten-year amounts of 14 Summer MW, 4 Winter MW and 34,000 MWh associated with this proposal should be 21 22 added to FPL's currently proposed 2020-2029 DSM Goals."¹⁵ 23 24 TECO reiterated that there is additional flexibility for incorporating measures into low-25 income programs, which they intend to continue:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

"[TECO] is not limited to using any measures that could be utilized in a cost-effective DSM Program. For example, the company is planning to retain its current weatherization and energy education programs that include energy-efficiency kits which are made up of both cost-effective and not cost-effective measures which focus on gaining participation of low-income customers in the company's DSM programs portfolio." OUC made a point of highlighting the higher than average level of households living in poverty in their service territory. They describe the specific challenge these customers face when attempting to access efficiency without specific utility programs. For example, issues caused by use of the RIM test, which they note have "special weight" in light of their low-income population. "Approximately 40 percent of OUC's residential customers have household incomes less than \$35,000, which is approximately 1.4 times the federal poverty level for a family of four."16 "The fact that so many OUC residential customers are low-income and renters presents challenges to the effective implementation of DSM measures and programs for OUC, and particularly for this potential target population. Briefly, low-income customers simply do not have the discretionary income to pay the customer's cost to participate in a DSM program, and renters have little if any control over such expenditures and investments by their landlords."17

1 "The negative RIM results for the 278 measures studied by Nexant have special weight 2 for OUC's consideration because of the relatively high portions of low income customers and renters we serve."18 3 4 5 O: Should formal goals be established for each utility to delivering efficiency savings to 6 low-income customers? 7 A: I strongly encourage the Commission to formalize targets for low-income efficiency as 8 part of this Energy Efficiency Act proceeding. Their scale of need is large, with more 9 than 5 million households (approximately 36.7%) in Energy Efficiency Act utility service 10 territories living on incomes that are at or below 200% of the federal poverty line - a 11 standard by which eligibility for low-income efficiency programs is commonly measured. 12 This need is even greater at a time when utilities are seeking to scale back standard residential efficiency offerings, which are already less accessible to low-income 13 14 customers. As a matter of policy, further direction from the Commission on setting low-15 income efficiency targets would bring additional clarity in evaluation standards, 16 consistency between utilities, and lead to greater savings impact for low-income 17 customers. As discussed later in this testimony, the superior performance results 18 achieved by some Energy Efficiency Act utilities demonstrate that substantially higher 19 savings attainment should be possible for their peers. By setting specific low-income 20 efficiency savings targets, the Commission can raise the bar to ensure all utilities deliver 21 optimal performance through their low-income efficiency programs. 22 Should the evaluation of DSM potential and the setting of overall efficiency savings 23 Q: 24 targets for each utility incorporate and reflect the low-income efficiency savings 25 goals?

1	A:	Yes, efficiency for low-income customers should be part of the broader efficiency
2		potential analysis required in this proceeding, and the results for low-income standard
3		efficiency offerings should be incorporated together into the total Energy Efficiency Act
4		savings targets authorized by this Commission. Later in this testimony, I discuss a
5		number of specific considerations that are needed for evaluating the low-income
6		efficiency potential upon which targets can be set.
7		
8	III.	Formal Standards Are Needed for Evaluating Energy Efficiency Potential for Low-
9		income Customers
10		
11	Q:	Why is use of the RIM test problematic with evaluating low-income efficiency?
12	A:	The Commission has authorized utilities to proceed with low-income programs without a
13		requirement for passing RIM. I believe this is the right approach for several reasons.
14		In his testimony (relevant portions of which I summarize below), Mr. Grevatt raises a
15		number of significant concerns with use of the RIM test.
16		
17		- RIM is not actually a test of cost-effectiveness, it indicates whether rates will be
18		impacted, which is at best an imperfect test of impact to non-participants.
19		- Lost revenues are not an added cost of energy efficiency.
20		- Potential rate impacts alone are not sufficient for regulatory decision-making, they
21		must be balanced with a consideration of benefits.
22		- Limiting measures only to those that pass RIM greatly constrains the savings targets
23		and reduces total financial benefit.
24		- No other state uses RIM as the sole or primary test.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Application of the RIM test is even more problematic when it comes to evaluating efficiency for low-income customers. The central policy consideration emphasized by the Commission in the previous Energy Efficiency Act cycle related to low-income customers concerned the additional barriers (primarily financial) that limit their access to efficiency and their vulnerability to high energy bills and rate increases. 19 However, the RIM test and the two-vear screen, discussed below, caused many of the most common and impactful measures for low-income customers to be cut. Most of the measures that remained required significant up-front out-of-pocket expenditures that would likely be out of reach for low-income customers. In addition to limiting specific measures, screening with RIM results in much smaller total budgets for energy efficiency than alternative screening methodologies. With less investment, fewer customers are able to participate, further eroding low-income customer access to efficiency. Without policy to ensure low-income efficiency programs are provided at sufficient scale, customers with limited financial means would lose a critical tool for controlling their energy costs and thereby remain vulnerable to the financial risk of high energy bills. I'm aware of no program that uses RIM for screening of low-income at the measure, program, or portfolio level. As noted in the section above, since the 2014 Energy Efficiency Act proceeding, the Commission and utilities do not require low-income efficiency measures and programs to pass the RIM test. Why is use of the Total Resource Cost Test the appropriate method for evaluating Q: low-income efficiency?

1 A: For all the deficiencies of the RIM test noted above, there is clearly still a value in 2 screening low-income energy efficiency measures to ensure the investments will yield net 3 benefits. The Total Resource Cost test is the natural choice, since it is already statutorily recognized²⁰ and its use is well established for this purpose. 4 5 6 The TRC test has several key advantages for screening low-income energy efficiency. 7 First, it is one of the most respected industry standard cost effectiveness tests for 8 evaluating energy efficiency. 9 10 Second, the utilities in this proceeding already calculated the TRC in their analysis of 11 technical, economic, and achievable potential, though Mr. Grevatt identified a number of 12 important technical issues. Third, the TRC can be applied effectively for screening individual measures, setting savings goals, and developing programs. Fourth, analysis 13 14 with the TRC is not impacted by levels of utility incentives offered, meaning it can be 15 used to evaluate savings potential regardless of the portion of cost paid by the participant 16 or utility. Finally, use of the TRC test is the dominant method for evaluating cost 17 effectiveness for low-income energy efficiency across the country, imparting both validity to its use and opportunities to learn from the practices employed in other 18 jurisdictions.²¹ 19 20 21 **Q**: Would use of the Participant Cost Test be a viable alternative? 22 A: Use of the Participant Cost Test, while also statutorily recognized, would not be 23 appropriate as the primary test. Because low-income energy efficiency programs are 24 generally provided at no cost to customers, any measure that produces savings will 25 automatically pass, even if the cost of implementing the measure exceeds the value of its

1 energy savings potential. Moreover, just because something passes the Participant Cost 2 Test, low-income customers still may not be able to afford it. 3 4 Q: Why is use of the two-year payback screen inconsistent with the energy efficiency 5 needs of low-income customers? 6 A: As with RIM, there are a number of problems with the two-year screen that result in 7 double counting and suppression of targets based on assumptions that are at odds with 8 existing conditions and customer decision-making practices. The effect the two-year 9 screen has on reducing portfolio level savings for standard energy efficiency measures is 10 significant. But the problems with use of the two-year payback screen are even more 11 problematic when considering low-income efficiency because the free ridership 12 assumptions underpinning the screen simply do not apply to this group of customers. 13 14 As noted in Mr. Grevatt's testimony, the leading issue is that naturally occurring energy 15 efficiency adoption is already factored into the Nexant technical potential analysis, 16 thereby accounting for free ridership prior to application of the two-year payback screen. 17 This includes accounting for future government codes and standards, and identifies 18 customers who will purchase products that exceed those requirements without utility 19 efficiency programs. Because Nexant already accounted for free ridership at the 20 technical potential level, "the two-year payback screen is a redundant adjustment for free 21 riders that artificially makes cost-effective potential appear to be lower than it really is."²² 22 23 Mr. Grevatt also points out that no empirical evidence has been shown to validate the 24 claim that measures with payback shorter than two years are routinely implemented across the customer base without utility incentive programs.²³ Mr. Grevatt additionally 25

1		identifies a number of market barriers in his testimony that can prevent customers from
2		adopting efficiency measures, including those with payback of two years or less. ²⁴
3		
4		For low-income customers, their financial constraints and housing conditions
5		significantly reduce their ability to purchase higher efficiency measures in the absence of
6		utility programs. For this reason, free ridership for low-income energy efficiency
7		programs is reasonably assumed to be zero or near-zero.
8		
9	Q:	How do the measure screening results of the RIM test and two-year payback screen
10		compare to the measures used in utility low-income EE programs?
11	A:	The RIM and two-year payback screen have a profound impact on measure selection.
12		Four utilities – FPL, Gulf, OUC, and JEA – use these screening tests to eliminate literally
13		every single residential measure, including all measures included in their respective low-
14		income efficiency programs. By contrast, after applying the RIM and two-year screen
15		both TECO and DEF retain an array of residential measures including several that are
16		part of their low-income efficiency programs. As noted above, the Commission has
17		authorized utilities to deploy low-income efficiency programs regardless of whether they
18		pass the RIM and two-year screen. However, the utilities' own analysis clearly shows
19		that the RIM and two-year screen are deeply and fundamentally flawed as tools for
20		evaluating low-income efficiency potential.
21		
22	Q:	How do the measures screening results of the TRC test compare to the measures
23		used in utility low-income energy efficiency programs?
24	A:	As with the RIM and two-year screen analysis discussed above, significant
25		inconsistencies exist between the various utilities with regard to TRC screening.

However, in contrast to RIM and the two-year screen, at least a portion of the differences 1 2 in TRC analysis between utilities appear to be related to fairly discrete issues that can be 3 corrected by addressing specific input assumptions and calculation methodologies. 4 5 When low-income efficiency potential is analyzed using the TRC with the two-year 6 payback screen removed, the list of measures for most utilities looks far more applicable. 7 8 For instance, separate from any other screening factors, all of the following residential 9 measures pass TRC for Duke Energy Florida ("Duke"). In this list, the starred items 10 appear to generally align with the measures included in Duke's two low-income 11 efficiency programs. The first group of measures, in purple, pass TRC, RIM, and the 12 two-year screen in Duke's analysis. The second group of measures, in green, pass both 13 TRC and the two-year payback screen, but not RIM. The third group of measures, in 14 blue, would have also been removed by the two-year screen. Notably, CFL and LED 15 lights, faucet aerators, low flow showerheads, hot water pipe insulation, and water heater 16 temperature setbacks are all standard components of Duke's largest and most impactful 17 low-income efficiency program, the Neighborhood Energy Saver, but would have been 18 removed by the two-year payback screen. 19 20 **Duke Residential TRC Economic Potential ("EP")**: 21 * 14 SEER ASHP from base electric resistance heating 22 * 15 SEER Air Source Heat Pump (only for single family homes) 23 15 SEER Central AC (only for single family homes) 24 * 16 SEER Central AC (only for single family homes) 25 * Air Sealing-Infiltration Control (only for existing homes)

- * Ceiling Insulation (R12 to R38)
- * Ceiling Insulation (R19 to R38) (only for single family homes)
- * Ceiling Insulation (R2 to R38)
- * Duct Repair (only for existing homes)
- Energy Star Windows (only for existing homes)
- Home Energy Management System
- Spray Foam Insulation (Base R2) (only for single family homes)
- Wall Insulation (only for existing single family and manufactured homes)
- Thermostatic Shower Restriction Valve
- Two Speed Pool Pump
- Variable Speed Pool Pump
- * LED Specialty Lamps 5W Chandelier
- * LED 9W Flood
- * CFL 13W
- High Efficiency Induction Cooktop
- Energy Star Clothes Washer
- ENERGY STAR Room AC
- * CFL 15W Flood (Exterior)
- * CFL 23W
- * LED − 14W
- * LED 9W Flood (Exterior)
- * LED 9W
- * Linear LED
- * Low Wattage T8 Fixture
- Energy Star Dehumidifier

25

ENERGY STAR Air Purifier

1 Heat Pump Pool Heater 2 Removal of 2nd Refrigerator-Freezer * Faucet Aerator 3 4 * Hot Water Pipe Insulation * Low Flow Showerhead 5 6 * Water Heater Thermostat Setback 7 **Smart Power Strip** 8 9 Using the same delineations and color coding, significant differences can be seen in FPL's 10 screening breakdown, but the general point is the same that RIM and the two-year screen 11 must be removed to produce common low-income efficiency measures, including those 12 offered by FPL. One more category has been added to this list in red, indicating measures 13 that FPL additionally removed using an administrative cost screen on top of the RIM and 14 two-year payback screen. It is notable that many measures that are included in Duke and 15 TECO's existing low-income programs are not currently offered by FPL, so those measures 16 are not starred. 17 18 No residential measures pass RIM in FPL's analysis 19 Ceiling Insulation (R2 to R38) 20 **ENERGY STAR Certified Roof Products** 21 14 SEER ASHP from base electric resistance heating 22 * Duct Repair (only for existing multi-family and manufactured homes) 23 Smart Thermostat (EE only) (only for new single family homes) 24 Two Speed Pool Pump

- ENERGY STAR Clothes Washer
- Removal of 2nd Refrigerator/Freezer
- ENERGY STAR Certified Roof Products
- * Duct Repair (only for existing single family homes)
- ENERGY STAR Dehumidifer
- ENERGY STAR Room AC
- Programmable Thermostat (only for new single family homes)
- Heat Pump Pool Heater
- * Low Flow Showerhead (only for multi-family and single family homes)
- ENERGY STAR Dishwasher
- ENERGY STAR Imaging Equipment
- Programmable Thermostat (only for new multi-family and manufactured homes)
- CFL 23W
- CFL 15W Flood (Exterior)
- LED 14W
- LED − 9W
- LED 9W Flood (exterior)
- Linear LED

- Low Wattage T8 Fixture (Bulb)
- * Faucet Aerator (all homes except for new manufactured homes)
- * Hot Water Pipe Insulation
- * Low Flow Showerhead (only for manufactured homes)
- Water Heater Thermostat Setback
- 25 Q: Are there issues with the administrative cost screen?

25

1 A: The primary problem with the administrative cost test is that FPL appears to assign 2 highly unreasonable administrative costs to some of their residential measures; so even 3 the most cost effective and fastest payback measures are removed. For instance, the 4 administrative cost assigned to a CFL lightbulb is \$29. The same \$29 is added to the cost of a single faucet aerator.²⁵ These costs are indefensible for any reasonable delivery 5 mechanism and suggest a heightened level of scrutiny is warranted on administrative 6 7 costs in these analyses going forward. 8 9 Mr. Grevatt provides context using administrative costs in other jurisdictions and adds 10 additional detail to the problem with the administrative cost test in his testimony. 11 12 Q: Are there other factors in the utility modeling that would lead to overly-conservative 13 estimates of low-income potential? 14 A: Because low-income free ridership is zero or near-zero, use of standard baselines likely 15 underestimates actual savings by a considerable degree. Additionally, deeper efficiency 16 programs for low-income customers can include early replacement for large energy using 17 equipment such as heating, air conditioning, water heaters, and refrigerators, but the 18 analysis in this proceeding appears not to appropriately capture this savings potential. 19 Additional instances of unreasonably high administrative costs could not be fully 20 reviewed prior to filing this testimony and reflect another factor that could result in a 21 potentially large underestimation of actual low-income efficiency savings potential. 22 23 IV. Calculation of Specific Low-income Energy Efficiency Targets for Each Utility 24

1	Q:	What methodology do you propose be used to evaluate low-income energy efficiency
2		savings potential as part of the Energy Efficiency Act goal setting process?
3	A:	I propose starting with the residential portion of each utility's achievable TRC potential,
4		with the following three adjustments described in Mr. Grevatt's testimony:
5		
6	-	Remove the two-year payback screen.
7	-	Add the 14 SEER Air Source Heat Pump from base electric resistance heating 26 (FPL
8		only). ²⁷
9	-	Reduce Economic Potential by 50% to determine Achievable Potential.
10		
11	Tł	nis corrected Achievable Potential is then multiplied by the percentage of population for
12	ea	ch utility that is at or below 200% of the federal poverty level. This provides the total 10
13	ye	ear efficiency savings potential for low-income customers.
14		
15	Q:	What are the total residential Achievable Potential savings used for these
16		calculations?
17		
18		Table 2 below has the residential Achievable Potential savings from Mr. Grevatt's
19		testimony used for calculating the low-income efficiency targets below. These figures
20		were drawn from Exhibit JMG-2 and FPL's were additionally adjusted to reflect the
21		addition of SEER 14 ASHP as per Grevatt Testimony Table 4.
22		
23		
24		
25		

Table 2. Residential Achievable Potential Savings from Grevatt Testimony

	10-Year Total	Summer Peak (MW)	Winter Peak (MW)
FPL	1,077 GWh	337	187
Duke	1,530 GWh	663	303
TECO	323 GWh	64	51
Gulf	381 GWh	83	79
OUC	155 GWh	37	19
JEA	336 GWh	80	49

Q: What is the low-income energy efficiency savings potential for each Energy

12 Efficiency Act utility?

Table 3 below identifies the energy saving potential for each utility's low-income customers for 2020-2029.

Table 3. Energy Saving Potential for Utilities' Low-Income Customers (2020-2029)

	10-Year Total	Summer Peak MW	Winter Peak MW	
FPL	395 GWh	124 MW	69 MW	
Duke	572 GWh	248 MW	113 MW	
TECO	CO 117 GWh		18 MW	
Gulf	133 GWh	29 MW	28 MW	
OUC	67 GWh	16 MW	8 MW	
JEA	125GWh	30 MW	18 MW	

1	Q:	How does the actual performance of Energy Efficiency Act utilities from 2015-2018
2		compare to these targets?
3	A:	A wide disparity can be seen between the low-income efficiency program performances
4		of these utilities since the start of the past Energy Efficiency Act cycle.
5		
6		By a large degree, the top performers have been TECO, Duke, and Gulf. They have
7		served vastly more households and delivered far more energy savings, both in absolute
8		terms and in proportion to their relative size. Truly these utilities are to be commended
9		for the difference they are making in their communities and clearly they set the standard
10		by which the performance of the other utilities in Florida should be evaluated. However,
11		even these utilities have significant room for improvement.
12		
13		FPL and OUC had by far the worst performance in both absolute and proportionate
14		terms. Adjusted for their respective total residential customer counts, Duke and Gulf
15		both delivered more than 20 times the low-income energy savings of FPL and OUC –
16		while TECO delivered nearly 50 times the savings of these lowest performing utilities.
17		Notably OUC dramatically reduced their kWh savings from its high point in 2015, down
18		to serving just 6 customers with their low-income program in 2018.
19		
20		Table 4 below is a comparison between the average annual low-income efficiency targets
21		I recommend for years 2020-2029 and the actual four-year average low-income program
22		performance of each utility from 2015 – 2019, as reported annually by the utilities to this
23		Commission.
24		

Table 4. Recommended Average Annual Low-Income Efficiency Targets (2020-2029)

Compared to Actual Four-Year Average Low-Income Program Performance

3	
4	

	2020-2029 Ave Annual Target	2015-2018 Ave Annual Performance
	(GWh)	(GWh)
FPL	39.5	0.9
Duke	57.2	7.9
TECO	11.7	7.5
Gulf	13.3	1.9
OUC	6.7	0.05
JEA	12.5	11

A:

Q: How do these proposed targets for FPL compare to the company's historic levels and their 2020-2029 proposed low-income target?

FPL has poverty levels that are similar to their peers in percentage terms (36.7%), but far larger in absolute terms (over 3 million). By contrast, as noted above, their historic performance (5,989 customers served) has lagged far behind their two next largest peers in Florida, Duke (22.9 times higher kWh saved, 65,284 customers served)²⁸ and TECO (51.6 times higher kWh saved, 27,346 customers served).²⁹ Their proposed low-income savings target, averaged over the next ten years, is just 3.8 times higher than their 2015-2018 performance, which would still lag behind the actual performance by Duke (6 times higher) and TECO (13.6 times higher) over the past four years. To their credit, FPL was the only utility to request Commission approval for a specific low-income efficiency target. Unfortunately, what they proposed falls far below what their peers have already accomplished and even farther below the target I recommend.

SECTION V: ADDITIONAL COMMISSION GUIDANCE FOR PROGRAM PLANNING 1 2 3 Q: Could additional Commission direction to the utilities prior to their development of 4 DSM Plans lead to deeper savings, improved access for eligible customers, and 5 increased overall savings achieved? 6 Yes. Direction from the Commission provides the utilities, intervenor parties, and the A: 7 public with clarity on the Commission policy goals and expectations. In the last 8 proceeding, Commission guidance focused Energy Efficiency Act utilities on deploying 9 energy efficiency programs for low-income customers, while affording them the 10 flexibility to offer some of the most impactful measures that otherwise would have been 11 screened out by the RIM test and two-year payback screen. 12 In this Energy Efficiency Act proceeding, I have recommended that the Commission 13 14 specify the TRC test as the standard for evaluating low-income efficiency potential and 15 formalize targets for each utility. I also believe there are two additional subjects that 16 warrant Commission guidance as part of its decision-making in this proceeding. 17 18 Q: Please describe your first recommendation for each utility to offer distinct delivery 19 channels for far-reaching and deeper-savings efficiency programs. 20 A· I recommend the Commission direct each of the FEECA the utilities to offer two distinct 21 delivery channels for efficiency programs. 22 23 One program delivery channel should aim to reach large numbers of customers quickly 24 and at relatively low cost. These neighborhood-style programs have a valuable role in 25 serving large numbers of low-income customers relatively inexpensively.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

But the level of savings that come from a handful of minor efficiency measures do not, in of themselves, reduce bills enough to significantly eliminate high energy burdens. Lighting, faucet aerators, and minor air sealing projects are common features of Florida utility programs targeting customers in low-income neighborhoods; but larger scale improvements like HVAC equipment replacement, insulation, water heaters, and appliances upgrades, and comprehensive air sealing for ductwork and building envelopes do more to address the root causes of high energy burdens by eliminating significantly more energy waste and therefore substantially reduce monthly energy bills. Therefore, the other program delivery channel should strive to capture deep savings for each participant, sufficient to reduce electric bills enough to materially improve the financial standing of the low-income customers served every month for many years to follow. Duke, TECO, and FPL each offer both of these delivery channels, albeit there is currently a wide chasm between these utilities in both program performance and transparency.³⁰ Gulf and JEA each have only broad-based neighborhood-style programs, while OUC has historically just offered a deeper savings program. By offering both types of programs, the utilities should be able to reach relatively large portions of their low-income customers within a short number of years. The reach of these programs can be quite impressive within a few years. From 2015-2018, Duke reached 15% of eligible customers, 31 while TECO reached 23.4%. 32 While the deeper-savings program could have its own intake system, the broad-based neighborhood-style programs could also help identify candidate customers while in the field, thereby leveraging administrative resources and helping identify otherwise hard to

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Q:

A:

reach customers that are in great need. Struggling families, the elderly, disabled individuals, veterans, and otherwise hard to reach customers who are in need could all benefit from this kind of pro-active outreach and deep savings projects. Separate tracking and reporting on program performance for both the neighborhood-style program and the deeper savings program should be standard practice going forward. TECO and Duke already do this in their annual efficiency reporting to the Commission. Please describe your second recommendation for each utility to ensure participation opportunities for residents across all categories of housing. My second recommendation is to direct the utilities to provide meaningful program participation opportunities for customers in all types of housing, including small and large multifamily housing, manufactured homes and renters, as well as single-family owner-occupied homes. Table 5 below shows the relative proportion of each housing type by utility service territory. Exhibit FBW-5 also shows geographically where in the state manufactured homes are located. Different housing types, physical conditions, location and whether a customer owns or rents are all factors that should inform lowincome efficiency offerings and all low-income customer have the opportunity to participate. For some utilities, many low-income customers are excluded from participation because they live in a housing type that the utility does not serve, like multifamily and manufactured homes in FPL's service territory.³³

Table 5. Relative Proportion of Housing Type by Utility Service Territory 34

Residential Housing Stock	DEF	FPL	GPC	JEA	OUC	TECO
Single Family	65.1%	58.5%	68.2%	65.7%	50.4%	63.6%
Small/Medium Multifamily	16.3%	18.7%	15.4%	20.5%	31.3%	19.3%
Large Multifamily	7.7%	17.4%	6.9%	8.7%	16.3%	8.2%
Manufactured	10.8%	5.4%	9.3%	5.1%	1.9%	8.7%
Estimated # of Units	1,420,331	3,842,475	247,773	343,443	78,700	606,805

A:

Q: Why should this guidance be given during this proceeding, rather than after the utilities file their 2020 DSM Plans?

Making these priorities known to the utilities prior to developing their DSM Plans will lead to better outcomes for all low-income customers and provide the utilities with assurances that developing such programs will be supported by the Commission.

Ultimately, this should lead to greater certainty and consistency among the utilities, greater access to program participation for low-income customers, and deeper savings for the customers who most need it – all while increasing overall savings impact for low-income customers, which is a goal all parties to this proceeding should be able to get behind.

Q: Does this conclude your testimony?

A. Yes, it does.

www.fdic.gov/news/conferences/consumersymposium/2012/a%20complex%20portrait.pdf.

¹ American Council for an Energy Efficient Economy ("ACEEE"), 2016 "Lifting the High Energy Burden in America's Largest Cities." https://aceee.org/research-report/u1602, Exhibit FBW-2.

² National Association for the Advancement of Colored People ("NAACP") 2017 "Just Energy Policies: Model Energy Policies Guide." https://www.naacp.org/wp-content/uploads/2014/03/Just-Energy-Policies_Model-Energy-Policies-Guide_NAACP.pdf, Exhibit FBW-3.

³ U.S. Census Bureau, 2013-2017 American Community Survey (ACS) 5-Year Estimates Tables S1701 Poverty Status in the Past 12 Months; B25033 Total Population in Occupied Housing Units by Tenure by Units in Structure; S0103 Population 65 Years; B25127 Tenure by Year Structure Built by Units in Structure via American Fact Finder: https://factfinder.census.gov.

⁴ U.S. Energy Information Administration, Household Energy Insecurity, released October 2017, revised May 2018: https://www.eia.gov/consumption/residential/data/2015/hc/php/hc11.1.php

⁵ Board of Governors of the Federal Reserve System, "Report on the Economic Well-Being of U.S. Households in 2018." 2019 https://www.federalreserve.gov/publications/files/2018-report-economic-well-being-us-households-201905.pdf, Exhibit FBW-4.

⁶ Center for Financial Services Innovation.2012. "A Complex Portrait: An Examination of Small-Dollar Credit Consumers."

⁷ Florida Public Service Commission, Order No. PSC-14-0696-FOF-EU, issued December 16, 2014 in Docket Nos. 130199-EI, 130200-EI, 130201-EI, 130202-EI, 130203-EM, 130204-EM, 130205-EI, at p. 27.

⁸ *Id*.

⁹ *Id*.

¹⁰ Florida Public Service Commission, Order No. PSC-15-0323-PAA-EG, issued August 11, 2015 in Docket No. 150081-EG, at p. 9.

¹¹ *Id.* at 6.

¹² Florida Public Service Commission, Order No. PSC-15-0331-PAA-EG, August 19, 2015 in Docket No. 150085-EG, at p. 6.

¹³ *Id*.

¹⁴ FPL appears to assert here that efficiency programs are not cost-effective without a RIM score greater than 1.0, a subject discussed in greater detail further in my testimony.

¹⁵ Testimony of Tom Koch on behalf of Florida Power & Light, at 37, April 12, 2019.

¹⁶ Testimony of Kevin Noonan on behalf of OUC, at 11, April 12, 2019.

¹⁷ *Id.* at 12.

¹⁸ *Id.* at 29.

¹⁹ Florida Public Service Commission, Order No. PSC-14-0696-FOF-EU, issued December 16, 2014 in Docket Nos. 130199-EI, 130200-EI, 130201-EI, 130202-EI, 130203-EM, 130204-EM, 130205-EI, at p. 27.

²⁰ *Id.* at 22; *see also* section 366.82(3)(b), Fla. Stat.

²¹ ACEEE "State-Level Strategies for Tackling High Energy Burdens: A Review of Policies Extending State- and Ratepayer-Funded Energy Efficiency to Low-Income Households" 2018. <a href="https://aceee.org/files/proceedings/2018/node_modules/pdfjs-dist-viewer-min/build/minified/web/viewer.html?file=../../../../assets/attachments/0194_0286_000404.pdf#search=%22drehobl%22, Exhibit FBW-6.

²² Testimony of Jim Grevatt on behalf of Southern Alliance for Clean Energy, at 17, June 10, 2019.

²³ *Id*.

²⁴ *Id*.

²⁵ *Id.* at 32.

²⁶ *Id.* at 29-31.

²⁷ TECO's economic potential analysis also contains the same issue, but I have not corrected for it in the following calculations.

²⁸ Duke Energy Florida Demand Side Management Annual Report for 2018. Filed March 1, 2019, Exhibit FBW-7.

²⁹ TECO Demand Side Management Annual Report for 2018. Filed March 1, 2019, Exhibit FBW-8.

³⁰ Note: As noted above, DEF and TECO's performance greatly exceeds FPL and FPL does provide disaggregated data on their two delivery channels, while both DEF and TECO do.

³¹ Duke Energy Florida Demand Side Management Annual Report for 2018. Filed March 1, 2019 (NOTE: this is counting only Duke's Neighborhood Energy Savers program. There are additional participants in Dukes Low Income Weatherization program that are not include here), Exhibit FBW-7.

³² TECO Energy Florida Demand Side Management Annual Report for 2018. Filed March 1, 2019, Exhibit FBW-8.

³³ Florida Public Service Commission, Order No. PSC-15-0331-PAA-EG, issued August 19, 2015 in Docket No. 150085-EG, at p. 3.

³⁴ U.S. Census Bureau, 2013-2017 ACS 5-year Public Use Microdata Samples (PUMS) Florida Housing Units Records (January 17, 2019), https://www2.census.gov/programs-surveys/acs/data/pums/2017/5-Year/csv_hfl.zip; 2013-2017 ACS 5-year Estimates Table B25024 Units in Structure via American Fact Finder https://factfinder.census.gov; see also Platts Electric Power Data, Electric Utility Service Territories, U.S. Census Bureau, ACS 5-Year Census Tract Estimates Units in Structure.

- 1 BY MR. MARSHALL:
- 2 Q And do you have any exhibits attached to your
- 3 testimony?
- 4 A I do.
- 5 Q And those would be identified as FBW-1 through
- 6 **FBW-8?**
- 7 A That's right.
- 8 MR. MARSHALL: And for the record, those would
- 9 be Exhibits 84 through 91 on staff's comprehensive
- 10 exhibit list.
- 11 CHAIRMAN GRAHAM: Duly noted.
- 12 BY MR. MARSHALL:
- Q Mr. Bradley-Wright, did you prepare a summary
- of your testimony?
- 15 A I did.
- 16 Q Would you please go ahead and give us your
- 17 summary?
- 18 A Thank you for the opportunity to speak this
- 19 afternoon.
- More than five million people served by the
- 21 utilities in this proceeding live on low incomes. These
- 22 are families with children, the elderly, disabled and
- 23 the working poor who struggle to pay high electric bills
- 24 and still afford their basic needs. They often live in
- older homes of lesser construction, which contribute to

- 1 a vicious cycle of energy waste and high energy bills.
- 2 For these customers, even one unexpected \$400 expense
- 3 can be financially disastrous. Robust low income energy
- 4 efficiency programs are the best solution to lower these
- 5 bills because they cut energy waste at the source.
- In 2014 and '15, the Florida Public Service
- 7 Commission directed these utilities to develop
- 8 efficiency programs to meet the particular needs of low
- 9 income customers, leading to nearly 20 gigawatt hours of
- 10 energy savings per year. But now the utilities are
- 11 seeking to dramatically reduce their overall energy
- 12 savings, with many proposing to eliminate savings
- 13 targets entirely. Not only is this heading in the wrong
- 14 direction, it slams the doors in the face of people who
- 15 struggle to pay their energy bills.
- Preserving low income efficiency programs is a
- 17 critical priority during this targe setting proceeding.
- 18 Your leadership on this issue sends an important signal
- 19 to the public that provides clarity to the utilities
- 20 regarding your expectations going forward.
- To this end, I strongly urge you to establish
- 22 clear targets for low income energy savings, without
- 23 which there is no enforcement mechanism for the
- 24 Commission to hold the utilities accountable.
- In my testimony, I offer such targets for your

- 1 consideration, recognizing that the RIM test and
- 2 two-year screen would eliminate all low income energy
- 3 efficiency program offerings, including those that had
- 4 been previously approved by the Commission. I present a
- 5 set of targets based on the Total Resource Cost test,
- 6 which is also authorized by statute for use in FEECA
- 7 target settings.
- 8 The targets are higher than those captured in
- 9 the past few years, reflecting the opportunity to not
- 10 only reach more low income customers, but also capture
- 11 enough savings to improve energy affordability in a
- 12 household's overall financial well-being.
- I also propose the Commission direct the
- 14 utilities to ensure all low income customers have access
- 15 to these programs, whether they rent or own, live in a
- 16 single family residence, mobile home or apartment
- 17 complex.
- 18 Finally, I suggest you direct the utilities to
- 19 pursue both high levels of participation, as well as
- 20 deeper levels of savings per household. Right now,
- 21 Florida's major utilities are in a race to the bottom
- 22 with energy efficiency, and it literally could not get
- worse than what many of them have proposed.
- To put it plainly, zero is not a goal, and it
- 25 is up to this commission to ensure Florida does better.

- 1 Like every other resource, there is a cost for energy
- 2 efficiency, but today it is the cost of inaction that we
- 3 cannot afford. Five million people, the working poor,
- 4 children, the disabled and our elderly depend on you to
- 5 stand up for enforceable efficiency savings targets to
- 6 ensure low income customers can reduce their high energy
- 7 bills. It is the right thing to do. It is the least we
- 8 can do, and now is the time for action.
- 9 Thank you for the opportunity to speak on this
- 10 important issue.
- 11 MR. MARSHALL: We tender the witness for
- 12 cross-examination.
- 13 CHAIRMAN GRAHAM: Thank you.
- We'll start at the end with OPC.
- MS. FALL-FRY: No questions.
- 16 CHAIRMAN GRAHAM: We'll scan down. Raise your
- 17 hand if you have questions.
- 18 Staff?
- 19 Commissioners?
- I guess there is no redirect.
- MR. MARSHALL: There would be not be at this
- time.
- 23 CHAIRMAN GRAHAM: Exhibits?
- 24 MR. MARSHALL: We would move Exhibits 84
- 25 through 91 into the record.

```
1
                                  If there is no objections,
               CHAIRMAN GRAHAM:
 2
          we will move Exhibits 84 through 91 into the
 3
          record.
               (Whereupon, Exhibit Nos. 84-91 were received
 4
 5
    in evidence.)
               MR. MARSHALL: And we would ask, therefore,
 6
 7
          that Mr. Bradley-Wright be excused.
 8
               CHAIRMAN GRAHAM: Mr. Wright, thank you very
 9
                 Travel safe, please.
         much.
10
               (Witness excused.)
11
               CHAIRMAN GRAHAM: Okay.
                                         That's the end of our
12
          direct witnesses. Let's take a five-minute break
13
          before we start rebuttal, so 10 minutes till,
14
          six-minute break.
15
               (Brief recess.)
16
               (Transcript continues in sequence in Volume
17
    6.)
18
19
20
21
22
23
24
25
```

1	CERTIFICATE OF REPORTER
2	STATE OF FLORIDA) COUNTY OF LEON)
3	COUNTY OF LEON)
4	
5	I, DEBRA KRICK, Court Reporter, do hereby
6	certify that the foregoing proceeding was heard at the
7	time and place herein stated.
8	IT IS FURTHER CERTIFIED that I
9	stenographically reported the said proceedings; that the
10	same has been transcribed under my direct supervision;
11	and that this transcript constitutes a true
12	transcription of my notes of said proceedings.
13	I FURTHER CERTIFY that I am not a relative,
14	employee, attorney or counsel of any of the parties, nor
15	am I a relative or employee of any of the parties'
16	attorney or counsel connected with the action, nor am I
17	financially interested in the action.
18	DATED this 22nd day of August, 2019.
19	
20	
21	Deblie R. Louce
22	DEBRA R. KRICK
23	NOTARY PUBLIC COMMISSION #GG015952
24	EXPIRES JULY 27, 2020
25	